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Combining point cloud and surface methods for modeling partial shading 
impacts of trees on urban solar irradiance 

B. Tian *, R.C.G.M. Loonen, J.L.M. Hensen 
Building Physics and Services, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands   
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A B S T R A C T   

Although trees and urban vegetation have a significant influence on solar irradiation in the built environment, 
their impact on daylight and energy consumption is often not considered in building performance and urban 
environment simulation studies. This paper presents a novel method for comprehensive solar irradiance 
assessment that considers the dynamic partial shading impacts from trees. The proposed method takes urban 
point clouds as input and consists of three subsequent steps: (a) DGCNN-based segmentation, (b) fusion model 
generation, (c) matrix-based irradiance calculation. The method is validated by comparing model outputs with 
field measurement data, and an inter-model comparison with eleven state-of-the-art tree shading modeling ap
proaches. Analyses carried out on daily and long-term basis show that the proposed fusion model can signifi
cantly reduce simulation errors compared to alternative approaches, while limiting the required input data to a 
minimum. The primary source of uncertainty stems from mismatches between tree morphology in the fusion 
model and reality, attributable to phenological growth and seasonal variations.   

1. Introduction 

Trees form an essential part of the built environment, offering a 
myriad of ecological, environmental, psychological, and economic ad
vantages to urban residents [1,2]. Numerous studies concerned with 
building energy performance simulation [3–6] have demonstrated that 
trees have significant shading effect on solar radiation and cooling effect 
within urban settings, substantially contributing to decreased energy 
consumption in buildings. Furthermore, incorporating systematic tree 
planning into energy-efficient and thermal-visual comfort strategies can 
bolster sustainable building and urban design practices [7–9]. 

Although the aforementioned benefits of trees are well-established, 
they can also pose substantial challenges to solar energy harvesting in 
urban environments [10,11]. Tree canopies can block both direct solar 
radiation and diffuse sky radiation, frequently leading to a considerable 
reduction in the plane-of-array (POA) irradiance received by photovol
taic (PV) systems, thus resulting in non-optimal operating conditions. 

Besides the reduction of POA irradiance, dynamic partial shading 
caused by trees on PV surfaces can lead to cell-level or module-level 
mismatch issues and hot spot heating. These factors contribute to 

further energy loss [12–15] and may even aggravate the degradation of 
the PV modules [16]. Studies by e.g. Tooke et al. and Fogl et al. [17–20] 
have found that partial shading effects from trees can significantly 
reduce rooftop PV production. Consequently, accurate modeling of solar 
irradiance potential under dynamic shading impacts from trees is crucial 
for practitioners in order to provide energy yield guarantees for PV 
systems, make informed decisions in sustainable building design, and 
manage urban renewable resources effectively. 

The state-of-the-art methods that account for tree shading impacts on 
solar irradiance potential can be broadly categorized into two distinct 
phases: geometric model generation and irradiance calculation. Geo
metric model generation refers to the definition of the morphology and 
dimensions of trees. Irradiance calculation, on the other hand, refers to 
applying a predefined geometric model of trees to a specific simulation 
method, which facilitates the quantification of the shading effects 
induced by trees. 

1.1. Literature review 

The available methods to define the geometric characteristics of trees 
can be broadly classified into 2D methods based on photographic 

Abbreviations: BPS, Building performance simulation; BIPV, Building-integrated PV; DGCNN, Dynamic graph convolutional neural networks; GPS, Global Posi
tioning System; HDR, High dynamic range; IQR, Interquartile range; KNN, K-nearest neighbor; LiDAR, Light detection and ranging; NREL, National Renewable 
Energy Laboratory; POA, Plane-of-array; PV, Photovoltaic; SVM, Support vector machine. 
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imagery and 3D methods based on computer modeling. 

1.1.1. 2D imagery methods 
2D on-site photography techniques are widely used methods for 

describing tree geometries in daylight and irradiance studies, for their 
positive features in terms of user-friendliness, affordability, and 
comprehensive hemispherical coverage [21]. 2D hemispherical imagery 
is utilized by several studies to model tree daylight permeability 
[22–24]. This method has also been applied to calculate leaf gap fraction 
[25] and tree shade coverage [26] that are vital for urban solar irradi
ance calculation. Furthermore, High Dynamic Range (HDR) techniques 
can enhance the quality of hemispherical imagery. Balakrishnan and 
Jakubiec [27] employed HDR photography to determine transmittance 
percentages and gap fractions of trees. A main drawback of the use of on- 
site photography techniques in large-scale or complex environmental 
simulations pertains to the massive data collection requirements. 

1.1.2. 3D computer modeling methods 
3D computer modeling offers an intuitive method for generating 3D 

representations of trees. Creating these models requires assumptions 
about trees’ morphological and optical characteristics. Generally, 3D 
tree modeling techniques fall into four categories: (i) modeling trees as 
opaque solid; (ii) modeling trees as semi-transparent solid; (iii) 
modeling trees as solid with distributed gaps; (iv) modeling trees as 
point cloud. 

Modeling trees as opaque solid. Opaque solid models simplify trees into 
geometric forms with predefined radii and heights. Past studies have 
used ellipsoidal, spherical, or cylindrical tree models to assess tree 
shadow factors [28] and shading impacts on building energy perfor
mance [29–31]. Recent advancements in reconstructing tree surfaces 
from point cloud data [11,32–36] have expanded 3D tree representation 
possibilities. Dominant reconstruction algorithms in tree shading studies 
include Delaunay triangulation [37–39], Alpha shape [40], Convex hull 
[41,42], and Poisson [43]. 

Modeling trees as semi-transparent solid. Semi-transparent solid models 
address limitations of opaque solid models that cannot model the partly 
transmitted sunlight by incorporating transmittance properties. Szkor
dilisz and Kiss [44] modeled trees as spheres with transmittance around 
0.12, while Hwang et al. [45,46] used elliptical shapes with trans
mittance of 0.75 in winter and 0.25 in other months to study tree 
shading impacts on building energy consumption. Peronato et al. [47] 
employed the Convex hull algorithm to create semi-transparent tree 
surfaces to examine solar potential on building façades. 

Modeling trees as solid with distributed gaps. A recent study by Pan and 
Jakubiec [2] proposes a method for modeling trees as hemisphere or 

semi-ellipsoid with randomly distributed gaps in crowns. Dereli et al. 
[48] also applied tree models with gaps to assess shading impacts on PV 
energy production. These models are available from the Google 
SketchUp Warehouse, with adjustable canopy height and diameter to 
meet the requirements of different simulation cases. 

Modeling trees as point cloud. Point clouds of trees can be directly used 
in modeling solar PV potential in urban areas [17–19,49] and on 
building surfaces [50,51] under tree shading impacts. Bognár et al. [52] 
proposed a comprehensive point cloud-based method for urban irradi
ance simulation that accounts for shading impacts from solar obstruc
tions, including trees. Compared to (semi-)solid tree models that tend to 
simplify the shape of tree canopies, point cloud models preserve more 
detailed geometric information, such as leaf density and irregular 
organic shapes. 

1.2. Irradiance calculation 

From the review of tree geometry determination approaches in 
Section 1.1, we found that 3D tree models offer greater scalability and 
intuitiveness for shading impact estimation compared to 2D photog
raphy methods. Numerous solar irradiance modeling techniques have 
been developed based on 3D models, with comprehensive reviews pro
vided by Freitas et al. [53] and Jakica [54]. The following brief litera
ture review, however, focuses solely on irradiance simulation methods 
employed in the tree-related studies presented in Section 1.1. Depending 
on the handling of geometric models in simulations, irradiance calcu
lation techniques can be categorized into two primary types: rule-based 
methods and matrix-based methods. 

