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Abstract

To model the engineering performance of components made of polyvinylidene

fluoride (PVDF), the 3D elasto-viscoplastic Eindhoven glassy polymer (EGP)

model is extended to describe the rate-dependent behavior of PVDF. Careful

analysis of the intrinsic behavior of PVDF revealed that the postyield compres-

sive response shows a strain rate-dependence that evolves with increasing defor-

mation. The extension of the constitutive model captures the deformation-

dependent evolution of the activation volume and the rate-factor, which

describes the driving stress. Given the significant temperature-dependent behav-

ior, the model has been characterized for different temperatures (23, 55 and

75 �C). The accuracy of the model has been validated by means of tension and

creep experiments at these temperatures. The constitutive model is implemented

in finite element simulations and the results are compared with the experiments.

It is shown that the proposed model allows for an accurate prediction of the

short- and long-term rate-dependent behavior of PVDF.

KEYWORD S
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1 | INTRODUCTION

The increasing depth of offshore oil- and gas-fields at
the seabed results in increasingly severe conditions to
which structures in the offshore industry are exposed,
for example, large temperature gradients, high pressures
and chemically aggressive hydrocarbons. As a conse-
quence, conventional steel pipelines used to transport
water and hydrocarbons between seabed and platforms
at sea-level, are being replaced by thermoplastic com-
posite pipes (TCP). TCP are flexible multilayered sys-
tems composed of a thermoplastic fiber reinforced
composite layer concealed by an inner liner and a

protective coating on the outside. The pipes are typi-
cally designed to allow for a maximum bending strain
between 1.5% and 3.5%, depending on the application
of the pipe. The bending strains are in the axial direc-
tion of the pipes and are therefore different from the
strains in the unidirectional composite layers that
depend on the fiber orientation with respect to the axial
direction of the pipe. Furthermore, depending on the
application of the TCP, the external pressure can
increase to 350 bar while the internal pressure may
vary between vacuum and 800 bar. The high mechani-
cal strength, relatively lightweight nature and especially
the chemical resistance to water and hydrocarbons
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make these pipes an excellent material for exploitation
in offshore applications.

Polyvinylidene fluoride (PVDF) is the preferred
matrix material in the fiber reinforced composite layer
because of its high chemical resistance in combination
with good mechanical and thermal properties. PVDF is a
semicrystalline thermoplastic polymer that generally con-
sists of two distinct crystalline phases, denoted as the
α- and β-phase, respectively. The β-phase is associated
with piezo- and pyroelectric properties, that is the ability
to generate an electric charge when subjected to a
mechanical or thermal load, respectively.1 The α-phase is
known for its strong mechanical performance and chemi-
cal resistance, which makes it suitable for applications in
the offshore oil- and gas-industry.2,3

In the past decades, most studies were focused on the
piezoelectric properties of PVDF4–6 and the thermome-
chanical performance of α-phase PVDF received only lit-
tle attention. To ensure a safe and reliable use of PVDF
in oil- and gas-applications, its thermomechanical behav-
ior should be well understood. In order to characterize
the thermomechanical behavior of PVDF, numerical
models can be of assistance. Numerical studies supple-
ment experimental campaigns unraveling some observed
phenomena. Yet, these models also reduce the amount of
time- and resource demanding experimental efforts and
they are instrumental for the engineering design of the
components to be made.

The focus on the analysis of the constitutive behavior
of PVDF and correspondingly, the development of
numerical models is relatively limited. Reis et al.7

proposed a 1D elasto-viscoplastic model to describe the
rate-dependent tensile response of PVDF at room temper-
ature. Motta et al.8 introduced a 1D elasto-viscoplastic
constitutive model to describe both cyclic and monotonic
tensile loading at room temperature with both isotropic
and kinematic hardening incorporated. Although strain
hardening is included in the model, it is only applied to
describe the behavior up to relatively small strains of 3%.
Furthermore, both models assume that the entire non-
linear response is accounted for in the irreversible plastic
part, whereas the deviation from the elastic response is
not completely irreversible.

Challier et al.9 focused on the tensile response of
PVDF at room temperature. They observed voiding and
stress-whitening in tensile specimens and used a 3D
elasto-viscoplastic modified Gurson model to describe the
mechanical behavior. Laiarinandrasana et al.10 continued
on this work and applied the modified Gurson model to
describe the tensile response of PVDF at lower tempera-
tures (down to �50 �C). This model is able to describe
the tensile response of PVDF at moderate strain rates and
low temperatures. Both models however, describe the

response up to the yield stress as linear elastic, resulting
in a loss of information in the nonlinear preyield response
of the material. O'Connor et al.11 used a 3D viscoplastic
constitutive model to describe the response of PVDF in
microindentation tests, where they also adopted linear
elastic behavior up to the yield point. Furthermore, the
onset of plastic deformation is based on the Von-Mises
yield criterion, which means that no pressure sensitivity is
taken into account. Yet, the yield stress of polymer mate-
rials is well known to be pressure-dependent.

For the description of the intrinsic behavior of PVDF
in a finite element setting, a 3D constitutive model is
required that accurately describes the elasto-viscoplastic
response up to large strains, at different strain rates and
temperatures. In this work we present a fully 3D strain
rate-dependent model based on the mechanical behavior
of PVDF. The constitutive model described by van Bree-
men et al.,12 referred to as Eindhoven glassy polymer
(EGP)-model, is used as a starting point. In a recent
experimental investigation of the yield kinetics of PVDF,
Pini et al.13 showed that the yield response in compres-
sion and tension can be represented by a modified Ree–
Eyring equation. Based on this study, we describe the
time- and temperature-dependent behavior of PVDF
using the 3D elasto-viscoplastic constitutive model by
van Breemen et al.,12 based on the Eyring flow theory.14

The model uses an Eyring flow viscosity which reduces
with the applied stress, effectively reducing the relaxation
time. A major benefit of this model is the incorporation
of multiple relaxation times which enables an accurate
description of the nonlinear response in the preyield
regime. Furthermore, the flow viscosity is pressure
dependent, making it suitable for complex loading condi-
tions. The model has been successfully applied to
describe the intrinsic rate- and temperature-dependent
response of both amorphous and semicrystalline poly-
mers requiring only a limited number of short-term
experiments.12,15–17 The fact that the model is also capa-
ble of predicting the long-term response, using merely
short-term experiments, makes it very powerful for engi-
neering purposes.

To enable the large-strain description of the material,
the model implementation is extended to describe the
evolution of the strain rate-dependence with increasing
deformation. The extension is based on the work of Wen-
dlandt et al.18 and Senden et al.19 Wendlandt proposed a
deformation-dependent activation volume to model the
large-strain response of five different polymers and Sen-
den proposed a deformation-dependence of either a rate-
factor or the activation volume. A similar approach is
proposed here, where a deformation-dependent activa-
tion volume and rate-factor are combined. Experiments
on PVDF samples are used to identify the required
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material parameters. Finally, the identified material
parameters are used to validate the model by comparing
finite element simulations of uniaxial tensile tests and
tensile creep tests to experimental results.

