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Abstract

Heavy-traffic limit theory is concerned with queues that operate close to criticality and face severe
ueueing times. Let W denote the steady-state waiting time in the GI/G/1 queue. Kingman (1961)
howed that W , when appropriately scaled, converges in distribution to an exponential random variable
s the system’s load approaches 1. The original proof of this famous result uses the transform method.
tarting from the Laplace transform of the pdf of W (Pollaczek’s contour integral representation), King-
an showed convergence of transforms and hence weak convergence of the involved random variables.
e apply and extend this transform method to obtain convergence of moments with error assessment.
e also demonstrate how the transform method can be applied to so-called nearly deterministic queues

n a Kingman-type and a Gaussian heavy-traffic regime. We demonstrate numerically the accuracy of
he various heavy-traffic approximations.

2023 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Queueing theory; Transform method; G/G/1 queue

1. Introduction and results

The title of this contribution to the memorial issue for J.W. Cohen refers to the The Single
erver Queue, the monumental book [12] in which J.W. Cohen teaches the reader how to
se complex analysis and transform methods to obtain rigorous results for the general GI/G/1
ueue and its many extensions. In turn, J.W. Cohen admired the work of F. Pollaczek, in
articular for the analytic treatment of queues by means of complex function theory and integral
quations [13], techniques that also feature prominently in The Single Server Queue, and in
his paper on the GI/G/1 queue in heavy traffic.
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F. Pollaczek initiated the analysis of the GI/G/1 queue in the 1940s and 1950s, and
btained a contour integral representation for the Laplace transform of the steady-state waiting
ime. J.F.C. Kingman introduced heavy-traffic analysis in the 1960s [20,21]. For the GI/G/1
ueue in a regime where the system load tends to 1, Kingman showed that, under certain
onditions, the Laplace transform of the pdf of an appropriately normalized steady-state waiting
ime (Pollaczek’s contour integral representation) converges to the Laplace transform of an
xponential distribution. We will refer to this technique–to show convergence in distribution
y convergence of transforms–as the transform method. To explain Kingman’s result in more
etail, let W denote the steady-state waiting time in the GI/G/1 queue, which solves the

stochastic equation

W d
=

(
W + V −

1
ρ

U
)+

, (1)

ith x+
= max{0, x}. Here, V is the generic service time with mean 1 and variance

σ 2
V ∈ (0,∞), U is the generic inter-arrival time with mean 1 and variance σ 2

U ∈ (0,∞) and
∈ (0, 1). It is assumed that V and U are independent. Since convergence of transforms

mplies convergence of distributions, Kingman effectively showed using the transform method
hat, for W = Wα solving (1) with α = 1 − ρ,

P(αWα ≤ t) → 1 − e−2t/σ 2
, α ↓ 0, (2)

or all t ≥ 0 with σ 2
= σ 2

U + σ 2
V .

Kingman’s observation that heavily loaded systems admit a simple scaling limit triggered
surge of research in the 1960s and 1970s; see [6,8,16,22,23,25,29], among others. In the

ecades that followed, heavy-traffic analysis, and more generally, stochastic-process limits,
eveloped into popular topics in the applied probability community, with queueing theory as
ne of its many applications. The general idea remained to consider a parametrized set of
ystems and to identify the limiting system as the parameter converges to a limiting value
ielding criticality (e.g. α ↓ 0 as in (2)).

Kingman’s transform method is thus largely based on Pollaczek’s contour integral that we
ntroduce next, see [1]. Assume analyticity of ψ(s) = E [exp(s(V −

1
ρ

U ))] in an open strip
ontaining |Re(s)| ≤ δ for some δ > 0; in particular, all moments of V −

1
ρ

U are finite. Then,
ollaczek’s integral reads

E [e−sW ] = exp
{

−1
2π i

∫
C

s
z(s − z)

log(1 − ψ(−z))dz
}
, (3)

here C is a contour to the left of, and parallel to, the imaginary axis, and to the right of the
ingularities of log(1−ψ(−z)) in the left half-plane, and s is any complex number to the right
f C . Kingman uses (3) to prove that E [exp(−sαW )] → (1+σ 2s/2)−1 in Re(s) ≥ 0 as α ↓ 0,
ielding (2).

Being tailor-made for the steady-state GI/G/1 queue, the transform method that uses contour
ntegral representations has rarely been applied to other queueing models. A notable exception
s the heavy-traffic analysis of O.J. Boxma and J.W. Cohen [7] for the GI/G/1 queue with
eavy-tailed distributions, so when the second moment of the service time and/or interarrival
ime is infinite. Boxma and Cohen apply the transform method to an extended form of
ollaczek’s integral (3) to identify the heavy-traffic limit. Other studies that apply this transform
ethod for heavy-traffic analysis are [22,23] on the GI/G/s queue and [4,5] on the fixed-cycle

raffic-light queue, a variation of the GI/G/1 queue.
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More probabilistic methods for proving heavy-traffic results developed later use functional
imit theorems, and typically establish that the sample path of a scaled waiting time converges to
ome limiting stochastic process. One is then faced with the problem of showing that the steady-
tate of the limiting process corresponds to the limiting steady-state of the queueing model in
eavy traffic. This requires an interchange-of limits argument, which is often challenging as it
nvolves proving tightness of sequences of probability measures. The transform method works
irectly with the steady-state random variables, and thus avoids the problem of interchanging
imits (cf. [9,15]).

.1. Nearly deterministic queues and the transform method

Next to the classical heavy-traffic setting, we will consider so-called nearly deterministic
In/Gn/1 queues, whose heavy-traffic behavior has been investigated in [27,28] using sample-
ath methods. Nearly-deterministic queues are motivated by cycling thinning. To explain this,
enote for all n = 1, 2, . . .

Wn
d
=

(
Wn + Vn −

1
ρn

Un

)+

, (4)

ith

Vn =
1
n

n∑
k=1

Vn,k, Un =
1
n

n∑
k=1

Un,k, (5)

here Vn,k are i.i.d. copies of V and Un,k are i.i.d. copies of U , with V and U as before,
and ρn ∈ (0, 1). The cyclic thinning thus regards each interarrival (service) time as the nth

ccurrence in a sequence of i.i.d. random variables, which mitigates the random fluctuations.
or instance, if this sequence consists of exponential random variables, the interarrival or
ervice time would follow an Erlang distribution, and if n is large, this becomes ‘increasingly

deterministic’.
Interesting heavy-traffic regimes now arise when ρn → 1 as n → ∞. In [27,28], two heavy-

traffic regimes are considered. The first (Kingman-type) regime assumes that (1 − ρn)n → β

as n → ∞ for some fixed β > 0. In this case, Wn converges in distribution to an exponential
random variable with mean σ 2/2β, where σ 2

= σ 2
U + σ 2

V . The second (Gaussian) regime
assumes (1 − ρn)

√
n → β as n → ∞ for some fixed β > 0. In this case

√
n Wn/σ converges

n distribution to the all-time maximum Mβ of a one-dimensional directed random walk, starting
t 0, with normally distributed step sizes of mean −β. This Gaussian random walk and Mβ

re well studied, see [2,10,17,18,26].

.2. Main results

In the present paper we apply the transform method for heavy-traffic analysis of the GI/G/1
and GIn/Gn/1 queues. We first consider the classical heavy-traffic regime, and provide a
detailed proof of a version of Kingman’s original result using the transform method. We do this
with service times V and interarrival times U that do not depend on ρ = 1 −α (in Kingman’s
original result, a controlled dependence of V and U on α is allowed). In this more restricted
setting, we show the following.
1016
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Theorem 1. With σ 2
α = (σ 2

V + ρ−2σ 2
U )ρ,

E [e−αsW ] = (1 + σ 2
α s/2)−1

+ O(α log(1/α)), α ↓ 0, (6)

niformly in any bounded set of s with Re(s) ≥ −1/2σ 2
α .

As a consequence of Theorem 1, we have in terms of the moments of W for k = 1, 2, . . .

E [(αW )k] = k!( 1
2σ

2
α )k

+ O(α log(1/α)), α ↓ 0, (7)

here the leading term in (7) is the kth moment of an exponentially distributed random variable.
e observe that for k = 1 in (7) we get

E [αW ] =
1
2σ

2
α + O(α log(1/α)), α ↓ 0. (8)

t turns out that, after appropriate identifications, the quantity 1
2σ

2
α at the right-hand side of (8)

oincides with the right-hand side of (6) in [11].
We next apply the transform method to the GIn/Gn/1 queues described in Section 1.1; in

the sequel we use for two positive sequences an, bn , n = 1, 2, . . . , the notation an ≍ bn to
ndicate that there are β1, β2 with 0 < β1 ≤ β2 < ∞ such that an/bn ∈ [β1, β2].

heorem 2. Assume that (1 − ρn) ≍ 1/n. With γn = (σ 2
V + ρ−2

n σ 2
U )ρn/(2n(1 − ρn)),

E [e−tWn ] = (1 + γnt)−1
+ O

( log n
√

n

)
, n → ∞, (9)

niformly in any bounded set of t with Re(t) ≥ −1/4γn .

