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Abstract 

Inflammation can contribute to the development and progression of cancer. The inflammatory responses in the 
tumor microenvironment are shaped by complex sequences of dynamic intercellular cross-talks among diverse types 
of cells, and recapitulation of these dynamic events in vitro has yet to be achieved. Today, intravital microscopy with 
two-photon excitation microscopes (2P-IVM) is the mainstay technique for observing intercellular cross-talks in situ, 
unraveling cellular and molecular mechanisms in the context of their spatiotemporal dynamics. In this review, we 
summarize the current state of 2P-IVM with fluorescent indicators of signal transduction to reveal the cross-talks 
between cancer cells and surrounding cells including both immune and non-immune cells. We also discuss the 
potential application of red-shifted indicators along with optogenetic tools to 2P-IVM. In an era of single-cell tran-
scriptomics and data-driven research, 2P-IVM will remain a key advantage in delivering the missing spatiotemporal 
context in the field of cancer research.

Keywords  Intravital microscopy, Two-photon excitation microscope, Tumor microenvironment, Förster resonance 
energy transfer, Optogenetics

Background
Inflammation is part of the complex biological response 
triggered by the immune response to infection, injury, 
and other environmental challenges. Inflammation 
functions not only as a host defense process, but also as 
a tissue repair, regeneration, and remodeling process, 
modulating tissue homeostasis [1]. During the last couple 
of decades, it is increasingly appreciated that inflamma-
tion is an important component of tumorigenesis rang-
ing from cancer development, progression, and therapy 
resistance [2]. Large epidemiological clinical studies 
clarifying the effects of non-steroidal anti-inflammatory 
drugs (NSAIDs) [3, 4] or interleukin 1β inhibitors [5] on 

reducing incidence and mortality in many cancer types 
have provided excellent evidence of the supportive role 
of inflammation in tumorigenesis. Defining the molecu-
lar and cellular cross-talks underlying tumor-promoting 
inflammation will be essential for further development of 
anti-cancer therapies.

Inflammatory responses are shaped by dynamic 
sequential inter-cellular cross-talks between a multitude 
of functionally diverse types of cells of innate and adap-
tive immunity. The development of high-dimensional 
profiling technologies such as cytometry by time of flight 
(CyTOF) and single-cell RNA sequencing (scRNA-seq) 
has enabled to profile of a vast heterogeneity of immune 
cell states and functionality. However, how different cel-
lular components engage in the sequential inflamma-
tory responses, and how these events take place in a 
spatially organized manner within the tumor microenvi-
ronment remain unsolved questions. Despite the recent 
advancement of organoid culture systems for modeling 
the tumor microenvironment [6, 7], recapitulation of 
inflammatory responses in  vitro has yet to be achieved. 
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A comprehensive understanding of this continuously 
dynamic and complex process requires in situ investiga-
tion in living organisms.

Intravital microscopy with two‑photon excitation 
microscopy (2P‑IVM)
Intravital microscopy (IVM) is a unique imaging method 
that allows observing biological processes in living organ-
isms. The invention of the microscope leads the early pio-
neers to observe living cells in the seventeenth century 
[8]. Despite this long history, it was only after the wide-
spread application of a two-photon excitation micro-
scope (2PEM) that the number of studies using IVM 
started to increase [9, 10]. Two-photon excitation arises 
from the simultaneous absorption of two photons in a 
single event, which depends on the square of the light 
intensity. Due to this property, the probability of two-
photon absorption at the center of focus is substantially 
greater than outside of the focus, allowing little excitation 
of fluorophores along the optical path in contrast to the 
conventional single-photon absorption (Fig. 1) [11]. This 
localization of two-photon excitation to solely the focal 
plane provides several advantages over conventional 
microscopy, including the maximum recovery of photons 
from the molecules of interest on focal planes, the reduc-
tion of photodamage throughout the sample, and the 
restricted out-of-focus absorption allowing deep tissue 
penetration [12]. With these important principles, 2PEM 
now allows us to observe brain tissue to more than 1-mm 
depth, in contrast to conventional microscopy, which can 
visualize only structures close to the surface of tissues 
[13].

Initially, after being introduced into the field of immu-
nology, 2P-IVM provided significant insights into the 
dynamic cellular interplay between different fluores-
cently labeled cell populations [14–16]. Using pre-clinical 
tumor-bearing mouse models, 2P-IVM has revealed the 
inter-cellular cross-talks within the tumor microenviron-
ment in numerous anatomical sites, including the skin 
[17, 18], lungs [19, 20], digestive tract [21], lymph nodes 
[22], bone marrow [23], and brain [24–26]. Also, the 
application of autofluorescence imaging along with fluo-
rescent labeling that measures functional parameters like 
NAD(P)H and FAD for monitoring metabolic activity has 
provided an additional layer of information on immune 
cells [27].

