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We present an improved performance analysis of select-and-extend heuristics for the metric traveling 
salesman problem. Our main contributions concern the Arbitrary Addition and Farthest Addition methods.
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1. Introduction

The traveling salesman problem (TSP) is a fundamental and well-
known problem in combinatorial optimization [10]. An instance of 
the TSP consists of n cities 1, 2, . . ., n together with non-negative 
distances d(i, j) for 1 ≤ i, j ≤ n. A partial tour is a path that visits 
each of the cities at most once. A tour visits each of the n cities 
exactly once, and in the end returns to its starting point. A sub-
tour is a tour on a subset of the cities. The objective in the TSP is 
to find a tour of minimum length 

∑
i d(i, ji), where ji is the direct 

successor of i in the tour.
Throughout this note, we assume that the distances are sym-

metric and hence satisfy d(i, j) = d( j, i) for all 1 ≤ i, j ≤ n. 
Moreover, we assume that the distances satisfy the triangle in-
equality: d(i, k) + d(k, j) ≥ d(i, j) for all 1 ≤ i, j, k ≤ n. We re-
fer to this setting as the metric TSP. Special cases are the Eu-
clidean TSP, where city i has coordinates (xi, yi) and d(i, j) =√

(xi − x j)
2 + (yi − y j)

2, and the graphical TSP, where cities are 
the nodes of a graph G , and d(i, j) is the number of edges in a 
shortest i- j-path in G . Finally we have the network TSP, where 
cities correspond to nodes in some weighted graph and distance 
d(i, j) is the minimum length of an i- j-path.

There is a host of tour constructing heuristics for the metric 
TSP, ranging from greedy and myopic strategies to more sophis-
ticated approaches that try to capture the overall distance distri-
bution. The seminal paper by Rosenkrantz et al. [12] discussed a 
wide range of such heuristics and provided a performance analysis 
of several of them. We first give a brief overview of several meth-
ods, and summarize in a table the known results on their worst 
case performance. We refer to the literature for a more extensive 
treatment of the methods, and their worst-case analysis. Note that 
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without the assumption of the metric property, no approximation 
algorithm with finite worst-case ratio exists, unless P = N P . Such 
approximation would be able to distinguish between graphs that 
have or have not a Hamiltonian tour.

The nearest neighbor rule (NNR) is a greedy heuristic. It starts 
with an arbitrarily chosen city x1 as partial tour. Then NNR repeats 
the following step for k = 1, . . . , n − 1: if the current partial tour is 
x1, . . . , xk , then let xk+1 be the city not yet contained in the partial 
tour that is closest to xk; ties are broken arbitrarily. In the end, the 
NNR tour returns from city xn to city x1.

The Greedy-edge construction of a tour amounts to sorting all 
edges by increasing length and then selecting edges in this order 
provided the resulting edge set is a subset of some Hamiltonian 
tour.

A wide range of heuristics discussed in [12] use the so-called 
select-and-extend paradigm. These algorithms start with an arbi-
trarily chosen city x1 as a sub-tour on one node. Next the following 
steps for k = 1, . . . , n − 1 are repeated: if the current sub-tour 
is x1, . . . , xk, x1, then let xk+1 be the next city selected from the 
remaining cities. The sub-tour is then extended by inserting the 
selected city between some pair of consecutive sub-tour vertices. 
Different implementations of the selection and the extension pro-
cedure lead to a plethora of heuristics. In this setting, also NNR 
can be seen as a select-and-extend type of heuristic, where the 
selected vertex is inserted between the last vertex added and the 
starting vertex.

For extending a sub-tour with a selected vertex we consider two 
options, Addition and Insertion. For Addition of a selected vertex i
into the intermediate sub-tour T , a closest sub-tour vertex j is 
selected, i.e., d(i, j) = mink∈V (T ) d(i, k). Then vertex i is inserted in 
the sub-tour next to vertex j, by selecting arbitrarily one of the 
edges ( j, k) ∈ E(T ) and replacing it with {( j, i), (i, k)}. It is easily 
verified that the increment in tour costs is bounded by 2d(i, j) by 
the triangle inequality. By abuse of notation, in this note we let 
both (i, j) and ( j, i) represent the edge {i, j}. For Insertion of a 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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Table 1
Worst case ratios for TSP heuristics.

Overview worst case ratios TSP-heuristics

heuristic upper bound lower bound reference

Nearest Neighbor 1
2 (1 + lg∗(n)) (1 − ε) 1

2 (1 + lg(n)) here §2, [12], [7], [5], [11]
Greedy (edge) 11

6 + 1
3 � 1.5log(� 1

2 n� − 2) � 1
3

log(n)
loglog(n)

[3]

Arbitrary Addition lg∗(n − 1) lg∗(n − 1) here §3
Farthest Addition ≈ lg∗(n) − 1

2 ≈ lg∗(n) − 1
2 here §4

Nearest Addition 2(n − 1)/n 2(n − 1)/n [9], [12]
Cheapest Addition 2(n − 1)/n 2(n − 1)/n [9], [12]