From Theorem 2 we obtain for any k = 1, 2, . . .

E [W k
n ] = k! γ k

n + O
( log n

√
n

)
, n → ∞. (10)

We then proceed to apply the transform method to the GIn/Gn/1 when we let (1 − ρn) ≍

/
√

n. In this regime, the integration contour C occurring in (3) can be chosen to pass through
the saddle point z = ζsp of h(z) = log(ψ(−z)) on the negative real axis, allowing a saddle point
nalysis (under an additional assumption). We show the following, with Mβ as in Section 1.1.

heorem 3. Assume that (1 − ρn) ≍ 1/
√

n, and let σn = (h′′(ζsp))1/2 and βn = −ζspσn
√

n.
hen σn ≍ 1, βn ≍ 1 as n → ∞, and

E
[
exp

(
−s

√
n
σn

Wn

)]
= E [exp(−s Mβn )] + O

( 1
√

n

)
, n → ∞, (11)

niformly in any bounded set of s with Re(s) ≥ −
1
2 βn .

From Theorem 3 we get for any k = 1, 2, . . .

E
[(√

n
σn

Wn

)k]
= mk(βn) + O

( 1
√

n

)
, n → ∞, (12)

here mk(β) = E [Mk
β]. Theorem 3 can be refined by taking account of h′′′(ζsp) in the saddle

oint analysis. This yields Theorem 4, see Section 5 for its precise formulation, where the right-
and side of (11) is replaced by E [exp(−Rn(s) MBn )] + O(1/n), with appropriate non-linear
ransforms Rn(s) and Bn(β) = Bn of s and β. Theorem 3 and its refinement Theorem 4 result
rom an adaptation of the saddle point method developed in [19,24]. Theorem 5 in Section 5
ives a consequence of Theorem 4 on the level of moments.
1017
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Theorems 1–4 generalize and refine some classical heavy-traffic results. Theorem 1 recovers
ingman’s weak convergence result (2), and generalizes this to a heavy-traffic limit theorem

or all moments of W . The refined heavy-traffic approximations not only provide the heavy-
raffic limit, but also contain pre-limit information (for ρ away from 1) and shed light on
he rate of convergence (the speed at which the limit is attained, as a function of the scaling
arameter). Similarly, Theorems 2–4 recover results in [27,28] for convergence in distribution,
nd convergence of the first two moments. In the paper we show that all normalized moments of

Wn converge to those of Mβ , again with rate of convergence and refinements. As a consequence,
he theoretical results in Theorems 1–4 give sharp approximations, not only in heavy traffic,
ut also in more moderate conditions.

We demonstrate the accuracy of the approximations by comparing with exact results. We
lso address the computational aspects of numerically calculating complex contour integrals,
hich is required for both the exact and approximate performance analysis. In particular, we

xplain how to calculate reliably the Pollaczek contour integrals with numerical integration.
ince we operate in heavy-traffic regimes, numerical integration can become cumbersome, with

ntegration contours closely passing the origin, but we show how to deal with this.

.3. Organization of the paper

In Section 2 we present assumptions and preliminaries on the function ψ(−z) = E [exp(−z
V −

1
ρ

U ))] that occurs in the various Pollaczek integrals in Sections 3–5. Section 2 also
contains information on the function h(z) = logψ(−z) that is heavily used in the special
saddle point method of Section 5; we avoid using saddle points in Sections Section 3, 4 on
the Kingman-type results. In Section 3 we present the formulation and proof of our version
of Kingman’s classical result (Theorem 1), yielding convergence (with error assessment) of
the mgf and all moments of those of an exponentially distributed random variable with a
tailored α-dependent mean. In Section 4, we consider the nearly deterministic queue in the
regime (1 − ρ) ≍ 1/n, and prove that the mgf and all moments of Wn converge to those of a
specifically designed exponentially distributed random variable (Theorem 2). In Section 5 we
present Theorem 3 and its refinement Theorem 4, with consequences for moment convergence,
for the nearly deterministic queue when (1−ρ) ≍ 1/

√
n. This requires an additional assumption

n the function ψ , allowing a saddle point approach to Pollaczek’s integral around the saddle
oint ζsp, at the expense of an exponentially small error. The proof of the refinement Theorem 4,
nd its consequence (62) for moment convergence, is rather involved and technical, so that
e have deferred details to Appendices A and B. In Section 6 we summarize in detail the

omputational schemes for the quantities we want to calculate via Pollaczek’s formula (3). In
ection 7 we present our conclusions.

. Preliminaries

The convergence results of the Kingman type given in the present paper will be shown under
he condition that the function ψ is analytic in an open set containing a strip |Re(z)| ≤ δ with
> 0. For the convergence results for nearly deterministic queues related to the maximum

f the Gaussian random walk, we use a saddle point method, see [14,19,24]. This method
equires an assumption that guarantees one can confine attention to the immediate vicinity
f the saddle point on the negative real axis when conducting an asymptotic analysis on the
elevant Pollaczek integral when n → ∞. We refer to Section 5 for the technical details.
1018
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We use in the sequel the letter δ to denote a generic positive number that may take
ase-dependent values. We consider random variables V,U ≥ 0 that are independent with
E [V ] = 1 = E [U ] and 0 < σ 2

V + σ 2
U < ∞. We furthermore assume that there is a δ > 0 such

hat E [exp(zV )], E [exp(zU )] are analytic in an open strip containing −δ ≤ Re(z) ≤ δ. For
∈ (0, 1), we let

ψ(−ζ ) = ψ(−ζ ; ρ) = E [e−ζ (V −
1
ρU )]. (13)

hen ψ(−ζ ) is analytic in an open strip containing −δ ≤ Re(ζ ) ≤ δ for some δ > 0. Since

ψ(−ζ ) ≡

∫
∞

−∞

e−ζ t d G(t), (14)

ith G(t) the cumulative distribution function of V −
1
ρ

U , we have that ψ(−ζ ), −δ ≤ ζ ≤ δ,
is logarithmically convex. We have, uniformly in ρ ∈ [ 1

2 , 1],

ψ(−ζ ) = E
[
1 − ζ

(
V −

1
ρ

U
)

+
1
2
ζ 2
(

V −
1
ρ

U
)2]

+ O(ζ 3)

= 1 +

( 1
ρ

− 1
)
ζ +

1
2

(
σ 2

V +
1
ρ2 σ

2
U +

(
1 −

1
ρ

)2)
ζ 2

+ O(ζ 3), |ζ | ≤ δ, (15)

or some δ > 0. Therefore, there is a δ > 0 such that ψ(−ζ ) ≥ 1/2 when ρ ∈ [ 1
2 , 1] and

−δ ≤ ζ ≤ 0. Hence, by continuity, there is a δ > 0 such that for ρ ∈ [ 1
2 , 1]

h(ζ ) = logψ(−ζ ) = log(E [e−ζ (V −
1
ρU )]) (16)

s well-defined and analytic as a principal value logarithm in an open set containing the
ectangle −δ ≤ Re(ζ ) ≤ 0, |Im(ζ )| ≤ δ.