1.2.1. Rule-based method 
Rule-based methods are designed to estimate shading impacts by 

modeling geometric relationships between sensor points, obstructions, 
and the sun, complemented by empirical models for solar irradiance 
calculations [53]. Although such methods are efficient and intuitive to 
use for specific situations, they also have notable limitations. Rule-based 
methods are primarily suited for simulating irradiance at specific 
timesteps, but require substantial computational resources for long-term 
dynamic shading impact analysis, and do not account for environmental 
reflections. Moreover, these models primarily cater to horizontal or in
clined surfaces and struggle to assess shading impacts of trees on vertical 
surfaces, such as building facades [17–19,49]. Although some advanced 
rule-based methods [41,50,51] can estimate tree shadows on vertical 
surfaces, they fail to accurately determine solar penetration through tree 
canopies and the shading influence on diffuse sky irradiance. 

Symbol list 

Abs_e Cumulative absolute error [Wh/m2] 
Avg F1 Averaged F1 score [Pct] 
DC Daylight coefficient [-] 
DCmtx Daylight coefficient matrix [-] 
Emtx_dif Sky diffuse irradiance matrix [-] 
Emtx_dif_without_tree Sky diffuse irradiance matrix without tree shading 

impacts [-] 
Emtx_dir Solar direct irradiance matrix [-] 
Emtx_dir_without_tree Solar direct irradiance matrix without tree shading 

impacts [-] 
Eincident Incident irradiance [W/m2] 
FN False negative [-] 
FP False positive [-] 
Gcumulative Cumulative irradiation [Wh/m2] 
Gdif Sky diffuse radiance [W/m2] 

Gdir Solar direct radiance [W/m2] 
Gextraterrestrial Extraterrestrial solar irradiation [Wh/m2] 
GHI Global horizontal irradiation [Wh/m2] 
Gmtx_dif Sky diffuse radiance matrix [-] 
Gmtx_dir Solar direct radiance matrix [-] 
KT Sky clearness index [-] 
N Number of data points [-] 
OA Overall accuracy [Pct] 
Rel_e Cumulative relative error [Pct] 
RMSE Root mean squared error [W/m2] 
SEF Small error fraction [Pct] 
TSR Tree shading ratio [-] 
TSRmtx Tree shading ratio matrix [-] 
T Timestep [s] 
TN True negative [-] 
TP True positive [-]  
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1.2.2. Matrix-based method 
Contrasting rule-based methods, which rely on empirical formulas 

for solar irradiance calculations, matrix-based approaches employ sky 
discretization, dividing the sky hemisphere into equal solid angle seg
ments [55]. This enables representation of sky radiance distribution at 
each simulation timestep as a sky radiance matrix. Correspondingly, 
shading impacts of obstructions are considered discretized, estimating 
shading impacts for each sky segment individually. The cumulative 
shading impact is then expressed as a daylight coefficient (DC) matrix, 
denoting the ratio of sky segment’s radiance received by a sensor point 
[56]. Shaded segments correspond to lower DC values, while unshaded 
segments maintain higher values. Irradiance results under dynamic sky 
and shading conditions are acquired by multiplying the DC matrix with 
the sky radiance matrix. 

Matrix-based methods are inherently suitable for detailed daylight 
modeling in 3D urban geometries and expedite long-term simulations 
[52,57]. Radiance [55] and Pyrano [52], employed by several reviewed 
studies [2,22,37,40,44,47,52,58], are considered the most representa
tive state-of-the-art matrix-based methods. Previous researches have 
demonstrated their superior performance in simulating direct and 
diffuse irradiance under dynamic sky conditions [37,59–62]. 

The major difference between Radiance and Pyrano lies in their DC 
matrix calculation approach. Radiance utilizes raytracing, effectively 
accounting for reflected irradiance from surroundings with solid surface 
models as necessary input. Such models can be obtained using surface 
reconstruction techniques [11] and open-access databases [63], facili
tating Radiance simulation and reflection assessment with the ground 
and other buildings. However, as discussed in Section 1.1.2, most tree 
solid models are highly simplified, deviating from real organic mor
phologies and limiting Radiance’s ability to predict tree shading 
impacts. 

Conversely, Pyrano employs computational point projection for DC 
matrix calculations [52], using only urban point clouds as input. This 

method allows to better capture the semi-transparent nature of urban 
vegetation, by identifying areas of high and low transmittance in the 
canopy based on local point density. An example of local transmittance 
modeling for a tree canopy is provided in Appendix A.3. Pyrano assumes 
that all sky segments contribute to surrounding reflected irradiance on 
sensor points by specific ratios since the unstructured nature of the point 
cloud makes it difficult to physically model reflections. This assumption 
is reasonable for less obstructed scenes with uniform ground-based re
flections. However, in complex environments with reflections from 
diverse obstructing objects, sky segment contributions can vary signifi
cantly, leading to inadequate estimations when assuming equivalent 
contributions. Detailed descriptions of calculation procedures of Radi
ance and Pyrano are provided in Appendix A.1 and A.2, respectively. 

1.3. Research goals 

Building upon the preceding discussion, the two reviewed matrix- 
based methods, Radiance and Pyrano, have distinct advantages; Radi
ance excels at assessing environmental reflections but lacks applicability 
to tree shading studies, while Pyrano effectively models shading and 
sunlight transmission through trees but struggles with accurately 
modeling reflections in urban settings. Our aim in this study is to 
combine their strengths for accurate solar simulation in complex tree- 
shaded environments, while accounting for surrounding reflections. 
More specifically, the research goals in this study are twofold:  

1. To introduce a novel fusion model for the representation of complex 
urban environments. Our model combines the solid (surface) 
modeling of buildings and terrain, while incorporating trees as point 
clouds. To facilitate the generation of fusion model, we utilize the 
Dynamic Graph Convolutional Neural Networks (DGCNN) semantic 
segmentation technique. 

Fig. 1. Schematic workflows for fusion model generation.  

Fig. 2. Schematic diagram of DGCNN structure in the present work. (a) Overview of the classification model; (b) EdgeConv module applied to learn local geometric 
features for each point. . 
Adapted from [65] 
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2. To develop and validate an advanced solar irradiance modeling 
method, built upon the fusion model. By addressing the limitations 
inherent in existing matrix-based model in accounting for dynamic 
tree-induced partial shading impacts, we aim to enhance solar irra
diance simulation accuracy and minimize associated uncertainties. 

The detailed description of our model development procedures will 
be provided in Section 2. In Section 3, we will present the validation of 
our proposed fusion modeling method, employing field measurements 
and inter-model comparisons. Field measurement validation involve 
comparing fusion model results with measurement data, while the inter- 
model comparison contrast fusion model results with those from eleven 
different tree geometric models (reviewed in Section 1.1) in simulations. 

2. Model development 

This section provides details of the proposed hybrid workflow for 
model generation and solar irradiance modeling. Fig. 1 schematically 
illustrates the process to generate a fusion model from urban point 
cloud. 

2.1. Dynamic graph CNN semantic segmentation 

As described in Fig. 1, to generate the fusion model for solar simu
lation, one of the key steps is to segment the input urban point cloud into 
three classes: building, ground and trees. Referring to the work by 
Widyaningrum et al. [64], the present study employs DGCNN for this 
segmentation task, which is one of the most advanced deep learning 
methods to perform semantic segmentation tasks within unstructured 
3D point clouds [64–66]. 

The architecture of the DGCNN segmentation model is illustrated in 
Fig. 2, which uses three sequential EdgeConv layers followed by multi
ple fully connected 1ayers. The EdgeConv layers are designed to extract 
local features by constructing dynamic k-nearest neighbor (KNN) 
graphs. A max pooling operation is implemented after the EdgeConv 
layers to maintain the model’s permutation invariant property while 
aggregating global features across the point cloud. The fully connected 
layers will produce class prediction scores for each point. Readers can 

refer to [65] for a detailed review of DGCNN formulation and 
calculation. 

2.1.1. DGCNN model training 
The DGCNN model in the present work is trained by the open-source 

LiDAR (Light Detection and Ranging) point cloud of Eindhoven, the 
Netherlands [67]. As shown in Fig. 3, the labelled urban point cloud was 
divided into a 25 × 25 grid, wherein the red tiles indicate the five 
datasets for model training, while the blue one indicates the datasets for 
testing. Besides, in the preparation stage, the LiDAR data is down
sampled to 0.5 m resolution to make the network model more effective 
in learning the local features among the points. 

