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Abstract—This paper develops a data-driven model for assess-
ing the availability of flexibility from individual household devices,
at house level. The model predicts the potential shift, increase
or decrease of the energy consumption of a particular type of
device at a given time, in response to a price signal, and for each
house separately. Therefore, the location of the flexibility source
is known with accuracy. The model has an Auto-Encoder archi-
tecture based on Convolution Neural Network. The augmented
model demonstrates good performance in terms of predicting the
time-shift in load.

Index Terms—Flexibility, deep learning, distribution level, data-
driven model, curtailable, time-shift

I. INTRODUCTION AND REVIEW OF LITERATURE

The importance of power system flexibility transcends the
transmission system; flexibility is vital for the distribution net-
work as well. The use-cases of flexibility at the distribution
level include: relieving local congestions, suppressing reverse
flow, and correcting voltage deviations. The use cases of flexi-
bility at the distribution level require knowledge of the location
of the flexibility source. For example, an estimate of the total
flexibility obtainable from all users on a feeder may not be
useful for correcting a voltage deviation on the feeder itself.

Aggregators who are bidding to sell flexibility need good
estimates of the amount of flexibility available at their disposal
[1]. Flexibility availability is defined in [1] as “the amount
of load available for switching, by the control action”. In a
survey on Demand Response Programs (DRPs) at the distri-
bution level, Li et al. [2] reveal that available flexibility is
commonly estimated at the system-wide level, or sector level
(e.g. residential, commercial, etc.), rather than at the individual
unit level. Gottwalt et al. [3] highlight that the majority of
literature considers only one type of responsive devices when
quantifying available flexibility. Therefore, when the authors
attempt to quantify flexibility of different device types, they
use a dedicated linear model for each load category.

The models to quantify available flexibility can be deter-
ministic, statistical (i.e. empirical), or hybrid [2, 4, 5]. Deter-
ministic models rely on accurate physical models of the load.
The deterministic model of thermostatically controlled loads
(TCLs) (e.g. heat pump (HP), freezer (FR)) describes their
thermal dynamics via a first-order differential equation [1, 4].
Deterministic models usually have poor scalability, and run on
small sets of loads only [4]. A hybrid approach is proposed
by [4]. A physical model is used with only a small group of

buildings, and a regression model is trained to scale up the flex-
ibility from the small group to the full population of buildings.

Haque et al. [5] quantify the flexibility potential from 200
houses participating in a Real Time Price (RTP) DRP; also
known as dynamic tariffs. Each house contains six types of
devices. When flexibility is needed, the aggregator composes
a price profile for the whole day and conveys it to the end-
users. Each household device optimizes its own consumption
plan with respect to the new price profile, and its internal
constraints. The adjusted load profile of each household device
is submitted to the aggregator. The difference between the
benchmark consumption profile and the adjusted load profile
is deemed as flexibility. This process may repeat for a number
of iterations until the desired flexibility is availed.

It can be inferred that any form of data aggregation, either
at the device level or the location level, defeats the purpose of
flexibility procurement at the distribution level. An estimate of
flexibility potential at sector or system-wide level is informative
to the Transmission System Operator (TSO); albeit, it has little
value to the aggregator and the Distribution System Operator
(DSO). The process in [5] requires several rounds of communi-
cation, which is time-consuming. Each communication session
is also prone to cyber intrusions [6]. An accurate prediction
of the response of a particular load to dynamic tariffs would
reduce the number of rounds of communication; thus, reducing
decision-making time and intrusion risk. Such a tool allows
the aggregator in [5] to test candidate price profiles, internally,
before officially transmitting them to loads. Such a tool can
also serve inside a Reinforcement Learning model, trained and
utilized by the aggregator. Lee et al. [7] build such a load
predictor with a shallow Artificial Neural Network (ANN),
which features one hidden layer. It is noteworthy that this type
of ANN is not suited for processing time-series data.

This paper aims to develop a data driven model which
can replicate the output of load optimization with respect to
a dynamic energy tariff in [5]. The purpose of such model
is to predict the availability of flexibility, for each type of
device, and for each house, individually. The model generates
a prediction faster than optimization solvers do. Consequently,
system operators have a fast and reliable tool to test different
price profiles. To this aim, we appropriate the consumer and
tariff data in [5], and attempt to replicate the results of [5]. The
model adopts an Auto-Encoder (AE) architecture composed of
a number of Convolution Neural Network (CNN) layers. The
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proposed tool in this paper is part of an ongoing effort to
develop smart autonomous agents in a local flexibility market.

The remaining of this paper is organized as follows: Sec-
tion II provides a brief introduction about AE. The actual
architecture of the developed model is demonstrated in Sec-
tion III. The case-study and data preparation are described in
Section IV. Section V recaps the work.

