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Real-time chirality transfer monitoring from
statistically random to discrete homochiral
nanotubes

Shixin Fa 1,2,6, Tan-hao Shi1,6, Suzu Akama1, Keisuke Adachi1, Keisuke Wada1,
Seigo Tanaka1, Naoki Oyama1, Kenichi Kato 1, Shunsuke Ohtani1,
Yuuya Nagata 3, Shigehisa Akine 4,5 & Tomoki Ogoshi 1,4

Real time monitoring of chirality transfer processes is necessary to better
understand their kinetic properties. Herein, we monitor an ideal chirality
transfer process from a statistically random distribution to a diaster-
eomerically pure assembly in real time. The chirality transfer is based on dis-
crete trimeric tubular assemblies of planar chiral pillar[5]arenes, achieving the
construction of diastereomerically pure trimers of pillar[5]arenes through
synergistic effect of ion pairing between a racemic rim-differentiated pillar[5]
arene pentaacid bearing five benzoic acids on one rim and five alkyl chains on
the other, and an optically resolved pillar[5]arene decaamine bearing ten
amines. When the decaamine is mixed with the pentaacid, the decaamine is
sandwiched by two pentaacids through ten ion pairs, initially producing a
statistically random mixture of a homochiral trimer and two heterochiral tri-
mers. The heterochiral trimers gradually dissociate and reassemble into the
homochiral trimers after unit flipping of the pentaacid, leading to chirality
transfer from the decaamine and producing diastereomerically pure trimers.

Chirality transfer, in which chiral information is transmitted from one
molecule (or part of it) to others (and/or from one size scale to
another) is of crucial importance in many physical and biological
processes as well as in chemistry and materials science1–4. Chirality
transfer has been achieved in a variety of artificial systems, such as
polymeric systems5–7, supramolecular polymers8–14, and discrete
assemblies15–19. For instance, Yashima et al. prepared right- and left-
handed helical polymers based on chirality transfer from chiral amines
or alcohols to the polymeric backbones through hydrogen bonding
interactions between acid groups on the polymer side chains and the
chiral inducers20. This chirality transfer was performed by forming
single-stranded spiral polymer chains. Furthermore, Meijer et al.
developed chirality transfer systems with P- and M-helical structures

based on π-π stacking assemblies, where aromatic molecules with
chiral substituents were used as chiral inducers21,22. In these systems,
the chirality was transferred to achiral building blocks with similar
molecular structures via π-π stacking of aromatic rings, producing
helical assemblies. In these cases, the chiral information was amplified
by chirality transfer from the chiral inducers to the achiral acceptors,
creating chiral supramolecular structures through the subsequent
assembly. Moreover, these groups also conducted real-time monitor-
ing of the chirality transfer process in these systems to better under-
stand their kinetic properties (Fig. 1a)23,24. Due to the complexity of
polymeric systems, there are countless possible intermediate assem-
blies during the chirality transfer process. Therefore, chirality transfer
processes as observed in real time typically reflect the averaged
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properties of each intermediate assembly in the system, making
monitoring chirality transfer accurately in real-time challenging.

Comparedwith polymeric and supramolecular polymeric systems
involving chirality transfer, discrete chirality transfer systems are
much easier to monitor and analyze because of their simpler
structures15–19. For example, enantiopure metallocages and organic
cages can be synthesized using chirality transfer from chiral guest
molecules or chiral auxiliary ligands25–30. However, these initial studies

mainly focused on the chirality transfer in the final stage (equilibrium
state), because controlling the chirality transfer rate and trapping the
heterochiral assemblies were difficult (Fig. 1b). In several studies, a
small amount of chiral ligand was found to induce the immediate
formation of homochiral cages31–33. Directional interactions, such as
covalent bonds, imine bonds, hydrogen bonds, and metal coordina-
tion, were mainly used to create these discrete assemblies. The
directional interactions of several ligands or moieties must cooperate

(c)

IIIII I

Initial distribution (statistically random) 25% 50% 25%

Final distribution (diastereomerically pure) 0 0 100%

1. Dissociation
2. Unit flip
3. Reassembly

5-fold 
helix

Chiral HPLC

five mismatching ion pairs five matching ion pairs

pS-pS-

pR- pS-

(a) (b)