The points in the LiDAR data contain several feature vectors, among 
which we have selected nine as the feature set for DGCNN learning: 
spatial coordinates (x, y, z), color information (R, G, B), and LiDAR 
collection information (I, Rn, N). Our selection was inspired by the ex
periments of Widyaningrum et al. [64], where the model showed the 
best segmentation performance for buildings and trees when the same 
feature set was used. A NVIDIA GeoForce RTX 3090Ti GPU was used in 
training and testing stage, and the model used in testing was obtained by 
choosing the best model after training with 50 epochs. 

2.1.2. Evaluation metrics 
In the present study, we evaluate the performance of our DGCNN 

model in segmentation tasks using three metrics: Overall Accuracy, 
Averaged F1 score, and per-class F1 score.  

• Overall Accuracy (OA): OA is a commonly used metric that measures 
the proportion of correctly classified points out of the total points in 
the dataset. It provides a general idea of the model’s performance 
and is easy to compute. 

• Per-class F1 score: F1 score is a harmonic mean of recall and preci
sion, used to assess model accuracy (Equation (1)). The formulation 
of recall and precision are related to the false/true positive rates (FP/ 
TP) and negative rates (FN/TN) in the segmentation results on a 
certain class [68,69], as shown in Equation (2)(3). Recall represents 
the model’s ability to identify all positive samples, while precision 
quantifies the classifier’s accuracy in avoiding false positives. 

Fig. 3. Split LiDAR tile grid and data blocks for DGCNN train and test.  
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F1 =
2 × recall × precision

recall + precision
× 100% (1)  

recall =
TP

TP + FN
(2)  

precision =
TP

TP + FP
(3)    

• Averaged F1 score (Avg F1): Avg F1 is the mean of the F1 scores 
computed for each class, thus providing a more comprehensive view 
of the model’s performance. 

Table 1 
DGCNN segmentation results on the testing point cloud tile.  

Metrics OA (%) Avg F1 (%) F1 Score per class (%) 

Ground Buildings Trees 

Scores  94.9  93.4  97.8  95.2  87.3  

Fig. 4. Classification result in the testing point cloud tile, with (a) input point cloud and (b) classified point cloud, where the ground, buildings and trees were 
colored dark blue, red and green respectively. The yellow bounding box marks the area for validation study in Section 3. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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Overall, OA and Avg F1 evaluate the global performance of model, 
while per class F1 score provides insights into the performance on in
dividual classes. This combination enables a thorough understanding of 
the model’s strengths and weaknesses in the segmentation task. 

2.1.3. Segmentation performance 
The segmentation results on the testing dataset are presented in 

Table 1, wherein the OA and Avg F1 respectively achieve 94.9% and 
93.4%, and the per class F1 scores are also remarkable high. The results 
indicate that the trained network is able to provide accurate predictions, 
meeting the requirements of the present work. The segmented point 
cloud tile (Fig. 4) will be used in the subsequent sections, to demonstrate 
hybrid model generation procedures and validating the performance of 
the model in solar irradiance simulation. 

2.2. Solid model generation 

Upon successful segmentation of the testing point cloud tile 
described in Section 2.1.3, point clouds corresponding to buildings, 
ground, and trees are processed independently. Employing the solid 
model reconstruction methodology proposed by Tian et al. [11], a 
Delaunay triangulation is conducted on the building and ground points 
to create a solid model suitable for Radiance raytracing DC computa
tions. Fig. 5 provides visualizations of both the input point cloud and the 
reconstructed solid model. 

2.3. Fusion model generation 

The surfaces generated in Section 2.2 are integrated with the 
segmented point clouds of trees to generate the fusion model, as shown 

Fig. 5. Solid model generation process, with (a) ground and building points from the classified point cloud and (b) reconstructed surface model. The yellow bounding 
box marks the area for the validation study in Section 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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in Fig. 6. Within the fusion model, the buildings and the ground are 
represented by well-defined solid models, whereas the trees, in agree
ment with their irregular morphological characteristics, are present in 
the form of point clouds. 

2.4. Solar irradiance modeling 

Fig. 7 schematically illustrates the workflow of our proposed fusion 
model matrix-based solar irradiance modeling method, which consists of 
sensor point generation and four sequential calculation steps. 

2.4.1. Daylight coefficient matrix calculation 
Referring to Fig. 7, the first calculation step in the irradiance 

modeling method is to calculate the DC [-] matrix without shading im
pacts of trees. This step uses the solid elements of the fusion model as 
input, while the Radiance rfluxmtx sub-program is employed to perform 
raytracing operations to effectively capture the contribution of envi
ronmental reflections on DC values. Equation (4) illustrates the structure 
of the calculated DC matrix, wherein signs n, m represent the number of 
rows and columns in the discretized sky grid, respectively. 

DCmtx =

⎡

⎢
⎢
⎣

DC11 DC12 ⋯ DC1m
DC21 DC22 ⋯ DC2m

⋮ ⋮ ⋱ ⋮
DCn1 DCn2 ⋯ DCnm

⎤

⎥
⎥
⎦ (4)  

2.4.2. Tree shading ratio matrix calculation 
The second calculation step of the present method is using the Pyr

ano dc module to generate a tree shading ratio matrix describing the 

amount of solar irradiance that is reduced by tree shading impacts. 
Specifically, the tree shading ratio TSR [-] is obtained by Pyrano’s cover 
ratio calculation method (Appendix A.2), and expressed as the ratio of a 
certain sky segment area is blocked by trees (Equation (5)). 

TSRmtx =

⎡

⎢
⎢
⎣

TSR11 TSR12 ⋯ TSR1m
TSR21 TSR22 ⋯ TSR2m

⋮ ⋮ ⋱ ⋮
TSRn1 TSRn2 ⋯ TSRnm

⎤

⎥
⎥
⎦ (5)  

2.4.3. Sky radiance matrix generation 
To calculate the incident irradiance on each sensor point, the sky 

radiance [W/m2] values of the discretized sky segments should be pri
marily determined in the form of a sky radiance matrix. Radiance’s 
gendaymtx sub-program is called for this task, which uses the global 
horizontal radiance data as input. The outputs are the solar direct 
radiance matrix and sky diffuse radiance matrix of each simulation 
timestep, as shown in Equation (6). 

Gmtx dir =

⎡

⎢
⎢
⎣

Gdir 11 Gdir 12 ⋯ Gdir 1m
Gdir 21 Gdir 22 ⋯ Gdir 2m

⋮ ⋮ ⋱ ⋮
Gdir n1 Gdir n2 ⋯ Gdir nm

⎤

⎥
⎥
⎦

Gmtx dif =

⎡

⎢
⎢
⎣

Gdif 11 Gdif 12 ⋯ Gdif 1m
Gdif 21 Gdif 22 ⋯ Gdif 2m

⋮ ⋮ ⋱ ⋮
Gdif n1 Gdif n2 ⋯ Gdif nm

⎤

⎥
⎥
⎦

(6)  

2.4.4. Irradiance modeling 
As the last calculation step, by multiplying the DC matrix with the 

Fig. 6. Generated fusion model for subsequent solar irradiance simulation, wherein the yellow bounding box marks the area for the validation study in Section 3. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Schematic workflows for modeling solar irradiance from the fusion model.  
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sky direct radiance matrix and sky diffuse radiance matrix, respectively, 
the contributions of each sky segment to the direct irradiance [W/m2] 
and diffuse irradiance [W/m2] without tree shading impacts on the 
sensor point can be derived, expressed by Emtx_dir_without_tree and Emtx_dif_

without_tree in Equation (7)(8) separately. 

Emtx dir without tree = DCmtx • Gmtx dir (7)  

Emtx dif without tree = DCmtx • Gmtx dif (8) 

After that, by combining Emtx_dir_without_tree and Emtx_dif_without_tree with 
the tree shading ratio matrix, we calculate the actual irradiance con
tributions [W/m2] of different sky segments under tree shading impacts, 
see Equation (9)(10). 