This article is organized as follows. In Section 2 the
constitutive model as described by van Breemen et al.12 is
briefly reviewed. This is followed by the experimental
methods and corresponding test results on PVDF in
Section 3. In Section 4 details of the finite element simu-
lations are explained, after which in Section 5 the identi-
fication of the material parameters required for the
constitutive model is discussed. This includes the pro-
posed extension of the constitutive model. Subsequently,
the extended constitutive model is validated in Section 6
and finally the conclusions are given in Section 7.

Throughout this article, scalar variables are denoted
as a or A and second-order tensors are denoted as A.

2 | CONSTITUTIVE MODEL

The 3D isotropic elasto-viscoplastic constitutive model
described by van Breemen et al.12 is used as a basis to
describe the material behavior of PVDF. The key ingredi-
ents of this model are reviewed here. The proposed exten-
sion to this model is introduced later in Section 5.1.2.

The deformation gradient F is multiplicatively decom-
posed into the elastic part Fe and the plastic part Fp as

F¼Fe �Fp: ð1Þ

This means that the velocity gradient tensor L is
defined by an additive split of the elastic part Le and the
plastic part Lp as

L¼F
� �F�1 ¼LeþLp: ð2Þ

The rotation corresponding to the elastic and plastic
part of the deformation is not uniquely defined by
Equation (1). Therefore, it is assumed that the plastic
deformation is spin-free which implies that

Lp ¼DpþΩp¼Dp, ð3Þ

where Dp is the plastic rate of deformation tensor and Ωp

is the plastic spin tensor. In addition, the plastic deforma-
tion is assumed to be isochoric and therefore the volume
change ratio J is defined as

J ¼ det Fð Þ¼ det Feð Þ: ð4Þ

The total stress σ is decomposed using an additive
split of the driving stress σs and the hardening stress σr:

σ¼ σsþσr: ð5Þ

The mechanical representation of the model in its
most simple form, that is the single-mode model, is
shown in Figure 1A.20 The driving stress represents the
intermolecular interactions and is modeled using a single
nonlinear Maxwell element. The hardening stress repre-
sents the elastic contribution of the entanglement net-
work and is modeled by a single spring. For an accurate
description of the nonlinear strain hardening, the
Edward–Vilgis hardening model as introduced by Senden
et al.16 is used. The hardening stress is formulated as

σr ¼Gr

J
eB �Z
� �d

, ð6Þ

(A) (B) (C)

FIGURE 1 Mechanical

analogs of the EGP-model:

(A) single-mode model, (B) the

multi-mode model and (C) the

multi-process multi-mode

model.
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where Gr is the hardening modulus, eB the isochoric left
Cauchy–Green strain tensor. The second-order tensor Z
is defined as

Z¼ α2r 1þ ξrð Þ 1�α2r
� �

1�α2r tr eB� �� �2 tr eB � IþξreB� ��1
� �

I

þ 1þ ξrð Þ 1�α2r
� �

1�α2r tr eB� � Iþ ξreB� ��1
�ξr Iþ ξreB� ��1

 

� IþξreB� ��1
� eB!þ ξr Iþ ξreB� ��1

� α2r

1�α2r tr eB� �I:
ð7Þ

Here, I is the second-order unit tensor. The parame-
ters αr and ξr represent the extensibility and mobility of
the entanglement network, respectively.21 If these param-
eters are set to zero, the tensor Z¼ I and Equation (6)
reduces to a Neo-Hookean hardening model.

The driving stress can be decomposed into a hydro-
static σhs and deviatoric part σds :

σs ¼ σds þσhs , ð8Þ

where the hydrostatic stress depends on the bulk modu-
lus κ and the volume change ratio J as

σhs ¼ κ J�1ð ÞI: ð9Þ

For the single-mode model, the driving stress is
defined by a single Maxwell mode, see Figure 1A. Hence,
at small stress (τ� τ0) the relaxation time is constant,
resulting in a linear elastic response up to the yield point.
This means that the nonlinear preyield response is miss-
ing. To describe the complete nonlinear response, the
driving stress is modeled using multiple Maxwell modes
connected in parallel as shown in Figure 1B.15 Hence the
name multi-mode model. Each Maxwell mode is repre-
sented by a nonlinear viscosity ηi and shear modulus Gi.
Furthermore, if the deformation of the material is gov-
erned by a single molecular process, the material is called
thermo-rheologically simple. Yet, for many materials this
only holds in a limited range of temperatures and/or
strain rates. Beyond this range of temperatures and strain
rates, multiple molecular processes may contribute to the
total material response, which is called a thermo-
rheologically complex behavior. This can be modeled by
two parallel connected sets of Maxwell elements, see
Figure 1C.12 This configuration is known as a multi-pro-
cess model.

Semicrystalline polymers often reveal a thermo-
rheologically complex behavior as is the case for PVDF.13

Therefore, the remaining equations are given for the
multi-process model. Yet, in general they can be applied
to all three models in Figure 1. In the multi-process
model, the total deviatoric driving stress is additively
decomposed into contributions of two molecular pro-
cesses, whereby each process is described by a set of par-
allel connected nonlinear Maxwell elements. This results
in the following expression of the deviatoric driving
stress

σds ¼
Xn
i¼1

σds,Ii þ
Xm
j¼1

σds,IIj , ð10Þ

where the driving stress of mode k corresponding to pro-
cess π is written as

σds,πk ¼Gπk
eBd
e,πk : ð11Þ

Here, Gπk is the shear modulus and eBd
e,πk the deviato-

ric part of the isochoric elastic left Cauchy–Green strain
tensor of mode k corresponding to process π. Here, π may
have the value I or II, denoting the two molecular pro-
cesses that are taken into account. The subscripts •ð Þn
and •ð Þm are the total number of modes corresponding
to process I and II, respectively. Note that for a thermo-
rheologically simple material corresponding to
Figure 1A,B, the stress σds,II vanishes.

To account for the history- and time-dependence of
the material, the evolution of eBe,πk and J are integrated
over time. The corresponding kinematical evolution
equations are given by

_eBe,πk ¼ eL�Dp,πk

� �
� eBe,πk þ eBe,πk � eLT�Dp,πk

� �
ð12Þ

and

_J ¼ Jtr Dð Þ, ð13Þ

where eL is the isochoric velocity gradient tensor and D
the rate of deformation tensor. The subscript •ð ÞT
denotes the transpose of a tensor. The plastic rate of
deformation Dp,πk in mode k is related to the deviatoric
driving stress through the Eyring flow viscosity ηπk as

Dp,πk ¼
σds,πk

2ηπk τπ ,p,γp,π
� � : ð14Þ

The Eyring viscosity as described in Reference 15 is
used here:

ηπk ¼ η0,πk ,ref
τπ=τ0,π

sinh τπ=τ0,πð Þ exp
μπp
τ0,π

þSπ γp,π

� �� �
: ð15Þ

1442 LENDERS ET AL.
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The reference viscosity of mode k is defined by η0,πk ,ref
and τ0,π is a characteristic stress defined by the activation
volume V�

π according to Equation (16). Here, kB is the
Boltzmann constant and T the absolute temperature. The
equivalent shear stress τπ is defined in Equation (17).
The pressure dependence is taken into account through
the parameter μπ in combination with the hydrostatic
pressure p defined in Equation (18).