(d)

helical polymers supramolecular helical polymers homochiral assemblies

Chirality transfer
Chirality transfer

Chirality transfer

Polymeric systems: Supramolecular polymeric systems: Discrete systems:

Real time monitoring

Averaged signals

Not monitored

heterochiral 
assemblies

pS-1 pR-1

rac-1

pS-1

2, 3 or 4

1. Dissociation
2. Unit flip
3. Reassembly

Fig. 1 | Real-time monitoring of reported chirality transfer systems and that in
the present study. a Real-time monitoring of chirality transfer in polymeric and
supramolecular polymeric systems, which typically reflect the averaged properties
of each intermediate assembly in the system. b Discrete chirality transfer systems,

which are difficult to monitor in real-time. c Chemical structures and planar chir-
ality of pillar[5]arenes 1–4. d The illustration of the process of statistically random
to diastereomerically pure discrete trimeric nanotube through chirality transfer by
matching ten ion pairs between pS-1 and 2 (or 3, 4).
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to construct a detectable assembly, which makes the heterochiral
structures in metastable states difficult to observe. By weakening the
interactions during the assembly process, thereby reducing its direc-
tivity, some metastable heterochiral assemblies may be observed, but
real-time monitoring of such transitions remains difficult34. On the
other hand, both homochiral assemblies and their heterochiral iso-
mers can be observed at the beginning of mixing in several self-
assembled systems, but not by a chirality transfer strategy35. Accord-
ingly, to the best of our knowledge, monitoring a chirality transfer
process from a statistically random assembly including heterochiral
and homochiral units to a diastereomerically pure and thermo-
dynamically stable homochiral assembly in a non-averaged discrete
assembled system, i.e., a general and ideal chirality transfer process,
remains challenging.

In our work investigating chirality transfer systems based on dis-
crete tubular assemblies of planar chiral pillar[5]arenes, we are able to
monitor the chirality transfer from a statistically random distribution
to a diastereomerically pure assembly in real time. By rational mole-
cular design of the pillar[5]arenes, the initial states of the statistically
dependent homo- and heterochiral supramolecular assembly mixture
was trapped by using strong and non-directional ionic interactions,
and the chirality transfer from the heterochiral to homochiral state
proceeded as a result of the directionality of substituents on the planar
chiral pillar[5]arenes.

Pillar[5]arenes are pillar-shaped macrocyclic host molecules36–41.
They have two stable planar chiral conformers owing to directional
substitutions on their phenyl units (Fig. 1c)42. In general, the two con-
formers interconvert because of unit flipping43–45. However, introdu-
cing bulky groups to the rims can slow or even stop this flipping,
producing two atropisomers43,46,47.

Recently, we have prepared peraminopillar[5]arene 1, which bears
ten 3-(diethylamino)propoxy groups on its rims, and rim-
differentiated acidic pillar[5]arenes 2, 3, and 4, which have five ben-
zoic acids on one rim and five linear alkyl chains on the other
(Fig. 1c)48,49. By taking advantage of the strong ionic interactions
between the amino groups on 1 and the acid groups on 2, 3, and 4,
mixtures of 1 and 2 (or 3, 4) in a 1:2 molar ratio gave rise to trimeric
nanotubular assemblies. However, details of this assembly process,
including the chiral information for each component, proved difficult
to discern. Subsequently, we tried to use acidic pillar[5]arenes con-
taining five stereogenic carbons to achieve the construction of chiral
nanotubes by regulating the diastereomeric excess of the acidic pil-
lar[5]arenes using guest molecules, but the structural details of the
chiral assemblies were still not clear50.

Here, we show the chirality transfer of the trimeric nanotubular
assemblies and the construction of diastereomerically pure trimeric
nanotubes obtained as thermodynamically stable products when
chiral peraminopillar[5]arene 1 is used as a chiral building block
(Fig. 1d). More gratifyingly, we successfully control the rate of the
chirality transfer process by changing the length of the alkyl chains on
the acidic pillar[5]arene, enabling real-time monitoring the process
from statistically random to diastereomerically pure assembly. When
pS-1 was mixed with racemic 4, which can undergo unit flipping, the
metastable heterochiral diastereomers pR-pS-pS and pR-pS-pR (i.e.,
trimers II and III) were initially trapped along with the thermo-
dynamically stable homochiral pS-pS-pS (i.e., trimer I), according to a
statistically random distribution, because ionic interactions are gen-
erally strong and non-directional. However, the five ion pairs of the
directional rims between pS-acidic and pS-basic pillar[5]arenes are
principally more stable than those between pR-acidic and pS-basic
pillar[5]arenes because of the planar chiralitymatching. Therefore, the
mismatching ion pairs between pR-4 and pS-1 dissociate gradually, the
units of pR-4 flip from the pR- to the pS-form51, and the resulting pS-
acidic pillar[5]arenes reassemble with pS-1 by matching ion pairs.
Finally, only the thermodynamically stable homochiral trimer pS-pS-pS

