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Schematic model for induced fission in a configuration-interaction approach

K. Uzawa and K. Hagino
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 29 March 2023; accepted 8 August 2023; published 24 August 2023)

We model fission at barrier-top energies in a simplified model space that permits comparison of different
components of the residual nucleon-nucleon interaction. The model space is built on particle-hole excitations
of reference configurations. These are Slater determinants of uniformly spaced orbitals characterized only by
their quantum numbers and orbital energies. The residual interaction in the Hamiltonian includes the diabatic
interaction connecting similar orbitals at different deformations, the pairing interaction between like nucleons,
and a schematic off-diagonal neutron-proton interaction. We find that the fission reaction probability is sensitive
to the off-diagonal neutron-proton interaction much more than to the pairing and the diabatic interactions. In
particular, the transmission coefficients become insensitive to the strength of the pairing interaction when the
neutron-proton interaction is large. We also find that the branching ratio is insensitive to the final-state scission
dynamics, as is assumed in the well-known Bohr-Wheeler theory.

DOI: 10.1103/PhysRevC.108.024319

I. INTRODUCTION

Nuclear fission was discovered about 80 years ago [1,2].
Many phenomenological models have been proposed since
then and have successfully explained the observed behavior.
A well-known model is of Bohr and Wheeler [3], in which a
statistical treatment is implemented under the transition-state
hypothesis. In addition to this model, the statistical models
based on the Hauser-Feshbach theory [4] as well as dynamical
models based on a transport theory [5–7] have also played
an important role [8]. In contrast, a microscopic understand-
ing of induced fission has still been far from complete. This
has been regarded as one of the most challenging subjects
in many-fermion quantum dynamics, and in fact in a recent
review for future directions of fission theory [9], the authors
omitted this topic because there has been virtually no coherent
microscopic theory addressing this question up to now.

In this paper, we apply the configuration-interaction (CI)
approach [10,11] to a schematic model in order to discuss
the role of various types of nucleon-nucleon interaction.
In this approach, many-particle-many-hole configurations at
different nuclear deformations are coupled by residual inter-
actions. Those many-body configurations are constructed in
a constrained mean-field potential at each deformation. The
configuration space includes particle-hole excitations of the
reference configurations and thus greatly extends the space
accessed by the collective coordinates defined in the usual
generator coordinate method (GCM) [12]. See Ref. [13] for
a similar approach.

In a recent publication [11], the CI approach was applied
to semirealistic calculations based on the Skyrme energy
functional. However, for simplicity, several simplifications
were introduced. In particular, the model space was restricted
to neutron excitations only with seniority zero. As a
consequence, only two types of interaction were needed,
namely, the pairing and the diabatic interactions. In nuclear

structure the off-diagonal neutron-proton interaction is
important as well, but its role in low-energy nuclear fission
has not yet been clarified.

In this paper, we apply the CI approach to a schematic
model with uniformly spaced single-particle orbitals. A pre-
liminary version of the work can be found in Ref. [14]; some
of the Supplemental Material of that work is included in Ap-
pendix A of this paper. While the model presented here is still
far from realistic, our schematic treatment of the configuration
space and the details of the Hamiltonian may be useful for
focusing attention on aspects of those ingredients in a more
quantitative theory. This is especially needed in light of the
huge CI spaces required to describe the large changes of
deformation that occur in fission.

The paper is organized as follows: Section II presents
the theoretical framework and the model Hamiltonian based
on uniformly spaced orbital energies. In Sec. III we apply
the model to transmission across a barrier. There are three
kinds of residual interaction that can mediate the transmission
dynamics, and we examine their relative importance. The in-
teraction types are diabatic, pairing, and the fully off-diagonal
nucleon-nucleon interaction. Taking the model as a schematic
treatment of fission, we examine in Sec. IV the branching
ratio between fission and the capture. It is shown that one of
the tenets of the Bohr-Wheeler theory (insensitivity to fission
partial widths) can be achieved with the model Hamiltonian.
We then summarize the paper in Sec. V.

II. CONFIGURATION-INTERACTION APPROACH
TO INDUCED FISSION

A. Transmission coefficient

In the present approach, the reference configurations
are defined at discrete points along the fission path.
Many-particle-many-hole excited states are then generated
from those reference configurations to form subspaces in the
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configuration space which we call Q blocks. In general, the
states in different Q blocks are not orthogonal to each other,
and one needs to consider the norm matrix N with matrix ele-
ments 〈q j|q′ j′〉 where q and q′ label the Q blocks and j, j′ are
labels for the configurations within a Q block. Similarly, the
elements of Hamiltonian matrix H are 〈q j|H |q′ j′〉. Note that,
in the usual GCM one takes only the local ground state at each
q. In contrast, induced fission is a decay process of an excited
nucleus, and it is essential to include excited configurations.

