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CHAPTER1
Introduction

1.1 Neurosurgery planning and fiber tractography

Neurosurgical intervention is one of the common procedures of brain tumor treat-
ment, particularly for aggressive tumors, such as glioma. In glioma cases, the
extent of brain resection plays a crucial role in prolonged survival [1,2]. However, in
an attempt to achieve maximum resection, the surgery itself may lead to functional
impairment due to unnecessary damage of brain structures surrounding the tumor.
Thus, it is of great importance to achieve a balance: removing as much of the tumor
as possible while avoiding dramatic quality-of-life degradation.

Achieving the aforementioned balance is one of the goals of neurosurgery plan-
ning. At this stage a number of critical decisions has to be made, such as deter-
mining the optimal entry point and resection trajectory, minimal safety margins.
Furthermore, modern surgical planning includes the virtual dissection of eloquent
white matter tracts, brain structures that need to be spared during surgery in
order to preserve key brain functions. Patient-specific structural organization of
the nerve fiber bundles as well as information on tissue properties that might
reflect tumor-induced changes can be obtained using diffusion magnetic resonance
imaging (dMRI).

DMRI is a technique based on the motion of water molecules. MRI experiments
are performed with different combinations of acquisition parameters. This, in com-
bination with appropriate signal modelling, allows to reconstruct the orientation
of white matter tracts in the brain, a process also known as fiber tractography
[3]. When this process is combined with anatomical knowledge of the brain or
virtual dissection, the resulting fiber tractogram can aid during neurosurgery
planning. Tractography allows surgeons and neuroradiologists to perform virtual
dissection delineating target fiber bundles. Fiber-pathway reconstruction can also
be based on certain regions of interest, such as functional mapping using navigation
transcranial magnetic stimulation (nTMS) [4]. Given the knowledge of the nerve
locations and certain tissue properties, safety margins around essential healthy
fiber bundles can be estimated.

1



2 Chapter 1. Introduction

1.2 On to hospitals

Currently, despite the variety of tractography algorithms and diffusion models,
clinicians tend to resort to conventional approaches. The most established ap-
proach is diffusion tensor imaging (DTI), a method which suffers from limitations
that are well-established [5], such as low sensitivity related to inability to re-
solve complex fiber configurations (e.g., crossing, kissing). Although DTI-based
tractography produces results that tend to contain few false-positive fiber path-
ways [6], it commonly results in incomplete fiber-bundle reconstructions, directly
influencing neurosurgery planning. While neuroradiologists and surgeons are able
to compensate for missing tracts (false negatives) using their neuroanatomical
knowledge, it remains particularly challenging to understand whether a tract is not
reconstructed because of tumor-related infiltration, or due to technical limitations
of fiber tractography. Examples hereof include the presence of edema or a tumor-
induced mass effect (brain tissue compression due to tumor growth) leading to
early tract termination and consequently to an inadequate extent of reconstruction.

One of the possible ways to counter such challenges is to employ more advanced
diffusion models combined with more sophisticated tractography algorithms. Un-
fortunately, such methods are not commonly applicable in most clinical sites. One
of the reasons is that the requried acquisition is often considered time-consuming
in existing clinical routines. Another reason is the occasional lack of trust among
neurosurgeons and neuroradiologists for new techniques. This can be attributed to
higher result uncertainty as well as a higher rate of falsely reconstructed pathways
[6].

In this thesis we propose a tractography framework that reduces overall result
uncertainty by providing an extent comparable to state-of-the-art probabilistic
algorithms while using a deterministic implementation. Next, we showed proof-of-
concept of the potential of the technique for clinical application in brain tumors.
We aim to strengthen the results by also including function-based reference to
validate tractography reconstructions. By performing a clinical evaluation we also
try to bridge the gap between fundamental research and clinical translation of new
techniques.

1.3 Summary of the thesis

In Chapter 2, a novel multi-level fiber tractography algorithm is proposed. As men-
tioned above, dMRI can assist surgery planning via fiber bundle reconstruction.
However, certain fiber bundles, such as the corticospinal tract (CST), appear to
pose a challenge to existing tractography methods. That is due to a number of fiber
bundles partially overlapping and aligning towards the same orientation, creating
a bottleneck [7]. Consequently, during reconstruction tractography algorithms
may favor diffusion orientations that would lead to false pathways after passing
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the bottleneck. The proposed tractography algorithm attempts to iteratively
extend the reconstruction exploiting previously unused fiber orientations along
the potential pathways. This way we aim to provide an opportunity to account
for both high-angular deviation as well as potential fiber branching.

In Chapter 3, with the aim of clinical translation in mind, we evaluated the
proposed fiber tractography algorithm at reconstructing the CST bundles on a
dataset consisting of patients with motor-eloquent high-grade glioma. The out-
comes were compared with more conventional algorithms, including clinically used
DTI tractography. Radial coverage of the motor cortex was used as an evaluation
metric in this comparison. Analysis of the results revealed dependence of the
reconstruction extent and deformation on the presence of a mid-line shift as well
as a tumor location.

In Chapter 4, to retrospectively evaluate the use of the proposed algorithm
as part of an existing clinical routine, we have extended the previous study with
functional data using navigated TMS mapping of the motor cortex. Functional
mapping allows evaluating the algorithm performance in the most relevant areas
and provides a reference to the region that is expected to be covered by the fiber
reconstruction.

In Chapter 5, we venture into the brain gray matter. While gray matter is not
a focus of current surgery planning routines, it is a key area to accurately map fiber
bundles, as the majority originates from (or ends in) the gray matter. Mapping
gray-matter structure may improve the accuracy of fiber tractography in the vicin-
ity of the gray-white matter interface as well as the accuracy of functional mapping.
However, most of the tractography developments are focused on the white matter.
Thus, we investigated whether state-of-the-art spherical-deconvolution models that
are conventionally used in the white matter are applicable to the gray matter. The
study revealed consistent local diffusion orientation and intracortical-connectivity
patterns that agree with known myelo-architecture across all the models.
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CHAPTER2
Anatomically informed multi-level fiber

tractography for targeted virtual
dissection

This chapter is based on:
A. Zhylka, A. Leemans, J. Pluim, A. De Luca, “Anatomically informed multi-level fiber tractog-
raphy for targeted virtual dissection”. MAGMA, 36, p.79-93 (2023).
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Abstract

Diffusion-weighted MRI can assist preoperative planning by reconstructing the
trajectory of eloquent fiber pathways, such as the corticospinal tract (CST). How-
ever, accurate reconstruction of the full extent of the CST remains challenging
with existing tractography methods. We suggest a novel tractography algorithm
exploiting unused fiber orientations to produce more complete and reliable results.

Our novel approach, referred to as multi-level fiber tractography (MLFT),
reconstructs fiber pathways by progressively considering previously unused fiber
orientations at multiple levels of tract propagation. Anatomical priors are used to
minimize the number of false-positive pathways. The MLFT method was evaluated
on synthetic data and in vivo data by reconstructing the CST while compared to
conventional tractography approaches.

The radial extent of MLFT reconstructions is comparable to that of proba-
bilistic reconstruction: p = 0.21 for the left and p = 0.53 for the right hemisphere
according to Wilcoxon test, while achieving significantly higher topography preser-
vation compared to probabilistic tractography: p < 0.01.

MLFT provides a novel way to reconstruct fiber pathways by adding the
capability of including branching pathways in fiber tractography. Thanks to
its robustness, feasible reconstruction extent and topography preservation, our
approach may assist in clinical practice as well as in virtual dissection studies.
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2.1 Introduction

Diffusion MRI fiber tractography provides an opportunity to estimate fiber orien-
tations through the Brownian motion of water molecules. This imaging technique
allows for exploring brain connectivity in-vivo and non-invasively [8, 9] as well as
performing virtual dissection [10–13], aiding presurgical planning [14] and serving
as a reference during surgery [15]. In case of neurosurgery planning, the extent of
resected tissue may need to be limited in order to limit function deficit, despite
maximal tumor resection being one of the key factors for prolonged survival [1,16].
Consequently, fiber bundle reconstructions need to have adequate extent to enable
clinicians to estimate a safe resection margin. Despite its promising results,
fiber tractography remains challenging, as the results of existing methods have
been shown to perform satisfactory on either sensitivity or specificity, but not
both [6, 17,18].

For the purposes of surgery planning and virtual dissection, the sensitivity of
tractography plays a key role, as the correct prediction of the extent of resection
is essential to avoid functional impairment. The corticospinal tract (CST) is one
of the bundles which neurosurgeons and neuroradiologists focus on during surgery
planning to prevent motor function degradation [19]. However, the reconstruction
of the corticospinal tracts and other pathways are often limited by intrinsic flaws
of existing tractography algorithms, which by design makes it challenging to
reconstruct branching configurations, leading to an increased false-negative rate
[20].

Multiple approaches have been proposed to reconstruct the organization of fiber
pathways from the diffusion signal, with the most common being the estimation of
the fiber orientation distribution (FOD) with spherical deconvolution techniques
[21–23]. Based on the way tractography methods use the information provided
by the FOD, they can be categorized as either deterministic or probabilistic.
Deterministic approaches follow either the dominant diffusion (or fiber) direction
[24] or one of the main directions that is the least deviating from the orientation
of a previous step [21, 25]. On the other hand, probabilistic approaches typically
sample and propagate orientations based on the FOD in the voxel [26]. Proba-
bilistic methods can potentially reconstruct branching-like configurations and have
been shown able to reconstruct more true-positive pathways than deterministic
methods, but also tend to have a higher false-positive rate [6] that complicates
their application in pre-surgical settings. For instance, given that directions are
sampled from orientation distribution, each step introduces a bias in relation
to the peaks of the distribution. Consequently, during propagation the bias
may be accumulated to the extent that the reconstructed bundle does not follow
known internal topographic organization [27–31] or accumulates the volume of
plausibly looking pathways that will influence the safety margin estimation during
tumor resection. In contrast, deterministic methods cannot reconstruct branching
configurations and are prone to generating false-negative results, but their results
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are reproducible by definition and straightforward to interpret. Another approach
that has the potential of resolving the tractography issues related to bundle extent
is global tractography (GT). GT reconstructs all white-matter fiber bundles at
once by optimizing an energy function based on the diffusion data. This group of
approaches aims at resolving local fiber orientations by modeling pathways as a
chain of connected segments and maintaining or changing the connectivity of the
segments based on the underlying data. Despite the issue of being computationally
expensive and suffering from fiber pathways that sometimes do not reach the
cortex, GT can show improved performance in some cases [32].

As it was already briefly mentioned, certain fiber bundles, such as the optic
radiation bundle and the CST, appear to have specific topographic organization
[27–31] which assigns function duties to parts of these bundles. Maintaining such
internal organization appears to be a challenge for probabilistic tractography unless
it is specifically taken into account [27]. This creates potential issues in cases when
functional data is used for the placement of either a seed region or simply a region
of interest, for instance, when direct electric or transcranial magnetic stimulation is
performed, further complicating the interpretation of the tractography results. In
such cases streamline representation becomes more important given an additional
constraint on sub-bundles visiting finer white-matter and cortical landmarks.

Incorporating anatomical prior knowledge in the tractography might offer a
viable solution to improve the quality of the CST fiber tractography, given that
anatomical landmarks are well defined for this tract [13, 33, 34]. For instance, the
bundle-specific approach MAGNET [35] has been previously shown to enhance the
reconstruction of the optical pathways by enforcing a specific direction for tract
propagation using user-defined regions of interest (ROI). A similar guidance of the
fiber tracking can be achieved also using transcranial magnetic stimulation to find
the brain regions responsible for specific functionality for the purpose of filtering
fiber bundles related to those regions [36].

Most anatomy-aware approaches attempt thus to either improve the streamline
propagation or to enhance the FOD estimation. However, the aforementioned
methods do not exploit all information available in the FOD. For one, the pos-
sibility of incorporating branching configurations with high angular deviations
along fiber trajectories is not taken into account by most existing approaches.
This problem has been first investigated by introducing the concept of pathway
splitting [37], but the proposed framework may suffer from a high false-positive
rate due to complications of the splitting procedure.

In this work, we propose a novel approach to fiber tractography that adds
branches to fiber pathways in a hierarchical multi-level approach (Figure 2.1). By
defining target and seed regions based on anatomical priors, the algorithm imposes
additional constraints on the reconstructed streamlines, limiting the number of
false-positive reconstructions that might be introduced either by the algorithm or
via branching. Additionally, to differentiate crossing and branching configurations,
only if a pathway does not reach the target, the peaks of the corresponding FODs
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may be considered as branches. This concept can be integrated into a wide range of
tractography algorithms, e.g., any algorithm based on an FOD both probabilistic
and deterministic. In this work we focus on the proposed multi-level strategy in
combination with deterministic constrained spherical deconvolution (CSD) based
tractography [25].

Figure 2.1: (Left) Current fiber tractography methods such as deterministic FOD-
based tractography reconstruct only a subset of the pathways (blue). However,
by propagating along the FOD orientations that were not used by a conventional
tractography algorithm, the reconstruction can be iteratively extended by adding
new sets of branches per iteration (red and green) leading to a final tractography
result consisting of multiple levels. (Right) The pipeline of the algorithm. (a)
The tract produced by the deterministic CSD-based tractography includes points
with multiple FOD peaks, some of which are ignored. (b) Using these points as
seeds with the unused peaks as initial locations, another iteration of CSD-based
tracking is performed to obtain a new level of the result. (c) In the last stage only
the tracts that enter the predefined target region are retained. The background
picture on the left of the whole-brain fiber tractography result is taken from [38]
with permission.

2.2 Methods

2.2.1 Multi-level fiber tractography

The core of our algorithm is a multi-level fiber tractography (MLFT) strategy that
is compatible with a wide range of fiber tractography methods to take potential
branching configurations into account. It is an iterative procedure that is capable
of generating multiple spurious pathways and, consequently, requires user-defined
starting and target regions as well as stopping criteria in order to control false-
positive rate. MLFT can be combined with both deterministic and probabilistic
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methods. In name of clarity, in this first work we choose to focus on combining
our tractography strategy with deterministic CSD-based streamline tracking [25].

Our algorithm iteratively expands the reconstruction by branching from the
pathways not reaching the target region. The set of streamlines visiting target
region and added at one iteration can be considered one level of the overall
bundle reconstruction. At each iteration, conventional deterministic CSD-based
tractography is performed while storing information on which peaks were chosen
for propagation at each point. If a reconstructed streamline does not enter the
user-defined target region, its points that correspond to FODs with unused peaks
are used as seeds for a new tractography level. Initial directions are defined as the
FOD peaks that were not used during the reconstruction of the previous levels. The
algorithm runs for a pre-defined number of levels or until a pre-defined convergence
criterion is met. Finally, tracts that do not enter the target region at any of the
considered levels are discarded (Figure 2.1), which is a critical step to prevent
the generation of aberrant branches. Co-existence of fiber crossings and fiber
branching is facilitated by treating FOD peaks as crossings during propagation
and only considering them as potential branches at the following iteration if a
corresponding pathway does not reach a target region.

2.2.2 Data

We performed experiments on both simulated and acquired diffusion weighted im-
ages. A numeric phantom was generated using ExploreDTI [39] (v4.8.6; PROVIDI
Lab, Utrecht, the Netherlands) with 6 volumes at b = 0s/mm2 and 60 volumes
at b = 1200s/mm2 with a resolution of 1mm isotropic (Figure 2.2). The phantom
represented three fiber bundles with two branching spots, conceptually mimicking
fiber configurations as those that can be observed in the CST. The experiments
with this phantom were performed without noise and for two signal-to-noise ratio
(SNR) levels: 25 and 15.

In order to analyze the performance of our method on in-vivo brain images,
the MASSIVE [40] dataset was used. The data consisted of 430 volumes at
b = 0s/mm2, 250 volumes at b = 500s/mm2, 500 volumes at b = 1000s/mm2,
2000s/mm2 and 3000s/mm2 each, 600 volumes at b = 4000s/mm2. The data
was acquired with a resolution of 2.5 mm isotropic. The MASSIVE dataset was
corrected for signal drift [41], subject head motion, eddy current and echo-planar
imaging distortions [42].

Additionally, we applied our method to the preprocessed data of ten subjects
from the Human Connectome Project (HCP). The data had a resolution of 1.25mm
isotropic and contained 18 volumes at b = 0s/mm2 and 90 volumes at b =
1000s/mm2, 2000s/mm2 and 3000s/mm2 each.

Multi-shell CSD [43] was used for the FOD estimation. The motor cortex
was segmented as a combination of the left and right precentral and paracentral
gyri (Figure 2.3) with FreeSurfer [44–46] (v6.0.0, Laboratory for Computational
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Figure 2.2: A representation of the numeric phantom (colored based on diffusion
direction and FA value) with two branching points. It consists of three individual
fibers (a-c, colored according to FA value) with corresponding endpoint regions
[6, 10,34].

Neuroimaging, Charlestown, MA, USA) and was used as a target region.

2.2.3 Experiments

Experiment 1. Tractography in silico. We evaluated MLFT as well as iFOD2 [47],
as it is a popular choice of probabilistic tractography algorithm, using a noiseless
phantom. In all the experiments the implementation of iFOD2 from the MRtrix
package [48] was used and all the options were set to default except for providing
the seeding region. The same seed point was used for tracking in both cases.

The endpoint regions were placed at the separate ends of each sub-bundle
(Figure 2.2) that served as target regions of interest for MLFT. They were also used
to select the target fibers from the results of iFOD2, which was run with default
parameters. The parameter setup for MLFT was as follows: angle threshold = 45¶,
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Figure 2.3: The target cortical region. To reconstruct the corticospinal pathways,
the motor cortex (red) was delineated for both hemispheres with FreeSurfer.

maximum order of spherical harmonics Lmax = 8, FOD peak value threshold = 0.1,
the default value in ExploreDTI. The step size was set to half the voxel size and
the number of iterations was set to two.

Experiment 2. Robustness to noise. The sensitivity of the MLFT to noise was
tested. Fiber tracking was performed for the phantoms at varying SNR levels
with the same settings as in Experiment 1. The target fibers were then compared
across SNR levels.

Experiment 3. Tractography in vivo. The MLFT approach was used to
delineate the CST with the MASSIVE and HCP brain data described above. The
motor cortex area of both hemispheres was used as a target region. The added
value of our multi-level strategy was investigated more closely on the fanning
projection of the left CST.