Arbitrary Insertion lg∗(n − 1) log(n)
0.5+loglog(n)

here §3, [1]

Farthest Insertion ≈ lg∗(n) − 1
2 6.5 here §4, [6]

Nearest Insertion 2(n − 1)/n 2(n − 1)/n [9], [12]
Cheapest Insertion 2(n − 1)/n 2(n − 1)/n [9], [12]

Nearest Merger 2(n − 1)/n 2(n − 1)/n [9], [12]
Doubled MST 2(n − 1)/n 2(n − 1)/n [9], [12]

Christofides-Serdyukov 1.5 − 1
2 /	 1

2 n
 1.5 − 1
2 /	 1

2 n
 [2], [9]
selected vertex i into the intermediate sub-tour T , all edges ( j, k)

in the sub-tour are considered and a detour cost d(i, j) + d(i, k) −
d( j, k) is computed. The edge ( j, k) with minimum detour cost is 
then selected, and i is then inserted between j and k. Ties are 
broken arbitrarily.

In order to select the next vertex, we consider four options. As 
a first, we take any arbitrary vertex as the next one. This yields the 
methods Arbitrary Addition and Arbitrary Insertion. Alternatively, we 
can select the node that has largest distance to the set of nodes 
in the current sub-tour. It seems counter-intuitive to extend a sub-
tour by a node furthest away, but in this way the whole “area” 
gets “covered” rather quickly. Outliers get caught first, and less 
important decisions are postponed. This choice yields Farthest Ad-
dition and Farthest Insertion. The third option would be to select 
the node that has smallest distance to the set of nodes in the 
current sub-tour. This yields methods called Nearest Addition and 
Nearest Insertion. Finally we may select that node for which subse-
quent Addition or Insertion will lead to the lowest increase in tour 
costs. Ties are broken arbitrarily. The resulting methods are called 
Cheapest Addition and Cheapest Insertion. The latter two methods 
bear resemblance to building minimum weight spanning trees us-
ing Prim-Dijkstra.

In addition we mention some methods that are more focused 
on the global result. Nearest Merger starts with n single node sub-
tours. In each step it selects two nearest sub-tours, and merges 
them into a new sub-tour by exchanging two sub-tour edges 
against two new edges, at a minimum increase in tour costs. The 
method relates to the Kruskal method for obtaining a minimum 
weight spanning tree. Doubled MST simply starts from a minimum 
weight spanning tree, doubles all the edges, finds a Eulerian tour 
along these edges. After short-cutting paths of length 2 that visit 
a vertex for a second time, we end up with a tour, the length of 
which is not more than twice the length of the minimum weight 
spanning tree we started with. This is again because of the trian-
gle inequality. Finally the method by Christofides-Serdyukov actually 
fine-tunes the Doubled MST method, by realizing that only the 
odd-degree nodes in the minimum weight spanning tree need to 
be paired up and connected by a set of extra edges, so as to arrive 
at a Eulerian graph.

Table 1 gives an overview of known bounds on the worst case 
performance of these TSP heuristics. The upper bounds are based 
on tailored analysis, the lower bounds are based on constructions 
of families of instances, either in the plane, or based on an under-
lying graph metric. We also give references where proofs can be 
found. Here the function lg(x) denotes the base 2 logarithm.
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The main result in [12] is a worst-case analysis of NNR, which 
shows that the worst-case ratio of any reasonable select-and-
extend heuristic is at most O (lg(n)). Moreover, it provides a family 
of TSP-instances for which the length of some NNR tour is a factor 
1
3 lg(n) times the optimal tour length. This settles the worst-case-
ratio of NNR, up to a constant factor.

In this note, we try to fix the constant in the leading term of 
the worst-case ratio. We tighten the analysis of the worst case per-
formance for a range of select-and-extend heuristics, and provide 
an upper bound using a subtle modification lg∗ of the base 2 log-
arithm lg. For Arbitrary Addition we provide a lower bound on the 
worst case ratio that comes arbitrarily close to the improved up-
per bound, for all n ≥ 3. The lower bound consists of a family of 
network TSP instances. For Farthest Addition we provide an even 
tighter analysis of the upper bound on the worst case ratio. Next 
we provide a matching lower bound on the worst case ratio, again 
for all n ≥ 3. The matching bounds come from two distinct families 
of network TSP instances.

2. Upper bounds on TSP heuristics

Rosenkrantz et al. [12] actually prove that for the metric TSP, 
the worst case ratio of many heuristics is bounded from above by 
�lg(n)� + 1. This proof is based on a lemma that can slightly be 
sharpened. We reformulate the lemma and give a useful extension. 
Our proofs are actually less intricate than the ones proposed by 
[12].

Definition 1. Let lg∗ : (0, ∞) →R be given by: lg∗(x) := 	lg(x)
 −
1 + x · 2−	lg(x)
, for x > 0.

The function lg∗ mimics the standard base 2 logarithm lg. It is 
concave, continuous and piecewise linear, and coincides with lg(x)
in its breakpoints x = 2q , for q ∈Z, only. It satisfies, for a, b > 0:

lg∗(a + b) = 1 + lg∗(a + b

2
) ≥ 1 + 1

2

[
lg∗(a) + lg∗(b)

]
, (1)

with equality for a ≤ b with �lg(b)� ≤ 	lg(a)
 + 1.

