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Abstract

Digital twins (DT) are often defined as a pairing of
a physical entity and a corresponding virtual entity
mimicking certain aspects of the former depending
on the use-case. In recent years, this concept has fa-
cilitated numerous use-cases ranging from design to
validation and predictive maintenance of large and
small high-tech systems. Although growing in pop-
ularity in both industry and academia, digital twins
and the methodologies for developing and maintain-
ing them differ vastly. To better understand these
differences and similarities, we performed a semi-
structured interview research study with 19 profes-
sionals from industry and academia who are closely
associated with different lifecycle stages of the cor-
responding digital twins. In this paper, we present
our analysis and findings from this study, which is
based on eight research questions (RQ). We present
our findings per research question. In general, we
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identified an overall lack of uniformity in terms of the
understanding of digital twins and used tools, tech-
niques, and methodologies for their development and
maintenance. Furthermore, considering that digital
twins are software intensive systems, we recognize a
significant growth potential for adopting more soft-
ware engineering practices, processes, and expertise
in various stages of a digital twin’s lifecycle.

1 Introduction

Digital Twins (DTs) have captured the interest of in-
dustry and academia in recent years, because of their
promise to better understand, monitor and improve
systems. The concept of DTs often encompasses the
notion of a real-world entity and a digital counterpart
that mimics certain aspects of the former. We believe
that both industry and academia are playing a crucial
role in further developing this concept and DT’s de-
sign, development, operation, and maintenance. Al-
though growing in popularity, the concepts and prac-
tices around DTs are significantly different between
instances. According to Zhang et al. [30] there is no
general consensus on the nature of the real-world en-
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tity, the required fidelity of the digital counterpart,
or the terms used to refer to these entities.
In this exploratory research, we aimed to better un-

derstand the concepts around DTs, their differences
and similarities. To achieve this, we interviewed 19
individuals from industry and academia who are in-
volved in DT development, maintenance, and usage.
During these interviews, within a DT system we pri-
marily focused on the development, evolution, and
maintenance of the digital counterpart and associated
data. To guide this research we initially identified re-
search questions RQ1–7 listed below. We defined the
eighth research question (RQ8) during the analysis
phase when we identified interesting insights on the
future vision of DTs.

RQ1: How are digital twins defined in practice?

RQ2: How does reuse of existing (software) arti-
facts influence the lifecycle of DTs?

RQ3: How is consistency maintained among the
cross-domain models that are developed inde-
pendently?

RQ4: What technologies and methodologies are
used to integrate models in a DT?

RQ5: What practices are used to design and de-
velop the orchestration and data exchange be-
tween models in DTs?

RQ6: What techniques and tools are used to val-
idate a DT and its overall dynamic behavior?

RQ7: What properties need to be validated in a
DT for its consistent dynamic behavior?

RQ8: How will DTs and their development evolve
in the future?

These RQs aims to investigate the practices and
understandings of DTs from a software perspective,
thus exploring DT specific software challenges dis-
cussed in [28]. The motivation for this study is to ex-
plore how current interviewees have been using DTs,
what tools, frameworks and methodologies they ap-
ply to develop, maintain and operate DTs in different
domains; as well as interviewees’ understanding of

DT. Specifically, we are interested in understanding
the practices in three main areas known to be chal-
lenges in digital twin development and maintenance:

• Consistency of models used in DTs created
across engineering domains;

• Orchestration of such cross-domain models in
DTs;

• Validation of DT dynamic behavior.

To present our work, we structure this paper in dif-
ferent sections. Section 2 describes the background
of this research, Section 3 the research method we
followed. In Section 4, we present a short summary
of the domains covered by the interviewees and corre-
sponding DT’s applications. We present our findings
related to the eight RQs in Section 5, based on the
analysis of the information we gathered during the
interviews. Section 6 explains the threats to validity
of our research and how we attempted to minimize
them. Finally, Section 7 discusses our observations
and concludes the paper with recommendations for
future research directions.

2 Background

The concept of Digital Twins (DTs) was introduced
by Grieves [11] in 2003; Grieves modelled DTs with
three dimensions i.e., the physical entity, virtual
model and connection, which facilitates the physi-
cal–virtual interaction. Since then researchers and
practitioners have used DT as an umbrella term to
refer to something from a simple simulation to a
complex virtual entity closely mimicking a real-world
counterpart. For example, Bielefeldt et al. [12] focus
on ultra-realistic multi-physical computational mod-
els in their definition of DT, whereas El Saddik [16]
defines a DT as a digital replica of a physical entity
whether living or non-living.

Tao et al. [17] extended the original DT model by
Grieves and proposed a five dimensional (5D) model
depicted in Figure 1, i.e., MDT = (PE, VE, Ss, DD,
CN) where PE refers to the physical (actual) real-
world entity with various functional subsystems, VE
is the corresponding high-fidelity digital model that
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reproduces certain abilities and properties of the PE,
Ss represents the services for PE and VE, DD encap-
sulates the domain knowledge–data from both PE &
VE and their fusion, and finally, CN is the connection
among parts of the DT.
In order to avoid any ambiguity, in the following

sections we use the terms actual entity (AE) and vir-
tual entity (VE) to respectively refer to real-world
entity, which can be an existing or foreseen engi-
neered or naturally occurring physical system or pro-
cess, and the corresponding digital counterpart.

Physical Entity
(PE)

CN_VS

CN_PV

Virtual Entity
(VE)

CN_PDCN_VD

Data (DD)

CN_PSCN_SD

Services (Ss)

iterative
optimization

iterative

optimizationite
ra

tiv
e

op
tim
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tio

n

Figure 1: Five dimensional (5D) model of a DT pro-
posed by Tao et al. [17]

Since the inception of DTs, research has focused on
understanding the concept, the development of DT’s
applications, or exploration of different implementa-
tion technologies used. An example is the work of
Liu et al. [29] that analyses the concept of a DT, the
technologies used, and DTs’ main industrial applica-
tions. That research is based on systematic literature
review (SLR) analysing over 200 publications.
Tao et al. [21] analyses the state-of-the-art in de-

velopment and applications of DTs, aiming to outline
key technologies enabling DT development, classify
current and future applications, and lay out possi-
ble gaps and challenges. The research used an SLR,
analyzing 50 papers and eight patents.
Sharma et al. [34], based on an SLR of over 80 pa-

pers, analysed and proposed solutions for the research
and implementation gaps of DT technology, such as
IoT (internet of things), machine learning and data.
This research concluded that regulation and security
mechanisms are essential for the proper implementa-

tion of DTs due to its cross-domain nature. They
also concluded that there are multiple technical and
domain specific challenges that require more research
to be resolved.

Gürdür et al. [37] explores how DTs can help
the infrastructure industry. The research methodol-
ogy used semi-structured expert interviews with non-
technical executives from industry in the UK. This
approach allowed the researchers to collect their opin-
ions, related to non-technical challenges, on the value
of DTs.

Dalibor et al. [31] conducted an SLR on 356 pa-
pers. This paper analyses DTs with a bottom-up
approach, exploring different implementations to in-
vestigate expected DT properties and how DTs are
deployed, operated and evaluated. In addition, the
authors developed a DT feature model. They ex-
plored different implementation techniques, tooling
and development processes.

The majority of the research shown above is based
on SLRs focused on DT practices and understanding
from a high-level systems perspective. The empirical
research by Gürdür et al. also approached DTs from
a business and high-level systems perspective.

3 Research Methodology

Considering the exploratory nature of our re-
search questions we opted for semi-structured inter-
views [23]. This provided sufficient flexibility for the
participants to express themselves while allowing us
to collect data on our topics of interest. In this sec-
tion, we introduce and explain our research method-
ology. We followed Strandberg’s interview lifecy-
cle [20], with our steps depicted in Figure 2. Next,
we expand on each step and explain the related ac-
tivities.

Planning Identify and invite
potential interviewee AnalysisPerform

interview Transcribe

Figure 2: The key steps of the interview research

3



3.1 Planning

This phase entailed the regulatory activities that our
universities required for collecting data from human
participants, and preparing a questionnaire consis-
tent with the RQs, serving as guideline during the
interviews.

3.1.1 Ethical review and research data man-
agement

Ethical review is a process followed by our univer-
sities that enables researchers to perform research
activities in accordance with accepted ethical stan-
dards and existing regulations. This process en-
sured that measures and infrastructure were in place
for maintaining data security and confidentiality as
we collected personally identifiable information for
(prospective) interviewees and recorded the inter-
views which potentially contained sensitive informa-
tion.

3.1.2 Questionnaire Design

We prepared a questionnaire to act as a guideline to
keep the discussion in our semi-structured interviews
focused. It was developed in line with the Interview
Protocol Refinement (IPR) framework [13], compris-
ing four phases:

1. Ensure interview questions are aligned
with RQs: We took an iterative approach.
For the first iteration, we listed our initial RQs
and from these derived the initial set of inter-
view questions. We tagged the interview ques-
tions with corresponding RQs. This allowed us
to identify under-represented research questions
and adapt the interview questions accordingly.
We repeated this step until the questionnaire sta-
bilized.

2. Constructing an inquiry-based conversa-
tion: We categorized the interview questions
into (1) background, (2) key, and (3) conclud-
ing ones. Based on this categorization and sug-
gestions of Hove and Anda [3], we sorted them
and rephrased some, enabling an inquiry-based
conversation.

3. Receiving feedback on the questionnaire:
We performed several review rounds among the
authors of this paper and a pilot interview with
a researcher working in the model-driven soft-
ware engineering domain to check how well par-
ticipants might understand the questionnaire.
Wherever we identified significant difference be-
tween interviewee perception and our intention,
we rephrased for better understandability.

4. Conduct pilot interview: We performed
mock interviews with colleagues, allowing us
to try our questionnaire, receive feedback, and
gather experience as interviewers. This helped
to further mature the questionnaire.

Table 1 shows the resulting set of interview questions
and their associations with the RQs. All the inter-
view questions except for the first two are connected
to one or more RQs. These two questions allowed
us to start the conversation, get introduced with the
interviewee, and contributed to a conversation-like
interview. Furthermore, with the final question we
asked the interviewees’ opinion on Tao et al.’s 5D
DT model [17] (see Section 2). While asking this
question, we showed an image of the 5D model and
briefly explained it. To avoid influencing the intervie-
wees during the rest of the interview, we intentionally
asked this question at the end.

3.2 Finding interviewees

We aimed to interview practitioners and researchers
who are actively involved in the development, main-
tenance and use of DTs. We started with our own
network and created an initial set of potential in-
terviewees that matched our search criteria. Addi-
tionally, we verified the DT related involvements of
these individuals based on their Google Scholar or
LinkedIn profile. Furthermore, as we conducted the
interviews, we requested participants to propose po-
tential interviewees from their network, which added
two individuals to our list. In the end, we invited 25
persons. We received 22 responses, 20 of them posi-
tive; in the end, we conducted 19 interviews since one
respondent stopped responding.
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Table 1: Interview questions and their relation with the RQs
Research questions (RQs) → 1 2 3 4 5 6 7 8

Background questions
1. What is the domain of your company and what kind of services does

it provide?
2. How long have you been working and what is your current role?
Key questions
3. What is your understanding of a DT? x
4. How are you involved in the development or usage of the DT?
5. What problems are you solving with your DT? x
6. Is your DT for the entire process/system or a specific part? x
7. What are the main parts of your DT? Could you shortly describe

their role?
x x

8. Is there a physical counterpart of your DT? Does it communicate
with the digital world? If yes, how?

x x

9. Did you build your DT from scratch or you reused some of the things
that already existed? What kind of issues did you face if you reused
something or by building from scratch?

x x

10. How is the data exchange between the models (and physical system)
specified?

x x x

11. How is the sequence of execution of the models in your DT? x
12. What issues, if any, did you face with the overall collective execution

of models in your DT?
x

13. Which platforms/tools are you using to develop the digital twin? x x x x
14. How often is the DT updated for bug fixes, improvement or similar

reasons?
x

15. After each update did you face integration issues? If yes, what kind? x x
16. How do you ensure various software elements can work together spe-

cially if multiple tools were used for development?
x x x x x

17. What properties/parameters did you validate to ensure an overall
consistent behavior of your DT?

x

18. What tools and techniques did you use to validate these properties
and parameters?

x x

19. What do you consider to be the general characteristics of your DT? x
Concluding questions
20. How do you see the DT evolve in the future to solve additional

problems?
x

21. What is your opinion on the 5-dimensional DT model from Tao et
al. [17]?

x

We used emails to the potential interviewees to in-
troduce ourselves and explained the purpose of our
research. With the emails, we also included a con-

sent form where we explained details of our research
about data processing and our measures for ensuring
data anonymization and privacy, which allowed us to
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create a level of trust with the interviewees. While we
did not share our questionnaire with the interviewees
to avoid prepared and potentially biased answers, we
provided them with a description of our topics of in-
terest to allow them to prepare if they wanted to.

3.3 Performing interviews

As we conducted semi-structured interviews, we did
not follow any concrete structure and the question-
naire in Table 1 acted as a guideline. However, we
prepared standard texts that we read to the intervie-
wee at the beginning and end of the interview. These
introduced the interviewers, checked whether the in-
terviewee had any questions or confusion regarding
the consent they provided earlier, and at the end,
thanked them for their participation and requested
their feedback on the interview.We recorded video
and audio of all 19 interviews. These interviews took
place between September 2021 and February 2022.

3.4 Transcription

The interviews altogether accounted for just over 26
hours of recorded video with audio. To generate a
word-to-word transcripts of these recordings, we used
automated transcript generation followed by manual
verification and revision. As most interviews were
conducted and recorded using Microsoft Teams, we
could use the generated transcript of the correspond-
ing recording. We manually verified and revised each
transcript twice to ensure correctness.

3.5 Data analysis

We used the transcripts for further analysis based on
a thematic analysis methodology for qualitative anal-
ysis [22]. We utilized LaMa [36], a web-based tool for
collaborative labeling and thematic analysis, to col-
laborate on this analysis. To restrict access and en-
sure data privacy, we deployed this platform locally.

3.5.1 Generating and anonymizing artifacts

The aim of this step was to generate a set of arti-
facts from the transcripts of the interviews. We de-

fine an artifact as an independent piece of text that
focuses on a specific subject and contains sufficient
context information for understanding that subject.
To generate them we manually went through each
transcript focusing on text spoken by the interviewee
and separated text fragments whenever we identified
different subjects being discussed. At this stage we
only tried to identify changes in subject, not sub-
jects themselves. It was interesting to see that the
change of subject occurred not only when new ques-
tions were asked but also while discussing one single
question. As we generated these text fragments we
kept sufficient context information for them to be un-
derstandable. When this was not the case, we added
a few keywords as context, marking such an addi-
tion with square brackets, e.g., to indicate that the
word “they” (at that point) refers to a “[digital en-
tity and its 3D visualization]”. We also generated ar-
tifacts by splitting one artifact into two or more dur-
ing the labeling step, which is explained in the next
section. Typically, we splitted artifacts if we found
more than one key messages in it. At the end, we
had 748 text artifacts of various sizes. Furthermore,
we anonymized the transcripts during this manual ar-
tifact generation: all personally identifiable informa-
tion was replaced by unique identifiers that we stored
separately for traceability purposes. The anonymiza-
tion was essential for performing unbiased analysis in
later phases of our research.