In order to evaluate whether MLFT reconstructs parts of the pathways belong-
ing to the corpus callosum (CC), the bundle was delineated with both deterministic
CSD-based whole-brain tractography and MLFT. The overlap of the CST and the
CC generated by MLFT and CSD-based whole-brain tractography, respectively,
was visually evaluated. The results of our algorithm were evaluated along with
the results produced by the conventional deterministic CSD-based tractography
from ExploreDTI as well as iFOD2 and GT [49] implemented in MRtrix. The
CSD-based tractography, MLFT and iFOD2 used the same seed regions. The
streamlines reconstructed by iFOD2 were further selected to include only the tracts
that visit the target cortical area. In the case of GT, the masks of the seed and
target regions were used to delineate the CST from the whole-brain tractography.
To improve the visual interpretation of the results, implausible streamlines were
removed using identical exclusion regions for all methods in case of the MASSIVE
dataset.

Radial extents of the reconstructed bundles were calculated. In order to do
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that the area covered by bundles endpoints in the cortex was calculated given
that coronal projection of the motor cortex defines a 90¶ segment. Obtained
radial extents were compared per hemisphere using paired Wilcoxon signed-rank
test with significance level – = 0.05. Additionally, density distributions of the
endpoints in the motor cortex were evaluated per subject for each algorithm.

The tractography parameters were set as in Experiment 1. Reconstructions
with two iterations (for both MASSIVE and HCP) and three iterations (only for
MASSIVE) were performed with MLFT. To obtain the whole brain reconstruction
with GT, the number of iterations was set to 109, segment length = 1.5mm,
maximum spherical harmonics order Lmax = 8. The default values were used for
the remaining settings.

To reconstruct the CST with the MASSIVE dataset, the seed regions were
placed close to the internal capsule. In case of HCP subjects an axial cross
section of the brain stem was used. For seeding 100 points per voxel were evenly
distributed at a single slice level. The number of seed points per voxel was selected
empirically.

To run iFOD2 the FODs that were used for MLFT and CSD-based recon-
structions were converted to MRtrix format using MRIToolKit (Image Sciences
Institute, UMC Utrecht, the Netherlands). iFOD2 was provided with a mask of
the seed region used for MLFT, seed_image option was used. When performing
iFOD2 on the HCP data, the number of selected pathways was empirically set to
10000. In addition, the target regions were provided using include option, while
the same function was used for filtering as in MLFT in case of the MASSIVE
dataset. During the analysis of the HCP data, a NOT gate was used to remove
inter-hemispheric connections, due to the use of the common seed region in the
brain stem for both of the CST branches.

Experiment 4. Topographic organization. Previous research has established
that both the motor cortex and the internal capsule can be divided into regions
corresponding to specific motor functions, and that such organization is preserved
within the CST [30,50]. The topography preservation index (TPI) [51] was calcu-
lated, which highlights whether pathways that pass in close proximity to each other
through the internal capsule also have closely located endpoints in the motor area.
This index reflects how well the internal organization is preserved in the bundle
reconstruction. The lower the TPI score the more topographic organization is
preserved in the reconstruction.

In order to calculate TPI scores, rectangular ROIs were defined around the
left and right internal capsules, then the longest axis of the ROI was used to
map all the tract points crossing the ROI onto [0; 1] segment. Consequently,
each pathway is assigned a value vi œ [0; 1], where i is an index of a pathway.
Afterwards, a triangulation is built using the endpoints in the motor area and
each edge connecting two endpoints of pathways j and k is assigned a weight
equal to the distance of the projections in the ROI: w = |vj ≠ vk|. Finally, the
TPI score is an average of the weights. The edge in the calculated triangulation
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signals close proximity of the endpoints in the motor area, while the weight serves
as a penalty if the corresponding pathways’ locations in the internal capsule are
distant.

The TPI was computed for the left and right CST branches reconstructed
by each of the algorithms. To visually appreciate such organization, the CST
streamlines were colored according to the part of the area of the motor cortex
they reach. This allows to visually check whether the pathways reconstructed by
MLFT and iFOD2 on the MASSIVE data corresponded to the anatomical position
of the same associated function in the internal capsule. Additionally, statistical
testing was performed to compare obtained TPI scores using paired sign-rank
Wilcoxon test with significance level – = 0.05.

Experiment 5. Anatomical plausibility. As the previous experiment evalu-
ates topography preservation capability of the algorithms by comparing relative
placement of the endpoints, the coherence of the pathways was evaluated in order
to observe whether the geometric similarity between pathways closely located to
each other along their length is associated with the calculated TPI scores. We
hypothesize that a fiber reconstruction with a lower intrinsic geometric similarity
corresponds to a higher TPI, highlighting the effect of the bias on fiber pathway
propagation. To this end, the minimum average direct-flip (MADF) distance
was employed, which previously has been used in bundle clustering applications
[52, 53]. This metric represents the average point-to-point distance between two
pathways and is invariant to the ordering of the points in each pathway (e.g.,
to which endpoint is considered the start/end). It is defined in the following
way: DAB = min

1
1
N

qN
i=1 ||ai ≠ bi|| , 1

N

qN
i=1 ||ai ≠ bN≠i+1||

2
, where ai and bi

are the points of the pathways A and B of length N , respectively. The metric
requires the compared tracts to contain an equal number of points, which is why
all the pathways were uniformly resampled to N = 200 points. Evaluations
were performed on the left and right CST bundles of the MASSIVE and HCP
data obtained by the tested methods without filtering gates. For each set of
the reconstructed pathways of a given subject, an all-to-all distance matrix was
calculated. Then, for each pathway, the minimum distance was calculated based
on that matrix.

2.3 Results

Experiment 1. Tractography in silico. Both MLFT and iFOD2 reconstructed all
the phantom branches of the noiseless DWI phantom, as shown in Figure 2.4.
It can be observed that the results of MLFT follow the underlying simulated
directions, whereas iFOD2 produces trajectories oscillating around the ground
truth.

Experiment 2. Robustness to noise. The results of MLFT obtained for three
different SNRs are presented in Figure 2.5. A slight misalignment lower than
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Figure 2.4: Performance of the considered methods in phantoms (FA map). The
top row shows the results of MLFT and the bottom row those of the iFOD2
algorithm. The middle row illustrates the target fibers per column (orientation-
based colored FA map). The same single seed point (yellow sphere) was used
for both algorithms. The results of iFOD2 were subsampled for easier visual
assessment. Streamlines’ colors are based on orientation color-coding.

10¶ can be observed at the branching point at SNR = 25, which becomes more
evident at SNR = 15 with values up to 30¶. The case with the lowest SNR is
also characterized by an increased pathway number of branching configurations at
the points where original bundles diverge, as can be seen in the top row in Figure
2.5.

Experiment 3. Tractography in vivo. The multi-level structure of the recon-
structed left CST bundle can be seen in Figure 2.6, which clearly shows the benefit
of the proposed algorithm over conventional deterministic CSD-based tractography
with the improved extent of the bundle fanning. The addition of an extra layer
increases the number of streamlines reaching the motor cortex but does not bring
further improvement to the coverage of the motor cortex: the radial extent with
3 levels amounts to 75.66¶ while, 2-level reconstruction has an extent of 71.48¶.
Consequently, in all of the in-vivo experiments the number of levels was set to two.

The full reconstructions of the CST segmented by MLFT, iFOD2, GT and
deterministic CSD-based tractography in the MASSIVE data is shown in Figure
2.7. It can be observed that the obtained with MLFT pathways densely cover most
of the motor cortex unlike the results of deterministic CSD-based tractography.
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Figure 2.5: Tracts reconstructed by MLFT on the phantom data (FA map) at
multiple SNR levels. Considerable angular errors are only observed at SNR = 15:
increased number of branching configurations and direction perturbations up to
30º (red arrows). At SNR = 25 there is a minor angular deviation below 10º (red
arrow). Streamlines are colored using standard orientation color-coding.

At the same time, both MLFT and iFOD2 cover most of the motor area Figure
2.7. For the iFOD2 reconstruction, the pathways traversing into contralateral
hemisphere are present due to them bending after visiting the target region,
returning into the white matter and propagating through the CC.

Regarding the reconstruction achieved by GT using the MASSIVE dataset,
although the CST fanning is quite sparse, it reaches most parts of the motor
cortex (Figure 2.7). The sparsity allows for a closer comparison of the multi-level
and global tractography results which can be seen in Figure 2.8. Unlike in the
case of GT, the CST reconstructed by MLFT does not reach the approximate leg-
related motor area. In the face area the pathways generated by GT are aligned to
those generated by MLFT, although they do not show any branching, but rather
a smooth curving trajectory.

The CST bundles that were reconstructed for the HCP subjects by the pro-
posed approach, iFOD2, GT and deterministic CSD-based tractography are shown
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Figure 2.6: Fiber pathways reconstructed by the deterministic CSD-based
approach (left) and MLFT with two (middle) and three (right) levels from the
same seed region (green) with the same target region (yellow, the motor cortex)
using MASSIVE dataset. Adding the second-level branches (red) to the pathways
obtained at the first level (blue) improves the extent of the reconstructed bundle.
Using three-level reconstruction from the same seed region does not show coverage
improvements over the two-level reconstruction.

Figure 2.7: Corticospinal pathways reconstructed by the conventional deter-
ministic CSD-based tractography, MLFT, iFOD2 and global tractography using
the MASSIVE data. The motor cortex is shown in yellow. Some of the
pathways reconstructed by iFOD2 enter the motor cortex and diverge into the
CC propagating into the contralateral hemisphere.

in Figure 2.9. Overview of the radial extents achieved by all the employed algo-
rithms can be seen in Figure 2.10. Regarding iFOD2, the results have the same
characteristics as the results obtained using the MASSIVE data described above.
Generally, both MLFT and iFOD2 reconstructions are represented by the bundles
with a plausible fanning extent. GT seems to show lower radial extent compared
to its result using the MASSIVE data.

Despite iFOD2 and MLFT both showing high radial extent, in case of iFOD2
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Figure 2.8: Comparison of the left CST reconstructions obtained by MLFT (green)
and GT (red) using the MASSIVE dataset. (a) The reconstruction by GT is
sparser, but it provides additional coverage towards the approximate leg area
unlike the MLFT reconstruction. (b) Pathways delineated by GT generally follow
the same trajectory of the bundle reconstructed by MLFT but with smoother
branching turns. (c) Some of the GT-produced pathways that are reaching the face
motor area (white arrows in (b) and (c)) are shifted towards posterior part of the
brain and are not completely aligned with others as well as with the corresponding
part of the MLFT-reconstructed fanning.

the tempo-lateral part of the motor cortex is covered more sparsely than its
superior part (Figure 2.11), At the same time, MLFT provides more uniform
coverage of the motor cortex, although the superior motor cortex coverage is still
relatively denser. Given the sparse reconstruction achieved by GT, its density
distribution also appears quite uneven as can be seen in Figure 2.11.

Performing statistical testing to compare the radial extents of the algorithms
has shown no statistically significant difference between MLFT and iFOD2: p =
0.21 for the left and p = 0.53 for the right hemisphere. Also, no significant
difference is observed between GT and CSD-based tractography: p = 1 for the
left and p = 0.06 for the right hemisphere. All the other comparison combinations
when performing Wilcoxon test resulted in p values lower than the significance
level.

The CST and CC bundles reconstructed using a subject from HCP data are
depicted in Figure 2.12 for comparison. In the axial view it is well visible that
part of the CST fanning does not overlap with the CC pathways, as the CC is not
covering lateral part of the motor cortex.

Experiment 4. Topographic organization. The TPI scores are reported in
Table 2.1. The deterministic CSD-based tractography seems to outperform other
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Figure 2.9: The CST reconstructions obtained by MLFT, iFOD2, GT and CSD-
based tractography using the HCP data. The reconstructed by MLFT bundles are
in line with the observations in Figure 5 and consistent with each other. iFOD2
also achieves high motor cortex coverage. The extents of the GT-reconstructed
bundles are comparable to the ones obtained by MLFT, but with less satisfactorily
spatial coverage.

algorithms showing lower values of the TPI metric, and thus higher coherence,
for every subject. Both MLFT and CSD-based tractography achieved TPI scores
that are significantly different from the scores of both iFOD2 and GT with p <
0.001. Despite rather close mean scores (0.03 and 0.06 for the left and 0.03 and
0.05 for the right CSD-based and MLFT reconstructions respectively) MLFT and
CSD-based reconstructions were shown to achieve significantly different TPI scores
(p < 0.001). MLFT is shown to have seemingly comparable TPI scores than the
CSD-based tractography, while they are still consistently lower than the scores of
iFOD2 and GT reconstructions. In this regard, iFOD2 and GT show generally
comparable performance to each other without statistically significant difference:
p = 0.17 for the left and p = 0.21 for the right hemisphere.

Figure 2.13 shows the pathways color-coded according to their final locations
in the motor cortex. The visualization demonstrates that MLFT maintains the
anatomical configuration of the pathways, according to which the organization of
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Figure 2.10: Radial extents of the reconstructed CST bundles for both left and
right hemispheres. MLFT (blue) is shown to improve the radial extent compared to
the conventional deterministic CSD-based tractography (green). iFOD2 (orange)
and MLFT (blue) appear to have comparable radial extents. GT (red) achieves
high radial extent on the MASSIVE dataset, while on HCP data the extent is
primarily low.

tracts connecting specific sub-domains of the motor cortex is maintained through-
out the bundle. In contrast, the bundle produced by iFOD2 seems to be less
organized.

Experiment 5. Anatomical plausibility. The normalized histograms of the
MADF distance are shown in Figure 2.14. The distributions are similar across
subjects per tractography approach and show that the distance between the closest
pathways obtained by MLFT is generally smaller than that of iFOD2. The
results of GT showed the highest distance, which is attributed to the sparsity
of the bundles. The CSD-based reconstructions also appear to be very similar
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Figure 2.11: Density of the motor cortex coverage by the reconstructed CST
bundles considering with angular coordinate starting at tempo-lateral point of
coronal projection of the motor cortex and increasing towards superior motor
cortex separately for each hemisphere. All the algorithms appear to densely cover
superior part of the motor cortex. However, MLFT (blue) consistently covers most
lateral part of the motor cortex with its density more evenly distributed compared
to iFOD2 (orange). GT (red) also occasionally covers tempo-lateral motor cortex,
although the coverage is very sparse. CSD-based tractography (green) primarily
covers superior motor cortex part in all the subjects.

geometrically according to the MADF distance with the peak of the distribution
being very close to zero for most of the subjects.

2.4 Discussion and Conclusion

In this study we presented MLFT, a novel strategy to enhance fiber tractography
by reconstructing branching configurations. The strategy we propose achieves
anatomically plausible reconstructions of the CST bundles, is robust and repro-
ducible, and maintains topographic organization. Each iteration of the proposed
tractography algorithm attempts to branch existing streamlines towards the target
region, which may open up new avenues for investigating more complex pathway
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Figure 2.12: The CST bundle (white) reconstructed by MLFT, and the CC bundle
(red) reconstructed by whole-brain CSD-based tractography using a subject from
the HCP dataset. The CST bundle was reconstructed using MLFT while the
part of the CC bundle was extracted from whole-brain reconstruction obtained
with the same parameters as in case of the MLFT reconstruction. An overlap
can be seen in superior lateral part of motor cortex as well as occasionally in its
temporal part. As it is known that the CC also originates from the motor cortex,
the results support the ambiguity of whether the second-level branches the CST
reconstruction belong to the CC or the CST, as they were not reconstructed by the
deterministic CSD-based tractography in either cases given the same parameter
settings.

configurations in the brain [54]. Given that image resolution is usually not suffi-
cient to distinguish branching points, some of the FOD peaks might not only be
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Left RightSubject CSD MLFT iFOD2 Global CSD MLFT iFOD2 Global
MASSIVE 0.08 0.08 0.15 0.18 0.08 0.08 0.21 0.17

133019 0.03 0.06 0.13 0.36 0.02 0.05 0.1 0.21
133625 0.03 0.05 0.36 0.11 0.03 0.05 0.1 0.08
138231 0.02 0.06 0.36 0.2 0.02 0.04 0.09 0.25
138534 0.03 0.05 0.3 0.1 0.03 0.05 0.16 0.23
139233 0.02 0.07 0.43 0.12 0.03 0.07 0.15 0.1
140117 0.02 0.05 0.11 0.13 0.02 0.04 0.1 0.11
140420 0.04 0.07 0.15 0.14 0.03 0.06 0.1 0.15
141422 0.03 0.06 0.46 0.09 0.02 0.04 0.09 0.26
141826 0.02 0.05 0.18 0.12 0.02 0.05 0.09 0.1
143325 0.02 0.04 0.08 0.13 0.02 0.04 0.1 0.09

Table 2.1: TPI scores of the left and right CST reconstructions by MLFT,
iFOD2 and GT and also the TPI score of the first level of MLFT only, which
is reconstructed by deterministic CSD-based tractography (the lowest score is
indicated in bold). According to the TPI values, the CSD-based reconstruction
of both CST branches has best-preserved topography. The scores of MLFT and
CSD are comparable and consistently low in contrast to iFOD2 and GT.

Figure 2.13: Coronal and sagittal views of the left CST reconstructed by MLFT
and iFOD2 using the MASSIVE data. The fiber pathways are colored according to
the locations of their endpoints in the motor cortex. The pathways reconstructed
by MLFT are shown to have a clearer topographic organization.

an indication of crossing fibers, but of branching ones.
Given the improved extent of the bundles and anatomically imposed control

over false positives, our approach is attractive for a number of applications. It can
be used to support presurgical planning, as it reveals more extensive coverage of the
motor cortex than the conventional deterministic CSD-based tractography [5,55],
while maintaining clear structure of the reconstructed bundles.
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Figure 2.14: Normalized distributions of the distances from each pathway to the
nearest neighbor based on the MADF distance for all the processed subjects. The
distributions of the distances appear to be similar across subjects.

2.4.1 MLFT features

With simulations, we have shown that MLFT can reliably reconstruct branching
fiber configurations that are less tortuous as compared to a probabilistic algorithm
(Figure 2.4). Additionally, the results of MLFT are reproducible. Although
higher tortuosity of the probabilistic tractography reconstruction is an expected
behavior, overcrowded reconstruction makes it a bit more challenging to spot
spurious pathways. This also can be connected to the ability of the tractography
algorithms to maintain topographic organization, which is relevant in applications
involving brain stimulation methods, such as transcranial magnetic stimulation or
direct electric stimulation.