Then, along with the development and application of 
fluorescent indicators, live signal transduction events 
now can be observed as cells actively engage in interac-
tions or receive soluble stimuli [28]. Below, we will con-
sider some applications of 2P-IVM with fluorescent 
indicators of signal transduction in the field of cancer 
research in detail.

Visualization of PGE2 secretion from tumor cells
Prostaglandin E2 (PGE2) is the most widely produced 
prostanoid in the body, which can modulate various steps 
of inflammation in both pro-inflammatory and anti-
inflammatory manners [29]. PGE2 is known to promote 
tumor development by several mechanisms that pro-
mote cell growth, invasion, migration, angiogenesis, and 
immune evasion [30–32]. Currently, it is believed that 
the concentration of PGE2 within tumor tissues is regu-
lated mostly by transcriptional regulation of Ptgs2 encod-
ing cyclooxygenase-2 (COX-2) which is the rate-limiting 

Fig. 1  Properties of two-photon excitation microscopy (2PEM). In conventional single-photon fluorescence microscopy, fluorescence molecules 
along the light path are excited. In 2PEM, two photons must reach the single fluorophore almost simultaneously, which occurs only at the focal 
plane, markedly reducing the background fluorescence
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enzyme in the PGE2 synthesis pathway [33]. However, the 
question remains of how the PGE2 secretion from tumor 
cells is regulated in the tumor microenvironment in the 
context of cellular cross-talks.

To monitor PGE2 secretion using 2P-IVM, we 
focused on Ca2+ signal transduction in tumor cells. The 
Ca2+-induced activation of phospholipase A1 (PLA2), 
particularly cytosolic phospholipase A2 (cPLA2a), is rec-
ognized as the rate-limiting step in PGE2 secretion, which 
liberates arachidonic acid from cell membrane phospho-
lipids [34, 35]. Therefore, we hypothesized that the Ca2+ 
transients in tumor cells can work as a surrogate marker 

for PGE2 secretion [36]. The Ca2+ transients in mouse 
melanoma cells in the tumor microenvironment were 
visualized by using a genetically encoded calcium indica-
tor, GCaMP6s (Fig. 2A) [37]. Of note, the Ca2+ transients 
observed in tumor cells were significantly suppressed 
by CRISPR/Cas9-mediated gene knockout of Gnaq 
(Gnaq−/−), which encodes guanine nucleotide-binding 
protein G(q) subunit alpha. Importantly, this suppres-
sion in Ca2+ transients resulted in a marked reduction of 
the PGE2 concentration in the tumor microenvironment, 
supporting the notion that (i) Ca2+ transients reflect 
PGE2 secretion and (ii) the GqPCR signaling pathway 

Fig. 2  2P-IVM with fluorescent indicators to reveal the cross-talks between tumor cells and surrounding cells in the tumor microenvironment 
including both immune and non-immune cells. Indirect cross-talks between A tumor cells and non-immune cells, B tumor cells and immune cells, 
and C direct cross-talks between tumor cells and immune cells can be visualized by using 2P-IVM with fluorescent indicators (gray cells: tumor 
cells; magenta cells: tumor cells receiving signals via signaling molecules, TXA2 or IFN-γ; yellow cells: T cells or NK cells). Melanoma cells expressing 
GCaMP6s were imaged using 2P-IVM (A, bottom). The image represents the maximum intensity projection for 10 min. Images were adapted 
courtesy of Konishi et al. [36]. Schematic representation of the fluorescent indicator for IFN-γ (B, bottom). Melanoma cells expressing this fluorescent 
indicator were imaged using 2P-IVM. Images represent the mCherry and turquoise-GL-NLS of parental cells. Images were adapted by courtesy 
of Tanaka et al. [38]. Melanoma cells expressing GCaMP6s were imaged in the lung using 2P-IVM (C, bottom). Top, FRET/CFP ratio of an NK cell is 
shown. Melanoma cell is shown in white. GCaMP6s intensity is displayed in pseudo-color (bottom). The NK cell is shown in white. The images were 
adapted by courtesy of Ichise et al. [39]
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is required for PGE2 secretion from tumor cells in this 
melanoma model. The downstream analysis revealed that 
the major GqPCR ligand in this model was thrombox-
ane A2 (TXA2) released from endothelial cells. As shown 
here, 2P-IVM with the fluorescent indicator of Ca2+ sig-
nal transduction enabled us to clarify the indirect inter-
cellular cross-talks between tumor cells and endothelial 
cells in enhancing PGE2 secretion from tumor cells and 
thereby promoting tumor immune evasion within the 
tumor microenvironment.