Lemma 1. Let V = {1, . . . , n} be a vertex set, with symmetric distance 
function d : V × V →R+ , satisfying the triangle inequality and a map-
ping β : V → R satisfying: β( j) ≤ 2 · d(i, j), ∀i < j. Let � denote a 
cyclic ordering of V (a Hamiltonian cycle), with length �(�). Then

β(V ) − β(1) ≤ lg∗(n) · �(�).
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Here we use the convention that β(V ) = ∑
v∈V β(v), for any 

set V and any mapping β : V →R.

Proof. We will prove, more generally, that for W , {1}⊆ W ⊆ V :

β(W ) − β(1) ≤ lg∗(|W |) · �(�W ).

Here �W is the cyclic ordering on W defined by the restriction 
of � to W . The proof is by induction on |W |. For |W | ≤ 2 the 
proposition is trivial. The proof is continued for |W | > 2 by find-
ing some convenient partition of the edge set E W of �W . For 
i ∈ W , let si denote its successor and pi its predecessor with re-
spect to �W . Then EW = {(i, si)|i ∈ W }. Define W1:= {i ∈ W |i > si} 
and W2:= {i ∈ W |i > pi }. Then edge sets E1:= {(i, si)|i ∈ W1} and 
E2:= {(pi, i)|i ∈ W2} partition EW . We then have

β(W ) = β(W1) + β(W \ W1) ≤ 2 · d(E1) + β(W \ W1); (2)

β(W ) = β(W2) + β(W \ W2) ≤ 2 · d(E2) + β(W \ W2). (3)

Note that W1 and W2 are non-empty, that neither of them con-
tains vertex 1, and that |W \ W1|+ |W \ W2| = |W |. Hence, we 
can combine (2) and (3), and proceed by induction to find:

β(W ) − β(1) ≤ d(E1) + d(E2)

+ 1
2 · [β(W \ W1) − β(1) + β(W \ W2) − β(1) ]

≤ �(�W ) + 1
2 · [ lg∗(|W \ W1|) · �(�W \W 1)

+ lg∗(|W \ W2|) · �(�W \W 2
)
]

≤ (1 + 1
2 · [ lg∗(|W \ W1|) + lg∗(|W \ W2|)

]
) · �(�W )

≤ lg∗(|W |) · �(�W ).

The last two inequalities are based on the triangle inequality for 
the distance function, and the concavity of lg∗(x), respectively, cf. 
(1). �
If more is known about the function β , the first lemma can be 
strengthened.

Lemma 2. Let V , d, β , and � satisfy the requirements for Lemma 1 and 
let, furthermore, n ≥ 3 and β(2) + β(3) ≤ d(1, 2) + d(2, 3) + d(3, 1). 
Then

β(V ) − β(1) ≤ lg∗(n − 1) · �(�).

Proof. Again, we will prove a slightly more general statement. We 
show that, for W , {1, 2, 3} ⊆ W ⊆ V :

β(W ) − β(1) ≤ lg∗(|W | − 1) · �(�W ).

The proof is by induction on |W | and by direct use of Lemma 1. 
For |W | = 3 we have β(W ) − β(1) = β(2) + β(3) ≤ d(1, 2) +
d(2, 3) + d(3, 1) = �(�W ).
If EW ∩{(1, 2), (2, 3), (3, 1)} �= ∅, let {a, b, c} = {1, 2, 3}, with (a, b) ∈
EW . We define a set W ′ := W \ {1, 2, 3} ∪ {1′, 2′} and a distance 
function d′ : W ′ × W ′ →R+ , with d′(i, j) := d(i, j) for 4 ≤ i, j ≤ n; 
d′(i, 2′) := d(i, c) for 4 ≤ i ≤ n; d′(1′, 2′) := 1

2 (d(1, 2) + d(2, 3) +
d(3, 1)) and d′(i, 1′) := min{d(i, b) + 1

2 (d(a, b) − d(b, c) + d(c, a)), 
d(i, a) + 1

2 (d(a, b) + d(b, c) − d(c, a))}, for 4 ≤ i ≤ n.
Let β ′(i) = β(i) for i ≥ 4, β ′(1′) = β(1), and β ′(2′) = β(2) + β(3), 
then clearly β ′( j) ≤ 2 · d′(i, j) for i < j, i, j ∈ W ′ . For the cyclic or-
dering �′ on W ′ , derived from �W by identifying c with 2′ , and 
{a, b} with 1′ we have: �(�′) ≤ �(�W ). Applying Lemma 1 we find:
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β(W ) − β(1) = β ′(W ′) − β ′(1′) ≤ lg∗(|W ′|) · �(�′)
≤ lg∗(|W | − 1) · �(�W ).