3.5.2 Labeling of artifact and topic genera-
tion

After generating the artifacts for all transcripts, we
labeled them using LaMa [36]. We define a label as a
short text that sufficiently captures the core message
of an artifact. To reduce bias in labeling, each artifact
was labeled by two labelers. We resolved conflicting
labels by agreeing on one label through discussion.
During the labeling process, the labeler could use an
existing label or create a new one. In LaMa, these
labels were accompanied by a description explaining
how and when a label should be used, which was
crucial for reuse of existing labels. Moreover, while
labeling we encountered artifacts that lacked suffi-
cient information or context. We labeled these ar-
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tifacts with two predefined labels: No value or Not
understandable. An example is an artefact discussing
an interviewee research policy in relation with their
clients. This artefact was classified as No value, since
it does not discuss any information related to DT de-
velopment.
Once we had over 70% of the artifacts labeled, we

started with topic creation in parallel. In this case,
we define a topic as a clustering of labels that can
collectively provide a complete message on a specific
subject. We chose an iterative approach while cre-
ating the topics. Based on our initial overview of
the existing labels, we created our first set of topics.
The topic Different understandings of DT is one of
the first topics we created. We created this topic be-
cause we noticed more than 50 labels related to DT
definition. These topics and the list of labels were re-
visited at regular intervals, resulting in one or more
of (1) creation of new topics, (2) redefining a topic at
a higher level of abstraction, (3) breaking up a topic
into multiple topics, and (4) moving labels from one
topic to another. We repeated this until reaching
convergence.

3.5.3 Relating topics to RQs and perform
analysis

In this last step, we focused on answering the research
questions. To do that we created a matrix with the
final set of topics and our RQs that enabled us to
identify the correlations between the two. To answer
the research questions, we consulted this matrix to
identify related topics. Subsequently, we carefully
went through the topics of interest and corresponding
labels and artifacts to answer the research questions.

4 Demographics of interview
participants

As explained in Section 3.2, our aim was to interview
individuals who are actively involved in the develop-
ment, maintenance, and use of DTs. Out of the 19
interviewees, ten were primarily from industry and
nine from academia. In this section, we provide an
overview of their domains and DTs’ applications.

We classified the professional domains of the in-
terviewees into six categories. Seven interviewees
claimed that their work involves two different do-
mains and one mentioned being involved in three do-
mains. Table 2 shows the distribution of domains
among the 19 interviewees. As visible here, manufac-
turing and chemical process industry and high-tech
products are the two most dominant categories.

Table 2: Professional domains of the interviewees.
The number represents the number of DT’s in that
domain.

Domain # DTs
Manufacturing and chemical processing 10
High-tech products 9
Building and construction 3
Transport and logistics 3
Information systems 2
Healthcare 1

As for the DTs’ applications, all the interviewees
mentioned that they have multiple applications for
theirs. We therefore analysed the correlation between
the domain and the DT’s application. Figure 3 shows
this correlation. For the analysis, we classified the
applications in eight categories as follows in alpha-
betical order:

• Analysis or improvement of the operation of a
product or process. Examples provided by in-
terviewees are bug detection, optimization, sys-
tem behavior analysis and simulation for deci-
sion making or process configuration.

• Control of a process or a product. Such ap-
plications aim to take corrective actions from a
monitored state towards a desired one.

• Demonstration of alternative solutions or con-
figurations for a physical system. This tends to
use visual tools, such as 3D modelling tools.

• Design and development of a product (hard-
ware or software) or process. Examples pre-
sented by interviewees are prototyping, use of
simulation for design or design improvements.
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• Monitoring a property within a process or a
product, aiming to compare the current state
against a planned one.

• Predictive maintenance concerns the super-
vision and prediction of an equipment of product
condition. The aim of such a DT application is
to determine the state of health of the supervised
entity and anticipate its maintenance.

• Testing products or processes; examples shared
by interviewees are virtual commissioning, veri-
fication and validation or experimentation.

• Training operators or users of a specific ma-
chine or product.

Figure 3 shows the correlation between the do-
mains of the interviewees and the applications of their
corresponding DTs. The total value, shown in black,
represents the sum of all the applications in a spe-
cific domain. The # application types, shown in blue,
represents the number of application categories of a
specific domain. The DTs in the high-tech products
and manufacturing and chemical processing domains
have the highest DT application diversity, each with
seven application types. In these two domains, the
most frequent DT applications are design and devel-
opment, and testing. Furthermore, with the excep-
tion of the healthcare domain, all the other domains
use DT for design and development. The other two
most popular DT applications are testing—used by
four domains—and analysis—used by three domains.

5 Results and Findings

This section presents the answers to our eight re-
search questions. These answers are based on ana-
lyzing the data collected during the interviews. Some
of the discussions were not strictly related to the de-
fined RQs but still yielded interesting insights. We
present such additional findings in Section 5.9.

5.1 Definitions and understanding of
DT (RQ1)

As indicated in Section 1, DT is used as an umbrella
term and across different domains can have many
different definitions, interpretations, and understand-
ing. With RQ1 we aimed to understand these, and
the similarities and differences between them, based
on the data collected from the interviews.

A variety of definitions of DTs were discussed by
the interviewees and there was no uniformity in these
definitions. Some interviewees have defined DTs with
certain boundaries at the start of interview yet over
the course of interview mentioned additional aspects
of DT, which extend their initial description. In the
following text, we present views on DTs observed
from the interview data.

5.1.1 Virtual representation of an entity

We intended to find how many interviewees agreed
to the fundamental understanding of a DT being a
virtual representation of some entity. All the inter-
viewees mentioned that a DT is a virtual representa-
tion of some entity, by using different terms such as
‘digital counterpart’, ‘digital copy’, ‘virtual replica’,
‘virtual prototype’ or ‘model’. Five interviewees used
terms such as ‘accurate’, ‘precise’ and ‘high fidelity’
to describe that a DT should be a high fidelity repre-
sentation of an entity. According to ten interviewees
the level of fidelity is determined by the DT’s pur-
pose and application. When further talking about
DTs, interviewees discussed the type of entities the
DT could virtually represent. These could be (1) a
real world object with physical dimensions; (2) a real
world process or organization or even a concept with-
out physical dimensions, such as a human resource
process, a logistics process in manufacturing, fuzzy
concepts and others.

One interviewee mentioned that in EU standard-
ization, there is an umbrella term called ‘entity of
interest’ (EOI) to describe entities for which vir-
tual representations are created, encompassing both
types of entities mentioned above. EOI as a term
matches what we call AE (Actual Entity) in this pa-
per. Eight interviewees implicitly or explicitly dis-
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Figure 3: The correlation among the identified domains (y-axis) of the interviewees and DT’s application
(x-axis). The numbers on the plot represent the number of DT’s applications in that specific domain.

cussed a DT being a virtual representation of not
necessarily a physical object, but of both physical
and non-physical ones; indirectly referring to a vir-
tual representation of an AE. Four interviewees did
not explicitly mention whether DTs should be a vir-
tual representation of an AE, but discussed their DTs
being a virtual representation of a real world object
with physical dimensions. Ten interviewees also men-
tioned that DTs need not necessarily be a virtual rep-
resentation of an existing AE, but could also be of an
AE at the design stage. The current confusion in the
description of DTs on whether the AE is part of the
DT itself or not came up during the interviews. Four
interviewees expressed that it is not since the word
‘digital’ refers only to virtual objects and not phys-
ical objects. From the above, it can be understood
that there is some level of alignment in the under-
standing of DT as a virtual representation of some

entity which could be physical or non-physical, and
which may or may not already exist.

5.1.2 Components of a DT

Through the interviews, we wanted to understand
what components interviewees considered part of
DTs and two questions were aimed towards this.
Some interesting varying responses were observed
such as one academic interviewee describing the com-
ponents of a discrete event simulation (DES) library
as components of their DT. Another academic in-
terviewee discussed the different types of data spe-
cific to their DT’s application as components of their
DT. One industrial interviewee mentioned Computer
Aided Design (CAD) models and a software compo-
nent used for creating model elements as the main
components of a DT. However, during the course of
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the interview they did implicitly communicate other
components or aspects of a DT. The different com-
ponents of a DT discussed during the interviews are
listed below. All these components of DTs as de-
scribed by interviewees have been represented in Fig-
ure 4, where the numbers represent the number of in-
terviewees from academia and industry respectively,
who discussed those specific components of DTs.

• Models: Interviewees mentioned different types
of models, e.g., those representing geometry,
physics, behavior and interactions; design and
simulation models; descriptive and predictive
models; 3D models; mathematical models; me-
chanical models; building information models
(BIMs); CAD models; and others. All intervie-
wees agreed explicitly or implicitly that models
are an important component of DTs.

• Data: Interviewees also discussed different
types of data such as measured data from sen-
sors; data from system, design data; historical
data; reused data from the relevant product line
which is in operation; data acquired during DT
operation; data from people who are part of the
process; data from subject matter experts; data
acquired during the entire lifecycle of a DT; and
others. It can be concluded that all interviewees
agreed explicitly or implicitly that data is an im-
portant component of DTs.

• Purpose: Thirteen interviewees expressed that
a DT should have a purpose and some further
mentioned that this purpose is the driving fac-
tor for DTs to be developed. On the contrary,
one industrial interviewee explicitly mentioned
that DTs should not have a purpose. This inter-
viewee further discussed that DTs should not be
developed with a purpose and they have a pur-
poseless existence, which is in stark contrast to
what the thirteen interviewees mentioned above.
However, this interviewee clarified that once the
DT is developed, it can be used for whichever
purpose is needed. The purpose mentioned by
the different interviewees can be correlated to
the ‘services’ component in the 5D model of DTs

proposed by Tao et al. [17] (discussed in Sec-
tion 2).

• AE: Already discussed in Section 5.1.1.

• Communication between AE and its vir-
tual counterpart:

As part of the interview, we intended to under-
stand the level of communication between the
AE and its virtual counterpart. All but one
interviewee discussed the synchronization from
the former to the latter—either automated or
manually. Such synchronization implicitly con-
veys a unidirectional communication from AE
to its corresponding virtual counterpart. Eleven
interviewees discussed that a DT should have bi-
directional communication between the two enti-
ties. In addition, two interviewees also expressed
that the virtual replica should not always be con-
nected to its AE but only when this is needed.
Five interviewees shared that the synchroniza-
tion between AE and its virtual replica should
be in real time. However, it was not explic-
itly discussed further by any of the interviewees
what was meant by ‘real time’ which could pos-
sibly have different interpretations in different
domains. We identified seven interviewees who
mentioned that the frequency of synchronization
depends on the purpose or application. One in-
terviewee explicitly mentioned that the connec-
tions between the AE and its virtual counterpart
cannot be considered to be part of the DT since
this interviewee’s perspective was that it is only
an infrastructure needed to create and to oper-
ate DTs and thus, it cannot be considered to be
a part of DTs.

• Other components of a DT: Apart from the
components described above, we found other in-
teresting components mentioned by interviewees
which could be a part of the DT, which are dis-
cussed below. An academic interviewee empha-
sized algorithms, including AI (Artificial Intelli-
gence) based ones, which could be used for con-
trol, decision making, monitoring, or other pur-
poses. Another academic interviewee claimed
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that knowledge graphs which capture and de-
scribe knowledge about DT components should
also be a component of a DT. Two interviewees
explicitly mentioned that humans play an impor-
tant role in a DT and thus, they should also be
a component in a DT. One industrial intervie-
wee considers that the main component in a DT
at the lowest abstraction level is time. He fur-
ther elucidated that time is an important com-
ponent which can be sped up or slowed down,
move backward or forward and also, diverge from
a specific point in time.

5.1.3 Relation to the 5D DT model

As explained in Section 3.1.2, we collected and ana-
lyzed the opinions of our interviewees on the 5D DT
model by Tao et al. [17] (explained in Section 2). In
this section, we present our observations from this
analysis.
We were able to map some of the DT components

mentioned by the interviewees, as discussed in Sec-
tion 5.1.2, to the 5D model. This mapping is shown
in Figure 4, where the number of interviewees from
industry and academia agreeing to the components is
shown, respectively. As shown in the figure, we iden-
tified considerable number of mappings between the
components mentioned by the interviewees and the
physical entity, virtual entity, and data components
of the 5D model. As discussed earlier, the purpose
of a DT mentioned by different interviewees can be
correlated to the services component in this model.
As depicted in Table 3, 11 interviewees mentioned

that they could relate to the 5D DT model to a cer-
tain extent and agreed to this model albeit with some
changes. Four interviewees from industry explicitly
disagreed with this model. Whereas another four
interviewees neither explicitly agreed nor disagreed
with this 5D DT model and discussed their perspec-
tives on this model. It is also important to mention
here that we were not able to obtain the opinion of
one interviewee due to time constraints.
Three interviewees suggested that some connec-

tions in the 5D model are not needed and might be re-
moved such as the connection between PE and other
components. They further elucidated that the con-

Table 3: Agreement on 5D model of DT [17] by in-
terviewees from academia (#A) and industry (#I).
The total number of interviewees are 10 from indus-
try and 9 from academia.

5D DT-model #A #I Total
Agree 6 5 11

Disagree 0 4 4
Neither agree nor disagree 3 1 4

nection from PE might not be needed in some cases
such as when PE may not exist or when PE may not
be capable to communicate. Two of those three fur-
ther expressed that some of these connections need
not be bi-directional, but can be uni-directional—
such as the connection between data and PE, data
and VE, and others. Some interviewees also men-
tioned that the nature of these connections were not
clear enough. For example, one academic intervie-
wee explicitly mentioned that this model should also
clearly specify what flows in each direction from one
component to another. According to two intervie-
wees, humans play an important role in DTs and sug-
gested to include them as another dimension. Two
interviewees specifically mentioned the services part
of the model to be highly important, and that a ser-
vice could be interconnected with services from other
DTs, thus, enabling service level interaction.

We identified two interviewees who mentioned that
they see data and VE combined as a single compo-
nent. One of these interviewees clarified that they
consider VE to represent data. One interviewee from
industry emphasized using percentages in this model
to represent the relative importance of each of the
components. He further elucidated that the impor-
tance of each component could vary based on the DT
application or based on how the DT is developed:
in certain DT applications he had worked on, in his
opinion the data was more important than models
and this should be represented in the 5D model of
that DT. We identified other interviewees who men-
tioned that data is an important part of the DT, while
a few others mentioned that services are the most
important part of a DT. One industrial interviewee
specifically indicated that he does not see a single
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Data (DD)
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Academia
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109

85

109

99

56

48

Other Components
mentioned
Humans 1 1
Algorithms 1 0
Knowledge Graph 1 0
Time 0 1

Figure 4: 5D DT model components [17] and interviewees’ agreement. The number indicates interviewees’
agreement to the corresponding component as part of DTs. SYNC component is defined as the unidirectional
synchronization from PE to VE.