The S-matrix reaction theory also requires matrices �c for
decay widths to each channel c. Note that these matrices have
the same dimension as the configuration space and may have
off-diagonal matrix elements. The present model includes
neutron entrance channels, multiple γ -ray capture channels,
and multiple fission channels; the corresponding matrices are
�n, �cap, and �fis, respectively. Specific forms of those matri-
ces are given in Sec. II D below.

Based on the Datta formula from S-matrix reaction theory
[15–17], we evaluate the transmission coefficient from the
incoming channel a to a decay channel b at energy E as

Ta,b(E ) =
∑

i∈a, j∈b

|Si, j (E )|2 = Tr[�aG(E )�bG(E )†], (1)

where

G(E ) = [H − i(�n + �cap + �fis)/2 − NE ]−1 (2)

is the Green’s function with the total width � = �n + �cap +
�fis.

In a low-energy induced fission, the channel a corresponds
to the incident channel and thus �a = �n, while the exit chan-
nel b is either the capture channel or the fission channel.

In GCM calculations for nuclear spectroscopy, it is well
known that the non-orthogonality of a basis set often leads
to a numerical instability [12,18]. One can largely avoid this
problem in reaction calculations because a rather coarse mesh
along the fission path provides an acceptable accuracy for
estimating the transmission coefficients [10].

B. Model Hamiltonian

The Hamiltonian for each Q block is constructed as

Hq = V (q) + Hsp + Hpair + Hran, (3)

where V (q) is the energy of the local ground state at
q. Ideally, it is calculated by constrained Hartree-Fock or
density-functional theory (DFT). Hsp, Hpair, and Hran are the
single-particle Hamiltonian, the pairing interaction, and the
random neutron-proton interaction, respectively.

The configuration space is built in the usual way, defining
configurations as Slater determinants of nucleon orbitals. In
this paper, we employ a model having a uniform spectrum
of orbital energies with a spacing d for both protons and
neutrons. The ladder of orbital states extends infinitely in
both directions above and below the Fermi surface but is
restricted by later truncation of the CI space. The operator for
the particle-hole excitation energy Eph is given by

Hsp = d
∑

α:na>0

nαa†
αaα + d

∑
α:na<0

nαaαa†
α. (4)

FIG. 1. Spectrum of many-body configurations in the uniform
spacing model. Nk denotes the number of Ktot ≡ ∑

K = 0 config-
urations at the excitation energy E = kd . The green circles show
the noninteracting spectrum, while the orange curve shows its fit
to the functional form of Nk = exp(a

√
k + b) with a = 3.97 and

b = −3.06. The blue filled histograms show the interacting spec-
trum, obtained by diagonalizing the Hamiltonian Hq with Gpair = 0
and vnp = 0.03d .

The label α includes q and an index ν of orbitals associated
with the reference configuration. The interaction matrix ele-
ments also require access to the conserved quantum numbers
of orbitals. In general, these include parity π , isospin tz, and
angular momentum K about the symmetry axis if there is one.
To keep the model as transparent as possible, we ignore parity
and assign K to the restricted range ±1/2.

The orbital excitation energies of many-particle
configurations are integral multiples of d given by
Eex = kd . As a function of k, the multiplicity of
configurations having Ktot ≡ ∑

K = 0 and
∑

tz = 0 is
Nk = (1, 4, 16, 48, 133, 332, 784, . . . ) for k = (0, 1, 2, 3, 4,

5, 6, . . . ). The spectrum up to k = 6 is shown in Fig. 1.
The orange curve shows a smoothed level density fit to
the leading-order dependence on energy as derived from
statistical theory. This will provide a way to fit the parameter
d to experimental level densities: the single-particle level
spacing d sets the energy scale in the model, and other energy
parameters will be expressed in units of d . Even though we
will not specify the value of d in this paper, d is estimated to
be around 0.5 MeV for nuclei in the actinide region [14] (see
Appendix A-1).

