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a b s t r a c t

Using Artificial Neural Networks (ANN) for nonlinear system identification has proven to be a
promising approach, but despite of all recent research efforts, many practical and theoretical problems
still remain open. Specifically, noise handling and models, issues of consistency and reliable estimation
under minimization of the prediction error are the most severe problems. The latter comes with
numerous practical challenges such as explosion of the computational cost in terms of the number of
data samples and the occurrence of instabilities during optimization. In this paper, we aim to overcome
these issues by proposing a method which uses a truncated prediction loss and a subspace encoder for
state estimation. The truncated prediction loss is computed by selecting multiple truncated subsections
from the time series and computing the average prediction loss. To obtain a computationally efficient
estimation method that minimizes the truncated prediction loss, a subspace encoder represented by an
artificial neural network is introduced. This encoder aims to approximate the state reconstructability
map of the estimated model to provide an initial state for each truncated subsection given past
inputs and outputs. By theoretical analysis, we show that, under mild conditions, the proposed
method is locally consistent, increases optimization stability, and achieves increased data efficiency by
allowing for overlap between the subsections. Lastly, we provide practical insights and user guidelines
employing a numerical example and state-of-the-art benchmark results.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

While linear system identification offers both a strongly
eveloped theoretical framework and broadly applicable compu-
ational tools, identification of nonlinear systems remains
hallenging. The wide range of nonlinear behaviors that appear
n engineering, reaching from mechatronic systems to chemical
nd biological systems, poses a challenge in developing gener-
cally applicable model structures and identification methods
Schoukens & Ljung, 2019). Hence, numerous nonlinear system
dentification methods have been proposed over the last decades.
mongst the most popular ones are, linear parameter-varying
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(Grant Number: SA-77/2021). The material in this paper was partially presented
at 3rd Conference on Learning for Dynamics and Control, June 7 – 8, 2021,
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in revised form by Associate Editor Dario Piga under the direction of Editor
Alessandro Chiuso.

✩ Implementation of the proposed SUBNET method is available at https:
/github.com/GerbenBeintema/deepSI and the implementation of the simulation
tudy is available at GerbenBeintema/encoder-automatica-experiments.
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005-1098/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
(Lee & Poolla, 1999; Tóth, 2010), Volterra (Birpoutsoukis, Mar-
conato, Lataire, & Schoukens, 2017; Sliwiński, Marconato, Wachel,
& Birpoutsoukis, 2017), NAR(MA)X (Billings, 2013), block-oriented
(Giri & Bai, 2010; Schoukens & Tiels, 2017), and nonlinear state–
space (Beintema, Tóth, & Schoukens, 2021a, 2021b; Forgione,
Mejari, & Piga, 2022; Gedon, Wahlström, Schön, & Ljung, 2021;
Masti & Bemporad, 2021; Paduart et al., 2010; Schön, Wills, &
Ninness, 2011; Schoukens, 2021) approaches.

In this paper, we consider the problem of identifying non-
linear systems using nonlinear state–space (NL-SS) models since
they can represent a broad range of dynamic behaviors and
are well applicable for multiple-input multiple-output (MIMO)
systems (Schoukens & Ljung, 2019). However, estimation of NL-
SS models is rather challenging as the state-variables are of-
ten not measurable (hidden Markov model) and the associated
optimization-based training process is prone to local minima
and model/gradient instability (Decuyper, Runacres, Schoukens, &
Tiels, 2020). Furthermore, the associated nonlinear state
-transition and output functions rapidly grow in complexity with
a growing number of states and inputs. If these are parametrized
as a linear combination of basis functions, e.g., polynomials as
in Decuyper, Dreesen, Schoukens, Runacres, and Tiels (2019) and
Paduart et al. (2010), then this often leads to an explosion of
parameters to be able to capture the system dynamics. Also,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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robabilistic methods such as Schön et al. (2011) can become
omputationally burdensome with increasing numbers of states
nd inputs or training sequence lengths. Hence, an efficient repre-
entation approach for the nonlinearities and a novel estimation
oncept is required for NL-SS identification.
Deep learning and artificial neural networks (ANNs) are

uniquely suited to approach the NL-SS identification challenges as
they have been shown theoretically and practically to be able to
model complex data relations while being computationally scal-
able to large datasets. Although these benefits inspired the use
of state–space neural network models two decades ago (Suykens,
Moor, & Vandewalle, 1995), fully exploiting these properties in
NL-SS identification without major downsides is still an open
problem. For instance, careful initialization of the neural net-
work weights and biases partially mitigates the risk of local
minima during optimization, but requires additional informa-
tion, e.g., estimating of a linear approximate model of the sys-
tem (Schoukens, 2021). Additionally, Ribeiro, Tiels, Umenberger,
Schön, and Aguirre (2020) have shown that multiple shooting
smooths the cost function, reducing the number of local minima
and improving optimization stability, which has given rise to
the use of truncated simulation error cost for ANN based NL-SS
estimation (Forgione & Piga, 2021). However, the use of multiple
shooting approaches comes with the challenge of estimating
a potentially large number of unknown initial states for each
subsection, resulting in a complexity increase of the optimization.
To overcome this problem, auto-encoders have been investigated
to jointly estimate the model state and the underlying state–
space functions using one-step-ahead prediction cost (Masti &
Bemporad, 2021). However, these approaches fall short of giving
accurate long-term predictions due to incorrect noise handling,
they need for tuning sensitive hyperparameters in the compos-
ite auto-encoder/prediction-error loss function, and they lack of
consistency guarantees.

To overcome these challenges, this paper enhances the sub-
space encoder-based method for identification of state–space (SS)
neural networks first introduced in Beintema et al. (2021b) with
an innovation noise model and prove consistency properties.
The nonlinear SS model is parametrized with ANNs for flexibil-
ity and efficiency in representing the often complex and high-
dimensional state-transition and output functions. The model is
estimated under a truncated prediction loss, evaluated on short
ubsections. Similarly to multiple shooting, these subsections fur-
her improve computational scalability and optimization stability,
hereby reducing the importance of parameter initialization. The
nternal state at the start of each subsection is obtained using
nonlinear subspace encoder which approximates the recon-

tructability map of the SS model and further improves compu-
ational scalability and data efficiency. The state-transition and
utput functions of the SS model and the encoder are simultane-
usly estimated based on the aforementioned truncated predic-
ion loss function. Finally, batch optimization and early stopping
are employed to further improve the performance of the pro-
posed identification scheme. We demonstrate that the resulting
nonlinear state–space identification method is robust w.r.t. model
and gradient instability during training, has a relatively small
number of hyperparameters, and obtains state-of-the-art results
on benchmark examples.

To summarize, our main contributions are

• A novel ANN-based NL-SS identification algorithm that even
in the presence of innovation noise disturbances provides
reliable and computationally efficient data-driven
modeling;

• Efficient use of multiple-shooting based formulation of the
prediction loss via co-estimation of an encoder function rep-
resenting the reconstructability map of the nonlinear model
(computational efficiency);
2

• Proving that the proposed estimator is consistent (statistical
validity) and enhances smoothness of the costs function
(optimization efficiency);

• Guidelines for the choice of hyperparameters and a detailed
comparison of the proposed method to the state-of-the-art
on a widely used identification benchmark.

The paper is structured as follows: Section 2 introduces the
considered data-generating system and identification problem.
Section 3 discusses the proposed subspace encoder method in
detail and provides some user guidelines. We theoretically prove
multiple key properties of the proposed method in Section 4,
and demonstrate state-of-the-art performance of the method on
a simulation example and the Wiener–Hammerstein benchmark
in Sections 5–6, followed by the conclusions in Section 7.

