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ABSTRACT
In this article, we introduce a new and efficient data augmentation approach to the posterior inference
of the models with shape parameters when the reciprocal gamma function appears in full conditional
densities. Our approach is to approximate full conditional densities of shape parameters by using Gauss’s
multiplication formula and Stirling’s formula for the gamma function, where the approximation error can
be made arbitrarily small. We use the techniques to construct efficient Gibbs and Metropolis–Hastings
algorithms for a variety of models that involve the gamma distribution, Student’s t-distribution, the Dirichlet
distribution, the negative binomial distribution, and the Wishart distribution. The proposed sampling
method is numerically demonstrated through simulation studies. Supplementary materials for this article
are available online.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are now widely
adopted in Bayesian posterior computation, where parameters
are iteratively sampled from their respective conditional dis-
tributions. However, when the models of interest involve the
gamma and related distributions, it is computationally costly to
sample the shape parameters from their full conditional posteri-
ors. The main difficulty here is that the full conditional densities
of the shape parameters involve the reciprocal gamma function,
1/�(ξ), ξ > 0, and are not any well-known distributions. Thus,
it is not straightforward to construct efficient MCMC algorithms
when the shape parameters are also estimated.

Several sampling strategies that have been proposed in
the literature are customized for each class of distributions.
For gamma distributions, Miller (2019) provided an accurate
approximation of the full conditional distribution of the shape
parameter. For Student’s t-distributions, Fonseca, Ferreira, and
Migon (2008) considered the unknown degrees of freedom, at
the cost of the complication of the priors. Custom sampling
algorithms have also been proposed for the Dirichlet models
(Nandram 1998), negative binomial processes (Zhou and Carin
2015), Dirichlet processes (Escobar and West 1995) and Pitman-
Yor processes (Bacallado et al. 2022).

Rather than focusing on a particular class of distributions, it
is also possible to devise the sampling methods that are appli-
cable to the general class of models with shape parameters, at
the cost of efficiency and computational time. For example, the
approximation of log-concave densities (Gilks and Wild 1992;
Devroye 2012) and the MH acceptance-rejection method (Tier-
ney 1994; Chib and Greenberg 1995) can be used for the poste-
rior inference for models with the reciprocal gamma functions.

CONTACT Yasuyuki Hamura yasu.stat@gmail.com Graduate School of Economics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

The latter needs to be further customized to each model, as
practiced for Student’s t-models in Watanabe (2001). Another
approach is the data augmentation scheme, where several latent
variables are introduced to simplify the full conditionals of
the model. He, Polson, and Xu (2021) proposed a general and
efficient data augmentation for models with reciprocal gamma
functions, where the simulation from power truncated normal
(PTN) distributions become necessary. In this article, we also
take the data-augmentation approach, but propose a new aug-
mentation where we only need to simulate from well-known
distributions.

Our strategy for deriving an augmented model is 2-fold: (i)
using Gauss’s multiplication formula for the gamma function
to introduce conditionally beta-distributed latent variables and
(ii) approximating the augmented densities by Stirling’s formula.
The full conditionals of the shape parameters and latent vari-
ables of the resulting model are all well-known distributions,
such as gamma and beta distributions, from which it is easy and
fast to simulate. Finally, the accept/reject step is added to justify
the sampling algorithm as an independent Metropolis–Hastings
(MH) method.

To assess the efficiency of the sampling algorithm based on
the proposed augmentation, we evaluate the upper and lower
bounds of the approximation error and show that, in many
cases, the acceptance probability is close to one. Due to its
simplicity, our augmentation scheme can be applied directly
to many models with reciprocal gamma functions, including
the Student’s t-distribution, Dirichlet-multinomial distribution,
negative binomial distribution and Wishart distribution.

The remainder of the article is organized as follows. In Sec-
tion 2, we develop a new data augmentation and approximation
of the reciprocal gamma function and illustrate our approach
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using a simple gamma model. For simplicity, we consider only
proper priors for shape parameters as well as other variables,
which ensures that full conditional distributions are always
proper. In Section 3, we use our approach for a model based on
Student’s t-distribution. In Section 4, we consider a Dirichlet-
multinomial model and apply a generic method. Some conclud-
ing remarks are given in Section 5. Proofs and additional results
are provided in the supplementary materials.

2. Beta Data Augmentation

2.1. General Ideas

The most important result for our method is the following
integral expression, which is based on Gauss’s multiplication
formula for the gamma function.

Theorem 1. Let m ∈ N. Then we have

1
{�(ξ)}m = Cm

1
ξmξ

ξm+1/2−1emξ
{ m∏

j=2

∫ 1

0
ρj

ξ+(j−1)/m−1 (1)

(1 − ρj)
(m−j+1)/m−1dρj

} (mξ)mξ−1/2

�(mξ)emξ
,

for all ξ > 0, where Cm = 1/
{
(2π)(m−1)/2 ∏m

j=2 �((m − j +
1)/m)

}
.

The proof is given in the supplementary materials. By The-
orem 1, we can rewrite the mth power of the reciprocal gamma
function, 1/{�(ξ)}m, by using integrals of m − 1 beta densities,
such that the reciprocal gamma function appears only once in
the right-hand side.