For residual interactions, both particle-particle (pp) and
particle-hole (ph) interactions appear. For the pp residual in-
teraction, we employ a monopole pairing interaction between
identical nucleons,

Hpair = −Gpair

∑
ν �=ν ′

a†
ν ′a

†
ν̄ ′aν̄aν . (5)

Here a†
ν is the creation operator of the orbital ν, and ν̄ denotes

the time-reversal orbital of ν. The strength of the pairing
interaction Gpair is around 0.1 MeV in the actinide region
[19], corresponding to Gpair ≈ 0.2d in the energy units in
the present model. In this paper we take Gpair = 0.3d as the
baseline value, to be varied to study how the observables
depend on the interaction types.
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When the monopole pairing interaction is used in the
uniform spacing model, the Hamiltonian matrix tends to be
singular due to the high degeneracy of the spectrum. In actual
numerical calculations, an unphysical divergent behavior
may easily appear in the transmission coefficients even if the
matrix itself is invertible. To avoid this problem, we add a
small random number to the diagonal part of the Hamiltonian
kernel as [20]

kd → kd + 0.1rd,

where r is a random number of unit variance taken from a
Gaussian ensemble.

For the ph-type residual interaction, we employ a random
interaction in the form of

Hran = −vnp

∑
ra†

α1a†
α2aα4aα3, (6)

where the parameter vnp is the strength of the interaction and
r is a random number, as before. The sum α is restricted to the
combinations satisfying K1 + K2 = K3 + K4. An early study
has suggested that a neutron-proton interaction is dominant in
a diffusion process compared with the one between identical
particles [21]. We therefore assume that the interaction Hran

acts only on neutron-proton pairs.
Following Appendix A 3, we take vnp = 0.03d as a base

value in the following calculations. The assumption that the
neutron-proton interaction is Gaussian distributed is certainly
not justified for the low-energy states in a Q block where
collective excitations can be built up. However, high in the
spectrum the mixing approaches the random matrix limit.
Note that the pairing interaction acts coherently while the
random interaction acts incoherently. Our interest is to clarify
the role of these two different types of interaction in the
transmission process.

Because of the random component in the Hamiltonian,
one needs to take an ensemble average to obtain physical
quantities. In the following calculations, we take many sam-
ples so that the standard deviation becomes smaller than 1%.

C. Off-diagonal couplings

The interaction between different Q blocks is responsible
for a shape change and is thus crucial to the modeling. It is
clear that the interaction is somewhat suppressed due to the
imperfect overlap of orbitals built on different mean-field
reference states. The size of the suppression is determined
by the overlap kernel, N (q j, q′ j′), which is given by a
determinant of orbital overlaps. For simplicity, we assume
that the change of the single-particle orbitals between nearby
reference configurations is small. With this assumption, the
configurations with the same index j in neighboring Q blocks
are diabatically connected with the overlap matrix elements
approximated by

〈q j|N |q′ j′〉 = N (q, q′)δ j, j′ , (7)

where N (q, q′) is the overlap between the reference
configurations.

Based on the idea of the Gaussian overlap approximation
(GOA) [12], we parametrize it as

N (q, q′) = exp(−λ(q − q′)2). (8)

In the main calculations below, we take the value λ = 1.0
for the overlap between neighboring Q blocks. This sets the
numerical scale for q as a distance measure along the fission
path. We also consider the model in which the configurations
are all orthogonal.

The Hamiltonian kernel H (q j, q′ j′) can be calculated in
a similar manner by assuming that the orbital wave func-
tions are nearly the same in the two reference configurations.
To take into account the imperfect overlap of the references
states, we multiply the bare matrix elements by the suppres-
sion factor N (q, q′) to the matrix elements. In addition, one
has to take into account the diabatic interaction between those
configurations which are connected diabatically. A simple for-
mula for the diabatic interaction has been derived in Ref. [22]
based on a self-consistent separable interaction. Based on the
GOA, the formula reads

〈q j|vdb|q′ j〉
〈q|q′〉 = E (q j) + E (q′ j)

2
− h2(q − q′)2, (9)

where E (q j) = k jd + V (q) is the energy of the configuration
(q j). In the previous work [11], the value of h2 was estimated
to be about 1.5 MeV with the Gogny HFB calculations for
236U. A typical value of single-particle spacing d is around 0.5
MeV when it is corrected for the effective mass (see Table III
in Appendix A). Combining these together, we estimate h2 =
3d in this model.

The first term on the right hand side of this equation en-
sures that the Green’s function (2) transforms properly under
a shift in energy scale E ′ = E − ε, that is G′(E ′) = G(E ).

D. Width matrices

The matrices �a (a = n, cap, and fis) in Eq. (2) can be in
principle derived with the generalized Fermi golden rule [23]

(�a)kk′ = 2π
∑
l∈a

〈k|v|l〉〈k′|v|l〉δ(El − E ), (10)

where l labels states in the decay channel a. Due to the
nonorthogonality of the configurations, the matrix �a is in
general nondiagonal. In this work, we take a separable ap-
proximation and parametrize it as1

(�a)kk′ = γa

∑
l∈a

(N1/2)k,l (N
1/2)k′,l , (11)

where (N1/2)k,l is the square root of the norm kernel and γa

is the mean decay width. Here, the indices k and l label both
the deformation q and the excitation j. See Appendix B for a
derivation of Eq. (11).

