

TITLE:

Properties of \$C\$-normal operators (Research on preserver problems on Banach algebras and related topics)

AUTHOR(S):

KO, Eungil; LEE, Ji Eun; LEE, Mee-Jung

CITATION:

KO, Eungil ...[et al]. Properties of \$C\$-normal operators (Research on preserver problems on Banach algebras and related topics). 数理解析研究所講究録別冊 2023, B93: 117-124

ISSUE DATE: 2023-07

URL: http://hdl.handle.net/2433/284874

RIGHT:

© 2023 by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. All rights reserved. Printed in Japan.

Properties of *C***-normal operators**

 $\mathbf{B}\mathbf{y}$

Eungil Ko* Ji Eun LEE^{**} and Mee-Jung LEE^{***}

Abstract

We study various properties of C-normal operators, i.e., $T^*T = CTT^*C$ holds for a conjugation C on \mathcal{H} . Especially, we show that $T - \lambda I$ is C-normal for all $\lambda \in \mathbb{C}$ if and only if T is a complex symmetric operator with the conjugation C. In addition, we prove that if T is C-normal, then T is normal $\Leftrightarrow T$ is quasinormal $\Leftrightarrow T$ is hyponormal $\Leftrightarrow T$ is p-hyponormal for 0 . Finally, we investigate equivalent conditions so that Aluthge and Duggal transforms of C-normal operators to be C-normal operators.

§1. Introduction

This paper is mainly based on [10]. Let \mathcal{H} be a separable complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . This paper will be appeared in other journal.

Definition 1.1. $C: \mathcal{H} \to \mathcal{H}$ is a conjugation operator on \mathcal{H}

if the following conditions hold:

(i) C is antilinear; $C(ax + by) = \bar{a}Cx + \bar{b}Cy$ for all $a, b \in \mathbb{C}$ and $x, y \in \mathcal{H}$.

(ii) C is isometric; $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$

(iii) C is involutive; $C^2 = I$.

By the polarization identity, the second condition (ii) is equivalent to ||Cx|| = ||x||for all $x \in \mathcal{H}$. Note that $(CTC)^k = CT^kC$ and $(CTC)^* = CT^*C$ for every positive

Received January 8, 2022. Revised March 6, 2022.

²⁰²⁰ Mathematics Subject Classification(s): 47A05, 47B15, 47B20.

Key Words: C-normal operator, complex symmetric operator, operator transforms.

^{*}Department of Mathematics, Ewha Womans University, Seoul, 03760, Republic of Korea.

e-mail: eiko@ewha.ac.kr

^{**}Department of Mathematics and Statistics, Sejong University, Seoul, 05006, Republic of Korea. e-mail: jieunlee7@sejoung.ac.kr

^{***}Kookmin University, Seoul, 02707, Republic of Korea, College of General Education. e-mail: meejung@ewhain.net, meejunglee@kookmin.ac.kr

integer k, and ||C|| = 1. For a conjugation C, there is an orthonormal basis $\{e_n\}_{n=0}^{\infty}$ for \mathcal{H} such that $Ce_n = e_n$ for all $n \ge 0$ Such a basis is C-real) (see [6]).

We give examples of conjugation operators for each spaces.

Example 1.2.

- $C(x_1, x_2, x_3, \cdots, x_n) = (\overline{x_1}, \overline{x_2}, \overline{x_3}, \cdots, \overline{x_n})$ on \mathbb{C}^n .
- $C(x_1, x_2, x_3, \cdots, x_n) = (\overline{x_n}, \overline{x_{n-1}}, \overline{x_{n-2}}, \cdots, \overline{x_1})$ on \mathbb{C}^n .
- $[Cf](x) = \overline{f(x)}$ on $\mathcal{L}^2(\mathcal{X}, \mu)$.
- $[Cf](x) = \overline{f(1-x)}$ on $L^2([0,1])$.
- $[Cf](x) = \overline{f(-x)}$ on $L^2(\mathbb{R}^n)$.
- $[Cf](z) = \overline{zf(z)}u(z) \in \mathcal{K}_u^2$ for all $f \in \mathcal{K}_u^2$ where u is inner function and $\mathcal{K}_u^2 = H^2 \odot uH^2$ is Model space.

Definition 1.3. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be complex symmetric if there exists a conjugation C on \mathcal{H} such that

$$(1.1) T = CT^*C$$

where T^* is the adjoint of T. In this case, we say that T is a complex symmetric operator (CSO) with a conjugation C.

Example 1.4. The following operators are actually complex symmetric operators.