Robustness to noise is another important aspect to consider. In order to analyze
the sensitivity to noise of our algorithm, the same phantom bundles were simulated
with three different SNR levels. The effect of SNR on the reconstructed pathways
became clearly visible only at the lowest SNR level (SNR = 15), as reflected by an
increased number of branching configurations and occasional perturbations after
branching (Figure 2.5).

When using the concept of branching for in-vivo brain tractography a well-
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delineated fanning was observed close to the motor cortex (Figure 2.6). Although,
MLFT and iFOD2 achieved comparable reconstructions (Figure 2.10) of the CST
fanning without statistically significant difference, iFOD2 reconstruction contains
multiple spurious tracts (Figure 2.7, Figure 2.9). Apart from that MLFT recon-
structions show more uniform coverage of the lateral part of the motor cortex,
while iFOD2 appears to be provide much denser coverage of the superior motor
cortex while sparsely lateral part (Figure 2.11).

Most of the fanning consists of second level branches, which might often look
as if they diverge into another bundle at the branching points making a sharp
turn. However, high angular deviations have been observed by Van Wedeen et
al [56]. Similarly, Mortazavi, et al [20] also observed axon T-branching as well
as sharp turns at sub-millimeter scale performing tract tracing experiments in
the area under the motor cortex. Both of those papers present results based on
the analysis of the macaque brain, but the statements are likely also valid for
the human brain, which is reportedly congruent to the structure of the macaque
brain [20], although it is difficult to provide estimates on the distribution of this
type of branching in the human CST dissections. Additionally, certain cases can
be considered a branching from a modeling point of view given the resolution. For
instance, in case of the CST the fibers originating in the cortex descend into the
trunk of the bundle. At this point they pass through a "bottleneck" (at sulcus
circularis insulae) and merge together [57]. As was presented in [7], up to 7 bundles
appear to co-exist in a single voxel in the mentioned area, which would also suggest
that some of the peaks may indicate a splitting of a bundle or an overlap of two
bundles. Additionally, the angle between the CST trunk and the fanning close
to the “bottleneck” area appears to be around 90¶ (Figure 5 in [57]), which is
usually absent due to the angular deviation threshold as propagation is uncapable
of making sharp turns. For this reason, probabilistic approaches struggle with
reconstructing the inferior lateral part of the CST without smoothing the angle
between the trunk and the fanning of the CST (Figure 2.11). However, setting
a threshold as high as nearly 90¶ for probabilistic tractography would overflow
the result with false positives by allowing sampling not only around the FOD
extremums.

The validity of the MLFT reconstructions can also be evaluated with Figure
2.12. It is known that part of the CC originates from the motor cortex [34, 58].
Thus, a successful reconstruction of the motor part of the CC remains prone to
ambiguity as the CST pathways are present in that area as well. Similarity of
the shapes of the MLFT-reconstructed bundles to those presented by Wasserthal
et al [59] provides additional confidence in plausibility of the results obtained by
MLFT. Additionally, the comparison to the results of GT (Figure 2.8) has shown
that this alternative approach reconstructs similar pathways, although with certain
smoothing of the high-angular bifurcations that are observed in MLFT results. In
general, the resemblance between the second level of the CST and the CC bundle
can be explained by the co-alignment of the pathways of different bundles near
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the motor region reported by W. Krieg for the macaque brain and for the human
brain [60]. This does not necessarily demonstrate that these similar pathways are
true positive but serves as a reference which shows stable delineation of certain
structures across various algorithms.

Specific topographic organization is a characteristic of a number of brain fiber
bundles [28]. Somatotopic organization of the CST [29, 50] is one of the estab-
lished examples of known internal bundle organization. Similarly to [27], we have
evaluated the ability of the algorithms to maintain topographic organization using
TPI score. According to the observed results, MLFT can preserve topographic
organization of the fiber bundles as can be seen in Figure 2.13. This is also
reflected by the TPI scores (Table 2.1) across all the subjects analyzed in this
study. The fact that topography preservation of MLFT is hampered compared
to the deterministic CSD-based tractography might be a consequence of either
obvious false-positive streamlines or precision mistakes, as in some cases first-level
pathways terminate close to the target region and then branch at acute angles
to reach it and thus change the expected point location. By following the FOD
peaks, we propagate the streamlines along the most reliable fiber orientation and,
consequently, we are less affected by the noise. This leads to a more stable pathway
propagation and, consequently, to a more anatomically reliable organization of the
bundle. This is also supported by the presented higher values of pathway coherence
of CSD-based tractography and MLFT compared to iFOD2 and GT (Figure 2.14).

2.4.2 Limitations

Some degree of uncertainty propagates in the results from the CSD procedure,
as the response function is not voxel-wise perfect and FOD peaks have limited
angular resolution. This limitation is, however, inherent to most tractography
algorithms. Further, branching along a pathway might generate false-positive
reconstructions. In our current implementation, correctly chosen anatomical priors
are key to control the rate of false-positive pathways.

As revealed by the experiments with the phantom (Figure 2.4), deterministic
reconstruction from a single point may generate a whole dense branch, leading to
an unrealistic density distribution. This is a result of the current implementation
choice, of not imposing an upper limit to the number of times a streamline is
allowed to branch. We believe that this aspect could be potentially improved
in future work, for example, with a microstructure-informed extension of our
framework.

2.4.3 Methodological considerations

Given the results of the three-level reconstruction (Figure 2.6), it seems increasing
the number of reconstructed levels requires an increasingly accurate delineation
of the target region. While error propagation across multiple levels may lead to
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spurious results, at the same time, the definition of the seed region seems to play
a key role in the robustness of the reconstruction. In both HCP and MASSIVE
datasets, the seed regions were placed based on specific landmarks (brain stem
and internal capsule). Incomplete segmentation of those regions would probably
lead to reduced density of fiber pathways and, as a consequence, reduced quality
of the reconstruction.

In this work the analysis was fully focused on the application of the CST
bundle given the well-defined anatomical landmarks that can be associated with
the target and seed regions. Consequently, spurious pathways are often easy
to detect which may not be the case for bundles. For instance, to test the
generalizability of MLFT, a reconstruction of the cingulum was performed with the
MASSIVE dataset (Figure S6). Despite the reconstruction being visually similar
to the reference bundle from the ISMRM 2015 challenge, certain pathways may as
well be spurious. For that reason, the MLFT reconstruction should be treated as
a guidance, unless the target region is defined based on functional data. In any
case, general prior knowledge of the anatomical configuration of the fiber bundle-
of-interest is required to disambiguate interdigitating from branching pathways.

We would also like to stress that this approach in its current form is only
suitable for bundle-specific applications or other cases that aim to investigate
connections between two specific regions. As a consequence, it cannot be combined
with algorithms for whole-brain reconstructions at the current moment.

2.4.4 Future work

Although in this work we integrated the MLFT framework with the deterministic
tractography, it can also be implemented for probabilistic tractography. In some
probabilistic tractography methods such as iFOD2, for example, new directions are
sampled at each propagation step from the fiber orientation distribution (concen-
trating around the peaks) only regarding peaks with an angular deviation lower
than the pre-defined threshold (Figure 2.15). In this context, MLFT could be
similarly applied to sample the propagation direction from the part of distribution
outside the area conforming with the angular threshold when branching into the
second level (Figure 2.15).

MLFT has shown promising results in healthy controls, but it remains unclear
whether its performance will be maintained in presence of pathology especially
with routinely acquired clinical data. Thus, evaluation of the algorithm in a clinical
setting would also be beneficial.

It must be noted that in this work we did not focus on devising an approach
for estimating the required number of levels based on convergence criteria, which
might be useful for clinical translation. For this study, those settings were identified
empirically. Experiments were performed with up to 3 levels, however, there was
not much change observed between results with 2 and 3 levels. One of the possible
future directions of this work could be to introduce microstructural information in
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Figure 2.15: (a) In probabilistic tractography new step directions are sampled into
the directions with higher probability (green arrows) and then also constrained
with an angular threshold (◊max). (b) Applying MLFT approach to probabilistic
tractography at the second level would require sampling into the directions of the
peak with deviation that is higher than the threshold (red area).

analogy to the dynamic seeding approach [61], which may allow for the automatic
estimation of the number of levels, and which could facilitate the identification of
valid branches.
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Abstract

While the diagnosis of high-grade glioma (HGG) is still associated with a con-
siderably poor prognosis, neurosurgical tumor resection provides an opportunity
for prolonged survival and improved quality of life for affected patients. However,
successful tumor resection is dependent on a proper surgical planning to avoid
surgery-induced functional deficits whilst achieving a maximum extent of resection
(EOR). With diffusion magnetic resonance imaging (MRI) providing insight into
individual white matter neuroanatomy, the challenge remains to disentangle that
information as correctly and as completely as possible. In particular, due to the
lack of sensitivity and accuracy, the clinical value of widely used diffusion tensor
imaging (DTI)-based tractography is increasingly questioned.

We evaluated whether the recently developed multi-level fiber tracking (MLFT)
technique can improve tractography of the corticospinal tract (CST) in patients
with motor-eloquent HGGs. Forty patients with therapy-näıve HGGs (mean age:
62.6 ± 13.4 years, 57.5% males) and preoperative diffusion MRI [repetition time
(TR)/echo time (TE): 5000/78ms, voxel size: 2 ◊ 2 ◊ 2mm3, one volume at
b = 0s/mm2, 32 volumes at b = 1000s/mm2] underwent reconstruction of the
CST of the tumor-affected and unaffected hemispheres using MLFT in addition
to deterministic DTI-based and deterministic constrained spherical deconvolution
(CSD)-based fiber tractography. The brain stem was used as a seeding region,
with a motor cortex mask serving as a target region for MLFT and a region of
interest (ROI) for the other two algorithms.

Application of the MLFT method substantially improved bundle reconstruc-
tion, leading to CST bundles with higher radial extent compared to the two other
algorithms (delineation of CST fanning with a wider range; median radial extent
for tumor-affected vs. unaffected hemisphere – DTI: 19.46¶ vs. 18.99¶, p = 0.8931;
CSD: 30.54¶ vs. 27.63°, p = 0.0546; MLFT: 81.17¶ vs. 74.59¶, p = 0.0134).
In addition, reconstructions by MLFT and CSD-based tractography nearly com-
pletely included respective bundles derived from DTI-based tractography, which
was however favorable for MLFT compared to CSD-based tractography (median
coverage of the DTI-based CST for affected vs. unaffected hemispheres – CSD:
68.16% vs. 77.59%, p = 0.0075; MLFT: 93.09% vs. 95.49%; p = 0.0046). Thus, a
more complete picture of the CST in patients with motor-eloquent HGGs might
be achieved based on routinely acquired diffusion MRI data using MLFT.
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3.1 Introduction

Gliomas represent the most common malignant brain tumors in adults, with an
average annual age-adjusted incidence rate of ≥ 4.67 to 5.73 per 100,000 population
[62,63]. Anaplastic astrocytoma and glioblastoma are the major high-grade glioma
(HGG) entities and peak in elderly subjects. [62–64]. Overall prognosis is poor,
with a median survival below 2 years [62,63,65]. HGGs can be regarded as chronic
progressive diseases and typically show infiltrative growth behavior, which renders
curative treatment almost impossible for the majority of affected patients [64,66].

Nowadays, the standard treatment approach in patients harboring HGGs is a
combination of neurosurgical resection, extended focal radiotherapy, and adjuvant
chemotherapy. [67–70] Nonetheless, multiple factors including histopathological
characteristics, molecular tumor biology, as well as functional eloquence of the
affected brain region contribute to individual therapy decision-making in clinical
practice. [70,71] Regarding neurosurgical resection, a maximum extent of resection
(EOR) has been associated with prolonged survival rates and better quality of
life. [1, 2, 16, 72–75]. However, mostly depending on individual tumor location,
achieving a maximum EOR can be in conflict with preserving specific functions,
such as the ability to move or speak without constraints. Thus, the principle
of contemporary brain tumor surgery aims at an optimum EOR whilst avoiding
surgery-related functional decline as far as possible. [76,77]

The gold-standard method for spatially resolved assessment of brain function
is intraoperative direct electrical stimulation (DES), which can be applied as a
strategy to guide neurosurgical resection and to avoid functional deficits in the
course of tumor resection. [69,78–80] In addition to intraoperative DES, presurgical
imaging is paramount to achieve an optimized onco-functional result. At the
forefront of imaging techniques, multi-sequence magnetic resonance imaging (MRI)
is applied to gather insights into spatial location, spread, and phenotyping of
brain tumors [81–84]. Lately, diffusion tensor imaging (DTI) in particular has
seen increasing relevance as it allows identifying and delineating subcortical white
matter (WM) structures non-invasively [85–89]. In the neurosurgical context, DTI
is frequently used for tracking of the corticospinal tract (CST), the main WM path-
way subserving human motor function. The popularity of DTI can be explained
by the low false-positive rate of tractography maps. [6] Yet, the approach tends to
produce underrepresented fiber bundles. [5] Consequently, this causes an ongoing
debate on whether conventional DTI methods are accurate and reliable enough
to serve as a workable solution for delineating WM architecture in patients with
glioma. [90–93] Specifically, one main criticism is that the brain’s WM architecture
harbors numerous fiber crossings and further complex geometrical configurations,
including fiber branching, which are hard to resolve. [94,95]

While deterministic tractography with DTI is the most common preoperative
approach, a variety of models has been proposed to overcome the overall limi-
tations of DTI-based tractography and improve the reconstruction of WM fiber
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organization as an attempt to further narrow the gap between imaging and reality,
including diffusion kurtosis imaging and fiber orientation distribution (FOD)-
based approaches using constrained spherical deconvolution (CSD) as the most
prominent representative. [21,25,96] At the same time, although these models are
more capable of disentangling fiber orientations, tractography algorithms com-
monly impose additional constraints that are set to achieve structurally plausible
results, such as angular deviation and consideration of all the orientations as
separate fibers. Consequently, either pathway propagation may be terminated,
or a diverging branch may be pruned due to the angular limitations as well as
related to spatial resolution constraints, which may artificially push the rate of
false-negative findings. [20] Thus, the possibility of incorporating fiber bifurcations
with high angular deviations, such as those observed for the human CST, remains
neglected. Probabilistic algorithms that are supposed to improve reconstructions
by not just propagating into the peak FOD direction but sampling each step from
the FOD could compensate for the angular resolution of the FOD model and
capture certain pathway bifurcations. A series of previous publications has shown
the ability of probabilistic tractography to improve the extent of the bundles over
DTI-based tractography while highlighting microstructural changes induced by
the tumor. [97–99] However, usually direction samples are not drawn out of the
whole FOD but from the segment defined by an angular deviation threshold. [48]
This introduces a limitation to probabilistic methods that is using higher angular
deviation thresholds helps in reconstructing more complete bundles while also
increasing the false-positive rate. [6]

Against this background, we evaluate a method for improved fiber tractography
of the CST in patients suffering from motor-eloquent HGGs, which aims to specif-
ically tackle the issue of missing fiber branching of currently existing tractography
procedures. We evaluate the multi-level fiber tracking (MLFT) approach proposed
in Chapter 2. It adds branches to the pathways that have been previously recon-
structed, but do not reach a predefined target region. Specifically, we hypothesize
that the MLFT algorithm is capable of improving the reconstruction of the CST
in the vicinity of a brain tumor when compared to conventionally used DTI-based
tractography as well as tractography using CSD.

3.2 Methods

3.2.1 Study Design and Patient Inclusion

This study was approved by the local institutional review board and was conducted
in accordance with the Declaration of Helsinki. The requirement for written
informed consent was waived due to the study’s retrospective design.

Patients who underwent brain MRI using a multi-sequence imaging protocol
for brain tumors according to clinical indication were retrospectively identified in
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the institutional Picture Archiving and Communication System (PACS). The time
interval for PACS search ranged from February 2019 to February 2020 considering
the time point of MRI acquisition. Inclusion criteria were 1) age above 18 years,
2) availability of preoperative 3-Tesla MRI including diffusion-weighted sequences,
3) diagnosis of a HGG (based on imaging findings and later confirmation by
histopathological evaluation of biopsy probes or tumor tissue harvested during
surgical resection), and 4) suspected motor-eloquent tumor location according to
preoperative MRI (imaging suggesting infiltration or compression of anatomically
suspected cortical motor-eloquent areas and/or suspected close proximity to the
CST). The exclusion criteria were 1) artifacts due to implants or motion artifacts
in imaging data according to visual image evaluation (e.g., non-diagnostic image
quality due to patient movement during image acquisition), and 2) previous brain
surgery.

Overall, 40 patients fulfilled the inclusion criteria and were considered for this
study. Clinical details including demographics and final histopathological tumor
grading were extracted from electronic health records of these patients.

3.2.2 Magnetic Resonance Imaging

Cranial MRI was performed in the preoperative routine setting. All imaging
considered in this study was acquired on the same two 3-Tesla scanners (Achieva
dStream or Ingenia; Philips Healthcare, Best, Netherlands) using a 32-channel
head coil.

The standardized multi-sequence imaging protocol for brain tumors included
a three-dimensional (3D) fluid attenuated inversion recovery (FLAIR) sequence
(repetition time [TR]/echo time [TE]: 4800/277ms, 1mm3 isovoxel covering the
whole head), an axial T2-weighted sequence (TR/TE: 3396/87ms, voxel size of
0.36 ◊ 0.36 ◊ 4mm3), a diffusion-weighted sequence (TR/TE: 5000/78ms, voxel
size of 2◊2◊2mm3, one volume at b = 0s/mm2, 32 volumes at b = 1000s/mm2),
and a 3D T1-weighted turbo field echo (TFE) sequence (TR/TE: 9/4ms, 1mm3

isovoxel covering the whole head) without and with application of a contrast agent
using a dose of 0.2ml per kg body weight of gadoteric acid (Dotagraf 0.5mmol/ml;
Jenapharm GmbH & Co. KG, Jena, Germany). Further sequences not related to
this study’s analyses were acquired by default and used for radiological reporting
and image-based diagnostics.