Suppose that the target distribution, or the posterior distribu-
tion, is the joint density of shape parameter ξ and other variables
ϑ of the form,

p(ξ , ϑ) ∝ f (ξ , ϑ)
1

{�(ξ)}m ,

where typically f (ξ , ϑ)
ξ∝ Ga(ξ |a1, b1) for some a1, b1 > 0. This

framework covers, for example, the case of n independent obser-
vations from a gamma distribution, x1, . . . , xn ∼ Ga(α, β);
in this case, m = n, (ξ , ϑ) = (α, β), and p(α, β) is the
posterior of (α, β) given x1, . . . , xn, or p(α, β) ∝ π(α, β) ×
βnα

( ∏n
i=1 xi

)αe−β
∑n

i=1 xi , where π(α, β) is a prior density (see
Section 2.2). In general, some of the variables ϑ may be latent
variables introduced based on data augmentation. We are inter-
ested in the repeated sampling from the conditional distribu-
tions, p(ξ |ϑ) and p(ϑ |ξ). We assume that it is relatively easy to
sample ϑ from p(ϑ |ξ), and we focus on the problem of sampling
ξ from p(ξ |ϑ) in the following.

The derivation of the augmented model is a three-step pro-
cess. First, we rewrite p(ξ , ϑ) as

p(ξ , ϑ) ∝ f (ξ , ϑ)

ξmξ
ξm+1/2−1emξ

{ m∏
j=2

∫ 1

0
ρj

ξ+(j−1)/m−1 (2)

(1 − ρj)
(m−j+1)/m−1dρj

} (mξ)mξ−1/2

�(mξ)emξ
,

by using Theorem 1. The mth power, 1/{�(ξ)}m, is simplified
to a single reciprocal gamma function, 1/�(mξ), which we
further evaluate in the following steps. A set of additional latent
variables, ρ = (ρ2, . . . , ρm) ∈ (0, 1)m−1, has the full conditional
of the simple form,

∏m
j=2 Beta(ρj|ξ + (j−1)/m, (m− j+1)/m),

from which we can easily sample.
Second, the conditional density of (ξ , ϑ) given ρ is

p(ξ , ϑ |ρ) ∝ f (ξ , ϑ)

ξmξ
ξa2−1e−b2ξ (mξ)mξ−1/2

�(mξ)emξ
,

where a2 = m + 1/2 and b2 = −m + ∑m
j=2 log(1/ρj).

In the above expression, there are two factors that make it
difficult to sample ξ from the full conditional: 1/ξmξ and
(mξ)mξ−1/2/{�(mξ)emξ }. Here, in order to eliminate 1/ξmξ , we
assume that we can make the change of variables ϑ̃ = ϕ(ϑ ; ξ)

with Jacobian ξmξ , so that f (ξ , ϑ)d(ξ , ϑ) = ξmξ f̃ (ξ , ϑ̃)d(ξ , ϑ̃),
and the density of interest becomes

p(ξ , ϑ̃ |ρ) ∝ f̃ (ξ , ϑ̃)ξa2−1e−b2ξ (mξ)mξ−1/2

�(mξ)emξ
.

This change-of-variable is available for many models, includ-
ing the gamma model of Section 2.2. The models for which
there is no such change-of-variable, including the Dirichlet-
multinomial model of Section 4, are discussed in Section 2.3.

Third, we use the above expression to construct an indepen-
dent MH algorithm. Let ξold be a current value of ξ . To generate
a new value ξnew, we first sample a proposal ξ∗ from the approx-
imate full conditional density proportional to f̃ (ξ , ϑ̃)ξa2−1e−b2ξ

and compute

p = min
{

1,
(mξ∗)mξ∗−1/2

�(mξ∗)emξ∗ /
(mξold)mξold−1/2

�(mξold)emξold

}
.

Then we set ξnew = ξ∗ with probability p, otherwise ξnew =
ξold. We note that in all the models considered in this article,
proposal distributions corresponding to f̃ (ξ , ϑ̃)ξa2−1e−b2ξ are
easy to sample from. The factor dropped in the approximate
distribution can be evaluated as

e−1/(12ξ)

(2π)1/2 <
ξξ−1/2

�(ξ)eξ
<

1
(2π)1/2 , (3)

for any ξ > 0 by Stirling’s formula. This expression shows that
the factor is almost constant when ξ is not extremely small,
and that the acceptance probability p is close to one. This can
be confirmed by bounding the acceptance probability below as
p ≥ e−1/(12mξ∗) ≥ 1 − 1/(12mξ∗), where the lower bound is
almost unity unless ξ∗ is extremely small.

2.2. An Illustration using a Gamma Model

Here, we consider a simple gamma model for illustration. For
this model, several methods for posterior inference are available
(e.g., Gilks and Wild 1992). In particular, the method of Miller
(2019) is customized for this model and highly efficient.

Suppose that observations x = (x1, . . . , xn) have been inde-
pendently generated from a gamma distribution Ga(α, β). We
assume the independent gamma prior distributions for α and β :
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Ga(a, b) and Ga(c, d), respectively. Then the posterior of (α, β)

is

p(α, β|x) ∝ Ga(α|a, b)βc−1e−dβ βnα

{�(α)}n

( n∏
i=1

xi
)α

e−β
∑n

i=1 xi .