- All 2×2 complex matrix on \mathbb{C}^2
- Normal operators (i.e., $T^*T = TT^*$)
- Aluthge transforms of CSOs
- Algebraic operator of order 2 (i.e., $T^2 + aT + b = 0$)
- Truncated Toeplitz operators (i.e., $A^u_{\varphi}f = P_u(\varphi f), P_u: H^2 \to \mathcal{K}_u := H^2 \ominus uH^2$)
- The Volterra integration operator $Tf(x) = \int_0^x f(y)dy$ on $L^2([0,1])$ satisfies $T = CT^*C$ where $Cf(x) = \overline{f(1-x)}$ on $L^2([0,1])$.

Definition 1.5. For a conjugation C on \mathcal{H} , an operator $T \in \mathcal{L}(\mathcal{H})$ is C-normal if $T^*T = CTT^*C$ holds.

By the definition of C-normal operators that $C|T|^2 C = |T^*|^2$ is equivalent to $C|T|C = |T^*|$. Note that T is C-normal if and only if T^* is C-normal. We denote by $\mathcal{N}_C(\mathcal{H})$ the set of all C-normal operators on \mathcal{H} .

We provide examples of C-normal operators which are not complex symmetric.

Example 1.6. Define a conjugation operator C on \mathbb{C}^5 as

$$C(x_1, x_2, x_3, x_4, x_5) = (\overline{x_5}, \overline{x_2}, \overline{x_4}, \overline{x_3}, \overline{x_1}).$$

Let $\{e_n\}_{n=1}^5$ be an orthonormal basis of \mathbb{C}^5 and let T have the form

$$T = \begin{pmatrix} 0 - 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 3 \ 0 \\ 0 \ 0 \ 0 \ 0 \ -1 \\ 0 \ 0 \ 0 \ 0 \ -1 \\ 0 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}$$

with respect to $\{e_n\}_{n=1}^5$. Then $|T| = \begin{pmatrix} 0 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 3 \ 0 \\ 0 \ 0 \ 0 \ 1 \end{pmatrix}$ and so

$$\begin{cases} C|T|Ce_1 = C|T|e_5 = Ce_5 = e_1, \\ C|T|Ce_2 = C|T|e_2 = Ce_2 = e_2, \\ C|T|Ce_3 = C|T|e_4 = C3e_4 = 3e_3, \\ C|T|Ce_4 = C|T|e_3 = Ce_3 = e_4, \\ C|T|Ce_5 = C|T|e_1 = 0 \cdot Ce_1 = 0 \cdot e_5, \end{cases}$$

So, $C|T|C = |T^*|$. Thus T is C-normal. We know from [15] that T is not complex symmetric. Moreover, it is clearly not normal.

For $\varphi \in L^{\infty}$, we say that the *Toeplitz operator* T_{φ} on the Hilbert Hardy space H^2 with symbol φ defined by

$$T_{\varphi}f = P(\varphi f)$$

for $f \in H^2$ where P is the orthogonal projection from L^2 onto H^2 .

Example 1.7. Let *C* be a conjugation on H^2 given by $(Cf)(z) = \overline{f(\overline{z})}$. Assume that $\varphi(z) = \phi_-(z) + \widehat{\varphi}(0) + \phi_+(z)$ where $\phi_-(z) = \frac{-t\overline{z}}{1-it\overline{z}}$, $\phi_+(z) = \frac{itz}{1-itz}$, and $\widehat{\varphi}(0) = \frac{1+i}{2}$ for -1 < t < 1. Then T_{φ} is *C*-normal but it is not complex symmetric from Example 6.10 in [12].

§ 2. Main results

In this section, we study various properties of C-normal operators.

Theorem 2.1. Let $T \in \mathcal{L}(\mathcal{H})$. Then the following statements hold.

(i) Every complex symmetric operator T with a conjugation C is C-normal. In particular, if T is normal, then T is C-normal.

(ii) $T - \lambda$ is C-normal for all $\lambda \in \mathbb{C}$ if and only if T is a complex symmetric operator with the conjugation C.

Corollary 2.2. Let $T = U_T |T|$ be the polar decomposition of T in $\mathcal{L}(\mathcal{H})$ where U_T is unitary. If T is quasinormal (i.e., T^*T and T commute), then T is C-normal.

Theorem 2.3. Let $\mathcal{N}_C(\mathcal{H})$ be the set of all C-normal operators on \mathcal{H} . Then the following statements hold.

(i) The class $\mathcal{N}_C(\mathcal{H})$ is norm closed in $\mathcal{L}(\mathcal{H})$.

(ii) $\mathcal{N}_C(\mathcal{H})$ is not translation invariant.

Lemma 2.4. (Hölder-McCarthy's inequality in [11]) For any positive operator $T \in \mathcal{L}(\mathcal{H})$ and $x \in \mathcal{H}$, the following inequalities hold. (i) $|\langle T^{\gamma}x, x \rangle| \leq |\langle Tx, x \rangle|^{\gamma} ||x||^{2(1-\gamma)}$ if $0 < \gamma \leq 1$. (ii) $|\langle T^{\gamma}x, x \rangle| \geq |\langle Tx, x \rangle|^{\gamma} ||x||^{2(1-\gamma)}$ if $1 \leq \gamma < \infty$.

