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SINGULAR SOLUTIONS OF NONLINEAR HYDRODYNAMIC

EQUATIONS ARISING IN TURBULENCE THEORY

TAKASHI SAKAJO

1. Prologue: Kolmogorov’s theory and Onsager conjecture

One of the important assumptions Kolmogorov has made implicitly in his theory
of isotropic turbulence [49, 50, 51] was that the energy dissipation rate, say ϵ, con-
verges to a strictly positive finite value as the viscosity of fluids tends to zero, which
is now called the dissipative anomaly. Kolmogorov claimed that some statistical
quantities of turbulent fluctuations can be derived by a dimensional analysis with
using the ensemble average of the dissipation rate ⟨ϵ⟩. Suppose that the ensemble
average of the pth moment of the velocity increment in the radial direction r be-
tween two points x and x+ r at time t, (∆ru) = (u(x+ r, t)− u(x, t)) · r/|r|, is
steady, homogeneous and isotropic, i.e., it depends only on the distance |r| between
the two points. Since the energy dissipation rate and the pth moment (∆u)p have
the dimensions [Length]2[Time]−3 and [Length]2p[Time]−2p respectively, we have
the following Kolmogorov’s scaling law by equating the dimensions:

(1.1) ⟨(∆ru)
p⟩ = Cp⟨ϵ⟩

p
3 |r|

p
3 ,

in which Cp denotes a non-dimensional constant. Historically, the scaling laws
for the special cases p = 2 and p = 3 were derived in [49, 50], which have been
generalized for general p in [51].

In the meantime, Onsager [65] and Weizsäker [75] have derived the statistical law
of the energy spectra for turbulent velocity fields. Let û(k, t) denote the Fourier
transform of the velocity of the wavenumber k ∈ R3 satisfying the periodic bound-
ary condition. The energy spectrum integrated over the spectral radius k = |k|
is represented by E(k) = ⟨E(k, t)⟩. Then a dimensional analysis shows that there
exists a real constant CK such that the following holds.

(1.2) E(k) ∼ CK⟨ϵ⟩ 2
3 k−

5
3 .

This is known as the 5/3-law of the energy spectra in the turbulence theory [32].
We note that it is equivalent to the Kolmogorov’s scaling law (1.1) for p = 2. The
statistical law of the energy spectrum has been verified through many laboratory
experiments and numerical simulations of the Navier-Stokes equations, according
to which the law (1.2) holds well for the intermediate range of wavenumbers, called
the inertial range [32]. Regarding the scaling law (1.1) for p = 3, recent laboratory
experiments [1, 74] and numerical simulations [44, 46, 74] indicate the relation is
correct, although some subdominant small corrections are required. In addition,
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2 T. SAKAJO

as discussed later, since the scaling law for p = 3 is derived rigorously from the
Navier-Stokes equations, it is considered to be a valid estimate. On the contrary,
for higher p, data obtained in laboratory and numerical experiments suggest that a
deviation from (1.1) exists. The deviation from the exponent p/3 in (1.1) is called
the anomalous scaling of turbulence or intermittency. This phenomenon is a famous
open problem in nonlinear physics, but we don’t go into details about this topic in
this article.

Let us now consider the Kolmogorov’s scaling law based on the Navier-Stokes
equations describing the motion of incompressible fluids on the flat torus T3 with
the periodic boundary condition, which is given by

(1.3) ∂tu+ (u · ∇)u = ν△u−∇p+ f , div u = 0, x ∈ T3, t > 0.

Here, p is the pressure, ν is the kinetic viscous coefficient and f represents an
external forcing. Suppose that solutions of the Navier-Stokes equation without the
forcing (f = 0) are smooth. Then the equation of the energy balance per unit mass
is derived by taking the inner product between (1.3) and u and the integration by
parts under the incompressibility condition and the periodic boundary condition as
follows.

(1.4) ϵ ≡ ∂t

∫
|u|2

2
dx = −ν

∫
|∇u|2 dx,

Suppose further that solutions of the Navier-Stokes equations are samples of tur-
bulent flows and their ensemble average of the energy dissipation rate is equivalent
to ⟨ϵ⟩. Then it follows from (1.4) that ⟨ϵ⟩ → 0 as ν → 0 as long as the solutions are
sufficiently smooth, which contradicts the Kolmogorov’s assumption that ⟨ϵ⟩ tends
to a strictly positive constant in the inviscid limit. To resolve this contradiction, the
following statement on the regularity of solutions of the Navier-Stokes equations
has been pointed out first by Onsager [66] without any rigorous proof, and later
re-discovered by Eyink [27], which is now known as Onsager’s conjecture.

Non differentiable velocity fields may violate the classical energy
balance equation (1.4), yielding an anomalous energy dissipation.
If the velocity fields satisfy |u(x+r)−u(x)| < C|r|α with α > 1/3,
then the energy dissipation never occurs.