Emtx dir = Emtx dir without tree • (1 − TSRmtx) (9)  

Emtx dif = Emtx dif without tree • (1 − TSRmtx) (10) 

Then, the irradiance components of all sky segments are summed to 
get the final incident irradiance value on the sensor point. The calcu
lation is shown in Equation (11), where s, i are respectively the row and 
column index of the discretized sky grid. 

Eincident =
∑n

s=1

∑m

i=1

(
Emtx dir,s,i +Emtx dif ,s,i

)
(11)  

3. Validation study 

In this section, we will discuss the model validation process and 
corresponding results. As mentioned in section 1.3, the fusion model 
based solar modeling method is validated by both field measurements 
and inter-model comparison, i.e., the calculated irradiance by the 

Fig. 8. Building canyon in TU/e campus for model validation. (a) Overview of the canyon, where the area for validation and the nearby trees are outlined by the red 
box, the area is adjacent to an open space (east, yellow box) and several trees (west, blue box); (b) The grassy area and sidewalk in the canyon; (c) Front view of the 
validation area; (d) Apparent tree shadows on the building façade for validation. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 9. Visualization of the area for irradiance modeling and model validation, the sensor points are highlighted by red dots, with (a) Aerial image and (b) Fusion 
model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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proposed method is compared against field measured data and simula
tion results obtained with state-of-the-art tree geometric models. 

3.1. Validation area 

The area for model validation is located in an east–west oriented 
building canyon at the campus of Eindhoven University of Technology 
(TU/e), the Netherlands (Fig. 8a). At the center of the canyon lies a 6- 
meter wide sidewalk, bordered by a 4-meter wide grassy area 
(Fig. 8b), with rows of trees (Quercus robur) planted along its periphery. 
During daylight hours, the south-facing facades of the buildings are 
subject to intermittent partial shading caused by the tree canopy 
(Fig. 8c-d). 

In the present study, we positioned the sensor point on the southern 
façade of the building for both simulation and measurement purposes. 

This location is anticipated to experience significant partial shading 
impacts from nearby trees during daylight hours. Fig. 9a and 9b illus
trate the sensor point (represented by a red dot) within the validation 
area, as visualized in an aerial image and the fusion model, respectively. 

3.2. Irradiance simulation 

Following the solar irradiance modeling steps described in Section 
2.4, we calculated the incident irradiance in our validation area. To 
effectively capture the dynamic variation of tree shading impacts, the 
simulation timestep was set at one minute. The input global horizontal 
radiance data for simulation was sourced from the SolarBEAT weather 
station [70] situated on the TU/e campus. Additionally, in the simula
tion, all the surfaces are assumed as Lambertian diffusers, wherein the 
building surfaces are assigned a reflectance at 0.3, as recommended by 

Fig. 10. Visualization of (a) simulated DC and (b) tree shading ratio of sky segments.  

Fig. 11. Deployment of the pyranometer for irradiance measurement.  
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[71]. The ground albedo was set at 0.2, adhering to guidelines from 
NREL [72], and also confirmed by our experiments. Fig. 10a and 10b 
visualize the calculated DC matrix and tree shading ratio matrix, 
respectively, mapped over the discretized sky. 

3.3. Irradiance measurement 

To measure the incoming irradiance at a minute-wise resolution, we 
deployed a pyranometer in the designated validation area (Fig. 11a), 
positioned at a height of 1.8 m from the ground and 20 cm away from 
the façade (Fig. 11b-c). Detailed technical specifications of the 

Fig. 12. Modeling results of part of the trees in the validation area with representative methods in the state-of-the-art. (a) Actual scene; (b) Trees modeled using 
proposed hybrid approach; (c) Trees modeled using full point cloud; (d) Trees modeled as opaque solid; (e) Trees modeled as semi-transparent solid; (f) Trees 
modeled as solid with gaps. 

Fig. 13. Minute-based irradiance simulation results during daylight time in May 15.  
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pyranometer can be found in Appendix B. The data collection period 
spanned 45 days, commencing on May 10 and concluding on June 23, 
2022. 

3.4. Inter-model comparison 

In conducting the inter-model comparison, we examine the results 
obtained from utilizing eleven different tree geometric models 
(reviewed in Section 1.1), as inputs for the irradiance simulation. These 
results are then compared with those derived from our proposed hybrid 
modeling approach. Fig. 12 illustrates the modeling outcomes for a 
subset of trees within the validation area, showcasing the differences 
among the various methods employed. 

3.5. Results 

In this section, we will discuss the results of the validation experi
ments. The irradiance simulation results, presented at a minute-wise 
resolution, will be comparatively analyzed in the context of both daily 
and long-term (45 days) perspectives. 

3.5.1. Daily results 
Two days featuring predominantly clear skies, May 15 and May 22, 

were chosen for visualizing and analyzing daily results. Fig. 13 presents 
the comparison for May 15, where the red line denotes measurement 
data, the blue line signifies fusion model results, and other colored re
gions represent the varying ranges of results from different types of tree 
models. Notably, shading impacts primarily occur between 9:00 and 

Fig. 14. Minute-based irradiance simulation results during daylight time in May 22.  

Fig. 15. Cumulative error of different models in solar irradiance simulation, with candidate models plotted in different color; Different type of error of the same 
model of the same model have different color saturation; The results of two days are marked by different hatches. 

B. Tian et al.                                                                                                                                                                                                                                     



Energy & Buildings 298 (2023) 113420

12

12:30, with the fusion model output closely mirroring the measurement 
data in terms of both trend and value proximity. 

Regarding the other type of models, in reference to the measured 
data, opaque solid models generally underestimate irradiance. Solid 
models with distributed gaps exhibit performance akin to their opaque 
counterparts, but their results might oscillate around measured values 
during peak shading hours in the morning (9:00–12:30). Full point cloud 
models align well with measurements up to 12:30; however, they 
significantly overestimate irradiance in subsequent afternoon hours. 
Semi-transparent solid models overestimate incoming irradiance when 
apparent shading occurs in the morning, while underestimating incident 
irradiance during afternoon periods. 

The results for May 22, illustrated in Fig. 14, display a similar trend 
to those of May 15. Both opaque solid models and solid gap models 
consistently underestimate irradiance values for most timesteps, from 
morning until 18:00. Full point cloud models performed well in the 
morning but exhibit marked overestimations after 12:30. In contrast, the 
fluctuation range of semi-transparent models is lower than the measured 
data during the afternoon. It is also noteworthy that the measured 
irradiance surpasses the simulation sets in the morning before 8:00, 
while falling below the simulation sets after 19:00. These two discrep
ancies arise from the underestimation and overestimation of albedo 
reflections in the morning and evening, respectively, which are explored 
in greater detail in Section 4.1.2. 

In order to more intuitively quantify the uncertainty embedded in 
the simulation results of the different models, we calculate the cumu
lative irradiation Gcumulative [Wh/m2] on the sensor point throughout the 
daylight time by Equation (12), wherein the Eincident,t is the incident 
irradiance [W/m2] at timestep t, and the T is equal to the measurement 
(simulation) timestep, at 1 min. After that, we can calculate two 
different metrics for error quantification: the cumulative absolute error 
Abs_e [Wh/m2] (Equation (13)) and the cumulative relative error Rel_e 
[%] (Equation (14)). The Abs_e corresponds to the sum of absolute error 
values from each individual simulation timestep throughout the day. 
This metric serves to illustrate how well the minute-based simulation 
outcomes align with measurements, accentuating the discrepancies in 

model robustness in the context of dynamic tree shading scenarios. In 
contrast, Rel_e stands for the ratio of the aggregated error from all 
timesteps relative to the measured Gcumulative. This ratio reflects the 
model’s precision against daily-based energy harvesting simulation re
sults, thereby providing an enhanced evaluation of the model’s overall 
performance. 

