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Artificial intelligence (AI) in the form of deep learning has
promise for drug discovery and chemical biology, for example,
to predict protein structure and molecular bioactivity, plan
organic synthesis, and design molecules de novo. While most of
the deep learning efforts in drug discovery have focused on
ligand-based approaches, structure-based drug discovery has
the potential to tackle unsolved challenges, such as affinity
prediction for unexplored protein targets, binding-mechanism

elucidation, and the rationalization of related chemical kinetic
properties. Advances in deep-learning methodologies and the
availability of accurate predictions for protein tertiary structure
advocate for a renaissance in structure-based approaches for
drug discovery guided by AI. This review summarizes the most
prominent algorithmic concepts in structure-based deep learn-
ing for drug discovery, and forecasts opportunities, applications,
and challenges ahead.

1. Introduction

Deep learning – a subfield of artificial intelligence (AI) based on
multilayer neural networks[1] – has gained remarkable traction
in science and technology, for example, to advance
mathematics,[2,3] investigate galaxies,[4] and generate realistic
images.[5] Chemistry and biology have witnessed several AI
breakthroughs, for instance, in protein structure prediction,[6,7]

chemical synthesis planning,[8,9] and atomistic simulations,[10,11]

Drug discovery has particularly benefited from the advent of
deep learning,[12,13] achieving success in molecule prioritization
and automated de novo design,[14–17] Here, deep learning can
accelerate the navigation of the extremely vast chemical space
of drug-like molecules[18] in search for potential therapeutics,
and complement resource- and time-intensive high-throughput
screening campaigns.[19] Most deep learning studies have
focused on ligand-based approaches,[12] which leverage solely
the structural information of small-molecule ligands to provide
predictions. For these applications, numerous systematic
studies[20,21] and experimental proofs-of-concept[16,17,22] have
been published. On the other hand, structure-based deep-
learning approaches – which leverage information on the target
protein – have not found parallel interest yet.

Structure-based drug discovery (SBDD) methods augmented
with AI are arguably a more complex and a higher-potential
endeavor compared to their ligand-based counterparts. Numer-
ous marketed drugs have been identified by “traditional” SBDD

(e.g., HIV-1 protease inhibitors.[23] the thymidylate synthase
inhibitor raltitrexed,[24] and the antibiotic norfloxacin[25]). Accel-
erating SBDD with deep learning can help address existing drug
discovery challenges, such as polypharmacology by design,[26]

selectivity optimization,[27] activity cliff prediction,[28] and target
deorphanization.[29] Deep learning does not require explicit
feature engineering and can thus be applied to learn directly
from molecular representations of both ligands and proteins.
This is particularly relevant for SBDD, where engineering
numerical features for complex molecular entities like
proteins[30] is inevitably more laborious than for small
molecules.[31] Therefore, deep learning for SBDD bears an
untapped potential to capture highly nonlinear structure-
activity relationships and has recently started to show its
promise. Accurate protein structure prediction efforts like
AlphaFold[6,7] are expected to further accelerate computer-
assisted SBDD. Deep learning for SBDD is still in its infancy but
is moving forward at a fast pace, and its relevance in the years
to come is expected to increase.

This review provides a comprehensive overview of how
deep learning can be leveraged for SBDD, and how to
incorporate protein information at different levels of complexity
(e.g., amino-acid sequence, and/or tertiary structure). After
addressing how proteins can be represented for deep learning,
we address current state-of-the-art methods for structure-based
drug discovery, with a particular focus on drug-target inter-
action prediction, binding site detection, and de novo design
(Figure 1). Finally, we discuss current limitations and research
gaps, along with foreseen future directions and opportunities. A
glossary of selected terms can be found in Table 1.