2. Problem setting and preliminaries

2.1. Data-generating system

Consider a discrete-time system with innovation noise that
can be represented by the state–space description:

xk+1 = f (xk, uk, ek), (1a)

yk = h(xk) + ek, (1b)

where k ∈ Z is the discrete-time, e is an i.i.d. white noise
process with finite variance Σe ∈ Rny×ny , and u is a quasi-
stationary input process independent of e and taking values in
Rnu at each time moment k. Additionally, x and y are the state
and output processes, taking values in Rnx and Rny respectively.
The functions f : Rnx×nu×ny → Rnx and h : Rnx → Rny ,
i.e. the state transition and output functions, are considered to
be bounded, deterministic maps. Without loss of generality we
can assume that h does not contain a direct feedthrough term. By
assuming various structures for f and h, many well-known noise
structures can be obtained such as nonlinear output noise (NOE),
nonlinear auto-regressive with exogenous input (NARX), nonlinear
auto-regressive with moving average exogenous input (NARMAX)
and nonlinear Box–Jenkins (NBJ) (Jansson, 2003). For instance, if
f does not depend on ek, then a NL-SS model with an OE noise
structure is obtained.

For a given sampled excitation sequence {uk}
N
k=1 and poten-

tially unknown initial state x1 ∈ Rnx , the obtained response of
the considered system (1) in terms of a sample path realization
is collected into an ordered input–output (IO) data set DN =

{(uk, yk)}Nk=1 used for identification. To avoid unnecessary clutter,
we will not use different notation for random variables such as
yk defined by (10) and their sampled values, but at places where
confusion might arise, we will specify which notion is used.

2.2. Identification problem

Based on the given data sequence DN , our objective is to iden-
tify the dynamic relation (1), which boils down to the estimation
of f and h. Note that these functions cannot be estimated directly
as x and e are not measured.

To accomplish our objective, notice that ek = yk − h(xk) based
on (1), hence, by substitution, we get

xk+1 = f (xk, uk, yk − h(xk)) = f̃ (xk, uk, yk). (2)

Then, for n ≥ 1, we can write

yk = h(xk) + ek, (3a)

yk+1 = (h ◦ f̃ )(xk, uk
k, y

k
k) + ek+1, (3b)

..
.
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yk+n = (h ◦n f̃ )(xk, uk+n−1
k , yk+n−1

k ) + ek+n, (3c)

here ◦ stands for function concatenation on the state argument,
◦n means n-times recursive repetition of ◦ (e.g., h◦2 f̃ = h◦ f̃ ◦ f̃ ),

nd uk+n−1
k = [u⊤

k · · · u⊤

k+n−1]
⊤ with yk+n−1

k similarly defined.
ore compactly:

k+n
k = Γn(xk, uk+n−1

k , yk+n−1
k ) + ek+n

k . (4)

Note that the noise sequence ek+n
k is not available in practice,

ence, Eq. (4) cannot be directly used in estimation. To overcome
his problem, we can exploit the i.i.d. white noise assumption on
k and calculate the expectation of (4) w.r.t. e conditioned on the
vailable past data and the initial state xk:

ˆ
k+n
k = Ee[yk+n

k | uk+n−1
k , yk+n−1

k , xk] =

Γn(xk, uk+n−1
k , yk+n−1

k ), (5)

hich is the so called one-step-ahead predictor associated with
1) and can be computed for the entire sample path realization
n DN , i.e., ŷN1 = ΓN (x1, uN−1

1 , yN−1
1 ) or, for a specific sample,

s ŷn = γn(x1, un−1
1 , yn−1

1 ) with γn = (h ◦n f̃ ). We can exploit
(5) to define the estimator by introducing a parametrized form
ΓN,θ of the predictor in terms of fθ : Rnx×nu×ny → Rnx and
hθ : Rnx → Rny defined by the parameters θ ∈ Θ ⊆ Rnθ . The
lassical way to estimate the parameter vector θ based on a given
ata set DN and ensure that fθ and hθ accurately represent Eq. (1)
s to minimize the ℓ2 loss of the prediction error êk = yk − ŷk
etween the measured samples yk and the predicted response ŷk

by ΓN,θ :

pred
DN

(θ ) =
1
N

N∑
k=1

yk − ŷk
2
2 , (6)

where the initial state x1 is a parameter which is co-estimated
with θ . In case fθ does not depend on êk, which corresponds to an
OE noise structure, then (6) is equal to the well-known simulation
error loss function.

The parametrized predictor ΓN,θ , can also be written in a
state–space form

x̂k+1 = fθ (x̂k, uk, êk), (7a)

ŷk = hθ (x̂k), (7b)

where x̂ and ŷ are the predicted state and predicted output taking
values from Rnx and Rny respectively, while ê is the prediction
error. In fact, (7) qualifies as the model structure used to estimate
Eq. (1) through the minimization of the identification criterion
(6).

In the sequel, we will consider fθ and hθ to be multi-layer
artificial neural networks (ANNs), parametrized in θ , where each
hidden layer is composed from m activation functions φ : R → R
in the form of zi,j = φ(

∑mi−1
l=1 θw,i,j,lzi−1,l + θb,i,j) where zi =

col(zi,1, . . . , zi,mi ) is the latent variable representing the output of
layer 1 ≤ i ≤ q. Here, col(�) denotes composition of a column
vector. For fθ with q hidden-layers and linear input and output
layers, this means fθ (x̂k, uk, êk) = θw,q+1zq(k)+ θb,q+1 and z0(k) =

col(x̂k, uk, êk). The parameters of the state transition and output
functions of (7) are collected in θ . Furthermore, for the remainder
of this paper we will assume that fθ and hθ are Lipschitz contin-
uous. Note that assumption is not restrictive for commonly used
neural network structures since the activation functions (ReLu,
tanh, sigmoid, etc.) used for φ are Lipschitz continuous. Under
these considerations, model structure (7) represents a recurrent
neural network and it is also called state–space (SS) ANN in the
literature (Schoukens, 2021; Suykens et al., 1995).

By using the ANNs fθ and hθ , one can directly compose the
feedforward predictor network ΓN,θ and attempt to solve mini-

mization of (6) directly. However, this blunt approach can meet

3

with considerable difficulties. In ANN-based identification, mini-
mizing the simulation error, which is a special case of (6) under
an OE noise structure, has been observed to result in accurate
models (Schoukens & Ljung, 2019), but its major shortcoming is
that the computational cost scales at least linearly with N . Fur-
thermore, optimization of this cost function is sensitive to local
minima and gradient-based methods commonly display unstable
behavior (Ribeiro et al., 2020). Hence, the problem that we aim
to solve in this paper is twofold: (i) achieve consistent estimation
of (1) under innovation noise conditions using the parametrized
SS-ANN model (7) and one-step-ahead prediction (6) and (ii)
to provide a consistent estimator that drastically reduces the
involved computational cost and ensures implementability.

3. The subspace encoder method

This section introduces the proposed subspace encoder
method that addresses many of the challenges encountered when
using classical prediction or simulation error identification ap-
proaches for nonlinear state–space models. The proposed ap-
proach builds on the introduction of two main ingredients: a
truncated prediction loss based cost function and a subspace
encoder which is linked to the concept of state reconstructability.

3.1. Truncated prediction loss

In order to overcome the computational difficulties in the
minimization of (6), it is an important observation that the main
difficulty comes from forward propagation of the state over the
entire length of the data set. Hence in the proposed method,
which is an extension of our previous work (Beintema et al.,
2021b), a truncated form of the ℓ2 prediction loss is considered
that emulates well the total prediction loss. This truncated form
aims to reduce the computational cost by the utilization of par-
allel computing and to increase optimization stability (Ribeiro
et al., 2020). By selecting subsections of length T (called the
truncation length) in the overall time sequence, the prediction
loss is calculated on the selected sections:

V sub
DN

(θ ) =
1
C

N−T+1∑
t=1

T−1∑
k=0

∥yt+k − ŷt+k|t∥
2
2, (8a)

ˆt+k+1|t = fθ (x̂t+k|t , ut+k, êt+k|t ), (8b)

ŷt+k|t = hθ (x̂t+k|t ), (8c)

êt+k|t = yt+k − ŷt+k|t , (8d)

here the pipe (|) notation is introduced to distinguish between
ubsections as (current index|start index), and C = (N − T + 1)T .
f the truncation length is set to T = N , then the prediction loss
6) is recovered.