If EW ∩{(1, 2), (2, 3), (3, 1)} = ∅, then there exist, as in the proof 
of Lemma 1, edge sets E1, E2, and non-empty vertex sets W1, W2, 
neither of them containing vertex 1, 2, or 3, such that

β(W ) − β(1) ≤ d(E1) + d(E2)

+ 1
2 · [β(W \ W1) − β(1) + β(W \ W2) − β(1) ]

≤ �(�W ) + 1
2 · [ lg∗(|W \ W1| − 1) · �(�W \W 1)

+ lg∗(|W \ W2| − 1) · �(�W \W 2)
]

≤ (1 + 1
2 · [ lg∗(|W \ W1| − 1) + lg∗(|W \ W2| − 1)

]
) · �(�W )

≤ lg∗(|W | − 2) · �(�W ) ≤ lg∗(|W | − 1) · �(�W ).

Induction can be applied, as both W \ W1 and W \ W2 contain 
{1, 2, 3}. �
Lemma 2 is used as follows. For any construction heuristic H that 
works by selection and extension, let the vertices be labeled ac-
cording to the order in which the heuristic selects them. Let �
denote an optimal Hamiltonian tour. Take β(1) = 0 and let, for 
i > 1, β(i) denote the detour cost to insert vertex i into the inter-
mediate tour on vertices {1, . . . , i − 1}. Then, by definition, β(2) =
2 · d(1, 2), and β(3) = d(2, 3) + d(3, 1) − d(1, 2), so β(2) + β(3) =
d(1, 2) + d(2, 3) + d(3, 1). If furthermore the extension mechanism 
is such that detour cost β( j) ≤ 2 · d(i, j) for i < j, we find that the 
length of the constructed tour T H satisfies:

�(T H ) = β(V ) ≤ lg∗(|V | − 1) · �(�) = lg∗(n − 1) · �(�). (4)

For NNR we apply Lemma 1. Let the vertices be labeled in reverse 
order of selection, and for i > 1, let β(i) denote twice the cost of 
adding vertex i − 1 to the path (i.e., β(i) = 2 · d(i, i − 1)). Let β(1)

denote twice the cost of closing the final Hamiltonian path to a 
tour, i.e., let β(1) := 2 · d(1, n). Then β(1) ≤ �(�), β( j) ≤ 2 · d(i, j)
for i < j, hence the Nearest Neighbor tour T N N satisfies:

�(T N N) = 1
2 β(V ) ≤ 1

2 · (1 + lg∗(n)) · �(�).

It has been shown in [11] that the factor 1
2 cannot be lowered.

3. Tightness for Arbitrary Addition

We now consider Arbitrary Addition. Let the cities be labeled in 
the order the heuristic selects them. It is easily verified that, if β( j)
denotes the increment in tour costs by inserting j in the interme-
diate tour, then β satisfies the requirements for Lemma 2 and thus 
upper bound (4) applies. The same is true for Arbitrary Insertion. 
We describe a family of instances of TSP for which Arbitrary Addi-
tion yields a tour with a length that is arbitrarily close to lg∗(n −1)

times optimum. Thus we prove that the upper bound is tight.
The instance involves N = 2M vertices lying on the N-cycle CN

with edges of length 1, and one auxiliary vertex, lying at distance 
ε < 1 from some vertex on the cycle. Let the vertices be labeled 
ui , for i = 0, 1, . . . , 2M , with auxiliary vertex u0 adjacent to vertex 
u2M by an edge of length ε , and vertex ui adjacent to vertex ui+1
by an edge of length 1, for 1 ≤ i < 2M . We now have a graph on 
n = 2M + 1 vertices. The instance is finally described by defining 
for each pair of vertices i, j: d(i, j) = length of the shortest (i, j)-
path along the weighted graph. It is obvious that an optimal tour 
has length O P T = 2M + 2ε .

We next describe a scenario for the Arbitrary Addition algo-
rithm which will yield a very long tour T A A . The algorithm may 
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Fig. 1. Worst possible AA tours; nodes indexed by order of selection.
start by selecting vertices u0, u2M , and u2M−1 , yielding a tour of 
length 2M + 2ε . Next, vertices u2M−2 and u3·2M−2 are selected and 
inserted. The resulting tour may be

(u0, u2M−2 , u3·2M−2 , u2M , u2M−1),

of length 2 · 2M + 2ε . The remainder of the process is best de-
scribed as a series of stages, labeled K , 1 ≤ K ≤ M − 2. In stage K, 
the algorithm selects and inserts vertices at distance 2M−2−K from 
the tour. Let stage K = 0 denote the part of the process in which 
vertices u2M−2 and u3·2M−2 have been selected.

Lemma 3. At the start of stage K ≥ 1, the following invariant holds: If 
a cycle vertex u j is contained in the intermediate sub-tour and has been 
selected in the previous stage K − 1, it is adjacent to one of its sub-tour 
neighbors by an edge of length at most ε + 2M−2 .