2. Representing Proteins for Deep Learning

The design of deep-learning approaches for SBDD is inherently
more intricate than for ligand-based approaches, due to the
need to represent protein information at different levels of
complexity. Proteins are large polypeptide chains that are
hierarchically organized into:[35] a) primary structure, referring to
the sequential arrangement of amino acids along the polypep-
tide chain, b) secondary structure, capturing the occurrence of
alpha-helices and beta-pleated sheets along the protein
sequence, and c) tertiary structure, capturing how proteins fold
in the three-dimensional space. Such complexity is reflected in
the various protein representations used for deep learning
(Figure 2):
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* Primary (amino-acid) sequence. The amino acid sequence is
specified starting from the amino-terminal end (N-terminus)
and ending at the carboxyl-terminal (C-terminus) end. For
deep learning purposes, the primary sequence is often
represented as a character string, where each letter repre-

sents one of the 20 naturally occurring amino acids (e.g., “A-I-
R” corresponds to alanine, isoleucine, and arginine). These
representations are at the core of established protein
featurization techniques, such as ProtVec,[36] Evolutionary
scale modeling (ESM),[36] unified protein representations
(UniRep),[37] ProteinBERT,[38] SeqVec,[39] and ProtTrans.[40]

Although less frequently encountered,[41,42] the primary
sequence can also be represented as a graph whose nodes
are amino acids (featurized by type or corresponding
physicochemical features), and whose edges capture their
adjacency in the chain.

* Tertiary (3D) structure. The three-dimensional shape of a
protein (tertiary structure) is determined by the interactions
among its side chains, and features a certain degree of
conformational plasticity.[43] The protein structure contains
key information for SBDD, as it relates to protein
function,[44,45] and it determines ligand binding.[46] Moreover,
inducing conformational changes is often the goal of drug
discovery.[43] Several ways exist to learn from tertiary
structures with deep learning. Early approaches[47,48] have
used grid-based voxel representations (Table 1) to capture
the spatial distribution of the protein’s physicochemical or
pharmacophore properties. While these representations are
suited for well-established deep learning architectures (e.g.,
convolutional neural networks, CNNs), many voxels repre-
senting empty space do not carry relevant information and
increase computational costs at higher spatial grid resolu-
tions. Other approaches[49] represent proteins as molecular
graphs in combination with graph neural networks,[50] where
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Figure 1. Structure-based drug discovery tasks discussed in this review: a)
drug-target interaction prediction, which aims to predict the affinity between
a protein and a ligand by using the structural information of both molecular
entities; b) binding site detection, which aims to identify druggable cavities in
the protein structure, c) de-novo design, aiming to design bioactive
molecules from scratch by using the information of a protein target.
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each atom is a node and each bond is an edge. Depending
on the chosen level of coarse-graining, often only backbone
atoms are chosen to correspond to nodes, while edges often
represent geometrical proximity in the coordinate space
rather than direct chemical bonds.[51] Edges and bonds can
be characterized by additional geometrical and/or physico-
chemical properties.

* Protein surface. The protein surface is usually defined as the
separation between solvent-accessible and inaccessible

regions[52,53] (Figure 2a) and it plays a key role in the protein
interactions with (macro)molecular entities. Protein surfaces
are usually represented as either meshes (i.e., a set of
polygons capturing the location of the surface, whose
vertices can be described by a 2D grid or a 3D graph
structure) or point clouds (i.e., graphs whose nodes describe
the location of the surface at a certain resolution). Although
often computed from the 3D structure, the surface represen-
tation might better reflect the physicochemical features

Table 1. Glossary of selected terms, reporting key definitions from chemical biology and machine learning.

Term Description

Binding site Protein region that is responsible for the interaction with another molecule (e.g., small-molecule inhibitors,
activators, and other proteins).

Generative deep learning Deep learning methods that aim to model the underlying data distribution of a given set of samples and, by
sampling from the modeled distribution, generate new data points without the need for explicit hard-coded
design rules.[32]

Geometric deep learning Umbrella term to identify neural network architectures that incorporate and process symmetry information in their
design.[33]

Featurization Conversion of various types of data into numerical data (features) for machine learning.
Ligand Any molecule that binds to a protein with high affinity.
Molecular descriptors Numerical features obtained from a molecular representation with the goal of capturing pre-defined chemical

information.[31]

Molecular docking Computational procedure used to predict the predominant three-dimensional binding mode(s) of a molecule w.r.t.
another (macro)molecule it binds to. These typically involve the use of a conformational pose search method and
a scoring function.[34]

Protein (Macro)molecule consisting of amino acid residues joined by peptide bonds.
Reinforcement learning Subfield of machine learning whose goal is to study the behavior of agents that learn a sequence of actions that

maximize a cumulative reward within a specific environment.
Simplified molecular input line entry
system (SMILES)

String-based chemical notation capturing two-dimensional molecular information, in which letters are used to
represent atoms, whereas symbols and numbers encode bond types, connectivity, branching, and stereo-
chemistry.