1In Ref. [10], we used N instead of N1/2 in the decay matrices.
We consider that N1/2 is a more physical choice because of the
connection to orthogonal bases as we discuss in Appendix B.
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III. RESULTS

Let us now numerically evaluate the transmission coeffi-
cients and discuss the dynamics of induced fission. To this
end, we consider a chain of three Q blocks, q = q−1, q0, and
q1, with the same spacing 
q, that is, q±1 = q0 ± 
q. We set
them to q = −1, 0, and 1 for convenience. Thus the overlaps
between adjacent Q blocks is N (q, q ± 1) = e−1 by Eq. (8)
with the chosen value of λ. For the barrier, we set V (q =
±1) = 0 and V (q = 0) = 4d , giving a barrier height Bh =
4d . In each Q block, the energy cutoff for the many-body
configurations is set to be Ecut = V (q) + 5.5d . The neutron
absorption and the gamma decay occur prior to the fission
barrier, so the incident and the capture channels couple to the
internal states by Eq. (11) at q = −1. Likewise, the fission
channel is coupled at q = 1. All the states at these endpoints
are coupled to individual decay channels. Since the relation
�n < �cap < �fis is known empirically in the actinide region
[24], we set γn = 0.001d , γcap = 0.01d , and γfis = 0.1d in the
following calculations. As we show in Sec. IIIC below, the
transmission dynamics is not sensitive to the value of γfis.

A. Orthogonal basis

We first consider the case where all configurations are
orthogonal so that the norm kernel reads

〈q j|N |q′ j′〉 = δq,q′δ j, j′ . (12)

In this case, the suppression factor in the off-diagonal cou-
plings are disregarded; that is, the off-diagonal couplings are
fully taken into account without the suppression factor. This is
a useful limit to study the role of the pairing interaction, since
the diabatic interaction does not contribute.

It is a well-known fact that the pairing correlation modifies
drastically the dynamics of spontaneous fission, particularly
through a reduction of the collective mass [25–27]. Another
important aspect of the pairing correlation is that it is respon-
sible for a hopping of Cooper pairs from one configuration to
the neighboring one [28]. On the other hand, the role of pair-
ing correlation in induced fission has not yet been understood
well, partly because the pairing correlation is considered to
be effective only in the vicinity of the ground state. However,
odd-even staggerings have been observed in fission fragments
in low-energy induced fission, which suggests that the pairing
correlation cannot be completely ignored.

Figure 2 shows the transmission coefficients for the fis-
sion channel, calculated with two different values of Gpair.
The strength of the neutron-proton random interaction is set
to be vnp = 0.03d . One can see that the pairing correlation
enhances the transmission probabilities far below the barrier,
while its effect is not important at the barrier top and above.
This is to be expected, since the number of configurations
with high seniority numbers increases as the excitation energy
increases and the pairing correlation becomes weaker.

To study systematically the role of pairing in induced
fission, we introduce an energy-averaged transmission coef-
ficient. It is defined as

〈Tn,fis(E )〉 = 1


E

∫ E+
E/2

E−
E/2
dE ′ Tn,fis(E

′). (13)

FIG. 2. The transmission coefficients from the incident channel
to the fission channel as a function of the excitation energy, E , in
the model with an orthogonal configuration space. The solid and the
dashed lines are obtained with Gpair = 0 and 0.1d , respectively, for
the strength of the pairing interaction. The strength of the neutron-
proton interaction and the barrier height are set to be vnp = 0.03d
and Bh = 4d , respectively.

Table I summarizes the energy averaged transmission coef-
ficient at E = Bh = 4d for several sets of (vnp, Gpair ). The
energy window for the energy average is set to be 
E = d .
Without the neutron-proton interaction; that is, vnp = 0, the
fission probability increases as the pairing strength increases.
Note especially that the transmission coefficient 〈Tn,fis(E )〉
is zero when there is no interaction at all. As the value of
vnp increases, the dependence of 〈Tn,fis(E )〉 on Gpair becomes
milder. For vnp = 0.06d , the transmission coefficient is almost
insensitive to the value of Gpair. This suggests that induced
fission is more sensitive to the neutron-proton random inter-
action as compared with the coherent pairing interaction.

