

TITLE:

Almost disjointness preserving functionals on Banach lattices of differentiable functions (Research on preserver problems on Banach algebras and related topics)

AUTHOR(S):

AN, Guimei; CHEN, Jinxi; LI Lei; LIU, Tong

CITATION:

AN, Guimei ...[et al]. Almost disjointness preserving functionals on Banach lattices of differentiable functions (Research on preserver problems on Banach algebras and related topics). 数理解析研究所講究録別冊 2023, B93: 125-131

ISSUE DATE: 2023-07

URL: http://hdl.handle.net/2433/284875

RIGHT:

© 2023 by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. All rights reserved. Printed in Japan.

Almost disjointness preserving functionals on Banach lattices of differentiable functions

By

Guimei AN^{*}, Jinxi CHEN^{**}, Lei LI^{***} and Tong LIU[†]

Abstract

Let $C^1[0,1]$ be the space of all continuously differentiable function on [0,1]. When define the order $f\geq g$ by

 $f(0) \ge g(0)$ and $f' \ge g'$ pointwise on [0, 1],

and the norm is defined by $||f||_{\sigma} = |f(0)| + ||f'||_{\infty}$, the space $C^1[0, 1]$ is a Banach lattice. We will give the representation of bounded ε -disjointness preserving linear functionals of $C^1[0, 1]$.

§ 1. Preliminaries and Definitions

Recall that an operator T between Banach lattices E and F is called *disjointness* preserving if $Tx \perp Ty$ whenever $x \perp y$. Jarosz [7] gave a complete analysis of linear disjointness preserving operators between C(X)-spaces, when X is a compact Hausdorff space. A similar result was shown on algebras of differentiable functions [8] or on Köthe spaces [13]. Brown and Wong [4] gave a full description of (bounded or unbounded, real or complex) disjointness preserving linear funcitonls of continuous function space $C_0(X)$ defined on a locally compact space. Moveover, the inverse of disjointness preserving operators are studied in [1, 10]. Order bounded disjointness preserving operators have many applications in the dynamical systems and differential equation (see [3] and

Received October 28, 2021. Revised February 27, 2022.

²⁰²⁰ Mathematics Subject Classification(s): 47B38, 46B42

Key Words: ε -disjointness preserving, differentiable functions, Banach lattices. Supported by NSF of China (12171251)

^{*}School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China. e-mail: angm@nankai.edu.cn

^{**}School of Mathematical Sciences, Southwest Jiaotong University, Chengdu 610031, China. e-mail: jinxichen@home.swjtu.edu.cn

^{***}School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China. e-mail: leilee@nankai.edu.cn

[†]School of Mathematical Sciences, Nankai University, Tianjin 300071, China. e-mail: 895270374@gg.com

references therein). The disjointness preserving operator on differential function spaces were studied by many authors.

Theorem 1.1. (see [10, Theorem 6.6] and [2, Theorem 6.2]) Suppose that X, Yare open subsets of $\mathbb{R}^m, \mathbb{R}^n$, respectively. Let $T : C^p(X, \mathbb{R}^l) \to C^p(Y, \mathbb{R}^l)$ be a disjointness preserving bijection. If Y has only finitely many connected components, then T^{-1} is disjointness preserving. Moreover, there exist a diffeomorphism $\tau : Y \to X$ of class C^p and a map $J : Y \to L(\mathbb{R}^l)$ such that

$$(Tf)(y) = (Jy)f(\tau(y)), \quad y \in Y, f \in C^p(X, \mathbb{R}^l).$$

In this paper, we will investigate the almost disjointness preserving operators. Let $\epsilon \geq 0$. Suppose that E and F are Banach lattices, an operator $T: E \to F$ is said to be ε -disjointness preserving if for any disjoint $x, y \in E$,

$$|||Tx| \wedge |Ty||| \le \varepsilon \max\{||x||, ||y||\}.$$

The 0-disjointness preserving operators are precisely the disjointness preserving operators. Note that this definition is very different from the Dolinar ε -disjointness preserving operators (see [6]). Oikhberg and Tradacete [14] studied the stability of ε -disjointness preservers on some Banach lattices. For example, if F is a Banach lattice having the Fatou property with constant ρ , then for any positive ε -disjointness preserving operator $T : c_0 \to F$, there exists a disjointness preserving operator $S : c_0 \to F$ such that $0 \le S \le T$ and $||T - S|| \le 256\rho\varepsilon$.

Let $C^1[0,1]$ be the space of all continuously differentiable function $f:[0,1] \to \mathbb{R}$. The order $f \ge g$ is defined by

$$f(0) \ge g(0)$$
 and $f' \ge g'$ pointwise on $[0, 1]$.

