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Abstract

Emden–Fowler type equations are nonlinear differential equations that appear in many fields such as
athematical physics, astrophysics and chemistry. In this paper, we perform an asymptotic analysis of
specific Emden–Fowler type equation that emerges in a queuing theory context as an approximation

f voltages under a well-known power flow model. Thus, we place Emden–Fowler type equations in
he context of electrical engineering. We derive properties of the continuous solution of this specific
mden–Fowler type equation and study the asymptotic behavior of its discrete analog. We conclude that

he discrete analog has the same asymptotic behavior as the classical continuous Emden–Fowler type
quation that we consider.
2022 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).

his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Many problems in mathematical physics, astrophysics and chemistry can be modeled by an
mden–Fowler type equation of the form

d
dt

(
tρ

du
dt

)
± tσh(u) = 0, (1.1)

here ρ, σ are real numbers, the function u : R → R is twice differentiable and h : R → R
s some given function of u. For example, choosing h(u) = un for n ∈ R, ρ = 1, σ = 0

and plus sign in (1.1), is an important equation in the study of thermal behavior of a spherical
cloud of gas acting under the mutual attraction of its molecules and subject to the classical laws
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of thermodynamics [5,7]. Another example is known as Liouville’s equation, which has been
studied extensively in mathematics [9]. This equation can be reduced to an Emden–Fowler type
equation with h(u) = eu , ρ = 1, σ = 0 and plus sign [7]. For more information on different
applications of Emden–Fowler type equations, we refer the reader to [17].

In this paper, we study the Emden–Fowler type equation where h(u) = u−1, ρ = 0, σ = 0,
ith the minus sign in (1.1), and initial conditions u(0) = k−1/2, u′(0) = k−1/2w for w ≥ 0.
or a positive constant k > 0, we consider the change of variables u = k−1/2 f , with resulting
quation

d2 f
dt2 =

k
f
, t ≥ 0; f (0) = 1, f ′(0) = w. (1.2)

This specific Emden–Fowler type Eq. (1.2) arises in a queuing model [6], modeling the
ueue of consumers (e.g. electric vehicles (EVs)) connected to the power grid. The distribution
f electric power to consumers leads to a resource allocation problem which must be solved
ubject to a constraint on the voltages in the network. These voltages are modeled by a power
ow model known as the Distflow model; see Section 2 for background. The Distflow model
quations are given by a discrete version of the nonlinear differential Eq. (1.2) and can be
escribed as

V j+1 − 2V j + V j−1 =
k
V j
, j = 1, 2, . . . ; V0 = 1, V1 = 1 + k. (1.3)

In this paper, we study the asymptotic behavior and associated properties of the solution of
(1.2) using differential and integral calculus, and show its numerical validation, i.e., we show
that the solutions of (1.2) have asymptotic behavior

f (t) ∼ t (2k ln(t))1/2 , t → ∞, (1.4)

which can be used in the study of any of the aforementioned resource allocation problems. It
is natural to expect that the discrete version (1.3) of the Emden–Fowler type equation has the
asymptotic behavior of the form (1.4) as well. However, to show (1.5) below, is considerably
more challenging than in the continuous case, and this is the main technical challenge addressed
in this work. We show the asymptotic behavior of the discrete recursion, as in (1.3) to be

V j ∼ j (2k ln( j))1/2 , j → ∞. (1.5)

To derive the results in the discrete case, we study the solution of the continuous Emden–
Fowler type equation in (1.2), and corresponding asymptotic behavior. Then, we find out
whether the discrete analog inherits the asymptotic behavior of the solutions for the continuous
case. Hence, this approach is dependent on the availability of the solution of a continuous
Emden–Fowler type equation and the continuation of the asymptotic behavior in the continuous
case to hold in the discrete case.

There is a huge number of papers that deal with various properties of solutions of Emden–
Fowler differential Eqs. (1.1) and especially in the case where h(u) = un or h(u) = exp(nu) for
n ≥ 0. In this setting, for the asymptotic properties of solutions of an Emden–Fowler equation,
we refer to [5,11,17]. To the best of our knowledge, [14] is the only work that discusses
asymptotic behavior in the case n = −1, however not the same asymptotic behavior as we
study in this paper. More precisely, the authors of [14] study the more general Emden–Fowler
type equation with h(u) = un, n ∈ R, ρ + σ = 0 and minus sign in (1.1). In [14], the
more general equation appears in the context of the theory of diffusion and reaction governing
the concentration u of a substance disappearing by an isothermal reaction at each point t of
1147
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a slab of catalyst. When such an equation is normalized so that u(t) is the concentration as a
raction of the concentration outside of the slab and t the distance from the central plane as

a fraction of the half thickness of the slab, the parameter
√

k may be interpreted as the ratio
f the characteristic reaction rate to the characteristic diffusion rate. This ratio is known in the
hemical engineering literature as the Thiele modulus. In this context, it is natural to keep the
ange of t finite and solve for the Thiele modulus as a function of the concentration of the
ubstance u. Therefore, [14] studies the more general Emden–Fowler type equation for u as
function of

√
k and study asymptotic properties of the solution as k → ∞. However, here

we solve an Emden–Fowler equation for the special case n = −1 and for any given Thiele
modulus k, and study what happens to the concentration u(t) as t goes to infinity, rather than
k to infinity.

Although the literature devoted to continuous Emden–Fowler equations and generalizations
is very rich, there are not many papers related to the discrete Emden–Fowler Eq. (1.3) or
to more general second-order non-linear discrete equations of Emden–Fowler type within the
following meaning. Let j0 be a natural number and let N( j0) denote the set of all natural
numbers greater than or equal to a fixed integer j0, that is,

N( j0) := { j0, j0 + 1, . . .}.

Then, a second-order non-linear discrete equation of Emden–Fowler type

∆2u( j) ± jαum( j) = 0, (1.6)

is studied, where u : N( j0) → R is an unknown solution, ∆u( j) := u( j + 1) − u( j) is its
first-order forward difference, ∆2u( j) := ∆(∆u( j)) = u( j + 2) − 2u( j + 1) + u( j) is its
second-order forward difference, and α,m are real numbers. A function u∗

: N( j0) → R is
called a solution of (1.6) if the equality

∆2u∗( j) ± jα(u∗( j))m
= 0

holds for every j ∈ N( j0). The work done in this area focuses on finding conditions that
guarantee the existence of a solution of such discrete equations. In [8], the authors consider
the special case of (1.6) where α = −2, write it as a system of two difference equations, and
prove a general theorem for this that gives sufficient conditions that guarantee the existence
of at least one solution. In [1,10], the authors replace the term jα in (1.6) by p( j), where
the function p( j) satisfies some technical conditions, and find conditions that guarantee the
existence of a non-oscillatory solution. In [2,15], the authors find conditions under which the
nonlinear discrete equation in (1.6) with m of the form p/q where p and q are integers such
that the difference p − q is odd, has solutions with asymptotic behavior when j → ∞ that is
similar to a power-type function, that is,

u( j) ∼ a± j−s, j → ∞,

for constants a± and s defined in terms of α and m. However, we study the case m = −1 and
this does not meet the condition that m is of the form p/q where p and q are integers such
that the difference p − q is odd.

The paper is structured as follows. In Section 2, we present the application that motivated our
study of particular equations in (1.2) and (1.3). We present the main results in two separate
sections. In Section 3, we present the asymptotic behavior and associated properties of the
continuous solution of the differential equation in (1.2), while in Section 4, we present the
asymptotic behavior of the discrete recursion in (1.3). The proofs of the main results in the
1148
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continuous case, except for the results of Section 3.1, and discrete case can be found in
Sections 5 and 6, respectively. We finish the paper with a conclusion in Section 7. In the
appendices, we gather the proofs for the results in Section 3.1.

2. Background on motivational application

Eq. (1.2) emerges in the process of charging electric vehicles (EVs) by considering their
andom arrivals, their stochastic demand for energy at charging stations, and the characteristics
f the electricity distribution network. This process can be modeled as a queue. In this setting,
Vs representing jobs, require service. This service is delivered by charging stations, classified
s servers, and the service being delivered is the power supplied to EVs, however constrained
y the physical limitations of the distribution network.

In our motivational example, we consider a queuing system that consists of a network of
N single-server queues, each having its own arrival stream of jobs. We denote by X(t) =

X1(t), . . . , X N (t)) the vector giving the number of jobs at queue at time t . At each charging
tation, all EVs arrive independently according to Poisson processes with rates λi , i = 1, . . . , N
nd have independent service requirements which are Exp(1) random variables.

At each queue, all jobs are served simultaneously and start service immediately. Further-
ore, each job receives an equal fraction of the service capacity allocated to a queue. We

enote by p(t) = (p1(t), . . . , pN (t)) the vector of service capacities allocated to each queue at
ime t .

The service capacity allocated to each queue is the power supplied to a charging station
nd is dependent on the number of EVs that are charging at each charging station; i.e., service
apacities are subject to changes to the current vector X(t) = (X1(t), . . . , X N (t)) of number of
obs. For each state of the system, we assume that the service capacities are the unique solution
f the optimization problem

max
p(t)

∑
j

X j (t) log
(

p j (t)
X j (t)

)
,

ubject to constraints on the voltages in the network. For the optimization problem, the feasible
egion can take many forms and depends on the power flow model that is used. In this paper,
he voltages are modeled by the Distflow model, cf. (1.3). We can then represent the number
f EVs charging at every station as an N -dimensional continuous-time Markov process. The
volution of the queue at node j is given by

X j (t) ↦→ X j (t) + 1 at rate λ j ,

nd

X j (t) ↦→ X j (t) − 1 at rate p j (t).

or a complete model description, we refer to [3,6].
An electric grid is a connected network that transfers electricity from producers to con-

umers. It consists of generating stations that produce electric power, high voltage transmission
ines that carry power from distant sources to demand centers, and distribution lines that
onnect individual customers, e.g., houses, charging stations, etc. We focus on a network that
onnects a generator to charging stations with only distribution lines. Such a network is called
distribution network.
In a distribution network, distribution lines have an impedance, which results to voltage

oss during transportation. Controlling the voltage loss ensures that every customer receives
1149
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safe and reliable energy [12]. Therefore, an important constraint in a distribution network is
the requirement of keeping voltage drops on a line under control.

In our setting, we assume that the distribution network, consisting of one generator, several
harging stations and distribution lines with the same physical properties, has a line topology.
he generator that produces electricity is called the root node. Charging stations consume power
nd are called the load nodes. Thus, we represent the distribution network by a graph (here, a

line) with a root node, load nodes, and edges representing the distribution lines. Furthermore,
we assume that EVs arrive at the same rate at each charging station.