Transfer learning A machine learning method where a model trained on one task is reused as the starting point for a model on a
second, related, task.

Voxel A volumetric pixel.

Figure 2. Representing proteins for deep learning. a) Structural hierarchy of protein information: (primary) amino-acid sequence, referring to the sequential
arrangement of amino acids along the polypeptide chain; (tertiary) 3D structure, capturing protein folding in the three-dimensional space; protein surface,
delimiting solvent-accessible and inaccessible regions. Each level of information is characterized by a different availability of data.[2] b) Protein representations
for deep learning, capturing information on the protein sequence (strings), the 3D structure (graphs, voxels and point clouds), and the surface (point clouds and
meshes). Each representation is suited to different neural network architectures (Figure 3).
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responsible for the interaction with other (macro)molecules,
as well as aspects of protein function that go beyond
sequence similarity.
Small-molecule ligands can be represented in analogous

ways to protein structures. The most used representations are:
a) molecular strings (e.g., SMILES strings[54]), which capture 2D
information (atom occurrence and connectivity), b) 2D and 3D
molecular graphs (based on the availability of experimentally
determined or computed conformational information), and c)
molecular surfaces. An in-depth description of small-molecule
representations and corresponding deep-learning approaches
can be found in a recent work.[55]

3. Data for Structure-Based Drug Discovery

Deep learning models are notoriously “data hungry”. In this
context, not only does the chosen protein representation affect
the type and quality of chemical information captured, but it
also determines the number of data points available for training
(Table 2). Primary sequence data are abundant (e.g., more than
60 M sequences are available on Uniprot[56]) but lack informa-
tion about the spatial configuration of atoms, which determines
the binding pose of ligands. On the other hand, 3D protein
structures contain richer information for many drug discovery
purposes, but are relatively scarce. Typically obtained through
expensive experimental methods like X-ray diffraction or NMR
spectroscopy,[57] they are available in the order of hundreds of
thousands (Table 2). Luckily, the cost of protein structure
determination has been steadily decreasing over time, thanks
to the advent of newer experimental techniques like cryogenic
electron microscopy.[58] Despite these advances, 3D protein

structures still come with their own caveats. Obtaining high-
quality protein structures is oftentimes resource-intensive and
challenging for several targets,[59] such as disordered and
membrane proteins. Furthermore, it is currently difficult to co-
crystallize weakly binding ligands, which results in highly
unbalanced data for model training.[60,61] Deep learning break-
throughs in protein structure prediction[6,62] bear promise to
bridge the gap in data availability, by making thousands of
predicted protein structures available for downstream
tasks.[63–66] Despite this, the quality of machine-learning-based
structure predictions is known to depend on several factors,
such as the protein length and its flexibility, as well as the
presence of similar structures in the training set.[67,68]

(Macro)molecules are dynamical entities and are always
interconverting between a variety of conformations with
varying energies,[69] with key implications in drug-target
interaction.[70] Considering protein (and ligand) conformational
flexibility is thus key to understanding several biological
processes.[71] However, information on dynamics is currently
missing from experimentally determined datasets (Table 2) as
well as from structures predicted by AI.[72] In this context,
molecular dynamics simulations can provide insights into
(un)binding and conformational changes at a spatial and
temporal resolution that is not available experimentally or from
structure prediction. However, to date, these models might
have prohibitive computational costs.

Finally, ligand potency databases currently suffer from
notable biases,[73] as existing literature tends to over-report
analogues and binding compounds.[74] Moreover, public reposi-
tories inherently suffer from assay heterogeneity and exper-
imental noise. Researchers using these resources should be
aware of these limitations and curate their data with care, even

Table 2. Summary of selected datasets for structure-based deep learning. Dataset name, description and number of entries (updated as of June 2022) are
provided.

