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Abstract 
The multiple scattering of flexural waves on an elastic plate with circular scatterers is analyzed in the 
frequency domain based on the Mindlin plate theory accounting for the rotary inertia and shear 
deformation of the plate. To this purpose, a semi-analytical numerical method is formulated as an 
extension of the previous study based on the Kirchhoff plate theory. It consists of expressing the flexural 
wave field in terms of the superposition of the wave function expansion, and determining the expansion 
coefficients by a collocation technique. As demonstrative examples, the transmission of a plane flexural 
wave across a square array of circular through-thickness holes or thin-plate inclusions is analyzed using 
the proposed method. The comparison between the results based on the Mindlin and Kirchhoff theories 
is shown for the case of multiple holes. The analysis shows that the transmission amplitude of the 
flexural wave is reduced at certain frequencies due to the Bragg reflection by the inclusions. In the case 
of thin-plate inclusions, the resonance of the inclusions also brings about a sharp decrease of the 
transmission amplitude.  
  

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



2 
 

1. Introduction 
Scattering of flexural waves by holes, inclusions or other inhomogeneous features in elastic plates 

has been a subject actively investigated in applied mechanics for its importance in the design of thin-
walled structures against dynamic loading. Among the earliest contributions, Pao and Chao [1] analyzed 
the scattering of a plane flexural wave by a circular hole in an elastic plate and the associated dynamic 
concentration of bending moment and shear force around it. Later, Paskaramoorthy et al. [2] analyzed 
the flexural wave scattering by an arbitrarily shaped cavity using a hybrid technique of the analytical 
wave function expansion and the finite element method. Vemula and Norris [3] presented the 
formulation of flexural wave scattering for a general class of inhomogeneity and some related aspects 
of energy flux conservation. More recently, this subject also gained much attention in the context of 
nondestructive testing and structural health monitoring of plate-like structures using flexural waves. 
With such applications in the background, Wang and Chang [4] studied the scattering of flexural waves 
by different types of cylindrical defects and presented some explicit results based on the Born 
approximation together with experimental results. Cegla et al. [5] studied the flexural wave scattering 
and the accompanying mode conversion behavior at a circular blind hole on a plate. 

For the analysis of flexural motions in isotropic elastic plates, two classical approximate theories are 
well established, i.e., the Kirchhoff-Love theory [6] (referred to as the Kirchhoff theory below) and the 
Reissner-Mindlin theory [7] (referred to as the Mindlin theory), in addition to the rigorous Rayleigh-
Lamb theory for the so-called Lamb waves [8, 9]. In the Kirchhoff plate theory, the governing equation 
is solely described in terms of the out-of-plane deflection of the mid-plane of the plate. Its validity is, 
however, limited to very thin plates or a rather low frequency range. On the other hand, the Mindlin 
plate theory takes into account the rotary inertia and shear deformation of the plate and is capable of 
giving more reasonable prediction of the flexural wave propagation for thicker plates or for a wider 
range of frequency. The above-mentioned studies of flexural wave scattering [1-5] were based on the 
Mindlin theory. Corresponding problems of flexural wave scattering based on the Kirchhoff theory have 
been studied by Norris and Vemula [10], Squire and Dixon [11], Grahn [12], and Fromme and Sayir 
[13], among others. 

In the works mentioned above [1-5, 10-13], the flexural wave scattering was analyzed for a single 
scatterer in a plate. The level of analytical complexity rises substantially when one aims to study the 
flexural wave scattering by multiple scatterers. Different investigators [14-18] analyzed the multiple 
scattering of flexural waves and presented some numerical results for the cases of two or three circular 
inclusions. Peng [19] applied the acoustic wave propagator method to the problem of flexural wave 
scattering by nine patches on a plate. In many circumstances, however, there is a need to analyze flexural 
wave scattering for a greater number of scatterers. In particular, the possibility of manipulating flexural 
waves in plates by periodic arrangements of inclusions, e.g., filtering, focusing, cloaking, etc, is actively 
pursued in the current trend of research, i.e., thin-plate versions of phononic crystals and acoustic 
metamaterials [20-22]. For infinitely extended periodic arrangements of scatterers, the band structure of 
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flexural waves was analyzed by Movchan et al. [23] and Smith et al. [24]. Flexural wave propagation in 
strongly heterogeneous periodic plates was analyzed by Rohan and Miara [25] based on the two-scale 
homogenization technique. The flexural wave scattering by a random distribution of inclusions in plates 
was analyzed by Weaver [26], Dixon and Squire [27] and Parnell and Martin [28] using the statistical 
treatments. Recently, the multiple scattering of flexural waves by a large number of inclusions was 
analyzed by Cai and Hambric [29] based on the formalism of multiple scattering theory of waves. Wang 
and Biwa [30] formulated a computational method for multiple scattering of flexural waves by circular 
holes based on the wave function expansion and a numerical collocation technique. Similar formulation 
has been applied by Wang et al. [31] to analyze the multiple scattering of flexural waves by annular 
inclusions. 