3.2.3 Data processing

Co-Registration and Segmentation

First, to avoid errors in the automated structural parcellation due to the pres-
ence of pathology and related anatomical distortion, lesion filling for the T1-
weighted images was done prior to structural parcellation, which substitutes the
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tumor volume in the image with data mimicking signal from the healthy tissue
(either using noise or healthy tissue simulation). For robust parcellation, in
this work we used automated Virtual Brain Grafting (VBG), which enables the
generation of a virtual lesion-free T1-weighted image and structural parcellation
using FreeSurfer recon-all. [46, 100] Lesion segmentation required for VBG was
obtained fusing eight segmentation algorithms using majority voting from the
Brain Tumor Segmentation (BraTS) toolkit. [101, 102] The BraTS toolkit relies
on a multi-modal input (non-contrast and contrast-enhanced T1-weighted images,
FLAIR images, and T2-weighted images) and produces segmentation masks that
enclose the tumor core (necrotic center and contrast-enhancing tumor parts) and
FLAIR-hyperintense zones (edema/tumor infiltration), which were further used
to compute the respective volumes (by accumulating volumes of each voxel in
the respective masks). [101, 102] Before performing segmentations, all MRI data
were transferred to Montreal Neurological Institute (MNI) space (with an isotropic
voxel size of 1 mm3).

The diffusion-weighted MRI data of the individual patients were corrected for
motion and eddy currents, and co-registered to the corresponding T1-weighted
images using ExploreDTI (version 4.8.6; PROVIDI Lab, Utrecht, Netherlands).
[39]. The FODs were estimated using recursive calibration of the response function
[103]. We used a spherical harmonics order of Lmax = 6. Motor cortex masks were
assembled from precentral, postcentral, and paracentral lobule segmentations (Fig-
ure 3.1a) obtained with FreeSurfer (version 6.0.0; Laboratory for Computational
Neuroimaging, Charlestown, MA, USA) [46] using the Desikan-Killiany atlas. [44]
All image co-registrations and segmentations were visually inspected for quality
and, in case of segmentations, manually corrected by a neuroradiologist when
necessary.

Figure 3.1: (a) Motor cortex mask (red) was assembled using precentral,
postcentral, and paracentral gyri as segmented using FreeSurfer. The motor cortex
mask was used as a target region. (b) The seed region (green) was defined as a
cross-section of the brain stem at the pontine level.

Fiber Tracking Algorithm

Three deterministic tractography approaches were used in this study to reconstruct
the CST of both hemispheres: DTI-based tractography, CSD-based tractography,
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and MLFT. DTI-based tractography was chosen since it is widely used in current
clinical practice. [15,92] This algorithm propagates fiber streamlines into the main
direction of the estimated diffusion tensor. However, it leads to issues with
reconstructing pathways in certain complex situations (e.g., crossing or kissing
fibers) when the estimated diffusion becomes closer to isotropic and the main
tensor direction may not coincide with any of the underlying fiber orientations.
[94, 95] CSD-based tractography has improved the specificity compared to DTI-
based tractography given higher angular resolution and an ability to disentangle
more complex fiber configurations. [21,25] During pathway propagation each time
the algorithm chooses an FOD peak that minimizes angular deviation from the
previous step. The CSD approach was included as it has shown to be capable of
adequately accounting for crossing fiber configurations, and it serves as a basis for
the MLFT algorithm.

As was shown in Chapter 2, the MLFT algorithm reconstructs bundles as
multi-level structures, with the exact number of levels defined by the user. Given a
seed and a target region, MLFT aims to iteratively improve bundle reconstruction
by adding pathways with high angulation reaching the target region. At each
iteration, MLFT propagates pathways from a set of seed points using deterministic
CSD-based tractography that takes every step into the direction of a FOD peak
the least deviating from the direction of the previous step. After propagation, the
points of the pathways that did not reach the target region are used as seed points
for the following iteration. Their initial directions are then defined as the peaks
of the corresponding FODs that were ignored during propagation. If a seed point
corresponds to multiple unused FOD peaks, it is duplicated to allow propagating
each of the alternative directions. The rest of the pathways reaching the target
region are forming a new level of the reconstruction. They are concatenated with
the segment of the pathway they branched from that originates from the prior seed
point set. This procedure is repeated for a predefined number of iterations. For
the CST reconstruction, two levels (iterations) were used in this study. Thus, by
extending the reconstruction with each new level, MLFT is attempting to account
for branching fibers. In Chapter 2 it was also shown to preserve topography of the
bundles.

Additionally, it can be noticed that the reconstructions performed with de-
terministic CSD-based tractography are essentially the first level of the MLFT
reconstructions. Thus, the extent of MLFT reconstructions will always at least
cover that of the CSD-based algorithm.

Tractography Setup

To reconstruct the CST within each hemisphere, the seed region was placed in
the single-slice transverse cross-section of the pontine level of the brain stem as
obtained from brain parcellations (Figure 3.1b). [19] Motor cortex masks assembled
from the segmentation of precentral, postcentral, and paracentral gyri of the
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left and right hemisphere, respectively, were set as target regions for MLFT
and as a region of interest (ROI) to filter the results of DTI- and CSD-based
tractography (Figure 3.1a). Five seed points were sampled per voxel in the seed
mask at a single-slice level in the superior part of the brain stem, ensuring that
all the points were on the same transverse plane. The tractography step was
set to half a voxel size, the angular threshold was set to 45¶ as in Chapter
2. For MLFT and CSD-based tractography the FOD peak threshold amplitude
was set to 0.08, which was chosen empirically based on visual inspection of the
results and with the aim to increase the volume of the reconstruction without
introducing obvious false-positive pathways. For DTI-based tractography the
fractional anisotropy (FA) threshold was set to 0.1. The number of iterations was
set to 2 for MLFT. Additionally, due to reconstruction of CST branches for the left
and right hemisphere from the same seed region in the brain stem, interhemispheric
connections were filtered out. Additional experiments evaluating algorithms on
fine-grained target regions are provided in the Supplementary Material.

3.2.4 Fiber Tracking Evaluation

Qualitative Assessment

Visual image evaluation was performed by a neuroradiologist (7 years of experience
in neuroradiological imaging) using ExploreDTI. The reconstructed bundles were
rendered in the same scene as the contrast-enhanced T1-weighted images for an
interactive assessment of the course of the CST and its relation to the tumor.

Patients were pseudonymized during all visual image evaluations. In detail,
datasets stemming from DTI-based tractography, CSD-based tractography, and
MLFT were opened during three rounds of evaluation, with each round randomly
including one of those tractography results per patient. Between each round of
assessment, an interval of at least two weeks was established to minimize recall bias.
Both the tumor-affected and unaffected hemispheres were separately evaluated per
patient. First, the course of the reconstructed CST through anatomical landmarks
known to be key for the descending CST (ipsilateral internal capsule and cerebral
crus at the level of the brain stem) was assessed in binary fashion (CST passing
through/not passing through internal capsule and cerebral crus). Second, for
tractography within the tumor-affected hemisphere, the neuroradiologist assessed
whether the reconstructed CST appeared to be unaffected (no contact and no
visually identifiable deviation), spatially deviated, infiltrated or split, or destroyed
(entire or partial disintegration of the CST) due to the tumor mass, similar to
previous work on qualitative evaluation of fiber tract anatomy. [104]
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Quantitative Assessment

Quantitative assessment of the CST bundles reconstructed with DTI-based, CSD-
based tractography, and MLFT was performed, including radial extent and cover-
age of reconstructed fibers. The radial extent (in ¶) of the CST was calculated to
show how much of the motor cortex is covered, which was achieved by computing
the size of the segment of the coronal motor mask projection covered by the CST.
Thus, the motor mask projection defines an arc of 90¶, and the overlap of the
bundle visitation mask on the motor cortex defines segments on the arc that
constitute the radial extent. The difference in radial extents of the bundles recon-
structed in tumor-affected and unaffected hemispheres was compared. Outliers in
the difference distribution were detected as patients falling into the distribution
tails and accounting for about 5% of the distribution. The threshold for the
detection was calculated using the 2‡ rule, where ‡ is the standard deviation
(SD).

Given its wide use in clinical routine, DTI-based tractography was considered
a baseline of comparison for the assessment of the algorithms regarding bundle
trajectory. Thus, in order to assess the coherence of the CSD-based tractography
and MLFT reconstructions with the DTI-based tractography results, coverage of
the bundles generated with DTI-based tractography by the ones generated with
CSD and MLFT was calculated. For calculation, binary visitation masks were
created of the reconstructed bundles (with voxels being set to 1 if at least one
pathway passed through it). Then, the part of the DTI-reconstructed bundle’s
mask intersecting with corresponding masks of the MLFT and the CSD-based
reconstructions was calculated (in %, where 90% DTI coverage by MLFT would
mean that 90% of the CST volume reconstructed by DTI-based tractography is
also included in the respective reconstructed bundle when MLFT is used as the
tractography algorithm in the same patient). The masks consisted of the voxels
visited by the corresponding bundle (voxel contains at least one pathway point).
All computations for quantitative image assessment were performed using in-house
developed MATLAB scripts (version R2018b; The MathWorks Inc., Natick, MA,
USA).

3.2.5 Statistics

For statistical data analyses, SPSS (version 26.0; IBM SPSS Statistics for Win-
dows, IBM Corp., Armonk, NY, USA) and SciPy library [version 1.3.1 [105]] were
used. In all statistical tests a significance level of – = 0.05 was used.

Descriptive statistics included mean ± SD, ranges, and absolute or relative fre-
quencies. For qualitative image assessment in the tumor-affected hemisphere, Chi-
squared tests were conducted to test for differences in the spatial characteristics
of the CST (unaffected, spatially deviated, infiltrated/split, or destroyed) between
DTI-based tractography, CSD-based tractography, and MLFT. For quantitative
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image assessment, the tractography algorithms were first compared to each other
based on the radial extents of the reconstructions, separately for the unaffected
and tumor-affected hemispheres and for the right versus left hemispheres, using
two-sided Wilcoxon signed-rank tests. Furthermore, Wilcoxon signed-rank tests
were used to compare the radial extents achieved by the same algorithm in affected
and unaffected hemispheres, respectively.

Additionally, the coverage of the DTI-based reconstruction of the CST by CSD-
based tractography and MLFT was compared for unaffected and tumor-affected
hemispheres using two-sided Wilcoxon signed-rank tests. This allowed to assess
if the presence of the tumor and related mass effects caused a significant change
in the results of MLFT and CSD-based tractography compared to DTI-based
tractography for tract coverage. In addition, correlations between the ratio of
DTI-based reconstructions of the CST covered by CSD-based tractography or
MLFT with the tumor core volumes or FLAIR-hyperintensity zone volumes were
calculated using Pearson correlation coefficients.

3.3 Results

3.3.1 Patient cohort

Forty patients (mean age: 62.6 ± 13.4 years, age range: 29.5 – 85.9 years, 17
females and 23 males) with a diagnosis of HGG and suspected motor-eloquent
tumor location were included. Table 3.1 provides further cohort details.

3.3.2 Qualitative Assessment

Representative exemplary cases for CST reconstruction by DTI-based tractogra-
phy, CSD-based tractography, and MLFT are shown in Figures 3.2, 3.3. The
reconstructed CST passed through the internal capsule and cerebral crus as key
anatomical landmarks for both hemispheres of all enrolled patients.

The reconstructed CST bundle was unaffected by or not in contact with the
tumor mass in n = 15, 8, and 4 patients for DTI-based tractography, CSD-
based tractography, and MLFT, respectively, and did not fulfill the criteria of
a disintegrated course in any of the patients. Furthermore, the reconstructed CST
bundle was deviated in n = 24, 26, and 22 patients, respectively. It appeared to
be infiltrated/split in n = 1, 6, and 14 patients when using DTI-based tractog-
raphy, CSD-based tractography, or MLFT, respectively. There was a statistically
significant difference in these spatial characteristics of the CST depending on the
tractography approach chosen (p = 0.0006).
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Item Value
Age
(years; mean±SD & range)

62.6 ± 13.4
(29.5 ≠ 85.9)

Male 57.5Sex
(% of patients) Female 42.5

Left 40.0Affected hemisphere
(% of patients) Right 60.0

Biopsy 22.5
Resection 67.5Surgical procedure performed

(% of patients) Resection & intraoperative RTX 10.0
STR 25.8Extent of resection

(% of patients) GTR 74.2
WHO grade III 12.5Tumor grade

(% of patients) WHO grade IV 87.5
Tumor core volume
(mm3; mean±SD & range)

47997.4 ± 39098.9
(2.582 ≠ 170576)

Volume of FLAIR-hyperintense zone
(mm3; mean±SD & range)

64727.3 ± 48394.8
(4625 ≠ 184127)

Table 3.1: Characteristics of the study cohort. SD, standard deviation: WHO,
World Health Organization: STR, subtotal resection: GTR, gross total resection;
RTX, radiotherapy.

3.3.3 Quantitative Assessment

Radial Extent

The radial extents of the CST branches reconstructed with the three tractography
algorithms are presented in Figures 3.4, 3.5. The MLFT algorithm consistently
provides increased radial extent when compared to both CSD-based and DTI-
based tractography in all patients. In addition, when comparing radial extents
between reconstructions from the three different tractography algorithms, results
were statistically significant throughout (DTI vs. CSD/DTI vs. MLFT/CSD vs.
MLFT: p < 0.05 each for tumor-affected vs. unaffected as well as right vs. left
hemispheres; Table 3.2).

Each of the algorithms produced CST reconstructions with higher median ra-
dial extent of the reconstructions for the tumor-affected hemispheres as compared
to the unaffected hemispheres, with a statistically significant difference only for
MLFT (median radial extent for tumor-affected vs. unaffected hemisphere – DTI:
19.46¶ vs. 18.99¶, p = 0.8931; CSD: 30.54¶ vs. 27.63¶, p = 0.0546; MLFT: 81.17¶

vs. 74.59¶, p = 0.0134). Furthermore, the differences in radial extents of the CST
bundles in tumor-affected and unaffected hemispheres were compared (Figure 3.6).
Using 2‡, three outliers were identified (patients #8, #10, and #37), who were all
characterized by extensive mass effect that caused deformation of the CST bundle
within the tumor-affected hemisphere, and to a lesser extent also a deviation of
the CST within the unaffected hemisphere (Figure 3.7). Midline shifts can be
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Figure 3.2: Exemplary case for reconstruction of the corticospinal tract (CST)
depending on the algorithm used for tractography. This illustrative exemplary
case of a patient suffering from a right-sided high-grade glioma (HGG) shows the
reconstructed CST within the tumor-affected hemisphere as derived from diffusion
tensor imaging (DTI)-based tractography, constrained spherical deconvolution
(CSD)-based tractography, and multi-level fiber tracking (MLFT). The CST
reconstructions are fused with axial and coronal contrast-enhanced T1-weighted
images to outline the lesion-to-CST relationship as well as the CST volume and
course. The MLFT approach enables fiber tracking with a larger radial extent,
thus displaying also fanning of the CST and fibers with acute angles (red arrow).

observed in these three outliers.

Coverage of DTI

The results on comparing the coverage of DTI-based reconstructions by the corre-
sponding CSD-based and MLFT-based reconstructions are depicted in Figure 3.8.
MLFT provides a higher fraction of coverage of the DTI reconstruction results of
the CST when compared to CSD.

Both CSD-based and MLFT results more clearly coincide with DTI-based
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Figure 3.3: Comparison of reconstructions of the corticospinal tract (CST) depend-
ing on the algorithm chosen for tractography. This figure shows reconstructions of
the CST within the tumor-affected and unaffected hemispheres in a subset of 10
patients from the cohort, using diffusion tensor imaging (DTI)-based tractography,
constrained spherical deconvolution (CSD)-based tractography, and multi-level
fiber tracking (MLFT). The tumor core is shown as a red volume, the hyperintense
zone in fluid attenuated inversion recovery (FLAIR) sequences is shown as a yellow
volume. While CSD-based tractography provides reconstructions comparable to
DTI-based tractography, MLFT is able to improve depiction of the extent of the
CST fanning of both tumor-affected and unaffected hemispheres.

reconstructions in case of the unaffected hemispheres (median coverage for affected
vs. unaffected hemisphere – CSD: 68.16% vs. 77.59%, p = 0.0075; MLFT:
93.09% vs. 95.49%; p = 0.0046), while the reconstructions in the tumor-affected
hemisphere are characterized by a higher mismatch. Yet, for the MLFT median
coverage is > 90% for both the unaffected and tumor-affected hemisphere, which
contrasts with the CSD-based reconstruction with a median coverage of < 80%.
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Radial Extent Mean±SD, (¶) Range, (¶) p-value
Hemisphere DTI CSD MLFT DTI CSD MLFT CSD-DTI MLFT-DTI MLFT-CSD
Right 21.9 ± 11.7 30.0 ± 14.6 73.8 ± 16.1 5.28 ≠ 71.53 11.68 ≠ 77.75 23.65 ≠ 90.45 5.5 ú 10≠5 3.6 ú 10≠8 3.6 ú 10≠8

Left 20.1 ± 8.3 28.9 ± 10.5 67.8 ± 18.3 1.75 ≠ 39.84 5.97 ≠ 51.72 22.31 ≠ 90.07 5.3 ú 10≠7 3.6 ú 10≠8 3.6 ú 10≠8

Affected 21.6 ± 11.7 32.8 ± 14.6 74.8 ± 15.6 5.28 ≠ 71.53 11.68 ≠ 77.75 23.65 ≠ 89.41 1.1 ú 10≠6 3.6 ú 10≠8 3.6 ú 10≠8

Unaffected 20.3 ± 8.0 26.1 ± 8.9 66.7 ± 17.9 1.75 ≠ 36.22 5.97 ≠ 51.72 22.31 ≠ 90.45 1.5 ú 10≠5 3.6 ú 10≠8 3.6 ú 10≠8

Table 3.2: Radial extent of fiber reconstructions. This table shows the mean±SD
and ranges for the radial extents of CST reconstructions with the three different
algorithms used (DTI-based tractography, CSD-based tractography, and MLFT).
Discrimination is made between left and right hemispheres as well as tumor-
affected and unaffected hemispheres. P -values were computed for the comparisons
of radial extents derived from the different algorithms (Wilcoxon signed-rank
paired tests with significance level – = 0.05). Abbreviations: CST=corticospinal
tract; SD=standard deviation; DTI=diffusion tensor imaging; CSD= constrained
spherical deconvolution; MLFT=multi-level fiber tracking.

The two patients that had the lowest DTI coverage (lower than 75%) in the tumor-
affected hemisphere by the MLFT reconstructions were subjects with extensive
mass effects and high tumor volume, namely patients #5 and #17. The lowest DTI
coverage achieved with CSD-based tractography is also attributed to patient #5.
For these patients, tumor volumes as well as volumes of the FLAIR-hyperintense
zones ranged in the upper quartile.

