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Abstract— An anisotropic vector play model was developed by the superposition of scalar play models. An analytical identification 

method was derived for a uniaxially anisotropic term. Computed BH loops accurately reconstructed the measured anisotropic 

hysteretic characteristics of non-oriented silicon steel sheet. Its application to magnetization analysis by a physical magnetization 

model using multi-domain particles enhanced the prediction accuracy of the stress-dependent loss property.  
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I. INTRODUCTION 

here exist several vector versions of hysteresis models, 

such as the Preisch model [1], [2], the Jiles-Atherton model 

[3], and the play model [4], [5], which have been applied to the 

magnetic field analysis [3], [6]. Among them, the play model is 

an accurate and efficient hysteresis model. Although the scalar 

play model is mathematically equivalent to the Preisach model 

[7], its computational cost is lower.  

The play model contains two types of vector versions; one is 

the geometric extension of a scalar model, while the other is 

constructed by the superposition of scalar models [5]. The 

geometric model has been applied to magnetic field analysis 

[6] because it represents iron core properties more accurately 

and efficiently than the superposition model. The superposition 

model has a physics-based background, similar to the vector 

Preisach model [1]; therefore, it is used to identify the pinning 

field components from the measured MH loop to present a 

pinning field distribution to a physical magnetization model, 

such as the multi-domain particle model (MDPM) [8] (See 

Appendix for a brief explanation of magnetization model). The 

pinning field distribution is one of the key data for the MDPM. 

Assuming an isotropic pinning field distribution, the MDPM 

succeeded to predict the stress dependence of hysteresis loss 

without using measured data under mechanical stress [8]. As 

was revealed in [9], the stress dependence is caused by the 

stress-induced anisotropy. However, the isotropic pinning field 

distribution may be an insufficient approximation to be coupled 

with stress-induced anisotropy. 

Using the equivalence to the Preisach model, an anisotropic 

vector play model of the superposition type can be constructed 

in the same manner as the anisotropic vector Preisach model 

proposed by Mayergoyz [1]. However, its identification 

method is complicated, making implementation difficult. This 

study aimed to develop a superposition-type anisotropic vector 

play model and its analytical identification method. It was 

applied to estimate the anisotropic pinning field distribution 

used in the MDPM.  

II. ANISOTROPIC VECTOR PLAY MODEL 

A. Anisotropic Vector Model Based on Superposition 

A hysteretic function from input X to output Y is 

represented by a scalar play model as  
s

0
( ) ( , ( )) d

X

Y F X f p X 
+

= +  ,       (1) 

where F and f represent single-valued functions called shape 

functions, and XS indicates the saturation point. The play 

hysteron operator pζ having width ζ is given as 

  pζ(X) = max(min(pζ
0, X+ζ), X−ζ),        (2) 

where pζ0 indicates pζ at the previous time point. 

A vector hysteresis model with uniaxial anisotropy is 

constructed by the superposition of scalar models [1] as 
π/2

20 22
π/2

[ ( ) ( ) cos 2 ]dP P    
−

==  + Y e e X e X ,      (3) 

where X represents the input vector, Y represents the output 

vector, φ symbolizes the azimuth angle, eφ represents the unit 

vector in the φ-direction, and P20 and P22 represent the scalar 

hysteretic functions given by the play or Preisach model. 

The rotational hysteresis loss yielded by the vector model 

(3) saturates for a rotational input of large amplitude, which is 

unrealistic for the magnetic hysteresis of core materials. The 

isotropic vector model has an extended version to enhance the 

rotational loss property representation [1], [5]. Similarly, the 

anisotropic vector model (3) can be extended as:  
1 1

π/2

20 22
π/2

[ (| | cos ) (| | cos )cos2 ]dn nP P    
−

== +Y e X X ,  

           (4) 

where ψ denotes the angle between X and eφ. More precisely, 

cos1/nψ means |cosψ|1/nsign(cosψ).  

The unidirectional property of (3) and (4) along the φ-

direction is given from measured data and represented as  

T 
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 Yφ = P10(X) + P12(X)cos2φ        (5) 

where P10 and P12 are isotropic and anisotropic hysteresis 

functions given by the play or Preisach model. 

The input and output vectors (X, Y) can be either (H, B) or 

(B, H), where H indicates the magnetic field and B indicates 

the magnetic flux density. Although the H-input model is a 

natural choice for the play model, the B-input model is often 

used because it is favorable to the finite element method using 

magnetic vector potential, and the B-input model can more 

accurately represent the properties of silicon steel.  

B. Identification Method 

In [1], an identification method is given to analytically 

determine P20 from the measured P10 for the Preisach model. 

However, an analytical method that identifies P22 from P12 is 

not known. Therefore, this study derives an analytical 

identification method to determine P22 for the play model, 

which is applicable to the Preisach model.  