τ0,π ¼ kBT
V�

π

, ð16Þ

τπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
σds,π : σ

d
s,π

r
, ð17Þ

p¼�1
3
tr σð Þ: ð18Þ

The influence of the thermal history of the material is
expressed by the parameter Sπ according to Equation (19).
The increase of the yield stress due to aging of the mate-
rial is determined by the state parameter Sa,π . The soften-
ing function Rγ,π , which is a function of the equivalent
plastic shear strain γp,π , describes the reduction of the
aged material to its rejuvenated state according to
Equation (20).20

Sπ ¼ Sa,πRγ,π γp,π

� �
, ð19Þ

Rγ,π γp,π

� �
¼

1þ r0,π exp γp,π

� �� �r1,π
1þ rr1,π0,π

24 35
r2,π�1
r1,π

: ð20Þ

The parameters r0,π , r1,π and r2,π are material depen-
dent parameters to be identified. More comprehensive
expressions for the viscosity that include, for example,
temperature-dependence also exist but are not used
here.12,16

The evolution of the equivalent plastic shear strain
γp,π is defined by the mode with the longest relaxation
time corresponding to process π. Under the assumption
that this is the first mode for each process, the evolution
is defined as:

_γp,π ¼
τπ1
ηπ1

, ð21Þ

where ηπ1 is the viscosity of the first mode of the process
and τπ1 is the equivalent shear stress corresponding to
this mode, which is calculated using Equation (17) and
the corresponding deviatoric driving stress, σds,π1 .

The constitutive model is implemented as a UMAT
user subroutine in a similar fashion as described in Refer-
ence 22. The constitutive model is used in finite element
simulations which are all performed in the finite element
package Abaqus CAE 2019. Details on the finite element
simulations are discussed in Section 4.

3 | EXPERIMENTAL METHODS
AND RESULTS

To apply the constitutive model as described in Section 2
to PVDF, the required material parameters for the model
must be properly identified from experimental data. The
experimental methods and results required for the
parameter identification are discussed here.

3.1 | Specimens and testing methods

PVDF (Solef®) pellets were supplied by Solvay Specialty
Polymers (Bollate, Italy). The material was prepared by
compression molding: the pellets were placed in a mold,
heated up to 200 �C, kept at this temperature for 15 min
to allow complete melting and, finally, cooled down at a
controlled rate of 10 �C/min. Several plates with different
thicknesses (0.5, 4 and 8 mm) were prepared in order to
extract the required specimens.

Compression specimens of ø6 � 6 mm were prepared
from the 8 mm thick plate. First, the plate was machined
down to a uniform thickness of 6 mm. Subsequently, the
specimens were produced. Uniaxial compression tests
were performed on a Zwick 1473 universal tester,
equipped with a temperature chamber and a 100 kN load
cell. Tests were carried out at constant true strain rates
ranging from 10�4 to 10�1 s�1. PTFE spray was used to
lubricate the compression plates to avoid barreling of the
specimens at large strains. Because of the homogeneous
deformation during the uniaxial compression tests and
under the assumption of incompressibility, the true stress
and true strain are computed directly from the relative
displacement between the compression plates.

Dogbone tensile specimens with a nominal cross-sec-
tion of 5�0:5 mm2, according to ISO527-1BA, were
punched from the 0.5mm thick plates. In addition, ten-
sile specimens with a nominal cross-section of 5�2:6
mm2 were milled from the 4mm thick plates that were
previously machined down to a constant thickness of
2.6mm. The geometry with corresponding dimensions is
shown in Figure 2, where t indicates the thickness of the
specimens. The 2.6mm thick specimens were used for
uniaxial tensile tests, whereas the 0.5mm thick speci-
mens were adopted for creep tests.

LENDERS ET AL. 1443
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Uniaxial tensile tests were carried out on a Zwick
Z010 universal tester, equipped with a 1 kN load cell, in a
temperature chamber. Deformations were measured
using a non-contact extensometer (Zwick videoXtens).
Tests were performed at video-controlled constant engi-
neering strain rates between 10�5 and 10�1 s�1. Adhesive
markers were carefully placed along the center line of the
specimens at a separating distance of approximately
30mm. The markers are indicated by the black/white cir-
cles in Figure 2. The displacement was measured as the
relative distance variation between these two gauge
points. In contrast to the compression tests, the deforma-
tion during the tensile test is no longer homogeneous
upon localization in the gauge section. Therefore, the
engineering stress is calculated using the undeformed
cross-sectional area of the tensile specimen. The engi-
neering strain is computed from the displacement
between the gauge points.

Additional creep tests were performed at different
constant applied stress levels on Zwick Z010 universal
testers, equipped with 1 and 10 kN load cells and in tem-
perature chambers. In all tests the intended creep was
applied within 10 s and then kept constant until failure
of the specimen occurred. In this case, the strains were

simply determined from the crosshead displacement and
the initial distance between the grips.

For all tests considered (compression, tensile and
creep tests), three testing temperatures were used, that is
23 �C (room temperature), 55 and 75 �C. When the test
temperature was different from room temperature, the
specimens were left in the temperature chamber for
5–15 min, depending on specimen size, before starting
the test in order to reach thermal equilibrium.

3.2 | Intrinsic stress–strain response
of PVDF

For the characterization of the material parameters of the
EGP-model, the intrinsic stress–strain response of the
material is analyzed first. The intrinsic behavior is
obtained from uniaxial compression experiments per-
formed at different constant true strain rates and
temperatures.

The true stress strain curves obtained from the experi-
ments at three different temperatures (23, 55 and 75 �C)
are shown in Figure 3A–C. At room temperature, strain
softening is observed followed by moderate strain hard-
ening for all tested strain rates. An exception is the test at
strain rate _ε¼ 10�1 s�1 where strain hardening is not
noticeable. The same observation is made for the highest
applied strain rate at the two other temperatures. This
phenomenon is likely caused by adiabatic heating during
the test, as reported by Walley et al.23 For the lowest
strain rates at 55 and 75 �C, strain softening is only mod-
erately present or not at all. The compressive yield kinet-
ics are shown in Figure 3D where the markers are
extracted from the experimental stress–strain curves. The
dashed lines are interpolated to reveal the trends. The
change in slope with increasing strain rate of these lines
at 55 and 75 �C indicate that two processes are required
to describe the response over the range of applied strain
rates. The strain rate at which this change in slope initi-
ates is approximately _ε¼ 10�2 s�1 for both temperatures.
Due to the limitation of the crosshead speed of the testing
equipment, higher strain rates could not be applied.
Therefore, only one point could be used to indicate the
change in slope. At 23 �C the change in slope is not evi-
dent. However, the fact that the slope of the dashed line
at 23 �C is higher than the slope at 55 and 75 �C, is an
indication that both processes contribute to the total
response over the entire range of applied strain rates
at 23 �C.