VE for a DT, but several VEs which could possibly
be inter-connected or separated. Overall, it can be
understood that while eleven interviewees agree to
the 5D model, there are several changes suggested by
them to this model and thus, they do not completely
agree with it. While some of these changes do apply
to a generic DT, some changes are also specific to the
DT that the interviewee worked on.

5.1.4 Discussion

Based on our findings presented in this section, there
is no common understanding of DTs across the nine-
teen interviewees. It is relevant to mention that this
lack of common understanding has been discussed as
one of the non-technical challenges in DT develop-
ment by Van den Brand et al. [28] and it is highly
important to overcome this. Moreover, we aimed to
understand the alignment of interviewees on the dif-
ferent parts that make up a DT, especially the highly
relevant ones such as the relation and communication
between AE and virtual counterpart. It can also be

observed from our findings that interviewees did not
agree on all the components of a DT.

Takeaway message: Our inference from the inter-
view data is that there is no uniformity in the defi-
nition of DTs nor in the understanding of the com-
ponents that make up a DT. Despite this disparity,
some agreement existed on certain components of
a DT, specifically, models, data, and the synchro-
nization between the AE and its virtual counter-
part.

5.2 Influence of reuse on DT lifecycle
(RQ2)

As indicated by Walravens et al. [35], developing DTs
is a cross-domain and resource intensive task. We
believe reuse of existing artifacts can significantly re-
duce the development and maintenance costs of DTs.
Answering RQ2 validated this belief and improved
understanding of artifact reuse in the context of DTs.

We identified fifteen out of 19 interviewees ac-
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knowledging some form of artifact reuse while work-
ing with DTs. Industrial participants mentioned
reuse more frequently. Based on the interviews, we
identified two kinds of artifact reuse: data reuse
and software component reuse. We further identified
knowledge reuse, which we believe is worth discussing
despite not being about artifacts. In this section, we
discuss the aforementioned reuse scenarios, which we
summarize in Table 4, and challenges we identified
during our analysis.

5.2.1 Software artifact reuse

We use this term to collectively identify the reuse
of static and dynamic models and software compo-
nents developed independently or extracted from one
or more separate software intensive systems. Table 4
shows the types of reused software artifacts we identi-
fied through our analysis. We identified the following
factors that encouraged or motivated software arti-
fact reuse:

• Reduced resources for development: Four
interviewees mentioned that reusing software ar-
tifacts lead to shorter delivery time and reduced
development effort. According to them, spe-
cially the ones from industry, reuse is essential
as it greatly affects time to market. We ad-
ditionally identified two cases where DTs were
developed based on one or more existing DTs,
allowing the developers to leverage existing arti-
facts and reduce development effort significantly.
These identified benefits confirm our assump-
tions on the benefits of software artifact reuse,
which was based on prior publications report-
ing similar benefits for more traditional software
systems [15, 5].

• Ease of use: According to six interviewees, ease
of use and built-in support for integration pro-
vided by corresponding tooling encouraged them
to reuse software artifacts. Based on our analy-
sis, we divided these integrated tooling environ-
ments into two categories: commercial and in-
house tools. While the commercially available
tools are used both in industry and academia,
the tools built in-house are exclusively used by

the corresponding companies. Four interviewees
mentioned Unity [42], a well-known game engine,
as a tool they use for developing geometry and
physics models. Prespective1, a Unity-based 3D
design and simulation platform, was mentioned
by two industrial interviewees. Furthermore, our
analysis suggests that in-house tools are often
developed based on requirements defined by the
organizations themselves and therefore are only
suitable for their specific needs.

• Transfer of knowledge captured within
models: Two interviewees expressed their con-
cern about personnel changes and loss of gained
domain knowledge as a result. In both cases,
models or software artifacts are being used as a
way to encapsulate, preserve, and transfer such
knowledge. This suggests that such use of soft-
ware artifacts allows distributing this knowledge
within the organization and increases the possi-
bility of reuse.

5.2.2 Data reuse

Our analysis suggests that data reuse is an integral
part of DT development. Seven interviewees explic-
itly mentioned it, three did so implicitly. Here we
focus primarily on the explicit mentions . Unlike
software artifact reuse, we found the motivation for
data reuse to be mostly similar, related to the un-
derstanding of a natural or engineered system based
on the data gathered from it, and modelling certain
aspects of the system in one or more DTs. These
DTs are later used for monitoring or enhancing the
system. Although the nature, DT’s applications, and
data sources for such reuse vary significantly, we iden-
tified three major types of data reuse:

• Data related to AE: According to our analy-
sis, this form of reuse is often related to histor-
ical data collected from the corresponding AE.
Two interviewees mentioned collecting historical
data from across the product lifecycle including
design, manufacturing and operation. This data
is often used to create a more accurate virtual

1https://prespective-software.com/
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Table 4: Mentions of artifact reuse by interviewees from industry (#I) and academia (#A). We interviewed
10 individuals from industry and 9 from academia.

Type of reuse Types of reused artifacts #A #I

Software

3D/CAD models

5 8
Design model
Simulation model
Software from product line
Third-party (commercial) libraries
Existing digital twin

Data
Data (historical) from AE

2 5Data from related product line
Ontology

Knowledge
Experiences gathered at work

1 2
Academic knowledge

representation of the physical system. Depend-
ing on the followed DT concept, this representa-
tion can be purely data-based or a combination
of software and data where the later is used to
enhance the former. We analysed various DT
concepts discussed during the interviews in Sec-
tion 5.1.

• Data from similar systems: Four intervie-
wees mentioned developing DTs reusing data
gathered from similar systems, namely related
product line and similar digital shadows. Three
interviewees mentioned reusing data from a
product line that is closely related to the DT un-
der development. Our study suggests that this
is particularly useful when the DT is being de-
veloped alongside a physical system that is not
mature enough. One interviewee mentioned that
they construct a digital shadow first to learn con-
figuration parameters that are later used during
DT development.

• Ontology: We found that both in industry and
academia, use of ontologies facilitates data reuse,
especially when the data is produced and con-
sumed in different contexts. In cases like this,
ontologies are used to represent knowledge and
describe various data properties. Three intervie-
wees claimed that existing ontologies play an im-
portant role in their development of DTs. These

interviewees are from high-tech products and
building & construction domain, often known to
be highly multidisciplinary.

5.2.3 Reuse of knowledge

We define knowledge as skills and experiences inter-
viewees gather through education, training, and pro-
fessional activities. It can be argued whether knowl-
edge forms an artifact since it is not tangible and hard
to measure. However, we identified key topics with
the potential to significantly influence DT lifecycles.
One interviewee estimated around 80% of their work
to involve reuse of experiences and knowledge. This
estimation provides a good notion of the influence
of knowledge reuse. Another interviewee emphasized
preserving knowledge, specially considering that peo-
ple might leave an organization.

5.2.4 Challenges in reusing artifact

Although about 80% of the interviewees mentioned
practicing some form of artifact reuse and acknowl-
edged positive effects of it, we often identified cases
where reuse was restricted to various degrees; we list
the most frequent restrictions identified by our anal-
ysis.

• Legal issues: We found that legal measures or
clauses often restrict or prevent artifacts from
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being reused, especially when industrial stake-
holder are involved. These measures include
non-disclosure agreements (NDAs), intellectual
property (IP) rights, and privacy concerns. Li-
ability concerns can also have restrictive conse-
quences, especially when multiple organizations
are involved. With four interviewees explicitly
mentioning it, we find this to be the most fre-
quent challenge affecting both data and software
reuse.

• Lack of explanation: Our study suggests that
the lack of appropriate description or documen-
tation can severely reduce the possibility of ar-
tifact reuse. We found that data reuse is more
affected by this issue. Three interviewees men-
tioned that various data is often collected to be
used for specific purposes. Due to lack of meta-
data, explanation, and knowledge lost over time,
such data becomes meaningless rendering reuse
practically impossible. We identified that poorly
documented or undocumented software compo-
nents suffer from similar consequences.

• Incompatibility and integration issues:
This affects both software and data reuse. For
the latter, this is often related to data formats
being incompatible with available tooling. We
also identified cases where precision and fidelity
of available data restrict reuse.

Software reuse also suffers from incompatibility
issues that restrict the integration of existing
components into newer systems. Lack of config-
urability, lack of interoperability between legacy
and newer systems, and interface inconsistency
are some of the factors that contribute to this is-
sue. Our study also suggests that lack of proper
documentation of software components can lead
to perceived lack of interoperability.

• Lack of software engineering skills: We be-
lieve that domain expertise plays a crucial role
in the development of DTs, which has been in-
dicated in several publications [27, 35, 18]. As a
result, domain experts are often closely involved
in the development activities. However, accord-
ing to one interviewee, developing reusable soft-

ware components requires advanced software en-
gineering skills that are not common among the
involved domain experts. As a result, the devel-
oped artifacts may lack reusability.

• Lack of methodology or tool: This issue
was identified by four interviewees as the rea-
son behind limited reusability of existing arti-
facts. One of them claimed that while develop-
ing software artifacts, future reusability is often
disregarded due to the lack of an appropriate
development methodology within the organiza-
tion. Consequently, identifying reusable compo-
nents and determining the degree of reusability
of the identified ones becomes very difficult. We
also found that most industrial DTs are devel-
oped using tools that are highly specialized and
often built in-house. As a result, artifacts built
using these tools are not reusable in a different
context. Furthermore, one interviewee from in-
dustry mentioned that organizations often pro-
mote the uniqueness of their products, reducing
the organizational mindset for reuse of existing
artifacts.

• Additional effort: Our analysis suggests that
reuse of artifacts often takes effort. Four inter-
viewees mentioned that it required additional de-
velopment and validation efforts. The necessity
to adapt existing software components for a new
purpose is a major reason for this. Furthermore,
previously undetected defects are another rea-
son for this. One interviewee mentioned that a
defect within a software component reused from
another vendor caused a simulation to break at
certain conditions and it took them significant
effort to identify and fix the defect.

• Reuse not possible: Although generally ben-
eficial, we did identify situations where reuse is
impossible or might even have adverse effects.
One interviewee shared that not reusing allowed
them to be more independent, flexible, and avoid
vendor lock-in. Another interviewee emphasized
that an NDA signed for a project prevented them
from reusing artifacts produced in that project
in another one. Furthermore, we identified the
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following dominant factors preventing artifact
reuse: lack of appropriate tooling; artifacts de-
veloped without considering reuse; unexpected
unavailability of artifacts; and exceptional sys-
tem requirements. Although some such factors
are similar to the points discussed earlier in this
section as reasons for restricted reuseability, we
also identified cases where they prevented reuse.

5.2.5 Discussion

Based on the findings presented in this section, we ob-
serve that reusing existing artifacts can positively in-
fluence the development of DTs. However, we noticed
that this is not practiced widely in the organizations
that develop and use DTs. We already discussed sev-
eral reasons and challenges related to this. Although
resolving some of these might not be trivial (e.g. le-
gal issues), we believe it is possible to address issues
related to inadequate tooling, lack of reuse attitude,
and insufficient software engineering skills with mod-
erate organizational effort. Furthermore, during the
interviews we noticed that organizations are recogniz-
ing the potential of reuse in the context of DTs and
gradually moving towards developing, maintaining,
and using reusable software components. We noticed
a trend of developing modular or configurable DTs,
often using a component-based integrated develop-
ment environments for developing DTs by combining
reusable components.

Takeaway message: Reuse of existing data and
software artifacts has the potential to significantly
optimize the development lifecycle of a DT. How-
ever, except for some limited cases, it is not prac-
ticed widely due to challenges such as legal restric-
tions, inadequate tool support, lack of information,
and experience.

5.3 Consistent cross-domain models
(RQ3)

Inter-domain collaboration is essential for the devel-
opment and maintenance of DTs. Within a cross-
domain environment, we identified the maintenance

of consistency among cross-domain software models
as a challenge [28]. With RQ3 we aimed to investigate
this challenge further. We wanted to understand how
consistency is defined in practice, identify key causes
for inconsistencies, and tools and techniques used to
manage them. Twelve interviewees mentioned that
they have encountered or put measures in place to
handle inconsistencies. In the following sections we
present our findings based on the analysis of the data
we collected from these interviewees.

5.3.1 Types of inconsistencies

Based on our analysis, we divided the identified in-
consistencies into the following five categories.

• Interface inconsistency: Hisarciklilar et al. [9]
defined interface inconsistency as mismatching
values, terminologies, or schemes among con-
nected interface elements. We identified this in-
consistency mostly in cases where two or more
entities, often cross-domain, communicate and
do not share any compatible interfaces (i.e., pa-
rameters). Our analysis suggests that this is the
most frequently encountered inconsistency, with
four interviewees explicitly mentioning it.

• Tool and data format inconsistency: We
identified six interviewees who recognized such
inconsistencies as a challenge. Our analysis
shows that the development of DTs is almost
always a cross-domain effort. In projects such as
these, the stakeholders are from a variety of do-
mains and use domain-specific tooling to develop
cross-domain artifacts. From the interviews, we
identified situations where these tools are com-
pletely or partially incompatible. As a result,
artifacts developed in one tool can not be im-
ported or used in another tool, primarily due to
incompatible data formats.

• Representation inconsistency: As DTs are
often complex cyber-physical systems, various
diagrams (i.e., UML [40], SysML [38]) are used
to conceptually represent parts or the complete
system, usually during the design phase. In our
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analysis we identified cases where the actual im-
plementation deviates from the design, which we
identify as representation inconsistency. One in-
terviewee provided an example of such inconsis-
tency where the Simulink [32] implementation
was done differently compared to the design done
using UML sequence diagram.

• Configuration inconsistency: From the in-
terviews, we identified two highly dynamic soft-
ware systems offering many configuration pa-
rameters that can be used to greatly change the
system behavior. Configuration inconsistency
can occur when dependencies exist between con-
figuration parameters and changes are made to
them without considering the dependencies. One
of the interviewees mentioned that they usually
do not change their software, but update config-
uration parameters to adjust the system, which
at times introduced inconsistencies.

• AE-VE inconsistency: As analysed in Sec-
tion 5.1, the concept of a DT often encompasses
a certain degree of synchronization between AE
and the corresponding VE to facilitate replica-
tion of certain behavior or features. We iden-
tified two types of inconsistency in this context.
The first kind is about inconsistent VE-AE com-
munication, which is often a special kind of inter-
face inconsistency (discussed earlier). The other
inconsistency occurs when the virtual and ac-
tual entities exhibit differences in certain behav-
ior that is expected to be similar. As a result,
identical operations performed on both AE and
VE can provide different results rendering the
DT ineffective.

5.3.2 Major reasons for inconsistency

Our analysis of the interviews suggests that incon-
sistencies can emerge for numerous reasons, which
largely depends on the nature of the corresponding
DT. Therefore, we believe extracting a complete list
of reasons is not possible. However, during our anal-
ysis, we identified the following four most frequent
causes of inconsistencies.

