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B93 (2023), 117–124

Properties of C-normal operators

By

Eungil Ko∗ Ji Eun Lee∗∗ and Mee-Jung Lee∗∗∗

Abstract

We study various properties of C-normal operators, i.e., T ∗T = CTT ∗C holds for a

conjugation C on H. Especially, we show that T − λI is C-normal for all λ ∈ C if and only if

T is a complex symmetric operator with the conjugation C. In addition, we prove that if T is

C-normal, then T is normal ⇔ T is quasinormal ⇔ T is hyponormal ⇔ T is p-hyponormal for

0 < p ≤ 1. Finally, we investigate equivalent conditions so that Aluthge and Duggal transforms

of C-normal operators to be C-normal operators.

§ 1. Introduction

This paper is mainly based on [10]. Let H be a separable complex Hilbert space

and let L(H) denote the algebra of all bounded linear operators on H. This paper will

be appeared in other journal.

Definition 1.1. C : H → H is a conjugation operator on H
if the following conditions hold:

(i) C is antilinear; C(ax+ by) = āCx+ b̄Cy for all a, b ∈ C and x, y ∈ H.

(ii) C is isometric; ⟨Cx,Cy⟩ = ⟨y, x⟩ for all x, y ∈ H
(iii) C is involutive; C2 = I.

By the polarization identity, the second condition (ii) is equivalent to ∥Cx∥ = ∥x∥
for all x ∈ H. Note that (CTC)k = CT kC and (CTC)∗ = CT ∗C for every positive
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integer k, and ∥C∥ = 1. For a conjugation C, there is an orthonormal basis {en}∞n=0

for H such that Cen = en for all n ≥ 0 Such a basis is C-real) (see [6]).

We give examples of conjugation operators for each spaces.

Example 1.2.

� C(x1, x2, x3, · · · , xn) = (x1, x2, x3, · · · , xn) on Cn.

� C(x1, x2, x3, · · · , xn) = (xn, xn−1, xn−2, · · · , x1) on Cn.

� [Cf ](x) = f(x) on L2(X , µ).

� [Cf ](x) = f(1− x) on L2([0, 1]).

� [Cf ](x) = f(−x) on L2(Rn).

� [Cf ](z) = zf(z)u(z) ∈ K2
u for all f ∈ K2

u where u is inner function and K2
u =

H2 ⊖ uH2 is Model space.

Definition 1.3. An operator T ∈ L(H) is said to be complex symmetric if there

exists a conjugation C on H such that

(1.1) T = CT ∗C

where T ∗ is the adjoint of T . In this case, we say that T is a complex symmetric

operator (CSO) with a conjugation C.

Example 1.4. The following operators are actually complex symmetric opera-

tors.

� All 2× 2 complex matrix on C2

� Normal operators (i.e., T ∗T = TT ∗)

� Aluthge transforms of CSOs

� Algebraic operator of order 2 (i.e., T 2 + aT + b = 0)

� Truncated Toeplitz operators (i.e., Au
φf = Pu(φf), Pu : H2 → Ku := H2 ⊖ uH2)

� The Volterra integration operator Tf(x) =
∫ x

0
f(y)dy on L2([0, 1]) satisfies T =

CT ∗C where Cf(x) = f(1− x) on L2([0, 1]).

Definition 1.5. For a conjugation C on H, an operator T ∈ L(H) is C-normal

if T ∗T = CTT ∗C holds.
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By the definition of C-normal operators that C|T |2C = |T ∗|2 is equivalent to

C|T |C = |T ∗|. Note that T is C-normal if and only if T ∗ is C-normal. We denote by

NC(H) the set of all C-normal operators on H.

We provide examples of C-normal operators which are not complex symmetric.

Example 1.6. Define a conjugation operator C on C5 as

C(x1, x2, x3, x4, x5) = (x5, x2, x4, x3, x1).

Let {en}5n=1 be an orthonormal basis of C5 and let T have the form

T =


0−1 0 0 0

0 0 1 0 0

0 0 0 3 0

0 0 0 0−1

0 0 0 0 0



with respect to {en}5n=1. Then |T | =


0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 3 0

0 0 0 0 1

 and so



C|T |Ce1 = C|T |e5 = Ce5 = e1,

C|T |Ce2 = C|T |e2 = Ce2 = e2,

C|T |Ce3 = C|T |e4 = C3e4 = 3e3,

C|T |Ce4 = C|T |e3 = Ce3 = e4,

C|T |Ce5 = C|T |e1 = 0 · Ce1 = 0 · e5,

So, C|T |C = |T ∗|. Thus T is C-normal. We know from [15] that T is not complex

symmetric. Moreover, it is clearly not normal.