In order to model the power flow in the network, we use an approximation of the alternating
current (AC) power flow equations [16]. These power flow equations characterize the steady-
state relationship between power injections at each node, the voltage magnitudes, and phase
angles that are necessary to transmit power from generators to load nodes. We study a load
flow model known as the branch flow model or the Distflow model [4,13]. Due to the specific
hoice for the network as a line, the same arrival rate at all charging stations, distribution lines
ith the same physical properties, and the voltage drop constraint, the power flow model has
recursive structure, that is, the voltages at nodes j = 0, . . . , N − 1, are given by recursion

(1.3). Here, N is the root node, and V0 = 1 is chosen as normalization. This recursion leads
to real-valued voltages and ignores line reactances and reactive power, which is a reasonable
assumption in distribution networks. We refer to [6] for more details.

3. Main results of continuous Emden-Fowler type equation

In this section, we study the asymptotic behavior of the solution f of (1.2). To do so, we
present in Lemma 3.1 the solution of a more general differential equation. Namely, we consider
a more general initial condition f (0) = y > 0.

The solution f presented in Lemma 3.1 allows us to study the asymptotic behavior of f0(x),
i.e., the solution of the differential equation in Lemma 3.1 where k = 1, y = 1 and w = 0, or
in other words, the solution of the differential equation f ′′(x) = 1/ f (x) with initial conditions
f (0) = 1 and f ′(0) = 0; see Theorem 3.1. We can then derive the asymptotic behavior of f ;
see Corollary 3.1.

The following theorem provides the limiting behavior of f0(x), i.e., the solution of Eq. (1.2)
here k = 1, y = 1 and w = 0.

heorem 3.1. Let f0(x) be the solution of (1.2) for k = 1, y = 1 and w = 0. The limiting
ehavior of the function f0(x) as x → ∞ is given by,

f0(x) = z(ln(z))
1
2

[
1 + O

(
ln(ln(z))

ln(z)

)]
here z = x

√
2.

The asymptotics obtained in Theorem 3.1 are sufficient for the purpose of this paper,
however we have obtained the more detailed asymptotics

f0(x) = zv
1
2

(
1 +

ln(v) − 2
4v

+
8 ln(v) − 24 − ln2(v)

32v2 + O
(

ln(v)2

v3

))
, (3.1)

here v = ln(z) and z = x
√

2. The statement in (3.1) can be shown by employing the
symptotics of the Dawson function exp(−y2)

∫ y exp(v2)dv, but we omit the formal proof.
0

1150
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Fig. 1. Plot of f0 divided by first-order approximation (solid blue), second-order approximation (dashed red), and
hird-order approximation (dotted yellow) obtained from (3.1).

In Fig. 1, we show the accuracy of the asymptotics of f0(x) as a function of x (≥ 2). We
x the parameter at k = 1 for the comparison of the quotient of the solution f0(x) obtained
ia Lemma 3.1 and its first-order approximation (blue), the second-order approximation (red),
nd the third-order approximation (yellow) given by (3.1). We observe that the approximations
et better for large values of x , as expected, but are also reasonable for values not much larger
han 2. However, for really small values of x , i.e. x ∈ [1, 2], the approximation is less good,
hich is to be expected since f0(1) = 1 and g(1; 1) = 0.
For the proof of Theorem 3.1, we first derive an implicit solution to Eq. (1.2) where

= 1, y = 1 and w = 0. Namely, we derive f0(x) in terms of a function U (x); cf. Lemma 3.1.
e show, using Lemma 3.2, that we can derive an approximation of U (x) by iterating the

ollowing equation:

exp(U 2) − 1
2U

=
x

√
2
. (3.2)

e can then use this approximation of U (x) in the implicit solution of the differential equation
o derive the asymptotic behavior of Theorem 3.1. The proofs of Theorem 3.1 and Lemma 3.2
an be found in Section 5. We now give the necessary lemmas for the proof of Theorem 3.1.

emma 3.1 (Lemma D.1 in [6]). For t ≥ 0, k > 0, y > 0, w ≥ 0, the nonlinear differential
quation

f ′′(t) =
k

f (t)

ith initial conditions f (0) = y and f ′(0) = w has the unique solution

f (t) = c f (a + bt). (3.3)
0

1151
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Here, f0 is given by

f0(x) = exp(U 2(x)), for x ≥ 0, (3.4)

where U (x), for x ≥ 0, is given by∫ U (x)

0
exp(u2) du =

x
√

2
, (3.5)

nd where the constants a, b, c are given by

a =
√

2
∫ w√

2k

0
exp(u2) du, (3.6)

b =

√
k

y
exp

(
w2

2k

)
, (3.7)

c = y exp
(

−w2

2k

)
. (3.8)

Notice that we do not find an elementary closed-form solution of the function f0(x), since
f0(x) is given in terms of U (x), given implicitly by (3.5). For x ≥ 0, the left-hand side of (3.5)
s equal to 1

2

√
πerfi(U (x)) where erfi(z) is the imaginary error function, defined by

erfi(z) = −i erf(iz), (3.9)

here erf(w) =
2

√
π

∫ w
0 exp(−v2)dv is the well-known error function.

emma 3.2. For y ≥ 0, we have the inequalities

exp(y2) − 1
2y

≤

∫ y

0
exp(u2)du ≤

exp(y2) − 1
y

, (3.10)

nd ∫ y

0
exp(u2)du ≤

exp(y2) − 1
2y

(
1 +

2
y2

)
. (3.11)

Now, we present the asymptotic behavior of the solution f of (1.2).

orollary 3.1. The limiting behavior of the function f (t), defined in Eq. (3.3), is given by

f (t) = t
√

2k ln(t)
(

1 + O
(

ln(ln(t))
ln(t)

))
, t → ∞. (3.12)

roof of Corollary 3.1. In order to derive a limit result of the exact solution of (1.2), i.e. for
3.3) with initial conditions f (0) = 1 and f ′(0) = w, we use the limiting behavior of the
unction f0(x) and the definitions of a, b and c as in (3.6)–(3.8). Denote v = ln(z). Then, by
heorem 3.1, we have

f (t) = c f0(a + bt) = czv
1
2

(
1 + O

(
ln(v)
v

))
. (3.13)

n what follows, we carefully examine the quantities czv
1
2 and ln(v)/v. First, observe that

v = ln(z) = ln((a + bt)
√

2) = ln(t) + O(1), t > exp(1),
1152
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which yields

v
1
2 = (ln(t) + O(1))

1
2

= ln(t)
1
2

(
1 + O

(
1

ln(t)

))
, t > exp(1),

nd

ln(v) = ln(ln(t) + O(1))

= ln(ln(t)) + O
(

1
ln(t)

)
, t > exp(1).

herefore, using that cb =
√

k, we get

czv
1
2 = c(a + bt)

√
2 ln(t)

1
2

(
1 + O

(
1

ln(t)

))
= (t + O(1))

√
2k ln(t)

(
1 + O

(
1

ln(t)

))
= t

√
2k ln(t)

(
1 + O

(
1

ln(t)

))
, t > exp(1), (3.14)

nd

ln(v)
v

=

ln(ln(t)) + O
(

1
ln(t)

)
ln(t) + O(1)

=
ln(ln(t))

ln(t)

(
1 + O

(
1

ln(ln(t))

))
, t > exp(1). (3.15)

utting the results in (3.14) and (3.15) together in (3.13), yields

f (t) = t
√

2k ln(t)
(

1 + O
(

ln(ln(t))
ln(t)

))
, t > exp(1). □

.1. Associated properties of the ratio between f and its first order approximation

In this section, we study associated properties of the ratio between f (t) and its first order
approximation. Using only the first term of the asymptotic expansion of (3.12), we define

g(t) := t
√

2k ln(t). (3.16)

The reason for studying this ratio, and in particular the role of k, is twofold: (1) the
useful insights that we get for (the proof of) the asymptotic behavior in the discrete case in
Section 4, and (2) the applicability of Eq. (1.2) in our motivational application, in cases where
the parameter k in (1.2) is small.

Considering the practical application for charging electric vehicles, the ratio of normalized
voltages V j/V0 = V j , j = 1, 2, . . . should be below a level 1/(1 − ∆), where the tolerance
∆ is small (of the order 10−1), due to the voltage drop constraint. Therefore, the parameter k,
comprising given charging rates and resistances at all stations, is normally small (of the order
10−3).

Furthermore, to match the initial conditions V0 = 1 and V1 = 1+k of the discrete recursion
with the initial conditions of the continuous analog, we demand f (0) = 1 and f (1) = 1 + k.
1153
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However, notice that in our continuous analog described by (1.2), we have, next to the initial
condition f (0) = 1, the initial condition f ′(0) = w, while nothing is assumed about the value
f (1). The question arises whether it is possible to connect the conditions f ′(0) = w and
f (1) = 1 + k. To do so, we use an alternative representation of f given in Lemma A.1. Then,
sing this representation, we show the existence and uniqueness of w ≥ 0 for every k such
hat the solution of (1.2) satisfies f (1) = 1 + k in Lemma A.2. The proof of Lemmas A.1–A.2

can be found in Appendix.
The importance of the role of the parameter k becomes immediate from the comparison of

the functions f (t) and g(t) in Theorem 3.2.

Theorem 3.2. Let f (t) be given by (3.3) with initial conditions f (0) = 1, f ′(0) = w such
that f (1) = 1 + k, and let g(t) be given by (3.16). Then, there is a unique kc = 1.0384 . . .
uch that

(a) k ≥ kc implies f (t) ≥ g(t) for all t ≥ 1,
(b) 0 < k < kc implies that there are t1(k), t2(k) with 1 < t1(k) < t2(k) < ∞ such that

f (t) < g(t) when t1(k) < t < t2(k) and f (t) > g(t) when 1 ≤ t < t1(k) or t > t2(k).

As to match the continuous analog with the first order approximation as a function of k,
here is no clear tendency. However, using Theorem 3.2, we are able to differentiate between
wo cases: (1) large values of k; i.e., k ≥ kc = 1.0384 . . ., and (2) small values of k; i.e., k < kc.
n the first case, we have 1 ≤ f/g everywhere, while minx f (x)/g(x) tends to 0 (very slowly)
hen k tends to 0. However, f (x)/g(x) > 1 for any k when x is (very) large, and so, in the

econd case, there is an x-region where the corresponding f/g is below any f/g having a
> kc.
This behavior can also be observed from Fig. 2, where the dashed red and dotted yellow lines

k = 1.5, 2.5 > kc), respectively, are always above 1, and the solid blue line (k = 0.5 < kc) is
ot always below or above 1; i.e., there exists a region where f/g is below 1, so also below
ny f/g having a k > kc.