We have for ρ ∈ [ 1
2 , 1]

h(0) = 0, h′(0) =
1
ρ

− 1, h′′(0) = σ 2
V +

1
ρ2 σ

2
U , (17)

nd there is a δ > 0 such that

h(ζ ) =

( 1
ρ

− 1
)
ζ +

1
2

(
σ 2

V +
1
ρ2 σ

2
U

)
ζ 2

+ O(ζ 3) (18)

n an open set containing the rectangle −δ ≤ Re(ζ ) ≤ 0, |Im(ζ )| ≤ δ. There is a δ > 0 such
hat the function h(ζ ), −δ ≤ ζ ≤ 0, is convex. Furthermore, h has, for ρ sufficiently close to
, a unique saddle point ζsp ∈ [−δ, 0]. We have

ζsp = −
1
ρ

1 − ρ

σ 2
V +

1
ρ2 σ

2
U

+ O((1 − ρ)2), (19)

nd

h(ζsp) = −
1
ρ2

(1 − ρ)2

2(σ 2
V +

1
ρ2 σ

2
U )

+ O((1−ρ)3), h′′(ζsp) = σ 2
V +

1
ρ2 σ

2
U + O(1−ρ). (20)

3. Classical heavy-traffic result of the Kingman type

In this section we prove Theorem 1, Kingman’s classical result that the scaled waiting
time converges to an exponentially distributed random variable. Novel results include error
assessments and statements about the rate of convergence.
1019
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With V and U as in Section 2, we let

W d
=

(
W + V −

1
ρ

U
)+

, (21)

here ρ = 1 − α and α ↓ 0. We shall show that

log(E [e−αsW ]) = − log(1 +
1
2 σ

2
α s) + O(α log(1/α)), α ↓ 0, (22)

niformly in any bounded set of s with Re(s) ≥
1
2 µ0, where

σ 2
α =

−1
µ0

=

(
σ 2

V +
1
ρ2 σ

2
U

)
ρ. (23)

he Laplace–Stieltjes transform E [exp(−t Exp(θ ))] of an exponentially distributed random
variable Exp(θ ) with density ϑ e−ϑx , x ≥ 0 and mean 1/ϑ is given by (1+t/ϑ)−1, Re(t) > −ϑ .

ence, the moments of αW equal the moments of an exponentially distributed random variable
ith mean 2/σ 2

α , up to an error O(α log(1/α)) as α ↓ 0.
We show this result by using the Pollaczek result for W , in which we follow the argumen-

ation as given by Kingman in [20]. Observe that V and U are independent of α, which allows
s to be explicit about the error term in (22).

From Pollaczek’s result, we have

log(E [e−αsW ]) =
−1
2π i

∫
C

αs
ζ (αs − ζ )

log(1 − ψ(−ζ ))dζ, (24)

here ψ(−ζ ) is as in (13), and C is a line parallel to, and to the left, of the imaginary axis,
nd to the right of the singularities of log(1 − ψ(−ζ )) in the open left-half-plane, and αs in
24) lies to the right of C . To be more detailed about the choice of C , we observe from (15)
hat there is a δ > 0 such that

ψ(−ζ ) = 1 + αζ/ρ +
1
2 σ

2
α ζ

2/ρ + O(α2ζ 2) + O(ζ 3), |ζ | ≤ δ, (25)

here σ 2
α is as in (23). The leading part 1 + αζ/ρ + σ 2

α ζ
2/2ρ, considered for ζ ≤ 0, in (25)

quals 1 for ζ = 0 and ζ = 2αµ0, and is minimal for ζ = αµ0, where µ0 < 0 is as in (23),
ith minimal value 1 − α2/(2ρσ 2

α ). By (14) we have

|ψ(−αµ0 − iη)| ≤ ψ(−αµ0) = 1 −
α2

2ρσ 2
α

+ O(α3), η ∈ R, (26)

nd so

|ψ(−αµ0 − iη)| ≤ 1 −
α2

4ρσ 2
α

, η ∈ R, (27)

hen α is sufficiently small. For such α, we can therefore choose C = {αµ0 + iη | η ∈ R},
ith principal value of the log in (24), and Re(s) ≥

1
2 µ0.

In (24) we substitute ζ = αz, with z ∈ {µ0 + iη | η ∈ R} = C0 and dζ = α dz, to get

log(E [e−αsW ]) =
−1
2π i

∫
C0

s
z(s − z)

log(1 − ψ(−αz)) dz. (28)

rom (25) we have when |αz| ≤ δ,

ψ(−αz) = 1 + α2z/ρ + σ 2
αα

2z2/2ρ + O(α4z2) + O(α3z3), (29)

nd so
1 − ψ(−αz)

= 1 +
1
2 σ

2
α z + O(α2z) + O(αz2). (30)
−α2z/ρ
1020
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We have from (27) that both 1 − ψ(−αz) and −αz2/ρ lie in the open right half-plane when
z ∈ C0 and α is sufficiently small. Hence, with principal-value logarithms,

log(1 − ψ(−αz)) = log
(1 − ψ(−αz)

−α2z/ρ

)
+ log(−α2z/ρ), z ∈ C0. (31)

ince Re(s) ≥
1
2 µ0, we have by Cauchy’s theorem

−1
2π i

∫
C0

s
z(s − z)

log(−α2z/ρ) dz = 0, (32)

and so

log(E [e−αsW ]) =
−1
2π i

∫
C0

s
z(s − z)

log
(1 − ψ(−αz)

−α2z/ρ

)
dz. (33)

We shall show now that

log
(1 − ψ(−αz)

−α2z/ρ

)
= log(1 +

1
2 σ

2
α z) + O(α2) + O(αz) (34)

when |αz| ≤ c and α and c are sufficiently small. We have from (30)

1 − ψ(−αz)
−α2z/ρ

= (1 +
1
2 σ

2
α z)
(

1 +
O(α2z) + O(αz2)

1 +
1
2 σ

2
α z

)
. (35)

Now when z = µ0 + iη ∈ C0 with η ∈ R, we have by (23)

|1 +
1
2 σ

2
α z|

2
= |

1
2 +

1
2 iσ 2

αη|
2

=
1
4 +

1
4 σ

4
αη

2

=
1
4 σ

4
α (µ2

0 + η2) =
1
4 σ

4
α |z|2. (36)

ence
O(α2z) + O(αz2)

1 +
1
2 σ

2
α z

= O(α2) + O(αz), (37)

nd this has modulus ≤ 1/2 when α is sufficiently small and |αz| ≤ c with c determined by
the implicit constants in the O’s in (30). This gives (34).

To finish the proof of (22), we split the integral in (33) into the parts |z| ≤ c/α and |z| ≥ c/α.
We have by (34)

log(E [e−αsW ]) =
−1
2π i

∫
z ∈ C0,
|z| ≤ c/α

s
z(s − z)

log(1 +
1
2 σ

2
α z) dz

+

∫
z ∈ C0,
|z| ≥ c/α

s
z(s − z)

(O(α2) + O(αz)) dz −
1

2π i

∫
z ∈ C0,
|z| ≤ c/α

s
z(s − z)

log
(1 − ψ(−αz)

−α2z/ρ

)
dz. (38)

For the first integral on the second line of (38), we have⏐⏐⏐ ∫
z ∈ C0,
|z| ≤ c/α

s
z(s − z)

(O(α2) + O(αz)) dz
⏐⏐⏐

= O(α2) +

(∫
z ∈ C0,
|z| ≤ c/α

α

|z|
|dz|

)
= O(α2) + O(α log(1/α)), (39)

niformly in any bounded set of s with Re(s) ≥
1
2 µ0. For the second integral on the second

ine of (38), we use (27), so that
1
2 ≤

⏐⏐⏐1 − ψ(−αz)
2

⏐⏐⏐ ≤
2ρ
2 , z ∈ C0. (40)
4σα |z| −α z/ρ α |z|
1021
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Therefore, for z ∈ C0 and |z| ≥ c/α,

− log |z| + log
( 1

4σ 2
α

)
≤ log

⏐⏐⏐1 − ψ(−αz)
−α2z/ρ

⏐⏐⏐ ≤ log
(2ρ

cα

)
. (41)

Using that (1 − ψ(−αz))/(−α2z/ρ) lies in the cut plane C\(−∞, 0], so that its argument is
between −π and π , we get⏐⏐⏐ log

(1 − ψ(−αz)
−α2z/ρ

)⏐⏐⏐ = O(log |z|) + O(log(1/α)) + O(1). (42)

From (42) it follows that the second integral on the second line of (38) is O(α log(1/α)),
uniformly in any bounded set of s with Re(s) ≥

1
2 µ0.

We conclude that

log(E [e−αsW ]) =
−1
2π i

∫
z ∈ C0,
|z| ≤ c/α

s
z(s − z)

log(1 +
1
2 σ

2
α z) dz + O(α log(1/α)), (43)

niformly in any bounded set of s with Re(s) ≥
1
2 µ0. We extend the integration range in

he integral in (43) to all z ∈ C0, at the expense of an error O(α log(1/α)) uniformly in any
ounded set of s with Re(s) ≥

1
2 µ0. Finally,

−1
2π i

∫
C0

s
z(s − z)

log(1 +
1
2 σ

2
α z) dz = − log(1 +

1
2 σ

2
α s), Re(s) ≥

1
2 µ0, (44)

y Cauchy’s theorem, and we get (22).

