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A B S T R A C T   

Resilience is an important concept for measuring a system’s ability to cope with various disruptions. This study 
proposes an application-oriented framework for measuring the dynamic functional resilience (FR) of a transport 
network responding to supply and demand disruptions without external interventions. On the conceptual side, 
three complementary capacity-related dimensions, namely, robustness, adaptability, and recoverability, are 
incorporated in the single FR framework from the perspective of physical laws. On the applied side, we suggest a 
measurement model given certain network indices and apply it to the Beijing subway network (BSN). The results 
indicate the measurement model can capture the dynamics of network performances, identify the time-varying 
bottlenecks, and predict the influence of the dynamic capacity expansions on network resilience. The findings are 
useful for policy-making regarding the dynamic design, operation, and reconstruction of the transport 
infrastructure.   

1. Introduction 

Transport networks play a pivotal role in mobility for the social and 
economic development of modern cities. However, various disruptions 
to the nodes or edges of a transport network may affect the network 
structure, function, and efficiency (Ganin et al., 2017; Wang et al., 2018; 
Gu et al., 2020). Therefore, operators need to ensure the resilience of 
transport networks. Resilience has been one of the most used perfor-
mance measures on all kinds of transport systems (Chen and 
Miller-Hooks, 2012; Wang et al., 2013; Baroud et al., 2014) under dis-
ruptions. The measurement of resilience under various disruptions is 
instrumental for policy-making toward the design, operation, and 
reconstruction of transport networks (Ganin et al., 2017). 

Resilience has been defined in different ways. Many similar concepts 
to “resilience” are compared (Bruneau et al., 2003; Murray-Tuite, 2006; 
Linkov et al., 2015; Kermanshah and Derrible, 2017; Liao and van Wee, 
2017; Galaitsi et al., 2020; Qin and Liao, 2021; Wu et al., 2021; Zeng 
et al., 2021; Zuo, 2021), including robustness, redundancy, resource-
fulness, rapidity, diversity, efficiency, autonomous components, 
strength, collaboration, adaptability, mobility, accessibility, safety, 

recovery, absorb, reliability, vulnerability, risk, and sustainability. A 
few recent reviews (Zhou et al., 2019; Gu et al., 2020; Galaitsi et al., 
2021; Serdar et al., 2022) also indicated resilience is a multidimensional 
concept and there is no consensus on the definition and connotation. 

Different definitions of resilience may result in different measure-
ments for quantifying resilience in single or multiple dimensions. To 
better compare the differences and similarities between resilience di-
mensions, a few researchers clarified the related concepts from different 
perspectives. Based on the performance indices used in the measure-
ment, Gu et al. (2020) made a distinction between three related terms, 
including reliability, vulnerability, and resilience. They summarized 
four types of performance indices: travel time, connectivity, accessi-
bility, and capacity. Galaitsi et al. (2020, 2021) compared a number of 
related concepts (e.g., risk, reliability, robustness, vulnerability, sus-
tainability, safety) facing threats from disruptions, linguistic character-
istics, and system responses. Although they offered valuable insights 
into the definitions and quantifications of resilience, there are two 
limitations. First, the definitions and connotations of resilience have 
overlaps with other concepts. Second, the definitions of resilience are 
general but not specific in the context of transport networks. 
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In transport networks, the demand and supply may vary over time 
and they both lead to dynamic system performances. After the disrup-
tions, the passengers would spontaneously perform rerouting in the 
transport networks, which may propagate the disruptions (Motter and 
Lai, 2002; Zhang et al., 2019) and cause cascading failures to the 
networks. 

In response to the disruptions and cascading failures, the transport 
network operators are concerned with the functionality of the networks. 
We use “function” to refer to the circumstance that the transport 
network remains functional after supply and demand disruptions (Kitsak 
et al., 2018). Accordingly, we propose an application-oriented frame-
work of “functional resilience (FR)” to describe and measure the dy-
namic FR of transport networks without external interventions under 
supply and demand disruptions. The necessary components of the 
framework include resilience dimensions, dynamic travel demand and 
network supply interactions, demand and supply disruptions, and tar-
geted network indices. We compare the element differences between our 
framework and some relevant ones in Table 1. First of all, as shown, 
most studies only considered single resilience dimensions and those few 
with multiple dimensions have the limitations summarized above. We 
select three different but complementary dimensions. Second, for the 
disruption types, Galaitsi et al. (2020) proposed chronic and acute 
disruption types, and furtherly Sedar et al. (2022) divided them into 
natural hazards, intentional attacks, accidents, and failure propagations. 
Since few have taken into account surging travel demands as disrup-
tions, the supply side as well as the demand side are considered in our 
framework. Third, while various targeted indices are separately used for 
different dimensions (e.g., Gu et al., 2020; Serdar et al., 2022), all the 
targeted indices can be encapsulated into our framework and compared 
cross dimensions. Fourth, for modeling the demand and supply in-
teractions, a cascading failure model (Motter and Lai, 2002) is employed 
in this study to simulate the subsequent failures on the network after the 
initial supply disruptions, which has seldom been considered in the 
existing studies. Therefore, the proposed framework has the advantages 
of complementary resilience dimensions, comprehensive targeted 
indices, the integration of cascading failures into the demand and supply 
interactions, and the consideration of demand disruptions. 

The study makes contributions from the conceptual and applied 
points of view. For the conceptual contribution, three capacity-related 
dimensions are extracted from the literature. They are conceptualized 
holistically with physical interpretations, which are easy to understand 
and avoid the overlaps that commonly appear in the past definitions of 
resilience. For applying the measurement model, we entail with high 
integrity the comprehensive resilience dimensions, dynamic travel de-
mand and network supply interactions, demand and supply disruptions, 
and targeted network indices. In the case study of the Beijing subway 

network (BSN), the results indicate the proposed framework can capture 
the dynamics of network performances, pinpoint the time-varying bot-
tlenecks, and predict the influence of the dynamic capacity expansions 
on network resilience. The findings are useful for policy-making 
regarding the dynamic design, operation, and reconstruction of trans-
port networks. 

The remainder of this paper is organized as follows. Section 2 pre-
sents the conceptualization of the FR. Section 3 presents the measure-
ment framework and operationalization of FR. In Section 4, a case study 
using the BSN is carried out to verify the measurement framework. 
Section 5 discusses the measures to improve resilience and gives some 
policy suggestions. Section 6 summarizes the contributions of this paper 
and discusses the prospects for future work. 