• Lack of standardisation: With five intervie-
wees explicitly mentioning it, we identified this
as one of the most frequent reasons for both
model and data related inconsistencies. Two of
them mentioned that they are not aware of any
standardisation within their project, resulting in
significant overhead in terms of communication
and development efforts. We also identified cases
where data was collected, stored, and exchanged
using a non-standard format despite the exis-
tence of established standards. It was unclear
from the interviews why existing standards were
not followed. Furthermore, one of the intervie-
wees mentioned that developing and following a
set of standards for exchanging or storing infor-
mation is extremely challenging due to the sheer
number of different domains involved in their DT
project.

• Lack of proper collaboration: DTs, specially
the industrial ones, are typically highly multi-
domain multi-team projects. Within such envi-
ronments, various tools can be used for devel-
oping artifacts, often with tool-specific seman-
tics. Our analysis suggests that lack of proper
collaboration in such diverse environments can
lead to inconsistent artifacts. Two interviewees
identified lack of communication among different
domains or teams working on dependent compo-
nents as a key reason for inconsistency.

• Insufficient tooling or methodology: Dur-
ing our analysis, we identified a general lack of
inconsistency detection and mitigation method-
ology and corresponding tooling. Such method-
ology or tooling either did not exist or was
claimed to be ineffective or inefficient. Al-
though we expected this shortcoming to be more
widespread, surprisingly we found only two in-
terviewees explicitly mentioning facing difficulty
related to it.

• Reusing existing artifacts: We discussed ar-
tifact reuse, its benefits and challenges in Sec-
tion 5.2. Additionally, we found that reuse can
also lead to inconsistencies. Our analysis sug-
gests that this is often a consequence of lack of
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appropriate testing before reuse or the reused ar-
tifact lacking sufficient documentation. One in-
terviewee mentioned that they had reused a soft-
ware component from a previous project without
importing all the related tests. As a result, they
were not able to detect inconsistencies that lead
to catastrophic failure of the new project.

5.3.3 Inconsistency mitigation practices

During the interviews, we tried to understand how
inconsistencies are being handled in practice in the
context of DTs. Here we discuss the most prominent
of the measures we identified during our analysis.

• Formal or informal communication: Earlier
we mentioned general lack of tooling or method-
ology as one of the reasons for inconsistency. In
fact, we believe a majority of inconsistencies are
avoided by established practices within an or-
ganization, way of working, in-person commu-
nication, or personal knowledge. One intervie-
wee validated this belief by mentioning the in-
effectiveness of a well-defined workflow at their
company and how they often needed to resort
to informal in-person communication to resolve
problems. An interviewee from the healthcare
domain mentioned that they consult with their
colleagues from automotive and aerospace do-
main where, according to the interviewee, incon-
sistency issues are better understood.

• Use of standards: We found that the usage
of various standards is key for avoiding incon-
sistencies and maintaining consistencies. Our
analysis suggests that these standards can be
globally accepted or custom-built for an organi-
zation. International standards like Functional
Mock-up Interface (FMI) and Functional Mock-
up Unit (FMU) were mentioned by two inter-
viewees. One interviewee mentioned using stan-
dards defined by the European Union (EU) with-
out mentioning specific ones. Furthermore, us-
age of custom-built standards was mentioned by
two interviewees.

• Use of external tool or technology: Four

interviewees mentioned using external tools for
handling inconsistency issues. In this context,
we found that semantic technologies play a key
role in understanding of data and, in some
cases, conversion between different data formats.
Two of the four interviewees emphasized the us-
age of ontologies and related technologies (i.e.,
SHACL2). One interviewee mentioned semantic
labeling of data and use of graph databases (i.e.,
Neo4j3) which allows mapping multiple ontolo-
gies and automatic data format conversion.

• Use of in-house tooling: We discussed soft-
ware related inconsistencies in the context of
multi-tool environments in Section 5.3.1. Our
analysis suggests that one way to reduce the
number of inter-tool inconsistencies is to avoid
multiple tools and using a single one. One inter-
viewee explicitly mentioned developing in-house
tooling and using it for their DT development
allowing them greater flexibility and avoiding in-
consistencies. We found similar strategies used
within two other organizations.

• Testing: In safety critical domains (e.g.,
aerospace, healthcare), early and frequent test-
ing or benchmarking is one strategy to identify
potential problems including inconsistencies.

• Use predefined checklist: Two interviewees
explicitly mentioned the presence of a prede-
fined checklist or workflow for identifying incon-
sistency issues.

5.3.4 Discussion

Our analysis suggests that inconsistencies are actual
issues in the context of DTs and directly or indi-
rectly affected over 60% of our interviewees. The na-
ture and source of these issues are highly diverse and
depend on the actual DT implementation, involved
methodologies and tooling, organizational and per-
sonal constraints. Consequently, we believe that it is
highly challenging to categorise these inconsistencies

2Shapes Constraint Language https://www.w3.org/TR/

shacl
3Neo4J - a graph data platform https://neo4j.com
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where this categorisation is also complete. Further-
more, we identified that inconsistency issues are of-
ten not categorized as such. Instead, they are treated
as regular issues encountered typically during system
development or maintenance. Therefore, we believe
there is a lack of awareness of the need for special-
ized methodologies or techniques for identifying and
mitigating inconsistencies. We think this might have
contributed to the inadequacy of related tooling as
discussed earlier. Furthermore, we identified situa-
tions where a vast majority of inconsistency issues
are being avoided by simply using a single tool for
development or developing large monolithic models.
Besides, we think there is a large gap between aca-
demic innovation and industrial practice in the con-
text of inconsistency management. For example, Tor-
res et al. referred to several academically developed
consistency management approaches in their system-
atic literature review [24]. However, we could not
identify any commonality between this list and the
approaches discussed by our interviewees, which we
present in Section 5.3.3. Therefore, we believe that
there are opportunities for further research and de-
velopment for inconsistency management tools in the
context of DTs. However, we also identified that cer-
tain domains, i.e., aerospace, construction engineer-
ing, automotive, are more aware and mature about
inconsistency issues. This is largely facilitated by
standards or conventions accepted across related or-
ganizational entities.

Takeaway message: In the context of DTs, in-
consistency issues are common and can adversely
affect development and maintenance activities. We
identified appropriate communication and usage of
various standards as the most frequently practiced
measures to avoid such issues. Contrarily, we no-
ticed that the absence of these measures are the
major reasons behind the emergence of inconsis-
tency issues. Furthermore, we observed a general
lack of tooling and methodology for effectively han-
dling consistency. Therefore, we believe that fur-
ther research and development is needed to under-
stand these issues and develop tools and techniques
to avoid or mitigate them.

5.4 Model integration (RQ4)

RQ4 explores the topic of model integration in DTs.
Model integration is the process of bringing together
models to create the DT’s virtual entity. These mod-
els will interact to mimic a desired behavior from the
AE. We intended to understand the approaches and
design decisions the interviewees take when design-
ing a DT. An overview of the interviewees approaches
and design decisions is shown in Table 5. The sec-
ond column shows our classification of the findings.
The third and fourth column show the number of in-
terviewees who discussed a topic related to a specific
class of findings. Not all interviewees discussed all
the topics listed in Table 5; hence within each topic
classification the number of interviewees does not add
up to 19 (total number of interviewees).

5.4.1 Integration approaches

From our analysis, we observed two main integration
approaches, namely multi-tool and single-tool. Four-
teen interviewees explicitly mentioned the approaches
used for model integration in DTs. As shown in Ta-
ble 5, nine interviewees use a multi-tool approach,
while five use the single-tool approach.

Multi-tool approach. This approach is used when
a heterogeneous modeling environment is present,
in which distinct modeling tools are combined [41].
Each model, in this approach, needs encapsulation
which has a defined interface to be able to establish
communication with other models. The nine intervie-
wees using the multi-tool approach agree that this ap-
proach has advantages for cross-domain collaboration
because it allows different tools to be used. Other rea-
sons mentioned to use this approach is information
hiding of model details also known as model mask-
ing for IP (Intellectual Property) protection and re-
duction of model complexity. Here, technologies are
used so the model becomes a “black box” with only
its input and output exposed, but the model details
are hidden. However, this approach has many chal-
lenges such as data format consistency (discussed in
Section 5.3.1), data and model semantics, and rela-
tionship complexity between the models.

Single-tool approach. This approach requires to

19



Table 5: Overview of model integration discussion. #I and #A indicate the number of industrial and
academic interviewees who mention that specific topic. We interviewed 10 individuals from industry and 9
from academia.

Topics discussed Findings classification #I #A
Multi-tool 6 3

Approach
Single-tool 4 1
Influencing design factors 5 4

Communication among models
Implementation approach 5 1
Functional Mock-up Interface (FMI) 3 0
Domain Specific Language (DSL) 1 2
Own-design 4 0

Technology used

Tool provided 2 2
In-house 7 1

Tool type
Commercial 2 4
Heterogeneity 2 1

Challenges
Complexity 3 1

generate or transform all the models into a single
software tool. The single tool will perform the execu-
tion of all the models as a whole; hence we refer to it
as execution platform. Our analysis showed that the
selected execution platform in such cases was MAT-
LAB. In addition, our analysis shows two strategies
from interviewees, in the single-tool approach. The
first strategy is to use the same tool which is used
for model execution for creating the models as well,
e.g., two interviewees use MATLAB as their mod-
elling environment and execution platform. The sec-
ond strategy is to transform the original models into a
format which is supported by the execution platform.
Interviewees using this strategy mentioned that this
requires re-work from them. An example of this prac-
tice is the use of Python as an execution platform that
can support the execution of models made in Python
or MATLAB. If there is a model in Modelica then
this model is transformed into MATLAB, which is
a supported platform, requiring extra work from the
modeller. During the interviews, interviewees men-
tioned that this approach might limit cross-domain
collaboration, but reduces the integration effort sig-
nificantly.

5.4.2 Communication among models

As mentioned earlier in this section, an important
ingredient of model integration is the communication
between models. We aimed to understand how the
interviewees implement the communication between
models. We identified 15 interviewees who discussed
this topic. Our analysis showed two key topics men-
tioned by interviewees: (1) important factors that
influence communication design, and (2) implemen-
tation approach.

Influencing communication design factors. We
identified three factors influencing model communica-
tion, namely DT application, software dependencies,
and stakeholders involvement. According to nine in-
terviewees, the DT’s application dictates the required
communication frequency or the implementation ap-
proach. However, they mentioned that stakeholders’
involvement is crucial, because it will determine the
implementation feasibility by providing supporting
knowledge, resources, and software. Moreover, they
mentioned the importance of knowing the dependen-
cies and requirements of the software modelling tools
or platforms involved, to avoid operational failure or
additional work.

Implementation approach. We identified two main
approaches to implement the communication, namely
use of standardised communication protocols and in-
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house technology. Five interviewees shared that they
use standardised communication protocols. Most
mentioned—i.e. by three interviewees—was OPC
(Open Platform Communication). Among these five
interviewees, three mentioned that they chose a spe-
cific communication protocol because the execution
platforms support it. The second implementation
approach is the used in-house technology for model
communication. This approach was mentioned by
two interviewees. Both interviewees described their
technology as an entity (e.g., communication layer)
that centralized the data exchange among the mod-
els, these data can be accessed by any model. A
model needs to specify which data to extract. We
consider this technology to be similar to a publish-
and-subscribe pattern for data exchange.
In conclusion, our analysis shows that the most

popular implementation approach is the use of com-
munication protocols, used by five out of the six in-
terviewees that discussed this topic.

5.4.3 Technology used

During the interviews, we intended to understand the
type of technologies used for model integration. We
found that fourteen interviewees described different
technologies that are used for this purpose. Table 5
shows a summary of this subsection, where the tech-
nologies used varied greatly, but they can be clustered
in four groups: Functional Mock-up Interface (FMI),
DSL, own-design and tool-provided technologies.

• FMI: Three interviewees specifically mentioned
the use of FMI technology to integrate their
models. This technology has been used in
DTs [19] and is supported by over 170 modelling
tools4. According to three interviewees from in-
dustry, two reasons to use this technology are its
maturity and compatibility with various mod-
elling tools.

• DSL: Three interviewees mentioned the use of
DSLs for model encapsulation and for establish-
ing communication between these models. Inter-
viewees also use this technology for other aspects

4https://fmi-standard.org/

such as DT architecture, which is discussed in
Section 5.9, and to unify data semantics among
the models.

• Own-design: Four industrial interviewees indi-
cated that they developed their own technology
to integrate models in their DTs. Their technol-
ogy is based on developing the interfaces for each
modelling tool they have used, e.g., if the inter-
viewees have models in MATLAB and ANSYS
modelling tools, they design an interface for each
of them. According to these interviewees this
method gives them flexibility, and it can be ex-
panded according to their needs. However, they
admit that it requires effort and time every time
there is a new modelling tool.

• Tool provided: Another four interviewees men-
tioned that they use what is supported by their
execution platform. As with the monolithic ap-
proach explained in Section 5.4.1, these intervie-
wees have two choices: either to transform in-
compatible models or to develop them in a for-
mat supported by their execution platform. Ac-
cording to these interviewees, the main reason to
choose the technology is because of their experi-
ence with the execution platform.

5.4.4 Tooling type

The interviewees mentioned two distinct uses of tool-
ing. First, tools to develop models for their DTs,
for which they all mentioned using commercial soft-
ware such as MATLAB. Second, tools to execute all
the models, as discussed in Section 5.4. We divided
the identified execution platforms into two categories:
developed in-house and commercial. Table 5 shows
a preference for the development of in-house tooling
among the interviewees, particularly industrial inter-
viewees. One of the interviewees shared that they
used a combination of in-house and commercial tool-
ing, which was therefore also considered in the statis-
tics shown in Table 5. Six interviewees did not men-
tion the tooling used for DT integration.

• In-house: The data collected suggests that in-
terviewees from industry prefer to develop their
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own tools for DT development. The main
driver to do so seems to be the DT’s applica-
tion and its domain requirements. Two intervie-
wees mentioned the need for specific execution
and modelling requirements for their event-based
DTs, driven by the DT application needs. An-
other two based their tooling on visual models,
which required specific communication technolo-
gies and the integration with specific software
tooling from their stakeholders. The final four
interviewees mentioned that they use modelling
tools (commercial and in-house) frequently used
in their own domain and thus required to work
together. Hence, they decided to create their
own tools. To summarize, industrial intervie-
wees seems to prefer to develop their own tools
to realize their specific integration requirements.

• Commercial: The use of commercial tools
varies between modelling (e.g., MATLAB),
CI/CD (Continuous Integration/ Continuous
Development), cloud frameworks, and system
design tools. According to the interviewees, the
main reason for their use is the efficiency of com-
ponent integration. However, commercial tools
have limited support for external software. As
a consequence, these interviewees are forced to
transform their models to a supported format;
this might mean re-work or limit collaboration.

One interviewee mentioned combining commercial
and in-house tooling as helping the collaboration be-
tween domains, but having the challenge of tools’ se-
mantic uniformity.

5.4.5 Challenges

Seven interviewees shared the challenges they face in-
tegrating models for DTs. Based on our analysis we
decided to classify these challenges in three, namely
challenges in model heterogeneity, data heterogene-
ity, and complexity.
Model Heterogeneity. These challenges are related

to the type of models that needs to be integrated
into the DT. We identified two challenges related to
models: integration of legacy code models and inte-
gration of models from different software platforms.