. Kingman-type result for nearly deterministic queues

In nearly deterministic regimes (see [27,28]), random fluctuations in the interarrival and
ervice times are reduced using the cyclic thinning principle discussed earlier. In this section,
e consider the Kingman-type regime, where (1−ρn)n → β as n → ∞ for some fixed β > 0.
In more detail, we consider

Wn
d
=

(
Wn + Vn −

1
ρn

Un

)+

, (45)

ith

Vn =
1
n

n∑
k=1

Vn,k, Un =
1
n

n∑
k=1

Un,k, (46)

here 0 < ρn < 1, Vn,k are i.i.d. copies of V and Un,k are i.i.d. copies of U , with V and U
s in Section 2, and Vn,k and Un,k are independent. We shall show that, when (1 − ρn) ≍ 1/n
so that there are fixed β1, β2 with 0 < β1 ≤ β2 < ∞ such that (1 − ρn) n ∈ [β1, β2] for
= 1, 2, . . .),

log(E [e−tWn ]) = − log(1 + γnt) + O
( log n

√
n

)
, (47)

niformly in any bounded set of t with Re(t) ≥
1
2 x0. Here

γn =
σ 2

V + ρ−2σ 2
U

2n(1 − ρn)
ρn, x0 =

−1
2γn

, (48)

ith γ bounded away from 0 and ∞.
n
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We use again Pollaczek’s result, so that

log(E [e−tWn ]) =
−1
2π i

∫
C

t
z(t − z)

log(1 − ϕ(−z)) dz, (49)

here for −nδ ≤ Re(z) ≤ nδ (with δ as in the second paragraph of Section 2)

ϕ(−z) = ϕn(−z) = E [e−z(Vn−
1
ρn Un )] = (E [e−

z
n (V −

1
ρn U )])n

= ψn(−z/n), (50)

ith ψ as in (13) with ρ = ρn , and C is a line parallel to, and to the left of, the imaginary
axis, and to the right of the singularities of log(1 −ϕ(−z)) in the open left half-plane, and lies
to the right of C .

Assume that 1 − ρn ≍ 1/n, and delete n from ρn and γn below for conciseness. We use
(15) with ζ = z/n and z = O(

√
n), so that

ψ(−z/n) = 1 +

( 1
ρ

− 1
) z

n
+

( 1
ρ

− 1
)
γ

z2

n
+ O

( z2

n4

)
+ O

( z3

n3

)
. (51)

ith ϕ(−z) as in (50) and using the expansion (1 + X )n
= 1 + nX +

1
2 n2 X2

+ O(n3 X3), valid
for X = O( 1

n ), we get

ϕ(−z) = 1 +

( 1
ρ

− 1
)

z +

( 1
ρ

− 1
)
γ z2

+ O
(
|z|2 + |z|3 + |z|4

n2

)
. (52)

n the O in (52) terms like z6/n4, which is O(z2/n2) when z = O(
√

n), have been collected.
he leading part of the right-hand side of (52), considered for z ≤ 0, equals 1 for z = 0 and

z = −1/γ , and is minimal for z = −1/2γ = x0, with minimum value 1 − (1 − ρ)/4ργ .
herefore, for large n,

|ϕ(−x0 − iy)| ≤ ϕ(−x0) ≤ 1 − (1 − ρ)/8γ, y ∈ R. (53)

ence, we can use C = {x0 + iy | y ∈ R} in (49), so that 1−ϕ(−z) has positive real part when
z ∈ C and n is large, with principal-value logarithm for the log in the integral.

We have for z ∈ C , z = O(
√

n) from (52) and (1 − ρn) ≍ 1/n,

1 − ϕ(−z)
−( 1

ρ
− 1) z

= 1 + γ z + O
(
|z| + |z|2 + |z|3

n

)
. (54)

e are now in a quite similar position as in Section 3 from (30) onwards. In particular, using
1 + γ z| = γ |z| for z ∈ C , we have

log
( 1 − ϕ(−z)
−( 1

ρ
− 1) z

)
= log(1 + γ z) + O

(
|z| + |z|2 + |z|3

n(1 + γ z)

)
= log(1 + γ z) + O

(1 + |z| + |z|2

n

)
, (55)

hen |z| ≤ c
√

n and c > 0 is small enough to ensure that the O-terms in (55) do not exceed
/2. Furthermore,∫

z ∈ C,
|z| ≤ c

√
n

⏐⏐⏐ t
z(t − z)

⏐⏐⏐ 1 + |z| + |z|2

n
|dz|

= O
(∫

z ∈ C,
√

1 + |z| + |z|2

n |z|2
|dz|

)
= O

( 1
√

n

)
, (56)
|z| ≤ c n
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uniformly in any bounded set of t with Re(t) ≥
1
2 x0. Proceeding then as in Section 3 from

38) onwards, with (56) as substitute for (39) and
√

n instead of 1/α, we get (47).

. Gaussian regime for nearly deterministic queues

We consider the same setting as in Section 4, but now we assume that (1 − ρn) ≍ 1/
√

n,
o that there are fixed β1, β2 with 0 < β1 ≤ β2 < ∞ such that (1 − ρn)

√
n ∈ [β1, β2]

or n = 1, 2, . . . . The precise formulation of our results requires quantities derived from
h(ζ ) = log(ψ(−ζ )) at the saddle point ζsp of h on the negative real axis, and an additional
ondition discussed below.

We shall show the following (which proves Theorem 3). Let

σn = (h′′(ζsp))1/2, βn = −ζsp σn
√

n. (57)

hen we have σn ≍ 1, βn ≍ 1 as n → ∞, and

log
(
E
[
exp

(
−s

√
n
σn

Wn

)])
= log(E [e−s Mβn ]) + O

( 1
√

n

)
, n → ∞, (58)

niformly in any bounded set of s with Re(s) ≥ −
1
2 βn . We shall also show the following

efinement of Theorem 3.

heorem 4. Let σn and βn as in (57), and let

d2 = −
h′′′(ζsp)
6h′′(ζsp)

. (59)

hen d2 = O(1), n = 1, 2, . . . , and, uniformly in any bounded set of s with Re(s) ≥ −
1
2 βn ,

log
(
E
[
exp

(
−s

√
n
σn

Wn

)])
= log(E [e−Rn MBn ]) + O

(1
n

)
, n → ∞, (60)

here

Bn =
βn

1 + βnϕn
, Rn = Rn(s) =

s
(1 + βnϕn)(1 + (s + βn)ϕn)

, (61)

ith ϕn = d2/(σn
√

n) = O(1/
√

n).

From (58) the moments of
√

n
σn

Wn are approximated with error O(1/
√

n) by the moments
k(βn) of Mβn as in (12).
As a consequence of Theorem 4, we have the following result.

heorem 5. For k = 1, 2, . . .

E
[(√

n
σn

Wn

)k]
= (−1)k

( d
ds

)k
(E [e−Rn (s)MBn ])

⏐⏐⏐
s=0

+ O
(1

n

)
=

mk(Bn)
(1 + βnϕn)2k

+
k(k − 1)mk−1(Bn)ϕn

(1 + βnϕn)2k−1 + O
(1

n

)
, (62)

ith ϕn as in Theorem 4 and mk(Bn) = E [Mk
Bn

].

We shall prove Theorem 3, and we present the proofs of Theorems 4 and 5 in Appendices A
and B. For all these proofs, we use again Pollaczek’s formula (49) in which we substitute
1024



M.A.A. Boon, A.J.E.M. Janssen and J.S.H. van Leeuwaarden Indagationes Mathematicae 34 (2023) 1014–1037

w
t
a
o

A

a
(
t

w

a

r
G
t
r

w
o

t
i

ζ = z/n. Thus, we have

log(E [e−tWn ]) =
−1
2π i

∫
Cn

t/n
ζ (t/n − ζ )

log(1 − ψn(−ζ )) dζ, (63)

here Cn =
1
n C is a line parallel to, and to the left of, the imaginary axis, and to the right of

he singularities of log(1−ψn(−ζ )), and t/n lies to the right of Cn . We now need the following
ssumption, because it allows us to integrate in (63) over ζ with |Im(ζ )| ≤ δ, at the expense
f an error of exponential decay as n → ∞.

ssumption 6. There is a δ > 0, ε > 0 such that for all ρ ∈ [ 1
2 , 1) and x ∈ [−δ, 0) and

y ∈ R, |y| > δ, we have |ψ(−x + iy)| < ψ(−x) − ε.

With reference to Section 2, we can assume that δ > 0 is such that h(ζ ) = logψ(−ζ ) is
nalytic in the rectangle −δ ≤ Re(ζ ) ≤ 0, |Im(ζ )| ≤ δ, and, by taking n sufficiently large with
1 − ρ) = (1 − ρn) ≍ 1/

√
n in (19), that the saddle point ζsp of h lies in this rectangle. We

hen have, with exponentially small error as n → ∞,

log(E [e−tWn ]) =
−1
2π i

∫ ζsp+iδ

ζsp−iδ

t/n
ζ (t/n − ζ )

log(1 − enh(ζ )) dζ (64)

hen Re(t/n) ≥
1
2 ζsp.