The correlation coefficients of the DTI coverage by CSD-based tractography or
MLFT with the tumor core (necrotic center and contrast-enhancing tumor parts)
and FLAIR-hyperintense zones are shown in Table 3.3. There were statistically
significant negative correlations between the volume of the FLAIR-hyperintense
zone and the DTI coverage (CSD: r = ≠0.52, p = 0.0006; MLFT: r = ≠0.52, p =
0.0005). Likewise, there were statistically significant negative correlations between
the volume of the tumor core plus the volume of the FLAIR-hyperintense zone and
DTI coverage (CSD: r = ≠0.48, p = 0.0018; MLFT: r = ≠0.47, p = 0.0021).

CSD coverage of DTI MLFT coverage of DTI
r p-value r p-value

Tumor Core Volume -0.25 0.12 -0.24 0.14
Volume of FLAIR-hyperintense zone -0.52 < 0.01 -0.52 < 0.01
Tumor Core Volume + FLAIR-hyperintense zone -0.48 < 0.01 -0.47 < 0.01

Table 3.3: Correlations for coverage. This table shows the Pearson correlation
coefficient (r) and related p-values for the correlations between tumor core volume,
volume of FLAIR-hyperintense zone, and volume of tumor core plus FLAIR-
hyperintense zone and coverage of the DTI-derived CST for reconstructions using
CSD-based tractography or MLFT, respectively(significance level – = 0.05). DTI,
diffusion tensor imaging: CSD, constrained spherical deconvolution; MLFT, multi-
level fiber tracking: FLAIR, fluid attenuated inversion recovery.
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Figure 3.4: Comparison of the radial extent of the corticospinal tract (CST)
branches of the tumor-affected hemispheres. This figure illustrates the radial
extent for CST reconstruction using diffusion tensor imaging (DTI)-based trac-
tography (green), constrained spherical deconvolution (CSD)-based tractography
(orange), and multi-level fiber tracking (MLFT; blue). The hemisphere affected by
the tumor per patient is indicated next to the subject index (L – left, R – right).
Using MLFT led to CST reconstructions with larger radial extent in all patients.

3.4 Discussion

In this work we evaluated a novel tractography algorithm, MLFT, to achieve
improved reconstruction of the CST in patients with motor-eloquent HGG. The
MLFT algorithm was compared to deterministic DTI-based and deterministic
CSD-based tractography of the CST of both hemispheres. The main findings
are as follows: 1) the algorithm chosen for tractography had significant impact
on the spatial course, volume, and shape of the CST, with MLFT-based recon-
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Figure 3.5: Comparison of the radial extent of the corticospinal tract (CST)
branches. This figure shows the radial extents (with median values as vertical
dashed lines) for the CST reconstructions derived from diffusion tensor imaging
(DTI)-based tractography, constrained spherical deconvolution (CSD)-based trac-
tography, and multi-level fiber tracking (MLFT). Columns for the tumor-affected
hemispheres are displayed in orange, columns for the unaffected hemispheres are
depicted in blue. The affected hemispheres show higher radial extent in case of each
of the used tractography algorithms. The p-values are derived from comparisons
between hemispheres per tractography algorithm (Wilcoxon signed-rank paired
tests with significance level – = 0.05).

structions showing significantly higher radial extents; 2) compared to deterministic
CSD-based tractography, MLFT showed higher coincidence with the DTI-based
reconstructions, with a median coverage of > 90% for both the tumor-affected as
well as unaffected hemispheres; and 3) coverage of the CST as tracked by the DTI-
based algorithm was significantly negatively associated with tumor-related mass
effects (as estimated by volumes of tumor core and FLAIR-hyperintense zones) for
both the CSD-based algorithm and MLFT.

Tractography of WM structures such as the CST is frequently employed for
preoperative planning and intraoperative resection guidance in patients with in-
tracranial neoplasms, using primarily DTI-based approaches. [85–89] However,
DTI-based tractography has several known limitations that may hamper value for
clinical applications, including its limited ability to resolve geometrically complex
situations such as crossing or kissing fibers. [94, 95] Previous research has shown
that using more advanced techniques, such as q-ball and CSD-based fiber tractog-
raphy, may lead to improved results. [93, 106, 107]. In turn, the proposed MLFT
algorithm is developed from CSD-based tractography and similarly propagates
fiber pathways based on FOD peaks. However, unlike CSD-based tractography,
MLFT assumes that FOD peaks represent not only fiber crossings, but also in-
dicate fiber branching or high-angular deviation (see Chapter 2). Without prior
anatomical knowledge, such an approach would be at risk of generating multiple
false-positive streamlines, which needs to be avoided particularly for ultimate
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Figure 3.6: Differences between the radial extent of tumor-affected and unaffected
hemispheres. This figure shows the radial extent differences in relation to combined
tumor and FLAIR-hyperintense zone volumes (orange) using the mean (black
dashed line) with ±2 standard deviation (SD, provided as ‡; red dashed lines) to
identify potential outliers. Circles represent data points for the corticospinal tract
(CST) as derived from multi-level fiber tracking (MLFT), while + represents data
points derived from constrained spherical deconvolution (CSD)-based tractography
and ◊ represents data points stemming from diffusion tensor imaging (DTI)-
based tractography. The outliers with positive radial extent difference are of most
interest as they show unexpected behavior with higher radial extent in the tumor-
affected hemisphere.

clinical applicability. In order to prevent a high false-positive rate, MLFT requires
well-defined target and seed regions, and if certain pathways do not enter the
target area our algorithm checks if any deviation at the previous points would
allow reaching the target region. Hence, using the algorithm gives some control
over specificity while improving sensitivity.

Reconstructions of the CST using MLFT consistently showed the highest radial
extent when compared to DTI- or CSD-based tractography (Figure 3.3). On av-
erage, CSD-based tractography achieved higher radial extent than the DTI-based
algorithm (Table 3.2), while in some individual cases DTI-based tractography
outperforms the CSD algorithm for this metric (Figure 4). Yet, MLFT provided
CST branches with higher radial extents even for the tumor-affected hemispheres,
which may indicate that a more complete reconstruction of particularly highly
angulated parts of the CST close to its origin becomes possible when using MLFT
(Figures 3.4, 3.5). Indeed, based on simulations and preliminary in-vivo imaging in
a cohort of healthy subjects, presented in Chapter 2, it has been suggested that the
fanning close to the motor cortex can be well delineated with MLFT. Considering
the potential value of a broader fanning and reconstruction of laterally coursing
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Figure 3.7: Comparison of the radial extent of the corticospinal tract (CST)
branches. This figure shows the radial extents (with median values as vertical
dashed lines) for the CST reconstructions derived from diffusion tensor imaging
(DTI)-based tractography, constrained spherical deconvolution (CSD)-based trac-
tography, and multi-level fiber tracking (MLFT). Columns for the tumor-affected
hemispheres are displayed in orange, columns for the unaffected hemispheres are
depicted in blue. The affected hemispheres show higher radial extent in case of each
of the used tractography algorithms. The p-values are derived from comparisons
between hemispheres per tractography algorithm (Wilcoxon signed-rank paired
tests with significance level – = 0.05).

fiber pathways, MLFT-derived reconstructions may be of merit since especially
marginal fibers can be at risk for damage when aiming at a maximized EOR
during surgery of motor-eloquent HGGs.

When comparing radial extents of tumor-affected and unaffected hemispheres,
the observed differences are mostly comparable across the algorithms (Figure 3.6).
Further, we separately explored the outliers with values above the mean + 2‡,
given that they were of most interest, while any cases below the mean ≠ 2‡
were considered in the range of an expected result. As the unaffected hemisphere
apparently does not show the same changes in microstructure related to a tumor,
the CST extent there should be at least comparable. Patients with considerable
radial extent differences (above the 2‡ threshold) are all characterized by mass
effects extensive enough to cause midline shift and introduce deformations to the
bundle in unaffected hemispheres (Figure 3.7), while the opposite is not always
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Figure 3.8: Comparison of coverage for corticospinal tract (CST) branches. This
figure shows the coverage (with median values as vertical dashed lines) of the CST
reconstructions derived from diffusion tensor imaging (DTI)-based tractography by
constrained spherical deconvolution (CSD)-based tractography or multi-level fiber
tracking (MLFT). Columns for the tumor-affected hemispheres are displayed in
orange, columns for the unaffected hemispheres are depicted in blue. The affected
hemispheres show lower coverage compared to the tumor-unaffected hemispheres.
The p-values are derived from comparisons between hemispheres per tractography
algorithm (Wilcoxon signed-rank paired tests with significance level – = 0.05).

true. Depending on the distinct location of the tumor, midline shift may not lead
to higher radial extent of the CST in the unaffected hemisphere; for instance, in
cases of a more anterior tumor location and midline shift occurrence, no significant
alteration was observed in radial extents. Regarding the reasons for the occurred
differences, lateral components of the reconstructed CST pathways might be re-
oriented as a result of WM compression causing smoothing of the acute angles
of the fibers, which allowed the tractography algorithms to reconstruct them.
Similarly, the CST pathways in the unaffected hemisphere could have been com-
pressed and deviated in such a way that the angular resolution of the acquisition
would not allow to resolve all fiber orientations properly, given that the acquired
sequence only included 32 directions by default. In this regard, increasing the order
of spherical harmonics used to estimate FODs would also increase the angular
resolution, potentially solving the issue. [21] Yet, this would require inclusion of
a higher number of gradient directions in the sequence. [108] At the same time,
MLFT already reconstructs pathways closer to the tumor (Figure 3.2), hinting at
potentially small tumor-to-CST distances that may exert impact on neurosurgical
planning and have implications for patient outcome in terms of motor function
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and avoidance of surgery-related functional decline.
While the general trajectory and shape of the DTI-based reconstructions tend

to be maintained by both MLFT and CSD-based tractography, MLFT improves
the coverage of CST reconstructions as provided by DTI-based tractography over
those taken from the CSD algorithm (Figure 3.8). Notably, the median coverage of
DTI-based CST reconstructions by the CST as delineated with MLFT was higher
than 90% for both tumor-affected and unaffected hemispheres. This indicates
that the approach does not considerably increase the false-negative rate, while
performing better than the CSD algorithm that provides a median coverage below
80%. At the same time, the coverage of the DTI-based CST reconstruction by
MLFT as well as CSD-based tractography is inversely correlated to measures for
tumor-related mass effects (as estimated by volumes of tumor core and FLAIR-
hyperintense zones), which might reflect the effect of tumor-induced WM changes
on the estimated orientation distribution by either of the used models (Table 3.3).
However, the question arises which method comes closest to the in-vivo course and
architecture of the CST. The gold standard to test this would be intraoperative
DES, which has not been applied to evaluate CSD or MLFT results because of
this study’s retrospective design. Yet, there seems high agreement in neurosurgical
oncology that techniques should move beyond DTI-based tractography to improve
accuracy of tracking results. [90–93]

One aspect that may further improve tractography using the MLFT algorithm
is to combine it with techniques that provide function-based ROIs for seeding. In
this regard, previous work has used activation maps derived from functional MRI
for ROI placements. [109–111] More recently, motor maps derived from navigated
transcranial magnetic stimulation (nTMS) have been used for ROI placements.
[4, 112–116] Of note, it has been demonstrated that nTMS facilitates optimized
tracking results for the CST, particularly when the primary motor cortex was
in close vicinity of a brain tumor, suggesting that nTMS may be considered the
method of choice to achieve proper ROI placements for CST tractography using
DTI. [115] Comparisons between the three algorithms using nTMS motor maps for
seeding may help identify parts of the CST that are underrepresented by DTI- or
CSD-based tractography but are evidently connected to the primary motor cortex,
which might in particular include fibers with acute angles that could be better
delineated with the MLFT method. Additionally, subcortical language network
analysis using nTMS-defined ROIs could be part of future work, as to date it has
predominantly been performed with DTI-based tractography. [112,117–119]

The main limitation of the MLFT method is related to the accuracy of the
estimated FODs in the WM. In a clinical setting neither the number of acquired
directions nor b-values are routinely set high, and the accuracy of the fitted
diffusion models may therefore be hampered, as the FODs have to be represented
by lower-order spherical harmonics. Additionally, the FOD algorithm used does
not estimate separate response functions for different tissues. [103] An acquisition
with multiple diffusion weightings (e.g., multi-shell imaging) would allow to use
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FOD estimation algorithms that are capable of differentiating multiple tissues.
[120] Another important limitation of this study is the absence of a correlation of
the tractography results derived from CSD and MLFT to findings of intraoperative
DES, as it would allow estimation of the sensitivity and specificity rates of these
tractography algorithms. This is due to the study’s retrospective character, while
conventionally used DTI-based tractography for delineation of the CST has, how-
ever, been performed and considered for presurgical planning and intraoperative
guidance within the scope of the standard of clinical care.

3.5 Conclusion

The results of this work suggest that tractography of the CST in patients harboring
motor-eloquent HGGs may be improved using the proposed MLFT method. This
advancement of the CSD principle enabled delineation of the CST with signifi-
cantly increased radial extent for fibers close to the motor cortex, while maintaining
coincidence with DTI-reconstructed CST bundles.
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Supplementary material

Target region from finer brain parcellation

Using FreeSurfer-based multi-scale parcellation [121], we have segmented the pre-
central gyrus subdividing the superior precentral and lateral precentral gyri (Fig-
ure 3.9). After that tractography was performed with the same settings as the
experiments from the main manuscript. The comparisons of the radial extents for
each new target region of each hemisphere are presented in Figures 3.10, 3.11, 3.12,
3.13. MLFT provided reconstructions with a radial extent covering most of the
motor cortex in almost all the cases. Conversely, DTI- and CSD-based algorithms
repeatedly failed to reconstruct pathways reaching the precentral gyri (Figures
3.12, 3.13, 3.15). At the same time, DTI- and CSD-based reconstructions are
often comparable to those of MLFT when targeting the superior precentral gyrus,
(Figures 3.10, 3.11, 3.14). Interestingly, DTI-based tractography reconstructed
bundles targeting the superior part of the precentral cortex with higher extent in
certain cases as compared to CSD-based reconstructions. While MLFT achieved
superior performance to deterministic DTI- and CSD-based reconstructions when
using the lateral part of the precentral cortex as the target region, some false-
positive pathways may be observed in the MLFT reconstructions (Figure 3.15).
Those pathways are primarily branching from pathways that propagate towards
superior precentral part during the first iteration, which is not part of the target
region in this case. When using the whole motor cortex as the target region (as
presented in the main manuscript), these pathways would not have been used for
seeding at the second iteration having reached their destination, thus highlighting
the importance of the adequate choice of the target region.

Figure 3.9: Precentral gyrus was subdivided into superior
(red) and lateral (green) parts for the experiments exploring
the effect of smaller target regions.
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Figure 3.10: Comparison of the radial extent of the corticospinal tract (CST)
sub-bundle reaching the superior part of the precentral cortex in the left
hemisphere. This figure illustrates the radial extent for the reconstructions using
diffusion tensor imaging (DTI)-based tractography (green), constrained spherical
deconvolution (CSD)-based tractography (orange), and multi-level fiber tracking
(MLFT; dark blue). The maximum extent that is the extent of the target cortex
part is depicted in light blue.
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Figure 3.11: Comparison of the radial extent of the corticospinal tract (CST)
sub-bundle reaching the superior part of the precentral cortex in the right
hemisphere. This figure illustrates the radial extent for the reconstructions using
diffusion tensor imaging (DTI)-based tractography (green), constrained spherical
deconvolution (CSD)-based tractography (orange), and multi-level fiber tracking
(MLFT; dark blue). The maximum extent that is the extent of the target cortex
part is depicted in light blue.
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Figure 3.12: Comparison of the radial extent of the corticospinal tract (CST) sub-
bundle reaching the lateral part of the precentral cortex in the left hemisphere.
This figure illustrates the radial extent for the reconstructions using diffusion
tensor imaging (DTI)-based tractography (green), constrained spherical deconvo-
lution (CSD)-based tractography (orange), and multi-level fiber tracking (MLFT;
dark blue). The maximum extent that is the extent of the target cortex part is
depicted in light blue.
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Figure 3.13: Comparison of the radial extent of the corticospinal tract (CST)
sub-bundle reaching the lateral part of the precentral cortex in the right
hemisphere. This figure illustrates the radial extent for the reconstructions using
diffusion tensor imaging (DTI)-based tractography (green), constrained spherical
deconvolution (CSD)-based tractography (orange), and multi-level fiber tracking
(MLFT; dark blue). The maximum extent that is the extent of the target cortex
part is depicted in light blue.
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Figure 3.14: Reconstructions of the corticospinal tract (CST) sub-bundles given
the superior part of the precentral gyrus (green) as the target region of interest. In
most cases, deterministic diffusion tensor imaging (DTI)- and constrained spherical
deconvolution (CSD)-based reconstructions reach the target region. However, in
presence of extensive tumor (red) and edema (yellow), only MLFT was capable of
providing a proper fiber reconstruction.

Figure 3.15: Reconstructions of the corticospinal tract (CST) sub-bundles given
the lateral part of the precentral gyrus (green) as the target region of interest. The
limitation of diffusion tensor imaging (DTI)- and constrained spherical deconvo-
lution (CSD)-based algorithms is highlighted as most often these approaches are
unable to reconstruct any pathways given such target regions, regardless of tumor
size (red: tumor core, yellow: edema).
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Abstract

Tractography of the corticospinal tract is paramount to presurgical planning and
guidance of intraoperative resection in patients with motor-eloquent gliomas. It is
well-known that DTI-based tractography as the most frequently used technique has
relevant shortcomings, particularly for resolving complex fiber architecture. The
purpose of this study was to evaluate multilevel fiber tractography combined with
functional motor cortex mapping in comparison with conventional deterministic
tractography algorithms.

Thirty-one patients (mean age, 61.5 [SD, 12.2] years) with motor-eloquent high-
grade gliomas underwent MR imaging with DWI (TR/TE = 5000/78ms, voxel
size= 2 ◊ 2 ◊ 2mm3, 1 volume at b = 0s/mm2, 32 volumes at b = 1000s/mm2).
DTI, constrained spherical deconvolution, and multilevel fiber tractography–based
reconstruction of the corticospinal tract within the tumor-affected hemispheres
were performed. The functional motor cortex was enclosed by navigated tran-
scranial magnetic stimulation motor mapping before tumor resection and used for
seeding. A range of angular deviation and fractional anisotropy thresholds (for
DTI) was tested.