In what follows, we start with introducing notation for the proof of Theorem 3.2, and give
sketch of the proof. The theorem is proven in Appendix.
Define the auxiliary function ψ : [1,∞) → [0,∞) by

ψ(t) := 2k +
k

2 ln(t)
− k ln(2k ln(t)), (3.17)

nd notice (also for the proof in Lemma 4.3) that the function ψ(t) is strictly decreasing from
∞ at t = 1 to 0 at t = ∞. This follows easily from the definition of ψ in (3.17).
Denote the unique solution t > 1 of the equation ψ(t) = w2 by t0(k), i.e.

ψ(t0(k)) = w2, (3.18)

here w comes from the initial condition f ′(0) = w ≥ 0. Additionally, define

F(t, k) :=

∫ (W 2
+ln(g(t)))

1
2

(W 2+ln( f (t)))
1
2

exp(v2)dv (3.19)

= −t

√
k
2

exp(W 2) +

∫ (W 2
+ln(g(t)))

1
2

W
exp(v2)dv, (3.20)

here the second line is a consequence of Lemma A.1 with y = 1. The proof of Theo-
em 3.2 centers about the unique solution t (k) of (3.18). First, from (3.19), we notice that
0
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Fig. 2. Plot of quotient f/g for three values of k.

axt≥1 F(t, k) ≤ 0 is equivalent to f (t) ≥ g(t). In Lemma A.3, we show that maxt≥1 F(t, k)
s exactly attained at the point t0(k), i.e., maxt≥1 F(t, k) = F(t0(k), k). Notice that F(t0(k), k)
s only a function of the parameter k. In Lemma A.4, we show F(t0(k), k) is a strictly
ecreasing function of k. To prove Lemma A.4, we make use of additional Lemma A.5. Then,
n Lemmas A.6 and A.7, we show that F(t0(k), k) is positive for small k and negative for large
, respectively. This allows us to conclude that F(t0(k), k) ≤ 0 is equivalent to k ≥ kc. In
ummary, to prove Theorem 3.2, we show

f (t) ≥ g(t) ⇐⇒ max
t≥1

F(t, k) = F(t0(k), k) ≤ 0 ⇐⇒ k ≥ kc.

urthermore, in Lemma A.3, we show that F(t, k) has only one extreme point, and in particular
hat this extreme point is a maximum and that this is attained at the point t0(k). Thus, in the
ase where 0 < k < kc, we are left with t1(k), t2(k) with 1 < t1(k) < t2(k) < ∞ such that
f (t) < g(t) when t1(k) < t < t2(k) and f (t) > g(t) when 1 ≤ t < t1(k) or t > t2(k).

Necessary Lemmas A.3–A.7 to prove Theorem 3.2 are stated and proven in Appendix.
A comparison of the approximation g(t), i.e. for (3.16), to the exact solution f (t) of (1.2)

here w is such that f (1) = 1 + k, for three values of k, is given in Fig. 2.
However, in the setting where k is small, the result in Theorem 3.2, case (b) leaves two

ractical questions; how small the ratio f (t)/g(t) can be when t1(k) ≤ t ≤ t2(k) and how large
he ratio f (t)/g(t) can be when t ≥ t2(k). These practical questions are covered in Theorem 3.3.

heorem 3.3. Let f (t) be given by (3.3) with initial conditions f (0) = 1, f ′(0) = w such
hat f (1) = 1 + k, and let g(t) be given by (3.16). Then, for 0 < k < kc, we have

f (t)/g(t) ≥
1
2

(
ln
(√

2/k
))−

1
2
, (3.21)

hen t1(k) ≤ t ≤ t2(k). Furthermore, we have

f (t)/g(t) ≤ 1.21 (3.22)

hen t ≥ t (k).
2
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The proof exploits properties of Lemma 3.1 and Theorem 3.2, such as exact representations
3.6)–(3.8) and actual values such as the one for kc, but most importantly, we use numerical
esults to compute bounds for the quantity f0(x)/g(x), where f0(x) is given in (3.4) and g(x)
s given in (3.16) with k = 1. The proofs of Theorem 3.3, and supporting Lemmas A.8 and
.9 can be found in Appendix.

. Main results of discrete Emden-Fowler type equation

In this section, we present the asymptotic behavior of the discrete recursion (1.3). Thus, we
onsider the sequence V j , j = 0, 1, . . . defined in (1.3) and we let

W j = j (2k ln( j))
1
2 = g( j), j = 1, 2, . . . , (4.1)

denote the discrete equation analog to g( j); cf. (3.16), at integer points j = 1, 2, . . .. The
symptotic behavior of the discrete recursion (1.3) is summarized in the following theorem.

heorem 4.1. Let V j , j = 0, 1, . . . and W j , j = 1, 2, . . . be as in (1.3) and (4.1), respectively.
hen,

lim
j→∞

V j

W j
= 1.

The proof of Theorem 4.1 relies on the following observations: there always exists a point
n ∈ {1, 2, . . .} such that either V j ≥ W j for all j ≥ n or V j ≤ W j for all j ≥ n, and
he existence of such a point implies in either case the desired asymptotic behavior of the
equence V j .

To show that there exists a point n ∈ {1, 2, . . .} such that either V j ≥ W j for all j ≥ n
r V j ≤ W j for all j ≥ n, we rely on Lemmas 4.1, 4.2 and 4.3. Due to the inequalities in
emmas 4.1 and 4.2, we show

V j+1 − V j ≥ W j+1 − W j , (4.2)

or j ≥ n0(k), where n0(k) is appropriately chosen. Then, Eq. (4.2) implies that there exists
ither a point n ≥ n0(k) such that Vn ≥ Wn or not. If there exists a point n ≥ n0(k) such
hat Vn ≥ Wn , then we show in Lemma 4.3 that V j ≥ W j for all j ≥ n. If not, we have that
V j < W j for all j ≥ n0(k).

Then, we are left to show that the existence of such a point implies the desired asymptotic
ehavior of V j . This is done in Lemma 4.4.

We now give the necessary lemmas to prove Theorem 4.1.

emma 4.1. Let W j , j = 1, 2, . . . be as in (4.1). Then,

W j+1 − W j ≤ (ψ( j + 1) + 2k ln(W j+1))
1
2 . (4.3)

where ψ( j) for j = 1, . . . is defined in (3.17).

Lemma 4.2. Let V j , j = 0, 1, . . . be as in (1.3). Then,

V j+1 − V j ≥
(
C + 2k ln(V j )

) 1
2 , (4.4)

or some constant C.
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Lemma 4.3. Let V j , j = 0, 1, . . . and W j , j = 1, 2, . . . be as in (1.3) and (4.1), respectively.
hen, we have the following equivalence.

1. There is n ≥ n0(k) such that Vn ≥ Wn .
2. There is n ≥ n0(k) such that V j ≥ W j for all j ≥ n.

emma 4.4. Let V j , j = 0, 1, . . . and W j , j = 1, 2, . . . be as in (1.3) and (4.1), respectively.
here holds the following. In either case that

1. there is a point n ∈ {1, 2, . . .} such that V j ≥ W j for all j ≥ n,

r

2. there is a point n ∈ {1, 2, . . .} such that V j ≤ W j for all j ≥ n,

e have that V j = W j (1 + O(1)), j → ∞.

The proofs of Lemmas 4.1–4.4 are given in Section 6. Now, Theorem 4.1 follows from
emmas 4.1–4.4.

roof of Theorem 4.1. Let V j , j = 0, 1, . . . and W j , j = 1, 2, . . . be as in (1.3) and (4.1),
espectively. On the one hand, as a result of Lemma 4.2, the first order differences of the
equence V j are bounded according to (4.4), while on the other hand, as a result of Lemma 4.1,
he first order finite differences of W j are bounded according to (4.3).

A minor issue is that (4.3) involves ln(W j+1), whereas (4.4) involves ln(V j ). However, by
4.1), we write

ln(W j+1) − ln(W j ) = ln
(

( j + 1)(2k ln( j + 1))
1
2

)
− ln

(
j(2k ln( j))

1
2

)
= ln

(
1 +

1
j

)
+

1
2

ln
((

ln( j + 1)
ln( j)

))
(4.5)

and notice from increasingness of the function j ≥ 1 ↦→ ln( j) and the inequality ln( j + 1) −

ln( j) ≤
1
j that ln( j+1)

ln( j) ≤ 1 +
1
j when j > exp(1). Using this last inequality in (4.5), yields that

n(W j+1) = ln(W j ) + O(1/j).
Moreover, Eqs. (4.3) and (4.4) imply that there exists a point n0(k) such that V j+1 − V j ≥

W j+1 − W j when j ≥ n0(k). To eliminate the effect of the term O(1/j) in ln(W j+1) =

n(W j ) + O(1/j), we let n0(k) be such that ψ(n0(k)) ≤ C − 1.
In any case, we can distinguish between two cases: there exists either a point n ≥ n0(k)

uch that Vn ≥ Wn or not, i.e.,

1. There is n ≥ n0(k) such that Vn ≥ Wn ,
2. V j < W j for all j ≥ n0(k).

y Lemma 4.3, we have, on the one hand, that the existence of a point n ≥ n0(k) such that
Vn ≥ Wn , implies that V j ≥ W j for all j ≥ n and on the other hand, that the non-existence of

≥ n0(k) such that Vn ≥ Wn , implies that V j < W j for all j ≥ n0(k).
This situation exactly fits the framework of Lemma 4.4.
We consider the two cases above. First, assume that (1) holds. Then by Lemma 4.3, we

ave V j ≥ W j for all j ≥ n. From V j ≥ W j , for all j ≥ n, we have that Lemma 4.4, item (1)
olds, and so

V = W (1 + O(1)), j → ∞.
j j
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Fig. 3. Plot of quotient V/W for three values of k.

Second, assume that (2) holds, so that V j < W j for all j > n0(k). Then, Lemma 4.4, item (2)
olds, and so

V j = W j (1 + O(1)), j → ∞.

Hence, any of the two cases yields

lim
j→∞

V j

W j
= 1. □

Although we do not provide associated properties of the asymptotic behavior of V j as
j → ∞ as we did for the asymptotic behavior of f (x) as x → ∞, we compare the behavior
of V j with the discrete counterpart of g(t), i.e. W j , for j = 1, . . . , 100 in Fig. 3.