As mentioned above, the scattering of flexural waves by inclusions of different types is an important 
topic in different perspectives ranging over the dynamic stress concentration, nondestructive 
testing/structural health monitoring, and phononic crystals/acoustic metamaterials. With a few 
exceptions [15, 25], however, most of the above-mentioned works for the multiple scattering of flexural 
waves are based on the classical Kirchhoff theory. It is then of definite interest to analyze the multiple 
scattering of flexural waves based on the Mindlin theory due to its validity for a wider range of plate 
thickness and frequency. This issue is also worthy of investigation since the more straightforward 
numerical analysis of the corresponding problem within the framework of three-dimensional elasticity, 
with the help of commercial software, is still heavily time- and memory-consuming. Therefore, the aim 
of the present study is to extend the previous work by Wang and Biwa [30] and to establish a numerical 
method to analyze the multiple scattering of flexural waves based on the Mindlin theory. Namely, the 
flexural wave fields in an elastic plate with multiple scatterers are expressed as the superposition of the 
wave function expansion, and their expansion coefficients are obtained numerically by a collocation 
technique. With the proposed method, some numerical results are demonstrated for the scattering of a 
plane flexural wave by multiple holes and multiple thin-plate inclusions.  

This paper is structured as follows. In Section 2, the basic equations of the Mindlin theory are 
outlined, and the multiple scattering analysis is formulated on this basis. In Section 3, the setting of 
some numerical examples, i.e., a square array of through-thickness holes or thin-plate inclusions, is 
described. In Section 4, the numerical results are demonstrated and discussed, in particular in the light 
of the stop band formation for the flexural wave. Section 5 summarizes the conclusion of this study.  
 
2. Formulation 
2.1 Mindlin plate theory 

The fundamental equations of the Mindlin plate theory [1, 3, 5, 7] are first recapitulated as the basis 

of the present analysis. For a flat plate of thickness h made of an isotropic linear elastic solid (density ρ, 
Young’s modulus E, Poisson’s ratio ν), the governing equations for the free flexural motion are, in the 
frequency domain with the angular frequency ω, given by 
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where the x-y coordinate system is taken in the mid-plane of the plate. In the above expressions, W(x, y) 

denotes the mid-plane deflection, Πx(x, y) and Πy(x, y) denote the rotation angles with respect to the y 
and x axes, respectively, and 2∇  denotes the two-dimensional Laplacian operator. The parameter κ is 
the shear correction factor. The shear modulus G and the flexural rigidity D are defined by 
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The solution to the above governing equations can be expressed as [1, 3] 
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where the functions W1(x, y), W2(x, y) and V(x, y) satisfy the Helmholtz equations 
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The coefficients α1 and α2 in Eqs. (6) and (7) are given by 
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where ρGc /T =  is the shear wave velocity in the solid. The present analysis focuses on a low-

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



5 
 

frequency range where hcκω /12 T<  , then k1
2 is positive while k2

2 and k3
2 are negative. In this 

situation, the wave field given by W1 represents a propagating flexural wave with a real wave number, 
and the wave fields given by W2 and V represent non-propagating (spatially decaying) waves with pure 
imaginary wave numbers. 