Using Theorem 1, we can rewrite the above posterior density as

p(α, β|x) ∝ Ga(α|a, b)βc−1e−dββnα
( n∏

i=1
xi

)α

e−β
∑n

i=1 xi

× 1
αnα

αn+1/2−1enα
{ n∏

i=2

∫ 1

0
ρi

α+(i−1)/n−1

(1 − ρi)
(n−i+1)/n−1dρi

} (nα)nα−1/2

�(nα)enα
.

Now, we consider ρ = (ρ2, . . . , ρn) ∈ (0, 1)n−1 as a set of
additional latent variables. Then the conditional distribution of
(α, β , ρ) given x is

p(α, β , ρ|x) ∝ Ga(α|a, b)βc−1e−dββnα
( n∏

i=1
xi

)α

e−β
∑n

i=1 xi

× 1
αnα

αn+1/2−1enα
[ n∏

i=2
{ρi

α+(i−1)/n−1

(1 − ρi)
(n−i+1)/n−1}

] (nα)nα−1/2

�(nα)enα
.

In order to obtain MCMC samples of (α, β , ρ)|x, we can use
the MH within Gibbs sampler. It is easy to sample ρ from its full
conditional distribution since p(ρ|α, β , x) = ∏n

i=2 Beta(ρi|α +
(i−1)/n, (n−i+1)/n). Meanwhile, the full conditional of (α, β)

is

p(α, β|ρ, x) ∝ 1
αnα

αn−1/2+a−1 exp
{

− α
(

−
n∑

i=1
log xi

+
n∑

i=2
log

1
ρi

− n + b
)}

× βnα+c−1 exp
{

− β
( n∑

i=1
xi + d

)} (nα)nα−1/2

�(nα)enα
.

Although the full conditional of β is a gamma distribution, the
full conditional density of α does not have a standard form
because of the two factors: g1(α) = 1/αnα and g2(α) =
(nα)nα−1/2/{�(nα)enα}.

First, in order to eliminate g1(α) from the above expression,
we make the change of variables γ = β/α. Then

p(α, γ |ρ, x) ∝ αn−1/2+c+a−1 exp
{

− α
(

−
n∑

i=1
log xi

+
n∑

i=2
log

1
ρi

− n + b
)}

× γ nα+c−1 exp
{

− αγ
( n∑

i=1
xi + d

)}
g2(α).

The full conditional of γ = β/α is given by Ga
(
γ
∣∣nα +

c, α
( ∑n

i=1 xi + d
))

and tractable similar to that of the original
parameter β .

Next, we use the MH algorithm to update α. The full condi-
tional density of α is given by p(α|γ , ρ, x) ∝ Ga(α|A, B)g2(α),
where A = n − 1/2 + c + a and B = −∑n

i=1 log xi +∑n
i=2 log(1/ρi) − n − n log γ + γ

( ∑n
i=1 xi + d

) + b. We
sample a proposal α∗ from Ga(α|A, B). We accept α∗ if an
independent standard uniform variable U is less than or equal
to g2(α

∗)/g2(α
old), where αold denotes the current value of α.

The new value of α, or αnew, is set to α∗ if α∗ is accepted, and to
αold otherwise.

The MH within Gibbs sampler is summarized as follows.

Algorithm 1. The variables α, γ , and ρ are updated in the
following way.

– Sample γ ∗ ∼ Ga
(
nα + c, α

( ∑n
i=1 xi + d

))
.

– Sample ρ∗ = (ρ∗
2 , . . . , ρ∗

n) ∼ ∏n
i=2 Beta(α + (i − 1)/n, (n −

i + 1)/n).
– Sample α∗ ∼ Ga(A, B), where A = n − 1/2 + c + a and

B = −
n∑

i=1
log xi +

n∑
i=2

log
1
ρ∗

i
− n − n log γ ∗

+ γ ∗( n∑
i=1

xi + d
)

+ b,

and accept α∗ with probability

min
{

1,
(nα∗)nα∗−1/2

�(nα∗)enα∗ /
(nα)nα−1/2

�(nα)enα

}
.

The accuracy of approximation, or the acceptance probabil-
ity, has already been evaluated in (3). The acceptance probability
is, at least, 1 − 1/(12nα∗).

2.3. PTN Data Augmentation

The key to the augmentation strategy of Section 2.1 is to find
suitable changes of variables ϑ̃ = ϕ(ϑ ; ξ) to eliminate the factor
1/ξmξ in the second step. Because this is not always straight-
forward, an alternative method is developed in this section.
We modify the proposed method of Section 2.1 by introducing
additional latent variables. The main tool is the integral expres-
sion in the following lemma.

Lemma 1. Let m ∈ N. Then

1
ξmξ

= (mξ)1/2emξ (mξ)mξ−1/2

�(mξ)emξ

∫ ∞

0
wmξ−1e−wmξ2

dw

for all ξ > 0.

We assume that f (ξ , ϑ)
ξ∝ Ga(ξ |a1, b1) for simplicity and

consider the conditional density

p(ξ |ρ, ϑ) ∝ 1
ξmξ

ξa3−1e−b3ξ (mξ)mξ−1/2

�(mξ)emξ
,
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where a3 = a1 + m − 1/2 and b3 = b1 − m + ∑m
j=2 log(1/ρj).