II. AUTO ENCODERS

An AE consists of a chain of neural networks: 1) Encoder, 2)
Intermediate layer 3) Decoder. The encoder converts the input
data to another abstract format. The intermediate (i.e. second)
layer carries out a specific function on the encoded data. This
layer cannot operate directly on the raw data. Conversely, the
decoder can convert the encoded data back to the original
readable format, as shown below:

Human Readable Data
Encoder

−−−−−→ Encoded Data

Encoded data
Intermediate
−−−−−→ Processed Encoded Data

Processed Encoded Data
Decoder

−−−−−→ Processed Human Readable Data

An example of human readable data is a 2D photo. The inter-
ested reader can learn more about AEs in [8]. Some applica-
tions of AEs are:

• Image Restoration: A distorted image is fed to the en-
coder, then repaired in the intermediate layer. The decoder
converts the processed data into a meaningful image.

• Encrypting data: The encoder conceals the original in-
formation. Only the right decoder can decrypt the data.
No intermediate layer is needed in this application.

• Data compression: The encoded data have smaller di-
mension, and smaller memory requirements. The decoder
can restore the original data.

III. MINING FLEXIBILITY WITH AE–CNN

Figure 1 demonstrates the price-based dynamic-tariff DRP
adopted in [5]. The aggregator announces a full-day’s profile
of energy prices to its users. In response, the users update their
next-day’s load consumption plan, and transmit the consump-
tion plans back to the aggregator. This process can repeat for
several rounds, until the aggregate load profile complies with
the aggregator’s commitments. The adjusted consumption plan
of each user, in response to the proposed dynamic-tariff profile,
is the solution of a linear optimization problem. This particular
part of the process is represented by the yellow box in Fig. 1.
This optimization problem is solved for each of four flexible
household appliances, in each of 200 houses. In this paper, we
train an AE to reproduce the solution of this Linear Program
(LP) (yellow box in Fig. 1), thus, eliminating the need for a LP
solver. If the aggregator possesses such a tool, the aggregator
can explore hypothetical dynamic tariff profiles, before actually
announcing them to end-users. This can reduce the number of
communication rounds between aggregators and end-users.

The goal of training a data-driven model is to reproduce the
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Fig. 1: Aggregator↔Consumer Interaction

output of the optimization. This model would, later, be utilized
to predict the adjusted consumption profile of an electric device
in response to a dynamic tariff. The adjustment in the load
profile represents the available amount of flexibility at each
time period for the given price signal. The model’s inputs and
outputs, and the model’s internal architecture are depicted in
Fig. 2a. The working principle of the model is:

1) The input to the encoder is a set of three time-series:
the time of the day, the benchmark load profile, and the
proposed dynamic price profile. The encoder converts the
input data to another higher dimensional space.

2) The encoded data pass through a number of fully-
connected layers, which imitate optimization solvers and
reproduce the optimization result.

3) The decoder converts the solution back from the high-
dimensional space to a time-series which represents the
adjusted load profile.

For this auto-encoder to work properly, the model is con-
structed and trained in two stages, depicted in Fig. 2b and 2c:

Time of Day (sinusoid)

Proposed Dynamic Tariff

Benchmark consumption 

profile of an appliance

116 Steps = 29 hours × 4 steps/hour

Inputs to the Model: [3 × 116]

Optimize/Adjusted 

Load Profile

Output from the Model: [1 × 116]

AE Model

(a) Model’s Input and Output
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Output
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[1×1×256] Output
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(b) Stage 1: Training Encoder-Decoder Pair Only
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(c) Stage 2: Training AE to Reproduce the LP Solution

Fig. 2: CNN Model for Flexibility Quantification
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Stage 1) Create a preliminary model consisting of an encoder
and decoder only. The encoder-decoder pair is trained to en-
code the benchmark load profile, and reconstruct it back as it
is, without any optimization. It is important to keep in mind
that, at this stage, the decoder should output the benchmark
load profile, not the adjusted load profile. This stage can be
characterized as follows:

• Model: Encoder output is fed directly to the decoder.
• Trainable layers: Encoder and decoder.
• Input data: three time-series: time, dummy price, bench-

mark load.
• Prediction Target: Reconstruct benchmark load as it is.
In principle, the encoder and decoder can be based on any

type of ANN. Processing time-series data must consider the
intercorrelations within the data. Two types of deep ANN
are capable of handling intercorrelations: CNN, and Recurrent
Neural Networks (RNNs). Training RNNs is slower than train-
ing CNNs. Therefore, we adopt a CNN-based AE model. The
role of the encoder-decoder pair in the bigger model is only to
convert data from one format to another, and convert it back.

Stage 2) Fully connected layers are inserted between the
trained encoder and decoder from Stage 1. The new composite
model is trained to produce the adjusted load profile. The
primary scope of training is the fully-connected layers. The
goal of training is for the fully-connected layers to imitate
optimization solvers in the encoded space, in order to reproduce
the true optimization solution.