For later use, the bending moments Mx, My, torque Mxy and shear forces Qx, Qy in the plate are 

described here in terms of the deflection W and rotations Πx, Πy,  
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In polar coordinates, the corresponding quantities are given by 
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2.2 Multiple scattering of flexural waves 

Based on the fundamental relations described above, the scattering of a flexural wave by non-
overlapping scatterers distributed on the plate is considered, following the formulation in Ref. [30] based 
on the Kirchhoff theory and other foregoing works on multiple scattering in fiber-reinforced media [32-
34]. The number of the scatterers is denoted by N. It is assumed that all scatterers have the same circular 
shape of radius R. Two cases are considered in the present analysis, where (i) all scatterers are through-
thickness holes, and (ii) all scatterers are circular plate-shaped elastic inclusions of the same thickness 
h , density ρ , Young’s modulus E  and Poisson’s ratio ν . It is also assumed that the host plate and 
the inclusions have the common mid-plane and the whole structure is symmetric with respect to it. In 
this situation, only the flexural motions are generated as an outcome of the interaction of the incident 
flexural wave with the scatterers: the coupling with the in-plane motions does not occur. The flexural 
motions of both the host plate and the inclusions are described by the Mindlin plate theory in this paper.  

When the incident flexural wave interacts with N scatterers, a multiply scattered wave field is realized on 

the plate. The resulting wave field can be given in terms of the three wave functions W1, W2 and V defined in 

Eqs. (5)-(7). As shown in Fig. 1, the location of a generic point in the x-y plane is expressed by the position 
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vector r, and the deflection field W(x, y) is also denoted by W(r). The three wave functions associated with 
the scattered wave by the ith scatterer ( Ni ...,,2,1= ), whose center is located at r = ri, satisfy the Helmholtz 

equations and should meet the radiation condition far away from that scatterer. Therefore, they can be 

expressed as 
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n = 0, ±1, ±2, …) are unknown expansion coefficients, jk  (j = 1, 2, 3) are the wave numbers in the host 

plate defined in Eqs. (9)-(11), and iθ  denotes the polar angle of a generic point r viewed from the center 

of the ith scatterer ri as shown in Fig. 1.  

If the ith scatterer is a through-thickness hole, there is no wave field inside it. If the scatterer is a plate-

shaped elastic inclusion, the wave functions inside it should satisfy the Helmholtz equations of Eq. (8) and 

be finite therein, so they can be expressed as 
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where )(⋅nJ  denotes the nth-order Bessel function of the first kind, i
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= 0, ±1, ±2, …) are unknown expansion coefficients, and jk  (j = 1, 2, 3) are the wave numbers in the 

scatterer defined in Eqs. (9)-(11) with the parameters of the scatterer.  

The scattered wave by the ith scatterer is created in response to the so-called exciting field for that 

scatterer, which is defined as the wave field in the host plate when that scatterer is not present there. The 

exciting field is given by the sum of the incident wave and the scattered waves by all the other scatterers, i.e, 
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Helmholtz equations. Since the waves of the exciting field, )(exc,
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where i
nE , i

nF  and i
nG  ( Ni ...,,2,1= , n = 0, ±1, ±2, …) are unknown expansion coefficients. 

The expansion coefficients i
nA  , i

nB  , i
nC   of the scattered wave and i

nS  , i
nT   and i

nU   of the wave 

inside the scatterer are related to the coefficients i
nE  , i

nF  , i
nG   of the exciting field via the boundary 

conditions at the interface of each scatterer and the host plate. If the ith scatterer is a through-thickness hole, 

its boundary is assumed traction-free, so the resulting radial bending moment, torque and radial shear force 

should vanish, i.e.,  
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moment associated with the exciting field for the ith scatterer, and the other quantities are defined similarly. 

If the ith scatterer is a plate-shaped inclusion, the elastic constants and the plate thickness can be 

discontinuous at the boundary: it is then assumed that the radial bending moment, torque and radial shear 
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at Ri =− || rr  , πθi 20 <≤  , where exc,
2

exc,
1

exc, iii WWW +=   is the deflection of the exciting field, etc. 

These conditions are a special case of the more general case treated by Cegla et al. [5] where the inclusion 

and the host plate have misaligned mid-planes. Since the inclusions and the host plate are assumed to have 

the common mid-plane in the present analysis, no in-plane resulting forces appear in the boundary conditions. 

The above boundary conditions establish the following relation in the matrix form, 
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for the hole and 
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















=



























i
n

i
n

i
n

n

i
n

i
n

i
n

i
n

i
n

i
n

G
F
E

M

U
T
S
C
B
A

][ inclusion         (24) 

for the inclusion. 