(i.e., I) is observed, producing a tubular structure with a fivefold helix.
The chirality transfer from trimers II and III to I can be clearly mon-
itored by 1H NMRmeasurements. In this work, we report the real-time
monitoring of chirality transfer from a statistically distributedmixture
to a disateromerically pure nanotubular assembly.

Results
Optical resolution of 1
In the 1HNMR spectrumof peraminopillar[5]arene 1, the Hγprotons on
the two rims in proximity to the pillar[5]arene core show a clear AB-
quartet split, which indicates that the two protons on the same ethy-
lene group are diastereotopic and evidences the inhibition of free
rotation of the pillar[5]arene units at room temperature (Supplemen-
tary Fig. 1a)43. Whenmixed with 10 equiv. ofD-mandelic acid (D-MA), a
chiral solvating agent used to discriminate the signals of optically
active analytes in NMR spectroscopy52, the Hα signal on the core of 1 is
split into two singlet peaks with equal integration values, implying the
formation of supramolecular diastereomers between D-MA and pS-/
pR-1 via ionic interaction (Supplementary Fig. 1b). This observation
further reveals that the two enantiomers (i.e., pS- and pR-1) are stable
and do not readily interconvert at room temperature owing to the
bulkiness of the ten 3-(diethylamino)propoxy groups on the rim.
Optical resolution of 1 was realized by chiral HPLC (Supplementary
Fig. 2). The two fractionswere found to be highly pure, as evidencedby
the HPLC traces of the two reinjected fractions (Supplementary Fig. 3)
and the 1H NMR spectra of the two fractions in the presence of D-MA
(Supplementary Figs. 4 and 5). The CD spectra for the two fractions are
mirror images, indicating their enantiomeric relationship (Supple-
mentary Fig. 6). Based on the Cotton effect at ca. 310 nm, which is
ascribed to the π-π* transition in the pillar[5]arene backbones53, the
first and second fractions were assigned as pR-1 and pS-1,
respectively54. The enantiomeric 1 is stable at room temperature as the
Gibbs energy of activation at 25 °C (ΔG‡

25°C) was determined to be
101 kJ/mol by Eyring plot at 40–55 °C. Moreover, the CD intensity of
enantiomeric 1does not significantlydecreaseover fourweeks at room
temperature (see Supplementary Section 2.2 for details). However, too
high a temperature will rapidly racemize enantiomeric 1, as the CD
signal of enantiomeric 1 at 100 °C in tetrachloroethane completely
disappeared within 3 h, and no signal was observed even when it
cooled back to room temperature (Supplementary Fig. 9).

Chirality transfer from enantiomeric 1 to 2 to form homochiral
trimers
Mixing of enantiomeric 1with rim-differentiated acidic pillar[5]arene 2
in a 1:2molar ratio gives rise to the formation of trimeric assemblies, as
observed for a previously reported racemic mixture (Supplementary
Figs. 10 and 11)48. The intensity of the UV absorption for the pillar[5]
arene π-π* transition is approximately tripled because the concentra-
tion of the pillar[5]arene core increases by a factor of two (Fig. 2a).
However, the corresponding CD intensity increase is approximately
fivefold. This result strongly implies chirality transfer and amplification
in the mixture during trimer formation. Thus, 2 becomes non-racemic
and exhibits an enantiomeric excess (ee) through chirality transfer
from enantiomeric 1, which makes the formation of the homochiral
trimers (i.e., I and its enantiomeric trimer) more favorable.