The wide variety in response, both for the yield kinet-
ics and stress–strain behavior, makes it difficult to iden-
tify a unique set of parameters describing the behavior
over the considered range of temperatures and strain

FIGURE 2 Dogbone geometry used for uniaxial tensile

simulations and tensile creep simulations according to ISO527-1BA

(dimensions are in millimeters).
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rates. This variety in response might be related to struc-
tural evolution of the material in the timespan of the
experiments. Recent experimental studies into the micro-
structure of PVDF reported on the influence of tempera-
ture and stress on the evolution of the microscopic
structure of semicrystalline PVDF. Contreras et al.24

reported a decrease in crystallinity entailing a decrease in
elastic modulus after stress relaxation. Zhu et al.25 dem-
onstrated that the crystallinity increases over time during
annealing at elevated temperatures. Both studies show
that thermomechanical loading has a significant influ-
ence on the microstructure of PVDF. To investigate the
influence on the microstructure, experiments over a wide
range of temperatures must be performed, and a descrip-
tion must be found for how the material response evolves
under the influence of variable thermomechanical load-
ing. However, for the present study and application per-
spective, the material behavior at the three distinct
temperatures is of special interest.

Accordingly, it is not possible to identify a single set
of parameters capturing the behavior of PVDF over the
entire range of temperatures and strain rates using
the constitutive model described in Section 2. Based on
the significant difference in intrinsic response at the three
temperatures in combination with the fact that the
microstructure of the material changes under the

(A) (B)

(C) (D)

FIGURE 3 True stress

versus true strain for uniaxial

compression experiments at

(A) 23 �C, (B) 55 �C and

(C) 75 �C. (D) The compressive

yield stress as a function of the

applied true strain rate with

interpolated lines to reveal the

trends.

(A) (B)

FIGURE 4 (A) Schematic representation of uniaxial

compression test with boundary conditions. (B) The dogbone

specimen used for the uniaxial tensile simulations discretized by 3D

8-node linear hexahedral elements.
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influence of temperature, it was decided to define a dis-
tinct set of material parameters at each temperature to
describe the behavior of PVDF.

4 | NUMERICAL SIMULATIONS

The details of the finite element simulations that are used
in this study are discussed next.

The FE simulations of the uniaxial compression tests
are performed using a single 4-node linear axisymmetric
element. Uniaxial loading conditions are applied to the
element following a prescribed true strain rate, taken
from the experiments. A schematic representation is
shown in Figure 4A, where the dashed line represents
the axis of symmetry. The output parameters from the FE
simulations are true stress and true strain, which can be
directly compared with the experiments.

For the uniaxial tensile simulations, the geometry of
the specimens that are used in the experiments is exactly
reproduced, as shown in Figure 2 where the thickness t is
equal to 2.6mm. The specimen is discretized using 3D
8-node linear hexahedral elements. The corresponding
mesh is shown in Figure 4B. Note that the part of the
specimen that is clamped between the grips during the
experiments is cut off from the geometry of the simula-
tions. Hence, the total length of the specimen is equal to
56mm. During the experiments, the applied strain rate is
controlled using a video-extensometer which records the
displacement of two gauge points located at the gauge
section of the specimen. In the simulations, the displace-
ment is prescribed at the ends of the dogbone, assuming
zero slip in the grips during the experiment. However,
the displacement between the gauge points should be
controlled to match the applied strain rate in the experi-
ments. Therefore, the separation between the two grips is
measured during the experiments and directly applied to
the ends of the specimen in the simulation. During the
simulation, the displacements at the two gauge points,
that are located at the same positions as those in the
experiments and denoted by the two black circles in
Figure 2, are monitored. These displacements are used to
calculate the strain rate between the gauge points. It is
verified that the applied displacement at the ends of the
specimen results in a strain rate between the gauge
points that is approximately equal to the strain rate
applied in the experiments.

Finally, the engineering strain calculated from the FE
simulations is determined from the displacements
between the two gauge points. The engineering stress is
determined by dividing the total reaction force at the
ends of the specimen by the undeformed cross-sectional
area of the gauge section.

For the tensile creep simulations, the geometry is the
same as for the uniaxial tensile tests, although the speci-
men has a smaller thickness t, equal to 0.5mm. The load-
case in the simulations follows the same procedure as in
the experiments, that is apply the load in 10 s and keep it
constant afterwards. As no damage is included in the
constitutive model, the specimen will not break and
therefore the simulation is stopped if the engineering
strain in the specimen surpasses 50%.

5 | CHARACTERIZATION

Three distinct sets of material parameters are identified
to describe the behavior of PVDF with the EGP constitu-
tive model, one for each temperature shown in
Figure 3A–C. First, the parameters for the EGP-model as
described in Section 2 are identified. Next, the proposed
extension of the model is introduced to obtain a better
coverage of the large strain response. The procedure for
obtaining the material parameters is described in detail
for the behavior at 23 �C. A similar procedure is applied
to obtain the material parameters for 55 and 75 �C, which
is therefore discussed briefly only.

5.1 | Intrinsic behavior at room
temperature

Focusing on the experimental data for the uniaxial com-
pression tests in Figure 3A it is clear that the rate-depen-
dence, that is the vertical spacing between the curves,
decreases with increasing strain. There are several
options to describe this. Van Breemen et al.12 demon-
strated that rate-dependent strain softening in combina-
tion with two relaxation processes can be used to
describe the change in rate- and temperature-dependence
beyond the yield point. Applying the same procedure to
PVDF does not result in a satisfactory description as it
requires the presence of two molecular processes includ-
ing strain softening of the secondary process. Although
multiple relaxation processes occur in PVDF,1,26 Pini
et al.13 showed that there is no support for the coexis-
tence of two processes over the entire range of tested tem-
peratures and strain rates. Also Figure 3D does not
provide evidence for a change in yield kinetics at 23 �C.
Therefore, a different approach is followed based on
Wendlandt et al.18 and Senden et al.19 Wendlandt et al.
proposed a deformation-dependent activation volume to
model the large strain response of five different polymers
while Senden et al. proposed the deformation-
dependence of either a rate-factor or the activation vol-
ume, depending on the material of interest. To describe
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the response of PVDF, we propose to simultaneously take
into account the deformation-dependence of the rate-
factor and the activation volume.

The plastic deformation rate of a thermo-rheologically
simple polymer can be described by the Eyring flow
rule14 as

_γp¼ _γ0 sinh
τV�

kBT

� �
, ð22Þ

where _γ0 is a rate-factor denoting the thermodynamic
state of the material. The remaining parameters are
already defined in Section 2. The expression can be
rewritten in terms of the equivalent shear stress
(Equation (17)) as

τ¼ kBT
V� sinh�1

_γp
_γ0

 !
: ð23Þ

The equivalent shear stress at yield can approximately
be described as a function of the applied strain rate using
Equation (23). The parameters V� and _γ0, which are
referred to as Eyring parameters, are determined by fit-
ting Equation (23) to the yield stresses obtained from
experiments. In the case of uniaxial compression tests
performed at different applied strain rates, the stress σ
and strain rate _ε should be converted to their shear
equivalent form. This is done according to the relations
τ¼ σ=

ffiffiffi
3

p
and γp¼

ffiffiffi
3

p
_ε, respectively. Considering the

experimental stress–strain curves in Figure 5A, the strain
at the yield point is approximately 0.13, denoted by the
leftmost dashed line, where the yield point is defined as
the point of maximum stress in the experiments. Apply-
ing Equation (23) to the corresponding yield stresses,
results in the uppermost linear fit in Figure 5B. Beyond
the yield point, it is assumed that the material behaves as
a viscous fluid where the plastic strain rate is equal to the

applied strain rate. Then, Equation (23) may be applied
at strains beyond the yield point, for example, the
remaining vertical dashed lines in Figure 5A. This results
in the corresponding linear lines in Figure 5B where the
slope decreases with increasing strain. Each line repre-
sents the equivalent shear stress as a function of the
equivalent shear strain rate using Equation (23), at a dif-
ferent strain. Accordingly, the Eyring parameters V� and
_γ0 are now also a function of the deformation.