B. Nonorthogonal basis

Let us now examine the dependence on the interactions for
a model having a nonorthogonal basis. In this case, diabati-
cally connected configurations have a off-diagonal coupling
due to the one-body terms in the Hamiltonian, in addition to
the couplings due to the two-body residual interactions. This
corresponds to the diabatic interaction (9) parametrized with
a quantity h2. To avoid an artifact due to the degeneracy of
the single-particle energies, we introduce an offset energy to
the q = 1 block, taking V (q)/d = (0, 4, 0.5) in Eq. (3). We
mention that this problem appears much more prominently

TABLE I. The averaged transmission coefficient for a fission
process, 〈Tn,fis〉, for several sets of the interaction parameters and
assuming that the configurations are orthogonal. The barrier height
and the incident energy are both set to be 4d .

Gpair

Model vnp 0 0.1d 0.2d

I 0 0 0.0441 0.0589
II 0.03d 0.107 0.161 0.173
III 0.06d 0.318 0.331 0.331
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FIG. 3. The transmission coefficient Tn,fis(E ) with two different
values of vnp. The pairing interaction is set to zero, i.e., Gpair = 0.
The other parameters are λ = 1.0, h2 = 3d , and Bh = 4d .

with the nonorthogonal basis as compared with calculations
with the orthogonal basis, which could not be cured merely
by introducing random numbers to the Hamiltonian kernel.

Figure 3 shows the transmission probability for fission with
two different values of vnp. In these calculations, the pairing
interaction is switched off by setting Gpair = 0, while the pa-
rameter h2 for the diabatic transitions is set to be 3d . From the
figure, one notices that the peaks are lowered and broadened
as the value of vnp increases. This can be understood easily
since the random interaction spreads the spectrum in each Q
block as is indicated in Fig. 1. The effect of vnp is not only to
broaden the peaks in the transmission coefficients but also to
increase the energy averaged transmission coefficients, as will
be discussed in Table II below.

Figure 4 shows an average fission-to-capture branching ra-
tio α−1 as a function of the energy E . We define the average as

α−1 =
∫

dE ′ Tn,fis(E ′)∫
dE ′ Tn,cap(E ′)

, (14)

where the range of the integration is the same as that in
Eq. (13). To simplify the discussion, we once again set the
pairing interaction to be zero. The solid and the dashed lines

TABLE II. The transmission coefficient for fission 〈Tn,fis〉 and the
branching ratio α−1 for several sets of interactions. The parameters
shown for models I–V1 are the only ones that differ from the base
model. The overlap parameter is λ = 1.0 and the averaged observ-
ables are calculated at a central energy E = 4d . Interaction strength
parameters are in units of d . For model VI, the GCM Hamiltonian is
constructed such that the orthogonal physical Hamiltonian Eq. (B15)
is diagonal.

Model vnp Gpair h2 〈Tn,fis〉 α−1

Base 0.03 0.3 3 0.417 1.62
I 0.0 0.413 1.49
II 0.0 0.372 1.14
III 0.05 0.429 2.27
IV 0.0 0.294 0.739
V 0.0 0.0 0.0 0.172 0.291
VI 0.0 0.0 0.0 0.000 0.000

FIG. 4. The average fission-to-capture branching ratios as a func-
tion of the energy with two different values of h2. The random
neutron-proton interaction is taken into account with the strength of
vnp = 0.03d , while the pairing interaction is set to be zero.

are obtained with h2 = 3d and h2 = 0, respectively. The
branching ratios increase with the excitation energy, and we
confirmed that the energy dependence becomes stronger as
the number of Q blocks increases. This would be an expected
behavior from a quantum barrier transmission. Furthermore,
one sees that the diabatic interaction increases the branching
ratios, that is consistent with the result in Ref. [11].

Table II summarizes the transmission coefficients and the
branching ratios for several parameter sets. The results of
models I, II, and III indicate that both the neutron-proton in-
teraction and the pairing interaction enhance the transmission
coefficients as well as the branching ratios. They also indicate
that the transmission coefficients are more sensitive to the
neutron-proton interaction than to the pairing interaction. This
is consistent with the results of the orthogonal basis shown in
Table I, even though the degree of enhancement is smaller
than in Table I due to the overlap factor N (q j, q′ j′) in the
off-diagonal matrix elements. In model IV, h2 is set to be zero.
The result indicates that the transmission coefficient and the
branching ratio significantly decreases without the diabatic
transitions, as has been already observed in Ref. [11]. See also
Fig. 4 for the sensitivity of the branching ratios to the value
of h2. Finally, in model V, all the interaction strengths vnp,
Gpair, and h2 are set to zero. Even in this case, the transmission
coefficient is not zero because the corresponding Hamiltonian
in the orthogonal physical basis is not diagonal in this case. As
we show in Appendix B, one can actually construct the GCM
Hamiltonian which is diagonal with the orthogonal basis.
With such a GCM Hamiltonian, we have confirmed that the
transmission coefficient becomes zero within the numerical
error (see model VI in the table).