The norm on $C^1[0,1]$ is defined by $||f||_{\sigma} = |f(0)| + ||f'||_{\infty}$. Then $(C^1[0,1], \geq, ||\cdot||_{\sigma})$ is a Banach lattice (see [11, p.11]). For any $f \in C^1[0,1]$, denote by $\operatorname{coz}(f)$ the set $\{x \in X : f(x) \neq 0\}$ in the following.

Let $\mathbb{R} \oplus_1 C[0,1]$ be the Banach lattice with the norm $||(r,h)|| = |r| + ||h||_{\infty}$ and the canonical order, that is, $(r_1, h_1) \leq (r_2, h_2)$ if and only if $r_1 \leq r_2$ and $h_1 \leq h_2$. Then the mapping

$$\pi : f \in C^1[0,1] \mapsto (f(0), f') \in \mathbb{R} \oplus_1 C[0,1]$$

is a lattice isomorphism and surjective isometry. For any $f, g \in C^1[0, 1]$, it follows that $(f \lor g)(0) = \max\{f(0), g(0)\}, (f \land g)(0) = \min\{f(0), g(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0) = \min\{f(0), g(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0) = \min\{f(0), g(0)\}, (f \land g)(0) = \min\{f(0), g(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0)\}, (f \land g)(0)\}, (f \land g)(0) = \max\{f(0), g(0)\}, (f \land g)(0)\}, (f \land$

$$(f \lor g)'(t) = \max\{f'(t), g'(t)\}$$
 for all $t \in [0, 1],$

and

$$(f \wedge g)'(t) = \min\{f'(t), g'(t)\}$$
 for all $t \in [0, 1]$.

Therefore, one can give the representation of |f| as follows

$$|f|(t) = (f \lor (-f))(t) = |f(0)| + \int_0^t |f'(s)| ds$$
, for all $t \in [0, 1]$.

This implies that $f \perp g$ if and only if $|f| \wedge |g| = 0$ (see [11, p.2]) if and only if

$$f(0)g(0) = 0$$
 and $f'g' = 0$.

Moreover, $f_{\alpha} \stackrel{o}{\to} f_0$ in $C^1[0,1]$ if and only if $f_{\alpha}(0) \to f_0(0)$ and $f'_{\alpha} \stackrel{o}{\to} f'_0$ in C[0,1].

In this paper, we will give the representation of ε -disjointness preserving functional on $C^{1}[0, 1]$ in Theorem 2.5. For the basic nations about Banach lattices, we refer the reader to [11].

§ 2. Almost disjointness preserving functionals

Let X be a compact Hausdorff space and μ a regular finite Borel measure. Then μ induces a bounded linear functional Δ on C(X) by

(2.1)
$$\Delta(f) = \int_X f d\mu, \quad \forall f \in C(X).$$

Moreover, $\|\Delta\| = |\mu|(X)$. The Riesz Representation Theorem tells us that the converse is also true.

Theorem 2.1. Suppose that X be a compact Hausdorff space and μ is a regular Borel finite measure, then the bounded linear functional $\Delta : C(X) \to \mathbb{R}$ defined by (2.1) is not ε -disjointness preserving if and only if there exist two disjoint compact subsets K_1 and K_2 of X such that $|\mu|(K_1) > \varepsilon$ and $|\mu|(K_2) > \varepsilon$.

Proof. Suppose that K_1, K_2 are disjoint compact sets in X with $|\mu|$ measure greater than ϵ . Let U_1, U_2 be disjoint open sets in X containing K_1, K_2 , respectively. It follows from the Hahn decomposition theorem (for $|\mu|$ restricting to K_1) (see, e.g., [15, Theorem 6.14]), we can assume that

$$|\mu|(K_1) = \mu(A) - \mu(B) > \varepsilon$$

where $K_1 = A \cup B$ is a partition into the positive and negative subsets of K_1 with respect to the real measure μ . By the regularity of μ , we can choose compact subsets A_1, B_1 of A, B such that

$$\mu(A \setminus A_1) - \mu(B \setminus B_1) < \varepsilon - \mu(A) + \mu(B).$$

By the Urysohn Lemma, we can choose a function f_1 in C(X) such that $f_1 = 1$ on A_1 , $f_1 = -1$ on B_1 , $-1 \le f_1 \le 1$ and $f_1 = 0$ outside U_1 . Then

$$\Delta(f_1) = \int_X f_1 d\mu > \mu(A_1) - \mu(B_1) - \mu(A \setminus A_1) + \mu(B \setminus B_1) > \varepsilon.$$

In a similar manner, we have $f_2 \in C(X)$ such that $f_1 \perp f_2$ and $\Delta(f_2) > \varepsilon$. This disjoint pair f_1, f_2 verifies that Δ is not ε -disjointness preserving.