5.1.1 | Constant model-parameters

Although the need for deformation-dependent Eyring
parameters might be necessary, the characterization pro-
cedure is initiated by assuming these parameters to be
constant up to the yield point. Inspite of the observation
that two processes contribute to the response at 23 �C,
the material is modeled as a thermo-rheologically simple
material considering the linear trend of the yield kinetics
at 23 �C in Figure 3D. Hence, the contribution of both
processes is described by one process only using the
single-process multi-mode model, according to Figure 1B.
The detailed characterization is explained in multiple
studies12,15,16,20,27 and therefore the identification of most
parameters is only briefly discussed here.

The pressure dependence parameter μI is determined
from the difference in yield stress between compression
and tensile tests at _ε¼ 10�3 s�1.17 To this extent, the engi-
neering yield stress obtained from the tensile test is con-
verted to true yield stress, using σy,t ¼ σy,e 1þ εeð Þ. Here
the subscripts •ð Þt and •ð Þe denote the true and engi-
neering quantities, respectively. The activation volume
V�

I , initially considered constant, is defined from the
strain-rate dependence of the yield stress using the yield
kinetics in Figure 3D. The parameters for modeling the
Edward–Vilgis hardening stress Gr and αr are determined
by fitting Equation (6) to the large strain response of the

(A) (B)

FIGURE 5 (A) Compressive

true stress-true strain at 23 �C.
(B) Strain-rate dependence of

the equivalent shear stress.

Markers represent experimental

data and solid lines are

approximations using

Equation (23).
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uniaxial compression stress as function of j λ2�1=λ j at
_ε¼ 10�3 s�1, where λ is the stretch ratio. The parameter
ξr is set to zero.16 The bulk modulus κ is defined using
the Young's modulus and the Poisson's ratio ν, where the
latter is obtained from the data-sheet supplied by the
manufacturer.

The nonlinear visco-elastic response up to the yield
point is modeled by a discrete number of parallel con-
nected Maxwell modes. The exact number of Maxwell
modes that is required for an accurate description of the
preyield response is unknown a priori. Van Breemen
et al. introduced a procedure, to find the spectrum of
relaxation times in Reference 15, using only a set of uni-
axial compression or tension experiments performed at
varying constant strain rates. This procedure is based on
the principle of time-stress superposition, and for a
detailed description, the reader is referred to Reference
15. It is assumed that all modes in the spectrum are
related to process I. However, the procedure can also be
applied to process II, as long as the stress of process II is
isolated from the total stress. The total relaxation modu-
lus E as function of time t for n parallel connected Max-
well elements is defined as

EI tð Þ¼
Xn
i¼1

EIi exp � t
λIi

� �
, ð24Þ

where EIi and λIi are the relaxation modulus and relaxa-
tion time of Maxwell mode i, respectively, and n is an
arbitrary number representing the total number of
modes. The stress response of multiple Maxwell elements
in parallel can be expressed in its 1D form by a Boltz-
mann integral. Substitution of Equation (24) into the
Boltzmann integral results in the following expression for
the driving stress:

σs,I tð Þ¼
Xn
i¼1

EIi _ε

Z t

�∞
exp �Ψ�Ψ0

λIi

� �
dt0

	 

: ð25Þ

Here, σs,I tð Þ is the driving stress as a function of time
t. Further, Ψ and Ψ0 are stress-reduced times that are cal-
culated by integration of a stress-shift factor aσ σð Þ. The
required number of modes n is still unknown, and there-
fore a discrete spectrum of relaxation times λIi is defined.
The range of relaxation times is defined by the stress-
reduced time Ψ. Subsequently, a least-squares fit of Equa-
tion (25) is performed on the preyield regime of the
experimental driving stress–strain response at a single
strain rate. This results in a spectrum of n relaxation
moduli EIi and relaxation times λIi , where the least-
squares method determines the number of modes n
required to adequately describe the experimental stress.

Finally, the relaxation moduli are converted to shear
moduli GIi and the reference viscosities are calculated
according to Equation (26).

η0,Ii,ref ¼ λIi �GIi exp �Sa,Ið Þ: ð26Þ

The factor exp �Sa,Ið Þ results in a shift of all viscosities
along the time-axis to the reference state, since the spec-
trum that is determined from the experimental driving
stress is related to an aged material. The result is the
spectrum of relaxation moduli GIi and reference viscosi-
ties η0,Ii,ref .

Applying this procedure to the compressive
driving stress–strain curve obtained at a constant strain
rate _ε¼ 10�3 s�1 results in a good description of the prey-
ield regime, see Figure 6A. The discrete spectrum consists
of n¼ 21 modes of which the shear moduli and reference
viscosities are shown in Table A1. The individual relaxa-
tion modes and the total relaxation modulus are shown
in Figure 6B.

The state parameter Sa,I is used to describe the
increase of the yield stress due to aging of the material.
The increase of the yield stress is usually followed by soft-
ening of the material. However, hardly any strain soften-
ing is observed for the lowest applied strain rate in
Figure 3A. Furthermore, the experiments were conducted
right after the samples were prepared, resulting in a min-
imal aging time. Therefore, the state parameter Sa,I and
the softening parameters r0,I, r1,I and r2,I are set equal to
zero. The identified parameters are summarized in
Table 1.

5.1.2 | Strain-dependent Eyring parameters

The next step is to define the evolution of the Eyring
parameters with deformation. The strain-dependence of
the Eyring parameters is of influence on the driving stress
only. Therefore, Equation (23) is rewritten into the shear
equivalent driving stress τs as

τs¼ kBT
V � sinh�1

_γp
_γ0

 !
: ð27Þ

From the experiments, the compressive driving stress
is determined by subtracting the hardening stress,
described by Equation (6), from the total stress. The com-
pressive driving stress is then converted to the shear
equivalent driving stress according to τs ¼ σs=

ffiffiffi
3

p
. The

Eyring parameters _γ0 and V� are determined by perform-
ing a least-squares fit on the experimental shear equiva-
lent driving stress with Equation (27) for a sequence of
strains. Under the assumption that γp ¼ 0 at the

1448 LENDERS ET AL.

 26424169, 2023, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pol.20220729 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [09/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



compressive yield point, the Eyring parameters are
dependent on the equivalent plastic shear strain, where
γp ¼

ffiffiffi
3

p
εp for uniaxial compression. Applying this proce-

dure to the experimental driving stress, results in the
deformation-dependent activation volume V � γp

� �
and

rate-factor _γ0 γp

� �
.

To incorporate these strain-dependencies in the con-
stitutive model described in Section 2, first the reference
viscosity η0 is determined according to Equation (28).