We have from (18)–(20) and (1 − ρn) ≍ 1/
√

n that

ζsp ≍
1

√
n
, h(ζsp) ≍

1
n
, σ 2

n = h′′(ζsp) ≍ 1, (65)

nd this shows that σn ≍ 1, βn ≍ 1 and also that d2 = O(1), see (57) and (58).
For both Theorems 3 and 4, we shall work from the integral in (64) towards the integral

epresentation of the Laplace–Stieltjes transform E [exp(−s Mβ)] of the maximum Mβ of the
aussian random walk with drift −β. For the latter we have (from Pollaczek’s formula, applied

o W = (W+V −U )+ with V and U having pdf’s 1
√

2π
exp(− 1

2 (x−A)2)χ[0,∞)(x) and δβ(x−A),
espectively, and letting A → ∞)

log(E [e−s Mβ ]) =
−1
2π i

∫
C

s
z(s − z)

log(1 − eβz+ 1
2 z2

) dz, (66)

here C is a line parallel to, and to the left of, the imaginary axis, and s ∈ C is to the right
f C . Substituting z = −β + iy, −∞ < y < ∞, we get for s ∈ C, Re(s) > −β

log(E [e−s Mβ ]) =
1

2π

∫
∞

−∞

s
(β − iy)(s + β − iy)

log(1 − e−
1
2 β

2
−

1
2 y2

) dy. (67)

We make in the integral in (64) a substitution that brings exp(nh(ζ )) in Gaussian form. We
thus let ζ = ζ (v) be the solution of the equation

h(ζ (v)) = h(ζsp) −
1
2 v

2 h′′(ζsp) (68)

hat satisfies ζ (v) = ζsp + iv + O(v2) as v → 0. By Lagrange’s theorem, there is an r > 0,
ndependent of n, such that

ζ (v) = ζsp + iv +

∞∑
l=2

dl(iv)l , |v| ≤ r, (69)

with real dl , and d2 given by (59), see [19], end of Section 3 for more details about such a
substitution. With the substitution ζ = ζ (v), −r ≤ v ≤ r , in (64), we get with exponentially
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small error

log(E [e−tWn ]) =
−1
2π i

∫ r

−r

ζ ′(v) t/n
ζ (v)(t/n − ζ (v))

log(1 − enh(ζsp)− 1
2 v

2h′′(ζsp)) dv (70)

hen n → ∞ and Re(t) ≥
1
2 nζsp. We write for conciseness σ = σn in the sequel, and we

ake t = s
√

n/σ in (71) and substitute y = vσ
√

n, see (57). Then, for s in a bounded set
ontained in Re(s) ≥ −

1
2 βn (so that Re(t) ≥ −

1
2 βn

√
n/σ =

1
2 n ζsp, see (57)), we have with

xponentially small error

log
(
E
[
exp

(
−

s
√

n
σ

Wn

)])
=

1
2π

∫ R

−R

isζ ′(y/σ
√

n) log(1 − enh(ζsp)− 1
2 y2

)
σ
√

n ζ (y/σ
√

n)(s − σ
√

n ζ (y/σ
√

n))
dy, (71)

here R = rσ
√

n.
The remainder of the proofs of (58) and Theorem 4 consists now of approximating nh(ζsp)

y −
1
2 β

2
n and −

1
2 B2

n , respectively, and approximating the front factor

F F =
isζ ′(y/σ

√
n)

σ
√

n ζ (y/σ
√

n)(s − σ
√

n ζ (y/σ
√

n))
, (72)

sing a linear and quadratic approximation, respectively, from the power series in (69).
For (58) we thus use in (71)

ζ ′(y/σ
√

n) = i + O(y/
√

n) , σ
√

n ζ (y/σ
√

n) = −βn + iy + O(y2/
√

n), (73)

nd obtain, uniformly in any bounded set of s such that Re(s) ≥ −
1
2 βn ,

log
(
E
[
exp

(
−

s
√

n
σn

Wn

)])
=

1
2π

∫ R

−R

s log(1 − e−
1
2 β

2
n −

1
2 y2

)
(βn − iy)(s + βn − iy)

dy
(

1 + O
( 1
√

n

))
, (74)

where we have restored σ = σn on the left-hand side of (74). Recalling that R = r σn
√

n, with
n ≍ 1 and r > 0 independent of n, we see that the integral in (74) equals the integral in (67),
ith βn instead of β, within exponentially small error when Re(s) ≥ −

1
2 βn . This completes

he proof of Theorem 3.
The proof of Theorem 4 is similar, but the details require somewhat more elaboration, and

re therefore given in Appendix A. We show Theorem 5 in Appendix B and also that the
O(1/

√
n) at the right-hand side of (11) can be replaced by O(1/n) when the third cumulants

f V and U are equal.

. Computational issues

In this section we present computational schemes for exact and approximate values of the
properly scaled) moments of the steady-state waiting time W via Pollaczek’s formula (3),

log
(
E[e−sW ]

)
=

−1
2π i

∫
C

s
z(s − z)

log(1 − ψ(−z)) dz, (75)

ith ψ(−z) = E[exp(−z(V −
1 U ))], as earlier.

ρ
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6.1. Moments and cumulants

Assume that X is a random variable with finite moments of all order. We compute the
oments

mk(X ) = E[X k] =

(
d
ds

)k (
E[es X ]

)
s=0 , k = 0, 1, . . . , (76)

f X from the cumulants

cl(X ) =

(
d
ds

)l

log
(
E[es X ]

)
s=0 , l = 0, 1, . . . , (77)

f X recursively according to

m0(X ) = 1 ; mk(X ) =

k∑
l=1

(
k − 1
l − 1

)
cl(X )mk−l(X ), k = 1, 2, . . . . (78)

.2. Moments in the classical heavy-traffic Kingman case

With α = 1 − ρ ↓ 0, we compute the moments mk(αW ) = E[(αW )k] of αW from the
cumulants of αW according to (78) in Section 6.1. The latter are obtained from the appropriate
version (28) of Pollaczek’s formula, so that

cl(αW ) = (−1)l
(

d
ds

)l (
−1
2π i

∫
C0

z
z(s − z)

log(1 − ψ(−αz))dz
)

s=0

=
(−1)ll!
π

∫
∞

0
Re
[

log(1 − ψ(−αz))
zl+1

]
dy, (79)

here C0 = {z = µ0 + iy | −∞ < y < ∞} with µ0 = −1/σ 2
α = −1/[(σ 2

V + ρ−2σ 2
U )ρ],

ompare [1, Equation (15)].
From the result of Section 3, see (7) in Theorem 1, we have for k = 1, 2, . . .

E[(αW )k] = k!(
1
2
σ 2
α )k

+ O(α log(1/α)), α ↓ 0, (80)

here σ 2
α = (σ 2

V + ρ−2σ 2
U )ρ.

.3. Moments in the nearly deterministic heavy-traffic Kingman case

With 1 − ρn ≍ 1/n and Wn as in Section 4, we compute the moments mk(Wn) = E[W k
n ] of

Wn from the cumulants cl(Wn) of Wn according to (78) in Section 6.1. The latter are obtained
rom the appropriate version (49) of Pollaczek’s formula, so that

cl(Wn) = (−1)l
(

d
ds

)l (
−1
2π i

∫
C

z
z(s − z)

log(1 − ψn(−z/n))dz
)

s=0

=
(−1)ll!
π

∫
∞

0
Re
[

log(1 − ψn(−z/n))
zl+1

]
dy, (81)

here C = {z =
−1
2γn

+ iy | −∞ < y < ∞} and

γ = (σ 2
+ ρ−2σ 2 )ρ /(2n(1 − ρ )). (82)
n V n U n n
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From the result of Section 4, see (10) in Theorem 2, we have for k = 1, 2, . . .

E[W k
n ] = k!γ k

n + O
(

log n
√

n

)
, n → ∞. (83)

.4. Moments in the nearly deterministic heavy-traffic Gaussian case

We consider the special saddle point method with 1 − ρn ≍ 1/
√

n and Wn as given in
ection 5. Thus ζsp is the unique saddle point ζ on the negative real axis of h(ζ ) = logψ(−ζ ),
haracterized by h′(ζ ) = ψ ′(−ζ ) = 0, see Section 2. In some specific cases, ζsp can be found in
losed form; in general a Newton iteration can be used, using the leading term at the right-hand
ide of (19) as initial value. We then let

σn = (h′′(ζsp))1/2, βn = −ζspσn
√

n. (84)

The moments mk

(√
n
σn

Wn

)
= E

[(√
n
σn

Wn

)k
]

of
√

n
σn

Wn can be computed from the cumulants

l

(√
n
σn

Wn

)
according to (78) in Section 6.1. The latter are obtained from the appropriate version

63) of Pollaczek’s formula, with t = s
√

n/σn , so that

cl

(√
n
σn

Wn

)
= (−1)l

(
d
ds

)l (
−1
2π i

∫
Cn

(s/σn
√

n) log(1 − ψn(−ζ ))
ζ ((s/σn

√
n) − ζ )

dζ
)

s=0

=
(−1)ll!
π

(
1

σn
√

n

)l ∫ ∞

0
Re
[

log(1 − ψn(−ζ ))
ζ l+1

]
dy, (85)

here Cn = {ζ = ζsp + iy | −∞ < y < ∞}.
From the result in Section 5, see (12) in Theorem 3, we have for k = 1, 2, . . .