C. Validity of the transition-state hypothesis

In the Bohr-Wheeler theory for induced fission [3], the
decay width is calculated as a sum of transmission coefficients
Ti across the barrier via transition states i,

�BW = 1

2πρ

∑
i

Ti, (15)
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FIG. 5. The branching ratios at E = 4d as a function of γfis.
The interaction strengths are (vpn, Gpair, h2) = (0.03, 0.3, 3)d . A
parabolic fission barrier is employed with the barrier height of 4d .
The solid and the dashed lines show the results of the 3Q model,
while the dot-dashed line shows the results of the 7Q model. While
the nonorthogonality of the configurations is neglected in the solid
line, it is taken into account in the other lines with λ = 1.0. For the
sake of presentation, the branching ratios are multiplied by factors of
0.2 and 0.04 for the solid and the dashed lines, respectively.

where ρ is the level density of a compound nucleus. The
formula indicates that the transition states entirely determine
the decay rate, and that the details of the dynamics after
crossing the barrier are unimportant. The branching ratio in
the Bohr-Wheeler theory would be expressed as

α−1(E ) = 1

2πρ(E )�cap

∑
i

Ti. (16)

The solid and the dashed lines in Fig. 5 show the branching
ratios at E = 4d as a function of γfis for a model with the
pairing interaction switched off. For the calculations with
the orthogonal basis shown by the solid line, the branching
ratio is almost independent of the fission decay width γfis, in
agreement with the insensitivity property of the Bohr-Wheeler
theory. On the other hand, with the nonorthogonal basis, the
branching ratio increases gradually as a function of γfis, even
though the insensitivity property may be realized at large
values of γfis. To check the dependence on the number of Q
blocks, we repeat the calculations with 7Q blocks, parametriz-
ing V as V (q)/d = 4 − 4q2/9 ranging from q = −3 to q = 3
with 
q = 1. In this case, the branching ratio changes by
less than a factor of two while the fission decay varies by
an order of magnitude. All of these results indicate that the
hypothesis used in the Bohr-Wheeler theory is easily realized
in the present microscopic theory. See also Ref. [29] for a
similar study with random matrices.

IV. SUMMARY

In this article, we have applied the CI methodology to
a schematic model for neutron-induced fission. The model
Hamiltonian contains the pairing interaction, the diabatic
interaction, and a schematic off-diagonal neutron-proton in-
teraction. The model appears to be sufficiently detailed to
examine the sensitivity of the fission transmission probabili-

TABLE III. Estimated orbital level spacing in 236U. The first two
are from potential models and the last extracted from the Fermi gas
formula and measured level densities.

d (MeV) Source

0.45 Woods-Saxon well
0.51 FRLDM [31]
0.33 FGM [32]

ties to the different types of interaction, as well as the validity
of transition state theory in a microscopic framework. We have
shown that the transmission coefficients are mainly sensitive
to the neutron-proton interaction, while the sensitivity to the
pairing interaction is much milder. The diabatic transitions
were also found to play a role. Depending on the interac-
tion and the deformation-dependent configuration space, one
achieves conditions in which branching ratios depend largely
on barrier-top dynamics and are insensitive to properties
closer to the scission point. The insensitive property is one of
the main assumptions in the well-known Bohr-Wheeler for-
mula for induced fission, but up to now it had no microscopic
justification.

The results in this paper indicate that the neutron-proton
interaction is an important part of a microscopic theory for
induced fission. To include it in realistic calculations based on
the density-functional theory will require a large model space,
however. See Table III in Ref. [11] for some estimates of the
dimensional requirements. Moreover, single-particle energies
are in general not degenerate in contrast to the schematic
model employed in this paper. This might require a different
energy cutoff, further enlarging the model space. To carry out
such large-scale calculations for induced fission, one will have
to either validate an efficient truncation scheme or develop
an efficient numerical method to invert matrices with large
dimensions. We leave this for a future work.
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APPENDIX A: ESTIMATION
OF PHYSICAL PARAMETERS

1. Orbital energy spacing

The single-particle level spacing d in the uniform model
sets the energy scale for the model and does not play any
explicit role in the model. However, it is required to determine
other energy parameters which are expressed in units of d .
Several estimates of d for 236U are given in Table III. The
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TABLE IV. Characteristics of single-particle orbitals in a de-
formed Woods-Saxon potential corresponding to 236U at deformation
(β2, β4) = (0.274, 0.168). Dashed lines indicate the Fermi level.