Gcumulative =
∑k

t=1
Eincident,t • T (12)  

Abs e =
∑k

t=1

⃒
⃒Eincident simulated,t − Eincident measured,t

⃒
⃒ • T (13)  

Rel e =

⃒
⃒
⃒
⃒
∑k

t=1

(
Eincident simulated,t − Eincident measured,t

)
• T

⃒
⃒
⃒
⃒

Gcumulative measured
× 100% (14) 

Fig. 15 illustrates the cumulative error for various models across the 
two evaluation days, with the primary axis representing the Abs_e and 
the secondary axis indicating the Rel_e. The fusion model shows the 
lowest absolute error (approximately 650 Wh/m2) and predominantly 
lower relative error (approximately 7%) for both days. These results 
suggest that the fusion model delivers superior performance in terms of 
accurately modeling irradiance across most timesteps in the context of 
tree shading. Additionally, it demonstrates a significant reduction in 
errors inherent in daily-based solar irradiation modeling. This perfor
mance is followed by the approaches of Peronato et al. (2016) and 
Hwang et al. (2014), which model trees as semi-transparent solids with 
relative errors ranging from 5% to 8%; nonetheless, the absolute errors 
observed in the model by Peronato et al. (2016) were approximately 250 
Wh/m2 greater than those of Hwang et al. (2014) on both days, 
underscoring the disparity in accuracy between the two models when 
applied to minute-based irradiance modeling. 

Regarding the full point cloud models, their cumulative absolute 
errors remain at a level comparable to the semi-transparent models, but 
their corresponding relative errors are markedly higher. The two 

Fig. 16. Minute-based error during daylight time of two days, with the results of May 15 in white and May 22 in grey.  
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methods that model trees as solids with gaps yield nearly identical ab
solute error values (approximately 1350 Wh/m2 on May 15 and 1150 
Wh/m2 on May 22). However, the relative error of Dereli et al. (2013) at 
55% is noticeably higher than that of Pan and Jakubiec (2022), which is 
around 40%. Finally, for the opaque solid models, both the absolute and 
relative errors are substantially higher compared to the other models, 
demonstrates their relatively worse performances in both modeling 
minute-based irradiance and estimating daily cumulative irradiation. 
The most poorly performing model exhibits relative errors of roughly 
85%, exceeding the error observed in the case where trees are excluded 
from the simulation. 

To further examine the minute-wise error distribution throughout 
the day, we generated box plots (Fig. 16) and computed the daily Root 
Mean Squared Error (RMSE) [W/m2] using Equation (15). In Fig. 16, the 
results from various models are displayed in separate rows, with the 

final row representing the fusion model proposed in this study. Addi
tionally, to aid data analysis, the last column provides the median of the 
minute-based errors recorded throughout the day, alongside the corre
sponding interquartile range (IQR). It is evident that the fusion model 
exhibits the remarkable smallest interquartile range and data dispersion 
among all cases. Additionally, the RMSE of the fusion model is signifi
cantly lower than that of other models on both days. 

In terms of the median value of the daily error, the fusion model’s 
medians are closest to zero (0.49 W/m2 and − 0.69 W/m2 for the two 
days), whereas other models show medians that are either considerably 
larger or smaller than zero. This observation suggests that the fusion 
model can provide more reliable irradiance simulation results with 
fewer embodied errors for a daily scope. The high temporal resolution 
data (short timesteps) provided by the fusion model can ultimately 
enhance PV module performance prediction, facilitating a more 

Fig. 17. Calculated sky clearness index during the validation period, wherein days with clear sky are in red, days with overcast sky are in blue. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Results of simulations during the whole validation study with different models, with (a) days with mostly clear sky and (b) days with mostly overcast sky.  
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accurate quantification of mismatch losses under dynamic tree shading 
impacts. In addition, from Fig. 16 we can also observe that Peronato 
et al. (2016) and Hwang et al. (2014) also have medians closer to 0. 
Analogous to the fusion model, they exhibit a more uniform data 
dispersion on either side of the box plot, as evidenced by the similar 
absolute values of the first and third quartiles. This characteristic 
effectively accounts for their smaller cumulative relative errors in 
Fig. 15, as the errors arising from overestimation and underestimation 
tend to counteract each other. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k
•
∑k

t=1

(
Esimulated,t − Emeasured,t

)

√
√
√
√ (15)  

3.5.2. Long-term results 
To evaluate the performance of different models in solar irradiance 

simulation for a longer-term period, we performed a thorough data 
analysis comparing the measured data and the simulation results over 
the entire measurement period (45 days). The results are examined ac
cording to different sky conditions, i.e., clear sky and overcast sky, as 

characterized by the sky clearness index KT [-] [73]. Equation (16) il
lustrates the calculation of sky clearness index, which is defined as the 
ratio of global horizontal irradiation (GHI) against extraterrestrial solar 
irradiation. The daily sky clearness index during the measurement 
period as shown in Fig. 17, using KT = 0.42 as a threshold to distinguish 
days with generally clear and cloudy skies. 

KT =
1
k
•
∑k

t=1

GHIt

Gextraterrestrial,t
(16) 

To facilitate a more comprehensive analysis among different sets of 
simulation results, we introduce an additional performance metric, 
referred to as the small error fraction (SEF) [%]. The SEF is quantified as 
the proportion of simulated data points with relative error of less than 
20% compared to the corresponding actual data (Equation (17)). 

SEF =
Nrelativeerror<20%

Ntotal
× 100% (17) 

Fig. 18a and 18b present scatter plots illustrating the long-term 
simulation results under clear sky and overcast sky conditions, 

Fig. 19. Major irradiance discrepancies in the two days for analysis, with (a) May 15 and (b) May 22.  
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respectively. In each subplot, the x-axis represents the measured data, 
while the y-axis corresponds to the simulated irradiance. For clear sky 
results, the fusion model demonstrates remarkable performance, with 
the majority of data points distributed along the diagonal line. The SEF 
of the fusion model also exhibits the highest value at 46.0%, signifi
cantly surpassing other models, which aligns with our findings in Sec
tion 3.5.1 that the fusion model provides more accurate results under 
dynamic partial shading conditions induced by trees. 

Regarding the results of other models under clear sky, the solid 
models with gaps and semi-transparent models show similar perfor
mance, with a portion of their simulated data points closely aligned with 
the measured values during high-irradiation periods (>400 W/m2); 
however, the irradiance results are predominantly underestimated for 
the remaining timesteps. Modeling trees as opaque solids results in a 
substantial underestimation of irradiance values for numerous time
steps, with most data points situated at the bottom of the chart. 

Moreover, scatter points of full point cloud models also show a trend of 
distribution along the diagonal, but generally overestimate irradiance 
data with SEF at 39.8%. The overestimation in point cloud models arises 
from assuming uniform sky segment contributions to reflections, as 
discussed in Section 1.2.2. For the complex urban scene considered in 
this study, the reflection contribution varies considerably across the sky 
segments, leading to inevitable errors when assuming equivalent 
contributions. 

As for overcast sky results, the fusion model does not significantly 
outperform other models as in the case for clear sky; nevertheless, it still 
exhibits the highest SEF at 36.95%. A higher concentration of the fusion 
model’s data points is observed near the diagonal, particularly for 
irradiation conditions with measured irradiance ranging from 200 W/ 
m2 to 550 W/m2. For the full point cloud models, as with clear sky re
sults, irradiance is consistently overestimated during most timesteps, 
yielding a SEF of 36.12%. Moreover, the performance of gapped-solid 

Fig. 20. Fisheye photo captured by SunEye-210 for data analysis, with (a) original photo and (b) processed photo with highlighted obstructions (in green) and solar 
path. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 21. The resampled solar obstructions from fisheye photo (in red) and fusion model (in blue) in the orthogonal solar azimuth-elevation coordinate. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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and semi-transparent models remains relatively consistent, with signif
icantly overestimated and underestimated data points evenly distrib
uted in areas close to the axes. Finally, opaque solid models continue to 
exhibit the poorest performance, with a considerable number of 
underestimated data points discernible along the x-axis. 