5. Proofs for Section 3

The main result in Section 3, i.e., Theorem 3.1 follows from Lemmas 3.1 and 3.2. In
this section, we provide the proofs of both Theorem 3.1 and Lemma 3.2. For the proof of
Lemma 3.1 we refer to [6].

5.1. Proof of Theorem 3.1

Proof of Theorem 3.1. Denoting U = U (x) = (ln( f0(x)))
1
2 for x ≥ 0, we have by (3.5)∫ U

0
exp(u2)du =

x
√

2
. (5.1)

e consider for x ≥ 0 the equation

exp(y2) − 1
=

x
√ . (5.2)
2y 2
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With z = x
√

2, we can write (5.2) as

y = hz(y), hz(y) = (ln(1 + zy))
1
2 .

he function hz(y) is concave in y ≥ 0 since
d

dy
[hz(y)] =

z

2(1 + yz)(ln(1 + yz))
1
2

s decreasing in y ≥ 0. Furthermore, when z > exp(1) − 1,

hz(1) = (ln(1 + z))
1
2 > 1, hz(z) = (ln(1 + z2))

1
2 < z,

here the first inequality follows from z > exp(1) − 1 and the second inequality follows from
n(1 + z2)⟨z2, z⟩0. Therefore, the equation y = hz(y) has for any z > exp(1) − 1 exactly one

solution yL B ∈ [1, z]; here “LB” refers to the lower-bound in (3.10). Since yL B ∈ [1, z], we
have

yL B = (ln(1 + zyL B))
1
2 ∈

[
(ln(1 + z))

1
2 , (ln(1 + z2))

1
2

]
, (5.3)

o that yL B = O(ln(z)
1
2 ), z > exp(1) − 1. When we iterate (5.3) one more time, we get

yL B =

(
ln(z) + ln

(
1
z

+ yL B

)) 1
2

= (ln(z))
1
2

(
1 +

ln
( 1

z + yL B
)

ln(z)

) 1
2

= (ln(z))
1
2

(
1 + O

(
ln(ln(z))

ln(z)

))
, z > exp(1) − 1. (5.4)

bserve that

U = ln( f0(x))
1
2 ≤ yL B, z > exp(1) − 1. (5.5)

ndeed, we have from (5.1) and the first inequality in (3.10)

exp(U 2) − 1
2U

≤

∫ U

0
exp(u2)du =

x
√

2
=

exp(y2
L B) − 1

2yL B
, (5.6)

nd so U ≤ yL B follows from increasingness of the function y ≥ 0 ↦→ (exp(y2) − 1)/2y. In
ddition to the upper bound on y in (5.5), we also have the lower bound

U ≥

(
ln
( z

2

)) 1
2
, z ≥ 2. (5.7)

Indeed, from (5.1) and the second inequality in (3.10),

exp(U 2) − 1
U

≥

∫ U

0
exp(u2)du =

x
√

2
=

z
2
,

hile
exp(y2) − 1

y

⏐⏐⏐⏐
y=(ln( z

2 ))
1
2

=

z
2 − 1

(ln( z
2 ))

1
2

≤
z
2
, z ≥ 2, (5.8)

here the inequality in (5.8) follows from − ln(w) ≥ (1 − w)2 with w =
2
z ∈ (0, 1]. We have

from (5.6) that

exp(U 2) − 1
≤

x
√ . (5.9)
2U 2
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When we use (5.7) in (3.11) with y = U , we see that

x
√

2
=

∫ U

0
exp(u2)du ≤

exp(U 2) − 1
2U

(
1 +

2
U 2

)
=

exp(U 2) − 1
2U

(
1 + O

(
1

ln(z)

))
. (5.10)

rom (5.9) and (5.10), we then find that

exp(U 2) − 1
2U

=
x

√
2

(
1 + O

(
1

ln(z)

))
. (5.11)

bserve that (5.11) coincides with (5.2) when we take y = U and replace the right-hand side
x

√
2

by
(

x
√

2

) (
1 + O

(
1

ln(z)

))
. Using then (5.4) with z replaced by z

(
1 + O

(
1

ln(z)

))
, we find

that

U =

(
ln
(

z
(

1 + O
(

1
ln(z)

)))) 1
2

⎛⎝1 + O

⎛⎝ ln(ln(z
(

1 + O
(

1
ln(z)

))
))

ln(z
(

1 + O
(

1
ln(z)

))
)

⎞⎠⎞⎠
= (ln(z))

1
2

(
1 + O

(
ln(ln(z))

ln(z)

))
. (5.12)

hen, finally, from (5.11) and (5.12),

f0(x) = exp(U 2) = 1 + zU
(

1 + O
(

1
ln(z)

))
= 1 + z(ln(z))

1
2

(
1 + O

(
ln(ln(z))

ln(z)

))(
1 + O

(
1

ln(z)

))
= z(ln(z))

1
2

(
1 + O

(
ln(ln(z))

ln(z)

))
,

s required. □

5.2. Proof of Lemma 3.2

roof of Lemma 3.2. We require the inequalities (3.10) and (3.11). The inequalities in
3.10) follow from expanding the three functions in (3.10) as a series involving odd powers

y2l+1, l = 0, 1, . . ., of y and comparing coefficients, i.e.,

exp(y2) − 1
2y

=

∞∑
ℓ=0

y2ℓ+1

2(ℓ+ 1)!

≤

∞∑
ℓ=0

y2ℓ+1

(2ℓ+ 1)ℓ!
=

∫ y

0
exp(u2)du

≤

∞∑ y2ℓ+1

(ℓ+ 1)!
=

exp(y2) − 1
y

.

ℓ=0

1160



M.H.M. Christianen, A.J.E.M. Janssen, M. Vlasiou et al. Indagationes Mathematicae 34 (2023) 1146–1180

N

a

u

6

b

6

P
t

W
b
i

H

As to the inequality in (3.11), we use partial integration according to∫ y

0
exp(u2)du =

∫ y

0

1
2u

d(exp(u2) − 1)

=
exp(y2) − 1

2y
+

∫ y

0

exp(u2) − 1
2u2 du. (5.13)

ow ∫ y

0

exp(u2) − 1
2u2 du ≤

exp(y2) − 1 − y2

y3 , y ≥ 0, (5.14)

s follows from expanding the two functions in (5.14) as a series involving odd powers
y2l+1, l = 0, 1, . . ., of y and comparing coefficients. Then (3.11) follows from (5.13)–(5.14)
pon deleting the y2 in the numerator at the right-hand side of (5.14). □

. Proofs for Section 4

The main result in Section 4 follows from Lemmas 4.1–4.4. The proof of each Lemma can
e found in 6.1–6.4, respectively.

.1. Proof of Lemma 4.1

roof of Lemma 4.1. For Eq. (4.1), by the mean-value theorem, there is a ξ ∈ [ j, j +1] such
hat

W j+1 − W j = g( j + 1) − g( j) = g′(ξ ) ≤ g′( j + 1). (6.1)

e have used here that g( j) is convex in j ≥ exp(1/2). We make the term g′( j + 1) explicit,
y differentiating g(t), see (3.16), with respect to t and rewrite it in terms of the function g(t)
tself (so for integer points, in terms of Wt ) and ψ(t) as in (3.17). Differentiation of g(t) gives,

g′(t) = (2k)
1
2

d
dt

(t(ln(t))
1
2 )

= (2k)
1
2

(
(ln(t))

1
2 +

1

2(ln(t))
1
2

)

= (2k)
1
2

(
(2 ln(t) + 1)2

4 ln(t)

) 1
2

=

(
2k ln(t) + 2k +

k
2 ln(t)

) 1
2
. (6.2)

owever, (6.2) does not contain the function g(t) yet. Therefore, we rewrite the first term of
the right-hand side of (6.2) as follows:

2k ln(t) = 2k ln(t(2k ln(t))
1
2 ) − k ln(2k ln(t))

= 2k ln(g(t)) − k ln(2k ln(t)). (6.3)
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Then, after inserting (6.3) and the definition of ψ(t) in (3.17), we get

g′(t) =

(
2k ln(g(t)) − k ln(2k ln(t)) + 2k +

k
2 ln(t)

) 1
2

= (ψ(t) + 2k ln(g(t)))
1
2 , t > 1. (6.4)

hen, combining the upper bound in (6.1) and (6.4), yields the desired upper bound for the
nite differences of W j in (4.3). □

.2. Proof of Lemma 4.2

In this section, we prove a lower bound for the first order finite differences of V j that is
imilar to the upper bound we obtained in (4.3). This result follows from Lemmas 6.1 and 6.2.

In more detail, the proof of Lemma 4.2 consists of algebraic manipulations of (1.3), but
he key in the proof is the use of Lemma 6.2 in these manipulations, which, in turn, builds on
echnical results established in Lemma 6.1. We first state Lemmas 6.1 and 6.2.

emma 6.1. Let V j , j = 0, 1, . . ., be as in (1.3). Then,

1. V j ≥ jk + 1,
2. V j+1 − V j =

∑ j
i=0

k
Vi

→ ∞ as j → ∞,
3. V j+1 − V j ≤ k + ln (1 + jk),
4. V j+1−V j

V j
= O

(
ln( j)

j

)
.

Lemma 6.2. Let V j , j = 0, 1, . . . , N − 1 as in (1.3). Then,

V j+1 − V j−1

V j
= ln(V j+1) − ln(V j−1) + O

((
ln( j)

j

)3
)
.

Both Lemmas 6.1 and 6.2 are proven later in this section. Here, we discuss the efficacy of
emma 6.2 by numerical validation. We approximate,

V j+1 − V j−1

V j
=

(
V j+1

V j
− 1

)
+

(
1 −

V j−1

V j

)
(6.5)

y

≈ ln
(

1 +

(
V j+1

V j
− 1

))
− ln

(
1 −

(
1 −

V j−1

V j

))
= ln

(
V j+1

V j

)
− ln

(
V j−1

V j

)
= ln(V j+1) − ln(V j−1). (6.6)

he efficacy of the approximation (6.6) of (6.5) is illustrated for the cases k = 0.001, k = 0.01
nd k = 0.1 in Fig. 4. For these cases, the approximation already yields relative errors smaller
han 0.5% for j ≥ 10.