Protons Neutrons

2K π εKπ (MeV) 2K π εKπ (MeV)

3 −1 −3.39 5 −1 −4.15
5 −1 −3.80 1 −1 −4.25
5 1 −4.93 7 −1 −4.40

- - - - - - - - - - - -
1 1 −5.43 1 1 −5.07
9 −1 −5.53 5 1 −5.75
3 1 −5.74 5 −1 −5.82

first is based on orbital energies in a deformed Woods-Saxon
potential with the parameters given in Ref. [30]; see Table IV
for the calculated orbital energies. In more realistic theory,
the momentum dependence of the potential tends to increase
the spacing, but the coupling to many-particle degrees of
freedom decreases the spacing of the quasiparticle poles. The
combined effect seems to somewhat decrease the spacing.2

2. Level density

It is important to know the composition of the levels in
the compound nucleus to construct microscopic models that
involve those levels. For a concrete example, consider the
levels at the neutron threshold energy Sn = 6.5 MeV in 236U.
The predominant configurations at this energy should be k
subblocks at k ≈ Sn/d in the independent quasiparticle ap-
proximation. Another approach that is less sensitive to the
residual interaction is to estimate the total number of states
below Sn and compare it to the number obtained by summing
the Nk degeneracies in the Q-block spectrum. In the 236U
example, the combined level spacing of Jπ = 3− and 4− is
about 0.45 eV at Sn [34]. At that excitation energy the level
density is the same for even and odd parities, and it varies
with angular momentum as 2J + 1. The inferred level spac-
ing of Jπ = 0+ levels is thus about 7 eV. The accumulative
number of levels can be approximated by N = ρT where T
is the nuclear temperature, defined as T = d ln(ρ(E ))/dE .
A typical estimate for our example is T = 0.65 MeV, giving
N ≈ 1.0 × 108. To estimate the level density in the present
model, we start with the set of quasiparticle configurations
including both parities and all K values. The resulting k blocks
have multiplicities that are well fit by the formula

Nk ≈ exp(−3.23 + 4.414k1/2). (A1)

Projection on good parity decreases this by a factor of two.
The projection on angular momentum J = 0 is more subtle.
The J = 0 states are constructed by projection from K = 0
configurations; other configurations do not contribute. How-
ever, there may be two distinct configurations that project to

2We note that an energy density functional fit to fission data [33]
obtained an effective mass in the single-particle Hamiltonian very
close to 1.

TABLE V. Estimates of neutron-proton interaction strength.

Basis of estimate v0 (MeV fm3) Citation

G matrix 530 [21]
sd shell spectra 490 [35]
β decay 395, 320 [36]

the same J = 0 state. This gives another factor of nearly two
reduction in the multiplicity. The remaining task is to estimate
the fraction of K = 0 configurations in the unprojected quasi-
particle space. The distribution of K values is approximately
Gaussian with a variance given by

〈K2〉 = 〈nqp〉〈K2〉sp, (A2)

where 〈nqp〉 ≈ 8 is the average number of quasiparticles in
the k block and 〈K2〉sp ≈ 6 is an average over the orbital Ks
near the Fermi level. Including these projection factors, the
integrated number of levels up to Sn is achieved by including
all k subblocks up to k = 17 in the entry Q block.

3. Neutron-proton interaction

To set the scale for our neutron-proton interaction pa-
rameter vnp we compare it with phenomenological contact
interactions that have been used to model nuclear spectra. The
matrix element of the neutron-proton interaction is

〈n1 p1|v|n2 p2〉 = −v0I, (A3)

where

I =
∫

d3rφ∗
n1

(r)φ∗
p1

(r)φn2 (r)φp2 (r). (A4)

The parameter v0 is the strength of the interaction, typically
expressed in units of MeV fm3. Some values of v0 from the
literature are tabulated in Table V. We shall adopt the value
v0 = 500 MeV fm3 to estimate the value of vnp.

If the wave functions of the eigenstates approach the com-
pound nucleus limit, the only characteristic we need to know
is its mean-square average among the active orbitals. We
have used the Woods-Saxon model to calculate the integral
Eq. (A4) for all the fully off-diagonal matrices of the orbitals
within 2 MeV of the Fermi energy. Figure 6 shows a histogram
of their distribution.3. The variance of the distribution is
〈I2〉1/2 = 5.22 × 10−5 fm−3. Combining this with our esti-
mate of v0 we find (〈n1 p1|v|n2 p2〉2)1/2 = 0.025 MeV. This
implies vnp ∼ 0.05d with our estimated single-particle level
density.