Formulation (8) addresses both shortcomings of the prediction
oss mentioned in Section 1. Based on the fact that the predictions
an be computed in parallel, only T computations are required
o be performed in series hence providing O(T ) computational
caling, which can be considerably smaller than the initial O(N).
oreover, as is shown in Section 4.2, the use of truncated sections

ncreases the loss function smoothness (Ribeiro et al., 2020),
hich both makes gradient-based optimization methods more
table and reduces the effect of parameter initialization on the
ptimization, making the estimation process more reproducible
nd less varied (Ribeiro et al., 2020).
The computational cost of the proposed loss function (8) can

e further decreased by not summing over all available subsec-
ions of the complete data set D for each optimization step,
N
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ut only over a subset of subsections. This results in a batch
ormulation of the loss:

(sub,batch)
DN

(θ ) =
1

Nbatch

∑
t∈I

vt , (9a)

t ≜
1
T

T−1∑
k=0

∥yt+k − ŷt+k|t∥
2
2, (9b)

I ⊂ IN−T+1
n+1 = {n + 1, n + 2, . . . ,N − T + 1} (9c)

s.t. |I| = Nbatch,

which allows for the utilization of powerful batch optimization
algorithms such as the Adam optimizer (Kingma & Ba, 2015).
Moreover, it is also not necessary to have the complete data set
in memory, see Beintema et al. (2021a), which is a significant
advantage in case of large data sets.

An important problem in the minimization of (8) is that there
is no expression for the initial state x̂t|t of each subsection. Con-
sidering the initial state of each section to be an optimization
parameter in the minimization of (8) trades new optimization
parameters for the scalability of the cost function (i.e. number of
parameters would scale O(N)). This quickly outweighs the bene-
fits of (8). Hence, to preserve the advantages of the cost function
reformulation, an appropriate estimator of the initial state x̂t|t
is required. The next section introduces an encoder-based state
estimator based on the concept of state reconstructability.

3.2. Subspace encoder

To introduce the proposed encoder, we first require some pre-
liminary notions from nonlinear system theory. Due to causality
of (1), it is a fundamental property of the state that xk with k > 1
is completely determined by the past sequence of inputs {ul}

k−1
l=1

and disturbances {el}k−1
l=1 together with an initial state x1. In case

of state observability of (1), this initial state x1 can be determined
based on a future IO sequence (Isidori, 1985). The complementary
notion of state reconstructability considers the determination
of xk based on a purely past IO sequence (Isidori, 1985). The
concepts of state observability and reconstructability and the
realization theory that builds upon them both for deterministic
and stochastic systems form the cornerstones of subspace iden-
tification of linear systems and led to many powerful estimation
algorithms, see Katayama et al. (2005) for an overview.

To exploit the concept of observability and reconstructability
in deep learning-based identification of (1), consider the result of
our derivations in (4). If for an n ≥ 1, Γn is partially invertible
w.r.t xk on the open sets X0 ⊆ Rnx , U0 ⊆ Rnu , Y0 ⊆ Rny ,
E0 ⊆ Rny , i.e., there exists a Φn : Un

0 × Yn+1
0 × En+1

0 → Rnx such
that xk = Φn(uk+n−1

k , yk+n
k , ek+n

k ) with xk ∈ X0 and IO signals in
these sets, then (1) is called locally observable on (X0,U0,Y0,E0)
and Φn is called the observability map of (1) (Isidori, Sontag,
& Thoma, 1995). Note that if there exists a (x∗, w∗) ∈ Rnx ×

Rnnu×(n+1)ny×(n+1)ny that ∇x∗Γnx−1(x∗, w∗) is full row rank, then
there are open sets x∗ ∈ X0 and w∗ ∈ Un

0 ×Yn+1
0 ×En+1

0 such that
the partial inverse of Γn exists in terms of an analytic function
Φn (Isidori et al., 1995). Furthermore, if (1) is locally observable
on (X0,U0,Y0,E0), then Γn with n ≥ nx − 1 has to be partially
invertible in the above defined sense.

Let ◦n f̃ be a shorthand for f̃ when n = 1 and f̃ ◦n−1 f̃ for n > 1.
Consider

xk = (◦n f̃ )(xk−n, uk−1
k−n, y

k−1
k−n) (10a)

= (◦n f̃ )
(
Φn(uk−1

k−n, y
k
k−n, e

k
k−n), u

k−1
k−n, y

k−1
k−n

)
(10b)

= Ψn(uk−1
k−n, y

k
k−n, e

k
k−n) (10c)
 e

4

which is called the reconstructability map (Isidori et al., 1995) of
(1) as it allows to recover xk from past measured IO data. Note
that the noise sequence ekk−n is not directly available in practice
to compute this recovery based on (10c), but again we can exploit
the i.i.d. white noise property of ek to arrive at:

x̄k = Ee[xk | uk−1
k−n, y

k
k−n] = Ψ̄n(uk−1

k−n, y
k
k−n), (11)

giving an efficient estimator of xk. In the sequel, we will exploit
this concept to formulate an encoder that approximates Ψ̄n.

As shown in (11), there exists a state-estimator in the con-
ditional expectation sense for the original system and also the
same estimator can be derived for the model structure (7). How-
ever, the exact calculation of this estimator for a given ANN
parametrization of fθ and hθ is practically infeasible due to the
required analytic inversion in terms of Φn and the computation
of the conditional expectation of Ψn under a given Σe. Hence, we
aim to approximate Ψ̄n by introducing a nonlinear function ψη
which is co-estimated with fθ and hθ . Since ψη aims to approx-
imate the subspace reconstructability map (10c) we call it the
subspace encoder. Similarly to fθ and hθ it is also assumed to be
Lipschitz continuous:

x̂t|t ≜ ψη(ut−1
t−n, y

t
t−n). (12)

Here, n corresponds to the number of past inputs and outputs,
i.e. lag window, considered to estimate the initial state, while
η ∈ Λ ⊆ Rnη is the collection of the parameters associated
with ψη in terms of a corresponding ANN with multiple hidden
layers. In order to provide an estimator for the initial state of
the considered model structure (7), the encoder function ψη is
co-estimated with fθ and hθ by adding the parameters η and the
estimated initial state using ψη to the loss function (8).

V enc
DN

(θ, η) =
1
C

N−T+1∑
t=n+1

T−1∑
k=0

∥yt+k − ŷt+k|t∥
2
2, (13a)

x̂t|t = ψη(ut−1
t−n, y

t
t−n), (13b)

x̂t+k+1|t = fθ (x̂t+k|t , ut+k, êt+k|t ), (13c)

ŷt+k|t = hθ (x̂t+k|t ), (13d)

êt+k|t = yt+k − ŷt+k|t , (13e)

here now C = (N − T − n + 1)T and which again can be
ormulated as a batch loss function similar to (9). The used trun-
ated prediction loss and the introduced subspace encoder lead
o a model with a deep network structure for estimation, which
e call the subspace-encoder network (SUBNET). It is graphically
ummarized in Fig. 1.
The derivation of the reconstructability map has shown that

ased on n = nx − 1 past inputs and outputs, an effective
nbiased estimator of the initial state xt|t can be achieved. While
= nx − 1 is often the minimal required number of past IO

amples to obtain an unbiased estimator, the variance of estimate
ˆt|t can be rather significant and further reduced by increasing n.
he underlying mechanism is similar to the concept of minimum
ariance observers (Darouach & Zasadzinski, 1997) that provide
tatically efficient state estimation using n > nx − 1 input
nd outputs lags. Besides of showing empirically this effect in
ection 6, a deeper theoretical exploration of the variance optimal
hoice of n is not within the scope of this paper.

.3. Parameter estimation

To obtain a model estimate in terms of the SUBNET structure
hrough the minimization of the loss (13), the following steps are
xecuted: (i) random initialization of all networks in Fig. 1 by an
fficient approach such as the Xavier method (Glorot & Bengio,
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Fig. 1. Overall SUBNET structure: the subspace encoder ψη estimates the initial
tate at time index t based on past inputs and outputs, then the state is
ropagated through fθ and hθ multiple times until the truncation length T . The
arts marked in blue constitute the innovation noise process. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

010), (ii) for the given normalized data (or batches of data) the
oss is computed while the computation graph with intermediate
alues are saved in memory (this uses O(NbatchT ) memory), (iii)
he gradient of the loss is computed by back-propagation using
he computation graph obtained in Step (ii), (iv) the network
arameters are updated by a stochastic gradient optimization
ethod like Adam (Kingma & Ba, 2015), (v) iteration is continued

ill convergence or cross-validation based early stopping.