Nevertheless, the fivefold increment in CD intensity (instead of
threefold) can only be achieved with contributions by other factors.
We propose that the additional increase in CD intensity is due to
structural fixing caused by trimerization (Fig. 2b). Although unit flip-
ping of 1 is inhibited at room temperature by the bulky substituents on
both rims, the non-rigidmethylenebridges of 1 allow theunits to swing
while maintaining the planar chirality of the molecule. This swing
effect means the pillar[5]arene molecules may not always exist in a
perfectly pillar-shaped configuration in the solution, and thus their
apparent CD signals may not be maximized, which is quite different
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from most chiral molecules. Accordingly, we verified this swing effect
experimentally using host-guest complexation, which suppresses the
unit swing of pillar[5]arenes. Upon the addition of 1,4-dibromobutane,
a known guest for the cavity of pillar[5]arenes (K > 103M−1)55, the CD
intensity of enantiomeric 1 increases by up to 50% (Supplemen-
tary Fig. 13).

Similarly, trimerization of 1 with 2 also fixes the structure of the
pillar[5]arenes through multiple ionic interactions. Therefore, an
additional CD increase of the system (Fig. 2a) beyond the effect of
chirality transfer is observed (see SupplementarySection 3.2 for details
of discussion on the swing effect).

The amplified CD intensity barely changes upon heating at 50 °C
for 9 h (Fig. 2c and Supplementary Fig. 14), which indicates that the
chirality transfer process reaches equilibrium immediately upon mix-
ing. Toobtain distribution informationon the trimers in the system,we
performed computational optimization of the three trimers centered
on pS-1 (i.e., I, II, and III in Fig. 2d)56–58. Based on theoretical calcula-
tions, the homochiral trimer I is energetically more stable than the
other two heterochiral trimers by 29.24 and 103.93 kJ/mol (see Sup-
plementary Section 3.4 for computational details, and Supplementary
Data 1 contains the optimized structures in xyz format). It is apparent
that the effect of planar chirality in pillar[5]arenes lead the ten
matching ion pairs of the same directional rims between the pS-acidic
and pS-basic pillar[5]arenes in trimer I to gain more stabilization
energy than those between thepR-acidic andpS-basic pillar[5]arenes in
heterochiral trimers II and III. According to the Maxwell–Boltzmann
distribution, I makes up the overwhelming proportion of the system.
At room temperature, the equilibrium constants between trimer
III and II, and between II and I were determined to be 1.4 × 1013 and
1.3 × 105, respectively. Therefore, almost only homochiral trimer I, the
thermodynamically stable species, exists in the 1:2 mixture of

enantiomeric 1 and 2. Thus, the presence of only one set of resonance
signals for the mixture of pS-1 and 2, which are identical to that for the
mixture of rac-1 with 2 (Supplementary Fig. 10), indicates the forma-
tion of a highly symmetrical trimerized structure (i.e., I in the former
case, and I and its enantiomeric trimer in the latter).

This fast and efficient chirality transfer was not expected. Con-
sidering that ionic interactions are generally strong and non-direc-
tional, the stabilization produced by the ten ion pairs during
trimerization promotes the survival of the metastable heterochiral
trimers. When rim-differentiated acidic pillar[5]arene 4 with longer
alkyl chains on the rim was used, the process of chirality transfer
became slow, and thus we more clearly monitored it.

Chirality transfer from enantiomeric 1 to 4 to form homochiral
trimers
Unlike the case for the mixture of enantiomeric 1 and 2, mixing of
enantiomeric 1with4 in a 1:2molar ratio leads to anoverallCD increase
of less than twofold, despite the trimerization of 1 and 4 (Fig. 3a). This
observation suggests that the chiral information of 1 does not transmit
to4 as efficiently as to 2, which is caused by the increased length of the
alkyl chains on the rim of the acidic pillar[5]arene. Furthermore, this
phenomenon also implies that species other than the homochiral tri-
mer I may be kinetically trapped.

In the ESI-MS spectrum of the mixture of 4 and pS-1, signals cor-
responding to the ionized trimers are clearly observed (Fig. 3b and
Supplementary Fig. 16). The 1H NMR spectrum of the same mixture
shows many resonances in addition to those in the spectrum of the
mixture of rac-1 with 4 (Fig. 3c, d and Supplementary Fig. 17), sug-
gesting a more complicated system than that for homochiral trimer I
(orange signals in Fig. 3c). These new signals cannot be separated from
those of I in diffusion ordered spectroscopy (DOSY). The diffusion
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coefficient (D) was determined to be 7.0 × 10−10 m2/s (Fig. 3d), which is
in good agreement with the D value of our previously reported
trimers48, suggesting that the new species are also trimeric assemblies.
We speculate that the formation of the ten salt bridges in either the
homochiral or heterochiral trimers significantly decreases the free
energy of the system, leading to an absence of dimers andmonomers.
This was further evidenced by varying the ratio of 1 and 4. When less
than 2 equiv. of4 is added to the solutionof 1, signals corresponding to
dimers and monomers are observed (Supplementary Figs. 18 and 19).
By carefully comparing these spectra with that shown in Fig. 3d, it is
possible to determine that only trimeric species are present in the
mixture of pS-1 and 4 at a 1:2 molar ratio.