E

[(√
n
σn

Wn

)k
]

= mk(βn) + O
(

1
√

n

)
, n → ∞, (86)

where mk(β) is the kth moment of the maximum Mβ of the Gaussian random walk with drift
β. These mk(β) can be computed from the cumulants cl(Mβ) of Mβ using (78) in Section 6.1.

The latter can be computed by numerical integration, using (67), so that

cl
(
Mβ

)
=

(−1)ll!
π

∫
∞

0
Re

[
log(1 − eβz+ 1

2 z2
)

zl+1

]
dy, (87)

here z = −β + iy,−∞ < y < ∞. Alternatively, we have from Theorem 1 in [18] for
< β < 2

√
π and l = 1, 2, . . .

cl
(
Mβ

)
=

(l − 1)!
(2β)l

+
1

√
2π

l∑
j=0

(
l
j

)
Γ

(
l − j + 1

2

)
ζ

(
−

1
2

l −
1
2

j + 1
)

2
l− j−1

2 (−β) j

+
(−1)l+1l!

√
2π

∞∑
r=0

ζ (−l − r +
1
2 )(− 1

2 )rβ2r+l+1

r !(2r + 1) · . . . · (2r + l + 1)
, (88)

here ζ denotes here the Riemann zeta function (not to be confused with the function ζ (v) in
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(68)–(69) pertaining to the saddle point method).
From Theorems 4 and 5 in Section 5, we can refine the result in (86) according to

E
[(√

n
σn

Wn

)k]
=

mk(Bn)
(1 + βnϕn)2k

+
k(k − 1) mk−1(Bn)ϕn

(1 + βnϕn)2k−1 + O
(1

n

)
, (89)

here

Bn = βn/(1 + βnϕn), ϕn = −
h′′′(ζsp)

6h′′(ζsp)σn
√

n
, (90)

ith σn and βn given in (84).
In several cases, the quantities h′′(ζsp) and h′′′(ζsp) as required in (84) and (90) can be

computed in closed form. In general, one has

h′′(ζsp) =
f ′′

V

fV
−

(
f ′

V

fV

)2

+

(
f ′′

U

fU
−

(
f ′

U

fU

)2
)

1
ρ2 , (91)

h′′′(ζsp) = −
f ′′′

V

fV
+ 3

f ′′

V f ′

V

f 2
V

+

(
f ′′′

U

fU
− 3

f ′′

U f ′

U

f 2
U

)
1
ρ3 , (92)

here fV (z) = E[exp(zV )], fU (z) = E[exp(zU )], and where all f (l)
V and f (l)

U appearing at the
ight-hand sides of (91)–(92) have to be evaluated at z = −ζsp and z = ζsp/ρ, respectively.

We end this section with a note on the computational issues encountered when evaluating the
ontour integrals in expressions such as (79), (81), (85) and (87). Although modern computer
lgebra software can numerically evaluate these integrals, despite one of the limits being
nfinity, one has to carefully choose a sufficiently high numerical accuracy in order to obtain
ccurate results. Not all software packages may support this feature, which is the reason why
e used Wolfram Mathematica for the numerical computations in this paper. Unsurprisingly,

his may lead to long computation times, in particular when the load of the system is close to
ne. In contrast, the numerical evaluation of the approximations in this paper takes practically
ero time and does not suffer from numerical issues.

.5. Numerical example: U and V are Gamma distributed

We now demonstrate the results for a specific example. In this numerical example, we
onsider the case that both V and U have a Gamma distribution, with means kUϑU = kVϑV =

, variances σ 2
V = kVϑ

2
V = ϑV and σ 2

U = kUϑ
2
U = ϑU , and pdfs

xkV −1 e−x/ϑV

Γ (kV )ϑkV
V

, x ≥ 0 ;
xkU −1 e−x/ϑU

Γ (kU )ϑkU
U

, x ≥ 0, (93)

espectively, with 0 < ϑV , ϑU < ∞. Note that Assumption 6 in Section 5 is easily checked.
he third cumulants of U and V are c3(U ) = 2ϑ2

U and c3(V ) = 2ϑ2
V , respectively. Then

ψ(−ζ ) = E [e−ζ (V −
1
ρU )] = (1 + ϑV ζ )−kV (1 − ϑU ζ/ρ)−kU (94)

or −ϑ−1
V < Re(ζ ) < ρ ϑ−1

U . In our numerical experiments we take three different parameter
sets (ϑU , ϑV ) = (5/2, 1/2), (1/2, 5/2) and (3/2, 3/2). As a consequence of U and V both

eing Gamma distributed, all approximations can be obtained in closed-form. Further numerical
xamples are provided in the extended version of this paper available at [3], where we also
nclude combinations of interarrival and service-time distributions that do not yield closed-form
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Table 1
Numerical example — Classical HT Kingman: Comparison of exact and asymptotic results for mk (αW ).

ϑU = 5/2, ϑV = 1/2

k α = 1/10 α = 1/100 α = 1/1000

Exact Asymp Exact Asymp Exact Asymp

1 1.396 1.614 1.490 1.510 1.499 1.501
2 4.092 5.209 4.459 4.561 4.496 4.506
3 17.987 25.222 20.021 20.663 20.227 20.291
4 105.426 162.819 119.860 124.814 121.336 121.825
5 772.403 1313.861 896.946 942.427 909.816 914.295

ϑU = 1/2, ϑV = 5/2

k α = 1/10 α = 1/100 α = 1/1000

Exact Asymp Exact Asymp Exact Asymp

1 1.331 1.403 1.483 1.490 1.498 1.499
2 4.083 3.936 4.459 4.440 4.496 4.494
3 18.806 16.562 20.111 19.849 20.236 20.210
4 115.505 92.932 120.933 118.300 121.444 121.176
5 886.802 651.817 909.028 881.352 911.030 908.217

ϑU = 3/2, ϑV = 3/2

k α = 1/10 α = 1/100 α = 1/1000

Exact Asymp Exact Asymp Exact Asymp

1 1.367 1.508 1.487 1.500 1.499 1.500
2 4.100 4.550 4.460 4.500 4.496 4.500
3 18.452 20.589 20.071 20.253 20.232 20.250
4 110.711 124.223 120.427 121.525 121.393 121.500
5 830.332 936.845 903.203 911.480 910.446 911.252

approximations. The focus in these examples lies on the asymptotics of higher-order cumulants,
which distinguishes them from, for example, numerical examples in [1,28]. In all our numerical
examples, also those in [3], we found that numerical evaluation of the asymptotic bounds is
significantly faster than computation of the exact values.

6.5.1. Classical regime
We approximate the moments of αW , for α ↓ 0, by (80), with

σ 2
α = (σ 2

V + ρ−2σ 2
U ) ρ = (kVϑ

2
V + ρ−2kUϑ

2
U ) ρ = (ϑV + ρ−2ϑU ) ρ, (95)

nd ρ = 1−α, where we take α = 1/10, 1/100, 1/1000. The results, for the first five moments
f W , are presented in Table 1.

We observe that the error behaves practically linearly with α for a fixed k. Thus, for this
ase, the error estimate O(α log(1/α)) in Theorem 1 seems a factor log(1/α) too pessimistic.
o confirm this, we included a plot for the difference between the approximation (based on the
symptotic result) and the exact values for the first three moments. Indeed, Fig. 1 confirms that
he absolute error is almost completely linear in α, meaning that the factor log(1/α) is negligible

here. Higher moments show the same type of behavior, but for reasons of compactness we have

omitted the corresponding figures.
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Fig. 1. Absolute error k!( 1
2 σ

2
α )k

− mk (αW ) for the classical Kingman heavy-traffic regime.

It is notable that for the first moment (k = 1), the approximations systematically overesti-
mate the exact values, which is known in the literature as Kingman’s bound, see below (8).
For higher moments, this is still the case for ϑU = 5/2, ϑV = 1/2, but choosing parameter
alues ϑU = 1/2, ϑV = 5/2 leads to underestimations. The k-behavior of the error for the
hree considered cases is markedly different, especially when α is not small.