.4. User guidelines

The subspace encoder has a number of hyper-parameters that
eed to be chosen based on the to-be-identified system at hand.
ence, a few guidelines are provided based on insights obtained
rom theoretical analysis, numerical analysis and practical expe-
ience.

• Choose T to be a few times the largest characteristic time
scale for stable data-generating systems. For such a choice,
the truncated prediction loss (13) provides a close approx-
imation of the ‘regular’ prediction error at a low computa-
tional cost.

• nx and n need to be chosen as at least the effective order
and lag (minimal reconstruction order) of the system, re-
spectively. Furthermore, one can choose different lags na for
past y and nb for past u and increase n to reduce the variance
of the initial state estimate.

• The choice of the ANN architectures (number of layers q, ac-
tivation functions per layer m, type of activation functions)
used to parametrize fθ , gθ and ψη are system dependent.
However, overfitting on the data caused by the choice of an
over-parametrized architecture is suppressed by the used
innovation noise model structure, regularization induced
by the overlapping subsections, early stopping and batch
optimization. Hence, a suggested baseline is to use 2 hidden
layer networks with 64 nodes per layer, tanh activation and
a linear bypass (similar to a residual component).

• IO normalization is essential to make the signals involved
in the estimation to be zero-mean and have standard de-
viation of one. This is required as IO normalization is a
key assumption in many parameter initialization methods
(e.g. Xavier initialization Glorot & Bengio, 2010) and the
‘‘active’’ range of many activation functions is also close to
a range around zero with a width of 1. After estimation,
to remove normalization, a back scaling is added to the
resulting model estimate.

• The batch size should be the smallest size which only
marginally compromises the data throughput speed (i.e.
training samples processed per second) and further reduced
to increase regularization effects of batch-optimization. This
5

guideline is according to the current consensus in the ML
community. The baseline is 256, but this is data and archi-
tecture dependent.

• For all our experiments a fixed learning rate of 10−3 using
the Adam optimizer has been sufficient. The model quality
can be further improved by using early stopping and return-
ing the model of the epoch which had the lowest validation
error.

.5. Comparison to the state-of-the-art

Contrary to other approaches that use an encoder function
uch as Masti and Bemporad (2021), which is based on a mod-
fied auto-encoder to learn the latent state and a 1-step ahead
rediction loss to learn the system dynamics, we do not need
o introduce any additional loss function elements to fit the
ncoder function. Intuitively, a more accurate estimate of the
tate automatically reduces the transient error and hence the
ismatch between the measurements and the predicted model
utput. Thus, reducing the transient also reduces the truncated
rediction loss, which makes it superfluous to introduce any
dditional cost function terms.
The proposed estimation method can be also related to mul-

iple shooting methods (Bock, 1981). Multiple shooting also sub-
ivides the time series into multiple sections and adds the initial
tate of each section to the parameter vector together with ad-
itional constraints (Decuyper et al., 2020). Compared to this
ethod, our proposed method uses the subspace encoder to
irectly estimate the initial state from past inputs and outputs
or each section. As a consequence, the computational complexity
oes not increase for an increasing number of sections. Fur-
hermore, our formulation uses overlapping subsections whereas
ultiple shooting does not make use of overlap. In Section 4.3,
e prove that section overlap increases data efficiency.
Truncated back-propagation through time (truncated BPTT)

Tallec & Ollivier, 2017) also sub-divides the time series, but
y truncating the gradient calculation at a truncation length to
tabilize the gradient. This still requires a full pass over the time
eries data which can be computationally expensive and still
nstable (value explosion) for large data sets. Furthermore, it
dds extra bias and/or variability to the gradient estimate, which
s not the case with the proposed subspace encoder method.

Lastly, the subspace encoder function not only qualifies as
reconstructability map, but also as a state observer. Hence,

he encoder can be used to kick-start simulations on possibly
nseen data sets. In particular, nonlinear model predictive control
NMPC) relies on accurate few-step-ahead prediction models and
tate estimates (Allgöwer & Zheng, 2012), which makes the com-
ined SUBNET structure with the encoder based observer readily
pplicable for MPC.

. Theoretical analysis

In this section, we show key theoretical properties of the
roposed encoder method in terms of consistency corresponding
o statistical validity of the estimator, loss function smoothness
hat implies optimization efficiency, and data efficiency resulting
rom allowed overlaps in the subsections.

.1. Consistency of the estimator

The notion of consistency, as defined in Ljung (1978), ex-
resses that the resulting model estimates tend to an equivalent
epresentation of the system that generated the data when the
umber of data points tends to infinity. In other words, the model
stimate is asymptotically unbiased and converges asymptotically
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o a true model of the system. Thus in this section, we will
how consistency of the SUBNET approach relying on the results
f Ljung (1978).

ata-generating system: To show consistency, we need to in-
roduce some conditions on the data-generating system. As we
iscussed, the true system (1) can be reformulated in a 1-step-
head predictor form given by (5). For k ≥ 1, let W[1,k] denote
he σ -algebra generated by the random variables (uk

1, e
k
1) and let

w : W[1,k] → [0, 1] denote the associated probability measure.
urthermore, as f and h are deterministic, define

=
{
(y∞

1 , x
∞

1 , u
∞

1 , e
∞

1 ) ∈ (Rnw )N | (u∞

1 , e
∞

1 ) ∈ W[1,∞],

and (yk, xk, uk, ek) satisfies (1) ∀k ∈ N} , (14)

ith nw = ny + nx + nu + ny, being the sample path behavior,
.e., the set of all solution trajectories, of (1). Note that by defining
he σ -algebra B over B and an appropriate probability mea-
ure µb, the stochastic behavior of (1) can be fully represented,
ee Willems (2013).
Let B[ko,k] and B[ko,k] be the restriction of B and B to the

ime interval [ko, k] ⊆ N with k ≥ ko, respectively. Then, for
given sample path {(yk, xk, uk, ek)}∞k=ko ∈ B[ko,∞] of (1) with
(ko) = xo, {(ỹk, x̃k, uk, ek)}∞k=ko ∈ B[ko,∞] corresponds to the
esponse of (1) for the perturbed state value x̃(ko) = x̃o at time
oment ko ∈ N subject to the same input and disturbance as

he nominal state response. Based on these, the following stability
ondition is formulated:

ondition 1 (Incremental Exp. Output Stability). The data-
enerating system (4) is (globally) incrementally exponentially out-
ut stable, meaning that for any δ > 0, there exist a 0 ≤ C(δ) < ∞

nd a 0 ≤ λ < 1 such that

e[∥yk − ỹk∥4
2] < C(δ)λk−ko , ∀k ≥ ko (15)

nder any ko ≥ 1, xo, x̃o ∈ Rnx with ∥xo − x̃o∥2 < δ and
u∞

1 , e
∞

1 ) ∈ W[1,∞], where the random variables yk and ỹk belong
o B[ko,∞] with the same (uk, ek), but with xko = xo and x̃ko = x̃o.

odel Set: The considered SUBNET model (13b)–(13e) corre-
ponds to a model structure Mξ parametrized by a finite-
imensional parameter vector ξ = [θ⊤ η⊤

]
⊤ that is restricted

o vary in a compact set Ξ ⊂ Rnξ . The resulting model set is
= {Mξ | ξ ∈ Ξ}. For each ξ ∈ Ξ , the SUBNET model Mξ

ith a given encoder lag n ≥ 1, can be written in a 1-step-ahead
redictor form

ˆt+k|t = γ̂k(ξ, yt+k−1
t−n , ut+k−1

t−n ). (16)

or M, two important conditions are considered.

ondition 2 (Differentiability). The 1-step-ahead predictor γ̂k :

Rnθ+nη × R(ny+nu)(n+k)
→ Rny is differentiable with respect to ξ for

all ξ ∈ Ξ̆ , where Ξ̆ is an open neighborhood of Ξ .