The signals in the 1H NMR spectrum were assigned convincingly
based on their chemical shifts and integrations (Fig. 3d, e). In principle,
the resonances of I and III present only one set of peaks each, because
of the bilateral symmetry of the structure. In contrast, the structure of
II is flanked bymatching interactions andmismatching interactions, so
the NMR signals for the different ends of the structure are not iden-
tical, and their chemical shifts are similar to those in I and III,
respectively (Fig. 3e). Therefore, a total of four sets of NMR signals can
be observed for themixture of the three assemblies (Fig. 3d). The peak
with chemical shift ~8.3 ppm clearly contains Ha in I and another Ha,
which can be assigned as that at the matching end of structure II. The

new peaks with chemical shifts ~8.1 ppm should be Ha in III and at the
mismatching end of II. Similarly, the two peaks ~6.6 ppm represent He

in I and that at the matching end of II. This assignment of these peaks
allowed us to infer the initial concentrations of the three assemblies in
the solution. As shown in Fig. 3d, e, the peak with a chemical shift of
approximately 8.3 ppm contains the resonance signals of all the Ha in I
and Ha at the matching end of II, i.e., its integral area is positively
correlated with the sum of the concentrations of II and two times the
concentration of I:

Z
8:3ppm

/ ð2½I�+ ½II�Þ: ð1Þ

In the same way,

Z
8:1ppm

/ ð2½III�+ ½II�Þ; ð2Þ

Z
He1

=

Z
He2

= 2½I�=½II�: ð3Þ

Accordingly, the initial distribution of the three trimers was
determined tobe25% for I, 50% for II, and 25% for III, which is in accord
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with a statistically random distribution and indicates that no immedi-
ate chirality transfer occurs in the mixture of pS-1 and 4. This is con-
sistentwith the lowCD intensity observed in Fig. 3a, where an initialCD
increase should be caused by the structural fixing of enantiomeric 1 by
trimerization.

Chiral amplification is achieved upon heating the mixture of pS-1
and 4 at 50 °C. After ~9 h, the CD intensities of the mixtures of enan-
tiomeric 1 and 4 reached their maxima (Fig. 4a and Supplementary
Fig. 20), which are around 5 times higher than that of enantiomeric 1.
Again, this most likely results from structural fixing via trimerization,
which suppresses the swinging of pillar[5]arene units. The chiroptical
responses of the systems also verified the above conclusion. At room
temperature, the specific optical rotations of the 1:2 mixtures of pS-1
and pR-1 with 4 were [α]23D = −4.85 ± 0.42 and +5.43 ±0.42, respec-
tively. After heating at 50 °C for 9 h, the optical rotations of the two
systems changed to −14.46 ±0.25 and +13.63 ±0.25, respectively,
almost three times as high as before heating. This suggested that
heating led to the formation of homochiral assemblies.

The chirality transfer process was further monitored by variable
temperature 1H NMR analysis. Heterochiral trimers II and III gradually
transform into homochiral trimer I upon heating (Fig. 4b and Sup-
plementary Fig. 21). After around 9 h, the signals ascribed to the two
heterochiral trimers are no longer observed and the ee of 4 exceeds
99% (Fig. 4c), indicating an eventually perfect chirality transfer in the
mixture from pS-1 to 4. No species other than the three trimers are
observed during the entire chirality transfer process. Therefore, we
can represent the process simply as:

Trimer III�!k1 Trimer II�!k2 Trimer I ð4Þ

From the change in the mole fractions of the three trimers shown
in Fig. 4d, the reaction rates k1, 323K and k2, 323K in the above formula
were determined to be 2.4 × 10−4 s−1 and 1.3 × 10−4 s−1, respectively. The

first transformation is faster than the second, because there are two pR
formmolecules of4 in III andonly one in II. Regrettably, it is difficult to
determine the energy barriers for the two transformations because the
rate of the chirality transfer process is difficult to precisely control as
the temperature decreases (Supplementary Fig. 29). Details of the
temperature effect are discussed in Supplementary Note 1.