Having Lemmas 6.1 and 6.2 at our disposal, we are now ready to give the proof of
emma 4.2.

roof of Lemma 4.2. In order to relate the recursion in (1.3) to (4.3), we write (1.3) as

(V j+1 − V j ) − (V j − V j−1) =
k
, j = 1, 2, . . . , N − 1 (6.7)
V j
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Fig. 4. Illustration of efficacy of the approximation (6.6) of (6.5) by showing the quotient of (6.5) and (6.6), for
three values of k.

and multiply both sides of (6.7) by

V j+1 − V j−1 = (V j+1 − V j ) + (V j − V j−1)

o obtain

(V j+1 − V j )2
− (V j − V j−1)2

= k
V j+1 − V j−1

V j
.

umming this over j = 1, 2, . . . , n, we get

(Vn+1 − Vn)2
− (V1 − V0)2

= k
n∑

j=1

V j+1 − V j−1

V j
. (6.8)

e proceed with rewriting Eq. (6.8) to an expression that is similar to the one we obtained for
he sequence W j , j = 1, 2, . . . , N in Eq. (6.1) using Lemma 6.2. Then, we have

(Vn+1 − Vn)2
= (V1 − V0)2

+ k
n∑

j=1

V j+1 − V j−1

V j

= (V1 − V0)2
+ k

n∑
j=1

{
ln(V j+1) − ln(V j−1) + O

((
ln( j)

j

)3
)}

. (6.9)

e observe a telescoping sum in the right-hand side of (6.9), so we have
n∑

j=1

{
ln(V j+1) − ln(V j−1)

}
= ln(Vn+1) + ln(Vn) − (ln(V1) + ln(V0)) .

urthermore, we introduce the following notation:

w2(k) = (V1 − V0)2
− k (ln(V1) + ln(V0))

2

= k − k ln(1 + k)

1163



M.H.M. Christianen, A.J.E.M. Janssen, M. Vlasiou et al. Indagationes Mathematicae 34 (2023) 1146–1180

R
o

S

and R j = O
((

ln( j)
j

)3
)

. Thus, we rewrite (6.9) to

(Vn+1 − Vn)2
= w2(k) + k(ln(Vn+1) + ln(Vn)) +

n∑
j=1

O
((

ln( j)
j

)3
)

= w2(k) + k(ln(Vn+1) + ln(Vn)) +

n∑
j=1

R j .

ecall that we want to derive a lower bound for the first order finite differences Vn+1 − Vn . In
rder to do so, we use that Vn+1 ≥ Vn (see [6, Lemma 5.1]). Thus,

(Vn+1 − Vn)2
≥ w2(k) + 2k ln(Vn) +

n∑
j=1

R j .

ince
∑

∞

j=1 |R j | < ∞, we thus see that there is a constant C such that

Vn+1 − Vn ≥ (C + 2k ln(Vn))
1
2 ,

as desired. □

To complete the proof of Lemma 4.2, we are left to prove Lemmas 6.1 and 6.2. This is
done in Sections 6.2.1 and 6.2.2, respectively.

6.2.1. Proof of Lemma 6.1

Proof of Lemma 6.1. The properties of the sequence V j , j = 0, 1, . . . are given in the
following way.

1. We have from (1.3) for j = 1, 2, . . .,

V j+1 − V j = V j − V j−1 +
k
V j

≥ V j − V j−1. (6.10)

Hence, V j+1 − V j ≥ V1 − V0 = (1 + k) − 1 = k for j = 0, 1, . . .. Then we get for
j = 0, 1, . . .

V j+1 = V j + (V j+1 − V j ) ≥ V j + k,

and it follows from V0 = 1 and induction that V j ≥ 1 + jk for j = 0, 1, . . ..
2. We have from the identity in (6.10) by summation that

V j+1 − V j = (V1 − V0) +

j∑
i=1

k
Vi

=
k
V0

+

j∑
i=1

k
Vi

=

j∑
i=0

k
Vi
.

When the latter expression would remain bounded by B < ∞ as j → ∞, we would
have V ≤ V + j B, j = 0, 1, . . .. However, then

∑ j k
≥
∑ j−1 k

→ ∞
j+1 0 i=0 Vi i=0 V0+i B
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as j → ∞. Since this contradicts the assumption that the latter expression remains
bounded, we must have that

∑ j
i=0

k
Vi

→ ∞ as j → ∞.
3. Combining the results of items (1) and (2) gives us the desired result. Indeed,

V j+1 − V j =

j∑
i=0

k
Vi

≤

j∑
i=0

k
ik + 1

,

and
j∑

i=0

k
ik + 1

= k +

j∑
i=1

1
i + 1/k

≤ k +

∫ j+ 1
2 +

1
k

1
2 +

1
k

1
x

dx

= k +

(
ln
(

j +
1
2

+
1
k

)
− ln

(
1
2

+
1
k

))
= k + ln

(
1 +

j
1
2 +

1
k

)
≤ k + ln (1 + jk) .

4. This is a direct consequence of the inequalities in items (1) and (3). Combining (1) and
(3) gives,

V j+1 − V j

V j
≤

k + ln(1 + jk)
1 + jk

.

Hence, V j+1−V j
V j

= O
(

ln( j)
j

)
. □

.2.2. Proof of Lemma 6.2

roof of Lemma 6.2. We show the asymptotic behavior of V j+1−V j
V j

as j → ∞. Let, for
j = 1, 2, . . .,

X j =
V j+1

V j
− 1 =

V j+1 − V j

V j
,

Y j = 1 −
V j−1

V j
=

V j − V j−1

V j
.

hen,

0 < X j < 1, 0 < Y j < 1. (6.11)

ndeed, from Lemma 6.1, items 1 and 3,

X j =
V j+1 − V j

V j
≤

⎧⎪⎨⎪⎩
1 −

1
(k+1)2 < 1, j = 1,

k
1+ jk +

ln(1+ jk)
1+ jk ≤

k
1+ jk +

1
exp(1) ≤

1
2 +

1
exp(1) < 1,

j = 2, 3, . . . , N − 1.

ere it has been used that the function y−1 ln(y), y ≥ 1, has a global maximum at y = exp(1)
hat equals exp(−1). The other inequalities follow by the increasingness of the sequence
1165



M.H.M. Christianen, A.J.E.M. Janssen, M. Vlasiou et al. Indagationes Mathematicae 34 (2023) 1146–1180

T

w

T

I

6

P
i
a
a

V j , j = 0, 1, . . . (see [6, Lemma 5.1]). Furthermore, we have

X j + Y j =
V j+1 − V j−1

V j
,

X j − Y j =
V j+1 − 2V j + V j−1

V j
=

k
(V j )2 > 0.

herefore,

ln(V j+1) − ln(V j−1) = ln
(

V j+1

V j

)
− ln

(
V j−1

V j

)
= ln(1 + X j ) − ln(1 − Y j )

=

(
X j −

X2
j

2
+

X3
j

3
− · · ·

)
−

(
−Y j −

Y 2
j

2
−

Y 3
j

3
− · · ·

)

= (X j + Y j ) −
1
2

(X2
j − Y 2

j ) +

∞∑
i=2

1
i + 1

(
(−1)i X i+1

j + Y i+1
j

)
=

V j+1 − V j−1

V j
−

k(V j+1 − V j−1)
2(V j )3 +

∞∑
i=2

1
i + 1

(
(−1)i X i+1

j + Y i+1
j

)
(6.12)

here the bounds in (6.11) assure convergence of the infinite series. Since 0 < Y j < X j , we
have

∞∑
i=2

1
i + 1

⏐⏐⏐(−1)i X i+1
j + Y i+1

j

⏐⏐⏐ ≤

∞∑
i=2

2
i + 1

X i+1
j

= X3
j

∞∑
i=2

2
i + 1

X i−2
j

= O
(
X3

j

)
= O

((
V j+1 − V j

V j

)3
)
.

hus, we get that,

V j+1 − V j−1

V j
= ln(V j+1) − ln(V j−1) + O

(
k(V j+1 − V j−1)

2V j
3 +

(
V j+1 − V j

V j

)3
)

= ln(V j+1) − ln(V j−1) + O
((

ln( j)
j

)3
)
.

n the last line, we used Lemma 6.1, item (4). □

.3. Proof of Lemma 4.3

roof of Lemma 4.3. We establish the (non-trivial) implication from (1) to (2). Assume there
s n ≥ n0(k) such that Vn ≥ Wn . We claim that V j ≥ W j for all j ≥ n. Indeed, when there is

n2 > n such that Vn2 < Wn2 , we let n3 := max{ j : n ≤ j ≤ n2, V j ≥ W j }. Then Vn3 ≥ Wn3
nd V j < W j for n3 < j ≤ n2. However, since ψ( j) is strictly decreasing and n3 + 1 > n0(k),

1166



M.H.M. Christianen, A.J.E.M. Janssen, M. Vlasiou et al. Indagationes Mathematicae 34 (2023) 1146–1180

a

6

P

N

T

a

W

w

we have

Vn3+1 − Vn3 ≥
(
C + 2k ln(Vn3 )

) 1
2

≥
(
C − 1 + 2k ln(Vn3 )

) 1
2

≥
(
ψ(n0(k)) + 2k ln(Wn3+1)

) 1
2

≥
(
ψ(n3 + 1) + 2k ln(Wn3+1)

) 1
2

≥ Wn3+1 − Wn3 ,

which implies Vn3+1 ≥ Wn3+1. This contradicts the definition of n3. Since the choice of n2 is
rbitrary, we have that V j ≥ W j for all j ≥ n. The implication from (2) to (1) is immediate. □

.4. Proof of Lemma 4.4

roof of Lemma 4.4. Let n = 2, 3, . . . and j ≥ n. Then,

V j = Vn +

j−1∑
i=n

(Vi+1 − Vi )

= Vn +

j−1∑
i=n

(
i∑

l=n

[(Vl+1 − Vl) − (Vl − Vl−1)] + (Vn − Vn−1)

)

= Vn + ( j − n)(Vn − Vn−1) +

j−1∑
i=n

(
i∑

l=n

(Vl+1 − 2Vl + Vl−1)

)

= Vn + ( j − n)(Vn − Vn−1) +

j−1∑
i=n

(
i∑

l=n

k
Vl

)
. (6.13)

ow suppose that there is a n = 2, 3, . . . such that

V j ≥ W j , for all j ≥ n. (6.14)

hen,
1
Vl

≤
1

Wl
=

1

l(2k ln(l))
1
2
, l = n, n + 1, . . . , (6.15)

nd so by (6.13) for all j ≥ n,

V j ≤ Vn + ( j − n)(Vn − Vn−1) +
k

(2k)
1
2

j−1∑
i=n

(
i∑

l=n

1

l(ln(l))
1
2

)
. (6.16)

e use the Euler–Maclaurin formula in its simplest form: for h ∈ C2[n,∞), we have
i∑

l=n

h(l) =

∫ i

n
h(x)dx +

1
2

(h(i) + h(n)) +
1

12
(h′(i) − h′(n)) −

∫ i

n
h′′(x)