Theorem 2.5. Let $T = U_T|T|$ be the polar decomposition of T in $\mathcal{L}(\mathcal{H})$. If T is C-normal, then

 $|\langle T^*x, y \rangle| \le (||TCx|| ||y||)^{\alpha} (||TCU^*_{T^*}y|| ||x||)^{\beta}$

for every $x, y \in \mathcal{H}$ where $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$.

Corollary 2.6. If $T \in \mathcal{L}(\mathcal{H})$ is C-normal, then the following properties hold. (i) T is bounded below if and only if T^* is bounded below. (ii) T is injective if and only if T^* is injective.

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *isometry* if $T^*T = I$ and *unitary* if $T^*T = TT^* = I$, respectively. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *hyponormal* if $T^*T - TT^* \ge 0$ and *p*-hyponormal operator if $(T^*T)^p \ge (TT^*)^p$, where 0 , respectively. A closed $subspace <math>\mathcal{M}$ is *nontrivial* if it is different from (0) and \mathcal{H} . A closed subspace $\mathcal{M} \subset \mathcal{H}$ is *invariant* for T if $T\mathcal{M} \subset \mathcal{M}$.

Theorem 2.7. If $T \in \mathcal{L}(\mathcal{H})$ is C-normal, then the following statements are equivalent.

(i) T is normal.

- (ii) T is quasinormal.
- (iii) T is hyponormal.
- (iv) T is p-hyponormal for 0 .

Corollary 2.8. Let $T \in \mathcal{L}(\mathcal{H})$ be *C*-normal. If *T* is *p*-hyponormal for $0 where <math>T \neq \lambda I$, then *T* has a nontrivial invariant subspace.

Theorem 2.9. Assume that $T \in \mathcal{L}(\mathcal{H})$ is C-normal. Then

 T^* is an isometry \iff T is unitary \iff T is an isometry.

Corollary 2.10. If $S \in \mathcal{L}(\mathcal{H})$ is the unilateral shift defined by $Se_n = e_{n+1}$ where $\{e_n\}$ is an orthonormal basis for \mathcal{H} , then S is not C-normal.

Recall that an operator T in $\mathcal{L}(\mathcal{H})$ has the unique polar decomposition T = U|T|, where $|T| = (T^*T)^{\frac{1}{2}}$ and U is the appropriate partial isometry satisfying ker $U = \ker |T| = \ker T$ and ker $U^* = \ker T^*$. We call the Aluthge transform \widetilde{T} of $T \in \mathcal{L}(\mathcal{H})$ given by $|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ ([8]). It is known from [1] that the Aluthge transform of a complex symmetric operator is complex symmetric. The Aluthge transform of $T \in \mathcal{L}(\mathcal{H})$ does not preserve the *C*-normality.

Example 2.11. Define a conjugation operator C on \mathbb{C}^5 as $C(x_1, x_2, x_3, x_4, x_5) = (\overline{x_5}, \overline{x_2}, \overline{x_4}, \overline{x_3}, \overline{x_1})$. Let T have the form

$$T = \begin{pmatrix} 0 - 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 3 \ 0 \\ 0 \ 0 \ 0 \ 0 \ -1 \\ 0 \ 0 \ 0 \ 0 \end{pmatrix}$$

with respect to an orthonormal basis $\{e_n\}_{n=1}^5$ of \mathbb{C}^5 . Then T is C-normal by Example 1.6. On the other hand, \tilde{T} is not C-normal. Indeed, the Aluthge transform of T is given by

$$\widetilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{3} & 0 \\ 0 & 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Eungil Ko, Ji Eun Lee, and Mee-Jung Lee

Hence \widetilde{T} is not *C*-normal.

Proposition 2.12. Let $T = U_T |T| \in \mathcal{L}(\mathcal{H})$ be the polar decomposition of T and let C be a conjugation on \mathcal{H} . If T is C-normal, then the following statements hold. (i) $T = CT^*CU_T^*$ on $\overline{\operatorname{ran} U_T^*}$. In particular, if T is a quasiaffinity, then $T^* = U_TCTC$. (ii) $C|\tilde{T}|C$ and $|(\tilde{T})^*|$ are unitarily equivalent. (iii) \tilde{T} is C-normal if and only if $|T^*| = J|T^*|J$ and

$$|T^*|^{\frac{1}{4}}|T|^{\frac{1}{2}}|T^*|^{\frac{1}{4}} = |T|^{\frac{1}{4}}|T^*|^{\frac{1}{2}}|T|^{\frac{1}{4}}.$$

We say that $T \in \mathcal{L}(\mathcal{H})$ belongs to $\delta(\mathcal{H})$ if

$$U_T^2|T| = |T|U_T^2$$

where $T = U_T |T|$ is the polar decomposition of T. It is known that if T is quasinormal, i.e., T^*T and T commute, then $T \in \delta(\mathcal{H})$. But the converse does not hold.