APPENDIX B: REACTION THEORY IN A
NONORTHOGONAL BASIS

The space of configurations used in this work is not orthog-
onal. This causes some conceptual issues but does not cause a
significant computational burden in CI-based reaction theory.

3If the orbitals are restricted only to those in Table IV, the his-
togram is more structured
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FIG. 6. Integrals I in Eq. (A4) of orbitals near the Fermi energy.

The theory is based on calculating the resolvent of H ; in an
orthogonal basis it is given by

G = (H − E1)−1, (B1)

where 1 is the unit matrix, H is the Hamiltonian, and E is the
energy of the reaction. Non-orthogonal bases also arise in the
theory of spontaneous decays [37], and in electron transport
theory when wave functions are built from atomic orbitals.
See, for example, Refs. [38–42] for the formulation of the re-
solvent as commonly used in chemistry and condensed-matter
physics.

In a nonorthogonal basis the time-dependent Schrödinger
equation reads

H� = ih̄N
d

dt
�, (B2)

where N is the overlap matrix between basis states Ni j = 〈i| j〉.
The corresponding resolvent is

G = (H − EN )−1. (B3)

There is hardly any difference from Eq. (B1) from a com-
putational point of view. However, the couplings to reaction
channels should be treated with care.

To understand the couplings, we define a certain orthogo-
nal basis which we call the physical basis. We call the vector
representing a wave function in that basis vphys and in the
nonorthogonal basis, vgcm. In the GCM the dot products of
basis elements satisfy

vgcm(i)∗ · vgcm( j) = Ni j, (B4)

while those in the physical basis satisfy

vphys(i)
∗ · vphys( j) = δi j . (B5)

A physical basis consistent with Eq. (B4) can then be defined
by setting

vphys(i) =
∑

j

N1/2
i j vgcm( j). (B6)

This definition is not unique since the dot products are in-
variant under a unitary transformation of the physical basis.
Indeed, an orthogonal basis is usually constructed in the GCM
by diagonalizing N and using its eigenvectors as the basis.

However, those basis states are not well localized with respect
to the GCM coordinate.

The relationship between the Hamiltonians in the physical
and GCM bases can be expressed

H̃ = N−1/2HN−1/2 (B7)

or

H = N1/2H̃N1/2. (B8)

The physical resolvent is related to the GCM resolvent by

G̃ = (N−1/2HN−1/2 − E1)−1

= N1/2(H − EN )−1N1/2. (B9)

One see that the matrix inversion is the same as in Eq. (B1)
except for the replacement 1 → N . However, the matrix N1/2

appears as pre- and postfactors.
In our applications of CI-based reaction theory we assume

that each channel is coupled to a single state (the “doorway”
state) in the internal space. Taking that state to be the basis
state d in the physical representation, the decay coupling
matrix � has elements4

�(i, j) = N1/2
id N1/2

jd �̃, (B10)

where �̃ is the decay width of the physical state d into the
channel. Note that with this construction the transmission
coefficient in the physical basis

Ta,b = Tr[�̃aG̃(E )�̃bG̃†(E )] (B11)

is transformed to

Ta,b = Tr[�aG(E )�bG†(E )] (B12)

in the GCM basis.
There is another reason for explicit construction of the

physical basis. The distinction between the GCM and physical
basis must be taken into account in Sec. III B where we
assessed the relevant importance of different interaction types
and we want to start with a Hamiltonian H̃0 for which the
transmission probability vanishes. One cannot simply set the
off-diagonal elements of H to zero if the overlap matrix N
connects the entrance and exit channels, even if the connec-
tion is indirect. It is the physical Hamiltonian H̃ that must
be diagonal. In two dimensions the construction is obvious.
Given the diagonal elements of H (i, i) = Ei, the Hamiltonian
that is diagonal in the physical basis is

H0 =
(

E1 (E1 + E2)N12/2

(E1 + E2)N12/2 E2

)
. (B13)

Eq. (B13) can be viewed as a justification for the first term
in Eq. (9). The construction can be carried out in higher
dimensions using only linear algebra operations, but we have
no simple formula for the off-diagonal elements of H0. For

4A somewhat similar formula was used in Ref. [[10], Eq. (16)].
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the base Hamiltonian treated in Sec. III B, N is given by

N =

⎛
⎜⎝

1.0 e−1 e−4

e−1 1.0 e−1

e−4 e−1 1.0

⎞
⎟⎠. (B14)

Keeping only V (q) in H , H0 is numerically found to be

H0 =

⎛
⎜⎝

0.0000 0.7571 0.1537

0.7571 4.000 0.8547

0.1537 0.8547 0.5000

⎞
⎟⎠. (B15)
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