Using Lemma 1, we see that p(ξ |ρ, ϑ) is the marginal density of

p(ξ , w|ρ, ϑ) ∝ ξa3−1/2e−(b3−m)ξ
{ (mξ)mξ−1/2

�(mξ)emξ

}2
wmξ−1e−wmξ2

,

where w ∈ (0, ∞) is an additional latent variable. Clearly,
p(w|ξ , ρ, ϑ) = Ga(w|mξ , mξ 2). On the other hand,

p(ξ |w, ρ, ϑ)/
{ (mξ)mξ−1/2

�(mξ)emξ

}2 ∝ ξ c−1e−aξ2+bξ , (4)

where c = a3 + 1/2, a = mw, and b = m log w + m − b3. The
right-hand side is proportional to the power truncated normal
(PTN) distribution (He, Polson, and Xu 2021) with parameters
c, a, and b, which is denoted by PTN(c, a, b). Since the denom-
inator of the left-hand side in (4) is almost constant as seen
in (3), the conditional density p(ξ |w, ρ, ϑ) is approximated by
PTN(ξ |c, a, b). Then, we generate a proposal, ξ∗ ∼ PTN(c, a, b),
and accept it with probability

min
{

1,
{ (mξ∗)mξ∗−1/2

�(mξ∗)emξ∗ /
(mξold)mξold−1/2

�(mξold)emξold

}2}
,

where ξold is the current state of ξ .

2.4. Additional Data Augmentation for the PTN
Distribution

In order to sample from the PTN distribution (4), one can use
the accept/reject algorithm described by He, Polson, and Xu
(2021). In this article, we consider other approaches so that
we do not necessarily need to use accept/reject algorithms.
Our approaches also have potential flexibility that they are
easily extended to the case where f (ξ , ϑ) is proportional to a
generalized-inverse-Gaussian density as a function of ξ .

Let M > 0 be a constant possibly dependent on w, ρ, and ϑ

such that M > b. (A convenient choice is M = 1 + max{0, b}.)
Then, the PTN density is written as

PTN(ξ |c, a, b) ∝ ξ c−1e−aξ2−b′ξ eMξ ,

where c, a, b′ = M − b, and M are all positive.
The exponential term eMξ can be augmented in two ways.

The first approach is based on the following expression:

PTN(ξ |c, a, b) ∝ ξ c−1e−aξ2−b′ξ
∞∑

ζ=0

Mζ ξ ζ

ζ !

=
∞∑

ζ=0

Mζ ξ ζ

ζ ! ξ c−1e−aξ2

∫ ∞

0

1√
2π

η1/2−1e−η/2e−(b′)2ξ2/(2η)dη,

where we consider ζ ∈ N0 = {0, 1, 2, . . . } and η ∈ (0, ∞)

as additional latent variables. Then the full conditional distri-
butions of ζ and η are Po(ζ |Mξ) and GIG(η|1/2, 1, (b′)2ξ 2),
respectively. The full conditional density of ξ divided by
{(mξ)mξ−1/2/�(mξ)emξ }2 is proportional to

ξζ+c−1e−{a+(b′)2/(2η)}ξ2
.

We can easily sample from the above distribution since it is
simply the square root of a gamma variable.

The second approach uses the integral expression based on
the normal density.

Lemma 2. For all ξ > 0, we have

eξ =
∫ ∞

−∞
1√
2π

1√
2ξ

e−θ2/(4ξ)+θ dθ .

By this lemma, we have

PTN(ξ |c, a, b) ∝ ξ c−1e−aξ2−b′ξ
∫ ∞

−∞
ξ 1/2−1e−θ2/(4Mξ)+θ dθ

∝
∫ ∞

−∞
eθ ξ c−1/2−1e−aξ2

[ ∫ ∞

0
η1/2−1e−η/2e−{b′ξ+θ2/(4Mξ)}2/(2η)dη

]
dθ ,

where we consider θ ∈ (−∞, ∞) and η ∈ (0, ∞) as addi-
tional latent variables. Sampling from the full conditional of
(η, θ) can be done in a compositional way; we sample θ (with
η marginalized out) from N(θ |2Mξ , 2Mξ), then (η|θ) from
GIG(η|1/2, 1, {b′ξ + θ2/(4Mξ)}2). The full conditional density
of ξ divided by {(mξ)mξ−1/2/�(mξ)emξ }2 is proportional to

ξ c−1/2−1e−{a+(b′)2/(2η)}ξ2
e−{θ4/(32M2η)}/ξ2

,

which is the square root of a generalized-inverse-Gaussian dis-
tribution.

3. Student’s t-Distribution

3.1. Sampling Algorithm

Student’s t-distribution is widely adopted in Bayesian infer-
ence to handle outliers in samples or heavy-tailed properties
of data generating processes (e.g., Geweke 1993; Fonseca, Fer-
reira, and Migon 2008; Villa and Rubio 2018; da Silva, Prates,
and Goncalves 2020). A typical problem in using Student’s t-
distribution is that the posterior inference of the degrees of
freedom is not straightforward since its full conditional distri-
bution has a complicated form. However, we can use our data-
augmentation approach. We here consider the simplest case
where the means of all observations are the same, and we use the
normal-scale-mixture representation of Student’s t-distribution,
under which the degrees-of-freedom parameter is regarded as
the shape parameter in the gamma distribution.