Three interviewees mentioned that these challenges
seem to be particularly difficult and required further
research to address them.

Data Heterogeneity. The data heterogeneity chal-
lenges refer to data format and semantics; both chal-
lenges are present due to cross-domain collaboration.
An example of a semantics challenge is when two
terms referring to the same concept are used in differ-
ent domains, such as “pressure drop” and “pressure
gradient”. Multiple terminology can generate con-
fusion which might delay the development. Accord-
ing to our analysis, interviewees seem to find ways
to address this challenge. For the data format chal-
lenge, a solution is the development of a communica-
tion layer to homologize data formats between mod-
els. For the semantics challenge, an interviewee uses
semantic web technology to standardize the seman-
tics.

Complexity. The complexity challenges are related
to models and the DT as a whole. Two intervie-
wees defined complexity of a model as the level of
fidelity. In addition, they also stated that high fi-
delity does not necessarily translate to better mod-
els. Thus, these interviewees suggest to consider the
purpose of the DT as the key factor for design, to
define the fidelity of the models. Another factor re-
lated to model complexity is model constrains, such
as numerical constraints of a model. Two intervie-
wees mentioned that understanding the model lim-
itations is critical because model constraints issues
can be confused with integration issues. An example
is when a model is constrained to positive numbers
as input, and subsequently is integrated with another
model which can yield negative output values. If the
constraints of the former model are not known by the
person who is integrating, then a test might yield an
error. Particularly, if the system is tested in out-of-
bound conditions of the former model. This error
might be confused with a software integration error,
rather than a limitation of the system.

The second complexity challenge discussed is re-
lated to the system as a whole. Two interviewees
stated that a DT can be composed from several com-
ponents increasing the complexity, hence, the diffi-
culty of understanding the relation between the com-
ponents. In addition, understanding those relations
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becomes critical to solve integration issues.

5.4.6 Discussion

Based on our analysis the multi-tool approach for in-
tegration seems to be more popular among the inter-
viewees. Our opinion is that the multi-tool approach
offers better maintainability and cross-domain coop-
eration, due to the separation of entities. On the
other hand, interviewees agreed that this approach
requires more effort and knowledge of software en-
gineering. Among the interviewees, the most popu-
lar approach to model communication is using com-
munication protocols such as OPC.According to our
analysis, the selection of communication seems to be
influenced largely by the experience of the developer.
Through the interviewees, we found diverse technolo-
gies used for integration. However, two technologies
were mentioned by three interviewees each: DSLs and
FMI. Regarding tooling for integration, industrial in-
terviewees seem to prefer in-house tooling (seven out
of nine industrial interviewees). Our analysis of the
challenges suggests that tooling and technologies to
facilitate cross-platform integration are required, in
addition to consistency management methods dis-
cussed in Section 5.3.

Takeaway message: The preferred approach for
the integration of models is a multi-tool approach
which requires interface development. The pre-
ferred technology for such interface seems to be the
use of standardized communication protocols. Al-
though there is no clear preference for integration
technology, two technologies seem to be frequently
used, FMI and DSL. Finally, the main challenges of
integration are three. First its model heterogeneity
because models can be of different types of develop
in different platforms. Second, its data heterogene-
ity, which relates to difference in data type and se-
mantics. Third, DT’s complexity which is related
to two issues. First, the fidelity of the models. Sec-
ond, the several components that a DT can have.

5.5 Model orchestration (RQ5)

We define DT model orchestration as the definition
of the communication actions and execution sequence
of the models [4]. To achieve these actions the or-
chestration should do interfacing evaluation activities
such as data compatibility checks and indicate the
beginning and end of a model execution [8]. With
RQ5 we aimed to understand interviewees’ percep-
tions and practices related to such orchestration in
DTs. Based on our analysis, we identified five main
topics of discussion related to model orchestration,
namely understanding, implementation, technology,
tools, and challenges. An overview of those topics
is shown in Table 6’s first column. The second col-
umn shows our classification of the findings to facili-
tate reading the results. The third column shows the
number of interviewees who discussed an item from
a specific class.

5.5.1 Understanding

In this section, we cover the interviewees’ discussion
on model orchestration understanding. We divided
the discussion into two topics: interviewees’ explana-
tion of what orchestration is, and its components.

Definition. Eleven interviewees shared their defi-
nitions of model orchestration. They all agree that
orchestration is the scheduling of model execution
in their DTs. Only four of them specifically men-
tioned that the method of data exchange is part of
the orchestration. In addition, these eleven intervie-
wees also expressed their opinion on the importance
of orchestration. From that we concluded that model
orchestration is highly important, as three intervie-
wees explicitly expressed it and another six implicitly
did so. Yet two interviewees argued that orchestra-
tion is not needed in DTs, because the complexity of
their current DTs is not high. Moreover, one inter-
viewee expressed that the orchestration, if defined in
a formal mathematical manner, can be used to rea-
son about a physical system, not only to define the
execution of the models.

Components. Five interviewees specifically shared,
in their view, the necessary components to design the
orchestration of models. All other interviewees men-
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Table 6: Overview of model orchestration discussion. #I and #A indicate the number of industrial and aca-
demic interviewees discussing that topic. We interviewed 10 individuals from industry and 9 from academia.

Topics discussed Findings classification #I #A

Understanding
Definition 9 2

Components 4 1

Implementation approach
Pragmatic 2 4

DT’s Application specific 6 1

Technology
Model based 3 2
Own design 3 0
Tool provided 0 2

Tools type
In-house 6 0

Commercial 2 5

Challenges
Model fidelity 2 1

Model understanding 1 0
Cross-domain interoperability 3 3

tioned that their orchestration implementation is de-
pendent on purpose and domain, thus they did not
define specific components for orchestration. Table 7
shows the components mentioned by the five afore-
mentioned interviewees and the number of mentions
for each component.

Table 7: Components to define orchestration in DTs
Components Mentions

Trigger 8
Scheduling approach 4

Data exchange method 4
Global time 3
Time-stamps 3

Concerning the trigger, eight interviewees explic-
itly stated that it is a key component of orchestration.
Nevertheless, the type of trigger depends on the DT’s
application and domain. We observed two distinctive
trigger definitions as a function of the DT’s applica-
tion. Two interviewees working on control applica-
tions stated that the orchestration should be made
based on a time schedule, where the data exchange
between models and the execution of each model
should be synchronized based on a global clock. An-
other interviewee, working on event-based applica-
tions, mentioned that the definition of the trigger for
each event is the most important factor to schedule

each model execution step. The remaining five inter-
viewees explained that the trigger for model execu-
tion depends on DT’s application and domain.

Regarding the scheduling approach, interviewees
mentioned two types, namely sequential schedul-
ing and concurrent execution. In regards to the
data exchange method, interviewees defined it as the
scheduling of data exchange between models, e.g.,
First In, First Out (FIFO).

Our analysis shows two different roles of time in
orchestration. The first role is as a trigger for model
execution in control applications, known as time
scheduling. The second role is event record in event-
based applications, by using time stamps for each
event, which is also shown as an important compo-
nent shown in table 7.

In conclusion, our analysis shows a general consen-
sus on orchestration as all activities ensuring correct
scheduling of model execution. The majority of the
interviewees consider orchestration important for the
development of DTs. Moreover, these interviewees
agree that the orchestration design requires a defini-
tion on the scheduling and method for data exchange,
in addition to defining a global time for the DT appli-
cation and labeling produced data with time-stamps.
Other components for the orchestration design seems
to depend on the DT’s applications and domain.
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5.5.2 Implementation approach

This subsection discusses the implementation ap-
proaches shared by the interviewees for model or-
chestration. Thirteen interviewees shared their spe-
cific implementation method. Six interviewees stated
to use a pragmatic approach, while the other seven
shared specific implementation approaches, depend-
ing on their domain.
Pragmatic. Our analysis suggests that the prag-

matic approach aims to design the scheduling of mod-
els by reproducing the AE behavior, e.g., if two tasks
occur simultaneously, then concurrent execution is
used. According to the interviewees, this approach
requires iterative testing, design, and implementa-
tion. Our analysis shows that interviewees using the
pragmatic approach design the orchestration by di-
rectly writing code to define the scheduling of mod-
els.
DT application specific. We found seven intervie-

wees who stated that the DT application determines
the orchestration approach. During our interviews,
we collected six different approaches that are shown
in Table 8. Each approach defines how to imple-
ment the models’ scheduling. The only approach
used by more than one interviewee, with control ap-
plications, is time-scheduling, in which time triggers
execution for each model. In addition to the DT
application, the orchestration approach seems to be
related to the knowledge and domain of the inter-
viewee. There are two examples shown in Table 8.
The first example is related to the DT’s application
of design & application, where the orchestration ap-
proaches are two. The first is based on defined rules
that activate the models. The second uses concur-
rent execution of all the models. According to these
two interviewees, they chose their orchestration ap-
proach because of their knowledge in software and
co-simulation, respectively. The second example is
on the DT’s application of analysis, where the ap-
proaches for orchestration are standard workflow and
event-trigger. These two interviewees explicitly chose
their approach based on their domain.
In conclusion, the interviews indicate that the ap-
proaches are a function of the DT’s application, and
of interviewee knowledge and domain. In addition,

around half of the interviewees seem to design the
orchestration by attempting to pragmatically repro-
duce the AE behavior.

5.5.3 Technology

This subsection explains the technologies for orches-
tration that interviewees discussed during the inter-
view. Ten interviewees shared the specific technolo-
gies they used. We have classified these into three
categories: model-based, own design, and tool pro-
vided.

• Model-based. Five interviewees stated their
preference in using technologies that are model-
based to design the orchestration. The two tech-
nologies described by these interviewees were
DSLs and ontologies. Four interviewees use
DSLs to design the scheduling of the models.
Three of them defined their own DSL, while an-
other uses SysML. One of them also uses their
DSL for system verification. Another intervie-
wee uses an ontology to link data between mod-
els and thereby orchestrate data exchange.

• Own design. Three industrial interviewees ex-
plained that they designed their own technol-
ogy for orchestration. The technology is based
in their expertise and domain. None of them
explained their technology in detail, but rather
shared how it works at a higher abstraction level.
We identified two distinctive technologies based
on the trigger component, explained in Subsec-
tion 5.5.1. First, the technology that supports
time as a trigger. Second, the technology that
supports events as triggers.

• Tool provided. Two interviewees explained
that the orchestration is performed by their ex-
ecution platform, thus they do not know what
technology is used for the orchestration. Their
execution platform is a modeling tool like MAT-
LAB, Anylogic5, and SymPy6.

5https://www.anylogic.com/
6https://www.sympy.org/en/index.html
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Table 8: DT’s application specific approaches for model orchestration
Approach # Interviewees DT’s application

Time-scheduling 2 Control
Standard workflow 1 Analysis
Rules 1 Design & development
Event-trigger 1 Analysis
State transition 1 Testing
Concurrent execution 1 Design & development

In conclusion, our analysis suggests that the most
popular technology is model-based, particularly
DSLs. We observe that all orchestration technolo-
gies focus on the scheduling of the models, but not
on how to exchange data among them.

5.5.4 Tool type

In this subsection, we explain how the interviewees
select the tools to develop a DT. From 19 intervie-
wees 13 shared the tools they use, in particular their
execution platform, which performs the orchestration
in a DT. Six interviewees from industry developed
their own tool, while seven (five from academia and
two from industry) use a commercial tool. One in-
terviewee is classified in both classifications since he
uses a combination of in-house and commercial tools.

• In-house. Six interviewees explained that they
have developed their own execution platform to
schedule model execution. Our analysis suggests
that the main reason for doing so is to mini-
mize the integration effort to deploy their DTs
in existing information systems. For example,
one interviewee mentioned that he developed his
orchestration tool using C# because their com-
pany used C# in their information system. How-
ever, from our analysis, we also observed that
these interviewees aim to develop specific re-
quirements for their DT that required distinct
execution functionalities. An example from one
interviewee, is the need to control the global time
of execution, which he described as being able
to execute a model from the present to the fu-
ture, or from the present to the past. Based on
our findings, we observe two main reasons for

in-house tool development: (1) to minimize em-
ployment integration effort; and (2) to develop
specific execution requirements.

• Commercial. We identified three types of com-
mercial tools used as execution platforms. The
first is to use tools to orchestrate the models.
This type of tool is used by two interviewees
who also use the single-tool approach for the in-
tegration of models as explained in Section 5.4.1.
The second type is the use of system design tools
such as IBM Rhapsody [39] and HEEDS7, which
is used by two interviewees. These tools facili-
tate the use of external software as long as they
are supported by the vendor. The third type en-
compasses tools that support a DSL to sequence
entities for execution; this tool type is used by
two interviewees. The tools mentioned by inter-
viewees are PDDL (Planning Domain Definition
Language) and Dezyne from Verum8. The for-
mer also supports formal verification.

Based on our findings, we observed that the use of
commercial tools is slightly preferred over the de-
velopment of in-house tools. Interviewees did not
specifically mention why they preferred commercial
tools, but three mentioned some reasons: previous
tool knowledge, external software support, and facil-
itating DT system integration. The last reason was
indicated by the interviewees who use a modeling tool
for orchestration because they considered it easier to
transform all models into a single modeling tool than
orchestrate cross-platform models.

7https://www.plm.automation.siemens.com/global/en/

products/simcenter/simcenter-heeds.html
8https://www.verum.com/DiscoverDezyne
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5.5.5 Challenges

Through the interviews, different challenges were
mentioned by interviewees. We have classified them
in three groups: model fidelity, model understanding,
and interoperability. From 19 interviewees 10 (53%)
mentioned such challenges.
Model fidelity. The model fidelity challenge refers

to issues related to the performance because of the ac-
curacy of models. We found three interviewees who
discussed this challenge. The fidelity of a model is de-
fined by interviewees as the level of accuracy between
the AE and its model. This challenge particularly
deals with conflicting requirements between real-time
execution and high-fidelity models. The interviewees
mentioned that solutions to this challenge such as in-
creased computational power are not always available
or could increase execution complexity by adding dis-
tributed execution.
Model understanding. Model understanding en-

compasses two types of issues. The first is related to
an unclear understanding of the function of the model
in the system , which can lead to misuse of the model.
An example is having numerical issues mentioned in
subsection 5.4.5. The second issue is a lack of un-
derstanding of model relationships, e.g., unit consis-
tency and input/output data structure formats, as
mentioned in Section 5.3.1.
Interoperability. We identified three main chal-

lenges mentioned in this category. The first chal-
lenge, discussed by three interviewees, is related to
the cross-platform nature of models for DTs, which
yields semantic challenges. Another challenge is the
design of model scheduling, discussed by two inter-
viewees, particularly when the complexity of the sys-
tem increases. They mentioned that the scheduling of
models should be designed based on the desired pur-
pose; hence, a different purpose requires different or-
chestration. Finally, another interviewee mentioned
that the biggest challenge is related to the interaction
of different types of models, e.g., combining contin-
uous and discrete time models due to their different
nature and solver strategies.