Substituting Eqs. (15), (18), (23) and (24) into Eq. (17), one obtains 

( ) )iexp(|)|()(

)iexp(|)|(

1
)1()(

13
)(

12
)(

11
1

inc
1

1

jjm
j

m
mj

m
mj

m
m

m

N

ij
j

ii
-n

n
i
n

mkHGMFMEMW

nkJE

θ

θ

rrr

rr

−+++=

−

∑∑

∑
∞

−∞=
≠
=

∞

∞=
  (25a) 

( ) )iexp(|)|()(

)iexp(|)|(

2
)1()(

23
)(

22
)(

21
1

inc
2

2

jjm
j

m
mj

m
mj

m
m

m

N

ij
j

ii
-n

n
i

n

mkHGMFMEMW

nkJF

θ

θ

rrr

rr

−+++=

−

∑∑

∑
∞

−∞=
≠
=

∞

∞=
  (25b) 

( ) )iexp(|)|()(

)iexp(|)|(

3
)1()(

33
)(

32
)(

31
1

inc

3

jjm
j

m
mj

m
mj

m
m

m

N

ij
j

ii
-n

n
i
n

mkHGMFMEMV

nkJG

θ

θ

rrr

rr

−+++=

−

∑∑

∑
∞

−∞=
≠
=

∞

∞=
  (25c) 

which contain the expansion coefficients of the exciting field i
nE , i

nF , i
nG  alone, where )(n

pqM  is the 

(p, q) element of ][ hole
nM  or ][ inclusion

nM  (p = 1, 2, 3, q = 1, 2, 3). It is noted that )(n
pqM  is common 

for all scatterers in the present analysis, although it depends on the type of scatterers considered (hole 
or plate-shaped inclusion). 
 

2.3 Collocation technique 

In order to determine the unknown expansion coefficients i
nE , i

nF , i
nG , the numerical collocation 

technique, which was used in the previous works [30-34], is also employed here. Namely, the infinite 
series in Eq. (25) are truncated with a finite number of terms, i.e., the infinite sums for ∞<<∞− n  are 
replaced by those for maxmax nnn <<− , where the integer parameter nmax is set large enough to achieve 

sufficient accuracy. This truncation makes the total number of unknown expansion coefficients to be 
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)12(3 max +nN . In the present numerical analysis, )22( max +n  collocation points are chosen at equal 

interval on the boundary of each scatterer, and Eq. (25) is evaluated at those points to construct a set of 

)22(3 max +nN   linear equations for )12(3 max +nN   coefficients i
nE  , i

nF  , i
nG   ( Ni ...,,2,1=  ,

max...,,2,1,0 nn ±±±= ). This over-determined system of equations can be solved by the least-square 

method based on the generalized inverse matrix. Making the system of equations over-determined in 
this way has been found to work well in the previous works [30-34] to avoid ill-conditioning of the 
equations. In passing, however, it should be mentioned here that when the wave function expansions are 
applied to multiple scattering problems, a more standard approach is to express the expansions of the 
scattered fields by the other (j ≠ i) scatterers in Eq. (17) in the single local coordinates around the ith 
scatterer using Graf’s addition theorem [35]. Applying the boundary conditions of Eq. (19) or Eq. (20), 
a set of linear equations for the expansion coefficients is obtained without a need to resort to the 
collocation points. Analytical formulation and numerical implementation of this approach can be found 
in many references, e.g. [23, 24, 28, 29] for the flexural wave scattering based on the Kirchhoff theory.  

Once the coefficients i
nE , i

nF , i
nG  are determined, the other expansion coefficients i

nA , i
nB , i

nC , 

i
nS , i

nT  and i
nU  can be obtained by Eq. (23) or (24). The deflection field on the host plate can be given 

by 

( ) )iexp(|)|()(

)()()(

1
)1()(

13
)(

12
)(

11
1

inc
1

21

max

max

jjm
j

m
mj

m
mj

m
m

n

nm

N

j

mkHGMFMEMW

WWW

θrrr

rrr

−+++=

+=

∑∑
−==

 

( ) )iexp(|)|()( 2
)1()(

23
)(

22
)(

21
1

inc
2

max

max

jjm
j

m
mj

m
mj

m
m

n

nm

N

j

mkHGMFMEMW θrrr −++++ ∑∑
−==

  (26) 

 