Suppose that for i = 1, . . . , n,

xi ∼ t(xi|(θ , τ), 2α) = �(α + 1/2)√
2πτ 1/2α1/2�(α)

/
{

1 + (xi − θ)2

2τα

}α+1/2
,

(θ , τ) ∼ p(θ , τ), α ∼ p(α),

where xi ∈ R, θ ∈ R, and τ ∈ (0, ∞). Then the posterior dis-
tribution p(θ , τ , α|x) is obtained as the marginal distribution of

p(θ , τ , α, w, ρ|x) ∝ p(θ , τ)

τn/2 p(α)αn+1/2−1enα
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( n∏
i=1

[wi
α+1/2−1e−wi{α+(xi−θ)2/(2τ)}]

)

×
[ n∏

i=2
{ρi

α+(i−1)/n−1(1 − ρi)
(n−i+1)/n−1}

]

× (nα)nα−1/2

�(nα)enα
, (5)

where w = (w1, . . . , wn) ∈ (0, ∞)n and ρ = (ρ2, . . . , ρn) ∈
(0, 1)n−1 are additional latent variables. The above expression is
derived in Section S6 of the supplementary materials by using
Theorem 1.

If we use the priors p(θ , τ) = N(θ |b, τ/a)IG(τ |c, d) and
p(α) = Ga(α|a0, b0) for a, c, d ∈ (0, ∞) and b ∈ R and
a0, b0 ∈ (0, ∞), we can use the following algorithm to generate
posterior samples.

Algorithm 2. The variables θ , τ , α, w, and ρ are updated in the
following way.

– Sample τ ∗ ∼ IG(c′, d′), where c′ = n/2 + c and

d′ = 1
2

{
ab2 +

n∑
i=1

wixi
2 −

(
ab + ∑n

i=1 wixi
)2

a + ∑n
i=1 wi

}
+ d.

– Sample θ∗ ∼ N(b′, τ ∗/a′), where a′ = a + ∑n
i=1 wi and

b′ = ab + ∑n
i=1 wixi

a + ∑n
i=1 wi

.

– Sample w∗ = (w∗
1, . . . , w∗

n) ∼ ∏n
i=1 Ga(α + 1/2, α + (xi −

θ∗)2/(2τ ∗)).
– Sample ρ∗ = (ρ∗

2 , . . . , ρ∗
n) ∼ ∏n

i=2 Beta(α + (i − 1)/n, (n −
i + 1)/n).

– Sample α∗ ∼ Ga(a0′, b0
′), where a0′ = a0 + n − 1/2 and

b0
′ = b0 − n +

n∑
i=1

(w∗
i − log w∗

i ) +
n∑

i=2
log

1
ρ∗

i
,

and accept α∗ with probability

min
{

1,
(nα∗)nα∗−1/2

�(nα∗)enα∗ /
(nα)nα−1/2

�(nα)enα

}
.

Since we introduce the additional latent variables ρ2, . . . , ρn,
our method is less efficient than an alternative method in terms
of the effective sample size for an MCMC sequence of a fixed
number of parameter values. However, since we do not need to
use numerical approximation, our method takes less time. These
are confirmed in Section 3.2.

We remark that our method is flexible and we can use many
other types of priors. For example, we can use a scale mixture
of gamma distributions as a prior for α. We can use a truncated
gamma prior for α and this case is considered in the second half
of Section 3.2. Also, for a0, b0, c0 ∈ (0, ∞), we can use the beta-
type prior p(α) ∝ αa0−1(1 − α/c0)

b0−1χ(0,c0)(α).

3.2. Simulation Study

Here, we compare the performance of our method based on
data augmentation (DA) with the performance of an alternative
method based on the approximation proposed by Miller (2019)
(A-MH). See Section S7 of the supplementary materials for
details of the A-MH method.

First, we set either n = 10, n = 30, or n = 100 and use the
conjugate prior p(θ , τ) = N(θ |0, τ/(1/10)) × IG(τ |1/10, 1/10)

and the gamma prior p(α) = Ga(α|1/10, 1/10). We generate xi
from t(xi|(3, 1), 2α0). We consider the cases 2α0 = 1/10, 2α0 =
1, and 2α0 = 10. Then, for each of the two methods, we generate
4, 000 posterior samples after discarding the first 1000 samples.
We use (ε, M) = (10−8, 10) for the convergence tolerance and
the maximum number of iterations for the A-MH method as
recommended in Miller (2019). We repeat this simulation 100
times.

Boxplots of the ratios of the effective sample sizes for α, τ ,
and θ to the computation times for the two methods are shown
in Figure 1 for n = 10. (For the boxplots for n = 30 and
n = 100, see Figures S1 and S2 of the supplementary materials.)
Table 1 reports the averages over the simulations of the ratios
(sESS) and the original effective sample sizes (ESS), as well as
the mean squared error (MSE) ratios of the estimators of α,
τ , and θ , where the MSE ratio is defined as the MSE of the
alternative method divided by that of our proposed method.
In terms of MSE, there is little difference between the two
methods in many cases including those in the supplementary
materials. In terms of sESS, our method is better especially for
θ and τ when n = 10. When n = 30, the alternative method
becomes better in terms of α and competitive in terms of τ

and θ . When n = 100, the alternative method is clearly better
than ours. This increase of sESS of the DA method for large n
is most likely due to the increased number of latent parame-
ters ρ2:n, affecting both efficiency and computational time. For
example, the ESSs of center parameter θ are almost unchanged
(or even improve) when n increases from 30 to 100, hence,
the decrease of the sESSs for θ is mainly due to the increased
computational time.