For all investigated thresholds, multilevel fiber tractography achieved the high-
est mean coverage of the motor maps (eg, angular threshold = 60¶; multilevel/con-
strained spherical deconvolution/DTI, 25% anisotropy threshold = 71.8%, 22.6%,
and 11.7%) and the most extensive corticospinal tract reconstructions (e.g., an-
gular threshold = 60¶; multilevel/constrained spherical deconvolution/DTI, 25%
anisotropy threshold = 26, 485mm3, 6308mm3, and 4270mm3).

Multilevel fiber tractography may improve the coverage of the motor cortex
by corticospinal tract fibers compared with conventional deterministic algorithms.
Thus, it could provide a more detailed and complete visualization of corticospinal
tract architecture, particularly by visualizing fiber trajectories with acute angles
that might be of high relevance in patients with gliomas and distorted anatomy.
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4.1 Introduction

Gliomas are the most prevalent malignant brain tumors in adults, and particularly
anaplastic astrocytoma and glioblastoma as representatives of high-grade gliomas
have poor prognoses [62,63,122]. Contemporary treatment combines neurosurgical
tumor resection with extended focal radiation therapy and adjuvant chemother-
apy [67–69]. Specifically, a maximum extent of resection correlates to prolonged
survival and improved quality of life [1, 72, 74]. However, a maximum extent of
resection needs to be weighed against the risk of surgery-related functional decline
such as persistent paresis or aphasia, which may arise from tumor resection in or
near functionally eloquent structures such as the motor or language cortex [76,77].
Additionally, subcortical WM pathways such as efferent fibers that interconnect
certain brain areas or course down to the periphery may need to be respected to
avoid lasting functional deficits [123,124].

Imaging and mapping of brain function are essential for a maximum safe
resection combined with a high extent of resection and a low-risk profile for
permanent functional deterioration [69,80,81,125]. In the preoperative setup, DWI
with tractography is used for delineation of WM architecture, which can then be
visualized and respected during tumor resection [126,127]. Particularly, DTI-based
tractography is commonly applied to reconstruct certain fiber tracts, relating to
its comparatively wide availability and low false-positive rate [6]. However, despite
its frequent application in the preoperative work-up of patients with glioma, the
technique has relevant shortcomings that render the accuracy of the method ques-
tionable [91,128]. Specifically, major issues relate to potential underrepresentation
of fiber branching or crossing fibers, which are difficult to resolve by DTI-based
tractography [5, 94, 95]. Alternatives to DTI-based tractography exist, including
methods such as constrained spherical deconvolution (CSD)-based tractography,
which has shown improved specificity compared with DTI-based tractography,
given that CSD-based tractography is determined by higher angular resolution
and the possibility of also disentangling more complex fiber configurations [21,25].
In CSD, multiple fibers passing through a voxel with distinct orientations can be
estimated, depending on the fiber orientation distribution (FOD) [21,25].

Multilevel fiber tractography (MLFT), presented in Chapter 2, has been de-
veloped from CSD-based tractography and similarly propagates fiber pathways on
the basis of FOD peaks, with the main advancement that MLFT proposes that
FOD peaks do not solely reflect crossing fibers but may also reflect high angular
deviation of fibers or their branching. Chapter 3 has demonstrated that MLFT
improved reconstruction of the corticospinal tract (CST) in patients with motor-
eloquent high-grade gliomas by generating fiber bundles with higher radial extent
(ie, delineation of CST fanning with a wider range) compared with DTI as well
as CSD-based deterministic CST tractography, thus potentially showing a more
complete picture of the actual CST architecture. Yet, without optimal seeding of
the ROI for tractography, MLFT would be at considerable risk of reconstructing
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false-positive WM pathways, given that it can also include acute angles of fiber
courses, which might be particularly frequently observed among patients with
brain tumors due to the space-occupying effect that may lead to fiber diversion
and compression as was shown in Chapter 3.

The issue of optimal ROI seeding for CST reconstruction may be addressed by
combining MLFT with preoperative functional mapping, such as navigated tran-
scranial magnetic stimulation (nTMS). In essence, nTMS can target neurostimula-
tion to the brain with subcentimeter precision and enables the spatial identification
and demarcation of the motor cortex in relation to a lesion [129,130]. Particularly,
nTMS-based motor mapping has been frequently used in the preoperative setup
and for guidance of intraoperative resection in patients with motor-eloquent brain
tumors [130–132]. The approach has been shown to result in cortical motor
maps similar to those generated by intraoperative direct electrical stimulation as
the reference standard for functional cortical mapping [133–135]. More recently,
combinations of tractography with nTMS have been used to establish function-
based tractography of the CST, which is based on the definition of the nTMS-
derived cortical motor map as an ROI [4,112,113,136,137].

Against this background, the purpose of the present study was to combine
MLFT for reconstruction of the CST with nTMS for enclosing the functional motor
cortex in patients with motor-eloquent gliomas. We hypothesized that MLFT may
show higher coverage of the nTMS motor map (ie, the highest percentage of fibers
of the CST being connected to the motor cortex) compared with deterministic
DTI-based and CSD-based tractography.

4.2 Materials and Methods

4.2.1 Study Design and Patient Cohort

This study was approved by the local institutional review board (Ethikkommis-
sion Technische Universität München) and was conducted in accordance with the
Declaration of Helsinki. The requirement for written informed consent for this
study was waived due to the retrospective design.

Eligible patients were identified by chart review, covering the time interval
from February 2019 to February 2020. Inclusion criteria were the following:
1) older than 18 years of age, 2) availability of preoperative 3T MR imaging,
including diffusion-weighted sequences, 3) diagnosis of a high-grade glioma (based
on imaging findings and later confirmation by histopathologic evaluation of biopsy
probes or tumor tissue harvested during surgical resection), 4) suspected motor-
eloquent tumor location according to preoperative MR imaging, and 5) availability
of preoperative nTMS-based motor mapping of the tumor-affected hemisphere.

Overall, 31 patients (mean age, 61.5 [SD, 12.2] years; age range, 34.4–85.1
years; 12 women) matched the inclusion criteria and were considered for this study.
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Three patients were diagnosed with World Health Organization grade III gliomas,
and 28 patients with World Health Organization grade IV gliomas, and the right
hemisphere was affected by the tumor volume in 19 patients.

4.2.2 Data Acquisition

MR Imaging

Preoperative MR imaging was performed on two 3T scanners (Achieva dStream or
Ingenia; Philips Healthcare) using a 32-channel head coil. The imaging protocol
included a 3D FLAIR sequence (TR/TE = 4800/277ms, 1mm3 isotropic voxels
covering the whole head), an axial T2-weighted sequence (TR/TE = 3396/87
ms, voxel size = 0.36 ◊ 0.36 ◊ 4mm3), a diffusion-weighted sequence (TR/TE =
5000/78 ms, voxel size = 2◊2◊2mm3, 1 volume at b = 0s/mm2, 32 volumes at b =
1000s/mm2), and a 3D T1-weighted turbo field echo sequence (TR/TE = 9/4ms,
1mm3 isotropic voxels covering the whole head) without and with intravenous
injection of a contrast agent using a dose of 0.2mL per kg body weight of gadoteric
acid (Dotagraf, 0.5mmol/mL; Jenapharm).

nTMS

Preoperative motor mapping of the tumor-affected hemisphere was performed
using nTMS (NBS system 4.3 or 5.0; Nexstim). For neuronavigation, the preoper-
atively acquired contrast-enhanced 3D T1-weighted turbo field echo sequence was
used. Motor mapping was performed according to a standardized protocol using
a figure-of-eight stimulation coil and a biphasic pulse wave application [130, 138].
Both representations of upper and lower extremity muscles were mapped within
the tumor-affected hemisphere using an intensity of 105%–110% of the individual
resting motor threshold for the upper extremity and an intensity of at least 130%
of the resting motor threshold for the lower extremity muscles [130, 138]. Motor-
positive nTMS points were identified during post hoc analysis, which were required
to show an amplitude of motor-evoked potentials of Ø 50µV , with motor-evoked
potential onset latencies within the typical ranges [130,139,140].

Image Segmentation and Processing of DWI Data.

Before image segmentation, all MR imaging data were transferred to Montreal
Neurological Institute space (with an isotropic voxel size of 1mm3). Given that
commonly used parcellation pipelines may not produce robust segmentations in
the presence of brain tumors, lesion filling was performed using the Virtual Brain
Grafting toolkit [46,100]. This approach replaces the tumor volume with synthetic
healthy tissue [100].
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As a prerequisite for lesion filling, lesion segmentation was performed using the
BraTS toolkit [101, 102]. The BraTS toolkit was provided with T1-weighted im-
ages, both noncontrast and contrast-enhanced, as well as FLAIR and T2-weighted
images, to perform the lesion segmentation [101, 102]. The segmentation differ-
entiates between the tumor core (necrotic center and contrast-enhancing tumor
parts) and FLAIR-hyperintense zones (edema/tumor infiltration).

All diffusion-weighted data sets were preprocessed by performing motion and
eddy current corrections [141]. To estimate FODs, we used recursive calibration
of the response function [103]. Given the number of acquired diffusion-weighted
volumes, the order of spherical harmonics describing FODs was set to Lmax = 6.
All processing was performed in ExploreDTI (Version 4.8.6).

Because nTMS was performed as a separate acquisition, nTMS points had to
be transferred to the space of the T1-weighted and diffusion imaging data sets,
achieved by performing registration of the contrast-enhanced T1-weighted images
to the masks containing all motor-positive nTMS points of the tumor-affected
hemisphere. All nTMS points were enlarged using a hull of 2-mm radius by default
to provide the final motor cortex seed mask [4,112]. All image coregistrations and
segmentations were visually inspected for quality and manually corrected, when
necessary, by a trained neuroradiologist.

Tractography Algorithms

Three tractography algorithms were used for CST reconstruction: DTI-based
tractography, CSD-based tractography, and MLFT. MLFT was introduced in
Chapter 2 and is a bundle-specific algorithm that reconstructs fiber bundles as
multilevel structures. The algorithm requires seed and target regions (i.e., the
ipsilateral anterior pontine brainstem level and the nTMS-derived cortical motor
map) and a maximum number of levels. At each iteration, streamline propagation
is performed using a deterministic CSD-based algorithm. At the end of each
iteration, FOD peaks of the points along pathways that did not reach the target
region are used as initial directions at the following iteration. Thus, the potential
of the peaks to represent branches is explored.

The angular deviation threshold (ADT) is aimed at maintaining smoothness
and physical plausibility of the fiber pathways because it prevents propagation
into directions highly deviating from the previous step direction. However, the
threshold may impact the accuracy of the reconstruction, depending on the voxel
and angular resolution of the data. Thus, each tractography algorithm was run
with 3 different ADTs, namely 20¶, 45¶, and 60¶. For DTI-based tractography,
3 levels of the fractional anisotropy threshold (FAT) were used by setting the
individual fractional anisotropy to a maximum value that enables reconstructing
a minimum fiber course (ie, 100% FAT). For CSD-based tractography as well as
MLFT, the FOD peak threshold was set to 0.08 similarly to the study in Chapter
3. The tractography step size was set to half the voxel size, and the number of
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iterations for MLFT was set to 2.

Statistical Analysis

Statistical testing was performed using SPSS (Version 26.0; SPSS Statistics for
Windows; IBM) and the SciPy library (Version 1.3.1). The threshold for statistical
significance was set at – = 0.05.

To assess and compare reconstructions of the CST, we computed the ratio of
the visited voxels of the nTMS mask to the reconstructed fibers for each parameter
configuration (ADT = 20¶, 45¶, and 60¶; FAT = 25%, 50%, and 75%) and
algorithm (DTI-based tractography, CSD-based tractography, and MLFT). This
computation provides an estimate of how much of the nTMS mask (ie, cortical
motor-positive nTMS points) is covered and, consequently, how complete the
reconstruction is according to the function-based reference (nTMS mask). Addi-
tionally, volumes of the reconstructed bundles were computed as the accumulated
volume of all the voxels visited by at least 1 fiber pathway. Only the bundle part
between the seed and target region was taken into account. To compare the nTMS
coverage as well as the volumes of the reconstructions as obtained by the different
algorithms depending on the FAT as well as ADT, we performed paired 1-sided
Wilcoxon tests. Furthermore, the nTMS coverage achieved by the same algorithm
at different ADT settings was compared using paired 2-sided Wilcoxon tests.

4.3 Results

Tractography using MLFT was capable of reconstructing fiber bundles with higher
volumes (on average 10,367, 19,567, and 26, 485mm3 for ADTs of 20¶, 45¶, and 60¶)
than what was achieved by the DTI- and CSD-based algorithms, true for all used
ADTs and FATs (Figure 4.1 and Table 4.1). DTI-based tractography reconstructed
statistically significant smaller bundles than CSD-based tractography at 25% (p =
0.54, 0.99, and 1 for 20¶, 45¶, and 60¶ ADT), 50% (p = 0.97, 1, and 1 for 20¶,
45¶, and 60¶ ADT) and 75% FAT (p = 1 for all ADTs) based on 1-sided Wilcoxon
tests.

Compared with the other approaches, MLFT reconstructions of the CST achieved
the highest coverage of the nTMS motor map, which amounted to 38.7%, 60.8%,
and 71.8%, on average, for ADTs of 20¶, 45¶, and 60¶, respectively (Figure 4.2 and
Table 4.2). MLFT also achieved higher coverage in case of tumor-induced bundle
deformations (Figure 4.1). CSD-based tractography achieved higher coverage of
the nTMS motor map than DTI-based tractography, regardless of the settings
for ADT and FAT (Figure 4.2). This finding was also confirmed by comparing
reconstructions obtained with the same ADTs with 1-sided Wilcoxon tests (p >
0.95 for all comparisons, Table 4.2).
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Figure 4.1: The nTMS-based motor map (green indicates single motor-positive
nTMS points with a 2-mm hull) was used as the target region for reconstruction
of the CST within the tumor-affected hemisphere (red indicates the tumor core).
MLFT shows higher nTMS mask coverage compared with DTI- and CSD-based
results, including cases of tumor-induced bundle deformation (subject No. 28).

The change of the ADT led to statistically significant changes in nTMS motor
map coverage (p < .01) based on 2-sided Wilcoxon tests, which can also be
observed in an exemplary patient case (Figure 4.3). Only when using 75% FAT
for DTI-based reconstruction was a statistically nonsignificant difference observed
between reconstructions obtained with 20¶ and 60¶ ADT as well as 45¶ and 60¶

ADT.

4.4 Discussion

We combined MLFT with motor mapping for CST reconstruction based on nTMS
motor maps used for ROI placement in patients with motor-eloquent gliomas.
Tractography results were compared against deterministic DTI-based and CSD-
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Figure 4.2: nTMS motor map coverage derived from CST reconstructed with DTI-
based (with 25%, 50%, and 75% of the individual FAT), CSD-based, and MLFT
tractography. Changes of ADTs appear to only have visible effect on the result of
CSD-based tractography and MLFT.
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Figure 4.3: DTI-based reconstructions of the CST with the nTMS-based motor
map (green indicates single motor-positive nTMS points with a 2-mm hull) with
varied ADT (rows) and FAT levels in subject No. 30.

based tractography, given that these techniques are commonly used for clinical
tractography in patients with brain tumors. The main findings are as follows: 1)
MLFT enabled CST reconstruction with higher bundle volumes, and 2) MLFT
yielded higher coverage of the nTMS motor map (ie, a higher percentage of the
nTMS points reached by the reconstructed CST).
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The MLFT algorithm we used was developed from CSD-based tractography,
and it similarly reconstructs fiber pathways on the basis of FOD peaks as was
shown in Chapter 2. However, in contrast to CSD-based tractography, MLFT
suggests that FOD peaks may also be reflective of high angular deviation of fibers
or their branching and may not only stem from fiber crossings. Hence, recon-
struction of the CST with MLFT may produce bundles with higher radial extent;
thus, the delineation of CST fanning with a wider range by also reconstructing
fiber courses with acute angles becomes possible. We have shown this feature
in Chapter 3 study among patients with motor-eloquent high-grade gliomas, but
the motor cortex mask was defined using a parcellation mask of the precentral,
postcentral, and paracentral gyri combined with a cross-section of the brainstem
at the pontine level.

Given that MLFT may naturally reconstruct bundles with higher fiber count
due to inclusion of fibers that course with acute angles, the potential risk of
increasing the false-positive rate (i.e., proportion of fibers that are visualized but
do not connect to the actual functional motor cortex) is present. Specifically, to
avoid a high false-positive rate, MLFT would require well-defined ROI seeding,
and if certain pathways do not connect to the ROI, the algorithm checks to see
if any deviation at the previous reconstruction points would allow connection to
the ROI, thus providing some control over specificity while potentially improving
sensitivity. In this regard, motor maps from preoperative nTMS were used as the
target ROIs, given that nTMS motor mapping has shown high agreement with
intraoperative direct electrical stimulation as the reference standard for functional
mapping in patients with brain tumor [133–135]. Furthermore, nTMS has also
been effectively combined with DTI-based tractography in the past, allowing DTI-
based reconstruction of the CST using functional data for ROI seeding, which
could improve tracking of fibers for preparation and guidance of tumor resection
and stratification for perioperative functional deficits [4, 112–114, 136]. In this
context, compared with conventional seeding without functional data (e.g., manual
delineation of the brainstem for ROI generation), nTMS-based tractography of the
CST has been shown to result in a lower number of aberrant tracts (ie, tracts not
belonging to the CST), and it changed the surgical strategy in more than twice as
many patients [113,114]. Furthermore, detailed somatotopic CST reconstructions
might become possible when using nTMS motor maps as ROIs, with greater spatial
overlap between the motor cortex and the cortical end region of the CST compared
with conventional anatomic seeding for tractography [137].