Conversely, suppose that, for every two disjoint compact sets K_1 and K_2 , we have that $|\mu|(K_1) \leq \varepsilon$ or $|\mu|(K_2) \leq \varepsilon$. Let $f \perp g$ with $|f| \leq 1$ and $|g| \leq 1$. Without loss of generality, one can assume that there is a compact subset $L_1 \subset \operatorname{coz}(f)$ such that $|\mu|(L_1) > \varepsilon$, this forces that, for every compact subset $L_2 \subset \operatorname{coz}(g)$, $|\mu|(L_2) \leq \varepsilon$. It follows from the regularity of μ that $|\mu|(\operatorname{coz}(g)) \leq \varepsilon$, and then

$$\begin{split} |\Delta(g)| &= |\int_X g d\mu| \le \int_X |g| d|u| \\ &= \int_{\operatorname{COZ}(g)} |g| d|u| \le |\mu| (\operatorname{coz}(g)) \le \varepsilon. \end{split}$$

This implies that $|\Delta(f)| \wedge |\Delta(g)| \leq \varepsilon$, and then Δ is a bounded ε -disjointness preserving linear functional.

Recall that $\mathbb{R} \oplus_1 C(X)$ is the Banach lattice with the canonical order and norm, where X is a compact Hausdorff space and C(X) is the spaces of continuous functions on X.

Suppose that ψ is a linear functional on $\mathbb{R} \oplus_1 C(X)$. Let

$$\psi_l: r \in \mathbb{R} \mapsto \psi(r, 0) \in \mathbb{R}$$

and

$$\psi_r: f \in C(X) \mapsto \psi(0, f) \in \mathbb{R},$$

we have that $\psi(r, f) = \psi_l(r) + \psi_r(f)$ for all $(r, f) \in \mathbb{R} \oplus_1 C(X)$.

Theorem 2.2. Let ψ be a continuous linear functional on $\mathbb{R} \oplus_1 C(X)$. Then ψ is of the form

$$\psi(r,f) = kr + \int_X f d\mu,$$

where k is a real number and μ is a regular Borel finite measure.

Proof. Since ψ is continuous, ψ_1 and ψ_r both are continuous, then there exists a regular Borel finite measure μ such that

$$\psi_r(f) = \int_X f d\mu, \quad \forall f \in C(X),$$

and there exists a real number k such that $\psi_l(r) = kr$ for all $r \in \mathbb{R}$.

It is easy to show that

Theorem 2.3. Let ψ be a bounded ε -disjointness preserving linear functional on $\mathbb{R} \oplus_1 C(X)$. Then ψ_l and ψ_r are both bounded ε -disjointness preserving.

Theorem 2.4. Suppose that ψ is a continuous linear functional on $\mathbb{R} \oplus_1 C(X)$, then ψ is ε -disjointness preserving if and only if following two conditions holds.

- (i) $\|\psi_l\| \leq \varepsilon$ or $\|\psi_r\| \leq \varepsilon$.
- (ii) ψ_l and ψ_r are bounded ε -disjointness preserving linear functional.

Proof. Since ψ is a bounded ε -disjointness preserving linear functional, it follows from Theorem 2.3 that ψ_l and ψ_r are bounded ε -disjointness preserving. Suppose on the contrary that $\|\psi_l\| > \varepsilon$ and $\|\psi_r\| > \varepsilon$, then there exists a $f \in C(X)$ with $\|f\| = 1$ such that $|\psi_r(f)| > \varepsilon$. Let $\xi_1 = (0, f)$ and $\xi_2 = (1, 0)$, we can derive that $\xi_1 \perp \xi_2$, $|\psi(\xi_1)| = |\psi_r(f)| > \varepsilon$ and $|\psi(\xi_2)| = |\psi_l(1)| = \|\psi_l\| > \varepsilon$, which implies ψ is not ε disjointness preserving.