The following function is defined for the identification:  

0
( ) ( , ) d (0 )

( , )

( ) ( 0)

ik ik

ik

ik

F p f p
T p

F p



  




+

 + 
= 
 =

 ,      (6) 

where i = 1, 2 and k = 0, 2. T1k is given from the shape 

functions F1k and f1k of P1k. Using T1k, F2k and f2k of P2k are 

given as  

 
2

2

( , )
( , ) k

k

T p
f p







=


, F2k(p) = T2k (0, p),       (7) 

where k = 0, 2 and  

π/2
1/ 1/
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Equation (9) was derived in [1] and [5]. The derivation of 

(10) is given in the following subsection. 

In the case of the vector Preisach model, Tik is replaced by 

the corresponding Everett integral.  

C. Derivation of (10) 

As is derived in [1] (with n = 1), it is necessary for the 

unidirectional property of (4) to be identical to (5), such that  
π/2

1/

1 2
π/2

( ) cos cos( ) ( cos )dn

k kP X k P X   
−

=  .      (11) 

In the case of the vector play model of the superposition type, 

(11) is replaced by  
π/2

1/ 1/
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           (12) 

For k = 0, the solution of integral equation (12) for T20 is given 

by (8) and (9). For k = 2, (12) can be rewritten as 
π/2

3 1/ 1/

12 22
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−
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           (13) 

By setting  

     ζʹ = ζcos1/nψ, pʹ = pcos1/nψ,        (14) 

it holds for a function T(ζʹ, pʹ) that 
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           (15) 

From (15), the following is obtained  
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Replacing T(ζʹ, pʹ) by T12(ζʹʹ, pʹʹ) = T12(ζʹcos1/nφ, pʹcos1/nφ) in 

(16) and using (8) and (10), we obtain  
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The last equation holds because this relation is the same as 

relations (8), (9), and (12) for T10 and T20 with k = 0. Thus, it is 

proven that T22 given by (8) and (10) satisfies (12). 

III. COMPUTATIONAL RESULTS 

A. Vector Hysteretic Property of Silicon Steel Sheet 

A non-oriented (NO) silicon steel sheet JIS: 50A470 was 

measured along the rolling direction (RD) and transverse 

direction (TD). The B-input play model was used for this case. 

For simplicity, using the measured properties HRD(B) and 

HTD(B) in the RD and TD, P10(B) and P12(B) are approximated 

as 

 P10(B) = [HRD(B) + HTD(B)] / 2,  

 P12(B) = [HRD(B) − HTD(B)] / 2.        (18) 

The developed identification method determines P20 and P22 

from P10 and P12 above. Fig. 1 illustrates the reconstructed BH 

loops along the RD and TD with n = 1 and 5, where BS (= XS) 

is set to 1.8 T. The anisotropic property is accurately 
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represented. Fig. 2(a) presents the hysteresis loss per cycle 

along the RD and TD with n = 1, 3, 5. The alternating losses 

are accurately represented under the given parameter BS. 
 

(a)  

(b)  

Fig. 1. BH loops simulated by the anisotropic vector play model: (a) n = 1 

and (b) n = 5.  

   
 (a)    (b) 

Fig. 2. Hysteresis losses per cycle: (a) alternating and (b) rotational losses.  

 

Fig. 2(b) illustrates the rotational hysteresis loss per cycle 

with n = 1, 3, 5. The rotational loss saturates when n = 1, 

whereas it decreases for large B with n = 3 and 5. Thus, the 

simulated rotational hysteresis loss can be qualitatively 

controlled by the parameter n. To obtain a more accurate 

representation of the rotational hysteresis loss, a weighting 

function can be introduced, similar to the isotropic model 

discussed in [5].  

B. Application in Magnetization Analysis 

The MDPM [8] is a physical magnetization model, the 

multi-domain particle model (MDPM), which successfully 

predicts the increase in the hysteresis loss of silicon steel sheets 

owing to the compressive stress. The MDPM constitutes an 

assembly of 6-domain particles. The magnetization state in 

each particle is represented by the volume ratios rj and the 

magnetization direction (θj, φj) of six domains (j = 1, …, 6); rj 

and (θj, φj) are determined by locally minimizing the total 

magnetic energy comprising the Zeeman, anisotropy, 

magnetostatic, and magnetoelastic energies. The variation in 

the volume ratio rj is resisted by a pinning field. See the 

Appendix for a brief explanation of the MDPM.  

Assuming an isotropic pinning field, [8] provides the 

pinning field Hpnj working on rj (0 ≤ rj ≤ 1) as:  

 Hpnj = C rjP20(2rj − 1),    (19) 

where C is a constant and P20 is a function providing a pinning 

field distribution, which is represented by a scalar play model. 

P20 is estimated from the measured MH loops as follows.  

Once the MH loops are unidirectionally measured under a 

stress-free condition, its anhysteretic component is subtracted 

from the MH loops to extract a unidirectional pinning field 

P10(m), where m = M/MS and MS indicates spontaneous 

magnetization. P10 is approximated by the unidirectional 

property of a two-dimensional vector play model (3) (i.e., n = 

1) without P12 and P22 terms. From (6)–(9), P20(m) is identified 

from P10(m). In each cell, m is replaced by 2rj − 1 in (19). 