.5.2. Nearly-deterministic Kingman regime
Take a fixed β > 0, and let 1 − ρn = β/n. From Theorem 2, we can approximate E[W k

n ]
y k!γ k

n , with

γn = (σ 2
V + ρ−2

n σ 2
U ) ρn/(2n(1 − ρn)) = (ϑV + ρ−2

n ϑU ) ρn/(2n(1 − ρn)). (96)

n Table 2, we choose β = 1. Note that the approximation, based on the asymptotic results, for
= 10, 100, 1000 yields exactly the same numerical values as in the classical HT Kingman

ase with α = 1/n. This is due to the fact that accidentally 1
2σ

2
α = γn for our chosen parameter

values.
We observe that the error, the difference between the exact result and the asymptotic result,

decays like 1/
√

n for a fixed k (this decay behavior becomes more manifest when n is further
ncreased). This is in reasonable agreement with the error estimate O(log n/

√
n) that is given

n Theorem 2, (10). The k-behavior of the error for the three considered cases is markedly
different, especially for low n.

6.5.3. Nearly-deterministic Gaussian regime
We have now to invoke the whole machinery of the special saddle point method. We have

h(ζ ) = −kV log(1 + ϑV ζ ) − kU log(1 − ϑU ζ/ρ),
−1
ϑV

< Re(ζ ) <
ρ

ϑU
, (97)

ζsp = −
1 − ρ

ϑV + ϑU
, h′′(ζsp) =

(ϑU + ϑV )3

(ϑU + ρϑV )2 , d2 = −
ϑ2

U − ϑ2
V

3(ϑU + ρϑV )
. (98)

ake a fixed β > 0, and let 1−ρn = β/
√

n. We approximate the moments of the scaled waiting
imes

√
n
σn

Wn by the moments of the maximum of the Gaussian random walk with drift −β.
These mk(β) can be computed from the cumulants cl(Mβ) of Mβ , using (78) and (87) or (88).

The results, shown in Table 3, indicate that the absolute error behaves quite accurately as
O(1/

√
n) and O(1/n), respectively, for the two asymptotic estimates. It is also interesting to

ee that the two asymptotic estimates perform equally well for low k and n, while the refined
symptotic estimate based on (86) outperforms the asymptotic estimate based on (89) in all
ther cases.
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Table 2
Example 1 — Nearly-deterministic HT Kingman: Comparison of exact and asymptotic results for mk (Wn).

ϑU = 5/2, ϑV = 1/2

k n = 10 n = 100 n = 1000 n = 10000 n = 100000

Exact Asymp Exact Asymp Exact Asymp Exact Asymp Exact Asymp

1 1.212 1.614 1.404 1.510 1.469 1.501 1.490 1.500 1.497 1.500
2 3.572 5.209 4.205 4.561 4.405 4.506 4.470 4.501 4.490 4.500
3 15.711 25.222 18.880 20.663 19.819 20.291 20.114 20.254 20.207 20.250
4 92.084 162.819 113.030 124.814 118.888 121.825 120.680 121.532 121.241 121.503
5 674.652 1313.861 845.833 942.427 891.460 914.295 905.080 911.554 909.307 911.280

ϑU = 1/2, ϑV = 5/2

k n = 10 n = 100 n = 1000 n = 10000 n = 100000

Exact Asymp Exact Asymp Exact Asymp Exact Asymp Exact Asymp

1 1.151 1.403 1.397 1.490 1.468 1.499 1.490 1.500 1.497 1.500
2 3.551 3.936 4.204 4.440 4.405 4.494 4.470 4.499 4.490 4.500
3 16.371 16.562 18.962 19.849 19.828 20.210 20.115 20.246 20.207 20.250
4 100.564 92.932 114.027 118.300 118.993 121.176 120.691 121.468 121.242 121.497
5 772.098 651.817 857.114 881.352 892.646 908.217 905.200 910.946 909.320 911.220

ϑU = 3/2, ϑV = 3/2

k n = 10 n = 100 n = 1000 n = 10000 n = 100000

Exact Asymp Exact Asymp Exact Asymp Exact Asymp Exact Asymp

1 1.183 1.508 1.401 1.500 1.468 1.500 1.490 1.500 1.497 1.500
2 3.568 4.550 4.205 4.500 4.405 4.500 4.470 4.500 4.490 4.500
3 16.065 20.589 18.922 20.253 19.823 20.250 20.114 20.250 20.207 20.250
4 96.396 124.223 113.532 121.525 118.940 121.500 120.685 121.500 121.242 121.500
5 722.972 936.845 851.487 911.480 892.054 911.252 905.140 911.250 909.314 911.250

Notice that the two approximations yield the same results when ϑU = ϑV = 3/2 in Table 3.
his is caused by U and V having the same Gamma distribution, resulting in h′′′(ζsp) = 0. It

ollows that φn = 0 and Bn = βn in Theorem 4. Consequently, the refined approximation and
he original approximation are equal here.

. Conclusions

We have presented several heavy-traffic limit theorems, using Kingman’s transform method
ased on Pollaczek’s formula for the Laplace transform of the steady-state waiting time
istribution of the GI/G/1 queue. Under the assumption that the distribution of both the service
ime and the interarrival time have a Laplace transform, analytic in an open strip containing
he imaginary axis, these heavy-traffic limit results can be shown to be valid on the level of
ransforms in a full neighborhood of the origin, with error assessment. As a consequence, there
s convergence for all moments, with a corresponding error assessment. We have considered
he classical heavy-traffic regime in which the transform of the steady-state waiting time
istribution converges, after appropriate scaling, to the transform of an exponentially distributed
andom variable as the system load ρ = 1 − α tends to 1 (Kingman-type result), with error
hown to be bounded as O(α log(1/α)) as α ↓ 0. We also have considered nearly deterministic
ueues (obtained through cyclic thinning) in two different regimes, viz. where the system’s
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Table 3
Example 1 — Nearly-deterministic HT Gaussian: Comparison of exact results for mk (

√
n
σn

Wn) and the asymptotic
esults for the case that ϑU = 5/2, ϑV = 1/2 with β = 1, n = 10, 100, 1000 and k = 1, 2, 3, 4, 5. The two entries
n the Asymp-columns give, for a particular k, the asymptotic result from (86) and (89) in that order.

ϑU = 5/2, ϑV = 1/2

k n = 10 n = 100 n = 1000

Exact Asymp 1 Asymp 2 Exact Asymp 1 Asymp 2 Exact Asymp 1 Asymp 2

1 0.3674 0.3748 0.3776 0.4021 0.4015 0.4030 0.4105 0.4100 0.4106
2 0.5898 0.6499 0.6136 0.7071 0.7202 0.7094 0.7396 0.7432 0.7398
3 1.3565 1.6288 1.3756 1.7936 1.8703 1.7963 1.9283 1.9514 1.9286
4 4.1049 5.3717 3.8574 5.9908 6.3985 5.9714 6.6235 6.7521 6.6218
5 15.4834 22.0568 12.5010 24.9315 27.2673 24.6639 28.3460 29.1063 28.3202

ϑU = 1/2, ϑV = 5/2

k n = 10 n = 100 n = 1000

Exact Asymp 1 Asymp 2 Exact Asymp 1 Asymp 2 Exact Asymp 1 Asymp 2

1 0.2227 0.2259 0.2282 0.3506 0.3523 0.3514 0.3938 0.3943 0.3938
2 0.3242 0.3139 0.3367 0.6006 0.5931 0.6025 0.7039 0.7009 0.7041
3 0.6903 0.6223 0.7043 1.4922 1.4410 1.4947 1.8236 1.8032 1.8239
4 1.9359 1.6078 1.8922 4.8802 4.6016 4.8685 6.2235 6.1091 6.2220
5 6.7472 5.1462 6.2056 19.8621 18.2869 19.6959 26.4527 25.7788 26.4304

ϑU = 3/2, ϑV = 3/2

k n = 10 n = 100 n = 1000

Exact Asymp 1 Asymp 2 Exact Asymp 1 Asymp 2 Exact Asymp 1 Asymp 2

1 0.2919 0.2985 0.2985 0.3761 0.3768 0.3768 0.4021 0.4022 0.4022
2 0.4504 0.4660 0.4660 0.6532 0.6550 0.6550 0.7217 0.7219 0.7219
3 1.0062 1.0449 1.0449 1.6410 1.6462 1.6462 1.8757 1.8763 1.8763
4 2.9556 3.0712 3.0712 5.4270 5.4442 5.4442 6.4226 6.4245 6.4245
5 10.7979 11.2169 11.2169 22.3476 22.4176 22.4176 27.3938 27.4020 27.4020

load ρn satisfies 1 − ρn ≍ 1/n and 1 − ρn ≍ 1/
√

n, respectively, as the thinning factor n
ends to infinity. The first regime allows a result of the Kingman-type, viz. convergence in
erms of transforms to an exponential distribution, with error bounded as O( 1