• Model: Encoder output is fed to a chain of fully connected
layers, which pass their output to the decoder.

• Trainable layers: Encoder and fully connected layers.
• Input data: three time-series: time, dynamic price of

electricity, benchmark load profile.
• Output data: Adjusted load profile, in response to dy-

namic electricity price.
The input and output data of the physical deterministic

model developed in [5] are used to train the model. The dataset
includes a RTP profile and a benchmark energy profile for a
full year, for each of four devices, in each of 200 houses.
Therefore, a data-driven model must take in the price and load
data for an individual house, and make predictions accordingly.
At the same time, it is necessary to design a versatile model
which can process the input data of any house, rather than
building dedicated models for each individual house. In real-
world applications, not all houses may have the same four
responsive devices studied in [5]. Therefore, a separate ANN
model is trained for each type of electric device. The ANN
for a particular device (i.e. out of four models) must be usable
(i.e. give reliable predictions) for any of the 200 houses.

Multiple hidden patterns (i.e. load-cycles with different
lengths) may exist in a time-series, simultaneously. Detecting
different possible patterns in a time series requires employing
several CNNs with different kernel sizes. Each of the CNNs
must operate on the raw input, before the patterns are de-
stroyed. Therefore, a GOOGLE inception layer is implemented,

where the data are sent through multiple parallel paths, simul-
taneously. The outputs from all paths are concatenated into one
big stack, for further processing.

IV. CASE STUDY

A. Data Preprocessing

The three time profiles extend for 29 hours. This allows loads
starting on hour 23 to be deferred to the first hours of the next
day. The data have a time resolution of 15-minutes. This gives
rise to data vectors with 4 × 29 = 116 time-steps. The three
time series vectors form a matrix of size [3× 116].

ANNs require the input data to be normalized to a range
[8] (e.g. [−1, 1]). Similarly, the output vector consists of nu-
merical values within a range. Different houses have differ-
ent consumption patterns and characteristics, such as: peak
load, cycle length, total connected load, and total daily energy
consumption. It is not realistic to normalize the data for 200
houses using the same set of parameters. The profile for each
device in each house is normalized separately based on its own
characteristics over the full-year. For example, in house #1, the
electric vehicle (EV)’s consumption profile for the whole year
is normalized based on the extreme values in this particular
profile (whole year’s profile, for the EV in house #1 alone).
When a load profile is normalized by its absolute minimum and
maximum values, as depicted in (1), rare load spikes expand the
range, and the average consumption level appears to be close to
zero. To mitigate this problem, data outliers or extreme events
are neglected when we choose normalization parameters.

We normalize every profile by the range [2.5th percentile –
97.5th percentile] of all its points. Consequently, the normalized
load profile provides an accurate representation of the original
load profile. We emphasize that extreme events above the 97.5th

percentile are not removed from the data, but truncated to the
boundaries {−1, 1}.

Some household devices are used intermittently or occasion-
ally, such as washing machines and dish washers. In some
cases, the device is not switched ON at all, and the profile
is zero for a full day. No flexibility can be anticipated in this
particular instance, and it is justified to eliminate such instances
from the data. Finally, it is important to note that representing
the time of the day as a number between 1 and 23 provides
the ANN with a false impression that there is huge difference
between 11:45PM and 12:15AM. Therefore, time-stamps are
mapped to a sinusoidal wave using (2).

P̃ =
P − Pmin

Pmax − Pmin
(1)

q = 1
2

(
1− cos

2πt

24

)
(2)

B. Training Process

The same network architecture is used with all four devices.
However, a separate copy of the network is trained for each
device. The network architecture for stage 1 includes more
than 1.6 million trainable weights. Two fully-connected layers
are added in stage 2. These layers have 512 and 256 neurons,
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respectively, and comprise more than 1.8 million trainable pa-
rameters. The training hyper-parameters are given in Table I.
More information about training AEs is available in [8].

The dataset is split into a training set, a validation set, and
a test set. The actual training process is carried out using the
training set only. The purpose of the validation set is to monitor
the training progress of the ANN on extrinsic data, during
training, rather than after training. Validation error decreases
with training error during the first epochs. If the validation error
plateaus or starts rising again, then it is likely that the ANN
is overfitting the training data, and training should be stopped.
If validation error is much lower than testing error, then the
validation set is not a good representative of the whole dataset.

TABLE I: Auto-Encoder Training Settings

Parameter Value

Leaky ReLU activation slope 0.1
Learning Rate (LR) 9×10-4

Batch Size 32
LR Exponential Decay Factor 0.8 every 100 Batches

Stage 1) The training algorithm aims to minimize the loss
function, the Mean Squared Error (MSE). The algorithm is also
set to stop if the relative improvement in the validation error is
below 0.001 for 15 consecutive epochs. The progress and the
performance of training the model for the EV are illustrated
in Fig. 3. The Training progress of the other devices is not
shown, for brevity.