Reconstructions of the CST using MLFT showed the highest bundle volume for
the CST, combined with the highest coverage of the nTMS motor map compared
with deterministic DTI- or CSD-based tractography. This result may indicate that
a more complete reconstruction of the CST can be achieved with MLFT, which
is most likely due to reconstruction of fibers with higher radial extents. Glioma
may cause considerable deviation of CST fibers, which may, in part, be lost to
reconstruction when using DTI- or CSD-based approaches (Fig 4.1). The higher
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coverage of nTMS maps when applying MLFT could increase confidence because
the fibers reconstructed from MLFT are actually representative of the motor
system (Figure 4.2), given that higher nTMS coverage is suggestive of more fibers
being connected to the actual functional motor cortex. Of note, preoperatively
enclosing the functional motor cortex with nTMS allows definition of its individual
extent and location, which can be drastically aberrant to the structural landmark
anatomy due to shifts related to the space-occupying effects and, most notably,
due to plastic reshaping of functional motor representations in response to the
presence and growth of glioma [142–144].

A more complete reconstruction of fibers belonging to the CST is of clinical
merit when achieving an optimal onco-functional balance because their visualiza-
tion could help avoid surgery-induced damage and, thus, occurrence of lasting
perioperative paresis. Specifically, CST reconstruction with broader fanning by
MLFT could also generate laterally coursing and marginal fibers, which could be
at particular risk of damage when approaching a maximized extent of resection.
The higher CST bundle volumes may likely also result in pathways with a smaller
lesion-to-tract distance, having potential impact on resection planning. Previous
work using nTMS motor mapping combined with DTI-based tractography of the
CST has proposed the lesion-to-tract distance as a parameter for presurgical
stratification of the risk of permanent motor function decline, with lower lesion-to-
tract distances being associated with a higher risk for lasting deficits [4, 112,136].
Application of MLFT instead of DTI-based tracking might potentially allow refined
results for lesion-to-tract distances, with a potential definition of more realistic
lesion-to-tract distances that may facilitate improved surgical outcome in terms of
the extent of resection and the patient’s functional status.

A major limitation of this study is that tractography results were not con-
firmed by intraoperative direct electrical stimulation as the reference standard
for functional mapping. Due to the retrospective character of this study, this
confirmation was not possible but may be achieved in future studies. Hence,
potential overrepresentations of fibers when using the MLFT algorithm cannot be
fully excluded. Another limitation of MLFT relates to FOD accuracy, given that
a high number of diffusion directions and high b-values are not routinely acquired
for clinically used diffusion-weighted MR imaging sequences. As a consequence,
the accuracy of the fitted diffusion models could be restricted because FODs
have to be represented by lower-order spherical harmonics. Furthermore, the
FOD algorithm used does not estimate separate response functions for different
tissues [103]. However, using acquisitions with multiple diffusion-weightings (eg,
multishell imaging) over the sequence we used would facilitate applying FOD
algorithms that can differentiate multiple tissues [120].
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4.5 Conclusion

Compared with routinely used deterministic DTI-based and CSD-based tractog-
raphy of the CST, MLFT may enable CST reconstructions with a higher bundle
volume paired with higher coverage of the functional motor cortex. Thus, MLFT
could provide a more detailed visualization of CST architecture by also visualizing
fiber courses with acute angles, which might be of particular relevance in patients
with gliomas and distorted anatomy of the motor system. However, prospective
confirmation of tractography results from MLFT by intraoperative direct electri-
cal stimulation as the reference standard for functional mapping is required for
validation purposes.
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Supplementary material

ADT = 20¶ ADT = 45¶ ADT = 60¶

p-value p-value p-value
Mean Volume±SD

(range), mm3 CSD MLFT Mean Volume±SD
(range), mm3 CSD MLFT Mean Volume±SD

(range), mm3 CSD MLFT

25% FAT 3226 ± 2401
(0 ≠ 7851) 0.54 1 3940 ± 2790

(0 ≠ 9624) 0.99 1 4269 ± 3045
(0 ≠ 11020) 1 1

DTI 50% FAT 2739 ± 2031
(0 ≠ 6359) 0.98 1 3038 ± 2118

(0 ≠ 6633) 1 1 3199 ± 2230
(0 ≠ 8062) 1 1

75% FAT 1518 ± 1095
(0 ≠ 4187) 1 1 1585 ± 1026

(0 ≠ 4164) 1 1 1618 ± 1055
(0 ≠ 4384) 1 1

CSD 3284 ± 2618
(0 ≠ 9724) - 1 5149 ± 3305

(0 ≠ 12038) - 1 6308 ± 3761
(187 ≠ 13812) - 1

MLFT 10367 ± 4912
(1440 ≠ 20712) 0 - 19567 ± 8039

(4209 ≠ 37172) 0 - 26485 ± 10719
(8688 ≠ 54909) 0 -

Table 4.1: Volumes of the bundles reaching the nTMS motor map (mean and
standard deviation (SD)). Only the bundle parts between the seed and target
regions were taken into account. For DTI-based tractography, three ADTs as well
as three FATs were included. P -values are presented for the comparison of volumes
between methods (one-sided Wilcoxon test where the alternative hypothesis states
that the approach from the column (CSD or MLFT) achieves greater coverage).
MLFT-reconstructed bundles are shown to have higher volumes than the bundles
reconstructed by DTI- and CSD-based tractography with the same ADT.

ADT = 20¶ ADT = 45¶ ADT = 60¶

p-value p-value p-value
Mean Coverage±SD

(range), % CSD MLFT Mean Coverage±SD
(range), % CSD MLFT Mean Coverage±SD

(range), % CSD MLFT

25% FAT 9.8 ± 8.1
(0 ≠ 28.7) 0.961 1 11.1 ± 8.4

(0 ≠ 30.4) 0.99 1 11.7 ± 8.6
(0 ≠ 30.8) 1 1

DTI 50% FAT 7.8 ± 6.8
(0 ≠ 21.7) 0.9994 1 8.1 ± 6.7

(0 ≠ 21.8) 1 1 8.2 ± 6.6
(0 ≠ 21.8) 1 1

75% FAT 4.4 ± 4
(0 ≠ 18.5) 1 1 4.5 ± 4

(0 ≠ 18.5) 1 1 4.6 ± 4.1
(0 ≠ 18.5) 1 1

CSD 11.9 ± 10.2
(0 ≠ 34.8) - 1 18 ± 12.8

(0 ≠ 42) - 1 22.6 ± 15
(1 ≠ 50.6) - 1

MLFT 38.7 ± 18.3
(6.4 ≠ 73.7) 0 - 60.8 ± 17.1

(28.9 ≠ 86.2) 0 - 71.8 ± 16
(35 ≠ 94.7) 0 -

Table 4.2: nTMS motor map coverage (mean and standard deviation (SD)) by the
three algorithms for different ADTs and FATs in case of DTI-based tractography.
P -values are presented for the comparison of coverage between methods (one-sided
Wilcoxon test where the alternative hypothesis states that the approach from the
column (CSD or MLFT) achieves greater coverage). MLFT consistently achieves
higher nTMS coverage compared to the DTI- and CSD-based tractography.
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Abstract

Diffusion MRI is a powerful tool allowing for in-vivo analysis of brain microstruc-
ture. To date, the development and application of dMRI has been mostly fo-
cused on the brain white matter. More specifically, for a long time spherical-
deconvolution (SD) models have only been applied to the white matter. The brain
gray matter received less attention, which is partly because of the difficulty to
visualise its structure with conventionally achievable imaging resolutions. For this
reason, it remains largely unknown to which extent methods developed for the
brain white matter are applicable to the grey matter.

To bridge this knowledge gap we evaluated three SD models to obtain fiber
orientation distribution (FOD): constrained spherical deconvolution (CSD) based
FODS, multi-shell CSD-based FODs and multiple FODs with Generalized Richard-
son Lucy deconvolution (mFOD), using the diffusion MRI data of the motor
cortex of a healthy volunteer (420 gradient directions at b = 1000s/mm2 and
840 directions at b = 2000s/mm2, 760µm isotropic resolution). We investigated
local diffusion orientation patterns using radiality index in relation to the white-
gray matter interface as well as connectivity patterns in the gray matter based on
deterministic streamline-based tractography.

All the evaluated diffusion models showed capability to reflect the expected
diffusion orientation patterns in cortical foldings. White-gray matter interface
was generally characterized by lower radiality in the banks (≥0.25, mean over
all SD models) and higher in the crowns (≥0.59, mean over all SD models) in
the crowns). Both in crowns and banks all models showed highest radiality in
deeper part of GM (ranging between 0.75 and 0.93) which is followed by a drop in
radialty in the pial surface. Fiber tractography using each of the models revealed
well-organized tangentially oriented pathways and highlighted the difference in in-
tracortical connectivity between the primary and somatosensory motor areas. The
shortest group of fiber pathways were characterized by the highest deviation when
connecting white and gray matter surfaces, reaching maximum mean deviation of
71¶, 72¶, 70¶ in M1 and 61¶, 68¶, 63¶ in S1 for CSD-, MS CSD- and mFOD-based
reconstructions, all respectively, while groups of longer pathways did not exceed
mean deviation of 30¶ per connectivity group.
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5.1 Introduction

Over the years diffusion MRI (dMRI) has provided valuable insight into the macro-
and micro-structure of the human brain. However, the advances in tractography [3]
and connectomics [9] using dMRI have been primarily focused on the brain white
matter (WM). The brain gray matter (GM) largely remains terra incognita. The
interest of tractography and connectivity in relation to GM so far mainly centered
on solving the issue of gyral bias [145,146] and cortical parcellation [147,148].

However, disentangling the neuronal structure of GM might have a wider
number of applications. As all the nerve fibers are originating into WM from
the cortex, it is of high interest to understand the wiring inside the cortex itself
for precise and robust functional mapping. Neuroanatomical knowledge of GM
may also be useful in pathological cases, for instance, for GM atrophy analysis in
multiple-sclerosis patients [149].

In the past decade several papers provided insights into GM micro-structure
and intra-connectivity both in vivo and ex vivo. McNab et al. [150] presented
depth-dependent analysis of micro-structural properties and showed that the dif-
fusion tensor model can reflect the difference in fiber orientation in subparts of the
motor and visual cortex detailing the observations of Anwander et al. [151]. They
highlighted sharp differences in dominant diffusion orientation between primary
and somatosensory cortex, with the former characterized by mainly radial diffusion
orientation in relation to the cortical surface and the latter by mainly tangential
diffusion orientation.

Even more detailed layer-related information was presented by Aggarwal et al.
[152] who performed high-resolution ex-vivo diffusion MRI acquisition with 92µm
isotropic voxel resolution. The work provided insight into the ratio of tangential
and radial diffusion orientations in a number of brain areas, including primary and
somatosensory motor cortex, with the help of constrained spherical deconvolution
(CSD) based fiber orientation distributions (FODs) [21].

Tractography-based analysis of the inter-connectivity was performed by Leuze
et al. [153] presenting qualitative analysis on the ex-vivo specimen of the visual
cortex dividing it into four layers. Using CSD for FOD estimation, the authors
could differentiate each of the layers based on the diffusion orientation in relation
to the surface.

These studies were either performed using very high-resolution ex-vivo data
or with the use of only a diffusion tensor model because of the technical limita-
tions of high-resolution in-vivo acquisition. However, with the recent advances
in diffusion MRI acquisition it is now possible to acquire in-vivo brain scans with
sub-millimeter resolution [154]. This provides an opportunity to make use of state-
of-the-art diffusion models. However, most of the existing models were created and
used with WM in mind. Thus, an investigation into whether they can adequately
reflect known anatomical microstructural features of GM is called for.
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The models we chose to focus on are all based on spherical deconvolution (SD).
CSD was chosen as one of the commonly used approaches to FOD estimation.
However, although it performs well in WM, using the same response function
for GM may lead to less specific results, meaning that the dominant diffusion
orientations may appear less pronounced. For that reason, we also use a multi-shell
CSD (MS CSD) [43] approach for our analysis which considers the contribution
of WM, GM and the corticospinal fluid to the final diffusion signal. A downside
of the MS CSD approach is that it uses a single response function throughout the
brain, which may not properly reflect anisotropic characteristics of GM. Therefore,
a multiple FOD (mFOD) [120] approach based on Generalized Richardson-Lucy
deconvolution was also included, as it estimates separate response functions for
each compartment. The mFOD algorithm was developed with multiple-tissue
analysis in mind trying to provide adequate FODs per tissue type. This way the
performance is not limited by a single response function that might mainly reflect
WM properties.

In this work we investigated the applicability of existing models focusing on
the primary and somatosensory motor regions. The difference in myelination
structure between these cortical areas is well established, with more prominent
tangentially-oriented nerve layers in the somatosensory cortex [155]. We extended
the analysis strategy of McNab et al [150] by comparing peaks of the SD-based
local fiber orientation distributions to the local orientation of the intermediates
cortical surfaces as well as by analyzing tractography reconstructions in order to
investigate whether state-of-the-art SD models can reflect laminar structure of the
cortex from in-vivo data.

5.2 Methods

5.2.1 Data

We used dMRI data obtained from a single healthy male volunteer, born in 1989,
with an imaging resolution of 760µm isotropic, which is freely distributed by Wang
et al. [154]. Data included 420 gradient directions at b = 1000s/mm2 and 840
directions at b = 2000s/mm2. High-resolution FreeSurfer cortex parcellation [46]
was obtained after registration of the T1 image (0.7mm isotropic) to dMRI space.
The brain was cropped around the left primary motor (M1) and sensory motor
(S1). Fiber orientation distributions (FOD) were estimated using CSD, multi-shell
(MS) CSD and the mFOD framework using ExploreDTI [39] and MRIToolKit
(https://github.com/delucaal/MRIToolkit) with the order of spherical harmonics
set to Lmax = 8. The FOD peaks were estimated with minimum peak amplitude
threshold at 0.01. Additionally, the tensor model (DT) was fit to estimate the first
eigenvector direction and used to compare to seminal works, such as McNab et
al. [150].

https://github.com/delucaal/MRIToolkit
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5.2.2 Experiments

The primary and somatosensory cortical regions are known to have differing struc-
tures reflected in both cyto- and myeloarchitecture differences between M1 and S1
brain regions [155]. Therefore, we designed experiments that highlight whether
state-of-the-art diffusion models are capable of reflecting the aforementioned vari-
ations as well as whether the reconstructed fiber pathways are in accordance with
the myeloarchitecture of S1, M1 regions. In order to analyze if the models reflect
the laminar structure of GM three equidistant surfaces between the WM-GM
interface and the GM-CSF interface were built using FreeSurfer (Figure 5.1), as
done by McNab et al. [150,156].

Figure 5.1: Left: three equidistant intermediate surfaces were generated using
FreeSurfer between the WM-GM interface and the pial surface for laminar
structure investigation. Right: crowns and banks were segmented in the surfaces
based on the curvature-based criteria: c < ≠0.15 for crowns and |c| < 0.15 for
banks (where c is a curvature value).

Surface-based FOD analysis

First of all, to compare our results to the existing results on DT models [150] the
deviation between the surface orientation and the orientations of the dominant
FOD peaks was estimated at each surface vertex. More specifically, the deviation
between the normal to each surface vertex and the peak orientation of the FOD
in the vertex was calculated, using the radiality index r = Èp̨,n̨Í

|p̨| , where p̨ – peak
vector, n̨ – vertex normal [150, 151]. In this work we focused mainly on the first
FOD peaks, the peaks with the highest amplitude.

As McNab et al. [150] report a difference in diffusion radiality pattern between
bank and crown parts of the cortical folds (Figure 5.1), we similarly segment the
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same regions of the cortical surfaces to perform more specific analysis. Banks and
crowns were segmented based on curvature of the WM surface with crown points
having a curvature of c < ≠0.15 and banks: |c| < 0.15 [150], where c is a curvature
value. The segmentation was then extended to the other four surfaces.

Surface-based tractography analysis

Fiber tractography reconstruction was performed to investigate how the aforemen-
tioned models reflect intracortical structure of the brain. FOD-based deterministic
streamline tractography [25] was performed in ExploreDTI. Reconstruction was
performed solely in the GM including both seeding and propagation. Seeds were
placed uniformly throughout the GM of the cropped brain segment. The angular
deviation threshold was set to 30¶. The propagation step size was 0.3mm. The
minimum FOD peak amplitude was set to 0.1.

Given a large number of pathways populating a relatively small volume, we
clustered the reconstructed pathways based on their length and explored the
groups separately. The clustering thresholds were chosen based on pathway length
distributions over all the reconstructions.

In order to investigate whether the reconstructed fiber pathways tend to be
arranged into layers inside the cortex, the deviation of the pathways from the
surfaces was computed. For each pathway point, the closest surface mesh vertex
was found and the radial index was computed using the normal of the vertex and
the propagation direction from the pathway point. This also allows exploring a
relation between the length of the streamline and its deviation from the surfaces.
Additionally, for same purpose, tractography reconstruction was qualitatively as-
sessed by rendering length-based pathway clusters colored according to the radial
index along the streamlines.

To provide additional insight into obtained fiber reconstructions, connectivity
matrices were computed by counting the number of streamlines connecting pairs
of intermediate surfaces per pathway cluster. According to our hypothesis, the
connectivity matrices may reflect laminar organization by showing connectivity
patterns either between remote or close intermediate surfaces.

5.3 Results

Surface-based FOD analysis

The relation between surface orientation and the dominant diffusion orientation
(dominant FOD peak) was generally consistent across all models, as can be seen
in Figures 5.2, 5.3. In both S1 and M1, crowns appear to contain mainly radially
oriented peaks. In the banks, the WM surface and the first intermediate surface
contain a considerable number of tangentially aligned peaks. Additionally, S1
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appears to contain a higher ratio of tangentially oriented peaks compared to M1,
which is especially visible in the banks. This changes only in the vicinity of the
GM surface (Table 5.1, Figure 5.2). The SD models all revealed a higher presence
of radially oriented peaks compared to tensor models.