4. Discussion 

The purpose of the present study is to develop and validate a hybrid 
point-cloud and surface model based method for solar irradiation 
modeling under partial shading impacts of trees. Through validation 
experiments, we demonstrate the outstanding performance of the hybrid 
model. In the following subsections, we will analyze the primary sources 
of error in the simulations, and provide a comprehensive discussion on 
the significance, limitations and outlook of the present study. 

4.1. Presence of discrepancies 

In the inter-model comparison, the fusion model outperformed state- 
of-the-art models. However, as shown in Figs. 13 and 14, there are still 
notable discrepancies between the results of the fusion model and the 
actual measurements at some specific timesteps. In this section, we will 
delve into the potential causes behind these observed discrepancies. 

4.1.1. Identification of major discrepancies 
To visualize the discrepancies between fusion model outputs and the 

measured data more intuitively, we have plotted these two sets of data 
separately in Fig. 19, where the periods with significant discrepancies 
are highlighted by colors with serial numbers. Periods of major under
estimation are marked in red, while overestimations are indicated in 
blue. For the results of May 15 (Fig. 19a), it can be found that the 
irradiance was underestimated during five time periods, including early 
morning, while overestimated in three periods, one of which occurred in 
the evening. For May 22 (Fig. 19b), we found a similar underestimation 

Fig. 22. Marked major discrepancies between fusion model output and measured data on May 15 with (a) tree shading area SVM prediction results and (b) minute- 
based irradiance data. The discrepancies with different causes are highlighted by different colors. 
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and overestimation pattern in morning and evening time. 

4.1.2. Reasons for discrepancies 
To investigate the reasons for the major discrepancies in irradiance 

data under shading impacts, a horizontal fisheye photo of the validation 
area was captured by a SunEye-210 portable shade evaluation camera, 
manufactured by Solmetric. SunEye-210 has a built-in GPS and solar 
shading assessment system, which is able to process the original 
captured photo (Fig. 20a) to the photo with highlighted shading ob
structions and annual local solar path throughout the sky (Fig. 20b). 

The obstructions identified in the fisheye photo were classified into 
two categories: building obstructions and leaf obstructions. Both types 
of obstructions were subsequently resampled and projected onto an 
orthogonal solar-azimuth elevation chart, as illustrated in Fig. 21. In this 
figure, red dots denote resampled leaf points, while red solid areas 
correspond to the resampled buildings. The coordinate positions of these 
fisheye photo-resampled obstructions align with their respective loca
tions in the solar path depicted in Fig. 20b. 

Obstructions derived from the fusion model, which includes point 

Fig. 23. Marked major discrepancies between fusion model output and measured data in May 22 with (a) tree shading area SVM prediction results and (b) minute- 
based irradiance data. The discrepancies caused by different reason are highlighted by different colors. 

Fig. A1. Generated discretized sky with 2305 sky segments.  
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clouds of trees and solid models of buildings, were also resampled and 
displayed in a manner consistent with the information in the fisheye 
photo (Fig. 21). Furthermore, to demonstrate the workflow, the solar 
paths for the analysis day (May 15) and two additional days in January 
and March, characterized by varying solar paths, were plotted on the 
chart. It is worth noting that the building block dimensions in the fusion 
model are smaller than those in the fisheye photo. This observation 
aligns with the findings of Tian et al. [11], who reported that building 
solid models experience shrinkage during the reconstruction process. 

In Fig. 21, it is observed that the solar path on May 15 does not 
directly intersect the building; instead, it traverses the region with leaf 
points. Consequently, it can be inferred that the primary source of direct 
shading in the area under investigation stems from the leaves and 
branches. Nevertheless, the substantial overlap between the leaf points 
from both datasets, coupled with the pronounced disparities in point 
density, complicates the specific analysis and comparison of the time 
and locations where shading impacts manifest. To tackle this challenge, 
we utilized Support Vector Machine (SVM) classifications [74] to 
delineate the leaf areas in the distinct models, thereby determining the 
sky regions blocked by leaves in both the fusion model and fisheye 

photo. By scrutinizing the variations in the predicted leaf areas across 
the two models, we can more precisely pinpoint the factors that give rise 
to the major discrepancies between the simulation outcomes and the 
measured data. A comprehensive explanation of the SVM-based leaf 
shading area determination methodology is presented in Appendix C. 

The determined leaf area for May 15 is illustrated in Fig. 22a, where 
the red region denotes the actual leaf shading area derived from fisheye 
photo, while the blue region represents the shading area within the 
fusion model. The solar paths for periods associated with significant 
discrepancies in Fig. 22a are marked by colored blocks, with respective 
serial numbers that correspond to the serial numbers of the discrep
ancies in the irradiance comparison results in Fig. 22b. To further 
streamline the analysis, we simulated the irradiance considering two 
more scenarios: one without reflections and disregarding all obstruc
tions, and another accounting for the diffuse component within the 
incident irradiance at the sensor point. The simulation results of non- 
reflection case and diffuse component are presented in Fig. 22b along
side the previously mentioned fusion model results and the measured 
data. 

In Fig. 22a, the solar path shows minimal obstruction until 8:00 am 

Fig. A2. Example of Pyrano sky segment cover ratio calculation: (a) Point cloud (in color ramp) and sensor points (highlighted by yellow) for calculation; (b) 
Projected point cloud on the discretized sky hemisphere; (c) Calculated cover ratio from point projection results. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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(Index 1) on May 15 and between 17:30 and 20:00 (Index 8). Despite 
this, the modeled incident irradiance of the fusion model in Fig. 22b 
reveals clear discrepancies when compared to the measured values 
during these time intervals. 

In the morning hours (Index 1), the fusion model results, both 
considering and excluding reflections, show minor differences and are 
consistently below the measured values, indicating a less substantial 
reflection component. Fig. 22b further highlights the diffuse component 
as a marginal contributor to the total incident irradiance in these 
morning hours. Analyzing these findings with the visual context of 
Fig. 8a, it can be inferred that the morning discrepancy is primarily due 
to the underestimated direct irradiance component reflected from the 

eastern open space. Despite trees obstructing a large portion of the sky 
diffuse irradiance, the minor role of diffuse component at this time 
suggests the underestimated albedo reflection from eastern side likely 
drives the observed morning discrepancy. 

In contrast, during evening hours (Index 8), the fusion model’s 
outputs diverge, with the results incorporating reflections exceeding the 
measured values, while those excluding reflections remain lower. This 
divergence underscores an increased reflection component in the eve
ning compared to the morning hours, indicating an overestimation of 
albedo reflections from the western, tree-covered area. As the diffuse 
component dominates the incident irradiance during these hours, this 
overestimated reflection significantly influences the total modeled 

Fig. A3. Estimated daylight coefficient distribution over the discretized sky hemisphere with (a) Radiance matrix-based method and (b) Pyrano matrix- 
based method. 

Fig. A4. Schematic workflows for simulating solar irradiance with (a) Radiance matrix-based method, (b) Pyrano matrix-based method.  
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irradiance, leading to higher model outputs relative to the measure
ments. Therefore, the evening discrepancy is attributed to this over
estimation of albedo reflections from the west. These albedo reflection- 
related discrepancies are emphasized in orange in Fig. 22a. 

For the discrepancy (in green) between 8:30–9:00 (Index 2) and the 
one between 16:30–17:00 (Index 7), it can be observed in Fig. 22a that 
during these time periods, the solar path is obstructed by leaves in the 
fusion model, while in reality, it is not obstructed by trees (as evidenced 
by the fisheye photo). Consequently, the fusion model results presented 
in Fig. 22b are significantly lower than the measured values. Upon 
examining Fig. 21, it is apparent that this incongruity in leaf area may be 
attributed to the shedding of branches during tree growth. Since the tree 
point clouds in our fusion model were collected in 2017, changes in tree 
morphology over time have not been accounted for, leading to the 
discrepancies. 