For φ ∈ L∞, we say that the Toeplitz operator Tφ on the Hilbert Hardy space H2

with symbol φ defined by

Tφf = P (φf)

for f ∈ H2 where P is the orthogonal projection from L2 onto H2.

Example 1.7. Let C be a conjugation on H2 given by (Cf)(z) = f(z). Assume

that φ(z) = ϕ−(z)+ φ̂(0)+ϕ+(z) where ϕ−(z) =
−tz
1−itz , ϕ+(z) =

itz
1−itz , and φ̂(0) = 1+i

2

for −1 < t < 1. Then Tφ is C-normal but it is not complex symmetric from Example

6.10 in [12].

---- -- -- --
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§ 2. Main results

In this section, we study various properties of C-normal operators.

Theorem 2.1. Let T ∈ L(H). Then the following statements hold.

(i) Every complex symmetric operator T with a conjugation C is C-normal. In partic-

ular, if T is normal, then T is C-normal.

(ii) T − λ is C-normal for all λ ∈ C if and only if T is a complex symmetric operator

with the conjugation C.

Corollary 2.2. Let T = UT |T | be the polar decomposition of T in L(H) where

UT is unitary. If T is quasinormal (i.e., T ∗T and T commute), then T is C-normal.

Theorem 2.3. Let NC(H) be the set of all C-normal operators on H. Then

the following statements hold.

(i) The class NC(H) is norm closed in L(H).

(ii) NC(H) is not translation invariant.

Lemma 2.4. (Hölder-McCarthy’s inequality in [11])

For any positive operator T ∈ L(H) and x ∈ H, the following inequalities hold.

(i) |⟨T γx, x⟩| ≤ |⟨Tx, x⟩|γ∥x∥2(1−γ) if 0 < γ ≤ 1.

(ii) |⟨T γx, x⟩| ≥ |⟨Tx, x⟩|γ∥x∥2(1−γ) if 1 ≤ γ < ∞.

Theorem 2.5. Let T = UT |T | be the polar decomposition of T in L(H).

If T is C-normal, then

|⟨T ∗x, y⟩| ≤ (∥TCx∥∥y∥)α(∥TCU∗
T∗y∥∥x∥)β

for every x, y ∈ H where α, β ≥ 0 with α+ β = 1.

Corollary 2.6. If T ∈ L(H) is C-normal, then the following properties hold.

(i) T is bounded below if and only if T ∗ is bounded below.

(ii) T is injective if and only if T ∗ is injective.

An operator T ∈ L(H) is said to be isometry if T ∗T = I and unitary if T ∗T =

TT ∗ = I, respectively. An operator T ∈ L(H) is said to be hyponormal if T ∗T−TT ∗ ≥ 0

and p-hyponormal operator if (T ∗T )p ≥ (TT ∗)p, where 0 < p ≤ 1, respectively. A closed

subspace M is nontrivial if it is different from (0) and H. A closed subspace M ⊂ H is

invariant for T if TM ⊂ M.

Theorem 2.7. If T ∈ L(H) is C-normal, then the following statements are

equivalent.
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(i) T is normal.

(ii) T is quasinormal.

(iii) T is hyponormal.

(iv) T is p-hyponormal for 0 < p ≤ 1.

Corollary 2.8. Let T ∈ L(H) be C-normal. If T is p-hyponormal for 0 < p ≤ 1

where T ̸= λI, then T has a nontrivial invariant subspace.

Theorem 2.9. Assume that T ∈ L(H) is C-normal. Then

T ∗ is an isometry ⇐⇒ T is unitary ⇐⇒ T is an isometry.

Corollary 2.10. If S ∈ L(H) is the unilateral shift defined by Sen = en+1

where {en} is an orthonormal basis for H, then S is not C-normal.

Recall that an operator T in L(H) has the unique polar decomposition T = U |T |,
where |T | = (T ∗T )

1
2 and U is the appropriate partial isometry satisfying kerU =

ker |T | = kerT and kerU∗ = kerT ∗. We call the Aluthge transform T̃ of T ∈ L(H)

given by |T | 12U |T | 12 ([8]). It is known from [1] that the Aluthge transform of a complex

symmetric operator is complex symmetric. The Aluthge transform of T ∈ L(H) does

not preserve the C-normality.