3. Numerical examples 

Based on the formulation given above, the transmission of a plane flexural wave across a square array of 

circular scatterers is analyzed as demonstrative examples. For the analysis, two types of scatterers are 

assumed, i.e., (i) through-thickness holes, and (ii) thin-plate inclusions made of the same material as the host 

plate ( hh <  , ρρ =  , EE =  , νν =  ). As mentioned above, all scatterers have the same radius R. It is 

assumed that these scatterers are spatially arranged in a square array with their center-to-center distance d (> 

2R) as shown in Fig. 2. The origin of the x-y coordinate system is chosen so that the center of the bottom left 

scatterer in the array is located at (x, y) = (d/2, d/2). In the present analysis, the 7×3, 7×5 and 7×7 arrays 

are considered. 
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The incident wave is assumed to be a propagating flexural wave of the form 

)iexp()( 10
inc xkWW =r ,        (27) 

where the amplitude W0 is arbitrarily set as unity owing to the linear nature of the problem. In this case, the 

three wave functions associated with the incident wave are 

)iexp()( 10
inc

1 xkWW =r , 0)(inc
2 =rW , 0)(inc =rV .     (28) 

When the incident wave is given, the multiple scattering analysis formulated in the foregoing section yields 

the wave field in the plate by Eq. (26). In the numerical results shown in the following section, the absolute 

value of the deflection is averaged for a finite length 0 < y < 7d at the distance of L from the center of the 

rightmost scatterers in the array,  

dyyxW
d

W
d

|),(|
7
1|| eval

7

0
ave ∫= ,       (29) 

where xeval = 13d/2 + L, and used as a measure of the magnitude of flexural wave transmitted across the 

square array of scatterers, partly following the examples demonstrated by Cai and Hambric [29]. 

In terms of non-dimensional parameters, the transmission behavior of the flexural wave is governed by 
the non-dimensional frequency T/ cdω  (or the non-dimensional wave number of the incident wave dk1 ), 

Poisson’s ratio ν, the shear correction factor κ, the thickness-scatterer interval ratio h/d, the scatterer radius-

interval ratio R/d, and the displacement evaluation distance-scatterer interval ratio L/d. When the scatterers 

are thin-plate inclusions of the same material, their thickness ratio hh /  is another governing parameter. In 
the present analysis, the flexural wave transmission across the square array of scatterers is computed using 

the fixed values of ν = 0.34, κ = 5/6 and L/d = 3. It is noted that several values have been used for the shear 

correction factor κ in the literature. While the choice of 2
TR )/( cc=κ , where cR is the Rayleigh surface 

wave velocity, yields the high-frequency limit of the phase velocity of the propagating wave W1 which 

coincides with the Rayleigh wave velocity, the value of 12/π2=κ   gives the cut-off frequencies of the 
waves W2 and V which matches to the lowest cut-off frequency of guided wave modes of the plate in the 

exact theory [36]. Stephen [37] discusses different choices of κ in the light of approximation to the exact 

theory. In the present analysis, the classical value of κ = 5/6, due to the static theory of Reissner [38], is used 

since the frequency range examined here is relatively low and remains below the half of the cut-off 

frequencies. As a matter of fact, it has been confirmed in the numerical analysis that the two values of 

833.06/5 ≅=κ   and 822.012/π2 ≅=κ   do not make any noticeable differences in the |W|ave-ωd/cT 
relation in the frequency range 5/0 T << cdω . 

The dispersion curve of the propagating flexural wave W1 of the Mindlin theory is shown in Fig. 3 in 

terms of the normalized wave number k1h and the normalized frequency ωh/cT. The normalized wave number 

kh of the Kirchhoff theory, given by 

T

4/1)}1(6{
c

hωνkh −= ,         (30) 

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



12 
 

and the normalized wave number of the lowest-order antisymmetric (A0) mode of Lamb waves are shown 
for comparison in Fig. 3. Since the present analysis is performed for 5/0 T << cdω  and 25.0/ ≤dh , the 

relevant range of ωh/cT is 0 < ωh/cT < 1.25. It is found in Fig. 3 that the Mindlin theory reproduces the exact 

dispersion relation of the A0 mode Lamb wave with excellent accuracy in the frequency range examined in 

this paper. 

