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PHYSICAL RESERVOIR COMPUTING USING NONLINEAR MEMS 
RESONATOR HAVING HIGH MEMORY CAPACITY AT “EDGE OF CHAOS” 

Hiroki Takemura, Takahiro Mizumoto, Amit Banerjee, Jun Hirotani, and Toshiyuki Tsuchiya 
Department of Micro Engineering, Kyoto University, JAPAN 

 
ABSTRACT 

This paper reports physical reservoir computing (PRC) 
using a single nonlinear electrostatic resonator and 
demonstrates its high memory capacity at “edge of chaos.” 
The resonator is a simple doubly supported resonator 
fabricated from a silicon-on-insulator wafer. We proposed 
a PRC system without feedback loop, in which its memory 
capacity relies on the decay time of the high-Q resonator. 
The benchmark task results indicate that the system shows 
good linear and nonlinear memory capacities at the 
resonance and the maximum capacity was obtained at the 
vicinity of the instability edge of the frequency response.  
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INTRODUCTION 

Physical reservoir computing (PRC) is one of the 
machine learning algorisms where the inner layer of 
recurrent neural network (RNN) is implemented by 
nonlinear physical system. Figure 1 shows a human motion 
recognition system as an example. Vibration signal 
detected by accelerometer input to a recurrent neural 
network and outputs classifies person’s activity, such as 
sitting, standing, walking, and running. Training of a 
conventional RNN is time- and power-consuming because 
of its complicated network structure and difficulties in 
optimizing all the node transfer functions and the 
connection weights, which makes difficult to implement it 
to portable systems. In the reservoir computing, the hidden 
(middle) layer of RNN is fixed (called as a reservoir) and 
only the weights of output layer are optimized by such as 

linear and Ridge regression methods. PRC employs a 
nonlinear physical system for the reservoir, such as optical, 
spintronic, thermal, and electrical systems. A microelectro-
mechanical nonlinear resonator is one of the candidates for 
the reservoir and experimental demonstration results have 
been reported [1-4]. One of the features of MEMS reservoir 
is that its integration to MEMS sensors [4] and mechanical 
signal processing is conducted before transduction to 
electrical signal, which greatly reduces the power 
consumption of remote sensing systems. We have utilized 
a frequency modulated capacitive accelerometer to a 
sensor-integrated physical reservoir. The doubly clamped 
beam resonator for acceleration detection was used as a 
physical reservoir with its enhanced nonlinearity and the 
delayed feedback loop. The vibration inputs were 
successfully processed by machine learning tasks and the 
results showed good performances [4]. However, the 
design strategy and parameter optimization procedure of 
MEMS resonator for PRC have not been investigated and 
clarified owing to its complicated output.   

In this study, we use a simple nonlinear resonator 
driven by electrostatic force and detected by capacitance 
change and do not use the delayed feedback loop, which is 
often used in MEMS reservoir [1,4]. The memory capacity 
is obtained by controlling its Q-factor and time constant 
operated in a vacuum environment. Benchmark tasks were 
conducted by changing the oscillation frequency and 
sampling time to study its optimal memory capacities. 
 
MEMS RESERVOIR 

Figure 2 shows the nonlinear electrostatic resonator 
used as a reservoir in this study. The resonator has a pair of 
doubly clamped beams of 330 μm long and 3 μm wide, 
which shows the hard spring effect because of the axial 
force on the beams. There are two pairs of parallel plate  

 
 
Figure 1: Concept of physical reservoir computing. 
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Figure 2: Electrostatic nonlinear SOI resonator as a 
physical reservoir. 
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capacitances. The one pair on the left and right sides of the 
mass whose length is 700 μm is for actuation. The other 
pair on the top and bottom is for displacement detection. 
There are three capacitances on each side and the length is 
275 μm. The gaps of these electrodes are 3 μm. The 
thickness is 15 μm. The resonant frequency at the first 
mode was designed and simulated as 11.96 kHz. 

The resonators were fabricated on 4-inch silicon-on-
insulator (SOI) wafer with 15-μm-thick device and 2-μm-

thick buried oxide layers. A standard fabrication process 
using contact lithography and Bosch process (Samco, RIE-
800iPB) for patterning the device layer and vapor HF 
etching (SPTS, MLT-SLE-Ox) for sacrificial etching. An 
Au/Cr layer is used for electrodes. A fabricated reservoir 
resonator is shown in Fig. 3.  

 
RC ARCHITECHTURE  

The reservoir computing architecture is shown in Fig. 
4. The input is added as a bias voltage to the oscillation ac 
signal at a frequency near the resonant frequency. The 
oscillated vibration is detected at the displacement-
detecting capacitance as a current by a biasing voltage 
applied on the mass. The reservoir output is just taken from 
the envelope of the vibration velocity signal as an output of 
transimpedance amplifiers (TIAs). The state variable 
vector 𝑿𝑿k is acquired from the envelope waveform of the 
enveloped signal at a constant interval 𝑇𝑇 . The vector 
dimensions were set to 100, which means that the hundred 
envelope values as virtual nodes were extracted at a 
constant interval at 𝑇𝑇/100 , which are indicated as yellow 
points on the enlarged velocity plot in Fig. 4. 

In the benchmark tasks, m random binary input data 
was input to the reservoir and the state matrix 𝑿𝑿  was 
collected. The output data 𝒀𝒀 is calculated by multiplying 
the weight matrix 𝑾𝑾  of a 100th order vector. In the 
teaching step, a certain number of inputs are processed in 
the RC. The weight values are determined by the Ridge 
regression;  

 
𝑾𝑾 = 𝒀𝒀�𝑿𝑿𝑇𝑇(𝑿𝑿𝑿𝑿𝑇𝑇 + 𝜆𝜆𝑰𝑰)−1  (1) 

 
𝒀𝒀� is the answer for the inputs and 𝜆𝜆 is a constant. In the 
testing step, The outputs 𝒀𝒀 = 𝑿𝑿𝑾𝑾  were collected and 
compared with the answer 𝒀𝒀�. 