The left-side plot in Fig. 3 depicts the MSE value at the
end of each epoch of training. Similarly, the right-side plot
in Fig. 3 depicts the Mean Absolute Error (MAE). The MAE
metric is for observation only, and does not affect the training
progress. Training is halted because validation error stabilizes
for 15 epochs. The final MSE values for the training set and the
validation set are 0.004 and 0.02, respectively. This indicates
that the model does not overfit the data. The final MAE value
for the training set and the validation set are 0.012 and 0.022,
respectively. In general, training concludes within less than 30
epochs for all cases.

Fig. 4 illustrates the performance of the AE model with
the EV and washing machine (WM) data. The left-side plots
depict the benchmark load, and the reconstructed profile by
the auto-encoder. The right-side plots depict the reconstruction
error (i.e. the difference between the benchmark load and the
reconstruction). The preliminary AE model demonstrates good
ability to encode and decode the raw data, with negligible
deviations. The next step is to introduce the intermediate layers
and retrain the model.
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Stage 2) Two fully connected layers with 512 and 256 neurons
are inserted between the encoder and decoder. The same hyper-
parameters provided in Table I are used in the second training
stage, as well. The augmented model is trained, and the training
progress for the WM model is illustrated in Fig. 5. The final
MSE values for the training set and the validation set are 0.0084
and 0.0069, respectively.

The performance of each trained AE model for the four
device types (i.e. EV, WM, HP, and dish washer (DW)) is
shown in Fig. 6. It is observable that the trained network suc-
ceeds at predicting the time-shift in the load event successfully.
The network, however, is less accurate at predicting the actual
magnitude of the load, especially for long continuous events
such as that in Fig. 6a. The largest error in predicting the
magnitude of the load is 30% of the load size.

These results prove the validity of the design concept. Better
performance is certainly attainable with a larger dataset. In
fact, the data appropriated from [5] suffer from the following
limitations: 1) A significant number of samples where the load
does not respond to the price profile, and does not provide any
flexibility; 2) The benchmark load profile responds to only one
proposed price profile. Optimizing the same benchmark load
profile for different price profiles would help the model observe
the isolated effect of price on the load. 3) The benchmark
electricity tariff associated with the benchmark load profile
is unknown. 4) Weather conditions are unknown. HP load is
dependent on ambient temperature.

LPs can be solved efficiently (i.e. in polynomial time). How-
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Fig. 6: Performance of Augmented AE

ever, the flexibility quantification problem tackled in this paper
involves solving a separate optimization problem for each of
4 electric devices in 200 houses. Each optimization problem
involves an iterative search for the optimum, utilizing primal-
dual solution methods. With data-driven models, training the
model is a one-time process that requires a substantial amount
of time. However, once the model is trained, the model is ca-
pable of processing input data to produce results immediately.
At the same time, since the distribution network observes the
same time-stamp and price profile, the data-driven model can
process a batch of multiple houses simultaneously.

Test runs are conducted on the flexibility model in [5], for the
purpose of recording the execution time in different cases. After
training the data-driven model, we also take note of both, the
training time, and the evaluation time of a batch of 20 houses.
Table II compares the execution times for each model. It is
clear that evaluating a trained CNN-based AE model is multiple
times faster than solving the LP. Implementing the trained AE
on even larger systems makes the AE training-time worthwhile.

V. CONCLUSION

This paper develops a data-driven model for quantifying
available flexibility. A model based on Convolution Neural

TABLE II: Training and Evaluation Time Comparison

Convolutional Net Linear Program
Training Evaluation Solution

(H:M) (milliseconds) (milliseconds)
EV 00:25 – 00:35 2.7 - 3.5 8.3 - 35.9

WM 00:09 - 00:10 1.17 – 1.89 13 - 32.6
HP 00:37 – 01:18 0.895 – 3.84 0.175 - 6.27
DW 00:16 – 00:20 0.5 - 2 0.196 - 4.27

Networks (CNNs) and an Auto-Encoder (AE) is developed in
two stages. First: an AE learns to convert the data from its
raw format to a latent space, and back to a readable format.
Second: the AE is augmented with a number of fully-connected
layers, inserted in the middle of the AE. These layers learn to
imitate optimization solvers to reproduce the optimum solution.
Building data-driven models involves a lengthy training process
carried out once only. However, we demonstrate that evaluating
an input instance with a trained model is much faster than
solving the actual optimization problem. The final AE model
demonstrates good performance in terms of predicting the time-
shift in a load event. The magnitude of the adjusted load is
predicted with less accuracy. This issue can be rectified if the
dataset contained certain features, and more training data were
available.
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