In the numerical analysis, the truncation parameter nmax should be set large enough to achieve sufficient 

convergence of the solution. Generally speaking, a greater nmax is necessary for a higher concentration of 

scatterers (higher R/d) or for a higher frequency. This has been checked for a representative problem of the 

plate with h/d = 0.25 containing the 7×7 square array of holes of radius R/d = 7/16 = 0.4375 for the 
normalized frequency of 25.4/ T =cdω , corresponding to the largest R/d and a frequency close to the upper 

limit of the present analysis. The values of |W|ave calculated using different nmax are shown in Fig. 4. It can be 

seen in Fig. 4 that the value of nmax greater than 10 is sufficient to obtain the converged solution. It has also 

been confirmed that the |W|ave-ωd/cT curve for this problem, to be shown below, obtained with nmax = 20 is 

indistinguishable from that obtained with nmax = 30. Therefore, the numerical results obtained with nmax = 20 

will be shown in the following section.  

 

4. Results and discussion 

4.1 Through-thickness holes 

For the plate of h/d = 0.25 with the 7×7 square array of holes with R/d = 7/16, the transmitted wave 

amplitude |W|ave is plotted against the normalized frequency ωd/cT in Fig. 5(a), and against the normalized 

wave number k1d in the host plate in Fig. 5(b). In Fig. 5(a), the transmitted wave amplitude shows a dip at 

around ωd/cT = 1, and another wider one at around ωd/cT = 4. These dips are associated with the stop bands 

of the periodic square array of holes, where the back-scattered waves from different scatterers interfere 

constructively and prohibit the wave transmission. Rigorously speaking, the term of stop band is defined for 

infinitely extended periodic structures. In this paper, this term is also used to refer to the frequency (or 

frequency range) for which the transmission is reduced due to the same mechanism. The stop bands occur 

when the so-called Bragg condition is satisfied, i.e., πeff mdk =  (m: integer) [30], where keff is the effective 
wave number in the perforated plate. At relatively low frequencies, this wave number does not deviate 

significantly from the corresponding wave number of the host plate. As a consequence, the stop bands are 
expected to appear when π1 mdk ≈ . An approximate fulfillment of this condition can be confirmed in Fig. 

5(b), where the dips are located near k1d = π and k1d = 2π. In fig. 5(b), the first dip appears to be located 

slightly lower than k1d = π. This can be explained by the effect of holes which lowers the flexural wave 

velocity and makes the effective wave number greater than the wave number of the host plate for a given 

frequency. 

The deflection fields around the array of holes, i.e., the spatial distribution of Re[W], are shown in Fig. 6 

for different normalized frequencies. At a low frequency (ωd/cT = 0.33), the flexural wave is almost fully 

transmitted across the array. Since the presence of holes lowers the wave velocity, the flexural wave is 
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diffracted around the square array and tends to be focused ahead of it giving higher local amplitudes. In the 

first stop band (ωd/cT = 0.98), the wave length in the array region matches twice the hole interval. Although 

the Bragg condition is met for this frequency, the flexural wave is partially transmitted across the array, 

corresponding to the value of |W|ave which is around 0.5 in Fig. 5(a). At the frequency ωd/cT = 2.6, the wave 

is transmitted across the array to a certain amount (|W|ave = 0.6 roughly), as also shown in Fig. 6(c). Finally, 

in the wider stop band (ωd/cT = 4.3), the wave transmission is suppressed significantly. At this frequency, the 

wave has decayed in the array region within the distance of a few columns of holes. 

In Fig. 5, the numerical results based on the Mindlin and the Kirchhoff theories are compared (in Fig. 5 

(b), the normalized wave number kd, given by Eq. (30) with h/d = 0.25, is taken in the horizontal axis for the 

Kirchhoff theory). In Fig. 5(a), the two theories give different results regarding both the overall curves and 

the location of the stop bands. This is due to the difference of the dispersion relations of the two theories as 

shown in Fig. 3. Furthermore, the wave numbers of the non-propagating modes are also different for the two 

theories. On the other hand, when plotted against the normalized wave number as in Fig. 5(b), the 

transmission behavior at lower frequencies and the location of the stop bands for the two theories are 

somewhat closer. To examine the correspondence between the two theories further, the numerical results are 

shown in Fig. 7 by reducing the plate thickness to half, i.e., h/d = 0.125. In this case, the results are in even 

closer agreement in Fig. 7(b), while they show significant difference in Fig. 7(a). The fair agreement of the 

two theories in terms of the wave number is more or less expected, since the stop band features are governed 
by the relation π)or(1 mkddk ≈  irrespective of the dispersion relation. 