Regarding the observed discrepancies between 9:00–10:00 (Index 3) 
and 14:00–15:00 (Index 6), as depicted in blue, the solar path in Fig. 22a 
is obstructed by both sets of trees, yet the values simulated by the fusion 

model in Fig. 22b are notably lower than the measured data. The pri
mary cause of this inconsistency can be attributed to an excessive leaf 
point density in the LiDAR-collected tree data, an issue known as the 
multiple return effect, which has been thoroughly investigated in [75]. 
This increased leaf point density results in an overestimation of the tree 
shading ratio within the sky segment where the sun is positioned, sub
sequently leading to underestimations of solar irradiance. 

During the two remaining discrepancies (in grey), situated between 
10:00–11:00 (Index 4) and 13:00–13:30 (Index 5), Fig. 22a illustrates 
that the solar path traverses the region collectively shaded by both sets 
of trees. However, the irradiance data in Fig. 22b during the corre
sponding periods appear to be predominantly overestimated. This 
overestimation can also be attributed to tree growth, which results in a 
lower leaf point density at specific positions in the previously collected 
point clouds, compared to the actual values, as illustrated in Fig. 21. The 
lower leaf point density causes the calculated tree shading ratio of the 
sky segments near the solar position to be lower than the actual ones, 
eventually resulting in overestimations of irradiance. 

As for the discrepancies observed in the results for May 22 in Fig. 23, 
the underlying causes are fundamentally similar to those identified for 
May 15. Discrepancies associated with indices 1 and 8 can be attributed 
to the underestimation and overestimation of albedo reflection, 
respectively. Discrepancies at indices 2 and 6 arise from the solar path 
being obstructed by tree branches in the fusion model, even though they 
are absent in reality. The discrepancy at index 3 stems from the lower 
leaf point density in the fusion model’s corresponding position 
compared to the actual value, leading to a reduced tree shading ratio. In 
contrast, discrepancies with indices 4 and 5 are a consequence of the 
multiple return effect, which causes the local leaf point density to be 
higher than the real value, resulting in an overestimated tree shading 
ratio. Finally, it is worth mentioning that the discrepancy with index 7 
(highlighted in red) between 17:00 and 17:30 is caused by the fact that 
the local tree shading area is smaller than the actual size, so the fusion 
model fails to simulate the shading impacts during this time, resulting in 
the overestimation of irradiance in Fig. 23b. 

In summary, our analysis reveals that the primary source of uncer
tainty in the hybrid modeling method stems from mismatches between 
the actual tree morphologies and their representations in the point 
cloud, which arise due to tree growth. Additionally, albedo reflections in 
complex urban environments and the multiple return effect during 
LiDAR point cloud collection further contribute to the inevitable errors 
in the simulation. 

Fig. C1. Generated sky point grid (in light orange) and leaf points for SVM classification. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. C2. Score matrix of the grid search SVM parameter determination.  
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4.2. Significance 

In the present study, we observed substantial variations in irradiance 
calculation results across diverse tree modeling approaches. Comparing 
the high temporal resolution simulation results to the measured data, we 
found that the fusion model notably surpasses the performance of other 
models. Thereby the primary significance of the present study is 
providing an advanced method for accurately predicting tree partial 
shading impacts in solar irradiance or PV performance modeling. 

Additionally, the second key significance is the high scalability of our 
fusion model-based method, which utilizes readily available urban point 
clouds as input while minimizing human intervention. Our experiments 
demonstrate effective integration between the DGCNN segmentation 
model, surface reconstruction algorithm, and matrix-based irradiance 
calculation. This automated workflow allows the method to be appli
cable for simulations across various scales and regions. 

Furthermore, the proposed fusion model based method can signifi
cantly strengthen the linkage between building performance simulation 
(BPS) tools and detailed solar irradiance simulation. In particular, the 
accurate irradiance data obtained by the fusion model can be directly 
utilized in building-integrated PV (BIPV) system studies and broader 
building energy system simulations [76]. The tree shading ratio derived 
from the irradiance calculation can replace the built-in shading module 
in EnergyPlus, thereby increasing the accuracy of cooling/heating load 
and solar shading system simulations [77]. Furthermore, the fusion 
model’s capability of automatically reconstructing building geometry 
simplifies the preparation of BPS simulations by converting the geom
etry into file formats compatible with BPS tools, such as IDF for Ener
gyPlus and gbXML for DesignBuilder. 

4.3. Limitations 

Through the in-depth analysis of the major discrepancies between 
fusion model results and measured data, we determined that tree 
growth, seasonal defoliation, and regrowth are the primary sources of 
error. Utilizing point cloud information from previous years may be 
outdated and can introduce bias. However, the uncertainties present in 
the LiDAR data employed in this study are deemed acceptable, as the 
resulting errors in fusion model outputs during the experiments remain 
significantly smaller than those of other models. 

In this study, the impact of tree shading was only simulated during 
the spring and summer period. Due to the use of fixed point cloud in
formation, the current methodology is only applicable to evergreen tree 
species and deciduous tree species at specific times. For annual simu
lations, the defoliation and regrowth characteristics of deciduous species 
may influence the simulation accuracy to some degree. Therefore, 
incorporating tree phenology and leaf senescence characteristics of de
ciduous trees is essential for enhancing the model’s performance. 

Finally, while examining the major discrepancies, we discovered that 
the tree shading ratio of sky segments can be overestimated by the 
multiple return of tree points in the LiDAR sampling process. Conse
quently, determining how to distinguish and mitigate the multiple re
turn effect during modeling is an issue that future research should 
address. 

4.4. Outlook 

To address limitations such as tree morphology mismatch between 
LiDAR data and actual conditions, and the seasonal defoliation and 
regrowth features of deciduous trees, future research could employ data- 
driven approaches to interpolate or exclude leaf points, thereby more 
accurately modeling tree growth behaviors. The recent work by Pan and 
Jakubiec [2] investigated the seasonal variation of leaves for different 

deciduous tree species and compiled the data into an open-source 
database, presenting an opportunity to enhance irradiance simulations 
involving trees. 

Moreover, given that solar irradiance is the most significant factor 
influencing PV system yield, the accurate irradiance results provided by 
the fusion model could be integrated with PV performance models in 
future studies to improve energy generation predictions for urban 
distributed PV systems subjected to dynamic partial shading impacts. 

Additionally, the trained DGCNN model in the present study dem
onstrates promising performance in semantically segmenting (identi
fying) objects within urban point clouds. Its potential could be further 
explored in follow-up research, such as assigning different ground al
bedo values to various regions based on segmentation results, thus 
mitigating errors caused by albedo reflection in simulation results, as 
previously analyzed. 

5. Conclusion 

In this study, we introduce the concept of fusion model as a novel 
representation of complex urban environments and propose an associ
ated workflow for accurate solar irradiance prediction under partial 
shading impacts of trees. Our fusion model-based method demonstrates 
adequate performance in high temporal resolution irradiance prediction 
experiments, indicating that local transmission features of trees and 
surrounding reflections play a crucial role in modeling dynamic shading 
impacts of trees. Compared to other representative models, the fusion 
model results in significantly lower simulation errors. For the two clear 
spring days we examined, the relative error differences between the 
fusion model and the worst case reach up to 80% and 78%, respectively. 
For long-term modeling, the differences in SEF under clear sky and 
overcast sky conditions amount to 10.9% and 3.8%, respectively. 

Furthermore, we discovered that sky conditions have a considerable 
impact on irradiance modeling performance, with calculation accuracy 
under clear skies being notably higher than under overcast skies. 
Therefore, when conducting simulations under overcast sky conditions, 
the uncertainties embedded in the results should be considered with 
additional caution. 