B2(x − ⌊x⌋)
2

dx,

here B2(t) = (t −
1
2 )2

−
1

12 is the Bernoulli polynomial of degree 2 that satisfies |B2(t)| ≤
1
6 , 0 ≤ t ≤ 1. Using this with h(x) =

1

x(ln(x))
1
2
, x ≥ 2, so that

h′(x) = −
1

1 −
1

3 ,

x2(ln(x)) 2 2x2(ln(x)) 2
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h′′(x) =
2

x3(ln(x))
1
2

+

3
2

x3(ln(x))
3
2

+

3
4

x3(ln(x))
5
2
,∫ i

n
h(x)dx =

∫ i

n

1

x(ln(x))
1
2

dx = 2(ln(i))
1
2 − 2(ln(n))

1
2 ,

we get

i∑
l=n

1

l(ln(l))
1
2

= 2(ln(i))
1
2 − 2(ln(n))

1
2 + O

(
1

n(ln(n))
1
2

)
. (6.17)

ext, from the Euler–Maclaurin formula with h(x) = (ln(x))
1
2 , we have

j−1∑
i=n

(ln(i))
1
2 =

∫ j−1

n
(ln(x))

1
2 dx + O

(
(ln( j))

1
2

)
, (6.18)

nd obviously

j−1∑
i=n

(
(ln(n))

1
2 + O

(
1

n(ln(n))
1
2

))
= ( j − n)

(
(ln(n))

1
2 + O

(
1

n(ln(n))
1
2

))
. (6.19)

hus, from (6.17) and (6.18), we can write the right-hand side of (6.16) as

Vn + ( j − n)(Vn − Vn−1) +

k

(2k)
1
2

(
2
∫ j−1

n
(ln(x))

1
2 dx + O

(
(ln( j))

1
2

)
+ ( j − n)

(
(ln(n))

1
2 + O

(
1

n(ln(n))
1
2

)))
,

hich simplifies to

(2k)
1
2

∫ j−1

n
(ln(x))

1
2 dx + O( j). (6.20)

ext, we use the substitution u := (ln(x))
1
2 and partial integration, to obtain∫ j−1

n
(ln(x))

1
2 dx =

∫ (ln( j−1))
1
2

(ln(n))
1
2

u · 2u exp(u2)du

=
[
u exp(u2)

](ln( j−1))
1
2

(ln(n))
1
2

−

∫ (ln( j−1))
1
2

(ln(n))
1
2

exp(u2)du

= ( j − 1)(ln( j − 1))
1
2 − n(ln(n))

1
2 −

∫ (ln( j−1))
1
2

(ln(n))
1
2

exp(u2)du.

sing the second elementary inequality (3.10) in Lemma 3.2, we conclude that∫ j−1

n
(ln(u))

1
2 du = j(ln( j))

1
2 + O

(
j

(ln( j))
1
2

)
, j → ∞.

t thus follows from (6.16), (6.19) and (6.20) that

V ≤ (2k)
1
2 j(ln( j))

1
2 + O( j). (6.21)
j
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Hence, from (6.15) and (6.21),

V j = W j

(
1 + O

(
1

(2k ln( j))
1
2

))
= W j (1 + O(1)) , j → ∞.

In a similar fashion, if there is an n = 2, 3, . . . such that

V j ≤ j(2k ln( j))
1
2 , for all j ≥ n,

then

V j ≥ j(2k ln( j))
1
2 + O( j),

which also yields

V j = W j (1 + O(1)), j → ∞. □

7. Conclusion

Continuous and discrete Emden–Fowler type equations appear in many fields such as
mathematical physics, astrophysics and chemistry, but also in electrical engineering, and more
specifically under a popular power flow model. The specific Emden–Fowler equation we study,
appears as a discrete recursion that governs the voltages on a line network and as a continuous
approximation of these voltages. We show that the asymptotic behavior of the solution of the
continuous Emden–Fowler Eq. (1.2), i.e. the approximation of the discrete recursion, and the
asymptotic behavior of the solution of its discrete counterpart (1.3), are the same.
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Appendix. Proofs for Section 3.1

A.1. Proof of Lemma A.1

Lemma A.1. Let f (t) be given by (1.2). Then, we can alternatively write f (t) by

f ′(t)

(w2 + 2k ln( f (t)/y))
1
2

= 1, t ≥ 0, (A.1)

nd ∫ (W 2
+ln( f (t))/y)

1
2

(W 2−ln(y))
1
2

exp(v2)dv =
t
y

√
1
2

k exp(W 2), t ≥ 0, (A.2)

here W 2
:=

w2

2k .

roof. From (1.2), we get

f ′(u) f ′′(u) = k f ′(u)/ f (u), 0 ≤ u ≤ t. (A.3)
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Integrating Eq. (A.3) over u from 0 to t using f (0) = y, f ′(0) = w we get∫ t

0
f ′(u) f ′′(u)du =

1
2

( f ′(t))2
−

1
2
w2

=

∫ t

0

k f ′(u)
f (u)

= k ln( f (t)/y).

ence, for t > 0,

f ′(t)(
w2 + 2k ln( f (t)/y)

) 1
2

= 1,

s desired. Integrating f ′(u)/(w2
+2k ln( f (t)/y))

1
2 = 1 from u = 0 to u = t , while substituting

= f (u) ∈ [1, f (t)], we get∫ t

0

d f
ds

ds
du

(w2 + 2k ln( f (u)/y))
1
2

du =

∫ f (t)

1

1

(w2 + 2k ln(s/y))
1
2

ds = t. (A.4)

By introduction of W 2
=

w2

2k , the expression becomes

1
√

2k

∫ f (t)

1

1

(W 2 + ln(s/y))
1
2

ds = t. (A.5)

ubstituting v = (W 2
+ ln(s/y))

1
2 , s = y exp(v2

− W 2), ds = 2s(W 2
+ ln(s/y))

1
2 dv in the

integral (A.5), we get∫ (W 2
+ln( f (t)/y))

1
2

(W 2−ln(y))
1
2

exp(v2)dv =
1
2

exp(W 2)
√

2k
t
y

=
t
y

√
1
2

k exp(W 2), t ≥ 0,

s desired. This concludes the proof. □

.2. Proof of Lemma A.2

emma A.2. Let k > 0. There exists a unique w ≥ 0 such that the solution of f (t) f ′′(t) =

, t ≥ 0; f (0) = 1, f ′(0) = w satisfies f (1) = 1 + k.

roof (Proof). Again, we rely on the representation of f in (A.14). Thus the condition
f (1) = 1 + k can be written as∫ 1+k

1

1

(w2 + 2k ln(s))
1
2

ds = 1. (A.6)

he left-hand side of (A.6) decreases in w ≥ 0 from a value greater than
√

2 to 0 as w increases
from w = 0 to w = ∞. Indeed, as to w = 0 we consider

F(k) =

∫ 1+k

1

1

(ln(s))
1
2

ds, k ≥ 0.

Then F(0) = 0 and F ′(k1) = (ln(1 + k1))−
1
2 > (k1)−

1
2 , k1 > 0, since 0 < ln(1 + k1) < k1 for

1 > 0. Hence,

F(k) = F(0) +

∫ k

F ′(k1)dk1 >

∫ k 1
√ dk1 = 2

√
k, k > 0.
0 0 k1
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This implies that∫ 1+k

1

1
√

2k ln(s)
ds =

F(k)
√

2k
>

√
2, k > 0.

That the left-hand side of (A.6) decreases strictly in w ≥ 0, to the value 0 at w = ∞, is
obvious. We conclude that for any k > 0 there is a unique w > 0 such that (A.6) holds. □

A.3. Proof of Theorem 3.2

Proof. From the definition of F in (3.20), it follows that F(t, k) = 0 if and only if f (t) = g(t).
urthermore, we have

f (t) ≥ g(t), 1 ≤ t < ∞ ⇐⇒ max
t≥1

F(t, k) ≤ 0. (A.7)

y Lemma A.3, we have, for any k, maxt≥1 F(t, k) = F(t0(k), k) and by Lemma A.4, we have
hat F(t0(k), k) is a strictly decreasing function of k. Notice that, by (3.20), we can alternatively
rite,

F(t0(k), k) =

∫ (W 2
+ln(g(t0(k))))

1
2

(W 2+ln( f (t0(k))))
1
2

exp(v2)dv.

hus, by Lemma A.6, we have on the one hand, for small k, that F(t0(k), k) > 0, and by
emma A.7, we have on the other hand, for large k, that F(t0(k), k) ≤ 0. Therefore, we
onclude that F(t0(k), k) ≤ 0 is equivalent to k ≥ kc. □

.4. Proof of Lemma A.3

emma A.3. Let F(t, k) be given as in (3.20). Then, for any k,

max
t≥1

F(t, k) = F(t0(k), k),

here t0(k) is given by (3.18).

roof. To find, for a given k > 0, the maximum of F(t, k) over t ≥ 1, we compute from
3.20)

∂F
∂t

(t, k) = −

√
k
2

exp(W 2) +
d
dt

(
(W 2

+ ln(g(t)))
1
2

)
exp(W 2

+ ln(g(t)))

=
1
2

(W 2
+ ln(g(t)))−

1
2

g′(t)
g(t)

exp(W 2
+ ln(g(t))) −

√
k
2

exp(W 2)

= exp(W 2)

(
1
2

(W 2
+ ln(g(t)))−

1
2

g′(t)
g(t)

exp(ln(g(t))) −

√
k
2

)

= exp(W 2)

√
k
2

⎛⎝⎛⎝√ 1
2k

√
g′(t)2

W 2 + ln(g(t))

⎞⎠− 1

⎞⎠

= exp(W 2)

√
k
2

⎛⎜⎜⎝
⎛⎜⎜⎝
√ (

g′(t)
√

2k

)2

W 2 + ln(g(t))

⎞⎟⎟⎠− 1

⎞⎟⎟⎠ . (A.8)
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Then, using (6.4) in (A.8), we get

∂F
∂t

(t, k) = exp(W 2)

√
k
2

⎛⎝⎛⎝√ ψ(t)
2k + ln(g(t))

W 2 + ln(g(t))

⎞⎠− 1

⎞⎠ . (A.9)

hen, ∂F
∂t (t, k) = 0 if and only if ψ(t)

2k = W 2 or in other words, if and only if ψ(t) = w2. Recall
rom (3.18) that the unique solution t > 1 of the equation ψ(t) = w2 is given by t0(k). Thus,
e have