The |W|ave-ωd/cT relations for the case of h/d = 0.25 are shown for different arrangements (7×3, 7×5 

and 7×7) of holes with R/d = 7/16 in Fig. 8(a), and for the 7×7 array of holes with different hole radii R/d 

= 5/16 = 0.3125, 6/16 = 0.375 and 7/16 = 0.4375 in Fig. 8(b). In these results, it is seen that the dip 

corresponding to the first stop band becomes deeper as the number of hole columns or the hole radius is 

increased. This is expected because the Bragg reflection is more enhanced with more columns of holes, and 

larger holes have stronger scattering effects. In contrast, the dip corresponding to the wider stop band is 

relatively unchanged when these parameters are varied, which indicates that the flexural wave transmission 

is almost fully suppressed with the smallest number of hole columns or with the smallest radius of holes. 

 

4.2 Thin-plate inclusions 

The transmitted wave amplitude for the plate (h/d = 0.25) with the 7×7 array of thin-plate inclusions 

with R/d = 7/16 and 1.0/ =hh  is shown in Fig. 9 as a function of the normalized frequency ωd/cT. The 
corresponding result for the 7×7 array of through-thickness holes of the same radius is also shown for 

comparison. In Fig. 9, the plate with thin-plate inclusions shows a dip at around ωd/cT = 1 due to the Bragg 

reflection as in the case of the plate with through-thickness holes. For the plate with thin-plate inclusions, 

however, even shaper dips appear at several other frequencies, namely, at ωd/cT = 0.67, 1.4, and so on. The 

wave fields around the inclusions (distribution of Re[W]) are shown in Fig. 10 for ωd/cT = 0.67, 0.98 and 1.4 

for which the transmitted wave amplitude is relatively low. In Fig. 10, the wave fields in the same area as in 
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Fig. 6 are shown on the left with the same color scale for -1.5 < Re[W] < 1.5, but the inclusions have much 

larger deflection out of this range. The wave fields in the full scales are shown on the right for the array 

region to better reveal the deflection of the inclusions. In Fig. 10(a) for ωd/cT = 0.67, the inclusions show 

greater deflections near the left border of the array region, where the inclusions in the neighboring columns 

are deflected out of phase to each other. In Fig. 10(b) for ωd/cT = 0.98, the deflection field of the host plate 

is fairly similar to that in Fig. 6(b) for the plate with through-thickness holes at the same frequency. At this 

frequency, the deflection amplitudes of the inclusions remain only a few times of that of the host plate. In 

Fig.10(c) for ωd/cT = 1.4, large deflections are seen for inclusions at different locations in the array. Each 

inclusion is divided into two semi-circles showing opposite deflections, with their orientations being different 

depending on their location in the array. 

Significantly large deflections of the inclusions at the frequencies ωd/cT = 0.67 and 1.4 indicate that they 

are at resonance with the incident flexural wave. For the Mindlin theory, the natural frequencies of circular 

plates are available in the literature only for special material constants and size [39]. Instead, the Kirchhoff 

theory can be a reasonable approximation for the thin inclusions. Furthermore, the thicker host plate plays a 

role close to the clamped boundaries to the inclusions. According to the Kirchhoff theory [40], the natural 

frequencies of a circular plate of thickness h  and radius R are given by 

2

T )1(6 








−
=

R
h

ν
λ

c
hω mnmn ,        (31) 

where m and n are the integer parameters representing the number of node circles and node diameters, 

respectively. The factors λmn (m = 0, 1, 2, …; n = 0, 1, 2, …) are determined by the boundary condition. The 

factors λmn for the four lowest natural frequencies of a clamped circular plate are, λmn = 10.22 for (m, n) = (0, 

0), λmn = 21.26 for (m, n) = (0, 1), λmn = 34.88 for (m, n) = (0, 2) and λmn = 39.77 for (m, n) = (1, 0) [40]. 
These give 67.0/ T00 =cdω  for (m, n) = (0, 0), 40.1/ T01 =cdω  for (m, n) = (0, 1), 29.2/ T02 =cdω  

for (m, n) = (0, 2) and 61.2/ T10 =cdω  for (m, n) = (1, 0), which correspond to the dip frequencies in Fig. 