Theorem 2.13. Let $T = U_T |T| \in \mathcal{L}(\mathcal{H})$ be the polar decomposition of T and let T be C-normal. If $T \in \delta(\mathcal{H})$ is a quasiaffinity, then the following statements hold. (i) \widetilde{T} is normal, and hence \widetilde{T} is C-normal.

(ii) The Duggal transform $\widetilde{T}^D := |T|U_T$ of T is C-normal.

Corollary 2.14. If $T \in \delta(\mathcal{H})$ is C-normal with $T \neq \mathbb{C}I$, then the following statements hold.

(i) T has a nontrivial invariant subspace.

(ii) There exists a positive integer K such that T^k has a nontrivial invariant subspace for every $k \ge K$.

Proposition 2.15. Let $T = U_T|T|$ be the polar decomposition of $T \in \mathcal{L}(\mathcal{H})$. Set $\widehat{T} = |T|^{\frac{1}{2}}V|T|^{\frac{1}{2}}$ where $V = CU_TC$. Let $T \in \mathcal{L}(\mathcal{H})$ be C-normal for some conjugation C and let $T = U_T|T|$ be the polar decomposition of T. Then \widetilde{T} is C-normal if and only if $\widehat{T^*}$ is C-normal.

122

Corollary 2.16. Let $T \in \mathcal{L}(\mathcal{H})$ be *C*-normal for some conjugation *C* and let $T = U_T|T|$ be the polar decomposition of *T*. If U_T is complex symmetric with the conjugation *C*, *i.e.*, $U_{T^*} = CU_TC$, then \widetilde{T} is *C*-normal if and only if $\widehat{T^*}$ is *C*-normal.

Example 2.17. Let T and C be given as in Example 1.6. Define a conjugation operator C on \mathbb{C}^5 as $C(x_1, x_2, x_3, x_4, x_5) = (\overline{x_5}, \overline{x_2}, \overline{x_4}, \overline{x_3}, \overline{x_1})$. Let T have the form

$$T = \begin{pmatrix} 0 - 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 3 \ 0 \\ 0 \ 0 \ 0 \ -1 \\ 0 \ 0 \ 0 \ 0 \end{pmatrix}$$

with respect to an orthonormal basis $\{e_n\}_{n=1}^5$ of \mathbb{C}^5 . Then T is C-normal and \widetilde{T} is not C-normal. On the other hand, $\widehat{T^*}$ is not C-normal. Indeed, a direct computation shows that

$$V = CU_T C = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \sqrt{3} & 0 & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$
 Since
$$C|\widehat{T^*}|C - |(\widehat{T^*})^*| = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\sqrt{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{3} \end{pmatrix} \neq 0,$$

we conclude that $\widehat{T^*}$ is not *C*-normal.

References

 S. R. Garcia, Aluthge transforms of complex symmetric operators, Integr. Equ. Oper. Theory, 60(2008), 357-367.

- [2] _____, Conjugation and Clark Operators, Contemp. Math. 393(2006), 67-112.
- [3] _____, Means of unitaries, conjugations, and the Friedrichs operator, J. Math. Anal. Appl. **335**(2007), 941-947.
- [4] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006), 1285-1315.
- [5] _____, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. **359**(2007), 3913-3931.
- [6] S. R. Garcia, E. Prodan, and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math. Gen. 47 (2014), 353001.
- [7] S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362(2010), 6065-6077.
- [8] I. Jung, E. Ko and C. Pearcy, Aluthge transform of operators, Integr. Equ. Oper. Theory, 37(2000), 437-448.
- [9] E. Ko, On operators with similar positive parts, J. Math. Anal. Appl. **463** (1)(2018), 276-293.
- [10] E. Ko, J. E. Lee and M. Lee, On properties of C-normal operators, Banach J. Math. Anal., 15, Article number: 65 (2021).
- [11] C. A. McCarthy, c_p , Israel J. Math. 5(1967), 249-271.
- [12] M. Ptak, K. Simik, and A. Wicher, C-normal operators, Electronic J. Linear Alg., 36(2020), 67-79.
- [13] X. Wang and Z. Gao, A note on Aluthge transforms of complex symmetric operators and applications, Integr. Equ. Oper. Theory, 65(2009), 573-580.
- [14] C. Wang, J. Zhao, and S. Zhu, Remark on the structure of C-normal operators, Linear and Multi. Alg. (2020), https://doi.org/10.1080/03081087.2020.1771254.
- [15] S. Zhu, C.G. Li, Complex symmetric weighted shift, Trans. Am. Math. Soc. 365(1), 511–530 (2013).