∂F
∂t

(t0(k), k) = 0.

ince ψ(t) is strictly decreasing in t > 1, while W 2 does not depend on t , we have from (A.9)
hat ∂2 F

∂t2 (t0(k), k) < 0. Hence, for k > 0,

max
t≥1

F(t, k) = F(t0(k), k),

which completes the proof. □

A.5. Proof of Lemma A.4

Lemma A.4. Let F(t, k) be given as in (3.20). Then, F(t0(k), k) is a strictly decreasing
unction of k, i.e.,

∂F
∂k

(t0(k), k) < 0, k > 0.

roof. We compute ∂F
∂k (t, k) for any t > 1, and set t = t0(k) in the resulting expression. Thus,

rom (3.20),
∂F
∂k

(t, k) =
1
2

(W 2
+ ln(g(t)))−

1
2

d
dk

(
W 2

+ ln(
√

kt(2 ln(t))
1
2 )
)

exp(W 2
+ ln(g(t))) −

− W ′ exp(W 2) −
t

2
√

2k
exp(W 2) − t

√
1
2

k(W 2)′ exp(W 2).

implifying this expression, yields

∂F
∂k

(t, k) = exp(W 2)
(

1
2

g(t)(W 2
+ ln(g(t)))−

1
2

(
(W 2)′ +

1
2k

)
− W ′

−
t

2
√

2k
− t

√
1
2

k(W 2)′
)
.

rom (W 2)′ = 2W W ′, we then have

∂F
∂k

(t, k) = exp(W 2)

(
(W W ′

+
1

4k )g(t)

(W 2 + ln(g(t)))
1
2

− W ′
−

t

2
√

2k
− t

√
2kW W ′

)

= exp(W 2)

((
g(t)

(W 2 + ln(g(t)))
1
2

− t
√

2k

)
(W W ′

+
1

4k
) − W ′

)
. (A.10)

e next take t = t0(k) in (A.10), so that we can use that

g′(t (k)) = (w2
+ 2k ln(g(t (k))))

1
2
0 0
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and W 2
=

w2

2k , and observe that

g(t)

(W 2 + ln(g(t)))
1
2

− t
√

2k =
√

2k

(
g(t)

(w2 + 2k ln(g(t)))
1
2

− t

)

=
√

2k
(

g(t)
g′(t)

− t
)

=
−t

√
2k

1 + 2 ln(t)
, t = t0(k).

e claim that,

∂F
∂k

(t0(k), k) = − exp(W 2)

(
t
√

2k
1 + 2 ln(t)

(W W ′
+

1
4k

+ W ′)

)
, t = t0(k),

s negative since W (k) increases in k > 0, strictly. The latter fact is proven in Lemma A.5. We
onclude that F(t0(k), k) is a strictly decreasing function of k > 0. □

emma A.5. Let f (t) be given by (3.3) with initial conditions f (0) = 1 and f ′(0) = w,
here w is such that f (1) = 1 + k. Furthermore, let W (k) =

w
√

2k
. Then, W (k) is a strictly

ncreasing function of k.

roof. First, by Eq. (A.4) with y = 1, we get∫ f (t)

1

1

(w2 + 2k ln(s))
1
2

ds = t. (A.11)

econd, from the fundamental theorem of calculus, we have

f (1) = 1 + w +

∫ 1

0

(∫ s

0

kdu
f (u)

)
ds. (A.12)

Now, we derive the desired monotonicity property. We require f (1) = 1 + k. We get from
(A.12),

w

k
= 1 −

∫ 1

0

(∫ s

0

du
f (u)

)
ds. (A.13)

rom, (A.11), with t = 1 and f (1) = 1 + k, we get∫ 1+k

1

1

(w2 + 2k ln(s))
1
2

ds = 1. (A.14)

rom (A.14), noting that w = w(k), we get then

0 =
d

dk

(∫ 1+k

1

1

(w2(k) + 2k ln(s))
1
2

ds

)

=
1

(w2(k) + 2k ln(1 + k))
1
2

+

∫ 1+k

1
−

1
2

2w(k)w′(k) + 2 ln(s)

(w2(k) + 2k ln(s))
3
2

ds

=
1

(w2(k) + 2k ln(1 + k))
1
2

− w(k)w′(k)
∫ 1+k

1

1

(w2(k) + 2k ln(s))
3
2

ds−

−

∫ 1+k

1

ln(s)

(w2(k) + 2k ln(s))
3
2

ds. (A.15)
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Hence, rewriting (A.15) yields,

w(k)w′(k)
∫ 1+k

1

1

(w2(k) + 2k ln(s))
3
2

ds =
1

(w2(k) + 2k ln(1 + k))
1
2

−

∫ 1+k

1

ln(s)

(w2(k) + 2k ln(s))
3
2

ds. (A.16)

onsider the last term in (A.16). We have for 1 ≤ s ≤ 1 + k,
ln(s)

(w2(k) + 2k ln(s))
3
2

=
ln(s)

w2(k) + 2k ln(s)
1

(w2(k) + 2k ln(s))
1
2

≤
ln(1 + k)

w2(k) + 2k ln(1 + k)
1

(w2(k) + 2k ln(s))
1
2
. (A.17)

herefore, by integrating over the inequality in (A.17), we get∫ 1+k

1

ln(s)

(w2(k) + 2k ln(s))
3
2

ds ≤
ln(1 + k)

w2(k) + 2k ln(1 + k)

∫ 1+k

1

1

(w2(k) + 2k ln(s))
1
2

ds

=
ln(1 + k)

w2(k) + 2k ln(1 + k)
,

here we used (A.14). Therefore, see (A.16),

w(k)w′(k)
∫ 1+k

1

1

(w2(k) + 2k ln(s))
3
2

ds ≥
1

(w2(k) + 2k ln(1 + k))
1
2

−
ln(1 + k)

w2(k) + 2k ln(1 + k)
> 0, (A.18)

here the latter inequality follows from

(w2(k) + 2k ln(1 + k))
1
2 > (2k ln(1 + k))

1
2 > ln(1 + k),

ince u > ln(1 + u) for u > 0. We conclude from (A.18) that w(k) strictly increases in k > 0.
Next, we consider for a fixed t > 0 the identity (A.4). For any s > 1, the integrand

w2(k) + 2k ln(s)
)− 1

2 decreases strictly in k > 0, and hence f (t) = f (t; k) increases strictly in
> 0, since t > 0 is fixed. As a consequence, we conclude from (A.13) that w(k)/k strictly

ncreases in k > 0 since 1/ f (u) strictly decreases in k > 0 for any u ∈ (0, 1). □

.6. Proof of Lemma A.6

emma A.6. Let F(t, k) be given as in (3.20). Then, for small k, we have that F(t0(k), k) > 0.

roof. We have for t > 0,

f (t) = f (0) + t f ′(0) +
1
2

t2 f ′′(ξt )

= 1 + tw +
1
2

t2 k
f (ξt )

,

here ξt is a number between 0 and t . Since f (1) = 1 + k and f (ξt ) ≥ 1 > 0, it follows that
≤ k. Therefore,

f
(

1
√

)
≤ 1 +

w
√ +

1
k ≤

3
+

√
k.
k k 2k 2
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On the other hand

g
(

1
√

k

)
=

1
√

k

(
2k ln(

1
√

k
)
) 1

2
= (− ln(k))

1
2 ,

nd this exceeds 3
2 +

√
k when k is small enough. Numerically, by solving the equation

(− ln(k))
1
2 =

3
2 +

√
k for k > 0, we find that k < 0.05 is small enough. We conclude from

3.20) that F(t0(k), k) ≥ F
(

1
√

k
, k
)
> 0 when k is small. □

.7. Proof of Lemma A.7

emma A.7. Let F(t, k) be given as in (3.20). Then, for large k, we have that F(t0(k), k) ≤ 0.

roof. We show that f (t) ≥ g(t) for all t ≥ 1 when k is large enough. We have f (1) =

+ k > 0 = g(1). Now suppose that there is a t > 1 such that f (t) < g(t). Then there is also
t1 > 1 such that f (t1) = g(t1) and f ′(t1) ≤ g′(t1). We infer, by the derivatives of the functions

f and g given in Eqs. (6.4) and (A.1), with (3.17), from f (t1) = g(t1) and f ′(t1) ≤ g′(t1), that

w2
≤ 2k +

k
2 ln(t)

− k ln(2k ln(t)) = ψ(t) at t = t1. (A.19)

t the same time, we have by convexity of f (t), 0 ≤ t < ∞, and f (1) = 1 + k that

f (t) ≥ 1 + tk, t ≥ 1.

ence, when 1
2 k ≥ ln(t), we have

f (t) ≥ 1 + tk > tk = t
(

2k ·
1
2

k
) 1

2
≥ t(2k ln(t))

1
2 = g(t).

ince f (t1) = g(t1), we thus have that t1 > exp( 1
2 k). The right-hand side of (A.19) decreases

n t > 1, since the function ψ(t) is strictly decreasing, and its value at t = t1 is therefore less
than

2k +
k

2 ·
1
2 k

− k ln(2k ·
1
2

k) = 2k + 1 − 2k ln(k).

Since 2k +1−2k ln(k) < 0 for large k, (A.19) cannot hold for large k. Numerically, by solving
the equation 2k + 1 − 2k ln(k) = 0, for k > 0, we find that k > 3.2 is large enough. This gives
the result. □

A.8. Proof of Theorem 3.3

Proof. Let f (t) = f (t; k) be given by (3.3) with initial conditions f (0) = 1, f ′(0) = w such
hat f (1) = 1 + k, and let g(t) = g(t; k) be given by (3.16). Before we turn to the proof
f inequalities (3.21) and (3.22), we first state some numerical results obtained by Newton’s
ethod: the unique number kc that determines whether the ratio of f and g is positive or not,

s given by kc = 1.0384, the corresponding value of w such that f (1) = 1 + kc is given by
w(kc) = 0.6218 and the corresponding solution to the equation ψ(t0(kc)) = w(kc)2 is given by
0(kc) = t2(kc) = 18.3798. Furthermore, by Newton’s method, we have that

f0(x)
≤ 1, x1 ≤ x ≤ x2;

f0(x)
> 1, 1 ≤ x < x1 or x > x2,
g(x; 1) g(x; 1)
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where x1 = 2.4556 and x2 = 263.0304, and g(x; k) = (2k)
1
2 x(ln(x))

1
2 . Additionally, the

inimum of the ratio f0(x) and g(x; 1) is given by

min
x≥1

f0(x)
g(x; 1)

= min
x1≤x≤x2

f0(x)

x(2 ln(x))
1
2

≈ 0.8829, (A.20)

nd is attained at xmin = 5.7889. The maximum of the ratio f0(x) and g(x; 1) is given by

max
x≥1

f0(x)
g(x; 1)

≈ 1.0223,

and is attained at xmax = 380223. However, the computation of the maximum of the ratio of
f0(x) and g(x; 1) is much more involved than the computation of the minimum of the ratio
of f0(x) and g(x; 1), because evaluation of the function f0(x) for large entries is difficult. In

emma A.8, we content ourselves with a reasonably sharp upper bound on the maximum of
he ratio of f0(x) and g(x; 1) over x ≥ x2.