Next, we require the influence of delayed inputs and outputs
n the predictor map γ̂k to be exponentially decaying with a

number of delays to assure the convergence of the predictor. This
is formalized as follows;

Condition 3 (Predictor Convergence). There exist a 0 ≤ C < ∞

and a 0 ≤ λ < 1 such that, for any k ≥ 0 and ξ ∈ Ξ̆ , where Ξ
is an open neighborhood of Ξ , the deterministic predictor map γ̂k
under Condition 2 satisfies

∥γ̂k(ξ, uk−1
−n , y

k−1
−n ) − γ̂k(ξ, ũk−1

−n , ỹ
k−1
−n )∥2

≤ C
k∑
λk−s (

∥us − ũs∥2 + ∥ys − ỹs∥2
)
, (17)
s=−n

6

for any (uk−1
−n , y

k−1
−n ), (ũk−1

−n , ỹ
k−1
−n ) ∈ R(ny+nu)(n+k) and

∥γ̂k(ξ, 0k−1
−n , 0

k−1
−n )∥2 ≤ C, (18)

where 0t+k−1
t−n = [ 0 · · · 0 ]

⊤. Furthermore, (17) is also satisfied by
∂
∂φ
γ̂k(ξ, yk−1

−n , u
+k−1
−n ).

Convergence: Under the previous considerations, convergence of
the SUBNET estimator can be shown, which is a required property
to show consistency.

Theorem 4 (Convergence). Consider system (1) satisfying Condi-
tion 1 with a quasi-stationary u independent of the white noise
process e. Let the set of models M defined by the model structure
(13b)–(13e) for ∀ξ ∈ Ξ satisfy Conditions 2 and 3. Then

sup(θ,η)∈Ξ

V enc
DN

(θ, η) − Ee[V enc
DN

(θ, η)]

2

→ 0, (19)

with probability 1 as T ,N → ∞ and the sequence of functions
Ee[V enc

DN
(θ, η)] is equicontinuous in ξ ∈ Ξ .

Proof. The mean squared prediction error identification criterion
used in (13) satisfies Condition C1 in Ljung (1978), hence the
proof of Ljung (1978, Lemma 3.1) applies for the considered case.

■

Consistency: In order to show consistency, we need to assume
that the system is part of the model set. Consider the state-
reconstructability map Ψn in (10c) for the data-generating system
(1) with n ≥ nx. Note that

yt+k = γk(Ψn(ut−1
t−n, y

t
t−n, e

t
t−n), u

t+k−1
t , yt+k−1

t ) + et+k,

= γ̆k(ut+k−1
t−n , yt+k−1

t−n , ett−n) + et+n (20)

or any t, k ≥ 0, where γk is according to (5), i.e., γk = (h ◦k f̃ ).
hen,

¯t+k|t = Ee[γ̆k(ut+k−1
t−n , yt+k−1

t−n , ett−n)]

= γ̄k(ut+k−1
t−n , yt+k−1

t−n ), (21)

s the optimal one-step-ahead predictor associated with (1) under
n n-lag based reconstructability map.

efinition 5 (Equivalence Set). For a given model structure Mξ

ith encoder lag n ≥ nx, predictor γ̂k(ξ, �) (see (16)) and ξ ∈

⊂ Rnξ , the set of equivalent models with the data-generating
ystem (1) in the one-step-ahead prediction sense (21) is defined
s

∗ =
{
ξ ∈ Ξ | γ̂k(ξ, �) = γ̄k(�), ∀k ≥ 0

}
. (22)

Note that if Ξ∗ ̸= ∅, then there exists a Mξ∗ ∈ M that is
quivalent with (1). In this case, we call the considered model set
o be sufficiently rich to contain an equivalent realization of the
ata-generating system. Next we need to ensure that under the
iven observed data from (1), we can distinguish non-equivalent
odels in M.

ondition 6 (Persistence of Excitation). Given the model set M =

Mξ | ξ ∈ Ξ} with n ∈ N and the associated V enc
DN

in terms
f (13) with 0 ≤ T ≤ N, we call the input sequence uN

1 in DN
enerated by (1) to be weakly persistently exciting, if for all pairs of
arameterizations given by (θ1, η1) ∈ Ξ and (θ2, η2) ∈ Ξ for which
he function mapping is unequal, i.e., V enc

(·) (θ1, η1) ̸= V enc
(·) (θ2, η2), we

ave
enc
DN

(θ1, η1) ̸= V enc
DN

(θ2, η2). (23)

ith probability 1.
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To show consistency, we also require that any element of Ξ∗

has minimal cost.

Property 7 (Minimal Cost). If M is sufficiently rich, then for any
ξ = [ θ⊤ η⊤

]
⊤

∈ Ξ and φ∗ = [ θ⊤
∗
η⊤

∗
]
⊤

∈ Ξ∗ the encoder loss
in (13) has the following property:

lim
T ,N→∞

V enc
DN

(θ∗, η∗) ≤ lim
T ,N→∞

V enc
DN

(θ, η) (24)

with probability 1.

Proof. Since Ee[V enc
DN

(θ∗, η∗)] exists as shown in Theorem 4, it is
sufficient to show that

lim
T→∞

1
T

T−1∑
k=0

∥ŷ∗

t+k|t − yt+k∥
2
2 ≤

lim
T→∞

1
T

T−1∑
k=0

∥ŷt+k|t − yt+k∥
2
2 (25)

or all t where ŷ∗

t+k|t = γ̂k(ξ∗, yt+k−1
t−n , ut+k−1

t−n ). By the law of large
numbers, as T → ∞, the sample distribution of {et+k}

T−1
k=0 will

converge to the original white noise distribution of e with finite
variance Σe and with probably 1. Thus, it is sufficient to show
that

Ee[∥ŷ∗

t+k|t − yt+k∥
2
2] ≤ Ee[∥ŷt+k|t − yt+k∥

2
2] (26)

which can be expanded with yt+k = h(xt+k) + et+k as

Ee[∥ŷ∗

t+k|t − yt+k∥
2
2] = Ee[∥ŷ∗

t+k|t − h(xt+k)∥2
2] −

Ee[2(ŷ∗

t+k|t − h(xt+k)) · et+k] + Ee[∥et+k∥
2
2]. (27)

The second term of this expansion is equal to zero since et+k is
uncorrelated to (ŷ∗

t+k|t − h(xt+k)) and et+k is zero-mean. Further-
more, the first term is also zero since in terms of Definition 5,
ŷ∗

t+k|t = γ̂k(ξ∗, yt+k−1
t−n , ut+k−1

t−n ) is equal to ȳt+k|t in (21). Hence,

Ee[∥ŷ∗

t+k|t − yt+k∥
2
2] = ∥Σe∥

2
2 (28)

which is irreducible and thus minimal. ■

Theorem 8 (Consistency). Under the conditions of Theorem 4,
Condition 6 and Property 7,

lim
T ,N→∞

ξ̂N ∈ Ξ∗ (29)

with probability 1, where

ξ̂N = argmin
ξ∈Ξ

V enc
DN

(θ, η). (30)

Proof. See Lemma 4.1 in Ljung (1978). Note that the squared loss
function (13) fulfills Condition (4.4) in Ljung (1978). ■

4.2. Increased cost smoothness due to truncation

Next, we show that the considered estimation structure and
the truncated prediction loss increase the smoothness of the cost
function, which potentially makes the optimization process for
model estimation more stable and less prone to get stuck in local
minima (Ribeiro et al., 2020). For this purpose, we investigate
the smoothness of the encoder loss function by the means of the
Lipschitz-continuity analysis. The Lipschitz constant Lenc,T ≥ 0 for
the considered loss function is defined as

∥V enc,T
DN

(θ1, η1) − V enc,T
DN

(θ2, η2)∥2
2

≤ L2 (∥θ − θ ∥
2
+ ∥η − η ∥

2) (31)
enc,T 1 2 2 1 2 2 s

7

with [ θ⊤ η⊤
]
⊤

∈ Ξ = Ξθ × Ξη , assuming that Ξ is not only
compact, but it is also convex. Here, the T dependence of the
loss function is added explicitly. Since Lenc,T bounds the slope of
the function, it provides insight into the smoothness of the cost
function as T changes. By the following theorem, we show that
smoothness of V enc,T

DN
can decrease exponentially with increasing

T .