Thus, when n is large, our method benefits rather from its
simplicity and applicability to more complicated models. To
see this point, we consider additional scenarios where a trun-
cated gamma prior is used for the shape parameter; p(α) ∝
Ga(α|1/10, 1/10)χ(α,∞)(α), where α > 0. With this truncated
priors, the method of Miller (2019) must evaluate the expected
values of truncated gamma distributions, taking longer time for
posterior computation. In contrast, no complication is needed
for our method to use the truncated prior, except that we now
need to sample from truncated distributions. We set 2α0 = 10
and conduct the same simulation study for the truncated gamma
prior with 2α = 1, 3.

Boxplots of sESSs are shown in Figure 2 for n = 10 (and
in Figures S3 and S4 for n = 30 and n = 100, respectively),
and Table 2 lists the averages of ESSs, sESSs and the ratios
of MSEs computed in this experiment. In these scenarios, our
method becomes more competitive even for large n. In partic-
ular, our method outperforms the A-MH method in terms of
sESS for θ and τ when n = 10 and n = 30, and for θ when
n = 100.
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Figure 1. Boxplots of the effective sample sizes standardized by the computation times for the proposed method (DA) and the alternative method (A-MH) for n = 10.

Table 1. The averages of the effective sample sizes (ESS) for the proposed method (DA) and the alternative method (A-MH) by Miller (2019), the averages of those
standardized by computation time (sESS), and the ratios of the mean squared errors (MSE) of the A-MH method to those of the DA method.

ESS sESS MSE ratio

n 2 α0 Method θ τ α θ τ α θ τ α

10 0.1 DA 874 382 1972 7148 3121 16058 – – –
10 0.1 A-MH 805 361 2097 5887 2643 15408 1.14 8.87 1.06
10 1 DA 1506 686 466 12749 5815 3926 – – –
10 1 A-MH 1514 755 581 11252 5648 4285 1.00 1.05 0.93
10 10 DA 2276 1862 288 19406 15875 2458 – – –
10 10 A-MH 2316 1989 505 17634 15193 3854 1.00 1.01 0.84
30 0.1 DA 796 188 2068 4836 1135 12525 – – –
30 0.1 A-MH 834 178 2103 5115 1095 12914 1.10 0.79 1.02
30 1 DA 1408 444 510 9019 2837 3252 – – –
30 1 A-MH 1440 473 645 9114 2991 4072 1.00 1.00 1.00
30 10 DA 2371 715 122 15235 4570 782 – – –
30 10 A-MH 2448 921 220 16451 6235 1479 1.02 1.02 1.03
100 0.1 DA 904 109 1770 3200 384 6270 – – –
100 0.1 A-MH 895 105 1802 4040 472 8120 1.00 0.77 1.00
100 1 DA 1359 386 527 4889 1388 1888 – – –
100 1 A-MH 1364 391 640 6251 1794 2926 1.02 1.01 1.03
100 10 DA 2711 284 56 10380 1093 214 – – –
100 10 A-MH 2721 407 100 13793 2075 507 1.01 1.04 0.98
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Figure 2. Boxplots of the effective sample sizes standardized by the computation times for the proposed method (DA) and the alternative method (A-MH) for 2α = 1, 3
for n = 10.

Table 2. The averages of the effective sample sizes (ESS) for the proposed method (DA) and the alternative method (A-MH), the averages of those standardized by
computation time (sESS), and the ratios of the mean squared errors (MSE) of the A-MH method to those of the DA method for 2α = 1, 3.

ESS sESS MSE ratio

n 2 α0 Method θ τ α θ τ α θ τ α

10 1 DA 2376 2033 293 7029 6013 867 – – –
10 1 A-MH 2371 2092 533 3866 3419 868 1.01 0.98 0.96
10 3 DA 2885 2735 396 8963 8494 1230 – – –
10 3 A-MH 2893 2761 695 4877 4660 1171 1.00 1.00 0.99
30 1 DA 2341 601 126 6354 1627 342 – – –
30 1 A-MH 2371 767 217 4074 1325 373 1.01 0.99 0.89
30 3 DA 2710 1057 141 7376 2871 383 – – –
30 3 A-MH 2702 1206 251 4567 2051 424 1.00 1.03 1.03
100 1 DA 2660 247 59 5595 521 123 – – –
100 1 A-MH 2678 346 106 4278 552 168 0.99 1.00 0.94
100 3 DA 2679 283 63 5670 600 134 – – –
100 3 A-MH 2719 381 108 4300 604 170 1.00 1.03 1.04

4. The Dirichlet-Multinomial Distribution

4.1. Sampling Algorithm

Dirichlet-multinomial distribution is useful for modeling multi-
label variables, as used in topic modeling (e.g., Blei, Ng, and
Jordan 2003). Since the full conditional distribution of the shape
parameters of the Dirichlet distribution includes the recipro-
cal gamma function, their posterior sampling is typically not
straightforward (e.g., Nandram 1998). Although in this section
our focus is the estimation of the shape parameters of the
Dirichlet-multinomial distribution, our result is also relevant
in the context of finite mixture modeling (e.g., Frühwirth-
Schnatter 2006).