By replacing (19) with 

 Hpnj = C rj[P20(2rj − 1) + P22(2rj − 1)cos2φj],  (20) 

an anisotropic pinning field is represented to realize an 

anisotropic MDPM. Similarly, the pinning field distributions 

P20(m) and P22(m) are represented by the play model and 

identified from the measured MH loops along the RD and TD. 

Note that P20 and P22 are scalar play models. The vector 

magnetization property of the core material is constructed by 

the MDPM using the isotropic/anisotropic pinning field.  

The stress-dependent properties of 50A470 were measured 

along the RD and TD using a stress-loading single-sheet tester 

[10]. The stress-dependent hysteresis loss is simulated using 

the isotropic and anisotropic MDPM. The isotropic MDPM for 

the RD (or TD) simulation uses the measured MH loops in the 

RD (TD) only, where the coefficient C in (19) is determined to 

adjust the simulated loss to the measured one in the RD (TD) 

around 1 to 1.2 T under the stress-free condition. The 

anisotropic MDPM uses the measured MH loops both in the 

RD and TD, an adjustment coefficient C in (20) is used for 

both the RD and TD simulation.  

The material constants required for the computation 

represent the cubic anisotropy constant (K = 4.2 × 104 J/m3) 

and magnetostriction constants (λ100 = 2.4 × 10−5, λ111 = −9.5 × 

10−6), and μ0MS = 2.07 T. Note that no measured data under 

mechanical stress are required for the MDPM to accurately 

predict the stress-dependent property.  

Fig. 3 presents a comparison of the simulated and measured 

hysteresis losses per cycle with and without compressive stress 

of 40 MPa. The difference in the loss property between the RD 

and TD decreases under compressive stress. The isotropic 

MDPM overestimates the loss in the TD, whereas the 

anisotropic MDPM achieves good prediction accuracy coupled 

with stress-induced anisotropy. Fig. 4 depicts simulated BH 

loops, which roughly reconstruct measured loops. The property 

difference between the RD and TD becomes small under the 

stress because the stress-induced anisotropy is dominant. 
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(a)  

(b)  

Fig. 3. Hysteresis losses under compressive stress predicted by the MDPM 

with (a) isotropic and (b) anisotropic pinning field distributions.  

 

Fig. 4. BH loops under compressive stress of 40 MPa. 

IV. CONCLUSION 

A uniaxially anisotropic vector play model was developed, 

and its identification method was derived. The proposed 

method accurately reconstructed the BH loops of NO steel 

sheet in the RD and TD. The proposed method was applied to 

identify the anisotropic pinning field used in a physical 

magnetization model. The anisotropic pinning field improved 

the prediction of the stress-dependent loss property of NO 

steel sheet. To handle more complex anisotropy of steel sheets 

such as the grain-oriented silicon steel, a 2D/3D higher-order 

anisotropic vector model will be developed in future work. 

APPENDIX 

To represent the stress dependence of magnetization properties, 

several phenomenological models [11] and physical models 

[8], [12], [13] have been developed. To adjust fitting 

parameters, the phenomenological models require measured 

stress-dependent data, which are not always available, 

especially for various combinations of stress and magnetic 

field directions. The physical models succeeded to predict the 

stress dependence of the permeability and the shape of 

hysteresis loops. However, it is still an open problem to 

predict the stress dependence of hysteresis loss accurately. 

The MDPM [8] is a physical macroscopic magnetization 

model developed by assembling mesoscopic particles at the 

crystal-grain scale. The magnetization state in each cell 

particle is represented by the volume ratios ri and 

magnetization vectors (sinθjcosϕj, sinθjsinϕj, cosθj) (j = 1 … 6) 

of the six domains. These states are determined to locally 

minimize the total magnetic energy e, which comprises the 

Zeeman, crystalline anisotropy, magnetostatic, and 

magnetoelastic energies. Local minimization of e is achieved 

by solving the ordinary differential equations given as 

 dx/dt = y, dy/dt = −∂e/∂x − βy,  (21) 

where x consists of (θ1, …, θ6, ϕ1, …, ϕ6, r1, …, r5) and β 

denotes the damping factor. A local energy minimum is 

obtained by numerically integrating (21) until an equilibrium 

point is reached at which dx/dt = dy/dt = 0.  

 The pinning field is generated in each particle because of 

the domain-wall motion, which is modeled by the play model. 

The pinning field distribution is estimated based on the 

measured MH loops under stress-free conditions, whereas 

other model parameters were obtained from material constants 

(i.e., spontaneous magnetization, anisotropy constant, and 

magnetostriction constants). To add the pinning field, the 

∂e/∂rj term in (21) is replaced by ∂e/∂rj + Hpnj, where the 

pinning field Hpnj is given as in (19) or (20).  
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