Theorem 9. Assume that fθ , hθ andψη are Lipschitz continuous with
Lipschitz constants Lf , Lh and Lψ . Then, Lenc,T and L′

enc,T , representing
the Lipschitz constant of the derivative of V enc,T

DN
, scale as

Lenc,T = O(L2T
f̃
); L′

enc,T = O(L3T
f̃
). (32)

if Lf̃ = Lf
√
1 + L2h > 1.

Proof. For Lipschitz-continuous functions q(x) and p(x), two
known properties of the Lipschitz constant are: (i) the sum of two
functions q(x)+p(x) has the Lipschitz constant Lq +Lp and (ii) the
multiplication of two functions q(x)p(x) has the Lipschitz constant
Lqmp +Lpmq, where mq is the maximum of q(x) on the considered
compact set x ∈ Ξx and mq is similarly defined.

The Lipschitz constants of fθ , hθ and ψη are defined by the
following relations:

∥hθ1 (x) − hθ2 (x̃)∥
2
2 ≤ L2h(∥θ1 − θ2∥

2
2 + ∥x − x̃∥2

2), (33a)

∥fθ1 (x, u, y − hθ1 (x)) − fθ2 (x̃, u, y − hθ2 (x̃))∥
2
2

≤ L2f (∥θ1 − θ2∥
2
2 + ∥x − x̃∥2

2 + ∥hθ1 (x) − hθ2 (x̃)∥
2
2)

≤ L2f (1 + L2h)(∥θ1 − θ2∥
2
2 + ∥x − x̃∥2

2), (33b)

nd

ψη1 (u
t−1
t−n, y

t
t−n) − ψη2 (u

t−1
t−n, y

t
t−n)∥

2
2

≤ L2ψ∥η1 − η2∥
2
2. (33c)

ince V enc,T (θ, η) = 1/Nsec
∑

t vt with Nsec = N − T − n + 1 as
efined in (13), by the sum property, we have that Lenc,T = Lvt .
sing the relations (33a)–(33c), it is possible to derive Lvt in terms
f Lh, Lf , Lψ and T . A similar derivation has been done by Ribeiro
t al. (2020) of the cost function VT (θ ) ≜ 1

T

∑T
t=1 ∥yt − ŷt∥2

2
where an OE noise model was considered and, instead of an
encoder, different initial states x0 were used. They showed that
the following scaling law applies

LVT = O(L2Tf ); L′

VT = O(L3Tf ). (34)

hen Lf > 1 and where L′

VT
represents the Lipschitz constant

f the derivative of VT . Hence, to derive the scaling of Lvt and
thus Lenc,T we rely on this derivation by only showing that these
differences leave the exponential scaling with T unaltered.

Adapting this result to our considered case is relatively simple
to show since the encoder only changes the initial state differ-
ence ∥x0 − x̃0∥2

2 to L2ψ∥η1 − η2∥
2
2 which is independent of T

and the change to innovation structure replaces Lf by Lf̃ = Lf

1 + L2h . ■

.3. Data-efficiency with overlapping subsections

To quantify the data-efficiency of overlapping subsections,
onsider a fixed T for the T -step truncated prediction loss and
nalyze the data efficiency using equidistantly placed sections in
erms of the distance parameter d, i.e. I = {1 + dk ∈ IN−T−1

1 |

∈ N∪ 0}. The parameter d regulates the distance between each
ub-section where d = 1 recovers the encoder formulation and
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x

= T recovers the conventional approach in multiple shooting
with no overlap. To make the notation more compact, introduce
a change of variables in the sum (9b) such that

V d
DN

(θ, η) =
1
md

md−1∑
k=0

v1+dk (35)

here N − T + 1 = dmd + rd with md, rd ∈ N and 0 ≤ rd < d.
To define data-efficiency, we assume stationary input and

utput signals

ssumption 10 (Stationarity). Both the model output ŷt+k|t and
ystem output yt are assumed to be strictly statistically station-
ary. In other words, the cumulative distribution function pY of
the joint distribution of instances of yt at times t1, . . . , tn has the
property that

pY (yt1+τ , . . . , ytn+τ ) = pY (yt1 , . . . , ytn ). (36)

for all t1, . . . , tn, τ ∈ Z.

This assumption is reasonable since many fading memory
system like bi-linear systems (Priestley, 1988), and Volterra se-
ries (Boyd & Chua, 1985) have the property that the system
output yt is quasi stationary if the input ut is stationary. However,
to our knowledge a proof of this property for stable systems
defined via an NL-SS representation is not present in the liter-
ature. Firstly, to show enhanced data efficiency we need that the
cost functions converge to the same cost function in the limit of
infinite data.

Theorem 11 (Asymp. insensitivity For T ). Under Assumption 10,
both V 1

DN
(θ, η) and V T

DN
(θ, η) converge to the same loss function

with probability 1 when N → ∞.

Proof. Assumption 10 implies that vt is also strictly stationary
since any signal which is dependent only on strictly stationary
variables is also strictly stationary. Furthermore, by the law of
large numbers, the infinite mean sum of vt becomes equal to
E[vk] with probability 1. Hence, the limit cost can be expressed
as

lim
N→∞

V d
DN

(θ, η) = lim
N→∞

1
md

md−1∑
k=0

v1+dk = E[vk]

hich is independent of d. ■

Next, we show that allowing for overlap, e.g. by taking d = 1,
reduces the variance of the loss function compared to disallowing
overlap by d = T .

Theorem 12 (Overlap Effect). With Assumption 10, there exists an
N∗ ∈ N, such that, for all N > N∗, the following relation holds

Var(V 1
DN

(θ∗, η∗)) ≤ Var(V T
DN

(θ∗, η∗))

for all (θ∗, η∗) ∈ Ξ∗ given by Eq. (22).

Proof. Proving this statement is equivalent to showing that the
function

G(d) ≜ Var
(
V d
DN

(θ∗, η∗)
)

= Var

(
1
md

md−1∑
k=0

v1+dk

)
(37)

as the property of G(1) ≤ G(T ) for all N > N∗. By expanding (37)
sing conventional variance and covariance relations, we get

(d) =
1
m2

md−1∑ md−1∑
Cov(v1+kd, v1+ld). (38)
d k=0 l=0

8

As we have shown in Theorem 11, vt is strictly stationary un-
der Assumption 10, hence we can replace the covariance by
C(d|k − l|) ≜ Cov(vkd, vld) and use the auto-correlation function
(t) ≜ C(t)/C(0) to simplify the expression to

(d) =
1
m2

d

(
md + 2

md−1∑
t=1

(md − t)R(td)

)
. (39)

The only part which remains to complete the proof is to
etermine if R(td) under the given assumptions implies G(1) ≤

(T ) using this expression.
The value of R(td) can be derived from

t =
1
T

T−1∑
k=0

∥yt+k − ŷt+k|t∥
2
2 =

1
T

T−1∑
k=0

∥et+k∥
2
2 (40)

ince we evaluate the cost in (θ∗, η∗). Hence,

ov(vt , vt+τ ) ∼

T−1∑
i=0

T−1∑
j=0

Cov(∥et+i∥
2
2, ∥et+τ+j∥

2
2) (41)

here Cov(∥et+i∥
2
2, ∥et+τ+j∥

2
2) is nonzero if and only if i = τ + j

nd it is the same value for any t since et is white. Hence, the
uto-correlation function is R(t) = max(0, 1− t/T ), which simply
ounts the number of terms which have the same index in the
um. After substitution of R(t) = max(0, 1 − t/T ) in (39), it
irectly follows that G(1) ≤ G(T ). ■

Under consistency of the estimator, the parameter estimates
ill converge to (θ∗, η∗), hence, this result hold in general. This
hows that allowing for overlap in the subsections results in a
ore efficient estimator.