A schematic of chirality transfer from pS-1 to 4 is shown in Fig. 4e.
Typically, any heterochiral species in the mixture of pS-1 and 4 may
dissociate at any mismatching position, and finally reassemble into a
homochiral species through matching ion pairs after unit flipping of
the dissociated pR-4, which constitutes an overall chirality transfer
process.More specifically,when apR-4molecule in heterochiral trimer
III dissociates from the assembly, the remaining heterochiral dimer
can further dissociate into twomonomeric pillar[5]arenes pR-4 and pS-
1. Then, a homochiral dimer forms with the unit flipped pR-4 through
matching ion pairs, which further assembles into II and I, completing a
chirality transfer process. The chirality transfer from II goes through a
similar process. However, thesedimers could not be observed because
of the strong ionic interactions between 1 and 4. The dissociated III
immediately reassembles into II after unit flipping of pR-4, before
assembling into I through a similar process.

With the length of the alkyl chains in between 2 and 4, pentaacid
compound 349 completed the chirality transfer process in 10min at
50 °C after mixing with pS-1 in a 1:2 molar ratio in chloroform (Sup-
plementary Fig. 22), indicating that the chirality transfer slowed down
under the same condition as increasing the length of the alkyl chains.

Proposed mechanism
Overall, mixing of rotatable rim-differentiated acidic pillar[5]arenes 2,
3, and 4 with enantiomeric peraminopillar[5]arene 1 successfully
generates homochiral trimeric nanotubes with high purity by chirality
transfer during trimerization. The stabilization of trimers by the salt
bridges in either homochiral or heterochiral trimers consumes other
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plausible species (i.e., dimers andmonomers) in the system as soon as
they are produced by trimer disassembly. Furthermore, the length of
the alkyl chains on the rim-differentiated acidic pillar[5]arenes dra-
matically affects the speed of the chirality transfer process. We thus
speculate that unit flipping of the acidic pillar[5]arenes (i.e.,2, 3, and4)
after release from a trimer contributes to the energy barrier of trans-
formation between trimers. This assumption that the association/dis-
sociation processes are fast (compared with the unit flipping of
pillar[5]arenes) is partly supported by the absence of heterochiral tri-
mers when rac-1 and 4 were mixed (Fig. 3c). The difference in the
rotation abilities of 2, 3, and 4 (i.e.,ΔG‡

r (2),ΔG‡
r (3) andΔG‡

r (4) shown
in Fig. 5) creates differences in the energy barriers between the trimers
containing them, which results in the differences observed for mix-
tures of 2, 3 or 4 with enantiomeric 1. Using temperature variable 1H
NMR, rotation barriers of ester-2, ester-3, and ester-4, which are
unhydrolyzed ester-containing precursors, were determined to be
50.6, 56.2, and 59.4 kJ/mol, respectively (Supplementary Figs. 23–25).
We and others have previously reported that the rotation of pillar[5]
arenes is often completed by cooperative flipping of the five
units43,47,59,60, and this is also partly responsible for the fact that such a
large difference in chirality transfer barrier can be realized by simply
increasing the alkyl chain length from four carbon atoms to 12 carbon
atoms. In addition, long alkyl chains may act as guests61,62 in the cavity
of the assemblies to stabilize them, thereby slowing their depolymer-
ization and chirality transfer.We also investigated the solvent effect. In
guest solvent dichloroethane, the chirality transfer rate was reduced,
while in non-guest solvents, such as tetrachloroethane and tetra-
hydrofuran, the chirality transfer rates were as fast as in chloroform.
Details of the length effect of alkyl chains and solvent effect are dis-
cussed in Supplementary Sections 6 and 7, respectively.