Visualization of IFNγ‑induced signaling in tumor cells
Using the same mouse melanoma model with 2PM-
IVM, Tanaka et al. successfully visualized the tumor cells 
receiving interferon-gamma (IFN-γ) stimuli in the tumor 
microenvironment [38]. IFN–γ is a cytokine secreted 
by immune cells, especially NK cells and T cells, and 
enhances anti-tumor immune response [40, 41]. Tanaka 
et  al. utilized the dual promoter system with interferon 
γ-activated sequence (GAS) [42] and developed a fluores-
cent indicator for IFN-γ-mediated signal transduction in 
tumor cells (Fig. 2B). This indicator enabled the visualiza-
tion of tumor cells receiving IFN-γ stimuli as the expres-
sion of fluorescent protein at a single-cell resolution. As 
anticipated, the GAS activity in the Gnaq−/− tumor was 
significantly higher than that in the parental tumors, sup-
porting the activated anti-tumor immune response with 
an abundance of IFN-γ. Similarly, Hoekstra et al. analyzed 
the spatial spreading of T cell-derived IFN-γ in  vivo by 
using an IFN-γ-sensing fluorescent indicator that induces 
the expression of fluorescent protein after IFN-γ recep-
tor triggering [42]. In addition to these two examples, the 
spatiotemporal spread of IFN-γ within the tumor micro-
environment was also visualized by a fluorescent indica-
tor where the translocation of a fluorescent protein from 
the cytoplasm to the nucleus represents the receiving of 
IFN-γ stimuli [43]. These prominent examples support 
the utility of 2P-IVM in recording indirect cellular cross-
talks via soluble stimuli such as IFN-γ.

Visualization of tumor killing by NK cells
To develop optimal immunotherapies, it is important 
to understand how cytotoxic lymphocytes such as NK 
cells react to tumor cell challenges and how tumor cells 
in turn respond. Using 2P-IVM with a metastatic mela-
noma mouse model, Ichise et  al. visualized the direct 
intercellular cross-talks between NK cells and meta-
static tumor cells in the lung (Fig.  2C) [39]. To track 
NK cell activation, extracellular signal-regulated kinase 
(ERK) activity was monitored by using a Förester reso-
nance energy transfer (FRET)-based biosensor (EKA-
REV) [44, 45]. In the meantime, Ca2+ influx in tumor 

cells was monitored by using GCaMP6s [46] as a sur-
rogate marker for apoptosis. Using this system, they 
revealed that ERK activation in NK cells contributes to 
tumor-cell killing, granting further study for underly-
ing mechanisms controlling ERK activity dynamics in 
NK cells to develop optimal immunotherapies using 
NK cells. Interestingly, they also reported a marked 
decrease in the proportion of ERK activation and Ca2+ 
influx 24 h after tumor injection, suggesting exhaustion 
of NK cells.

These examples indicate the versatile utility of 
2P-IVM with a fluorescent indicator of signal transduc-
tion in analyzing inflammatory responses in the tumor 
microenvironment, encouraging the application of 
2P-IVM in the field of cancer research.

Future perspective
Recent advances in optogenetics have opened new 
routes to cancer research with 2P-IVM. The term 
“optogenetics” was first coined by Deisseroth et  al. in 
2006 [47]. Optogenetics is a biological technique that 
employs natural and engineered photoreceptors to be 
genetically introduced into the cells of interest, allow-
ing these target cells to be photosensitive and address-
able by illumination [48–50]. On the level of individual 
cells, this allows the precise control of cell signaling 
pathways in time and space. Starting with Channel-
rhodopsin (ChR) to excite neurons as a prototypical 
optogenetic tool [51, 52], several optogenetic tools are 
now available to control the activity of neurons or other 
cell types with light by regulating protein heterodi-
merization [53–55], homo-dimerization [56, 57], gene 
expression [58–60], protein degradation [61], nuclear-
cytosolic protein translocation [62–65], and liquid–
liquid protein phase separation [66–68]. Optogenetic 
manipulation can be achieved by two-photon excita-
tion and is compatible with 2P-IVM. For example, the 
optogenetic control of protein dimerization to induce 
signal transduction and gene expression has been 
achieved by two-photon illumination [69–71]. Indeed, 
Kinjo et al. achieved the simultaneous photoactivation 
and recording of ERK signaling pathway activity in the 
mouse epidermal cells at a single-cell resolution dur-
ing 2P-IVM by introducing both a fluorescent indica-
tor and an optogenetic tool. The recent development of 
red, near-infrared, and far-red shifted fluorescent indi-
cators including calcium [72, 73], voltage [74, 75], and 
kinase activity [76] has strengthened the potential for 
accomplishing 2P-IVM in combination with optoge-
netic control. The application of red-shifted indicators 
along with optogenetic tools to 2P-IVM will advance 
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the utility of this versatile tool in the field of cancer 
research.

Conclusions
In the field of cancer research, major challenges remain in 
elucidating the dynamic sequential intercellular cross-talks 
within the tumor microenvironment. The 2P-IVM with 
fluorescent indicators of signal transduction enables us to 
investigate this continuously dynamic and complex process 
in living organisms in  situ and real-time. The application 
of red-shifted indicators along with optogenetic tools will 
further facilitate the potential of 2P-IVM, revealing unex-
pected cellular and molecular mechanisms operating in the 
tumor microenvironment.
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