. Simulation study

In this section, we demonstrate the effectiveness of the pro-
osed SUBNET architecture based identification approach in an
xtensive simulation study. As the method has a number of
yperparameters that can substantially alter its behavior and
erformance, hence we investigate the effects of these hyperpa-
ameters and also motivate the previously provided guidelines for
hoosing them. An evaluation of the subspace encoder method on
xperimental data is provided in Section 6.

.1. Data-generating system

The following system is considered:

(1)
k+1 =

x(1)k

1.2 +

(
x(2)k

)2 + 0.4 · x(2)k , (42a)

x(2)k+1 =
x(2)k

1.2 +

(
x(1)k

)2 + 0.4 · x(1)k + uk, (42b)

yk = x(1)k + ek, (42c)

where xk = [x(1)k x(2)k ]
⊤ denotes the elements of the state vector,

x0 = 0 and e is generated by an i.i.d. white Gaussian noise
process resulting in an output SNR of 20 dB. This noise signal
is only present in the training and validation data sets and it is
omitted in the test set to accurately measure the performance
of the obtained models. The system input u is a white, random,
uniformly distributed signal uk ∼ U(−2, 2). N = 104 training,
3 · 103 validation and 104 test samples are generated with inde-
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endent realizations of e and u. Note that this system for zero
input has two stable equilibria at x = ±[0.68 0.68]⊤ and one
unstable equilibrium point at x = [0 0]⊤ (the largest eigenvalue
of ∇xf (x, 0)|x=[0 0]⊤ is 1.23). Hence, (42) is not strictly contractive,
but it is stable in the sense of Condition 1 which has been checked
numerically.

5.2. Model estimation

At this point, the system under study is only disturbed by
measurement noise, hence, the SUBNET structure is simplified to
an output error noise structure (i.e. fθ does not depend on êk).
During the analysis, we have varied one hyper-parameter while
keeping all the others equal to the following base values: T = 40,
n = 10, nx = 4. All the functions hθ , fθ and ψη are parametrized
using 2 hidden layer feedforward neural networks with 64 nodes
per layer, linear bypass and IO normalization. To compute the
model estimate, the Adam optimizer (Kingma & Ba, 2015) with
a batch size of 256 has been used with default learning rate of
10−3 and early stopping using a validation set.

We chose a base model order nx = 4 as it will be shown
that immersion effects are observed under the considered ANN
complexity for hθ , fθ and ψη . Immersion is a well-known phe-
nomenon (Lee & Marcus, 1988; Ohtsuka, 2005), corresponding to
the fact that at the price of introducing extra state variables, the
original system can be equivalently represented by less complex
state-transition and output functions, till reaching the class of
linear, but often infinite dimensional representations, coined in
the literature as Koopman forms (Williams, Hemati, Dawson,
Kevrekidis, & Rowley, 2016). As will be shown, this trade-off
between nx and the layer-depth of the involved ANNs makes
the optimization problem more stable and ensures relatively fast
convergence.

The performance of the estimated models is characterized by
the normalized root mean square (NRMS) simulation error:

NRMS =
RMS
σy

=

√
1/N

∑N
k=1 ∥yk − ŷk∥2

2

σy
, (43)

here σy is the sample standard deviation of y and NRMS% =

RMS × 100. In this case, an independent noiseless data set
as been used to calculate the NRMS simulation error to clearly
haracterize the accuracy of the estimated model. The estimated
ncoder is used to initialize the state for every simulation. Hence,
he first n outputs are not used to compute (43) as they have been
sed to feed the encoder.

.3. Computational cost and performance

The computational cost and performance of the proposed sub-
pace encoder based method is compared to existing methods in
ig. 2 and Table 1. For the comparison, multiple ANN-based state–
pace identification methods are considered: (i) the classical SS-
NN simulation error minimization method which simulates the
ntire training range (T = training data length) starting from
n initial state which is estimated together with the system
arameters (Parameter init OE) (Schoukens & Ljung, 2019), (ii)
he unconstrained multiple-shooting method for SS-ANNs which
dds the initial state of each considered simulation section to
he parameter vector without (Parameter init no-overlap) (Bock,
981) and with (Parameter init overlap) overlapping simulation
ections, and finally (iii) the considered subspace encoder method
ithout (Encoder init no-overlap) and with (Encoder init overlap)

verlapping simulation sections. o

9

Fig. 2. Evolution of the NRMS simulation error of the estimated models by
the considered approaches w.r.t. the test data. The keywords ‘‘encoder init’’
and ‘‘parameter init’’ indicate if either encoder-based prediction or parametric
estimation is used to estimate the initial states, ‘‘overlap’’ and ‘‘no-overlap’’
indicate if the subsections can overlap, while ‘‘OE’’ stands for simulation based
cost over the entire data sequence with no subsections.

Table 1
Performance of the compared approaches (see Section 5.3) given the same
training budget of 25 min (and same hardware).
Combination NRMS test

Parameter init OE 15.9%
Parameter init no-overlap 2.0%
Parameter init overlap 3.0%
Encoder init no-overlap 2.1%
Encoder init overlap 1.7%

Fig. 2 shows that the ‘‘Parameter init OE’’ approach is indeed
the slowest as it needs to simulate the entire training data set
to perform one optimization step. It also shows that the encoder
provides improved performance compared to parametrization of
the initial condition and co-estimating it with the model. Fur-
thermore, the overlap variants of the methods suffer less from
overfitting than standard multiple-shooting. This is in line with
the variance reduction obtained from the overlapping subsections
as shown in Section 4.2.

5.4. Truncation length (T )

A key parameter of the encoder method is the truncation
length T . Fig. 3 illustrates that overfitting is a significant is-
sue when T is smaller than the dominant timescale of the sys-
tem. However, a bigger T increases the computational cost. To
choose T in an informed manner, we employ expected normalized
k-step-error plots in Fig. 4 in terms of

NRMSk-step =
1
σy

√ 1
N − k

N−k∑
t=1

∥ŷt+k|t − yt+k∥
2
2, (44)

here ŷt+k|t corresponds to the k-step-ahead prediction by the
stimated model relative to sample t . These show that, for the
urrent system under test, the transient error has a length of 30
ime steps, which approximately corresponds to the characteristic
imescale of the system. Furthermore, Fig. 4 shows that the error
n the output is larger for low values of k compared to large values

f k. Hence, the estimated state at k = 0 is less accurate than
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Fig. 3. Influence of the truncation length T of the loss function on the test error
uring training.

Fig. 4. The k-step NRMS error of estimated models under different truncation
engths, computed on the test data. The red dots indicate the truncation length
.

he state obtained after a number of steps. This suggests that
he encoder is unable to accurately recover/estimate the initial
tate, i.e. the encoder estimate has a high variance, indicating that
he encoder parametrization is not sufficiently rich (n = 10 is
insufficient or the used number of layers/neurons is too low).

5.5. Model order (nx)

Changing the state order of the model has also significant
influence on the behavior of the estimation as shown in Fig. 5,
where the obtained results are averaged over 7 identification
runs. nx values that are much larger than the order of the true
data-generating system quickly result in overfitted model es-
timates. Using the true state dimension nx = 2 results in a
odel with the lowest obtained NRMS, but the variability of the
btained models over the 7 identification runs is quite high, and
he optimization time is significantly larger than for nx = 4. As
iscussed earlier, we suspect that this can be attributed to an
ffect similar to immersion where providing additional degrees
f freedom makes the functions fθ , hθ and ψη less complex and
ence simpler to estimate up to the point where the variance of
he sheer number of extra parameters overtakes this advantage.

The 7 different runs, each initialized with different random pa-
ameters, converge to the same test error level in NRMS. This sug-
ests that the encoder method gives reproducible results for dif-
erent initializations which highlight insensitivity of the method
or initialization.

.6. Encoder window length (n)

Varying the lag window n (or na and nb considered separately

or u and y) of the encoder in terms of the considered past IO

10
Fig. 5. The influence of the model order nx on the resulting test error of the
estimates during training. The displayed results are based on 7 models trained
using different random initial parameter values.