Discussion
A combination of spectral data and computational results demon-
strated chirality transfer from enantiomeric peraminopillar[5]arene 1
to the flippable acidic pillar[5]arenes 2, 3, and 4 via trimerization,

revealing the formation of discrete nanotubes with fivefold helices.
Furthermore, the rate of chirality transfer can be successfully con-
trolled by varying the length of the alkyl chains on the flippable
achiral acidic pillar[5]arenes, and statistically random trimeric
nanotubes form immediately upon mixing. Compared with most
discrete chirality transfer systems based on coordination interac-
tions and dynamic covalent bonds, which are strongly directional,
this system has non-directional ionic interactions that help to main-
tain the random distribution of the trimers. The synergetic effects of
the five strongly directional substituents (due to the planar chirality)
on each rim of the non-flippable pillar[5]arene 1 ultimately allow real-
time monitoring of the transformation frommetastable heterochiral
trimers to homochiral trimers. Although the precise mechanism of
the chirality transfer process requires further investigation, it most
probably involves the disassembly of mismatching assemblies in
terms of planar chirality, unit flipping of the dissociated acidic pil-
lar[5]arene, and reassembly between the planar chiral converted
acidic pillar[5]arene and the chiral peraminopillar[5]arene 1. Of these
steps, the energy barrier to the flipping of the acidic pillar[5]arenes
between the pS and pR forms seems to dominate the rate of chirality
transfer. In this work, chiral tubular structures have been created
through a chirality transfer strategy utilizing non-directional ionic
interactions, and the intermediate heterochiral assemblies were
captured. The discrete chirality transfer concept demonstrated in
this work shows promise for the design of other dynamic chirality
transfer systems, some of which may present clearer mechanisms
and be easier to study, enriching our understanding of their prop-
erties even further.

Methods
Materials
All commercially available reagents and solvents were used as received.
Compound 1was synthesized by amination of a perbromopillar[5]arene
with diethyl amine, and acidic pillar[5]arenes 2, 3, and 4 were synthe-
sized by hydrolysis of their ester precursors obtained following a
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Fig. 5 | Schematic representation of the effect of alkyl chain length on the
kinetics of chirality transfer.ΔG‡

r (2),ΔG‡
r (3), andΔG‡

r (4) represent the rotation
barrier of acidic pillar[5]arene 2, 3, and 4, respectively. The resulting assemblies III
(or II) from 2, 3, 4 require almost the same energy to dissociate one acidic pillar[5]

arene, since the energy is mainly used against the same five pairs of ionic inter-
action. The chiral inversions of 2, 3, 4 contribute a major part of the conversion
energy barrier of their assembled assemblies.
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general procedure to synthesized rim-differentiated pillar[5]arene. The
synthetic details are shown in the Supplementary Information.

Optical resolution of 1
Optical resolution of 1was carried out on a JAI LaboACE LC-5060HPLC
apparatus equipped with a DAICEL CHIRALPAK® IE column (ϕ =
10mm, l = 250mm). A sample of racemic 1 (5.0mg) was dissolved in
5mLof amixture ofn-hexane/ ethanol/ ethylenediamine (92.5/ 7.5/ 0.1,
v/v/v). The solution was filtered, and 0.5mL of the filtrate was injected.
The separation was carried out using the same mixture of n-hexane/
ethanol/ethylenediamine as eluent at a flow rate of 10mL/min at 25 °C.
The enantiomers were detected using a UV detector at 300 nm. For
better separation, the sample was cycled three times on the column.
The two fractions were collected by repeating the above operations.
The solvent of each fractionwasevaporated under reducedpressure at
room temperature. The residue was redissolved in 5mL chloroform,
washed with DI water (5mL × 3) to remove the residual ethylenedia-
mine. (Note: Because of the presence of a large amount of ethylene-
diamine in the residue, the aqueous phase and the organic phase were
very difficult to separate during the first washing. Overnight standing
was necessary before the two could be completely separated). The
organic phase was dried over anhydrous sodium sulfate after filtration
and evaporated under reduced pressure at room temperature. Enan-
tiomeric 1 was obtained as colorless viscous oil, which was kept at
−10 °C prior to use, whereupon it solidified, becoming easy to weigh
and use. Based on the positive and negative Cotton effect for the first
and the second fractions observed in their CD spectra, the two frac-
tions were assigned as pR-1 and pS-1, respectively.

Mass analysis
High-resolution ESI-MS was performed on a Thermo Fisher Scientific
Exactive Plus mass spectrometer equipped with an UltiMate 3000
HPLC unit.