2. Conceptualization of FR of transport network 

This section formally discusses the concept of FR in the context of a 
transport network. To facilitate the understanding of the essential ideas, 
we introduce the transport network setting and explain the chosen 
measuring dimensions of FR. 

2.1. Setting 

A typical transport network G (V,E) encompasses the following 
components: a set of nodes (V) and edges (E), the carrying capacities of 
the nodes (CV) and edges (CE), and the traffic volume through the nodes 
(qV) and edges (qE) of a timeslot of interest. The carrying capacities are 
usually imposed by the supply side and thus may be changing at 
different periods. Travel demand may be dynamic in different timeslots 
of the entire time frame but is considered relatively stable in the same 
timeslot of different time frames. One time frame starts at the time point 
when a disruption happens and, possibly after multiple disruptions, ends 
at the time point when the disruption(s) would no longer affect stability. 
The time frame is divided into K (K∈ N+) timeslots to capture the 
dynamicity of the travel demand and the different impacts on the 
transport network. In that sense, the total travel demand (Dk; k ∈ [1,K]) 
in the k-th timeslot can be divided into two parts, the stable travel de-
mand (Dk

s ) and the extra travel demand (Dk
e), to represent stability and 

dynamicity, respectively. Similarly, the volume of the stable travel de-
mand from node i to node j (Dk

s (i, j), i, j∈ V, i∕= j) is quasi-dynamic. Un-
less otherwise stated, the notations (see Table A1 in Appendix 1) with 
elements bracketed refer to scalar values (e.g., Dk

s (i,j)) and those without 
are vectors (e.g., Dk

s ). 
It is supposed that after the disruption, the network can reach 

another stable state during each timeslot. The maximum impact cannot 
be reached at the same moment of disruption, which is reasonable due to 

Table 1 
The element comparisons between the proposed framework and others.  

Reference Dimensions Disruption type Targeted indices Cascading 
failures 

Henry and 
Ramirez-Marquez (2012) 

recovery supply side time, cost, and speed no 

He and Liu (2012) remainder supply side link flow yes 
Espinet et al. (2016) vulnerability climate change fiscal cost, kilometer damage, and 

opportunity cost 
no 

Nogal et al. (2016) recovery supply side cost, impedance, and user stress level no 
Nogal and Honfi (2019) recovery supply side link flow ratio no 
Wang et al. (2019) recovery water flood connectivity no 
Zhou et al. (2019) four dimensions from maintenance 

and recovery aspects 
supply side performance, topological, and 

attribute-based 
no 

Gu et al. (2020) resistance and recovery supply side connectivity and efficiency no 
Li et al. (2020) robustness extreme environment mobility and connectivity no 
Serdar et al. (2022) seven different dimensions with 

overlaps 
natural hazards, intentional attacks, 
accidents, and failure propagation 

performance, connectivity, cost, 
statistic, and qualitative 

no 

This study three different but complementary 
dimensions 

demand and supply sides all indices can be embedded yes  
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the continuity and the nature of lagged traffic propagation. As the real 
network performance during timeslot k may be unstable or even un-
known, the results at the new equilibrium state are selected for reference 
purposes. The FR is jointly affected by the targeted network index (x), 
the stable travel demand in the k-th timeslot (Dk

s ), and the disruption d. 
The disruption d can be from the supply side, demand side, or both 
occurring in different timeslots. The FR dimensions may also be dynamic 
with respect to t. A general expression of FR is written as R (x,Dk

s ,d,t). To 
better capture a transport network’s responses to disruption, we discern 
the difference between structural resilience (SR) and FR. The main dif-
ference between SR and FR resides in the dynamic demand-supply in-
teractions that occur on the network (Motter and Lai, 2002; Holme et al., 
2002; Gu et al., 2020). 

2.2. Three capacity-based dimensions of FR 

Researchers (Bruneau et al., 2003; Zhou et al., 2019; Gu et al., 2020) 
compared the concepts of resistance, vulnerability, and robustness. It is 
not hard to find that robustness is an inverse concept of vulnerability but 
a similar one of resistance. Thus, the selection of any one of these three is 
representative to measure the capacity surplus or loss of a network, 
implying that the other two are redundant. Note that the term capacity 
refers to network performance in a broad sense and is indicated by a 
specific index in the operationalization. In addition, by comparing the 
recoverability addressed by Zhang et al. (2019) and robustness by Zeng 
et al. (2019), we find robustness is a transient value of the network 
performance, but recoverability is the accumulation of the transient 
values during the recovery process. In other words, there are strong 
correlations among the resilience dimensions aforementioned. To 
reduce the resilience dimensions, we set aside the literal differences 
between the concepts and focus on the actual measurement differences. 
Various keywords of 25 resilience-related studies are compared and 
summarized in Table A2 (see Appendix 1). They can be categorized into 
three dimensions. Since existing studies are mixed in using the concepts 
to describe different dimensions, we place the concept(s) from each 
study in the corresponding column(s) in terms of the matching conno-
tation(s). For the first dimension, resistance (Zhang et al., 2015), 
robustness (Bruneau et al., 2003; Zeng et al., 2019), vulnerability (Wang 
et al., 2013; Reggiani et al., 2015; Gu et al., 2020), connectivity (Mur-
ray-Tuite, 2006), etc. concern the capacity surplus and these concepts 
are placed in the first column. For the second dimension, adaptability 
(Murray-Tuite 2006), absorb (Zhang et al., 2015), etc. focus on the ca-
pacity change and they are placed in the second column. For the third 
dimension, recovery (Chen and Miller-Hooks, 2012; Gu et al., 2020), 
recoverability (Zhang et al., 2019), rapidity (Bruneau et al., 2003), etc. 
capture the cumulative capacity loss and they are placed in the third 
column. Thus, resilience can be decomposed into three dimensions: 
robustness, adaptability, and recoverability. As summarized in Table A2, 
they represent the transport network’s capacity surplus, change, and 
cumulative loss after disruptions. 