5.5.6 Discussion

Our analysis suggests that the majority agrees that
orchestration is to correctly schedule models’ exe-
cution. In addition, there are five key components
to implement the orchestration: a trigger for model
execution, a scheduling approach, data exchange
method, global time, and time-stamps as shown in
Table 7. During our analysis, we observed various
scheduling approaches which are highly influenced
by the DT’s application and the developers’ knowl-
edge. We believe that to facilitate orchestration de-
sign, more research should be done to create a general
approach.

Technology selection for orchestration seems to fa-
vor model-based approaches, with DSLs as the most
popular. Our findings suggest that influencing fac-
tors for tool selection are the interviewee’s domain
and previous knowledge of specific tools.

We believe that the challenges related to model fi-
delity and model understanding can be tackled by
clearly defining a DT’s purpose and developing or
modifying the models accordingly. Regarding the
interoperability challenge, we believe that research
on tools to facilitate interoperability, particularly in
cross-platform and model type interoperability can
tackle this challenge.

Takeaway message: The main task of orches-
tration is to correctly schedule models’ execution.
In addition, the execution trigger is a key compo-
nent for orchestration. The definition approach for
the trigger is highly dependant on its domain and
DT application.Moreover, the orchestration design
seems to require much domain knowledge and is
highly influenced by the DT’s application and the
developer’s knowledge. Technology and tool selec-
tion is also highly influenced by their DT’s appli-
cation. Further research is needed on tools to fa-
cilitate the interoperability of cross-platform and
cross-nature model types.
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5.6 Validation and verification tech-
niques and tools (RQ6)

RQ6 was aimed at understanding what specific tech-
niques and tools are used to verify and validate DTs,
and their overall dynamic behavior. Here we refer
to dynamic behavior as the behavior observed during
the collective execution of the models and other com-
ponents in VE. It was observed that when answering
the related interview questions, interviewees tended
to use ‘system’ to interchangeably describe either the
DT or the VE or the AE. In the rest of this subsec-
tion, we discuss the techniques used for verification
and validation of systems, as brought forward in the
interviews.

5.6.1 Importance of validation

We believe validation of DTs to be highly important,
as it reduces the possibility of errors in their function-
ing and in their behavior. The importance or need
for validation was explicitly and implicitly addressed
during the interviews, which are presented below. An
industrial interviewee explicitly mentioned the im-
possibility of designing systems free of errors and
thus, the need for validation. The need to validate
a DT in order to make it reliable was described by
one interviewee as relating to reflecting the AE with
sufficient fidelity and to trust in calculation and by
necessity consider boundary conditions. He further
described that the DT needs to be open to changes
and subsequent retraining, recalibration, and revali-
dation. Furthermore, our analysis suggests that val-
idation is required in cases where a highly accurate
DT is being used. Such highly accurate DTs of crit-
ical modules are then reused for different purposes
across product lines, hence, across multiple DTs.

5.6.2 Challenges in validation

Some of the general validation challenges of DTs as
mentioned during the interviews are discussed here.
Two industrial interviewees expressed that validating
a DT is much harder than validating a real system
and it is infeasible to validate every aspect of a DT
due to its numerous possibilities and degrees of free-

dom, myriad of parameters and corresponding calcu-
lations. Our study suggests that in some domains,
such as the space domain, testing is more resource-
and time-intensive than development. An academic
interviewee speculated validating a DT to be chal-
lenging because the composition of multiple models
and the resulting emergent behavior complicate mat-
ters. Measuring the quality of DTs has been voiced
as a concern in the interviews, considering the lack
of a standard methodology to do so.

5.6.3 Verification and Validation techniques

The different verification and validation techniques
and strategies put forward by interviewees have been
depicted in Figure 5. The observations from the in-
terview may not necessarily encompass all aspects of
DTs which need to be validated, but only those the
interviewees stumbled upon in their DT or which they
consider of highest importance from their standpoint
or from literature. According to one interviewee, val-
idation of a DT could be done by understanding how
well it has served its purpose, e.g., optimization, de-
cision making, or predictive maintenance. Another
interviewee shared that validation is part of the pro-
cess of updating models based on using the contin-
uous data from the AE. It has been observed that
validation of DTs is highly dependent on their pur-
pose, the DT’s application domain, and the types of
models and data used in the DT. For example, an
interviewee from industry mentioned that when DTs
are created as visualizations for marketing, valida-
tion is not required. However, he also mentioned that
when high fidelity, consistent behavior, and reliability
in DTs are required, validation is crucial. Intervie-
wees discussed various techniques for verification and
validation based on different cases; we next present
our findings on these.

• Comparing AE & VE behavior This tech-
nique concerns behavior comparison between VE
and AE, with the aim to check differences. We
identified thirteen interviewees who discussed
this informal validation technique. This is done
in different ways at different abstraction lev-
els. One way is using observational tests at
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Figure 5: Different verification and validation techniques and strategies used by interviewees

high level, where the behavior of AE and VE
are observed together using 3D visualization and
checked for synchronicity and differences. At
times, specific inputs or measurements from AEs
are given to both AE and VE and behavior
matching is checked. In cases of DTs used for
predictive maintenance, validation is done by ini-
tially observing the VE-based predictions and
observing and comparing the output of the AE
to those later on to check the accuracy of the
predictions.

Deeper observational tests are done by creating
visual representations such as graphs or 3D vi-
suals of the behavior of both AE and VE and su-
perimposing them to observe the extent of over-
lapping and differences. In other cases, AE and
VE behaviors are translated into events and ac-
tions in a Gantt chart [1]. The timing and se-
quence of actions are compared between AE and

VE to check if there are any differences. Further-
more, in these cases, the system dependencies
from both AE and VE are also compared, by cre-
ating respective dependency graphs and compar-
ing these. Validation is a challenge when there
is a combination of continuous and discrete be-
haviors in AE and VE. In such cases, continuous
signals are transformed into discrete ones and
then the behaviors of AE and VE are compared
to check for equivalence. In some cases, to com-
pare distributions using statistics, the amount
of deviation is quantified using Kullback-Leibler
divergence tests [10].

There are some challenges with this type of vali-
dation. Being dependent on measured data from
the AE, it is unreliable according to two inter-
viewees, due to incorrect data stemming from
measurement errors, faulty equipment, or in-
correct interpretations. Moreover, we speculate
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that there could be other issues in a DT such as
consistency issues at runtime which may not be
discovered by the aforementioned methods.

• Formal methods & tools: We identified two
interviewees from industry and one intervie-
wee from academia who mentioned using formal
methods in DT development. Formal verifica-
tion techniques have been used to validate the
behavior of DTs with the help of tools such as
Verum’s Dezyne [26] and Coco9. An intervie-
wee from industry mentioned that DSLs have
been used to specify the behavior of a system
and transform such specifications into timed au-
tomata models in UPPAAL [2], allowing model
checking. However, model checking is not quite
scalable, considering state space explosion [6].
He discussed that in order to address this chal-
lenge, recurring behavioral patterns were identi-
fied and validated using model checking, rather
than the entire system. In this way, some level
of correctness guarantees were provided. An-
other interviewee mentioned that formal meth-
ods have been used for consistent execution of
models in DTs: formal semantics for such execu-
tion were defined and were helpful to understand
differences in execution between models. He also
shared that for their model interfaces, they for-
mally proved that the components adhere to the
interfaces to avoid interface violations caused by
component changes. He mentioned that this en-
sured consistent behavior when integrating com-
ponents. He further discussed that in such cases,
model-based testing is also done, to ensure that
relationships between provided and required in-
terfaces are not violated. As witnessed by the
above, three interviewees mentioned formal tech-
niques for validating DTs; no others did. We
speculate that the lower adoption of this method
could be attributed to scalability issues.

As mentioned before, formal techniques such as
model checking are not scalable, due to state
space explosion problems [6]. Thus, formal
methods have disadvantages related to scalabil-

9https://cocotec.io/

ity and broad applicability across domains.

• Testing and corresponding tools: DTs also
often undergo testing across their entire lifecy-
cle, in order to check adherence to requirements
of a DT and its components. At times, some in-
terviewees used the term ‘testing’ to discuss two
items, namely, using scripts to test the system
and comparing the AE and VE behavior using
observational tests. Due to the lack of clarity in
this term being used for different approaches, we
did not perform quantitative analysis of intervie-
wee responses for testing. As mentioned earlier,
in some domains such as the space domain, test-
ing is highly time and resource intensive. In such
cases, careful consideration is needed on when
and what aspects to test, based on the DT and
its context. Moreover, in these cases, testing ef-
fort is then balanced with effectiveness. For in-
stance, after resolving an integration issue, only
local tests are done. On the other hand, full
regression testing would be executed when re-
placing an entire sub-component. An observa-
tion worth mentioning here is that this is not
only specific to testing DTs, but generally used
in the context of testing software systems. Dif-
ferent types of tests have been mentioned by in-
terviewees such as model-based testing, integra-
tion testing, and unit testing. In some cases,
static analysis is also performed to detect cod-
ing errors, thus, helping gain confidence about
the system. Some tools mentioned by intervie-
wees are Axini’s10, Matlab [14], and Unity [42]
which are used for creating and testing models
on the fly.

As a related challenge, one interviewee explic-
itly mentioned that testing requires more effort
than development, estimating a factor of three
to four difference, in DTs in the space domain.
As mentioned earlier, testing is a very resource-
and time-intensive one requiring the right facili-
ties and people to be available.

10https://www.axini.com/en/
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5.6.4 Strategies for DT validation and to fa-
cilitate validation

We list below the strategies which interviewees dis-
cussed for validating DTs and for facilitating such
validation.

• Validation after model reduction: Detailed
multi-physics models are complex in nature and
might not allow real-time execution, hence, be-
havior computation at global scale is not possi-
ble. The complexity of such models is therefore
reduced to obtain simplified models which work
in real time (using neural networks, for instance).
However, the complete detailed methodology for
model reduction in this context was not dis-
cussed during the interview. This model reduc-
tion helps in facilitating the VE’s behavior vali-
dation.

• Early validation of assumptions in the case
of uncertainties: We identified two intervie-
wees who discussed using assumptions about the
VE’s intended behavior during design, related
to uncertainties, unforeseeable events, or unpre-
dictable environments. Such assumptions need
earliest possible validation, with one interviewee
suggesting to have a shorter design loop. The be-
havioral assumptions could be validated against
the AE, if possible. However, in domains such
as the space domain, where it is not, and where
no relevant stakeholders are available for valida-
tion either, the interviewee mentioned that an
assessment of risks of unforeseeable events and
uncertainties is done, in order to reduce the pos-
sibilities of failure to acceptable levels.

• Validation by increasing complexity: We
found three interviewees who advocated bottom
up DT validation, gradually increasing complex-
ity. Even when comparing the behavior between
AE and VE, it could be started with simple ex-
periments, followed by more complex ones. The
models in a DT could be validated initially and
then, the integration of models could be vali-
dated. A modular approach can also be adopted
where instead of validating the entire DT at

once, critical parts of the system are validated
initially, followed by other parts and then the
integration of all parts.

• Validation by operating DT at out-of-
bound conditions: We identified one indus-
trial interviewee and one academic interviewee
who mentioned validating a DT by operating it
at out-of-bound conditions. Such pushing be-
yond design space helps in determining whether
the scientific principles based on which the DT
was designed, still hold. This technique is used
to test functional issues in DTs and especially,
whether the design of a DT encompasses more
than just the data from the field, and to check for
issues in cases of extrapolation. This technique
also helps to find defects and to test whether
behavior associated with every DT parameter
is well defined, e.g., when operating at out-of-
bound conditions whether it gives the right error
messages in unrealistic scenarios. This method
of testing helps to increase confidence and relia-
bility of DTs. According to one interviewee, this
technique has also been used as a test of quality
of DTs in the print industry.

• Continuous validation of DTs: Three inter-
viewees discussed about continuous validation of
DTs. They mentioned that models in a DT un-
dergoes updates due to data continuously com-
municated from the AE in the field, feedback
from subject matter experts or field service en-
gineers, or bug fixes. When such updates occur,
benchmarks are run continuously to validate the
DT and ensure that the same overall behavior is
exhibited by DT before and after updating. One
interviewee also advocated validation after reuse
of artifacts during DT development.

• Other cases of DT validation: Validating a
DT by using another DT, by simulating the be-
havior of the DT before deploying, was also dis-
cussed by an interviewee, referring to Ahlgren
et al. [25]. In the chemical domain, a DT is
validated by comparing it with the AE design
information in terms of mass and heat balance
equations. One interviewee from academia en-
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visioned that over time validation of their DTs
would be done by having a human-in-the-loop.

5.6.5 Not validating the DT

Eighteen interviewees discussed validating DTs by
using the above mentioned methods, with just one
interviewee indicating not validating their DT. He
shared that there are currently no tests in place to
check if the DT is functioning as intended. More-
over, any issues in the DT behavior can only be ob-
served when the simulation is running. He elucidated
that since he is already aware of how the DT should
behave and deviation in behavior can be observed
during the execution, no validation is performed on
his DT.

5.6.6 Discussion

Based on the observations presented above, all but
one interviewee currently perform some form of vali-
dation of the complete DT or parts of it. In fact, we
identified cases where it is necessary to validate the
DT continuously as it undergoes changes across its
entire lifecycle. From this we can infer that validation
of DTs is highly important and it is performed widely
across the engineering spectrum in both academia
and industry. Furthermore, we also identified several
challenges involved in validating a DT. One major
challenge is that most validation techniques can only
cover certain aspects of a DT and not all. Thus, our
study suggests a multi-faceted approach, combining
multiple techniques, is required to validate the differ-
ent aspects of a DT.

Takeaway message: We identified 13 out of 19
interviewees who are currently validating their DT
by comparing the behavior of AE and VE. In addi-
tion, we found three interviewees who are currently
using formal methods to validate their DTs. More-
over, testing has also been used as a technique for
validating DTs. We also found one interviewee who
does not validate their DT currently. Our analy-
sis suggests that the choice of validation method
depends on the DT’s purpose, domain, and ap-
plication; and requires a multi-faceted approach,
possibly combining multiple aforementioned tech-
niques.

5.7 Properties for validation (RQ7)

The goal of this research question is to understand
which validation properties are considered important
and need to be validated in the context of DTs. Dur-
ing the interviews, ten interviewees explicitly men-
tioned one or more such properties in relation to their
respective DTs. We discuss these properties and as-
sociated challenges based on the interview data anal-
ysis.