Banks CrownsCortex area Surface CSD MS CSD mFOD CSD MS CSD mFOD
WM 0.21 ± 0.24 0.2 ± 0.22 0.19 ± 0.21 0.53 ± 0.35 0.56 ± 0.33 0.55 ± 0.33

Surface 1 0.47 ± 0.4 0.46 ± 0.39 0.43 ± 0.38 0.75 ± 0.32 0.77 ± 0.3 0.74 ± 0.32
Surface 2 0.75 ± 0.34 0.76 ± 0.34 0.73 ± 0.34 0.85 ± 0.27 0.87 ± 0.25 0.84 ± 0.26
Surface 3 0.83 ± 0.27 0.84 ± 0.27 0.81 ± 0.27 0.85 ± 0.27 0.89 ± 0.21 0.85 ± 0.26

S1

GM 0.75 ± 0.3 0.58 ± 0.36 0.73 ± 0.31 0.67 ± 0.33 0.72 ± 0.32 0.69 ± 0.32
WM 0.3 ± 0.31 0.28 ± 0.29 0.29 ± 0.29 0.65 ± 0.33 0.61 ± 0.33 0.62 ± 0.34

Surface 1 0.6 ± 0.4 0.59 ± 0.39 0.58 ± 0.39 0.84 ± 0.25 0.82 ± 0.25 0.81 ± 0.27
Surface 2 0.83 ± 0.28 0.84 ± 0.27 0.81 ± 0.28 0.93 ± 0.15 0.91 ± 0.17 0.87 ± 0.22
Surface 3 0.84 ± 0.28 0.84 ± 0.25 0.78 ± 0.29 0.85 ± 0.24 0.85 ± 0.26 0.81 ± 0.3

M1

GM 0.62 ± 0.37 0.77 ± 0.3 0.55 ± 0.36 0.54 ± 0.39 0.58 ± 0.37 0.52 ± 0.37

Table 5.1: Statistics (mean ± standard deviation) of radiality index between the
surface and the first peak of SD-based FOD computed per surface as well as cortical
and folding area. S1 is mainly characterized by lower mean radiality compared to
M1 which does not always hold in shallower surfaces: Surface 3 and GM surface.

Surface-based tractography analysis

Based on the distributions (Figure 5.4) of the pathway lengths it was chosen to set
the top-length threshold for the first cluster at 6mm which separates a group of
pathways with the most common fiber length. The group of fiber pathways longer
than 6mm was clustered into two more groups to separate the approximate tail of
the fiber-length distribution. The second threshold was set at 12mm.

The connectivity matrices of the surfaces based on the performed tractography
are given in Figure 5.5. Longer pathways (Ø 6mm) appear to connect either the
same surfaces or the adjacent ones (e.g. surface 3 to surfaces 2 and 4). This, in
combination with lower deviations along the pathways (Figure 5.6), may indicate
that the longer pathways are lying rather tangentially to the intermediate surfaces
and, consequently, WM-GM interface. The group of short pathways (< 6mm),
on the other hand, presents two different patterns depending on whether they
are located in S1 or M1. The short pathways in M1 appear to primarily connect
distant surfaces (e.g. WM surface 1 to surface 3). That also corresponds to
pathways intersecting intermediate cortical surfaces at higher deviation angles
(Figure 5.6). Conversely, the shortest pathways in S1 do not exhibit a clear
dominance of pathways connecting neighboring or distant surfaces.

Moreover, the connectivity matrices of the longer-pathway groups in S1 exhibit
strong connections between three intermediate surfaces showing that pathways are
primarily starting and ending next to the same intermediate surfaces with slight
deviation. A similar pattern can be observed in the M1 area. However, in S1 the
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Figure 5.2: Projections of the radiality index r calculated using the first FOD peak
in relation to each of the surfaces for CSD-, MS CSD-based FODs and mFODs.
The more orthogonal the peak direction is to the surface, the closer the color is
to white. It can be seen that the banks of the sulci are mainly characterized by
tangentially oriented peaks (especially close to the WM surface). In the crowns,
on the other hand, the first FOD peaks are primarily oriented orthogonally, which
slightly changes in the GM surface.

number of such pathways is relatively higher, while more distant connections are
relatively less common than in M1.

Pathways shorter than 6mm represent ≥83% (502079 pathways) of the CSD-
based reconstruction, ≥87% (201849 pathways) of the MS CSD-based and ≥86%
(389891 pathways) of the mFOD-based reconstructions. The group of length
between 6 and 12mm constitutes ≥15% (92552 pathways), ≥11% (25838 path-
ways) and ≥13% (56914 pathways) in case of using CSD, MS CSD and mFOD
respectively. Lastly, the group of the pathways longer than 12mm constitute ≥2%
(CSD: 10768, MS CSD: 4509, mFOD: 7575 pathways).

5.4 Discussion

In this study we investigated the applicability of SD models to unravel fiber
orientations and tracts within human brain GM using high-resolution in-vivo
acquired dMRI with the focus on the motor cortex. For the purpose of localized
analysis, the cortex was divided by three intermediate surfaces equidistantly spaced
between white-matter and pial surface. Analysis of the diffusion orientations on the
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Figure 5.3: Distributions of the radiality index between the surface orientation
and first peak/eigenvector at the corresponding surface vertex in the brain in S1
(orange) and M1 (blue) using the radiality coefficient (horizontal axis). For both
areas dominant diffusion orientations in the crowns of the cortex appear to be
more radially oriented to the surfaces, while in the banks tangential behavior is
more pronounced close to WM surface. Although in both M1 and S1 the ratio
of radial peaks is high, the S1 region is characterized by higher number of points
with diffusion close to tangential.
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Figure 5.4: Normalized density distributions of the pathway lengths of the CSD-,
MS CSD- and mFOD-based reconstructions. The first threshold was set at 6mm
to separate the peak of the distribution. The second threshold was set at 12mm
in order to approximate the tail of the distribution.

Figure 5.5: Inter-surface connectivity matrices in M1 and S1 areas for each model
and tract group showing number of pathways connecting each pair of the surfaces.
In M1 the shortest tract cluster reveals a dominance of remote connections,
travelling across multiple layers; while in S1 the group of the shortest tracts does
not show a specific consistent pattern across the models. The other two groups
of tracts are characterized by pathways connecting relatively close layers in both
cortical areas. However, S1 is characterized by a more specific pattern of pathways
connecting same surfaces with only slight deviations. This may signal of higher
tangentiality. Surfaces 1, 2 and 3 in the figure indicate intermediate surfaces.

surfaces were shown to be consistent with known patterns of the cortical structure.
Performed tractography reconstruction also showed the ability of the employed SD
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Figure 5.6: Mean pathway-to-surface deviation (in degrees) per fiber pathway
group connecting a pair of surfaces showing general orientation of the pathway
in the cortex. The deviations in primary motor cortex are clearly higher for
the shortest pathway cluster compared to those in somatosensory cortex. The
highest mean deviation is observed in pathways connecting the first and the third
intermediate surfaces. Surfaces 1, 2 and 3 in the figure indicate intermediate
surfaces.

models to adequately reflect cortical neuroarchitectural patterns, such as higher
tangentiality in S1 area compared to M1.

A comparison of the radiality indices and peak directions obtained with differ-
ent deconvolution models suggests they overall perform similarly to each other on
cortical regions as well as on folding areas (Figures 5.2 and 5.3). The dominant
orientations in the banks are primarily tangential in the deep cortex, while the
FODs in the crown appear to have a dominant orientation with high radiality
against the cortical surface. These observations are in agreement with the results
of McNab et al. [150], which is also shown by including the first eigen vector of
the diffusion tensor as was done by McNab et al. Additionally, the percentage of
points with more tangential orientations is higher in S1 in most cases. This may
reflect the known presence of tangential myelination in the S1 region, while M1
also consists of higher number of radially oriented nerve fibers [155].

The FOD orientation patterns that we observed also are in line with a previous
report of Aggarwal et al. [152] using CSD-based FODs. The specimens used in
their study show a mixture of orthogonal and tangential directions close to the
WM surface, while radiality increases when moving into the middle of the cortex.
Similar to their results, the superficial cortex is characterized by an increased
tangentiality (Table 5.1).

While at FOD level all the models demonstrated comparable behavior, con-
nectivity patterns derived from tractography appear to be quite different (Figure
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5.5). CSD-based results appear the most sensitive of the techniques, as it includes
a higher number of pathways compared to other approaches and the results seem
nosier given large number of short pathways, while MS CSD-based reconstruction
is rather specific, containing fewer and seemingly more organized pathways, and
mFOD-based ones seemed to fit in the middle: less specific and more sensitive than
MS CSD and also less sensitive and more specific than CSD (Figure 5.7). While
the absolute number of pathways is significantly different, each of the length-based
fiber clusters is similarly represented in the reconstructions. Comparable ratios of
the pathway numbers allow free choice of the model in case of statistical analysis.
For instance, tract length maps could be constructed similar to cortical tract length
maps analyzed by Bajada et al. [157].

Figure 5.7: Fiber pathways reconstructed using CSD (left), MS CSD (middle)
and mFOD (right) techniques connecting the intermediate Surface 2. CSD-
based tractography appears to produce the most populated fiber reconstruction,
while MS CSD-based results happen to be more specific. The mFOD-based
reconstruction, in that regard, falls between the other two approaches.

Despite differences in connectivity patterns, general orientation of the recon-
structed pathways in relation to the cortex was also shown to be consistent (Figure
5.6). In both S1 and M1 the shortest pathways connecting most distant surfaces
exhibit the highest mean deviation, which suggests consistent radiality of their
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orientation against the cortex. At the same time, the longer pathways are consid-
erably more tangential, not exceeding 30¶ deviation.

The cause for the difference in the numbers of reconstructed streamlines prob-
ably lies in the way the response function is estimated by each of the methods.
CSD estimates the response function in WM voxels, and therefore it might not
accurately capture the diffusivity profile of GM, which is remarkably different
[120]. MS CSD also estimates a single response function but does take into
account additional compartments for GM and corticospinal fluid, attenuating their
confounding effect on the FOD. Finally, mFOD combines a WM-specific and a
GM-specific response functions establishing what fits best on a per voxel basis.
Consequently, when the WM-based response function is deemed best, it leads to
higher number of strong peaks in FOD, followed by an increased number of fiber
pathways. Nevertheless, establishing which method provides the most accurate
reconstructions remains an open question for future research.

We see two potential directions of research. First, tractography in this paper
was performed with a rather low angular threshold (30¶). While that is a common
setting for WM fiber tractography in lower resolution data (compared to the one
used in this work), higher resolution data might require a higher threshold. This
might reveal a change in the fiber length distributions as well as in connectivity
patterns.

Second, further analysis could focus on exploring whether laminar surfaces (or
at least patches) could be estimated from the dMRI data. The surface probability
index [158] could be used for that purpose coupled with either CSD or mFOD
techniques for FOD estimation as their higher sensitivity will have a better chance
of revealing intracortical layers.

5.5 Conclusions

In this work we explored the feasibility of the use of the state-of-the-art SD
diffusion models in the gray matter. All the SD methods were shown to reflect
the expected diffusion orientation patterns in crown and bank sulci as well as the
differences between S1 and M1 cortical areas. Fibers tangentially oriented to the
WM-GM interface could be reconstructed using each of the models. Additionally,
analysis of the intracortical connectivity revealed variance between reconstructions
based on different SD models, which may be a subject of further investigation.





CHAPTER6
Discussion

In this thesis we presented a new tractography algorithm that addresses the issue
of fiber branching and high-angular deviations. While this thesis focused on de-
terministic tractography, our concepts can as well be generalized and implemented
in a probabilistic fashion (Chapter 2). We further explored whether the proposed
method has translational potential by performing a clinical evaluation on subjects
with motor-eloquent high-grade glioma. The evaluation was performed by relying
on neuroanatomical knowledge of an experienced neuroradiologist (Chapter 3)
as well as using functional data acquired with nTMS (Chapter 4). Finally, we
ventured beyond the white matter to analyze gray matter structure, investigating
whether tractography based on state-of-the-art diffusion models is capable of
reflecting the laminar structure of certain cortical areas (Chapter 5).

When aiming at clinical application, robustness of the solution should always
be one of the primary goals. It may be achieved by reducing the uncertainty of
the solution results. If we think about the possible sources of uncertainty in fiber
tractography, a relevant source is the fact that the tractography algorithm itself
is essentially a heuristic procedure that does not necessarily provide a completely
accurate result.

The wide range of proposed algorithms includes both "traditional" streamline-
propagation algorithms [3], algorithms performing global optimization [49] as well
as algorithms making use of deep learning techniques [59, 159]. Each of these
paradigms has its own advantages. Thus, streamline-propagation algorithms allow
localized reconstructions. Global tractography takes into account the complete
signal of the brain but may not be locally accurate. The deep-learning algorithms
seem especially promising in cases of dMRI acquisitions with low spatial and
angular resolution, as they may compensate for the lack of precision in the FOD
estimation. However, they may require the training dataset to be representative
of the target population on which the model is going to be used. It is clear that
while each of the algorithms is capable of producing results that are to some extent
plausible, there is no guarantee that it is completely accurate.

With that in mind the developed multi-level fiber tractography algorithm
was presented in deterministic implementation of the individual pathways. This
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supposedly reduces the total uncertainty of the results while the algorithm achieves
a bundle reconstruction extent comparable to probabilistic approaches. However,
we also propose an implementation that allows extending the concept behind the
algorithm with probabilistic direction sampling. The algorithm was also shown
to be capable of preserving bundle topography, which may be an important when
reconstructing fibers corresponding to a very specific function [27].

As none of the existing algorithms are completely free of false-positve results,
the post-processing approaches become even more relevant. An example hereof
is the COMMIT framework [160, 161] that is capable of automatically filtering
out false streamlines from a whole-brain tractography reconstruction based on
diffusion signal modelling. However, such filtering algorithms are not applicable
to bundle-specific reconstructions without first performing whole-brain tractogra-
phy. Thus, to have control over the false-positive rate MLFT relies on the prior
neuroanatomical knowledge.

Another important source of uncertainty is the model used to estimate the
FOD. Being dependent on a response function properly reflecting tissue properties,
FODs are already limited in their precision. And what seems to limit them even
more is the interpretation of the FOD and FOD peaks. Peaks are commonly
considered to represent independent fibers. However, it is known that actual nerve
fibers do branch out, and that branching occurs rather often [20]. MLFT addresses
this aspect by iteratively expanding the reconstruction by following FOD peaks
with a higher deviation and including those that lead to plausible pathways, which
was shown to achieve an adequate extent of the bundle reconstructions.

Most tractography algorithms are presented on cohorts of healthy subjects.
There are also cases when tractography is performed on ex-vivo data with his-
tological ground truth [162]. However, there is still a lack of validation of the
results obtained in-vivo on clinical subjects. Being part of a consortium focused on
"clinical translation", it was only natural for us to make an attempt of bringing our
development closer to the clinics. In collaboration with Klinikum rechts der Isar
in Munich, we have performed tractography on a cohort of patients with motor-
eloquent high-grade glioma comparing routinely used DTI-based tractography
with CSD-based and multi-level tractography algorithms. All the results were
validated by an experienced neuroradiologist by checking that the bundles pass
through the known anatomical landmarks. However, when it comes to tracking
nerves in tumor patients, multiple complications arise. In certain cases edema
may lead to a dramatic signal loss that would not allow tracking fibers through
the affected area. It must be noted, that in such cases the absence of pathways
in fiber tractography results does not imply by itself that the corresponding sub-
bundle is not functional. Another complication may be caused by the mass effect
when the tumor growth leads to a considerable shift of the brain tissues. In such
cases, the question is whether the nerves were compressed or whether they were
infiltrated by the tumor.

Such complex cases are difficult to validate solely relying on neuroanatomical
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knowledge of the experts. Thus, we have also performed evaluation on the sub-
cohort that was exposed to nTMS motor mapping. We could observe a difference
between the tractography algorithms, although the study was limited by the fact
that nTMS is primarily used to map extremities: legs, arms, hands. The proposed
algorithm has shown its ability to cover larger part of the motor mapping mask
compared to more conventional deterministic approaches.

It should be considered that nTMS has a certain precision limit as the stimula-
tion is not applied to a single point but rather to an area around the target location.
This may lead to an inclusion of pathways that perhaps have less contribution
to the registered nTMS response. To alleviate this limitation, the ability to
reconstruct pathways in gray matter could be helpful as it would potentially
provide more precise localization of nTMS activations. With this in mind, we
performed an explorative project on the applicability of the number of spherical
deconvolution methods for tractography in gray matter.

In order to avoid quality-of-life degradation, it is important to differentiate
nerve fibers that are still active. While nTMS is a nice tool to create a reference
for such purpose, in many cases clinical protocols do not include nTMS mapping
or it may not be performed for some patients based on the decision of a neu-
roradiologist or a neurosurgeron. Thus, it is of interest whether the pathways
that are descending from activation areas have certain micro-structural properties
that would allow discovering them without stimulations. Prior research has shown
very clear differences between nTMS-based reconstructions in healthy and diseased
hemispheres [163]. Perhaps, one of the future ways to extend those findings would
be comparing micro-structural properties of nTMS-based against nonTMS-based
reconstructions in the diseased hemisphere. This would allow obtaining a similar
reference as provided by nTMS in cases when patients should not or cannot be
subjected to brain stimulations.

However, current routine acquisition protocols will immediately run into a
complication with performing such a study as most of them are producing single-
shell diffusion-weighted images, while modern tractography methods required to
extract micro-structural properties rely on at least two-shell data. The limited
quality of the acquisition protocols used in clinical practice is one of the bottlenecks
that also what prevent advanced tractography algorithms from being adopted into
clinical practice. One of the potential solutions could be to synthesize additional
shells using, for instance, deep learning. A number of studies have been published
by the time of writing this chapter that proposed solutions based on convolutional
neural networks [164–166].

The validation of tractography in presence of tumors may be complicated by
the mass effect or edema. One of the future directions to solve this challenge
could be the use of tumor growth modeling that not only models the volume of
the tumor or the direction of its growth but also includes modelling of the tumor-
induced tissue deformation. Assuming there is a fiber-bundle atlas of a healthy
brain, it can then be deformed based on the estimated deformation of the tissues.
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Given the deformed fiber bundles, potentially a decision would be made on the
plausibility of the reconstructions in the occluded or compressed brain areas. Such
hypothesis could either be more specifically verified by pre-operative functional
data, for instance, nTMS, or by direct electrical stimulation intra-operatively.
Most importantly, it would provide an additional signaling mechanism that makes
surgery planning more effective.

We started this work mentioning the importance of a proper robust surgical
planning procedure. Although at this stage the evaluation of the proposed method-
ology is incomplete, we can already state that it shows enough promising results
to be potentially included in surgical planning. With the TMS-based evaluation
we have shown that the MLFT

To conclude, there are still many challenges to pursue in the fields of trac-
tography and neurosurgery planning. In this work we contributed to both fields
by proposing an algorithm that suggests an unconventional interpretation of fiber
orientation distribution, adding translational aspect by algorithm evaluation on
clinical data as well as bringing gray matter into the surgery planning spotlight as
potential contributor to solving existing limitations.
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