2.3. Interpretations and formulations 

To elaborate on the relationships among the three dimensions, the 
entities and specific definitions of them are described in transport 
network G as follows. Robustness is to measure the capacity surplus 
compared to its original state after disruption d happens; adaptability is 
to measure the capacity change used to adapt to d compared to its former 
state; recoverability is to measure the cumulative capacity loss to 
recover from d during a time frame. The three dimensions can be 
interpreted with a metaphor in physics shown in Fig. 1. In the k-th 
timeslot, the ball receives forces in three cases (Fig. 1a). First, when it is 
placed on the ground statically as the initial stable state 1 (in analogy to 
an equilibrium state in a transport network) at tk

b , its gravity (in analogy 
to Dk

s ) is applied to the ball and the shape may slightly change. When it is 
lifted into the air and the support force from the ground is gone, the 
shape reaches its full size. If we pat the ball with a certain strength (in 
analogy to Dk

s and d) onto the ground, the shape may change signifi-
cantly at the time when the ball hits the ground. Quantifying the tran-
sient capacity surplus during timeslot k, denoted by the area of R1, is the 
first dimension of resilience, i.e., robustness. Second, in the meantime, 
quantifying the transient deformation, denoted by the area of R2, to 
adapt to the patting strength refers to the second dimension of resilience, 
i.e., adaptability. Given the maximum deformation at tkw, the ball has the 
worst robustness and adaptability. Finally, quantifying the entire 
continuous deformation process until the ball recovers to stable state 2 
at tkf corresponds to the third dimension of resilience, i.e., recoverability. 
Note that the ball area under the ground in stable state 1 may not be the 
same as that in 2 because the disruption may cause irreversible change 
to the ball during the entire recovery process. While for SR, the ball 
would not recover after it hits the ground until it is repaired by external 
forces, meaning that the shape-changing is constant. 

The physical relationships among them can be further interpreted by 
three performance curves in Fig. 1 (b). The x-axis stands for the progress 
of time t and the y-axis stands for the network’s transient performance at 
time point t. Suppose that in addition to any possible disruptions before 
timeslot k, disruption d happens at tk

b with the greatest impact on the 
network performance at tk

w and a new stable state is achieved at tkf . 
Several studies (Bruneau et al., 2003; Gu et al., 2020) stipulated that the 
robustness of a system is measured only at tk

w and the recovery process 
also starts at tk

w. However, the impact of the disruption on the network is 
constantly changing and the recovery actually exists during the entire 
time frame. At each time point of timeslot k, robustness and adaptability 
can be measured and they represent a system’s variable performances 
and the recovery process involves the entire time frame. The dashed 
horizontal line R (0) represents the network resilience when there is 
neither Dk

s nor d; the blue curve R (Dk
s ) represents the network resilience 

only with Dk
s ; and the red curve R (Dk

s , d) represents the network resil-
ience with both Dk

s and d. The height of R (Dk
s , d) with reference to the 

Fig. 1. Conceptualization of the three dimensions of FR.  
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x-axis represents the transient network robustness at t; the height dif-
ference between R (Dk

s , d) and R (Dk
s ) is the transient network adapt-

ability at t; the area between R (0) and R (Dk
s , d) is the network 

recoverability during a timeslot related to d. In case of irreversible 
change (permanent damage) to the ball by a strong patting force, the 
height difference (potentially large) between the blue line and the red 
line after tkf represents the permanent capacity loss. 

Fig. 1 (b) shows SR indicated by the green line is static but FR de-
scribes a dynamic process. Fig. 1 (c) shows the difference between SR 
and FR in the entire time frame of K timeslots on condition that the 
targeted network indices are the same. For the sake of simplicity, Fig. 1 
(c) only illustrates the network performances at the final equilibrium 
states in different timeslots. While the thick green line represents the 
fixed SR, the thicker blue lines (without d) and red lines (with d) 
together form the FR. As there are no traffic dynamics in the measure-
ment of SR, SR only depends on disruption. However, FR depends both 
on disruption and Dk

s , and the latter is time-dependent with respect to 
timeslot k. 

The measurements of the three dimensions of FR are formulated as 
follows. 

2.3.1. Robustness 
Robustness (denoted by R1) is to measure G’s capacity surplus under 

Dk
s and d during timeslot k. With targeted network index x, the general 

expression of robustness at time point t is written as Eq. (1). The larger 
R1 is, the more capacity surplus the network has and the more resilient it 
is. 

R1 =R
(
x,Dk

s , d, t
)
, k ∈ [1,K] (1)  

2.3.2. Adaptability 
Adaptability (denoted by R2) is to measure G’s changing capacity to 

adapt to disruption d under Dk
s during timeslot k. With the same x, the 

general expression of adaptability is written as Eq. (2). As shown in 
Fig. 1 (b), R (x,Dk

s ,0, t) stands for the network performance only with Dk
s 

at stable state 1, where d = 0 means no disruption. The smaller R2 is, the 
stronger adaptability the network has to the disruption and the more 
resilient it is. 

R2 =R
(
x,Dk

s , 0, t
)
− R

(
x,Dk

s , d, t
)
, k ∈ [1,K] (2)  

2.3.3. Recoverability 
Recoverability (denoted by R3) is to measure G’s cumulative capacity 

loss from disruption d under Dk
s during the time frame between t1

b and tKf . 
Compared to Zhang et al. (2019) who used a shaded triangle area to 
measure a network’s resilience, we use a generalized form, Eq. (3), to 
measure the recoverability of FR. The smaller R3 is, the smaller effects 
the disruption causes to the network, standing for higher recoverability. 

R3 =

∫ tKf

t1b

[
R (x, 0, 0, t) − R

(
x,Dk

s , d, t
) ]

dt, k ∈ [1,K] (3) 

One may argue that the benchmark network performance in Eq. (2) 
seems to be associated with Dk

s and the dimension of adaptability can be 
reduced to Eq. (1). In fact, the benchmark is R (x,0, 0, t) in Eqs. (1) and 
(3), which stands for the maximum network performance under free- 
flow conditions. The adaptability aims to quantify the capacity change 
due to the disruptions, but Dk

s may also decrease the network capacity, 
which is not attributed to the disruption (Ganin et al., 2017; Zhang et al., 
2019). Therefore, the second dimension of adaptability is not redundant. 
Also note that when the length of timeslot k approaches zero, it appears 
that FR can capture the real-time dynamic process on the network. 
However, the network may not reach a new equilibrium state at the end 
of the timeslot of interest, which causes incapability of measuring the 
recoverability dimension. Therefore, the length of timeslot k is set long 

enough for the network to reach equilibrium after the disruption. With 
this consideration, the results at the new equilibrium state are preferably 
used as the resilient performance, although the measurements of FR are 
formulated in fully dynamic forms. It should also be noted that if Dk

s = 0 
and time t is removed in Eqs. (1)–(3), the generalized formulations of FR 
degenerate into those of SR. 