5.7.1 Introduction and challenges

We intended to understand which DT aspects the
properties for validation should cover. Two inter-
viewees provided a high level generic overview on
this. One industrial interviewee mentioned that the
properties to be validated in a DT lie on many lev-
els. Another interviewee expressed that the prop-
erties should enable the observation of critical things
which might go wrong in DTs. During the interviews,
the challenges with validation properties in DTs were
discussed. A challenge mentioned by two intervie-
wees from academia, was how to measure the quality
of DTs and which properties could be used for this.
They further mentioned the challenge of quantifying
the properties which could be used as a measure of a
DT’s quality. This challenge also entailed how these
properties could be defined in order for them to be
computable. We intended to identify such properties
which need to be validated in a DT.
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5.7.2 Properties for validation of DTs

Different types of properties to be validated in a DT
were discussed by the interviewees. Interviewees used
the terms ‘properties’ and ‘parameters’ while dis-
cussing this topic. We classify the properties at high
level into (1) behavioral properties, and (2) qualita-
tive properties. We discuss these classes below.
Behavioral properties: From the validation method

based on comparing AE and VE behavior—discussed
in Section 5.6.3—it can be understood that VE fi-
delity is an important property that interviewees con-
sider. In addition, five interviewees explicitly men-
tioned that time difference in execution between AE
and VE is an additional property for which valida-
tion is needed. We identified six interviewees from
academia and nine from industry who conveyed ex-
plicitly or implicitly that the properties to validate
depend on DT’s purpose, application, or domain.
These properties related to the domain, DT’s applica-
tion or purpose will be discussed below. In addition,
properties related to dynamic consistency of DTs will
also be discussed below.

• Temporal properties related to domain,
DT’s application or purpose: Several tempo-
ral properties were discussed by the interviewees.
An interviewee from the space domain empha-
sized the importance of timing requirements in
this domain and thus, of validating these prop-
erties in the DT. One property discussed was
the availability of sufficient margin in timing
budgets to meet software deadlines. He further
mentioned properties specific to space missions
where multiple computers are used to avoid fail-
ures which could lead to loss of onboard human
life. These properties are whether the secondary
computer switches and takes over control when
the primary computer fails within the time mar-
gin available; and the retrieval of stored data
during the mission. One academic interviewee
mentioned query execution time as an important
property for connected and autonomous vehi-
cles. He further expressed that in semantic web
use for DTs, low latency is an important prop-
erty. Another academic interviewee shared that
the maximum time taken for the DT to perform

an action is an important property to consider.
One academic interviewee mentioned the prop-
erty of communication time between nodes, and
an industrial one mentioned validating certain
parameters in the communication layer, though
which properties this pertained to was not made
explicit. One interviewee from industry also ex-
pressed that timeliness is an important property
to be considered in a DT. Real time properties,
in the form of activation time and software dead-
lines, were discussed by two interviewees from
industry.

• Other properties related to domain, DT’s
application or purpose: Other properties spe-
cific to domains were also discussed by intervie-
wees. In the case of the lighting domain, e.g.,
a DT comprising several lamps in a room, these
can be simple properties such as whether both
lamps are only ON or OFF together. One inter-
viewee from academia discussed properties for
temperature control in a building such as how
much data is required and needs to be stored
for decision making, and how much redundant
information is present in the stored information.

• Properties related to dynamic consis-
tency: Some of the functional properties to be
validated in DTs which were discussed are dead-
locks and bottlenecks. One interviewee men-
tioned different types of deadlocks such as vari-
ous software deadlocks: circular reference dead-
locks; deadlocks related to data permutation; be-
havioral deadlocks resulting from the interplay
of different behaviors—for instance, interplay of
behavior related to kinematics, geometry, and
time; and other types of deadlocks. Several tem-
poral properties were also discussed, related to
dynamic consistency issues, such as latency in
communication between modelling tools; round-
trip time and properties on how swiftly a tool
sends and receives messages, and response times.

Qualitative properties: Some qualitative properties
were also specified by an academic interviewee for a
conglomerate of DTs such as modularity and com-
posability.
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5.7.3 Discussion

From our findings, we noticed that some interviewees
expressed their concerns on how to measure the qual-
ity of a DT and how to quantify the relevant proper-
ties. We also observed that works such as Dalibor et
al. [31] also discuss this concern on quality assurance
and requirements for DTs. An academic interviewee
mentioned using acceptance tests based on the Kano
model [33] to measure the quality of requirements in
a DT. However, the effectiveness of this model and
its applicability for DTs across different domains was
not discussed. Our interviewees, from a range of do-
mains, uniformly agreed that the properties for DT
validation depend on the DT’s domain, purpose, or
application.

Takeaway message: Fifteen interviewees dis-
cussed that DT properties to be validated depend
on a DT’s domain, purpose, or application. In ad-
dition, behavioral and qualitative properties have
been discussed in the interviews. Specific func-
tional and temporal properties are of interest to
some of these interviewees as being key to address
dynamic consistency issues in a DT.

5.8 Future vision of Digital Twins
(RQ8)

One interview question was aimed to understand in-
terviewees’ perspective on the future evolution of
DTs. During our analysis, we identified interesting
and significant outcomes from this discussion. In or-
der to accommodate and coherently present these re-
sults, we formulated RQ8. Please note that unlike all
other RQs, this RQ was defined after conducting the
interviews.

5.8.1 DT as a tradeable asset

Two interviewees from industry expressed that the
DTs could evolve in the future to become a tradeable
asset which would be made available alongside its cor-
responding AE: when an AE is traded between two
parties, its corresponding DT could also be traded or

provided access to. Furthermore, at times, organi-
zations outsource their projects to a third party for
developing the AE. During its development, the third
parties might possibly create a DT of that AE for im-
proving the AE’s design. In such cases, the organi-
zation outsourcing its project would not only expect
the third party to develop the AE, but would also
want access to or ownership of the corresponding DT.
This transferring or sharing of DTs across the entire
AE lifecycle has been predicted by these two intervie-
wees to be a trend in the future of DTs. This could be
helpful in two ways. Firstly, third party organizations
working with this AE–such as for maintenance, oper-
ations, or other collaborations—might require use of
the corresponding DT, in order to efficiently provide
their services and make them effective. These third
parties could be provided access to the DT then since
the organization owning the AE also owns or has ac-
cess to the corresponding DT. Secondly, when organi-
zations gain ownership of or access to DTs along with
the relevant data, they have the option to experiment
with this DT to see how they can make the best use
of the newly traded AE for their organization. This
experimentation with DTs in a way helps to realize
the complete capabilities of an AE and thus to make
the best use of this AE. One of the aforementioned
two interviewees further specified that the ownership
of data in a DT becomes a challenge when providing
services based on such data. This interviewee spec-
ulates that when a service is provided to one party,
using data owned by another party, then the data
could be used to generate revenue and thus also be-
come a tradeable asset. However, the other intervie-
wee mentioned that shared ownership of a DT also
brings in an additional complexity in terms of relia-
bility of the shared DT and who is responsible when
any impactful incident occurs.

5.8.2 Future evolution of DTs in real world
applications

Below we present the predictions made by the inter-
viewees on how the role of DTs would evolve in real
world applications.

• A world of DTs interacting with each
other: During our analysis, we identified pre-
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dictions pertaining to the interactions among
DTs of different vendors. Particularly, one in-
terviewee who discussed transferring ownership
of DTs across its entire lifecycle mentioned that
when DTs become a tradeable asset for most real
world products traded, this could result in sev-
eral DTs for every organization or person using
the corresponding AEs. Two interviewees shared
that these DTs from different domains around us
could probably then interact with each other and
exchange useful information for use-cases such as
improving decision making, accurate diagnosis,
etc.

• DTs increasing AE’s autonomy and adapt-
ability: Two interviewees emphasized that AEs
could possibly become more autonomous and
self-adaptive with the help of their DTs. One
interviewee predicts that DTs will become part
of the AE and thus, systems can reason about
themselves with the help of their DT: e.g., de-
tect when they are not functioning properly or
optimally and request a human to further di-
agnose the issue. Once diagnosed, they might
then optimize themselves to a certain extent, as
long as it is within their scope of control, such as
changing a few parameters, disabling functions,
deploying necessary software and others. This
would avoid the need for human intervention for
making such changes. Moreover, when the en-
vironment around the AE changes or when the
operator wants to use that system in a different
way, then with the help of its DTs, the system
would be able to autonomously adapt itself to
these changes, increasing flexibility of usage.

• DTs in improving automation and design
support: Two interviewees predicted DT usage
to enable increased automation of real world pro-
cesses. They mentioned that changes which need
to be done in an AE, could be applied directly
on the corresponding DT by giving commands;
and that the DT could then automatically make
those changes in the AE.

They further predicted that the DT will play
an important role in design support when de-

veloping new AEs. One interviewee mentioned
that DTs will direct the designers and help in se-
lecting the appropriate components needed for a
factory floor when setting it up. Another inter-
viewee expressed that with DTs’ application of
machine learning techniques, DTs will become
more intelligent and could possibly become an
interactive design support assistant. This clever
assistant will help to solve problems and prevent
pitfalls in the design that an engineer makes. For
example, when systems are integrated and inter-
act with each other to exchange data, the DT
would possibly detect where and what inconsis-
tencies occur in such interactions and help in fix-
ing them in the design.

• Role of AI in DTs: While the terms ‘Artifi-
cial Intelligence’, ‘Machine Learning’ (ML) and
‘Reinforcement Learning’ (RL) were mentioned
during different parts of the interview, six inter-
viewees specifically mentioned these terms while
discussing future trends of DTs. According to
one interviewee from academia, ML and RL can
be combined with DTs to help to learn about
complex systems (i.e., safety critical systems) in
a virtual environment, when this is difficult to
do on the real-world system. Furthermore, he
mentioned that ML algorithms could be used to
learn control software using the DT, and then
control the corresponding AE. Another intervie-
wee from industry suggested that integration of
AI and ML with DTs will be the biggest step for
the next 10 years and can help to improve pre-
dictive maintenance of real-world systems. An
academic interviewee mentioned that AI will be
useful in the development of DTs when using
data obtained from the AE for automated model
improvement or refinement.

• Other future predictions on DTs: Two in-
terviewees also predicted that there would be a
shift in the way AEs are developed in the future
where a DT would always be completely part of
the development of systems. One of these inter-
viewees identified a related challenge regarding
resistance against accepting the results from DTs
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in certain communities as they require a confir-
mation of those results from the real-world sys-
tem. He believes that this would possibly change
in the future and most communities would start
accepting results from DTs.

5.8.3 Future evolution in the development of
DTs

Below we discuss the various visions on future, im-
proved DT development.

• Two industrial interviewees mentioned lack of
standards as a challenge. They believe that such
standards would become available for, e.g., de-
veloping and maintaining DTs, and for manag-
ing and combining data in DTs.

• One interviewee mentioned the interoperability
challenge related to integrating different simu-
lation software tools (discussed in Section 5.5.5)
would be solved in the future. Moreover, he men-
tioned that a platform supporting tool interop-
erability would be available for DT developers
to use in the future. We observe that this seems
dependent on the definition and proper imple-
mentation of standards to ensure such interop-
erability.

• Two interviewees mentioned improvements in
the ease-of-use and intuitiveness of DT develop-
ment tools. They mentioned the current chal-
lenge in DT development as requiring software
knowledge in order to develop them; and they
believe this would change in the future. They
expect DT development tools to become more
intuitive such that DTs can be developed by
defining simple functions, adding minimal code,
and dragging and dropping components, without
requiring assistance of software experts. This
would enable experts from different domains
with minimal software knowledge and expertise
to develop DTs with ease.

• One interviewee from industry also mentioned
that visualization in DTs would possibly improve
in the future in order to present data to humans

in a convenient way leading to better interpreta-
tions by humans.

• An academic interviewee compared DTs to soft-
ware and mentioned that DTs will hence have to
be versioned, tested, validated, and certified in
the future, like regular software.

• Another interviewee from industry used the term
‘Simulation as a Service’ to describe a cloud-
based service similar to a DT, which would pos-
sibly be available in the future for performing Fi-
nite Element Method (FEM) analysis by simply
uploading CAD models and selecting the part
where the analysis needs to be done, and pro-
viding the results.

• Two interviewees also explicitly mentioned that
DTs should evolve over their entire lifecycle to
serve new purposes, i.e., provide new services in
addition to what they were initially developed
for. One of them further mentioned that the
speed of this evolution depends on the DT’s ap-
plication and context.

5.8.4 Discussion

Future predictions were made on three different
aspects of DTs, namely, the trade aspect of DTs,
the influence of DTs in engineering applications,
and the evolution of DT development in the fu-
ture. Some of the future predictions made by
the interviewees have not been discussed in any
literature to our knowledge. We believe that some
of the aforementioned future applications of DTs
such as increasing AE’s autonomy and adaptability,
and improving automation and design support,
are highly important. We further believe that the
influence of DTs in engineering applications could
substantially grow in the future. It was interest-
ing to observe several interviewees discuss future
improvements in DT development. However, there
was no explicit timeline specified by the interviewees
on when they expect these improvements to come
into existence. With DT development, we believe
that improving the ease-of-use and intuitiveness
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of DT development tools which would enable non-
software experts from any domain to develop DTs
with ease, would be a game changer and greatly
improve the adoption and use of DTs across domains.

Takeaway message: Predictions on the busi-
ness model of DTs have been made such as DTs
and their related data becoming a tradeable as-
set whose ownership could be transferred or shared
across the lifecycle. AI is expected to become
highly pronounced in DTs in the future. DTs have
been predicted to improve the automation and self-
adaptability of systems; and also to help in the de-
sign support for such systems. Current challenges
in DT development such as lack of intuitiveness,
standards, and interoperability are predicted to be
resolved in the future.

5.9 Additional findings

As mentioned in Section 3, this research was con-
ducted using semi-structured interviews, allowing the
interviewee to discuss any topic. We dedicate this
section to presented results from topics discussed
which do not fit any of our research questions. Top-
ics mentioned by at least seven interviewees are dis-
cussed below, and summarized in Table 9. The first
column shows our classification of the findings. The
second column shows the number of interviewees who
discussed a specific class in our classification.

Table 9: Overview of additional findings discussion.
Columns #I and #A indicate the number of indus-
trial and academic interviewees who mention that
specific topic. We interviewed 10 individuals from
industry and 9 from academia.

Topic #I #A
Architecture 7 4
Process 3 4
Goal’s role in design 6 5
Modelling practices 2 5

5.9.1 Architecture

This section aims to explain the DT’s architectural
choices shared by 11 interviewees. We identified two
key architectural properties mentioned by our inter-
viewees, which are re-usability of the components and
maintainability of the system. According to the inter-
viewees, the main objective of the architecture is to
aid rapid DT development. We observed four archi-
tectures mentioned by the interviewees, but we only
report on the one with at least three mentions.

A block-based architecture for the VE was men-
tioned by six interviewees, four industrial and two
academic. For each interviewee the entity encapsu-
lated in such a block is different. For two academic
interviewees, the block is a model that can exist at
different levels of abstraction, e.g., a component of a
machine, the complete machine, or the entire man-
ufacturing system. For them each block must be
configurable, to define limitations on the models and
make them unique. Another two industrial intervie-
wees explained that their notion of a block is a com-
ponent of a machine or process, but never the entire
system, e.g., in a belt conveyor DT, the blocks can
be the belt, the motor, etc. For them, the separation
of components should facilitate VE maintainability.
Another industrial interviewee described each build-
ing block as a stage of the life cycle of the product,
which can be assembled to compose the DT; e.g., a
block is the design of a wind turbine, and another
block is the wind turbine operation. Finally, another
industrial interviewee explained that each engineer-
ing domain builds a block constituted of several mod-
els which later are encapsulated and connected to
other blocks.