Fig. 6. The influence of the lag window na and nb , i.e. the horizon of past data
used by the encoder, on the test error during training.

samples shows in Fig. 6 that the minimal required n = na =

nb = nx − 1 = 1, with nx the order of the system for state
reconstructability, on which the encoder is based on, is not the
optimal value in this case. As seen from the figure, 20 ≥ n =

na = nb > 4 perform much better. As we argued earlier, this
can be contributed to a variance reduction in the state estimate
(i.e. encoder as a minimum variance observer) which reduces
the average transient error. However, for values that are much
larger than nx − 1 = 1 (around 20), the computational cost
significantly increases without too much gain in performance.
Lastly, the choice of lag windows has a less strong impact on
performance than the choice of T and nx.

5.7. Neural network depth and width

The influence of varying the depth and width of the neural
networks used to parametrize ψη , fθ and hθ is illustrated in Fig. 7.
A network structure that is too complex results in a growing
computational cost and variance of the model estimates. Whereas
a network structure that is too simple results in under-fitting as
the model is unable to capture the dynamics of the true under-
lying system. Overfitting is suppressed in our approach by the
regularization introduced with early stopping, the stochastic gra-
dient descent algorithm, and the increased data efficiency allow-
ing for overlap in the subsections. Hence, neural network struc-
ture selection is more sensitive to underparametrization than
overparametrization for the proposed method.

5.8. Estimation under process noise

The subspace-encoder based estimation approach has been
introduced to provide reliable model estimates under general
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Fig. 7. The influence of the neural network architecture on the model estimates
in terms of the achieved NRMS simulation error on test data.

noise conditions that can be described in an innovation form. To
demonstrate this property, we extend (42) with a process noise
term. First we will consider the case when the noise enters the
state equation linearly, then we will consider the case when the
noise enters nonlinearly:

x(1)k+1 =
x(1)k

1.2+
(
x(2)k

)2 + 0.4x(2)k + g1(x
(1)
k , ek), (45a)

x(2)k+1 =
x(2)k

1.2+
(
x(1)k

)2 + 0.4x(1)k + uk + g2(x
(2)
k , ek), (45b)

yk = x(1)k + ek, (45c)

here gi(x
(i)
k , ek) = K (i)ek for the linear and gi(x

(i)
k , ek) = K (i)x(i)k ek

for the nonlinear case respectively, K ≜ σKK0/∥K0∥2 with K0 ≜
[1.0 −0.9]⊤, and σK ≥ 0 is an adjustable parameter which
regulates how strong the process noise is affecting the state. The
noise ek is generated by a white Gaussian noise process with a
standard deviation σe = 0.082 (resulting in 20 dB SNR) for the
training data and σe = 0 for the test data.

We compare estimation with the subspace encoder method
under three different noise models: OE noise: there is no process
noise considered in the model, linear innovation: êt+k|t appears
linearly in fθ , i.e. in the state Eq. (7a) of the model and general
innovation: êt+k|t is passed through the neural network fθ . The
resulting NRMS of the simulation error over the test data for the
three considered models can be viewed in Tables 2 and 3 under
linear and nonlinear innovation noise in the data-generating sys-
tem, respectively. To indicate the significance of the results these
tables also contain the standard deviation of the mean which is
the sample standard deviation divided by

√
4 − 1 since there are

independent samples considered. The linear case shows that for
K > 0.5, both the linear and the nonlinear parametrization of
he process noise model structure significantly reduces the test
rror in comparison with the OE model. For the nonlinear case,
he nonlinear parametrization outperforms the linear innovation
oise model structure for σK > 0.5, as expected.

. Benchmark results

The Wiener–Hammerstein benchmark (Schoukens & Ljung,
009) is an electronic circuit with a diode-resistor nonlinearity
nd has been used in benchmarking a wide variety of nonlinear
ystem identification methods. As in Beintema et al. (2021b), we
plit the data set into 80,000 training, 20,000 validation and
11
Table 2
Mean and mean standard deviation of the NRMS% of the simulation error on
the test data over 4 independent runs, when linear innovation noise is present
in the data-generating system.
σK OE noise Linear innovation

noise model
Nonlinear innovation
noise model

0.0 1.8 ± 0.1 1.7 ± 0.1 1.8 ± 0.1
0.25 2.1 ± 0.2 1.9 ± 0.1 2.1 ± 0.1
0.5 2.3 ± 0.1 1.9 ± 0.1 2.1 ± 0.1
1.0 3.2 ± 0.1 2.2 ± 0.1 2.0 ± 0.2
2.0 4.8 ± 0.1 3.0 ± 0.1 2.5 ± 0.0
4.0 8.4 ± 0.3 5.7 ± 0.4 4.4 ± 0.1

Table 3
Same as Table 2 but for nonlinear innovation noise.
σk OE noise Linear innovation

noise model
Nonlinear innovation
noise model

0.0 1.8 ± 0.1 1.7 ± 0.0 1.8 ± 0.1
0.25 2.2 ± 0.1 2.2 ± 0.1 1.8 ± 0.1
0.5 2.8 ± 0.1 2.4 ± 0.1 1.8 ± 0.1
1.0 4.1 ± 0.1 3.2 ± 0.1 2.3 ± 0.2
2.0 8.2 ± 0.3 6.5 ± 0.4 4.3 ± 0.3
4.0 14.2 ± 0.8 12.6 ± 0.6 10.5 ± 0.3

78,000 test samples. Similarly as before, we utilize the same
network structure and OE noise structure for all three networks
in the model, but now with a single hidden layer with 15 hidden
nodes and a linear bypass. The hyperparameters used are nx = 6,
T = 80, n = na = nb = 50, a batch size of 1024, early stopping,
input/output normalization, and the Adam optimizer with default
learning rate of α = 10−3.

The obtained results are displayed in Table 4 together with
results achieved by other approaches on this benchmark. Many
of these methods have been developed for Wiener–Hammerstein
identification problems and use varying level of structural knowl-
edge about the system. Remarkably, the proposed approach is
able to get the lowest test error results using no structural knowl-
edge or guided initialization as some of the methods that are
reported on this benchmark. Note however that, while good
performance is obtained quite rapidly, a long optimization (over
200 h) is required to fine tune the estimate and obtain the final
result. This aspect can be further improved by using learning rate
schedulers and higher-order optimization methods.

7. Conclusion

By carefully combining elements frommachine learning (batch
optimization), multiple-shooting (multi-step-ahead loss), and
subspace identification (encoder), a subspace encoder-based ANN
method for nonlinear state–space identification has been intro-
duced. The method is proven to be locally consistent, to have
a relatively smooth cost function by using a multiple shooting
strategy, and to be more data efficient than other ANN-based
strategies by considering overlapping subsections. The method
has shown state-of-the-art results in our simulation studies and
on a widely used benchmark identification problem. Remarkably,
it does not need specialized initialization of the model parame-
ters to achieve this performance or structural knowledge of the
system and besides of some rules of thumb, it is also relatively
insensitive to the choices of its hyper parameters.
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Table 4
Results of the subspace encoder on the Wiener–Hammerstein benchmark compared to results reported in the literature.
Identification method Test RMS simulation (mV) Test NRMS simulation

Subspace Encoder 0.241 0.0987%
QBLA (Schoukens, Pintelon, & Rolain, 2014) 0.279 0.113%
Pole-zero splitting (Sjöberg, Lauwers, & Schoukens, 2012) 0.30 0.123%
NL-LFR (Schoukens & Tóth, 2020) 0.30 0.123%
PNLSS (Paduart, Lauwers, Pintelon, & Schoukens, 2012) 0.42 0.172%
Generalized WH (Wills & Ninness, 2009) 0.49 0.200%
LS-SVM (Falck, Pelckmans, Suykens, & De Moor, 2009) 4.07 1.663%
Bio-social evolution (Naitali & Giri, 2016) 8.55 3.494%
SS auto-encoder (Masti & Bemporad, 2021) 12.01 4.907%
Genetic Programming (Khandelwal, 2022) 23.50 9.605%
SVM (Marconato & Schoukens, 2009) 47.40 19.373%
BLA (Lauwers, Pintelon, & Schoukens, 2009) 56.20 22.969%
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