3. Operationalization 

This section presents a measurement framework for operationaliza-
tion in the context of trip-based travel demand analysis. The framework 
consists of network configuration, traffic dynamics, disruption, the new 
equilibrium state, and three FR dimensions according to the targeted 
index. 

The framework is depicted in Fig. 2. First, G(V,E) is constructed 
based on the spatial structure and the static and dynamic attributes of 
the nodes and edges. Second, given the travel demand in different 
timeslots of an average day, traffic dynamics on the network take place 
in the presence of direct and indirect disruption. According to the 
traditional four-step models, this module includes trip generation, trip 
distribution, modal split, and traffic assignment. In response to disrup-
tion, the congestion effects or failure rules are applied to the traffic 
assignment. The disruption effects are not considered in the first three 
steps. Traffic assignment is to determine the network flow patterns with 
regard to travel demand and network supply interactions. The network 
may be congested or even blocked to lose functions. To simulate the 
cascading failures, we employ the failure model suggested by Motter and 
Lai (2002) as follows. The nodes or edges are considered failures and 
removed when bd > (1 + α)bd, where bd and bd are the node or edge 
traffic flow and capacity after and before disruption and α refers to a 
ratio of the network’s design capacity that can be used as reserve ca-
pacity after the disruptions. After the first assignment, the failures will 

Fig. 2. Measurement framework of FR.  
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be assessed and removed. The failure rules act on the traffic dynamics 
until no failure occurs and the network reaches a new equilibrium state. 
In the traffic assignment, the impedance between each O-D pair is the 
key factor. For road networks, it is easy to use the BPR equation (U.S. 
Bureau of Public Roads, 1964) to calculate the impedance; for public 
transit networks, the impedance consists of waiting time at the starting 
station, in-vehicle time, and transfer time at the transfer station (Liu 
et al., 2016). The waiting time and transfer time are assumed to be 
constant. Passengers choose their routes according to the congestion 
level in the vehicle as it affects passengers’ comfort and the perceived 
in-vehicle time. Thus, the edge impedances in the road network and 
public transit network are formulated as Eqs. (4) and (5) respectively 

t1(u)= t0(u)

[

1+ θ1

(
qE1 (u)
CE1 (u)

)β1
]

, u ∈ E1 (4)  

t1(u) = t0(u)

[

1 + θ2

(max {qE2 (u) − ρCE2 (u), 0
}

CE2 (u)

)β2
]

, u ∈ E2 (5)  

where t0(u) is the free-flow travel time of edge u and t1(u) is the actual or 
perceived travel time to get through edge u; θ1, θ2, β1, and β2 are pa-
rameters of the standard BPR equation and the extended form; ρ (ρ ∈ [0,
1]) is a scaling coefficient of the capacity; qE1 (u) and qE2 (u) are the traffic 
flow of edge u; CE1 (u) and CE2 (u) is the carrying capacity of edge u. 

The Wardrop’s first principle for user equilibrium (Wardrop, 1952) is 
applied as the mechanism for traffic assignment. After the network 
reaches a new equilibrium state in each timeslot, the measurements are 
performed on the differences between the previous and the new states 
for robustness and adaptability. While for recoverability, the measure-
ment result is the accumulation from the initial timeslot to the timeslot K 
when the disruption no longer affects the network. Based on the same 
index, all the dimensions of resilience are measured and compared in the 
framework. 

The disruptions are classified into supply disruptions (e.g., accidents 
or intentional shut-down); and demand disruptions (e.g., extra travel 
demand). The second type is more common in reality and the extra 
travel demand Dk

e can be described in three scenarios. Dk
e occurs to a 

certain node in the first two scenarios (S1 and S2) and to the entire 
network in the third scenario (S3).  

(1) S1: suppose an emergency event occurs at origin i, which causes 
an extra fixed volume of demand M during timeslot k. M is pro-
portionally allocated to all destinations that are associated with i.  

(2) S2: due to an emergency event at origin i, each OD pair i→ j, ∀j ∈
V, j ∕= i, has an increased travel demand by a common factor r0.  

(3) S3: suppose a disruption occurs to G, every OD pair i→ j, ∀i, j ∈ V,
i ∕= j, has an increased travel demand by a common factor r1. 

Based on the scenario setups, the total and extra travel demand are 
formulated as Eqs. (6)–7) 

Dk(i, j)=Dk
s(i, j)+Dk

e(i, j), ∀i, j∈V, i ∕= j (6)  

Dk
e(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M • Dk
s(i, j)∑

j∈V,j∕=i
Dk

s(i, j)
, i ∈ V,∀j ∈ V, j ∕= i if S1

r0 • Dk
s(i, j), i ∈ V,∀j ∈ V, j ∕= i if S2

r1 • Dk
s(i, j),∀i, j ∈ V, i ∕= j if S3

(7)  

where Dk(i, j), Dk
s (i, j) and Dk

e(i, j) are the total, stable, and extra travel 
demands of OD pair i→j during timeslot k, respectively. 

The above framework encloses the general modules and necessary 
components to measure a transport network’s FR. The operationaliza-
tion is applicable for the resilience analysis at the strategic and tactical 

levels due to the applications of classic mechanisms for travel demand, 
network equilibrium, and disruption. The framework can also be 
extended with the replacement of higher realism counterparts (He and 
Liu, 2012; Nogal et al., 2016) that better capture the dynamics. 

4. A case study of FR measurement: the BSN 

This section carries out numerical experiments to demonstrate the 
measurement of FR using the BSN. First, we describe the characteristics 
of the datasets and preliminary analysis of the network structure. Then, 
we present the results of the three dimensions of FR. 

4.1. Datasets description 

The used datasets include the BSN structure and real travel demand 
data. The preliminary analyses of these datasets show the time-varying 
travel demand patterns and the limitations of SR in the resilience mea-
surement (see Appendix 2). 

The directed and weighted BSN consists of 268 stations and 603 
sections between two neighboring stations. Network attributes were 
collected from the official website of the Beijing Subway operator. 
Sectional capacities and running times (including dwelling times at 
stations) were collected. Each section’s carrying capacity CE2 (u) is 
calculated according to a simplified capacity method for the railway 
lines (UIC, 2004) as Eq. (8): 

CE2 (u)=
Δt
th

λnc, u ∈ E2 (8)  

where CE2 (u) is the carrying capacity of section (edge) u; Δt is a timeslot 
with 1 h in length; th is the headway of a subway line; λ is the rated 
carrying capacity per carriage; nc is the number of carriages of a train. 
The sectional capacities of the BSN are dynamic with th, which includes 
three different operation modes on a day. 