According to our analysis, block-based architec-
tures with their separation of concerns between enti-
ties of a different nature—such as components of the
AE or engineering domains—aid rapid DT develop-
ment, due to component re-usability and maintain-
ability.

5.9.2 Process

This section aims to understand the process seven in-
terviewees shared to build a DT. Five of them follow
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a software development process adjusted to DT de-
velopment. Another two described specific, domain-
dependent, processes to design a DT.
The five interviewees who follow software develop-

ment processes expressed that they have adapted the
processes but they did not specify how. The software
development processes that were mentioned are Dev-
Ops (Software Development and Operation) or Ag-
ile. They stated that these practices facilitate cross-
domain cooperation.
The other two interviewees, who used specific de-

sign processes, recognized that each domain devel-
ops DTs in different ways, but still uses software de-
velopment practices in different stages of their DT
development. The industrial interviewee discussed
that he uses Dev-Ops practices and tools to develop
some of his sub-steps, such as the use of Continuous
Integration-Continuous Deployment (CI/CD) tools.
The academic interviewee shared that he uses prac-
tices from the V-model to perform his unit testing.

5.9.3 Goal’s role in design

This section discusses the role that a clear goal can
play in the design of digital twins, according to 11
interviewees. All of them mentioned determining a
goal (or purpose, or service) as the first step to de-
veloping a DT. We identified the influence of the goal
in three entities, namely, the model, data, and other
design choices.
Related to models, they mentioned that the goal

defines the model’s fidelity, level of abstraction, type
(e.g., continuous time), and modelling approach (e.g.,
data or physics-based).
Concerning data, the goal defines the data to col-

lect, data processing methods, and the selection of
sensors and actuators. They mentioned that to de-
sign the collection of data, the data must have a pur-
pose. The data purpose aids the selection of data
sources, processing methodologies, and other proper-
ties such as collection frequency.
Other design choices influenced by the goal are tool

selection, resource definition, and optimization meth-
ods. Moreover, one interviewee mentioned that the
DT’s goal should relate DT development to the busi-
ness objectives.

5.9.4 Modeling practices

We found six interviewees who discussed the best
practices to maintain or create models for DTs. Re-
garding maintainability, three interviewees shared
that in DTs the models must be updated regularly
since they should be synchronized with the AE dur-
ing their life cycle. However, they mentioned that
this is a challenge since current version control sys-
tems are not appropriate for complex systems such
as DTs.

Another three interviewees mentioned that it is
important to find a balance between model fidelity
and system complexity. An example is the use of
data-based models (e.g., machine learning models) in
highly complex systems, which require real-time re-
sponsiveness. According to these interviewees, data-
based models can execute faster, have good fidelity,
and can learn from the environment, compared to
physics-based models.

5.9.5 Role of humans in DT

As mentioned in section 5.1.2, two interviewees ex-
plicitly mentioned that humans play an important
role in a DT and thus, they should also be seen as
a part of a DT. Several interviewees also implicitly
discussed the importance of humans in a DT dur-
ing its operation. One common observation from our
analysis is that humans interact with a DT through a
user interface for monitoring, training, and other pur-
poses. Our analysis further suggests that certain ser-
vices provided by the DT cannot be automated and
thus, a human is required to translate the information
received through the user interface, into actions on
the AE. Two interviewees explicitly mentioned that
complete automation in a DT is not possible and so,
the human part in a DT is very important for its op-
eration. Three interviewees from academia also men-
tioned that continuous information input and knowl-
edge use from humans—such as field service engi-
neers, subject matter experts, stakeholders part of
or using the AE and others—help in updating and
improving the models continuously while the DT is
in operation. One industrial interviewee also men-
tioned that model calibration and rework which in-
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volves changing and tuning parameters in the model
based on the data from the real world, may require
human intervention at times. Three mentioned that
in some of the DTs they have worked on, there is
no direct connection between the AE and its virtual
counterpart and thus, humans act as the bridge con-
necting these two entities by manually transferring
data from the AE to its corresponding VE in order to
effect their continuous synchronization. Apart from
these, one interviewee from academia mentioned that
in one of the DTs he had worked with, humans played
an important role in training the virtual counterpart
of an AE, which then trained the AE for its specific
purpose. Thus, it has been observed that humans,
apart from contributing to the development of DTs,
play an important role in the operation of DTs; this
has been visualised in Figure 6.

Figure 6: Role of humans in the operation of a DT

5.9.6 Discussion on additional findings

During the interview, the interviewees shared their
thoughts and opinions on the development of DTs.
The additional findings, as visualised in Table 9, are
related to architecture, development process, the DT
goal’s role in design, and modelling practices.
Most interviewees who discussed DT architecture

mentioned a block-based architecture as their prefer-
ence. Each has a different interpretation of what a
block entails, but all agree that the aim of this archi-
tecture is rapid DT development and maintenance.
From the interviewees who discussed their process

for DT development, the majority stated using an
adapted software development process, such as Dev-
Ops or Agile. Others who use specific development

processes, seem to use some software development
practices and tools, such as unit testing or CI/CD
tools. Our analysis shows that the main driver to
use software practices or processes is the software-
centered nature of DT’s.

Interviewees who discussed the role of the goal in
the design, agreed that it is crucial to define it before
starting DT development. The goal has a big in-
fluence on many design decisions related to models,
data, and tooling. Examples of this are the fidelity
of the models or the data selection from the AE.

Related to models, interviewees discussed the im-
portance of DT models’ evolution during the life cy-
cle of the AE. This evolution requires proper tools
for version control, going beyond currently available
ones.

Furthermore, while several interviewees implicitly
discussed the importance of humans’ role in DTs,
only two interviewees explicitly considered humans
to be a part of DTs.

Takeaway message:
Our analysis shows that the DT architecture should
facilitate maintainability, cross-domain collabora-
tion, and rapid development. Also, our analy-
sis shows that DT development processes contain
ingredients of software development processes or
adaptations thereof for DTs. A common recom-
mendation for development, is to define the goal of
the DT before starting its development. Concern-
ing modelling practices, our analysis shows that
models should evolve with the AE and that cur-
rent technologies for version management are not
sufficient for these complex systems.

6 Threats to Validity

This research is an empirical study, which is never
completely devoid of omissions or pitfalls. We discuss
the threats to validity as described by Easterbrook et
al. [7] and the measures taken to mitigate these.

Regarding construct validity which pertains to
quality of the measurement of the constructs for the
experiment, one concern is the level of expressive-
ness of information shared by the interviewees about
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the DT practices and technical DT issues at their
organization. However, this was mitigated to a cer-
tain extent by emphasizing the research’s approval
by the universities’ ethics review board and data
stewards, assuring data privacy rights and complete
anonymization of the collected data and its process-
ing.
A second threat concerns the limited variability of

interviewee opinions. To mitigate, we included inter-
viewees from both industry and academia with var-
ied educational backgrounds, different levels of ex-
perience with DTs; working in diverse roles; from
different industrial domains; and from companies of
different sizes.
A third threat concerns the understandability of

the interview questions. To mitigate this threat,
we conducted a pilot interview with an interviewee
from industry working with DTs. Based on the feed-
back received, interview questions were reordered and
paraphrased for a seamless interview flow and ease
of understanding, the process of which is explained
in Section 3.1.2. A last construct validity threat is
related to interviewer bias. This was mitigated by
creating an interview guide which had instructions
to drive the interview with an exhaustive list of pre-
defined questions to be asked. Furthermore, inter-
views were conducted by two interviewers, one ask-
ing questions and one keeping track of questions and
making notes.
Regarding internal validity, the dependency of

results on just the interview data is a potential threat.
In order to mitigate this, the data analysis was done
meticulously following the analysis methodology de-
scribed in Section 3.5. Data analysis involved three
levels of transcription: firstly, automated transcrip-
tion; secondly, manual transcription by student as-
sistants; and thirdly, verification of the entire tran-
scripts against the recorded interviews by three re-
searchers. The coding process was scrupulously done
by three researchers in an interpretative manner over
two months. For any artifact, the process was deemed
complete only when it was coded equally by at least
two researchers. When the two researchers had dif-
ferent interpretations in coding a particular artifact,
these were presented and discussed among the re-
searchers to arrive at a common understanding on

such codes. This way of working was described in
Section 3.5.2.

Regarding external validity, the generalizability
of results is a threat. We tried to minimize this
threat by having a significant number of intervie-
wees with diverse roles and varied educational back-
grounds from both industry and academia; with dif-
ferent levels of experience with DTs; from different
industrial domains varying from health care to space
exploration; from companies of different sizes; and
with different levels of understanding of DTs, consid-
ering the lack of common understanding of DTs in
both industry and academia. However, the sample
size of nineteen in this research can still be seen as
relatively small, possibly limiting external validity.

7 Discussion and conclusion

In this exploratory research we studied the current
landscape of DTs from a technical point of view, par-
ticularly its current state-of-practice on design, devel-
opment, operation and maintenance. To do that we
interviewed individuals from industry and academia.
This research is focused on software aspects related to
DTs, specifically the interviewees’ DT’s understand-
ing, model consistency, integration, orchestration and
validation. These challenges were discussed in [28].
In addition, we also discussed our interviewees’ opin-
ion on the future impact of DTs.

With regard to understanding of DTs as discussed
in Section 5.1, our findings suggest that there is no
consistency in the definition of DTs nor in the under-
standing of the components that make up a DT. How-
ever, commonality exists in the understanding that a
DT is a virtual representation of an entity. Moreover,
there is some agreement on certain components of a
DT, namely, model, data, and some level of synchro-
nization between the virtual representation and its
AE. The level of agreement of the different compo-
nents in a DT was depicted in Figure 4. In addition,
we asked the interviewees for their opinion on Tao et
al.’s DT model [17], explained in Section 2. 11 in-
terviewees agreed to this model to a certain extent,
although with some changes to this model. Some
of the changes suggested pertaining to the connec-
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tions in this model are eliminating certain connec-
tions among components and some of the connections
can be made uni-directional instead of bi-directional.
Furthermore, other changes which were suggested to
this model are that there could more than one VE
which could be separated or inter-connected, data
and VE component in this model could be combined
into a single component and humans play an impor-
tant role in DTs, thus they could possibly be included
as another dimension.
Regarding reuse practices in DTs (Section 5.2), we

noticed positive effects in the development of DTs,
yet in practice infrequent reuse due to its challenges.
On the other hand, we observed a trend towards
multi-tool development approaches to DTs which can
benefit from re-use practices. Moreover, the multi-
tool approach was also frequently used to integrate
models, as shown in Section 5.4.
The findings on model consistency discussed in

Section 5.3 show that inconsistency issues are re-
current, but not recognized as inconsistency issues
specifically. We observed that these issues are solved
as regular issues, with no specialized methods or
tools implemented. We are convinced that further
research on methods and tools to tackle inconsis-
tencies is needed. Furthermore, such methods and
tools can tackle orchestration challenges related to
data exchange, as discussed in Section 5.5. These
methods and tools can be based on highly standard-
ized domains, e.g., the automotive and aerospace do-
mains,which has demonstrated to be more mature in
dealing with inconsistencies.
Our findings on integration (Section 5.4) show

maintainability, cross-domain cooperation and effort
as the main criteria to select the approach to inte-
grate. The high frequency use of a multi-tool ap-
proach is due to facilitation of the first two crite-
ria, although it requires more effort: heterogeneous
components require encapsulation and interface def-
inition to operate together. Finally, two main chal-
lenges were related to the heterogeneity: the cross-
platform integration; and complexity, i.e., the diffi-
culty of managing the number of components to inte-
grate in a DT. In conclusion, we believe that research
is needed to develop a tool for cross-platform integra-
tion. Such a tool could be based on technologies such

as FMI and DSLs as mentioned by the interviewees,
and help to tackle a DT’s complexity and heterogene-
ity.

The model orchestration findings discussed in Sec-
tion 5.5 show that all interviewees agree orchestra-
tion is about proper scheduling of model execution
for a specific DT application. Thus, the type of DT
application seems to define the trigger to execute a
model, role of time for orchestration and how data is
exchanged among models. Finally, the main technical
challenges are cross-platform and combining contin-
uous and discrete models’ execution. In conclusion,
research is required to generalize and implement the
aspects to orchestrate different domain applications.
A DSL seems to be a promising approach, since it
was the most frequent technology mentioned. These
aspects should be implemented in a tool for model
scheduling. Finally, the developed technology should
tackle the technical challenges on cross-platform and
cross model-type execution. The technological solu-
tions for integration and orchestration should be com-
plementary because DT services’ dynamic behavior
require proper orchestration. However, before defin-
ing the orchestration, the DT integration is required
since it defines its components and interconnections.

The verification and validation findings discussed
in Section 5.6 show that it is considered an impor-
tant task in DT development. In addition, they show
that the most prominently used method for valida-
tion is the informal method of comparing the be-
havior of VE and the AE. Formal verification and
testing has also been used for verification and vali-
dation of DTs. Each of these methods have different
challenges which have been discussed in Section 5.6.
Furthermore, some strategies for validating DTs were
put forward such as validation after model reduction,
validation by increasing complexity, validation by op-
erating DTs at out-of-bound conditions and continu-
ous validation of DTs. However, each presented tech-
nique only validates specific aspects of the system,
thus we speculate that a combination of the tech-
niques is required to rigorously validate a DT.

The properties for validation of DTs discussed in
Section 5.7 are highly influenced by DT’s domain,
purpose or application. Several behavioral properties
were discussed in the interviews which were specific
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to the DT’s domain, purpose or application. More-
over, some functional and temporal properties were
put forward which are key to address dynamic con-
sistency issues in a DT. One of the main challenges
put forward in the interviews were how to measure
the quality of DTs. This challenge was further dis-
cussed on which properties could be used for measur-
ing quality of DTs and how to quantify these proper-
ties. We believe that further research is required to
understand how to measure the quality of a DT and
the corresponding properties for this purpose.
Finally, the findings regarding the future of DTs

from Section 5.8 show that there are three main
trends put forward by the interviewees. First, re-
lated to the influence of DT in business, interviewees
expect that DTs will be assets that can be traded.
Furthermore, DT technology will be used in many
products; and as a result interaction of DTs between
vendors will become common practice. Second, the
influence of DT in engineering practices, intervie-
wees shared their view on how DT technology will
transform systems to become more autonomous and
self-adaptive. Third, they shared how DTs’ devel-
opment will be facilitated in the future, by tackling
its main challenges such as interoperability or stan-
dardization. Moreover, they shared that in the future
tools will facilitate DT development by non-software
developers.
Our analyses of the interviewees’ expressions

showed many challenges around DT development,
maintenance, and operations. Yet also emerging were
various ways to address or with potential to address
these challenges, involving using concepts and results
from more classical software and systems engineering.
The field holds a lot of promise and need for apply-
ing and adapting such concepts and results, requiring
research on how best to adjust and apply these to
Digital Twin development, maintenance, and opera-
tions. With such research, and with the vision of a
DT-enriched future as expressed by the interviewees,
the future definitely looks both bright and twinned.
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