√
n log n). The

econd regime allows, after appropriate scaling, convergence in terms of transforms to the
aximum of the Gaussian random walk with a specific negative drift. For this case, we have

hown O(1/
√

n) error behavior of transforms and moments. The latter result is refined, so
as to yield O(1/n) errors, by judicious choice of the drift parameter, as well as by using a
weakly non-linear transformation of the Laplace variable in the transform of the maximum of
the Gaussian random walk. For all regimes, the heavy-traffic limits for the moments of the
waiting time distribution were also found to be good asymptotic approximations for the exact
values.
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ppendix A. Finishing the proof of Theorem 4

We approximate the front factor F F in (72) by using a linear approximation of ζ ′(v) and a
uadratic approximation of ζ (v) from (69). Writing σ = σn as we did in Section 5, we have

ζ ′(y/(σ
√

n)) = i − 2d2 y/(σ
√

n) + O(y2/n), (99)

σ
√

n ζ (y/(σ
√

n)) = −β + iy − ϕy2
+ O(y3/n), (100)

here we have written β = βn and ϕ = ϕn = d2/σn
√

n. Using this in (72), we get

F F =
−s(1 + 2iϕy + O(y2/n))

(−β + iy − ϕy2 + O(y3/n))(s + β − iy + ϕy2 + O(y3/n))

= −s
1 + iϕy

−β + iy − ϕy2

1 + iϕy
s + β − iy + ϕy2 (1 + O(y2/n)). (101)

ow

−β + iy − ϕy2

1 + iϕy
= (−β + iy − ϕy2)(1 − iϕy) + O(y2/n)

= −β + iy(1 + βϕ) + O(y2/n)
= (1 + βϕ)(−B + iy) + O(y2/n), (102)

ith B = Bn = βn/(1 + βnϕn), see (61). Similarly,

s + β − iy + ϕy2

1 + iϕy
= s + β − iy(1 + (s + β)ϕ) + O(y2/n)

= (1 + (s + β)ϕ)
( s + β

1 + (s + β)ϕ
− iy

)
+ O(y2/n) . (103)

e further set, see (61),

s + β

1 + (s + β)ϕ
= R +

β

1 + βϕ
= R + B, (104)

and we compute

R =
s + β

1 + (s + β)ϕ
−

β

1 + βϕ
=

s
(1 + (s + β)ϕ)(1 + βϕ)

. (105)

herefore,

F F =
−s

(1 + βϕ)(1 + (s + β)ϕ)
1 + O(y2/n)

(−B + iy)(R + B − iy)

=
R

(B − iy)(R + B − iy)
(1 + O(y2/n)), (106)

nd this takes care of the factor in the integral in (71).
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We finally relate n h(ζsp), occurring in the exponential in the integrand in (71), and B. We
ave with β = βn , σ = σn given in (57) and d2 given by (59)

B =
β

1 + βϕ
=

βn

1 + βn
d2
σ
√

n

=
−ζsp

√
n h′′(ζsp)

1 +
ζsp h′′′(ζsp)

6h′′(ζsp)

= −ζsp
√

n h′′(ζsp)
(

1 −
ζsp h′′′(ζsp)

6h′′(ζsp)
+ O

(1
n

))
. (107)

On the other hand, from h′(ζsp) = 0 = h(0) and

h(0) = h(ζsp) − ζsp h′(ζsp) +
1
2 ζ

2
sp h′′(ζsp) −

1
6 ζ

3
sp h′′′(ζsp) + O

( 1
n2

)
, (108)

e get

− n h(ζsp) =
1
2 n ζ 2

sp h′′(ζsp) −
1
6 n ζ 3

sp h′′′(ζsp) + O
(1

n

)
=

1
2 n ζ 2

sp h′′(ζsp)
(

1 −
ζsp h′′′(ζsp)

3h′′(ζsp)

)
+ O

(1
n

)
=

1
2 B2

+ O
(1

n

)
. (109)

sing (106) and (109), valid uniformly in any bounded set of s with Re(s) ≥ −
1
2 βn , in (71),

e get

log(E
[
exp

(
−

s
√

n
σn

Wn

)]
)

=
1

2π i

∫ R

−R

Rn log(1 − e−
1
2 B2

n −
1
2 y2

)
(Bn − iy)(Rn + Bn − iy)

dy
(

1 + O
(1

n

))
, (110)

here we have restored the n in σn , Rn and Bn . Then the proof of Theorem 4 can be finished
n the same way as the proof of Theorem 3 was finished.

ppendix B. Proof of Theorem 5

The first line of (62) is an immediate consequence of Theorem 4, and can be rewritten as

E
[(√

n
σn

Wn

)k]
=

( d
ds

)k
[F(Tn(s))]s=0 + O

(1
n

)
, (111)

here F(s) = E [exp(s MBn )] and Tn(s) = −Rn(−s) with Bn and Rn given in (61). We have
rom (61), deleting the index n from βn and ϕn ,

Tn(s) =
s

1 + βϕ

1
1 + βϕ − ϕs

=

∞∑
r=1

ϕr−1

(1 + βϕ)r+1 sr . (112)

herefore, Tn(0) = 0 and

T (r )
n (0) =

r !ϕr−1

(1 + βϕ)r+1 , r = 1, 2, . . . , (113)

o that, in particular,

T ′

n(0) =
1

, T ′′

n (0) =
2ϕ

, (114)

(1 + βϕ)2 (1 + βϕ)3
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n

a

w

a

m
a

W
T

T
(
fi
e
t

T (r )
n (0) = O(ϕr−1) = O(n−

1
2 (r−1)), (115)

see below (61).
We compute

Vk =

( d
ds

)k
[F(Tn(s))](0), (116)

oting that F (k)(0) = mk(Bn) for k = 1, 2, . . . , within absolute error O(1/n). We have, writing
B = Bn ,

V1 = F ′(Tn(s)) T ′

n(s)
⏐⏐⏐
s=0

= F ′(0) T ′

n(0) =
m1(B)

(1 + βϕ)2 , (117)

V2 =
d
ds

(F ′(Tn(s)) T ′

n(s))
⏐⏐⏐
s=0

= (F ′′(Tn(s))(T ′

n(s))2
+ F ′(Tn(s))T ′′

n (s))
⏐⏐⏐
s=0

= F ′′(0)(T ′

n(0))2
+ F ′(0) T ′′

n (0) =
m2(B)

(1 + βϕ)4 +
2ϕ m1(B)
(1 + βϕ)3 , (118)

nd similarly

V3 = F ′′′(0)(T ′

n(0))3
+ 3F ′′(0) T ′

n(0) T ′′

n (0) + F ′(0) T ′′′

n (0)

=
m3(B)

(1 + βϕ)6 +
6ϕ m2(B)
(1 + βϕ)5 + O

(1
n

)
, (119)

here (114)–(115) has been used. In general, one finds inductively

Vk = (F (k)(Tn(s))(T ′

n(s))k
+

1
2 k(k − 1) F (k−1)(Tn(s))(T ′

n(s))k−1T ′′

n (s) + · · · )
⏐⏐⏐
s=0

=
mk(B)

(1 + βϕ)2k
+

k(k − 1)ϕ mk−1(B)
(1 + βϕ)2k−1 + O

(1
n

)
, (120)

nd this gives the expression on the second line of (62) after restoring the n in B, β and ϕ.
We finally show that Theorem 3 gives qualitatively the same accurate estimates of the

oments as Theorem 5 does when the third cumulants of V and U are equal. We have,
bbreviating “kth cumulant of” by “ck”,

h(ζ ) = log
(
E[e−ζV ]

)
+ log

(
E[eζU/ρ]

)
=

∞∑
k=1

ρ−kck(U ) + (−1)kck(V )
k!

ζ k . (121)

ith 1 − ρ = 1 − ρn ≍ 1/
√

n, we have that ζsp = O(1/
√

n). Assume that c3(V ) = c3(U ).
hen from (121)

h′′′(ζsp) = O(ρ−3c3(U ) − c3(V )) + O(ζsp) = O(1/
√

n). (122)

herefore, φn in Theorem 4 is O(1/n), and Bn = βn + O(1/n). Hence, the leading term in
62) and the leading term in (11) agree with one another within an error O(1/n), and so the
rst order term in (62) approximates the scaled moment at the left-hand side of (62) within an
rror O(1/n). We conclude that the leading term in (11) approximates the scaled moment at
he left-hand side of (62) and (11) within an error O(1/n) as well.
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