The dynamic travel demand was generated using four consecutive 
weeks of smart card data of the Beijing Subway in August 2015, 
including the station-to-station check-in and check-out aggregate in-
formation. During each time frame k, the travel demands are assigned to 
the BSN by the method of successive averages (MSA) (Poon et al., 2004). 
After the initial assignment of the travel demand by the all-or-nothing 
method, we obtain the initial traffic flow F(I), I = 1. Then the 
augmented traffic flow Y(I) can be calculated according to the former 
travel cost. The traffic flow F(I+1) is updated by 
F(I+1) = F(I) + 1

I ∗ (Y(I) − F(I)) until the two neighboring traffic flows 
are close enough (

∑
fabs(F(I + 1) − F(I)) ≤ 0.001) or the iteration 

count reaches a threshold (e.g., I ≥ 50). Thereafter, the first equilibrium 
flow is obtained. After the first assignment, the cascading failures will be 
assessed and removed. Then, we reassign the total travel demand to the 
disrupted network and assess the failures until no failure occurs. Finally, 
the new equilibrium state is reached. 

4.2. FR of the BSN 

The FR of the BSN is measured in the three dimensions respectively. 
A series of experiments are done based on the general form of resilience 
measurement R (x,Dk

s ,d, t). 
The general experiment settings are as follows. One representative 

index g (Motter and Lai, 2002; Wang et al., 2018; Yosef et al., 2018; 
Kitsak et al., 2018; Zhang et al., 2019) commonly used to measure 
network resilience is adopted in the measurements. After disruption, 
temporal disconnection or overload situations can occur to the network 
and it may fall apart into subgraphs. g is the ratio of the maximum 
connecting subgraph, formulated as 

g=
nGm

nG
(9) 
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where nGm is the edge or node number of the maximum connecting 
subgraph Gm after disruption; nG is the total number of edges or nodes in 
the original network G. Timeslot k is set as an hour. Dk

s is the stable travel 
demand in the k-th hour (k ∈ [5,23]) of an ordinary day. We focus on a 
timeslot during the peak hours for measuring robustness and adapt-
ability, while an average operating day for recoverability to study the 
effects of intense traffic flows. From the preliminary analysis, the extra 
traffic is observed with the highest fluctuation of 10,000 trips per hour 
over the stable travel demand. Three different scenarios are defined: S1 
(M = 10,000), S2 (r0 = 1.0), and S3 (r1 = 0 − 0.1) according to Eqs. (6) 
and (7). Among them, S1 and S2 refer to the demand disruption that 
occurs to a station one by one, and S3 refers to the disruption that occurs 
to all the stations. The experiment settings are in the same form of R (g,
Dk

s ,d). 

4.2.1. Comparison between SR and FR under supply side disruptions 
First, the comparison between FR and SR is conducted based on the 

same supply disruptions. In Fig. 3 (a), the green, brown, and yellow 
curves are the robustness curves. They suffer the same supply disrup-
tions (dSS) with the same node failure ratio of rSS and cascading failures 
are not considered. The three curves are obtained by removing the nodes 
one by one according to the descending order of the structure-based 
index of betweenness centrality (green curve), function-based index of 
traffic flow (yellow curve), or at random (brown curve). The brown 
curve is depicted with the average result of multiple times of repeated 
experiments according to Holme et al. (2002). The results show that the 
“Random” curve is always smaller than the “Structure” and “Function” 
curves and the “Function” curve is significantly larger than the “Struc-
ture” when rSS is around 0.1 but smaller between 0.15 and 0.4. The 
inconformity of the three network failure modes demonstrates that the 
real traffic distribution has a low correlation with the structural index. 

As cascading failure may cause bigger differences between function- 
based and structure-based results, two series of experiments are set with 
R (g,D7

s , dSS) and R (g,D18
s , dSS) in Fig. 3 (b). In Fig. 3 (b), the supply 

failures are the same for function-based and structure-based experi-
ments based on the descending order of real traffic volume in the 
morning peak hour (AM for short) and afternoon peak hour (PM for 
short). The failure rules for the function-based and structure-based ex-
periments are set as depicted in Section 4.1. Fig. 3 (b) shows the com-
parison between two dashed SR curves (AM Structure and PM Structure) 
and two solid FR curves (AM Function and PM Function) considering the 
effects of α. In the morning peak, the Function curve is below the 
Structure curve when α < 0.356; when α ≥ 0.7, both AM curves reach 1. 
In the afternoon peak, the Function curve is always over the Structure 
curve, and both PM curves reach 1 when α ≥ 0.3. The following con-
clusions can be drawn from Fig. 3 (b): (1) comparing AM curves with PM 

curves, the robustness differs with the time of day due to the dynamic 
travel demand; (2) comparing the Function curves with the Structure 
curves, the dramatic differences in robustness also show that travel 
demand is a necessary component in the measurement of FR. 

The differences among the three curves in Fig. 3 (a) are much smaller 
than that between the two Function curves in Fig. 3 (b), demonstrating 
that cascading failure affects robustness dramatically. 

4.2.2. Robustness 
For the dimension of robustness, the experimental results under 

different disruption scenarios are compared. We run the series of ex-
periments of R (g,D7

s , dD7
e
) under scenarios S1 – S3, where dD7

e 
refers to 

the demand disruption of the extra travel demand D7
e in the morning 

peak hour from 7:00 a.m. to 8:00 a.m. The effects of three demand 
scenarios on robustness are shown in Fig. 4. 

First, R (g,D7
s , dS1(M=10,000)) is set under different values of α from 0 to 

0.7 in Fig. 4 (a) with the extra 10,000 trips per hour (M) under S1. 
Without extra travel demand, all stations should correspond to the 
values of g on a line in red (g = 0.1), brown (g = 0.12), yellow (g = 0.12), 
green (g = 0.12), cyan (g = 0.53), blue (g = 0.65), purple (g = 0.99), and 
black (g = 1.00). This setup enables us to pinpoint the key stations 
sensitive to the fixed Dk

e . In Fig. 4 (a), some stations have values located 
below the corresponding lines, especially the key stations surrounded by 
the different colors of ovals, and the larger height difference means 
greater harm to the network robustness. As shown, the large height 
differences concentrate within the range of α ∈ (0.3,0.6), and S1 has less 
impact on robustness in the other ranges. 