Dataset Description No. entries Link (if available)

Protein Data Bank
(PDB)[76]

Structural data of biological macromolecules. 189,735 structures rcsb.org

scPDB[77] Druggable binding sites and ligands extracted from
the PDB.

4782 protein structures and 6326 ligands. bioinfo-pharma.us-
trasbg.fr/scPDB

BioLip[78] Semi-manually curated ligand-protein interactions. 573,225 entries. zhanggroup.org/BioL-
iP

PDBbind[56] Protein-ligand co-complexes and associated affinities
extracted from the PDB.

23,496 complexes. pdbbind.org.cn

UniProt[56] Protein sequence and functional information. >60 million sequences. uniprot.org
AlphaFold Protein
Structure
Database[63]

Predictions of protein structures by AlphaFold v
2.0.[6]

992,316 predicted structures. alphafold.ebi.ac.uk

AlphaFill[64] Common ligands and cofactor transplants for Alpha-
Fold models.

12,029,789 transplants. alphafill.eu

Binding
MOAD[79,80]

X-ray crystal structures with bound ligands and
experimental binding affinities.

41,409 protein-ligand complexes, and 15,223 binding
measurements.

bindingmoad.org

Directory of Useful
Decoys (DUD� E)[81]

Directory of decoys designed to benchmark molec-
ular docking programs.

22,886 active molecules and affinities on 102 targets;
59 decoys per compound.

dude.docking.org

BindingDB[82] vali-
dation sets

Binding affinities of protein-ligand pairs curated
from the literature.

~1200 series with at least
1 cocrystal available in each.

bindingdb.org

BigBind[83] Associated protein structures to ChEMBL[84] assay
data via Pocketome.[85]

818,995 activities with associated protein structures. Brocidiacono et al.,
2022

KIBA[86] Bioactivity measurements of compounds against
kinases.

246,088 measurements. Tang et al., 2014

Davis[87] Binding affinities (Kd values) of inhibitors against
kinases.

30,056 measurements. Davis et al., 2011
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though it has been noted that fully accounting for aspects such
as experimental noise and heterogeneity is practically
impossible.[75]

4. Deep Learning for Structure-Based Drug
Discovery

This section aims to provide a concise overview of SBDD
approaches fueled by deep learning. SBDD will be considered
in its broader sense, that is, not only limited to 3D protein
structure but also including sequence and surface representa-
tions. Each of these representations is suited to different neural
network architectures. Although many “flavors” of deep learn-
ing for molecular representations exist,[55] some of the most
well-established architectures for SBDD are:
* Recurrent neural networks (RNNs; e.g., with long-short term
memory cells[88]) are a commonly chosen architecture to
process the primary sequence of a protein. RNNs incorporate
feedback connections that allow information in the previous
inputs to flow into the subsequent inputs. The feedback
mechanism behaves as a “learned memory” in the architec-
ture and enables capturing sequential structure of the input
(Figure 3a).

* Convolutional neural networks (CNNs) are a powerful architec-
ture when paired with voxelized representations to capture
spatial dependencies. CNNs apply learnable filters to the
input and excel in capturing local patterns, which renders
them suited to binding affinity prediction and pocket
detection (Figure 3b).

* Graph neural networks (GNNs) operate on molecular graphs
(e.g., atoms and their interactions) and can capture the
structural and functional relationships between, as well as

within, atoms belonging to one or more molecular com-
plexes (Figure 3c). The representation flexibility of GNNs
makes them applicable to a wide variety of tasks in structure-
based drug discovery.
Deep-learning approaches can be applied to different tasks,

based on the envisioned application and the utilized input
representation. In what follows, we focus on three key tasks
(Figure 1), namely binding site detection, drug-target interac-
tion prediction, and structure-based de novo design. For each
task, selected deep-learning approaches are described through
the lenses of the protein representation they rely on (sequence,
structure, or surface). A summary of selected deep learning
studies is reported in Table 3.