9, ωd/cT = 0.67, 1.36, 2.12 (and 2.19) and 2.56, in reasonable agreement. Furthermore, the deflection 

distribution in Fig. 10(a) (right) shows the lowest resonant mode for (m, n) = (0, 0), and that in Fig. 10(c) 

(right) shows the resonant mode for (m, n) = (0, 1) with a single node diameter. This confirms that the dips 

of the transmitted wave amplitude are due to the resonance of the inclusions. In fact, the introduction of local 

resonators in the host medium is known as a way to implement an efficient wave suppression mechanism in 

acoustic metamaterials [22].  

As a final remark, it is noted that the flexural wave scattering by the inclusions arranged in a finite square 

region has been demonstrated in the example presented here. The analysis has shown that the inclusions 

exhibit oscillation with different magnitudes and orientations depending on their position in the region, as 

most clearly shown in Fig. 10 (c). This is a feature created by a large but finite number of scatterers arranged 

in a finite region, which may not be predicted by the more common band-structure analysis based on the 

Bloch theorem assuming infinitely extended periodic arrangements. The numerical method formulated in the 
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present work is particularly suitable for the analysis of such situations.  

 

5. Conclusion 

In this paper, the multiple scattering of flexural waves on an elastic plate with circular scatterers has been 

analyzed in the frequency domain based on the Mindlin plate theory. To this purpose a semi-analytical 

numerical method has been formulated as an extension of the previous work based on the Kirchhoff plate 

theory, which consists of expressing the flexural wave field in terms of the superposition of the wave function 

expansion and determining the expansion coefficients by a collocation technique. As demonstrative examples, 

the transmission of a plane flexural wave across a square array of circular scatterers, i.e., through-thickness 

holes and thin-plate inclusions, have been analyzed. In the case of circular holes, the stop band formation has 

been observed due to the Bragg reflection. It has been shown that the results based on the Mindlin and 

Kirchhoff theories are in better agreement for a thinner plate. In the case of circular thin-plate inclusions, a 

sharp reduction of transmission amplitude has been found due to the flexural resonance of inclusions in 

addition to the Bragg reflection. Since the Mindlin theory gives a reasonable description of wave motions in 

elastic plates in a low-frequency range, the present numerical technique can be employed to analyze a wide 

class of plate-type phononic crystals or acoustic metamaterials. The present analysis has been limited to the 

situation of inclusions whose geometry is symmetric with respect to the mid-plane of the host plate, so that 

the flexural waves are not coupled to the extensional or shear horizontal waves. Extension of the analysis to 

the coupled problems remains as an intriguing issue for further study.  
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Figure legends 

Fig. 1 An infinitely extended elastic plate with circular scatterers and the coordinate system. 

Fig. 2 Example problem of the flexural wave transmission across a square array of circular scatterers. 

Fig. 3 Dispersion relations of the flexural wave based on the Mindlin theory, Kirchhoff theory, and the exact 

theory for the zeroth-order antisymmetric (A0) Lamb wave. 

Fig. 4 Variation of a typical numerical result with the series truncation number. 
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Fig. 5 Dependence of the transmitted wave amplitude across the 7×7 array of holes (R/d = 7/16) on (a) the 

normalized frequency and (b) the normalized wave number in the host plate, based on the Mindlin and 

Kirchhoff theories (h/d = 0.25). 

Fig. 6 Deflection distributions at different normalized frequencies, (a) ωd/cT = 0.33, (b) ωd/cT = 0.98, (c) 

ωd/cT = 2.6 and (d) ωd/cT = 4.3. 

Fig. 7 Dependence of the transmitted wave amplitude across the 7×7 array of holes (R/d = 7/16) on (a) the 

normalized frequency and (b) the normalized wave number in the host plate, based on the Mindlin and 

Kirchhoff theories (h/d = 0.125). 

Fig. 8 Dependence of the transmitted wave amplitude on the normalized frequency (h/d = 0.25), (a) for the 7

×3, 7×5 and 7×7 arrays of holes with R/d = 7/16 and (b) for the 7×7 array of holes with R/d = 5/16, 

6/16 and 7/16. 

Fig. 9 Dependence of the transmitted wave amplitude across the 7×7 array of thin-plate inclusions (R/d = 

7/16) on the normalized frequency (h/d = 0.25, 1.0/ =hh ). 

Fig. 10 Deflection distributions at different normalized frequencies, (a) ωd/cT = 0.67, (b) ωd/cT = 0.98 and 

(c) ωd/cT = 1.4. 
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