Example 2.11. Define a conjugation operator C on C5 as C(x1, x2, x3, x4, x5) =

(x5, x2, x4, x3, x1). Let T have the form

T =


0−1 0 0 0

0 0 1 0 0

0 0 0 3 0

0 0 0 0−1

0 0 0 0 0


with respect to an orthonormal basis {en}5n=1 of C5. Then T is C-normal by Example

1.6. On the other hand, T̃ is not C-normal. Indeed, the Aluthge transform of T is given

by

T̃ = |T | 12U |T | 12 =


0 0 0 0 0

0 0 1 0 0

0 0 0
√
3 0

0 0 0 0
√
3

0 0 0 0 0

 .

-- -- -- -- --
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Since |T̃ | =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0
√
3 0

0 0 0 0
√
3

 and |T̃ ∗| =


0 0 0 0 0

0 1 0 0 0

0 0
√
3 0 0

0 0 0
√
3 0

0 0 0 0 0

 , it follows that

C|T̃ |C − |T̃ ∗| =



√
3 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 1−
√
3 0

0 0 0 0 0

 ̸= 0.

Hence T̃ is not C-normal.

Proposition 2.12. Let T = UT |T | ∈ L(H) be the polar decomposition of T and

let C be a conjugation on H. If T is C-normal, then the following statements hold.

(i) T = CT ∗CU∗
T on ran U∗

T . In particular, if T is a quasiaffinity, then T ∗ = UTCTC.

(ii) C|T̃ |C and |(T̃ )∗| are unitarily equivalent.

(iii) T̃ is C-normal if and only if |T ∗| = J |T ∗|J and

|T ∗| 14 |T | 12 |T ∗| 14 = |T | 14 |T ∗| 12 |T | 14 .

We say that T ∈ L(H) belongs to δ(H) if

U2
T |T | = |T |U2

T

where T = UT |T | is the polar decomposition of T . It is known that if T is quasinormal,

i.e., T ∗T and T commute, then T ∈ δ(H). But the converse does not hold.

Theorem 2.13. Let T = UT |T | ∈ L(H) be the polar decomposition of T and let

T be C-normal. If T ∈ δ(H) is a quasiaffinity, then the following statements hold.

(i) T̃ is normal, and hence T̃ is C-normal.

(ii) The Duggal transform T̃D := |T |UT of T is C-normal.

Corollary 2.14. If T ∈ δ(H) is C-normal with T ̸= CI, then the following

statements hold.

(i) T has a nontrivial invariant subspace.

(ii) There exists a positive integer K such that T k has a nontrivial invariant subspace

for every k ≥ K.

Proposition 2.15. Let T = UT |T | be the polar decomposition of T ∈ L(H). Set

T̂ = |T | 12V |T | 12 where V = CUTC. Let T ∈ L(H) be C-normal for some conjugation C

and let T = UT |T | be the polar decomposition of T . Then T̃ is C-normal if and only if

T̂ ∗ is C-normal.
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Corollary 2.16. Let T ∈ L(H) be C-normal for some conjugation C and let

T = UT |T | be the polar decomposition of T . If UT is complex symmetric with the

conjugation C, i.e., UT∗ = CUTC, then T̃ is C-normal if and only if T̂ ∗ is C-normal.

Example 2.17. Let T and C be given as in Example 1.6. Define a conjugation

operator C on C5 as C(x1, x2, x3, x4, x5) = (x5, x2, x4, x3, x1). Let T have the form

T =


0−1 0 0 0

0 0 1 0 0

0 0 0 3 0

0 0 0 0−1

0 0 0 0 0


with respect to an orthonormal basis {en}5n=1 of C5. Then T is C-normal and T̃ is not

C-normal. On the other hand, T̂ ∗ is not C-normal. Indeed, a direct computation shows

that

V = CUTC =


0 0 0 0 1

0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

 and |T ∗| 12 =


1 0 0 0 0

0 1 0 0 0

0 0
√
3 0 0

0 0 0 1 0

0 0 0 0 0

 .

Thus T̂ ∗ = |T ∗| 12V |T ∗| 12 =


0 0 0 0 0

0 0 0 1 0√
3 0 0 0 0

0 0
√
3 0 0

0 0 0 0 0

. Since

C|T̂ ∗|C − |(T̂ ∗)∗| =


0 0 0 0 0

0−1 0 0 0

0 0 1−
√
3 0 0

0 0 0 0 0

0 0 0 0
√
3

 ̸= 0,

we conclude that T̂ ∗ is not C-normal.
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