Suppose that for i = 1, . . . , n,

xi ∼ MultinL(xi|Ni, pi) = Ni!∏L
l=0(xi,l!)

L∏
l=0

pi,l
xi,l ,

pi ∼ DirL(pi|α) = �
(∑L

l=0 αl
)

∏L
l=0 �(αl)

L∏
l=0

pi,l
αl−1,

α ∼ p(α),

where xi = (xi,1, . . . , xi,L), xi,0 = Ni − ∑L
l=1 xi,l, pi =

(pi,1, . . . , pi,L) ∈ DL = {
(p̃1, . . . , p̃L) ∈ (0, 1)L∣∣p̃1, . . . , p̃L >

0,
∑L

l=1 p̃l < 1
}

, pi,0 = 1 − ∑L
l=1 pi,l, and α = (α0, . . . , αL).

Let x = (x1, . . . , xn) and p = (p1, . . . , pn). Since we have been
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unable to find good changes of variables to perform the second
step of Section 2.1, we use the flexible method of Section 2.3.
In Section S6 of the supplementary materials, we prove that
the posterior distribution p(p, α|x) is obtained as the marginal
distribution of

p(p, α, z, w, ρ|x) ∝ p(α)
{ L∏

l=0
(αl

ne2nαl)
}( n∏

i=1

L∏
l=0

pi,l
xi,l+αl−1

)
{ n∏

i=1
(zi

∑L
l=0 αl−1e−zi)

}

×
{ L∏

l=0
(wl

nαl−1e−wlnαl
2
)
}

[ n∏
i=2

L∏
l=0

{ρi,l
αl+(i−1)/n−1(1 − ρi,l)

(n−i+1)/n−1}
]

×
L∏

l=0

{ (nαl)
nαl−1/2

�(nαl)enαl

}2
, (6)

where z = (z1, . . . , zn) ∈ (0, ∞)n, w =
(w0, . . . , wL) ∈ (0, ∞)L+1, and ρ = (ρ2, . . . , ρn) =
((ρ2,0, . . . , ρ2,L), . . . , (ρn,0, . . . , ρn,L)) ∈ (0, 1)(n−1)(L+1) are
additional latent variables.

If we use the prior p(α) = ∏L
l=0 Ga(αl|a, b) for example, we

can use the following algorithm to generate posterior samples.

Algorithm 3. The variables p, α, z, w, and ρ are updated in the
following way.

– Sample p∗ = ((p∗
1,0, . . . , p∗

1,L), . . . , (p∗
n,0, . . . , p∗

n,L)) ∼∏n
i=1 DirL(xi + α).

– Sample z∗ = (z∗
1 , . . . , z∗

n) ∼ {
Ga

(∑L
l=0 αl, 1

)}n.
– Sample w∗ = (w∗

0, . . . , w∗
L) ∼ ∏L

l=0 Ga(nαl, nαl
2).

– Sample ρ∗ = ((ρ∗
2,0, . . . , ρ∗

2,L), . . . , (ρ∗
n,0, . . . , ρ∗

n,L)) ∼∏n
i=2

∏L
l=0 Beta(αl + (i − 1)/n, (n − i + 1)/n).

– For l = 0, . . . , L, let cl = n + a, al = nw∗
l , and

bl = −
n∑

i=1
log

1
p∗

i,l
+

n∑
i=1

log z∗
i + 2n + n log w∗

l

−
n∑

i=2
log

1
ρ∗

i,l
− b

and sample α∗
l in one of the following three ways and accept

it with probability

min
{

1,
{ (nα∗

l )nα∗
l −1/2

�(nα∗
l )enα∗

l

}2
/
{ (nαl)

nαl−1/2

�(nαl)enαl

}2}
.

(i) Sample α∗
l ∼ PTN(cl, al, bl) by using the PTN sampler

developed by He, Polson, and Xu (2021).
(ii) Let Ml = 1 + max{0, bl} and bl

′ = Ml − bl.

– Sample ζ ∗
l ∼ Po(Mlαl).

– Sample η∗
l ∼ GIG(1/2, 1, (bl

′)2αl
2).

– Sample α̃∗
l ∼ Ga((ζ ∗

l + cl)/2, al + (bl
′)2/(2η∗

l )) and
set α∗

l = (α̃∗
l )1/2.

(iii) Let Ml = 1 + max{0, bl} and bl
′ = Ml − bl.

– Sample θ∗
l ∼ N(2Mlαl, 2Mlαl).

– Sample η∗
l ∼ GIG(1/2, 1, {bl

′αl + θl
2/(4Mlαl)}2).

– Sample α̃∗
l ∼ GIG(cl/2 − 1/4, 2al +

(bl
′)2/η∗

l , (θ∗
l )4/(16Ml

2η∗
l )) and set α∗

l = (α̃∗
l )1/2.

4.2. Simulation Study

In this section, we conduct a simulation study—the poste-
rior inference of Dirichlet shape parameters—to compare our
method and the method of He, Polson, and Xu (2021). Both
methods are based on data augmentation but in different ways.
Many other standard methods, including one by Miller (2019),
are not directly applicable.