Second, the results of R (g,D7
s , dS2(r0=1.0)) under different α can be 

seen in Fig. 4 (b) with r0 = 1.0 under S2. This setup aims to locate the 
key stations sensitive to the extra travel demand beyond the stable travel 
demand. The results show a similar trend as S1 within the range of α ∈

(0.3,0.6), but S2 does less harm to the network than S1. It is observed 
that a smaller number of key stations under S2 have a sharp reaction to 
extra travel demand and these key stations surrounded by the different 
colors of ovals are different from S1. 

Third, the results of R (g,D7
s , dS3(r1=0− 0.1)) under different α can be 

seen in Fig. 4 (c) with different r1 within [0.00,0.10] under S3. g presents 
a ladder-type descending trend with the increase of r1 and grows sharply 
with the increase of α. Similarly, when α > 0.6, g is over 98%, but if 
α ≤ 0.3, g is not affected by r1. Within the range (0.3, 0.6), a small r1 
does great harm to the robustness. This implies that with the increase in 
travel demand, the network may face a severe issue of robustness. 

4.2.3. Adaptability 
Adaptability measures the capacity change of the BSN resulting from 

a stable travel demand to three different demand disruptions. The 

Fig. 3. Robustness comparison of the BSN between SR and FR.  
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disruptions and experiment parameters are set the same as those in the 
robustness measurement. 

The experiments of R (g,D7
s , dS1(M=10,000)) and R (g,D7

s , dS2(r0=1.0)) are 
conducted to measure the changing value of g due to the extra 10,000 
trips per hour and twice a station’s stable travel demand per hour in the 
morning peak hour (7:00 a.m.–8:00 a.m.). The results are shown in 
Fig. 5 (a) and (b) and they both pinpoint some key stations that are 
sensitive to extra travel demand with higher capacity loss (the highest 
adaptability value of 0.38). Next, the experiments of R (g,D7

s ,

dS3(r1=0− 0.1)) are conducted to measure the changing value of g due to an 
increase ratio (r1 ∈ [0.00,0.10]) of all the stations’ travel demand in the 
same time frame. Different from the result in Fig. 4 (c) that the robust-
ness improves with the increase of α, Fig. 5 (c) shows that with α ≤ 0.3, 
the adaptability is the best as the changing value is 0; with α = 0.4, the 
adaptability is the worst as the changing value is the largest; and after 
increasing α from 0.4 to 0.7, the adaptability gets better as the changing 
value becomes smaller. The results show that either a small increase in 
the capacity of other types of transport networks or a large increase in 
the capacity of the BSN (corresponding to a large α) can improve the 
adaptability of the BSN under S3. In addition, it is implied that the same 
level of increase in the network capacity may have different effects on 
robustness and adaptability. 

4.2.4. Recoverability 
Recoverability measures the capacity of the BSN to recover from a 

disruption during a time frame. The experiments of R (g, Dk
s ,

dS1(M=10,000)), R (g,Dk
s ,dS2(r0=1.0)), and R (g,Dk

s , dS3(r1=0.1)), k ∈ [5,23] are 
conducted to measure how much pressure the network is faced under 
different travel demands in different timeslots. Under S1 and S2, the 
Pinguoyuan Station in Fig. 6 (f), the most sensitive station to extra travel 
demand in Figs. 4 and 5, is selected as a representative. Fig. 6 (a) shows 
the different recovery triangles formed by the areas between the curve of 
g = 1 and other g curves associated with different α. The recovery tri-
angles are basically composed of two series: morning (5:00 a.m.–10:00 
a.m.) and evening (16:00 p.m.–20:00 p.m.) triangles. The areas of 
morning triangles on average are much larger than their counterpart. 
The sum of the areas of the two triangles is taken as the recoverability. 
Fig. 6 (b), (c), and (d) show the different effects that the demand 

disruptions have on the BSN. The recoverability shows a similar 
decreasing trend to Fig. 6 (a) and the areas of the latter three are all 
larger than that of the former one. Fig. 6 (e) shows the relationships 
between the recoverability and α of the former four subfigures. They all 
fit well with exponential decay distributions: under d = 0, R3 = 4.31 ∗

e− 5.59α with R2 = 0.99; under d = S1, R3 = 5.18 ∗ e− 3.65α with R2 = 0.96; 
under d = S2, R3 = 4.65 ∗ e− 4.79α with R2 = 0.99; and under d = S3, 
R3 = 5.85 ∗ e− 4.56α with R2 = 0.98. When α = 0, the recoverability of 
the four scenarios reaches the highest values of 4.35, 5.00, 4.58, and 
5.58, meaning the worst recoverability at this point. 

According to Fig. 6, the following conclusions can be drawn. First, 
the network suffers from much traffic pressure and capacity shortage in 
the morning and evening peak hours, and the shortage in the morning 
peak is much larger. This indicates that Ds has a great impact on the 
BSN’s recoverability and it is in an urgent state to control the travel 
demand in peak hours. Second, with the increase of α, the network 
performance gets better and the effects get weaker after 0.4. This in-
dicates that to economically improve the network performance, the 
dynamic increase in capacity shall be applied according to the different 
congestion levels of the BSN sections. Third, in Fig. 6 (e), the areas under 
S1 and S3 are always larger than those under S2 and the normal state, 
and after α = 0.1 the areas under S1 are larger than those under S3. This 
indicates that a small amount of extra travel demand on one key station 
(around 10,000 trips per hour) can do greater harm to the BSN than a 
large amount of extra travel demand on the network (around 60,000 
trips per hour). The results again confirm the importance of pinpointing 
the key stations for travel demand management and control. 

5. Remarks and policy implications 

From all the measurement results in the three dimensions of the BSN, 
we make the following remarks. First, FR reflects the dynamic network 
performance as the FR dimensions are all dynamic over time responding 
to the spread of disruption and the propagation of traffic flows. Second, 
using the FR measurement framework, the time-varying bottleneck 
nodes and edges can be pinpointed precisely, which is important for 
guiding traffic control and management. Third, the same level of in-
crease in the network capacity may result in different levels of 
improvement in robustness and adaptability, implying that it is crucial 

Fig. 4. The robustness of the BSN under S1, S2, and S3.  

Fig. 5. The adaptability of the BSN under S1, S2, and S3.  
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to interlink the capacity expansion plans with the different dimensions 
of resilience. 