 

 

 
 

Figure 4: Schematic diagram of reservoir computing architecture for benchmark tasks. 
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Figure 3: Fabricated SOI nonlinear resonator. a) 
Optical microscope image of resonator. b) Close-up 
view of doubly supported beams and parallel plate 
displacement sensor. 
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EXPERIMENTAL  
Data collection 

Figure 5 shows the experimental setup for reservoir 
computing. The ac oscillation signal was generated using 
function generator controlled by LabVIEW and input 
signal was added by an op-amp and applied to the reservoir 
resonator for electrostatic oscillation. The displacement 
velocity was detected by the TIAs and differential 
amplifier. The rms-dc convertor (AD736, Analog Devices) 
was used to convert the velocity signal to the envelope with 
the time constant of 1 ms. The rms output of 2000 inputs 
was acquired and then the acquired data was processed 
offline.  
Benchmark tasks 

Benchmark tasks to evaluate memory capacity were 
conducted, as shown in the diagram in Fig. 4. We employ 
the parity check task (nonlinear memory) and the short 
memory task (linear memory). Main purpose of the 
benchmark tasks is to confirm machine learning capability. 
We defined the memory capacity 𝑀𝑀𝑀𝑀; 

 

𝑀𝑀𝑀𝑀 = � [Corr(𝒀𝒀�𝒏𝒏,𝒀𝒀𝒏𝒏)]2
∞

𝑛𝑛=0
 (2) 

 
where n is the order of the benchmark tasks, 𝒀𝒀𝒏𝒏  is the 
estimated answer of n-th-order task, and Corr( ) means the 
correlation coefficient. In this study, m = 2000 data is 
processed and the first 1500 data was used for teaching and 
the later 500 data was used for testing. 

The tasks were conducted with the oscillation 
frequency and the input duration time T as parameters. The 
ac oscillation amplitude was 1 Vpp and the binary inputs 
were applied as ±1 V. The mass is biased at 5 V. The 
oscillation frequency was changed from 90% to 120% of 
the defined center frequency near the resonant frequency. 
The ambient pressure on the benchmark task was 100 Pa, 
so that the response time constant becomes 10 ms. The 
input holding time is from 2 to 30 ms with 2 ms interval. 
 
 

RESULTS AND DISCUSSION 
Nonlinear frequency response 

Figure 6 shows the frequency responses at different 
oscillation amplitudes at 5 Pa. The resonant frequency was 
9.74 kHz and the Q-factor was 3000 at small amplitude but 
the resonant frequency increased up to 12 kHz by the hard 
spring effect. The resonant frequency was lower than the 
design. The reason was fabrication error. The measured 
beam width was 2.6 μm. 
Benchmark task 

Figures 7 show the heat map of the correlation 
coefficient 𝑀𝑀𝑀𝑀  of each task as functions of normalized 
operating frequency 𝛺𝛺 and the input holding time 𝑇𝑇. The 
square points in Fig. 7a show the rms output at the end of 
the benchmark task at the input duration of 4 ms. The 
frequency responses of upward and downward sweep are 
drawn with the continuous and broken curves. The plot 
indicates that the vibration kept at the upward sweep state 
during the task. 

The memory capacity map of STM task shows a radial 
pattern centered at 𝛺𝛺 =0.98 and higher capacities are 
observed at 𝛺𝛺 = 1.19, just before the amplitude drops (Fig. 
7b). The similar features are seen in that of PC task, but in 
the radial pattern, the point of high capacity in STM have 
low capacity in PC, and vice versa. These features indicate 
two rules of thumb about the performance of PRC. First, 
the memory capacities are complemental between the STM 
and PC tasks, at the parameters where the linear capacity is 
high, the nonlinear one is low. Second, the maximum 
capacities in both tasks were obtained near the unstable 
point in the frequency response at 𝛺𝛺 = 1.19 , which is 
called as “edge of chaos.” This is a well-known empirical 
feature of PRC that the performance become better near the 
boundary of chaotic responses. 

To examine the reason of high capacity at the “edge of 
chaos” the transient responses at the holding time of 18 ms 
at the frequency was plotted in Fig. 8. Compared to the 

 

 
 
Figure 5: Experimental setups for RC. 
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Figure 6: Measured frequency responses of reservoir 
resonator at different oscillation voltages. Measured at 
5 Pa. 
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lower operating frequency, 𝛺𝛺=1.19 shows distorted and 
fluctuated waveforms, which means that the system has the 
proper complexity in the output signal. 

 
CONCLUSION 

We demonstrated that the simple nonlinear MEMS 
capacitive resonators can be applicable for PRC. The 
machine learning tasks were successfully conducted 
experimentally. The memory capacity of the device shows 
the “edge of chaos” empirical rules. To increase the 
performance, we are going to evaluate a nonlinear 
resonator array as a physical reservoir. 
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Figure 7: Benchmark results of linear and nonlinear 
task. a) Frequency response of reservoir resonator, b) 
heatmap of memory capacity in short term memory task 
and c) memory capacity in parity check task. 
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Figure 8: Envelopes of transient responses 𝑿𝑿𝑘𝑘  at the 
oscillation frequencies 𝛺𝛺 of 1.17, 1.18, and 1.19. 
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