Following He, Polson, and Xu (2021), we set L + 1 = 10
and N1 = · · · = Nn = 500 and use the prior p(α) =∏9

j=0 Ga(αl|b/10, b) with b = 1. We generate pi from Dir9(α0)
and then xi from Multin9(500, pi). We consider the cases n =
100 and n = 1000. For each of these cases, we consider two
scenarios: (I) α0 = (1/10, . . . , 1/10) (equal case) and (II) α0 =
(1/10, 2/10, . . . , 10/10). Other scenarios are also considered
and reported in the supplementary materials. We generate 4000
posterior samples after discarding the first 1000 samples. We
repeat this simulation 100 times. The method of He, Polson, and
Xu (2021) requires sampling from the exponential reciprocal
gamma (ERG) distribution, for which they gave three methods.
We use the first method because it is the easiest to implement.
Setting N equal to a large value in (16) of He, Polson, and Xu
(2021) makes their approximation accurate. We set N = 3, so
that their approximation is sufficiently accurate.

We consider the proposed method based on (iii), (ii), and
(i) of Algorithm 3 (DA-N, DA-P and DA-PT, respectively), as
well as the method of He, Polson, and Xu (2021) (ERG). Using
these methods, we calculate the averages over the simulations of

Table 3. The average effective sample size (ESS), the average computation time
(CT), the standardized effective sample size by the computation time (sESS), and
the mean squared error (MSE) for the proposed data-augmentation method with
normal latent variables (DA-N), Poisson latent variables (DA-P), and the PTN sampler
of He, Polson, and Xu (2021) (DA-PT) and the original method proposed by He,
Polson, and Xu (2021) (ERG).

n Scenario Method ESS CT sESS MSE

100 (I) DA-N 863 2.1 414 0.82
DA-P 856 1.8 480 0.83

DA-PT 1199 1.8 667 0.82
ERG 1808 81.4 22 0.82

100 (II) DA-N 580 2.0 287 5.70
DA-P 668 1.7 389 5.68

DA-PT 846 1.8 478 5.73
ERG 1315 79.5 17 5.66

1000 (I) DA-N 846 7.7 110 0.80
DA-P 846 7.4 115 0.80

DA-PT 1192 7.4 162 0.80
ERG 1800 819.1 2 0.80

1000 (II) DA-N 582 7.6 76 5.06
DA-P 671 7.2 93 5.18

DA-PT 834 7.3 115 5.15
ERG 1317 835.4 2 5.17

NOTE: These values are averaged over α0, . . . , α9. MSE values under n = 100 and
n = 1000 are multiplied by 103 and 104, respectively.
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the means of the effective sample sizes for α0, . . . , α9 (ESS), the
averages over the simulations of the computation times (CT),
and the averages over the simulations of the ratios of the means
of the effective sample sizes to the computation times (sESS). We
also calculate the mean squared errors (MSE) of the estimators
of α0, . . . , α9.

The results are reported in Table 3. In all scenarios, the ERG
method has the largest ESS but the longest CT. In contrast,
the DA-N, DA-P, and DA-PT methods are less competitive
than the ERG method in ESSs, but significantly outperform
it in computational time. Consequently, all of our methods
have much larger sESSs than the state-of-the-art ERG method.
Among the proposed methods, the DA-PT method has the best
sESS. The other two methods cost computational efficiency for
the simplicity of their algorithms, as noted in Section 2.3. In
terms of MSE, no significant difference can be seen in the four
methods.

Thus, the difference of the method of He, Polson, and Xu
(2021) and ours in computational efficiency critically depends
on the computational time. For the fairness of comparison, it
should be noted that the computation by the ERG method can
speed-up by using parallelization, and could be competitive as
our methods in some computational environments that enable
such parallelization. Other than the efficiency, the advantage of
our method to be emphasized is its simplicity; no explicit par-
allelization is needed in implementing our method. In addition,
our method is tuning parameter free, while the ERG method
requires tuning N.

5. Concluding Remarks

The data augmentation approach proposed in this article can be
applicable to any posterior inference if the conditional posterior
involves the reciprocal gamma functions. Examples of such
models include the one-parameter Dirichlet, negative binomial
and Wishart models, in addition to the gamma, Student’s t
and Dirichlet-multinomial models considered in the previous
sections. The sampling algorithms for those models can be
derived straightforwardly and are provided in Section S1 of the
supplementary materials.

A remaining issue related to the proposed approach is that
our method is likely to be less efficient for extremely small n.
In that case, the data augmentation in Theorem S1 should be
customized for the model of interest. For example, if n = 1
and 0 < αl 
 1 in the Dirichlet-multinomial model, we
could improve the proposed augmentation; see Section S5 of the
supplementary materials.

Supplementary Materials

Online Supplementary Materials: All proofs and additional simulation
experiments are included. The applications to the one-parameter
Dirichlet, negative-binomial and Wishart models are also discussed in
detail. (pdf)

R-code for t and Dirichlet models: The R-codes to implement the poste-
rior computation for the t model in Section 3.2 and the Dirichlet models

in Section 4.2 are publicly available on GitHub repository (https://
github.com/sshonosuke/Gamma-DA).
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