Proof. The proof is by induction on K . For stage K = 0 we have 
that selected nodes u2M−2 , u3·2M−2 have distance at most ε + 2M−2

from their neighbors. This establishes the base of our induction, 
for K = 1. In stage K ≥ 1, the algorithm selects vertices ui , at dis-
tance 2M−2−K from the tour. Each selected vertex has two nearest 
neighbors at that distance, one of which has been selected in the 
previous round. Breaking ties unfortunately, the algorithm may se-
lect vertex u j(i) , with u j(i) selected in the previous stage, as tour 
vertex closest to ui . Let j(i) = j(i′), with i < j(i) < i′ . By induction, 
vertex u j(i) lies on a “short” tour edge (u j(i), uk). Without loss of 
generality, we may assume that k < j(i). Inserting ui′ between uk
and u j(i) , and ui between ui′ and u j(i) yields an increase of the 
tour length with 2 · 2M−2−K , for each insertion, while the invari-
ant will hold for selected vertices ui and ui′ , as they now have 
distance 2M−1−K ≤ ε + 2M−2 from each other. If k > j(i), we first 
insert ui and next ui′ . �
The final tour has length:

A A =2ε + (1 · 2M + 2 · 2M−1 + 4 · 2M−2 + · · · + 2M−1 · 2)

=2ε + M · 2M .

Hence, the ratio A A
O P T = M·2M+2ε

2M+2ε
→ M = lg∗(n − 1), for ε → 0.

The above example works for n = 2M + 1, M ≥ 1. When m ver-
tices are to be added to the instance, with m < 2M , we can do 
so by subdividing edges of length 1 into two edges of length 1

2 . 
We do so for m edges adjacent to �m

2 � nodes selected in the final 
stage. The optimal tour length stays the same, but the heuristic 
will add cost 1 for each additional vertex. Hereby, the ratio in-
creases to A A = m+M·2M+2ε

M → M +m ·2−M = lg∗(2M +1 +m −1), 
O P T 2 +2ε

428
for ε → 0. Hence, for each n ≥ 3, a family of instances exists with 
A A/O P T → lg∗(n − 1).

For n = 2M + 1, M = 2, 3, we show worst-case Arbitrary Addi-
tion tours (in bold) in Fig. 1.

4. A tight upper bound for Farthest Addition

We now turn to Farthest Addition. It differs from Arbitrary Addi-
tion in the way nodes are selected. After selection of a first node, 
each consecutive node is one that has largest distance to the set of 
nodes in the current sub-tour. It seems counter-intuitive to extend 
a sub-tour by a node furthest away, but in practice, this selection 
method seems to work well, and often better than greedy selection 
mechanisms that try to stay close to the current tour (cf. [4],[8]).

We have shown earlier that a general class of tour construct-
ing heuristics has a worst case ratio of at most lg∗(n − 1). In order 
to prove a stronger upper bound on the worst case ratio for Far-
thest Addition and Farthest Insertion, we use a property specific 
to the farthest vertex selection mechanism. Let the vertices be la-
beled 1, . . . , n in order of selection by the heuristic. Then the extra 
information about the detour cost β( j) for adding vertex j to the 
intermediate tour is as follows:

for 1 ≤ i < k ≤ j ≤ n : β( j) ≤ 2 · d(i,k). (5)

This condition is indeed satisfied by Farthest Addition and Farthest 
Insertion, as 1

2 · β( j) ≤ min{d(i′, j)|i′ < j} ≤ min{d(i′, j)|i′ < k} =
d( j, {1, 2, . . . , k − 1}) ≤ d(k, {1, 2, . . . , k − 1}) = min{d(i′, k)|i′ < k}
≤ d(i, k), for i < k ≤ j. Using (5) we can more easily achieve the 
bound of Lemma 1.

Lemma 4. Let V = {1, . . . , n} be a vertex set, with symmetric distance 
function d : V × V →R+ , satisfying the triangle inequality and a map-
ping β : V →R satisfying: β(k) ≤ 2 · d(i, j), ∀i < j ≤ k. Let � denote a 
cyclic ordering of V (Hamiltonian cycle), with length �(�). Then

β(V ) − β(1) ≤ lg∗(|V |) · �(�).

Proof. The statement is trivial for n ≤ 2. For n ≥ 3, observe that if 
the edges {i, j} ∈ E(�), with i > j, are ordered such that

(i1, j1, i2, j2, · · · , in, jn)

is lexicographically maximal, then

n + 1 − �k

2
� ≥ ik, and 1

2 · β(n + 1 − � k
2 �) ≤ d(ik, jk),

for 1 ≤ k ≤ n. (6)
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Hence,

β(V ) − β(1) = 1
2 · β({	n

2 
 + 1, . . . ,n})
+ 1

2 · β({�n
2� + 1, . . . ,n}) (7)

+ 1
2 · (β({1,2, . . . , 	n

2 
}) − β(1))

+ 1
2 · (β({1,2, . . . , �n

2 �}) − β(1))

≤ �(�) + 1
2 · (lg∗(	n

2 
) + lg∗(�n
2 �)) · �(�)

= lg∗(n) · �(�).