4.1. Drug-target interaction prediction

The identification of interactions between molecules and
macromolecular targets is a key step in drug discovery, drug
repurposing, and off-target activity prediction. Drug-target
interaction (DTI) prediction aims to predict the bioactivity (e.g.,
binding affinity) of a given set of molecules on one or more
macromolecular targets, by leveraging both protein and ligand
information. Given the complexity of ligand-protein interactions
and of engineering suitable molecular features for DTI, it is no
surprise that this topic has found a widespread application of
deep learning techniques.[132] In what follows, deep learning
models developed for DTI prediction are categorized on the
basis of the protein representation they rely on.
* Sequence-based approaches. Sequence-based DTI prediction
models use amino-acid sequences in combination with
additional ligand representations to provide predictions. One
of the earliest approaches, DeepDTA,[89] applied 1D CNNs to
simultaneously learn from string representations of both

Figure 3. Selected neural network architectures commonly employed for SBDD. a) Recurrent neural networks can be used to learn from the primary sequence
of a protein, as well as other sequential molecular representations. b) Convolutional neural networks (CNN) capture 3D spatial information and are commonly
used to learn from voxelized protein representations. c) Graph neural networks (GNNs) operate on molecular graphs and are often used to learn from
interatomic interactions within and between molecules.
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ligands (in the form of SMILES) and protein sequence. This is
achieved by first creating separated embeddings and then
concatenating them to perform a prediction. Later works
have replaced CNNs with other methods such as recurrent
neural networks (Figure 3),[90,133] attention-based[90,133,134] or
transformer architectures.[91,92,135] Several works have ad-
dressed how to improve the representation of protein
sequences, for example, by incorporating evolutionary
information,[136,137] or protein sequence composition
descriptors.[93,138] Ligands are usually represented as strings
(e.g., SMILES[89,137] or DeepSMILES[136,139]), fingerprints,[93,140]

frequently occurring substructures,[136] or molecular
graphs.[138,141,142]

* 3D structure-based approaches. These models leverage atom
coordinates, usually of co-crystallized protein-ligand com-
plexes, for training. Early approaches projected 3D protein-
ligand complexes into grids featurized with physiochemical
properties, and subsequently applied CNNs for binding
affinity prediction.[47,95,143] Later works extended this idea by
including more sophisticated features, for example, inter-
molecular interaction fingerprints[96] and computed molecular
energies.[144] 3D grid-based approaches have also been used
for lead optimization by predicting relative binding free
energies linked to small modifications of ligand
structures.[145,146] More recent approaches have replaced grid-
based representations with graphs,[49,97,98,147] allowing to
explicitly represent atom neighborhoods and connectivity,
and apply roto-translational invariant graph neural networks
for binding affinity prediction.

* Surface-based approaches. Surface-based approaches have
found limited application for DTI prediction. OctSurf[148]

represents both binding pockets and ligands as surfaces, by
partitioning the 3D space recursively into octants and
considering only portions containing van der Waals surface
points. Non-empty octants, along with their physicochemical
and geometric features, are then used as the input to a CNN.
Other approaches, such as HoloProt,[149] merge 3D structure
(graph) and surface (point cloud) information for task-specific
training, for example, enzyme-catalyzed reaction classifica-
tion and binding affinity prediction.
Another topic of recent interest by the deep learning

community is protein-ligand docking, which aims to predict the
putative binding pose of a ligand upon binding to a macro-
molecular target (Table 1). Although these methods do not aim
to predict the affinity between a ligand-protein pair directly,

they can be used as a proxy to elucidate potential mechanisms
of interaction. Deep learning has been mostly applied to ligand
pose optimization while considering a rigid target structure,
although recent approaches have started taking side-chain
flexibility into account.[150] Early approaches used protein-ligand
interaction fingerprints,[151,152] while successive approaches have
leveraged either a voxelized version of the protein structure
combined with CNNs[153,154] or graph-based representations with
message-passing neural networks[155–158] in lieu of classical
scoring functions. Finally, several approaches have attempted
to directly predict the ligand binding pose in an end-to-end
fashion,[99,100,159] without the need for a classical search algorithm
by exploiting advances in equivariant deep learning.