The presented workflow offers high scalability, enabling automated 
irradiance simulations at different scales, such as performing solar 
assessment for individual buildings or large urban areas using only point 
cloud data as input. The fusion model based method is expected to 
effectively inform decision-making for sustainable building design and 
urban planning by comprehensively accounting for solar resources in 
cities. Additionally, our method presents the potential to enhance the 
collaboration between BPS and detailed solar irradiance modeling. By 
providing more accurate irradiance data, improvements in the accuracy 
and effectiveness of BPS and building-integrated PV (BIPV) systems 
modeling tools can be expected in the future. 
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Appendix A 

A.1 Radiance matrix-based method 

Radiance is arguably the most prevalent tool utilizing matrix-based methods for solar irradiation and daylight simulations in state-of-the-art 
research. Radiance matrix-based calculation involves three major steps. 

Discretized sky generation. A discretized sky is a numerical approximation of a continuous sky model [55], expressed by dividing the hemispherical 
sky dome into multiple segments. Radiance’s default is to use the Reinhart division method for sky discretization [78], which is the most common 
discretization for matrix-based daylight calculation. Fig. A1 shows an example of a discretized sky hemisphere. 

Sky radiance matrix generation. Radiance adopts the well-known Perez all-weather sky model that considers both direct and diffuse irradiance based 
on data from the input weather file, and distributes this across the discretized sky hemisphere. The output is a matrix that records the radiance values 
of each sky segment, as so-called sky radiance matrix. At each timestep of the simulation, a different sky radiance matrix is used to incorporate the 
effect of changing sun position and weather conditions. 

Daylight coefficient matrix calculation. The daylight coefficient describes the flux-transfer relation between a luminous sky segment and a sensor 
point [56]. By using a backward raytracing technique, Radiance is able to quantify the coefficient between the sensor point to each sky segments, and 
finally form a daylight coefficient matrix [55]. Readers can refer to [52] for more detailed description of the raytracing operation. 

By multiplying the daylight coefficient matrix with the sky radiance matrix, the irradiance contribution of each sky segment to the sensor points 
can be calculated. The final incident irradiance can be derived by summing up the irradiance contributions of all sky segments. 

A.2. Pyrano matrix-based method 

Different to the Radiance matrix-based method that takes a model with solid surfaces as input, the Pyrano matrix-based method directly performs 
daylight calculation based on LiDAR point cloud data. Benefiting from the detailed environmental information provided by the point cloud, Pyrano 
can take most of the surrounding obstructions into account to preserve sufficient accuracy in the calculation results. 

Pyrano’s simulation also necessitates the generation of sky radiance matrix based on the discretized sky hemisphere. However, for the calculation 
of daylight coefficient matrix, instead of ray tracing, Pyrano implements the computational point projection method, which involves three main steps: 
(1) Calculate analytical daylight coefficient matrix for an empty scene; (2) Calculate cover ratio matrix of the sky segments based on projecting the 
point cloud onto the sky hemisphere, which expresses the ratio of a certain sky segment area blocked by the obstructions. An example for cover ratio 
calculation is shown in Fig. A2; (3) Calculate the contribution ratio of sky segments to the received reflected irradiance and combine them with the 
daylight coefficient matrix as incremental values. 

The final daylight coefficient matrix is obtained by multiplying the analytical daylight coefficient matrix with the cover ratio matrix, and then 
adding the reflection contribution ratio to the calculated values. The subsequent irradiance calculation process is identical to that of Radiance, 
involving the multiplication of the daylight coefficient matrix with the sky irradiance matrix and the summation of the values within the output 
matrix. For a more comprehensive description of analytical daylight coefficient and cover ratio calculation procedures, readers can refer to [52]. 

A.3. Canopy local transmittance modeling by Pyrano 

A characteristic benefit of the Pyrano matrix-based method is its ability to model the semi-transparent properties of trees. Since it first projects the 
point cloud onto the sky hemisphere, then determines the corresponding cover ratio based on the point sparsity in each sky segment, and ultimately 
obtains the daylight coefficient between that sky segment and the sensor point. In urban point clouds, tree canopy points are non-uniformly 
distributed: denser foliage areas with limited solar irradiation penetration have closely spaced points, while sparser foliage areas with greater irra
diation penetration have more widely dispersed points. Consequently, when tree points are projected onto the sky, fewer points will be found in the 
sky segments corresponding to sparser foliage areas, resulting in a smaller cover ratio. Conversely, more points will appear in the sky segments 
corresponding to denser foliage areas, yielding a larger calculated cover ratio. 

Fig. A3 illustrates the estimations of shading impacts from standalone tree canopies on a nearby ground sensor point using different matrix-based 
methods. As depicted in Fig. A3a, Radiance treats the trees as completely opaque, resulting in minimal contributions from sky segments obstructed by 
the trees to the irradiance received at the sensor point (shown in full black). Conversely, Fig. A.3b demonstrates that Pyrano allows some sky segments 
behind the trees to maintain high daylight coefficients (outlined by red dashed line). This indicates that the irradiance from these segments can 
penetrate the tree canopy and reach the sensor point. 

A.4. Differences in simulation workflow 

Building upon the preceding discussion, Fig. A4 provides a schematic representation that delineates the differences between the solar irradiance 
calculation workflows for the Radiance matrix-based method and the Pyrano matrix-based method. 

Appendix B 

B.1 Pyranometer technical information  

Usage Façade irradiance measurement for validation 
Manufacturer Kipp & Zonen 
Pyranometer model CMP 11 
Serial number 101,399 
Sensitivity 8.68 µV/W/m2 

Impedance 30 Ohm 
Temperature 22 ± 2 ℃ 
Calibration date February 02, 2010 
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Appendix C 

C.1 SVM leaf shading area prediction 

Support Vector Machine (SVM) is a supervised learning algorithm employed for both classification and regression tasks. It constructs an optimal 
hyperplane that maximizes the margin between classes to effectively separate data points [74]. Owing to its robust generalization capability and 
proficiency in handling high-dimensional data, SVM has become prevalent in point set classification. 

In this study, we implemented SVM for predicting the leaf shading area by generating a uniformly dense point grid representing the open sky. This 
grid had azimuth-axis intervals and elevation-axis intervals of 1.8 and 0.9 degrees, respectively, and was positioned behind the two sets of projected 
leaf points (Fig. C1). Subsequently, SVM was applied to classify sky points as either inside or outside the shading area created by the leaf points within 
both the fusion model and the fisheye photo. 

The Radial Basis Function (RBF) is used as the kernel of the SVM classifier, which is implemented in the Scikit-learn Python package [79]. This RBF 
kernel facilitates non-linear soft-margin classification, with the performance predominantly governed by two parameters: C and γ. The parameter C 
manages the soft-margin cost function, enabling adjustment of the trade-off between misclassifying training data points and creating an overfitted 
decision surface. Meanwhile, γ defines the radius of influence a training point has on the SVM model, with smaller values of γ lead to more distinct, 
localized class boundaries. 

In order to determine the optimal C and γ values for SVM classification, we employed a grid search method. This involved dividing each leaf point 
dataset into 10 smaller subsets (folds) and iteratively training the SVM model on nine of the folds using a specified parameter set [C, γ], before testing 
the model on the remaining fold. C and γ values were considered in a range from 0.01 to 200. 

The scoring metric for the grid search in this study was calculated based on recall and precision values, as introduced in Section 2.1.2. The scoring 
formula is provided in Equation (C.1), where m represents the number of datasets (equal to 2) and n denotes the number of folds in the grid search (10 
in this case); the Wrc and Wpc are the weights assigned to recall and precision, respectively. Given the task requirement for the classifier to accurately 
outline all leaf points while minimizing the misclassification of negative sky points as positive, both Wrc and Wpc were assigned a value of 0.5. 

Score =

∑m
i=1

∑n
j=1

(
recall • Wrc + precision • Wpc

)

m × n
(C.1) 

The grid search results are illustrated in Fig. C2, revealing that the optimal performing SVM model can be trained using [C, γ] sets within three 
distinct regions: (1) with γ set to 1 and C ranging between 0.05 and 1, (2) with C set to 0.01 and γ ranging between 1 and 50, and (3) with C set to 0.05 
and γ ranging between 50 and 200. Based on these findings, the parameter values C = 0.05 and γ = 75 were selected for predicting the final leaf 
shading area in the present study. 
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