The inequality is based on induction on n, the triangle inequality, 
and the observation in (6) that 1

2 β(n) ≤ d(i1, j1), 1
2 β(n) ≤ d(i2, j2), 

1
2 β(n − 1) ≤ d(i3, j3), 1

2 β(n − 1) ≤ d(i4, j4), etcetera. �
Lemma 5. Let V , d, β , and � satisfy the requirements for Lemma 4, and 
let, furthermore, n ≥ 3 and

β({1,2,3}) ≤ d(1,2) + d(2,3) + d(3,1), (8)

then

β(V )

�(�)
≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) lg∗(n) − 0.50,

if n = 3,4 or ∃q ∈Z+
[
6 · 2q ≤ n ≤ 9 1

3 · 2q
] ;

(b) lg∗(n) − 0.45 − 0.05 · m · 2−q,

if n = 5 · 2q + m,0 ≤ m ≤ 2q, for q = 	lg(n
5 )
;

(c) lg∗(n) − 0.45 − 0.075 · m · 2−q,

if n = 5 · 2q+1 − m,0 ≤ m ≤ 2
3 · 2q, for q = �lg( n

10 )�.
(9)

These bounds are tight, which will be shown by constructing two 
families of instances, A = (An)n≥3 and B = (Bn)n≥5, with matching 
Farthest Addition results satisfying:

F A/O P T (An) = lg∗(n) − 0.5, for n ≥ 3; (10)

F A/O P T (Bn) = lg∗(n/5) + 1.8 (11)

= q + 1.8 + 0.2 · m · 2−q ,

for n = 5 · 2q + m,0 ≤ m ≤ 5 · 2q,q ≥ 0. (12)

The right hand side in (10) coincides with bound (9)(a), and the 
right hand side in (11) coincides with bounds (9)(b) and (c). Note 
that lg(5) ≈ 2.3219, which implies that (lg(n) − 0.5) − (lg(n/5) +
1.8) ≈ 0.0219. The graphs of (lg∗(n) − 0.5) and (lg∗(n/5) + 1.8)

do intersect infinitely often due to the linear interpolations. For 
n = 6 · 2q , with q ∈Z, both attain value q + 2; for n = 28

3 · 2q they 
both attain value q + 8

3 . The upper bound (9) coincides with the 
maximum of the two functions.

Proof. We will now prove property (9) for any β : V →R+ satis-
fying inequality (5) and property (8), and for any cyclic ordering �
of the node set V . Let �k denote the Hamiltonian cycle obtained 
by restricting � to vertex set {1, 2, . . . , k}. By the triangle inequal-
ity we have that �(�k) ≤ �(�k+1), for all k. The proof breaks down 
in a number of small reasoning steps. Each reasoning step starts 
with a single statement, and is followed by a short argument or 
proof. Steps 〈1〉–〈8〉prove the main part of bound (9)(a). In particu-
lar 〈3〉 already covers it for n with 6 ≤ n ·2−q ≤ 8. Case distinctions 
〈5〉,〈6〉 are needed for the special case n = 9. Step 〈9〉 covers upper 
bound (9)(b). Case distinctions 〈10〉,〈11〉 enable to seek the bound-
ary between bounds (9)(c) and (9)(a), as laid out in 〈12〉 and 〈13〉.

〈1〉 β({1, 2, 3}) ≤ d(1, 2) + d(2, 3) + d(3, 1) = �(�3).
〈2〉 β({1, 2, 3, 4}) ≤ 1.5 · �(�4), since β(4) ≤ 1

2 · �e∈E(�4) d(e) =
0.5 · �(�4).
429
〈3〉 For n with 3 ·2q ≤ n ≤ 4 ·2q , q ≥ 0: β({1, 2, . . . , n}) ≤ (lg∗(n) −
0.5) · �(�).
This is true for n = 3, 4, by 〈1〉,〈2〉; it follows for q > 0 by 
induction. If 3 · 2q ≤ n ≤ 4 · 2q , then 3 · 2q−1 ≤ 	 n

2 
 ≤ � n
2 � ≤

4 · 2q−1, and so, analogous to (7):

β({1,2, . . . ,n}) ≤ �(�) + 1
2 · β({1, . . . , 	n

2 
})
+ 1

2 · β({1, . . . , �n
2 �}) (13)

≤ �(�) + 1
2 · (lg∗(	n

2 
) − 0.5) · �(�)

+ 1
2 · (lg∗(�n

2 �) − 0.5) · �(�)

= (lg∗(n) − 0.5) · �(�).

〈4〉 β({1, 2, 3, 4, 5}) ≤ 1.80 · �(�5), since property (5) yields: 5 ·
β({4, 5}) ≤ 4 · �(�5).

〈5〉 If β({1, 2, 3, 4, 5}) ≤ 1.75 · �(�5), then β({1, 2, . . . , n}) ≤
(lg∗(n) − 0.5) · �(�n), for n ≥ 3.
The statement is true for n = 3, 4 by 〈1〉 and 〈2〉; it is true 
for n = 5, by assumption; and follows for n ≥ 6 by induction, 
as n ≥ 6 implies n > � n

2 � ≥ 	 n
2 
 ≥ 3, so (13) applies.