Deep learning has undoubtedly accelerated DTI prediction,
thanks to the possibility to represent and learn from protein-
ligand complexes more efficiently. However, simpler models
based on well-established descriptors might reach comparable
performance,[160] due to undesired memorization and hidden
bias in ligand-protein interaction data.[60,161–163] Moreover, no
relationship has been observed between the complexity of
protein and ligand representations and the accuracy of the
resulting deep learning models.[160] Thus, more attention should
be put on strategies for model evaluation and data selection/
splitting procedures to ensure a reliable prediction of DTIs with
deep learning.[160,164,165]

4.2. Binding site detection

The identification of druggable binding sites in proteins plays a
pivotal role in SBDD, from hit identification and molecule
screening to water interaction site prediction[166,167] and mecha-
nism formulation.[168] Over the years, a plethora of methods
have been developed for binding site detection,[168–172] for
example, via interatomic gap volumes[170] or regions of buried
pocket surfaces.[173] Recently, deep learning methods learning
directly from “raw” representations of proteins have gained
increasing traction to detect binding sites. These approaches
can be grouped by the molecular representations they rely on,
that is, protein sequence, 3D structure, and surface, as
described below:
* Sequence-based models. Binding site detection can be
performed by predicting which residues of the amino-acid
sequence are involved in ligand binding, although sequence-
based approaches have found limited application. Early

Table 3. Selected deep-learning approaches applied to SBDD. Models are categorized by task and frequently adopted molecular representations.

Task Description Protein representation

Drug-target interaction prediction Predict the interaction between one or more proteins and one or more ligands. Amino-acid sequence[89–94]

3D structure[47,95–98]

Docking Determination of a ligand pose within a target binding site. 3D structure[99–101]

Binding site detection Identification and/or localization of functional protein binding sites. Amino-acid sequence[90,102–104]

3D structure[48,105–110]

Surface[111–113]

De novo design Generation of ligands with desired properties conditioned on a protein. Amino-acid sequence[114–116]

3D structure[117–131]
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methods approached binding site detection as a “side-
product” of binding affinity prediction, by using explainable
AI techniques to highlight relevant residues for a model’s
prediction.[90,102,103] Few works have addressed binding site
detection only.[174,175] Recently, sequence-based binding site
detection has been jointly modeled with drug-target affinity
prediction, leading to improved performance on both
tasks.[104]

* 3D structure-based models, which use the spatial information
of proteins to detect likely binding sites. Early approaches
represented the protein structure with voxels featurized with
pharmacophore-like properties, along with convolutional
neural networks.[48,105] Subsequent works have refined struc-
ture-based binding site detection with additional techniques
from the computer vision domain, for example, image
segmentation.[106,107] BiteNet[176] also used CNN-based ap-
proaches but additionally incorporated conformational en-
sembles of proteins. The approach was later adapted to
predict protein-peptide binding sites.[177] Recent approaches
have also leveraged AlphaFold and amino-acid level features
to predict binding sites,[108,109] as well as graph neural
networks to discover cryptic binding pockets.[110]

* Surface-based models. Voxelized representations of protein
coordinates have several drawbacks,[113,178] and might lead to
worse results than working with surfaces alone.[178] Although
deeply buried amino acids often affect the properties of the
protein surface,[179,180] voxelized methods often carry non-
informative voxels that represent empty space and suffer
from information coarse-graining due to discretization of the
input protein space. For this reason, several methods based
on protein surfaces have been developed over the years.
These approaches rely on the representation of protein
structures as continuous shapes characterized by geometric
and physicochemical features to perform a prediction. Geo-
desic CNNs have been used to determine interaction finger-
prints of molecular surfaces, and to predict protein and
ligand binding sites.[111] This approach was later expanded to
obtain fully learnable protein representations.[112] Alterna-
tively, DeepSurf[113] discretizes the solvent accessible surface
using a combination of k-means clustering and density
reduction.[113]

A recent analysis of computational approaches for protein-
ligand binding site recognition[181] has shown DeepSurf[113] to
perform remarkably well. Moreover, some non-machine-learn-
ing algorithms have been shown to be competitive alternatives
to deep learning.[181] One caveat is that all methods compared
struggled on shallow binding sites, due to the higher frequency
of deep grooves used for model training.[181] Despite the recent
progress on binding pocket detection, room for improvement
remains, for example, to increase pocket coverage and detect
subpockets,[181] and to predict allosteric binding sites.[182]