η0 γp

� �
¼ kBT

V� γp

� �
_γ0 γp

� � : ð28Þ

The values for the activation volume and the refer-
ence viscosity at different levels of equivalent plastic
shear strain are shown by the blue markers in Figure 7.

A mathematical function is defined to approximate
the strain-dependence in Equation (27). The bilinear
descriptions defined in Equations (29) and (30) are pro-
posed to capture the dependencies on the equivalent plas-
tic shear strain. The functions are denoted by the solid
lines in Figure 7.

V� γp

� �
¼

V�
s þΦV γp 0≤ γp < γp,t,

V� γp ¼ γp,t

� �
γp ≥ γp,t,

8<: ð29Þ

η0 γp

� �
¼

10 Φη0 γpþ log η0,sð Þ½ � 0≤ γp < γp,t,

η0 γp ¼ γp,t

� �
γp ≥ γp,t:

8<: ð30Þ

Here, V �
s and η0,s represent the corresponding values

at γp ¼ 0 and γp,t denotes the equivalent plastic shear
strain at which the parameters remain constant. ΦV is
the slope of the (V�,γp)-curve and Φη0 the slope of the
(log η0ð Þ,γp)-curve. The values of these parameters are
summarized in Table 2. The value of η0 at the yield point,

that is γp ¼ 0, should equal the sum of all reference vis-
cosities contained in the spectrum of relaxation times.
Therefore, the reference viscosities in the spectrum are
scaled with respect to η0 γp ¼ 0

� �
according to

Equation (31).

η0,Ik ,ref γp

� �
¼ η0,Ik ,ref ,init

η0 γp

� �
η0,s

, ð31Þ

where η0,Ik ,ref,init are the unscaled reference viscosities in
the spectrum, defined using the procedure described in
Section 5.1.1.

The original model described in Section 2 is extended
with Equations (29)–(31). Consequently, the following
equations from the original model are redefined as they
become strain-dependent. First, the strain-dependence of
the activation volume results in a strain-dependent char-
acteristic stress τ0,π , that is, Equation (16) is now writ-
ten as

τ0,π γp

� �
¼ kBT

V�
π γp

� � , ð32Þ

where V�
π γp

� �
is defined according to Equation (29). Sec-

ond, the strain-dependence of the reference viscosity

(A) (B)

FIGURE 6 (A) Compressive

true driving stress described by

the discrete modes displayed in

Table A1 (solid line) compared

with the experiment (markers).

(B) The corresponding relaxation

spectrum where individual

modes are displayed in black

and the total relaxation modulus

in blue.

TABLE 1 Parameters of process I for PVDF at T = 23 �C.

Parameter Value Unit

V �
I 2:94 �10�27 (m3)

μI 0.175 (�)

Gr 0.6 (MPa)

αr 0.25 (�)

κ 1:8 �103 (MPa)Pn
i¼1η0,Ii ,ref 2:45 �1013 (MPa�s)

LENDERS ET AL. 1449
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results in the strain-dependence of the Eyring viscosity
ηπk , that is, Equation (15) is now written as

ηπk γp

� �
¼ η0,πk ,ref γp

� � τπ=τ0,π γp

� �
sinh τπ=τ0,π γp

� �� �
exp

μπp

τ0,π γp

� �þSπ γp,π

� �0@ 1A,

ð33Þ

where η0,πk ,ref γp

� �
is defined in Equation (31). All

remaining equations in Section 2 are unaffected by the
strain-dependence of the activation volume and the refer-
ence viscosity.

Equations (29)–(33) are implemented in the constitu-
tive model. Finite element simulations of uniaxial com-
pression tests are then compared with experiments, to
verify whether the intrinsic response of PVDF can be
described by the proposed strain-dependence of the Eyring
parameters. The comparison between the FE simulations
and the experiments is shown in Figure 8A. The spectrum
of relaxation times accurately describes the visco-elastic
preyield response. Although the strain-dependence of the
Eyring parameters according to Equations (29) and (30) is
a simplified description, the strain rate-dependence of the
postyield response is described very well. The preyield

response at _ε¼ 10�1 s�1 is slightly underpredicted
because the additional contribution of another process
might be active here, as reported in Reference 13. Yet,
the yield kinetics of the experiments as compared with
the simulations in Figure 8D reveal an accurate descrip-
tion using only one process. Note that the deviation of
the large-strain response at the highest strain rate in
Figure 8A is due to adiabatic heating during the experi-
ment which is not accounted for in the simulations. Nev-
ertheless, the identified parameters in combination with
their strain-dependence result in an adequate description
of the stress–strain response at 23 �C.

5.2 | Intrinsic behavior at 55 and 75 �C

The same procedure is followed to identify the material
parameters for the single-process multi-mode model
(Figure 1B) at 55 and 75 �C. The resulting material
parameters are summarized in Table 3. The spectra of
relaxation modes are characterized on the compressive
driving stress–strain curve obtained at a constant strain
rate _ε¼ 10�3 s�1 for both temperatures. This results in
two spectra, each containing n¼ 18 relaxation modes,
which can be found in Appendix A. The state parameter
Sa,I and the softening parameters r0,I, r1,I and r2,I are set
to zero for these temperatures as well. Similarly, FE sim-
ulations at different constant true strain rates are per-
formed to assess the predictive nature of the parameters.
The results are compared with the experiments in
Figure 8B,C. For both temperatures, the deformation-
dependent Eyring parameters yield a good description of
the intrinsic response. Although Equations (29) and (30)
are defined based on experimental data obtained at 23 �C,
the equations can adequately describe the response at
55 and 75 �C with the correct parameters from Table 3.
The predicted yield point however is lower than the
experimental yield point for the highest applied strain

(A) (B)

FIGURE 7 (A) Evolution of

the activation volume and

(B) the reference viscosity as

function of the equivalent plastic

shear strain, described by

Equations (29) and (30),

respectively. Blue markers are

the corresponding values

obtained using experimental

data and Equation (27).

TABLE 2 Parameters to describe the strain-dependence of the

Eyring parameters for PVDF at T = 23 �C.

Parameter Value Unit

V �
s 2:94 �10�27 (m3)

ΦV 3:73 �10�27 (m3)

η0,s 8:83 �1020 (MPa�s)
Φη0 9.93 (MPa�s)
γp,t 1.0 (�)

1450 LENDERS ET AL.
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rate. In Figure 8D the yield kinetics for the simulations
and the experiments are shown. The fact that for 55 and
75 �C at high strain rates, the yield stress in the simula-
tions is lower than those in the experiments, clearly indi-
cates that the contribution of a second process is missing
in the simulations. At 23 �C this is not the case because
the contribution of both processes is described by one
process. Therefore, the parameters for process II are iden-
tified for these two temperatures next.

5.2.1 | Thermo-rheologically complex
material

To describe the yield kinetics of PVDF at 55 and 75 �C
for strain rates higher than _ε¼ 10�2 s�1, two processes
are required. The addition of an extra process means that
the behavior at 55 and 75 �C is modeled using the multi-
process multi-mode model as shown in Figure 1C. The
parameters for process I, previously defined and shown
in Table 3 remain the same, and therefore only the
parameters for process II must be defined. The parame-
ters for process II are determined from the experimental
stress–strain curves at a constant strain rate _ε¼ 10�1 s�1.
The response of process II is isolated from the total
response by subtracting the response of process I,

(A) (B)

(C) (D)

FIGURE 8 (A–C) Uniaxial
compression simulations (solid

lines) compared with

experiments (markers) at

23, 55 and 75 �C, respectively,
using the extended constitutive

model in the single-process

multi-mode form. (D) Yield

kinetics for the uniaxial

compression tests, where the

experimental data is represented

by the round markers and

simulation results by triangular

markers.