〈6〉 If β({1, 2, 3, 4, 5}) > 1.75 · �(�5), then d(i, j) > 0.125 · �(�5), 
for all 1 ≤ i < j ≤ 5.
Proof: if d(i, j) ≤ 0.125 · �(�5), then β(5) ≤ 2 · d(i, j) ≤ 0.25 ·
�(�5), contradicting 〈2〉.

〈7〉 β({1, . . . , 9}) ≤ 2.625 · �(�9) = (lg∗(9) − 0.5) · �(�9).
If β({1, 2, 3, 4, 5}) ≤ 1.75 · �(�5), then the statement follows 
directly from 〈5〉. Suppose, to the contrary, that β({1,2,3,4,

5}) > 1.75 · �(�5). Let e ∈ E(�5) ∩ E(�9) �= ∅. Obviously, 
β({4, 5}) ≤ 2

3 · (�(�5) + d(e)). By 〈6〉, d(e) > 1
8 · �(�5). With 

β({6, 7, 8, 9}) ≤ �(�9) − d(e), β({1, 2, 3}) ≤ �(�5), we find: 
β({1, . . . , 9}) ≤ �(�9) + 5

3 · �(�5) − 1
3 · d(e) < �(�9) + ( 5

3 −
1

3·8 ) · �(�5) ≤ 21
8 · �(�9).

〈8〉 For n with 6 ·2q ≤ n ≤ 9 ·2q , q ≥ 0: β({1, 2, . . . , n}) ≤ (lg∗(n) −
0.5) · �(�n).
It has been shown to be true for n = 6, 7, 8, 9 (q = 0), by 〈3〉
and 〈7〉, and follows for q > 0 by induction.
Remark: this bound is tight, cf. (10).

〈9〉 For n = 5 · 2q + m, with 0 ≤ m ≤ 2q , q ≥ 0: β({1, . . . , n}) ≤
(lg∗(n) − 0.45 − 0.05 · m · 2−q) · �(�n).
This is evident for n = 5, 6 (q = 0, m = 0, 1), by 〈3〉 and 〈4〉, 
while it follows for q > 0 by induction.
Remark: this bound is tight, since we have: 2q+2 < n = 2q+2 +
2q +m < 2q+3, and so lg∗(n) −0.45 −0.05 ·m ·2−q = q +1.8 +
0.2 · m · 2−q , cf. (12).

〈10〉 If β({1, . . . , 10}) ≤ 2.75 · �(�10), then for n = 5 · 2q+1 − m, 
with 0 ≤ m ≤ 2q , q ≥ 0: β({1, . . . , n}) ≤ (lg∗(n) −0.50) ·�(�n).
The statement is true for n = 9 by 〈7〉, it is true for n = 10 by 
assumption, so it is true for q = 0. It follows for q > 0 by 
induction.

〈11〉 If β({1, . . . , 10}) > 2.75 ·�(�10), then for n = 5 ·2q+1 −m, with 
0 ≤ m ≤ 2q , q ≥ 0: β({1, . . . , n}) ≤ (q + 1) · �(�n) + 5

3 · �(�5)

+ ( 2
3 − m · 2−q) · d(e−), where d(e−) := min{d(e)|e ∈ E(�5)}.

We prove the statement for q = 0. For q > 0 it follows by in-
duction.
Let e∗ ∈ E(�5) ∩ E(�9) �= ∅. We have: β({6, . . . , 10})
≤ �(�10); β({6, 7, 8, 9}) ≤ �(�9) − d(e∗); β({4, 5}) ≤ 2

3 ·
(�(�5) + d(e−)); β({1, 2, 3}) ≤ �(�5). So, β({1, . . . , 9}) ≤
�(�9) + 5

3 · �(�5) + 2
3 · d(e−) − d(e∗) ≤ �(�9) + 5

3 · �(�5) +
( 2

3 − 1) · d(e−), while β({1, . . . , 10}) ≤ �(�10) + 5
3 · �(�5) +

( 2
3 − 0) · d(e−).

〈12〉 For n = 5 · 2q+1 − m, 0 ≤ m ≤ 2
3 · 2q , q ≥ 0: β({1, . . . , n}) ≤

(lg∗(n) − 0.45 − 0.075 · m · 2−q) · �(�n).
If β({1, . . . , 10}) ≤ 2.75 · �(�10), then by 〈10〉: β({1, . . . , n})
≤ (lg∗(n) − 0.5) · �(�n) ≤ (lg∗(n) − 0.45 − 0.075 · m ·
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Fig. 2. FA results on A4 and A8.
2−q) · �(�n). If β({1, . . . , 10}) > 2.75 · �(�10), then by 〈11〉: 
β({1, . . . , n}) ≤ (q + 8

3 ) · �(�n) + ( 2
3 − m · 2−q) · d(e−) ≤

(q + 8
3 ) · �(�n) + ( 2

3 − m · 2−q) · 0.2 · �(�5) ≤ (q + 2.8 −
0.2 · m · 2−q) · �(�n) = (q + 3 + (2q+1 − m) · 2−q−3 − 0.45
− 0.075 ·m · 2−q) · �(�n) = (lg∗(n) − 0.45 − 0.075 ·m · 2−q) ·
�(�n).