4.3. Protein-based de novo molecule design

De novo design refers to the generation of novel chemical
entities possessing desired properties from scratch[183] and is

among the most challenging tasks in computer-assisted drug
discovery. Computational algorithms are faced with an incred-
ibly vast “chemical universe”, whose cardinality has been
estimated between 1024 and 10100 molecules.[18,184,185] In this
context, “brute-force” molecule assembly or enumeration
approaches are computationally unfeasible. In recent years,
generative deep learning has shown great promise for de novo
drug design[15,17,186] and to complement traditional approaches
based on human-engineered rules.[24,187–189]

Generative deep learning approaches for de novo design are
usually applied to produce molecules in the form of molecular
graphs[190–192] or strings[15–17] (e.g., SMILES). While most de novo
design approaches are ligand-based,[15,186,193–196] structure-based
approaches have recently emerged as a promising research
direction,[197] due to their potential to design molecules
interacting with pharmacologically relevant targets on demand.
* Sequence-based approaches. Sequence-based de novo design
approaches usually cast the problem into a machine trans-
lation task, where high-affinity protein-ligand pairs are
considered as sentences in different languages to be
matched. To this end, amino-acid sequences and SMILES
strings for proteins and ligands are used, respectively. The
first-in-kind approach[114] trained a transformer architecture to
“translate” amino acid sequences into the SMILES strings of
the corresponding ligand. This approach can be used for
sequence-conditioned de novo design. A recent work used a
transformer-based pipeline[115] that combined language mod-
els that were pre-trained on large corpora of proteins[198] and
small molecules.[199] Another recent sequence-based de novo
design approach replaced the machine translation formula-
tion with a reinforcement learning setting and conditioned
the designs of a ligand-based molecule generator with a
drug-target affinity prediction model.[116] The resulting de-
signs showed drug-like properties and promising docking
scores on the selected targets.

* 3D structure-based approaches. De novo design conditioned
on the tertiary structure information can usually generate
molecules in the form of 3D ligands (molecular graphs) or
strings (e.g., SMILES). In the former case, 3D representations
of protein-ligand complexes are used as the input to
generate novel 3D molecular graphs. As one of the earliest
approaches, LigVoxel[117] relied on 3D grids to generate
spatial “blobs” of ligand properties such as occupancy,
aromaticity, and hydrogen-bond donor/acceptors that match
the protein pocket. Later works used diffusion models,[126,127]

variational autoencoders,[118] and reinforcement
learning[119,120,128] to directly generate ligand conformations
inside the binding pocket. Recently, equivariant neural net-
works coupled with point-cloud representations have been
used for molecule optimization, via pocket-based fragment
expansion,[200] as well as generative adversarial networks that
represent proteins at the atomic level.[129] Compared to 3D
graphs, molecular strings are usually easier to generate and
might match or outperform graph-based models.[201] A
pioneering work of this category leveraged generative
adversarial networks[202] to produce SMILES strings condi-
tioned on voxelized protein pockets.[122] A subsequent model
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adopted graph neural networks to represent active sites and
generated targeted SMILES strings,[124,130] whereas other
models enriched 3D information with pharmacophore mod-
els to condition the generation for the targeted pocket.[123,131]

Recently,[125] a recurrent neural network model has been
coupled with ligand-protein interaction fingerprints deter-
mined on ligand docking poses for conditioned ligand
generation in the form of SMILES strings.
While ligand-based de novo design pipelines using deep

learning have been experimentally validated in multiple
instances,[17,203,204] structure-based de novo design has, to date,
not been applied prospectively. This aspect represents an
important gap for their widespread adoption.

5. Gaps, Opportunities, and Outlook

Deep learning for structure-based drug discovery is gaining
increasing traction, as evidenced by the exponential increase in
the number of published approaches over the last few years.
Breakthroughs in protein structure prediction[7,63] not only
exemplify the potential of deep learning in the molecular
sciences, but are expected to further propel structure-based
drug discovery with AI. Crucially, SBDD promises to tackle drug
discovery for new, uncharted protein regions. Such “zero-“ and
“few-shot” learning frameworks makes AI-driven SBDD a high-
risk/high-gain endeavor, expected to advance future drug
discovery.