TABLE 3 Material parameters for PVDF at T = 55 and 75 �C.

Parameter 55 �C 75 �C Unit

V �
I 4:18 �10�27 5:95 �10�27 (m3)

μI 0.1 0.1 (�)

Gr 0.6 0.6 (MPa)

αr 0.25 0.25 (�)

κ 1:8 �103 1:8 �103 (MPa)Pn
i¼1η0,Ii ,ref 3:29 �1011 1:80 �1011 (MPa�s)

V �
s 4:18 �10�27 5:95 �10�27 (m3)

ΦV 4:55 �10�27 4:78 �10�27 (m3)

η0,s 2:72 �1018 1:62 �1018 (MPa�s)
Φη0 8.45 6.62 (MPa�s)
γp,t 0.65 0.65 (�)

V �
II 5:8 �10�27 5:8 �10�27 (m3)

μII 0.02 0.02 (�)

Sa,II 4.0 4.0 (�)

r0,II 0.97 0.97 (�)

r1,II 50.0 50.0 (�)

r2,II �5.0 �5.0 (�)

GII1 8:02 �101 8:02 �101 (MPa)

η0,II1,ref 4:76 �10�2 4:76 �10�2 (MPa�s)
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obtained from FE simulations, from the total response.
The uniaxial compression test at _ε¼ 10�1 s�1 reveals
signs of adiabatic heating. Therefore, only the data up to the
yield point is used for the identification of the parameters.

The pressure dependence of process II is determined
from the difference in yield stress between uniaxial com-
pression and tension at _ε¼ 10�1 s�1. Only one additional
Maxwell mode is required to describe the contribution of
process II, that is, m¼ 1 in Equation (10). In Reference
12 the contribution of a second process in the EGP-model
has been assessed. It was thereby concluded that the
equivalent plastic shear strain is equal for all processes,
meaning that the onset of yield is equal for all processes.
The difference between experiment and simulation in
Figure 8B shows that the contribution of process II
should vanish right after the yield point of process I. This
means that process II should start to yield at lower strains
than process I. Therefore, we assume that the softening
of process II depends on the viscous deformation related
to process II, γp,II, of which the evolution is described by
Equation (21). In addition, the state parameter Sa,II and
the softening parameters r0,II, r1,II and r2,II are defined
such that the contribution of the second process vanishes
right after the yield point of process I. All parameters
related to process II are summarized in Table 3. Because
process II only contributes to the total stress up to the
yield point and the Eyring parameters are assumed to be

constant up to the yield point, the Eyring parameters cor-
responding to process II are constant with deformation.
Finally, FE simulations are performed with both pro-
cesses for all strain rates. The results are shown in
Figure 9A,B. It is clear that the addition of process II
improves the preyield description for the highest strain
rates, whereas it has hardly any influence on the post-
yield response. The yield kinetics extracted from the sim-
ulations are shown in Figure 9C from which it can be
concluded that the addition of a second process at 55 and
75 �C results in a better description at high strain rates.
Note that at 23 �C still only one process is used.

6 | VALIDATION

In the previous section it is shown that with the strain-
dependence of the Eyring parameters, the intrinsic
response of PVDF can be described over a wide range of
strain rates. To validate whether this is also predictive in
different loading geometries or loadcases, two validation
studies are performed at all three temperatures. It is
important to make a distinction between the experiments
used for characterization and validation. For the charac-
terization of the model parameters, the following experi-
ments were used for all three temperatures: uniaxial
compression tests at strain rates _ε¼ 10�4 to _ε¼ 10�1 s�1

(A) (B)

(C)

FIGURE 9 (A, B) Uniaxial

compression simulations (solid

lines) compared with

experiments (markers) at 55 and

75 �C, respectively, using the
extended constitutive model in

the multi-process form. (C)

Corresponding yield kinetics for

the uniaxial compression tests,

where the experimental data is

represented by the round

markers and simulation results

by triangular markers.
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and a uniaxial tensile test at _ε¼ 10�3. A uniaxial tensile
test _ε¼ 10�1 s�1 was also used to determine the proper-
ties for process II at 55 and 75 �C. All remaining tensile
tests and creep tests described in Section 3.1 are only
used for the validation of the model. Hence, no additional
parameters have been characterized for the simulations
described in this section.

6.1 | Uniaxial tensile simulations

First, FE simulations of uniaxial tensile tests at a constant pre-
scribed engineering strain rate are performed. The results are
compared with experimental data. Note that in contrast to
the uniaxial compression tests where a true strain rate is used,
for the tensile tests the engineering strain rates are used.

The validation simulations are performed at the three
experimental temperatures. The constant applied strain
rates vary from _ε¼ 10�5 to _ε¼ 10�1 s�1. For the simula-
tions at 55 and 75 �C, the parameters for processes I and
II are used, listed in Table 3. For the simulation at 23 �C,
the parameters listed in Tables 1 and 2 are used. The
engineering stresses versus engineering strains are plot-
ted in Figure 10A–C where the simulations are denoted
by the solid lines and the experimental data is shown by
the markers. The predicted response from the simula-
tions is somewhat higher for the lowest two strain rates
in the preyield range at all temperatures. At 75 �C the

predicted response at large strains is slightly lower than
the experiments, especially at the highest applied strain
rate. Looking at the tensile yield kinetics in Figure 10D it
can be concluded that for all temperatures the yield stress
is predicted very well. In conclusion, the simulations are
in adequate agreement with the experimental results over
a wide range of applied strain rates.

During some of the uniaxial tensile experiments, total
failure of the specimen was preceded by the formation of a
stable neck. Due to imperfections in the specimen, strain
localization can occur which results in the concentration
of large plastic deformations at the imperfection. If this
localization stabilizes due to strain hardening, stable neck
growth along the specimen takes place up to the point that
the specimen fractures. This phenomenon is also observed
in the simulations. For example at the two highest strain
rates at 23 �C, note the sharp decrease in stress in
Figure 10A. However, the number of specimens that
showed neck formation during the experiments is too low
in order to give a reliable comparison with simulations.

6.2 | Tensile creep simulations

Part of the uniaxial tensile tests were used for the charac-
terization of the parameters. For this reason, an extra val-
idation case is performed in the form of tensile creep
simulations.

(A) (B)

(C) (D)

FIGURE 10 (A–C)
Engineering stress versus strain

for uniaxial tensile tests at

23, 55, and 75 �C, respectively.
The results obtained from

simulations are denoted by solid

lines, experiments are

represented by markers.

(D) Yield kinetics for the

uniaxial tensile tests, where the

experimental data is represented

by the round markers and

simulation results by triangular

markers.
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For each experiment, the applied stress is plotted as
function of the time-to-failure, represented by the
markers in Figure 11A. The solid lines are the predictions
by the FE simulations. The time-to-failure for both exper-
iments and simulations are taken at the time instance at
which the engineering strain equals 20%. Clearly, the
constitutive model well predicts the time-to-failure over a
wide range of applied stresses for all three temperatures.