〈13〉 For n = 5 · 2q+1 − m, with 2
3 · 2q ≤ m ≤ 2q , q ≥ 0: β({1, . . . , n})

≤ (lg∗(n) − 0.5) · �(�n).
If β({1, . . . , 10}) ≤ 2.75 · �(�10), then by 〈10〉: β({1, . . . , n})
≤ (lg∗(n) − 0.5) · �(�n). If β({1, . . . , 10}) > 2.75 · �(�10), then 
by 〈6〉,〈11〉: β({1, . . . , n}) ≤ (q + 1) · �(�n) + 5

3 · �(�5) +
( 2

3 − m · 2−q) · d(e−) ≤ (q + 1) · �(�n) + 5
3 · �(�5) + ( 2

3 − m ·
2−q) · 1

8 · �(�5) ≤ (q + 2.75 − m · 2−q−3) · �(�n) = (lg∗(n) −
0.5) · �(�n). Note that 〈6〉 applies as β({6, . . . , 10}) ≤ �(�10), 
so β({1, . . . , 5}) > 1.75 · �(�10) ≥ 1.75 · �(�5). �

We conclude by describing the two families of instances A and B, 
which contain worst case examples for Farthest Addition.

Family A resembles the family of worst case examples for Ar-
bitrary Addition. For n ≥ 3, instance An ∈ A consists of n selected 
nodes on the N-cycle with edges of length 1, where N is a power 
of 2, such that 1

2 N < n ≤ N . Nodes are labeled in order of selec-
tion by the FA algorithm. The cost of an edge (u, v) is the length 
of the shortest uv-path along the cycle. It is easily verified that the 
nodes can indeed be selected by FA in index order. The tour edges 
are such that it can easily be verified (working backwards) that a 
node k is inserted between nodes i and j with i, j < k and such 
that at least one of these is nearest to k among all nodes indexed 
lower than k. The description of A centers around the instance A8. 
We give A4 and A8 explicitly as in Fig. 2.

For n < 8, instance An is derived from A8 by unlabeling the ver-
tices n + 1, . . . , 8, and deleting them from the tour. For 1

2 N = 2q <

n ≤ N , q ≥ 3, instance An is derived from A 1
2 N

by subdividing each 

edge into two edges of length 1, labeling some of the new vertices 
1
2 N + 1, . . . , n, and inserting these vertices in the Farthest Addi-
tion tour in between vertices with labels higher than 1

4 N , so that 
insertion has cost 2. By sensible insertion this is always possible. 
The optimal tour length is O P T = N , while the Farthest Addition 
tour has length F A = (q − 1

2 )N + 2(n − 1
2 N) = N(lg∗(n) − 0.5). As 

a final example we give A16, in Fig. 3.
Family B is slightly more complicated, although it resembles A, 

in a sense. For n ≥ 5, instance Bn ∈ B consists of n selected nodes 
on the N-cycle with edges of length 1, and chords of length 0.2N
and 0.4N . Here N = 5 · 2q , for some q ≥ 0, such that 1

2 N < n ≤ N . 
The description of B centers around the instance B10. We give B5
and B10 explicitly in Figs. 4 and 5. Instances Bn with n < 10 are 
derived from B10 by unlabeling vertices n + 1, . . . , 10. Instances Bn
with 1

2 N = 5 · 2q−1 ≤ n ≤ N are derived from B 1
2 N

by subdividing 

each cycle edge into two edges of length 1, and labeling and insert-
430
Fig. 3. FA results on A16.

ing some of these vertices in such a way, that insertion of a vertex 
has cost 2. This is always possible, if one chooses for a “sensible” 
insertion.

The N-cycles have the nodes 1,4,2,3,5, in this cyclic order, at 
distance 0.2N along the cycle. Further they have chords of length 
0.2N between vertex 2 and all vertices between vertex 5 and ver-
tex 3, and chords of length 0.4N between vertex 1 and all vertices 
between vertex 2 and vertex 3. The distance function d(u, v) is the 
length of the shortest uv-path in the constructed graph. This defi-
nition “enables” Farthest Addition to make bad choices, in the early 
stage of the process. Once vertices 1,2,3,4,5 have been selected and 
inserted, so as to form a cyclic tour (1, 2, 5, 4, 3) of length 1.8N , 
the chords do not play a role anymore (Fig. 6). The instance fami-
lies A and B and the family of worst case instances for Arbitrary 
Addition have one important feature in common. After an initial 
setup phase, during a stage (labeled k) nodes are added to the tour 
that all have distance 2k to the intermediate tour. Moreover they 
all have a neighbor at distance 2k that has been added to the tour 
in the previous stage. And finally these older nodes have a relative 
short edge. Therefore each new node will be added to the tour at 
a cost of 2k+1 and after this stage they will be incident to an edge 
of length 2k+1. The last stage is labeled k = 0.

Notice that the upper bound (9) also applies to Farthest Inser-
tion, but the lower bound instances An and Bn are optimally solved 
by F I .
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Fig. 4. FA results on B5.

Fig. 5. FA results on B10.
Fig. 6. Chords in construction of B5N instance.
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