NMR
1H NMR spectra were recorded on JEOL JNM-ECS400, JNM-ECZ500R
and JNM-ECA600P spectrometers. The DOSY analysis of a mixture of
pS-1with4wasperformedon the JNM-ECA600P spectrometer at 25 °C.
2D COSY and 2D NOESY were also carried out to help to assign the
signals of themixture ofpS-1with 4. However, unexpected cross peaks
resulted in complicated 2DNMRspectra, due to the chirality transfer at
room temperature. At low temperatures (−20 °C), the spectra became
broadened, and the cross-peaks were too weak to be analyzed.

UV–Vis absorption
UV–Vis absorption spectra were recorded using a JASCO V-750 spec-
trophotometer equipped with a JASCO CTU-100 circulating thermo-
stat unit to control the experimental temperature. All measurements
were performed in chloroform at 25 °C. In all cases, the concentration
of compound 1 was 0.05mM, and 2mm quartz cuvettes were used.

CD
CD spectra were recorded on a JASCO J-1500 CD spectrometer
equippedwith a JASCOCTU-100 circulating thermostat unit to control
the experimental temperature. In all cases, the concentration of
compound 1 was 0.05mM, and 2mm quartz cuvettes were used.

Optical rotations
Enantiomeric 1 (0.0005mmol) and 4 (0.001mmol) were mixed in
chloroform (2.5mL) to prepare the samples. Both the mixture of pS-1
with 4 and that of pR-1 with 4 were prepared. The optical rotations of
the samples were measured on a Rudolph Research AUTOPOL IV
Automatic Polarimete right after the preparation at room temperature
and after heating the samples at 50 °C for 9 h. The values were aver-
aged from 10 recorded data. The specific optical rotations were

determined by the equation: [α]23D = 100 α/c, where α is the recorded
optical rotation (in degree), and c is the concentration of the samples
(in mg/mL).

Monitoring the trimer mixture
Time-dependent 1H NMR analyses of a mixture of pS-1 with 4 at
50 °C were performed using the following method: 60 μL of a stock
solution of pS-1 in CDCl3 (5mM) and 120 μL of a stock solution of 4
in CDCl3 (5 mM) were successively added to 420 μL CDCl3. The
mixture was transferred into an NMR tube and sealed. The spectrum
of the mixture at 0 h was recorded as soon as possible at room
temperature on the JEOL JNM-ECS400 spectrometer. The sample in
the NMR tube was heated in an oil bath at 50 °C. The spectra were
recorded again at 1, 3, 6, and 9 h. The temperature for recording
spectra in all cases was 25 °C.

Time-dependent CDmeasurements of amixture of pS-1with 2 (or
4) at 50 °C were performed using the following method: The heater of
the CD spectrometer was set to 50 °C. Then, 6μL of a stock solution of
pS-1 in chloroform (5mM) and 12μL of a stock solution of 2 (or 4) in
chloroform (5mM) were successively added in 582μL of chloroform.
Themixture was transferred to a quartz cuvette, which was sealed and
immediately placed in the holder of the CD spectrometer. The spec-
trum of the mixture at 0 h was recorded as soon as possible. The
sample was kept in the holder at 50 °C, and the spectra were recorded
again at 1, 3, 6, and 9 h.

Theoretical calculations
Theoretical calculations for structures of the homochiral and hetero-
chiral trimers were carried out using ORCA 4.2.0 with the semi-
empirical GFN2-xTB method and the SMD solvation model
(chloroform).

Nonlinear fitting of the chirality transfer process
Time-dependent changes of the mole fractions of trimers, [I], [II], and
[III] weredetermined by 1HNMRspectroscopy. Themole fractions [III]
and [II] were fitted to the equations of the two-step consecutive irre-
versible reaction kinetics with two parameters, k1 and k2, by nonlinear
least-squares regression:

Trimer III�!k1 Trimer II�!k2 Trimer I

III½ �= ½III�0expð�k1tÞ ð5Þ

II½ �= ½II�0expð�k2tÞ+
k1½III�0
k2 � k1

exp �k1t
� �� exp �k2t

� �� � ð6Þ

I½ �= 1� III½ � � ½II� ð7Þ

where [III]0 (= 0.25) and [II]0 (= 0.5) are the mole fractions at t =0.

Data availability
The data that support the findings of this study are available within the
article and Supplementary Information files, and are also available
from the corresponding author upon request. Supplementary Data 1
contains the optimized structures of the homochiral and heterochiral
trimers in xyz format. Source data are provided with this paper.
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