SBDD is arguably more challenging than its ligand-based
counterpart, due to the number and structural complexity of
chemical entities involved, and aspects like target conforma-
tional flexibility.[205] Most of the current SBDD algorithms are
agnostic to dynamical information and, in certain instances,
might not outperform simpler methods.[160,181] While some
elucidation of dynamics has been previously attempted, for
example, from AlphaFold-predicted structures[206] or by molec-
ular dynamics,[207] current methods in the realm of SBDD do not
routinely use this information. This limitation is exacerbated by
the scarcity of open molecular dynamics datasets on protein-
ligand complexes. Because dynamics play a crucial role in lead
optimization,[208–210] any efforts in this area are likely to
substantially accelerate progress in the field.

Geometric deep learning is an emerging research area that
is finding one of its major applications in SBDD.[33,211] These
approaches attempt to unify neural networks from the
perspective of symmetry and topology. Roto-translational
invariance/equivariance is particularly relevant for the three-
dimensional representations of molecular systems, which is
beneficial to limit function search space during training.[55] In
this review, we have already touched upon several such
approaches.[99,126,127,212] We expect the application of geometric
deep learning for 3D structures to further boost AI’s ability to
model molecular complexes and their interactions,[111,213,214] as
well as molecular design[127,215] in the future. On a related note,
geometric deep learning is also increasingly being found useful
in neighboring fields, such as the training of machine-learning
potentials.[10,216,217] Ab initio calculations supported by more

flexible and accurate potentials could prove immensely useful
in SBDD scenarios where few or no data are available, such as
in free-energy calculations on lead optimization stages. Diffu-
sion models[218] – a family of generative models inspired by
non-equilibrium thermodynamics – are also gaining increasing
popularity in deep learning thanks to their generative capa-
bilities, and have found pioneering applications in the molec-
ular sciences.[101,127,212,219] These approaches have reached state-
of-the-art in several deep learning applications and are
expected to propel SBDD in the future.

A major bottleneck of AI-driven SBDD is the available
training data. While protein sequence information and exper-
imental assay data are largely available, high-quality 3D data of
co-crystallized proteins and ligands with accompanying proper-
ties are largely missing. Furthermore, non- and poorly-binding
molecules are often strongly under-reported in medicinal
chemistry datasets. As a result, available three-dimensional
datasets are often highly biased in their content,[60,161–163,220]

which has historically led to poor generalizability.[61,221–223] These
biases in the data are often taken advantage of by the models
instead of learning true drug-target interactions.[224] Several
studies have attempted to alleviate this issue, by data
curation,[222,225] bias-controlled training,[121] and debiasing.[164,226]

Bridging the gap between the different types of available
information will be an active task in the upcoming years, with
some recent work pointing in this direction already.[83]

Finally, the application of deep learning in well-established
fields like chemical biology and medicinal chemistry might at
times be met with skepticism by experimentalists. These well-
grounded concerns commonly originate from the black-box
nature of deep learning models. Additionally, robust perform-
ance benchmarks and evaluation datasets are currently missing,
especially for de novo design studies. Despite the success of
deep learning for ligand-based molecule design[17,22] and de
novo protein design,[227] to the best of our knowledge, no deep-
learning approaches for structure-based molecule discovery
have been validated in the wet-lab yet. To foster broader
acceptance of structure-based deep learning, we need to “open
the box” and validate methods experimentally. We envision
that more sophisticated applications of explainable AI[228–231] will
aid in identifying underlying structure-activity relationships and
binding modes and ultimately bridge the gap between theory
and real-world applications.

6. Conclusions

In recent years, deep learning has taken drug discovery by
storm, offering new opportunities for more efficient exploration
of chemical space. Ligand binding site detection, drug-target
interaction prediction, and structure-based de novo design can
be valuable tools in early drug discovery, especially for unex-
plored macromolecular targets. As a whole, these approaches
have great promise to extend the successes of ligand-based
methods, although their full applicability in prospective scenar-
ios has not yet been explored. Overcoming such barriers will
mostly depend on additional efforts in data collection and
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curation, as well as on methodologies that efficiently exploit
relationships between assay and structural data.
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