Conversely, suppose that $\eta_1 = (r_1, f_1)$ and $\eta_2 = (r_2, f_2)$ be in $\mathbb{R} \oplus_1 C(X)$ with $\eta_1 \perp \eta_2$ and $\|\eta_1\| \leq 1$ and $\|\eta_2\| \leq 1$, then one can derive that $r_1r_2 = 0$ and $f_1f_2 = 0$. Without loss of generality, we can assume that $r_1=0$ and $r_2 \neq 0$. It follows from Theorem 2.3 that ψ_r is ε -disjointness preserving, which implies that

$$|\psi_r(f_1)| \wedge |\psi_r(f_2)| \le \varepsilon.$$

Since $\|\eta_2\| = |r_2| + \|f_2\|_{\infty} \le 1$, then we have that

$$\frac{\|f_2\|_{\infty}}{1-|r_2|} \le 1.$$

On the one hand, if $|\psi(\eta_1)| = |\psi_r(f_1)| \leq \varepsilon$, then $|\psi(\eta_1)| \wedge |\psi(\eta_2)| \leq \varepsilon$. On the other hand, if $|\psi(\eta_1)| = |\psi_r(f_1)| > \varepsilon$, since ψ_r is ε -disjointness preserving, then one can derive that

(2.2)
$$|\psi_r(\frac{f_2}{1-|r_2|})| \le \varepsilon.$$

In case of $\|\psi_l\| \leq \varepsilon$, we have that

$$\begin{aligned} |\psi(\eta_2)| &= |\psi_l(r_2) + \psi_r(f_2)| \\ &\leq \varepsilon |r_2| + (1 - |r_2|)\psi_r(\frac{f_2}{1 - |r_2|}) \\ &\leq \varepsilon |r_2| + (1 - |r_2|)\varepsilon = \varepsilon, \end{aligned}$$

129

and then $|\psi(\eta_1)| \wedge |\psi(\eta_2)| \leq \varepsilon$. In case of $||\psi_r|| \leq \epsilon$, by the similar argument, one can derive that

$$|\psi(\eta_1)| = |\psi_r(f_1)| \le \|\psi_r\| \le \varepsilon,$$

and then $|\psi(\eta_1)| \wedge |\psi(\eta_2)| \leq \varepsilon$.

Theorem 2.5. Suppose that ψ is a bounded linear functional on $C^1[0,1]$, then ψ is ε -disjointness preserving if and only if

$$\psi f = kf(0) + \int_{[0,1]} f' d\mu,$$

where k is a real number and μ is a regular Borel finite measure such that $|k| \leq \varepsilon$ or $|\mu|([0,1]) \leq \varepsilon$, and μ satisfies the conditions of Theorem 2.1.

Proof. Since ψ is ε -disjointness preserving if and only if $\psi \pi^{-1}$ is a ε -disjointness preserving on $\mathbb{R} \oplus_1 C[0,1]$, we can complete the proof using Theorem 2.4.

Acknowledgement

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. The authors would like to thank the referees for the careful reading, detailed helpful remarks and valuable comments.

References

- Y. A. Abramovich and A. K. Kitover, Inverses of disjointness preserving operators, *Mem. Amer. Math. Soc.*, 143(2000), no. 679.
- [2] J. Araujo, Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity, Adv. Math., 187 (2004), 488-520.
- [3] K. Boulabiar, Recent trends on order bounded disjointness preserving operators, Irish Math. Soc. Bull., 62(2008), 43-69.
- [4] L. G. Brown and N.-C. Wong, Unbounded disjointness preserving linear functionals, Monatsh. Math., 141(2004), 21-32.
- [5] D. H. Leung, L. Li and Y.-S. Wang, Inverses of disjointness preserving operators, *Studia Math.*, 234(3)(2016), 217-240.
- [6] G. Dolinar, Stability of disjointness preserving mappings, Proc. Amer. Math. Soc., 130(1)(2002), 129-138.
- [7] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull., 33(1990), 139-144.
- [8] R. Kantrowitz and M. Neumann, Disjointness preserving and local operators on algebras of differentiable functions, *Glag. Math. J.*, 43(2001), 295-309.

- [9] H. Koshimizu, Finite codimensional linear isomortries on spaces of differentiable and Lipschitz functions, Cent. Eur. J. Math., 9(2011), 139-146.
- [10] D. H. Leung, L. Li and Y.-S. Wang, Inverses of disjointness preserving operators, Studia Math., 234(3)(2016), 217-240.
- [11] P. Meyer-Nieberg, *Banach lattices*, Springer, Berlin, 1991.
- [12] T. Oikhberg, On the stability of some preservers, *Linear Algebra Appl.*, 563(2019), 494-526,
- [13] T. Oikhberg, A. M. Peralta and D. Puglisi, Automatic continuity of orthognality or disjointness preserving bijections, *Rev. Mat. Complut.*, 26(2013), 57-88.
- [14] T. Oikhberg and P. Tradacete, Almost band preservers, Canad. J. Math., 69(2017), 650-686.
- [15] W. Rudin, Real and Complex Analysis (3rd Edition), McGraw-Hill Book Co., Singapore, 1986.