With the case study, the detailed policy suggestions to improve the 
FR are made based on the analysis of the FR dimensions according to the 
order of recoverability, robustness, and adaptability. The explanations 
are as follows. First, it is important to find out what the key time frames 
are. From the recoverability results in Fig. 6, the BSN suffers from the 
largest capacity loss in the morning hours (5:00 a.m.–10:00 a.m.) and 
evening hours (16:00 p.m.–20:00 p.m.). These two time frames should 
receive more attention. The next is to identify where the key bottlenecks 
are. Based on the robustness results in Fig. 4, some representative sta-
tions sensitive to S1 and S2 are pinpointed by the dashed ovals, e.g., the 
Pingguoyuan, Tiantongyuan, Xierqi, Huilongguan, and Huoying sta-
tions, which have the highest travel demands in reality. Thereafter, 
control policies can be devised accordingly. From the demand side, the 
operators may perform travel demand management at the key stations 
surrounded by different dashed ovals in Figs. 4 and 5 in morning peak 
hours because a key station’s surging travel demand can result in ca-
pacity reduction as high as 38% of the entire network. For example, the 
policies include controlling travel demand and guiding passengers to 
less congested travel options. From the supply side, the BSN operator can 
improve the FR by dynamically adjusting the capacities of the lines or 
deploying extra shuttle bus services on the lines connecting to the bot-
tlenecks under scenarios S1 and S2. Also, it is suggested to only increase 
the capacity of other types of transport networks slightly to deal with S3 
as it needs a huge capacity increase in itself for a small amount of extra 
travel demand. Finally, we compare the improvement trends of adapt-
ability and robustness under different policies. Taking S3 in Figs. 4 and 5 
for example, it can be observed that when the capacity increment ratio 
(the overload tolerance parameter) is larger than 0.5, the improvement 
trends and effects of robustness and adaptability are the same. Based on 
these three sequential analyses, the improvement policies are more 
relevant for the BSN. 

6. Conclusions and future work 

This study proposes an application-oriented framework for 
measuring FR. It can measure the dynamic FR of transport networks 
without external interventions under supply and demand disruptions. 
We compile three capacity-related dimensions from the literature, 

including robustness (capacity surplus), adaptability (capacity change), 
and recoverability (cumulative capacity loss) in a single framework. For 
application purposes, we summarize the necessary components for a 
resilience measurement model. In the case study of the BSN, the results 
show the framework’s advantages in grasping the dynamics of network 
performance, pinpointing the time-varying network bottlenecks, and 
assessing the influence of the dynamic capacity expansion. The opera-
tors may use the recoverability to predict when to focus, the robustness 
to pinpoint where to concern, and the adaptability to finally ensure how 
to make the specific control measures. 

Despite the comprehensiveness of the proposed measurement 
framework, there are several limitations worth further investigation. 
First, a few single-layer networks complement and compete with each 
other (Zheng et al., 2018), it would be interesting to measure to what 
extent and in which particular dimensions the multi-layer networks (e. 
g., Liao et al., 2013, 2014; Jiang et al., 2021) improve FR. Second, the 
measured FR results at the new equilibrium state may overestimate the 
transient FR performance since during the timeslot, there may exist a 
time point when the transient FR is worse than that at the new equi-
librium. While the proposed formulation can deliver the transient FR 
performance, the challenge of interpreting the results arises and thus it is 
important to select other meaningful reference points. Third, in the 
operationalization, the classic four-step model is applied, which has 
been criticized for the validity of modeling interdependencies. Since the 
proposed measurement framework is generic, it is feasible to incorpo-
rate more realistic travel behavior modeling mechanisms (He and Liu, 
2012; Nogal et al., 2016; Wang et al., 2019). Fourth, the “dynamics” can 
be reflected by the real dynamic travel demands, dynamic transport 
supplies, and the continuous effects of travel flows between neighboring 
time frames. In the case study, we endeavor to identify the time-varying 
bottlenecks with relatively low time resolutions (1 h). As dynamic traffic 
assignment in a high time resolution is time-costly in large-scale trans-
port networks, the dynamics are not fully explored. We will address 
these issues in our future work. 
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Appendix 1. Tables  

Table A1 
Primary notations  

Parameters Definitions 

CE(u), CE1 (u), CE2 (u) the carrying capacities of edge u of different transport networks 
CV(i) the carrying capacity of node i 
dSS supply side failure 
Dk the total travel demand in the k-th timeslot 
Dk

e the extra travel demand in the k-th timeslot 
Dk

s the stable travel demand in the k-th timeslot 
Dk(i, j) the total travel demand from node i to node j in the k-th timeslot 
Dk

e (i, j) the extra travel demand from node i to node j in the k-th timeslot 
Dk

s (i, j) the stable travel demand from node i to node j in the k-th timeslot 
F(I) the traffic flow in the I-th iteration 
g the ratio of the maximum connecting subgraph 
Gm the maximum connecting subgraph of the network G 
G(V,E) the transportation network composed of node set V and edge set E 
K the entire time frame is divided into K timeslots ,K ∈ N+

nc the number of train carriages 
nG, nGm the number of edges or nodes in G and Gm 

qE(u), qE1 (u), qE2 (u) the traffic volume on edge u of different transport networks 
qV(i) the traffic volume through node i 
r0, r1 travel demand increasing ratio on each node and the entire network 
rSS supply side failure ratio of the network 
R1, R2, R3 three resilience dimensions of robustness, adaptability, and recoverability 
R (x,Dk

s ,d, t) a general measurement formula of network resilience 
t1(u), t0(u) the actual or perceived travel time and free flow travel time of edge u, respectively 
th the headway of a subway line 
tkb , tkw, tkf the beginning, worst, and finishing time of a disrupted timeslot k, respectively 

t′(i, j), t(i, j) the travel time between node i and node j with and without d and Dk
s 

T′, T the sums of the inverse travel time with and without d and Dk
s 

Y(I) the augmented traffic flow in the I-th iteration 
α the overload parameter 
β1, θ1, β2, θ2 two pairs of calibrated parameters in the BPR equation 
ρ the scaling coefficient of the capacity 
λ the rated carrying capacity per carriage   
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Table A2 
Redundancy-reduction of the resilience dimensions  