We now turn to the proof of inequality (3.21). We consider two regimes, i.e., t1(k) ≤ t ≤

2/k and t ≥
√

2/k. We have for t1(k) ≤ t ≤
√

2/k,

f (t; k)
g(t; k)

≥
1

t(2k ln(t))
1
2

≥
1

√
2/k

(
2k ln(

√
2/k)

) 1
2

=
1

2(ln(
√

2/k))
1
2
, (A.21)

where we used that f (t; k), with f (0; k) = 1 and g(t; k) = (2k)
1
2 t(ln(t))

1
2 are positive,

ncreasing functions of t > 1. Next, we let t ≥
√

2/k. We have

f (t; k)
g(t; k)

=
c f0(a + bt)
t
√

2k ln(t)

=
f0(a + bt)

g(a + bt; 1)
ac + bct

t
√

k

√
ln(a + bt)

ln(t)
. (A.22)

e consider each factor on the right-hand side of (A.22) separately. For the first factor, we use
he numerical result that the minimum of the ratio of the functions f0 and g is given in (A.20).
or the second and third factor, we notice, from (3.6)–(3.8) and t ≥

√
2/k, that

a > 0, b >
√

k, bc =
√

k, a + bt ≥
√

k
√

2/k =
√

2. (A.23)

ence, for the second factor, we get

ac + bct

t
√

k
>

√
kt

t
√

k
= 1,

nd for the third factor,

min√

ln(a + bt)
> min√

ln(t
√

k)
. (A.24)
t≥ 2/k ln(t) t≥ 2/k ln(t)
1176



M.H.M. Christianen, A.J.E.M. Janssen, M. Vlasiou et al. Indagationes Mathematicae 34 (2023) 1146–1180

0

w
t

T

o
T
t
p

N
0

H

F

N

H

F

However, the right-hand side of (A.24) is equal to 1 when k ≥ 1, and equal to ln
√

2
ln

√
2/k when

< k < 1. Therefore,

min
t≥

√
2/k

ln(t
√

k)
ln(t)

≥
ln(

√
2/kc)

ln(
√

2/k)
hen 0 < k ≤ kc. Hence, combining the inequalities for each factor in (A.22), we get, for
≥

√
2/k,

f (t; k)
g(t; k)

≥ 0.8829 · 1 ·

(
ln
(√

2/kc
)

ln
(√

2/k
) ) 1

2

=
0.5055(

ln(
√

2/k)
) 1

2
.

ogether with (A.21) this gives the desired result.
Now, we turn to the proof of inequality (3.22). We follow the same approach as in the proof

f inequality (3.21). Thus, we consider each factor of the right-hand side of (A.22) separately.
he right-hand side of (A.22) is now to be considered for t ≥ t2(k), and so it is important

o have specific information about t2(k). We claim that t2(k) ≥ exp(e2−kc/2k). This claim is
roven in Lemma A.9 below.

We consider x = a + bt with t ≥ t2(k). Now, by the first two inequalities in (A.23), we get

a + bt2(k) >
√

k exp(e2−kc/2k).

otice that the function k > 0 ↦→
√

k exp(e2−kc/2k) is a decreasing function of k for
< k ≤ kc, and therefore,

a + bt2(k) >
√

kc exp(e2−kc/2kc) ≈ 3.5909 > x1.

ence, it is sufficient to bound the function f0(x)/g(x; 1) for x ≥ x2. Furthermore, by
Lemma A.8, we have

f0(x)
g(x; 1)

≤ 1.12.

or the second factor, we notice, since bc =
√

k, that we have
ac + bct

t
√

k
= 1 +

ac

t
√

k
.

ow, from (3.6) and (3.8),

ac
√

k
=

1
√

k

√
2
∫ w√

2k

0
exp(v2)dv · exp(−w2/2k)

≤
1

√
k

√
2 ·

w
√

2k
=
w

k

≤
w(kc)

kc
≈ 0.5988,

where in the last line it has been used that w/k is an increasing function of k; see Lemma A.5.
ence, for all k ≤ kc and all t ≥ t2(k) ≥ t0(k), we can bound the second factor by

ac + bct

t
√

k
≤ 1 +

w(kc)
kct0(kc)

≈ 1.0326.

or the third factor, we have by (3.6),

a =
√

2
∫ w√

2k
exp(v2)dv ≤

w
√ exp(w2/2k).
0 k
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Hence, by (3.7),

ln(a + bt) ≤
w2

2k
+ ln

((w
k

+ t
)√

k
)

≤
w2(kc)

2kc
+ ln

((
w(kc)

kc
+ t
)

√
k
)
.

herefore, for all t ≥ t2(k),

(
ln(a + bt)

ln(t)

) 1
2

≤

⎛⎝ w2(kc)
2kc

+ ln
(

(w(kc)
kc

+ t)
√

k
)

ln(t)

⎞⎠
≤

⎛⎝1 +

w2(kc)
2kc

+ ln(
√

k) +
w(kc)

tkc

ln(t)

⎞⎠ 1
2

≤

⎛⎝1 +

w2(kc)
2kc

+ ln(
√

kc) +
w(kc)

t0(kc)kc

ln(t0(kc))

⎞⎠ 1
2

≈ 1.0400.

ombining all inequalities for each factor in (A.22), we get

f (t; k)
g(t; k)

≤ 1.12 · 1.0326 · 1.0400 ≈ 1.2023. □

emma A.8. Let f0(x) be given by (3.4) and let g(x; 1) be given by g(x; 1) = x(2 ln(x))
1
2 .

Then,

f0(x)
g(x; 1)

≤ 1.12, x ≥ x2.

roof. From (3.4),(3.5) and the first inequality of (3.10), we have for x > 0

x
√

2
=

∫ (ln( f0(x)))
1
2

0
exp(u2)du ≥

f0(x) − 1

2(ln( f0(x)))
1
2
,

.e.,

f0(x) ≤ 1 + x(2 ln( f0(x)))
1
2 . (A.25)

Let x > 0 be fixed and consider the mapping

G : z ≥ 1 ↦→ 1 + x(2 ln(z))
1
2 .

Then G maps [1,∞) onto [1,∞) with G(1) = 1 and G(∞) = ∞, G is strictly concave on
[1,∞), and G ′(z) decreases from ∞ to 0 as z increases from 1 to ∞. Therefore, G has a
unique fixed point z(x) in (1,∞). We have for any z1 > 1, z2 > 1 that

z ≤ z(x) ⇐⇒ z ≤ 1 + x(2 ln(z ))
1
2 , z ≥ z(x) ⇐⇒ z ≥ 1 + x(2 ln(z ))

1
2 . (A.26)
1 1 1 2 2 2
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Note that f0(x) ≤ z(x) by (A.25). Now let α > 1 and consider z2 = 1+αg(x; 1), where we take
such that z2 ≥ 1+ x(2 ln(z2))

1
2 . An easy computation shows that with this z2 = 1+αg(x; 1),

z2 ≥ 1 + x(2 ln(z2))
1
2 ⇐⇒ g(x; 1) ≤

xα
2
− 1
α

. (A.27)

e consider all this for x ≥ x2 = 263.0340. We have

g(x2; 1) = x2(2 ln(x2))
1
2 =

xα
2

2 − 1
α

or α = 1.1115 := α2. Furthermore, when we have an x ≥ x2 such that g(x; 1) ≤
1
α

(xα
2
− 1),

e have
d

dx

[
1
α

(xα
2
− 1)

]
=
α

x
xα

2
≥
α

x
(1 + αg(x; 1))

=
α

x
+
α2

x
x(2 ln(x))

1
2

> α2(2 ln(x))
1
2

≥ (2 ln(x))
1
2 +

1

(2 ln(x))
1
2

= g′(x; 1),

where the last inequality holds when α2
− 1 ≥

1
2 ln(x) . The latter inequality certainly holds for

α = α2 and x ≥ x2. Hence,

g(x2; 1) =
x
α2

2
2 − 1
α2

; g′(x; 1) <
d

dx

[
1
α2

(xα
2
2 − 1)

]
, x ≥ x2,

nd we conclude that

g(x; 1) ≤
xα

2
2 − 1
α2

, x ≥ x2.

Then, by (A.26) and (A.27) and f0(x) ≤ z(x), we get that

z2 = 1 + α2g(x; 1) ≥ z(x) ≥ f (x), x ≥ x2.

This implies that
f0(x)

g(x; 1)
≤ α2 +

1
g(x; 1)

≤ α2 +
1

g(x2; 1)
≤ 1.12, x ≥ x2,

ince α2 ≤ 1.112 and (g(x2; 1))−1
≤ 0.008 as required. □

emma A.9. Let f (t) be given by (3.3) with initial conditions f (0) = 1, f ′(0) = w such
hat f (1) = 1 + k, and let g(t) be given by (3.16) for 0 < k ≤ kc. Then,

t2(k) ≥ exp
(

e2−kc

2k

)
,

here t2(k) is given as in Theorem 3.2, case b.

roof. Let f (t) be given by (3.3) with initial conditions f (0) = 1, f ′(0) = w such that
f (1) = 1 + k, and let g(t) be given by (3.16). By Theorem 3.2 case (b), we have t (k) ≥ t (k),
2 0
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s

S

R

where t0(k) is the unique root of the equation

2 +
1

2 ln(t)
− ln(2k ln(t)) =

w2

k
, (A.28)

ee (3.18). If we denote y = 2 ln(t0(k)), then the solution y(k) of (A.28) satisfies

y(k) >
1
k

exp
(

2 −
w2

k

)
≥

1
k

exp(2 −
w2(kc)

kc
) ≥

1
k

exp(2 − kc),

since w2

k increases in k and w2
≤ k2. Now, using that y = 2 ln(t0(k)), we get

t0(k) ≥ exp
(

e2−kc

2k

)
.

ince t2(k) ≥ t0(k), we have the desired result. □
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