The engineering strains versus time at different tem-
peratures are shown in Figure 11B–D where the experi-
ments are shown by the solid lines and the simulations are
given by the dashed lines. The decrease of the slope of the
curve after 10 s is a result of the load being kept constant
from that point in time. The region of constant plastic
flow, marked by the more or less constant shallow slope of
the curve, is called the secondary creep region. The slope
in this region is equal to the plastic flow rate. Comparing
the simulations to the experiments, the lines in this region
result in an adequate match. Secondary creep is followed
by a region of increasing plastic strain rate up to the point
that strain localization occurs and the specimen fails. The
onset of failure is apparent from the nearly vertical
increase of strain. Comparing the vertical increase of simu-
lations to experiments, a good match is again observed. At
23 �C the deviation from the experimental results seems to
be slightly increasing with decreasing applied stress. How-
ever, note that especially for an applied stress of 35 MPa
there is some experimental uncertainty as visible through

the nonsmooth increase of the experimental engineering
strain (rightmost solid line).

6.3 | Discussion

As it was necessary to identify different sets of parame-
ters at distinct temperatures, the set representing one
temperature is not applicable to other temperatures. Nev-
ertheless, the strategy described in Section 5 can also be
applied to model the material behavior at different tem-
peratures. This requires an additional identification of
the dependence of the parameters on the temperature. It
is then dependent on the desired temperature, how many
processes must be incorporated in the model. It is
expected that for higher temperatures, only one relaxa-
tion process is required.13 Nevertheless, the established
extension of the constitutive model enables the user to
apply a similar procedure at different temperatures.

The original model as described in Section 2 is able to
describe the temperature-dependent intrinsic behavior of
polymers using only one set of parameters. In this study it
is shown that different sets of parameters are needed to
describe the intrinsic behavior of PVDF at different tem-
peratures. However, as explained in Section 3.2, this is due
to the complex behavior of PVDF. In case of a different
material, it is possible that the extended model can
describe the temperature-dependent intrinsic behavior

(A) (B)

(C) (D)

FIGURE 11 (A) Time-to-

failure as function of the applied

stress for tensile creep

simulations at three different

temperatures where markers

indicate experimental results.

(B–D) Time-strain plots of

tensile creep simulations

(dashed lines) compared with

experiments (solid lines) at a

temperature of 23, 55 and 75 �C,
respectively.
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using a single set of parameters. In that case, the
temperature-dependence of the Eyring viscosity in
Equation (33) must be taken into account. Hence, the fact
that in this study different sets of material parameters are
used is only related to the material that is described,
PVDF, and is not a limitation of the extended model.

7 | CONCLUSIONS

In this article, the elasto-viscoplastic constitutive model
presented by van Breemen et al.12 is extended to describe
the temperature-, time- and rate-dependent behavior of
PVDF. The proposed extension incorporates the
deformation-dependent evolution of the Eyring parameters
which is required to capture the intrinsic response of
PVDF. The required material parameters for the extended
model are identified at three temperatures (23, 55 and
75 �C) using uniaxial compression and tensile tests at dif-
ferent strain rates. After identifying different sets of mate-
rial parameters at three different temperatures, the model
is used in FE simulations to predict the intrinsic response
of PVDF, which reveals a remarkably good agreement
between experiments and simulations. The model and
parameter sets are validated by assessing the response of
uniaxial tensile tests and tensile creep tests which were not
used for the parameter identification. Comparison of the
FE simulations with the experimental results reveals a con-
vincing predictive capacity of the extended model. In
conclusion, the extended model is able to predict the short-
and long-term rate-dependent material behavior of PVDF
at different temperatures for different loading conditions.
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APPENDIX A: SPECTRA OF RELAXATION
MODES

The spectra of relaxation modes, consisting of the shear
moduli and reference viscosities for the three different
temperatures are shown here (Tables A1, A2 and A3).

TABLE A2 Spectrum of relaxation moduli and reference

viscosities of process I for PVDF at T = 55 �C.

Mode
nr. (�)

Shear modulus
GIi (MPa)

Viscosity
η0,Ii ,ref (MPa�s)

1 1:06 �102 3:12 �1011
2 2:54 �101 1:17 �1010
3 2:34 �101 4:25 �109
4 1:23 �101 8:85 �108
5 2:00 �101 5:70 �108
6 1:13 �101 1:27 �108

TABLE A1 Spectrum of relaxation moduli and reference

viscosities of process I for PVDF at T = 23 �C.

Mode
nr. (�)

Shear modulus
GIi (MPa)

Viscosity
η0,Ii ,ref (MPa�s)

1 1:02 �102 1:61 �1013
2 1:45 �102 8:01 �1012
3 4:75 �101 3:23 �1011
4 2:81 �101 6:70 �1010
5 3:60 �101 3:00 �1010
6 2:73 �101 7:98 �109
7 2:91 �101 2:98 �109
8 2:99 �101 1:07 �109
9 2:82 �101 3:54 �108
10 3:13 �101 1:38 �108
11 3:04 �101 4:68 �107
12 3:25 �101 1:75 �107
13 3:42 �101 6:47 �106
14 2:63 �101 1:74 �106
15 3:36 �101 7:81 �105
16 1:95 �101 1:58 �105
17 2:23 �101 6:36 �104
18 1:24 �101 1:23 �104
19 1:33 �101 4:63 �103
20 4:50 �101 2:90 �101
21 3:55 �101 8:03 �100

TABLE A2 (Continued)

Mode
nr. (�)

Shear modulus
GIi (MPa)

Viscosity
η0,Ii ,ref (MPa�s)

7 1:54 �101 6:87 �107
8 1:26 �101 2:22 �107
9 1:08 �101 7:51 �106
10 1:25 �101 3:46 �106
11 1:25 �101 1:37 �106
12 8:84 �100 3:82 �105
13 1:23 �101 2:09 �105
14 1:38 �101 9:32 �104
15 1:18 �100 3:15 �103
16 2:60 �101 2:75 �104
17 1:88 �101 3:11 �103
18 1:39 �101 9:10 �102

TABLE A3 Spectrum of relaxation moduli and reference

viscosities of process I for PVDF at T = 75 �C.

Mode
nr. (�)

Shear modulus
GIi (MPa)

Viscosity
η0,Ii ,ref (MPa�s)

1 7:51 �101 1:71 �1011
2 1:89 �101 6:87 �109
3 1:26 �101 1:82 �109
4 1:28 �101 7:43 �108
5 1:16 �101 2:69 �108
6 8:03 �100 7:44 �107
7 1:14 �101 4:23 �107
8 6:22 �100 9:20 �106
9 1:00 �101 5:92 �106
10 6:38 �100 1:51 �106
11 5:95 �100 5:62 �105
12 6:64 �100 2:51 �105
13 7:39 �100 1:12 �105
14 4:67 �100 2:82 �104
15 5:62 �100 1:36 �104
16 8:42 �100 8:12 �103
17 1:43 �101 2:19 �103
18 3:09 �100 1:90 �102
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