No. Reference  Concepts  

1 Cohen et al. (2000) resilience   
2 Berdica (2002) vulnerability   
3 Holme et al. (2002) vulnerability   
4 Motter and Lai (2002) robustness   
5 Wang et al. (2013) vulnerability   
6 Reggiani et al. (2015) resilience   
7 Espinet et al. (2016) vulnerability   
8 Kermanshah and Derrible (2017) robustness   
9 Yosef et al. (2018) survivability   
10 Wang et al. (2019) vulnerability   
11 Cox et al. (2011)  resilience  
12 Cats and Jenelius (2015)  robustness  
13 Ganin et al. (2017)  resilience  
14 Pimm (1984)   resilience 
15 Baroud et al. (2014)   resilience 
17 Linkov et al. (2015)   resilience 
18 Hosseini et al. (2016)   resilience 
19 Zhang et al. (2019)   resilience 
20 Chen and Miller-Hooks (2012) resilience  recovery 
21 Gu et al. (2020) vulnerability  recoverability 
22 Bruneau et al. (2003) robustness redundancy recoverability 
23 Murray-Tuite (2006) connectivity adaptability recovery 
24 Zhang et al. (2015) resilience absorb resilience 
25 Zhou et al. (2019) robustness redundancy recoverability  

Three dimensions robustness adaptability recoverability  
Connotation capacity surplus capacity change cumulative capacity loss  

Appendix 2. Preliminary data analyses 

Travel demand and structural analysis of the BSN. 
According to the statistical analysis of the smart card data, the regularities of travel demand are depicted in Fig. A1. The boxplots Fig. A1 (a) and (b) 

show the distributions of the hourly travel demand on the entire network on weekdays and weekends, respectively. The differences between the 
minimum and the maximum and between the lower quartile and the upper quartile counts are considerably small. This indicates travel demands in the 
same timeslot (1 h) on weekdays and weekends are relatively stable, but the fluctuations in Fig. A1 (a) are also noticeable as shown by the red crosses. 
Fig. A1 (c)  
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Fig. A1. Regularity and volatility of travel demand on the BSN.  

displays the daily numbers of check-in and check-out passengers at each station. For each station, the numbers of daily check-in and check-out 
passengers are almost the same and show a linear pattern with an R-squared value R2 = 0.9756, which also indicates the stability of the travel 
demand. Fig. A1 (d) shows the uneven spatial distribution of daily station-based travel demand. It is seen that stations with higher travel demand are 
mainly distributed near the second, third, and fourth rings in the east and north. Based on these plots, we can see that the stability and volatility of the 
travel demands co-exist. In line with Eqs. (6) and (7), travel demand can be divided into two parts, i.e., stable travel demand (Ds) and extra travel 
demand (De). 
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Fig. A2. Low correlation between structural indices and travel demand of the BSN.  

To investigate the network importance reflected by the real travel demand and network structure, we apply the Space P and L methods (Sien-
kiewicz and Holyst, 2005) to rebuild the BSN. The Space P method considers a subway line as a strongly connected graph and the interchange station 
as the connection between different lines to construct an interchange network, while the Space L method considers each station as a node and the 
sections between two neighboring stations as the edges to construct a spatial network. Each node degree (the sum of in-degree and out-degree) and 
each node betweenness centrality (BC) are calculated to compare with the real node travel demand. Fig. A2 (a) to (d) depict the daily OD count versus 
node BC using Space L, OD count versus node BC using Space P, OD count versus node degree using Space L, and OD count versus node degree using 
Space P, respectively. The Pearson correlation coefficients (P) between structural indices (node degree and BC) and the average number of OD pairs 
per day at each station are comparatively low and under 0.4. Especially, some edges with high traffic flows may be insignificant structurally. Wang 
et al. (2013) also observed the low correlations between structural indices and real traffic demand. Therefore, the neglect of traffic demand distri-
bution on the network tends to cause false identification of important nodes or edges opposed to the reality. Thus, SR derived from structural indices is 
insufficient to reveal the resilience of a transportation network during a short time frame. 

The preliminary analyses of the datasets indicate that the topological importance and the real travel demand of a transport network are not 
strongly related, and this is the major motivation for studying the FR of a transport network. 

Appendix 3. The recoverability using the index of mean harmonic distance 

Another new connectivity index (Wang et al., 2018; Ganin et al., 2019) is used to measure the recoverability dimension of the BSN and the results 
are presented below. 

This index represents the “mean harmonic distance” of a network and can be calculated by the sum of “inverse travel time” between all pairs of 
nodes: 

T′
/

T =
∑

i,j∈V′,i∕=j

1
t′(i, j)

/
∑

i,j∈V,i∕=j

1
t(i, j)

(A1)  

where T′ and T are the sums of the inverse travel time between any pair of nodes without and with d and Dk
s ; t′(i, j) and t(i, j) are the travel times 

between nodes i and j with and without d and Dk
s , respectively; V′ is the surviving node set after disruptions. Through the comparison between T and T′, 

it translates the efficiency-related index (T) to a “capacity surplus” index (T′/T). Similarly, it can be transformed to the “capacity change” and “cu-
mulative capacity loss” indices. It can better reflect all the surviving network components than g. 

Fig. A3 (b), (c), and (d) show the different effects that the demand disruptions have on the BSN. The recoverability shows a similar decreasing trend 
to Fig. A3 (a) with the increase of α and the areas of the latter three are all larger than that of the former one. It depicts the negative influence of the 
extra travel demand on the network. Fig. A3 (e) shows the relationships between the recoverability and overload parameter α of the former four 
subfigures. They all fit well with exponential decay distributions: under d = 0, R3 = 5.15 ∗ e− 5.53α with R2 = 0.99; under d = S1, R3 = 6.19 ∗ e− 3.66α 
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with R2 = 0.96; under d = S2, R3 = 5.54 ∗ e− 4.82α with R2 = 0.98; and under d = S3, R3 = 6.26 ∗ e− 4.24α with R2 = 0.97. When α = 0, the worst 
recoverability of the four scenarios are 5.19, 5.42, 5.92, and 5.92. 

In comparison of Fig. 6 with Fig. A3, except that T′/T shows larger negative effects than g, we can obtain almost the same results using the two 
different indices. It is because a targeted index’s results before and after disruptions can always be normalized by defining the smaller values as the 
numerator and the larger ones as the denominator (Ganin et al., 2019). Therefore, all the indices can be capsulated into x, and the framework becomes 
more convenient and comprehensive.

Fig. A3. The recoverability of the BSN under S1, S2, and S3 using mean harmonic distance.  
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