The constant C is independent of x. See the review by Eyink and Sreenivasan [30]
for a history about this statement . It claims that the critical exponent of Hölder
regularity of velocity fields is α = 1/3. In other words, turbulent vector fields having
the dissipative anomaly should belong to the Hölder space with the exponent at least
less than 1/3. Let us remark that it has been positively verified by some laboratory
experiments and numerical computations that turbulent flows for sufficiently small
ν satisfy the dissipative anomaly [32, 45].

Onsager’s conjecture is mathematically formulated in terms of the regularity of
solutions of the Navier-Stokes equations:

Suppose that weak solutions of the Navier-Stokes equations are
Hölder continuous with the exponent greater than 1/3. Then the
energy dissipation rate for the weak solutions vanishes in the invis-
cid limit. Namely, ⟨ϵ⟩ → 0 as ν → 0.
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SINGULAR SOLUTIONS OF HYDRODYNAMICS EQUATIONS FOR TURBULENCE 3

Similarly we can consider the Euler equations, which is equivalent to the Navier-
Stokes equations without viscous and forcing terms,

(1.5) ∂tu+ (u · ∇)u = −∇p, div u = 0, x ∈ T3, t > 0.

Onsager’s conjecture for weak solutions of the Euler equations is stated as follows.

Suppose that weak solutions of the Euler equations are Hölder con-
tinuous with the exponent greater than 1/3. Then the energy is
conserved.

It is well-known that the Euler equations (1.5) admits various unphysical weak
solutions such as L2 integrable weak solutions with compact support in space-
time [71, 72]. We need to find physically admissible inviscid flows satisfying On-
sager’s conjecture. Eyink [27] has constructed a non-classical solution of the Euler
equations that conserves the energy. The solution has the Hölder continuity of ex-
ponent 1/2, whose regularity is stronger than what Onsager has suggested. Later,
Constantin, E and Titi [15] have proven the following sharp result on the regularity
of weak solutions of the Euler equations with the energy conservation.

Theorem 1.1. Let u = (u1, u2, u3) ∈ L3([0, T ];Bα
3∞(T3)) ∩ C([0, T ];L2(T3)) be a

weak solution of the 3D incompressible Euler’s equations. If α > 1/3, then we have
∥u(·, t)∥L2 = ∥u(·, 0)∥L2 for t ∈ [0, T ).

See [15] for the definition of the weak solution in detail. Since any function u in
the Besov space Bα

3∞(T3) satisfies

(1.6) ∥u(·+ r, t)− u(·, t)∥L3 ≤ C(t)|r|α

for a certain function C(t), this theorem is regarded as a mathematically rigorous
statement of Onsager’s conjecture in terms of Besov space. We remark that there
is a critical result on Onsager’s conjecture for a Besov space with the exponent
α = 1/3, provided by Cheskidov et. al [13]. Onsager’s conjecture is also proven on
weak solutions of the Euler equations on bounded domains [2].

Onsager’s conjecture is the statement on the energy conservation in terms of
the Hölder exponent of weak solutions of the Euler equations. On the other hand,
in order to characterize function spaces of turbulent vector fields realizing Kol-
mogorov’s statistical laws, it is required to confirm whether or not the Hölder
exponent α = 1/3 is the critical value for the existence of weak solutions of the Eu-
ler equations yielding the anomalous energy dissipation. The problem is called the
backward Onsager’s conjecture, which has been resolved positively by Buckmaster
et al. [9].

Theorem 1.2. Let e : [0, T ] → R be a strictly positive smooth function. Then
for any 0 < α < 1/3, there is a weak solution u ∈ Cα(T3 × [0, T ]) of the Euler
equations, which satisfies ∫

T3

|u(x, t)|2dx = e(t).

This theorem indicates that for any given smooth positive function e(t) on [0, T ],
there exists a weak solution of the Euler equations in the space of Hölder continuous
functions with an exponent less than 1/3, whose corresponding energy variation is
equivalent to e(t). Hence, we can obtain any kinds of weak solutions with dissi-
pating, growing or oscillating energy profiles. To obtain physically admissible weak
solutions, they introduce the following “strict subsolution” of the Euler equations.
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4 T. SAKAJO

Definition 1.3. A smooth strict subsolution of (1.5) on T3 × [0, T ] is a smooth
triplet (ū, p̄, R̄) with R̄ a symmetric 2-tensor, such that

(1.7) ∂tū+ div(ū⊗ ū) = −∇p̄+ div R̄, div ū = 0,

and R̄(x, t) is positive definite for all (x, t).

They then prove the existence of a sequence of Cα solutions for any α < 1/3
approximating any smooth strict subsoltuion.

Theorem 1.4. Let (ū, p̄, R̄) be a smooth strict subsolution of the Euler equations on
T3× [0, T ] and let α < 1/3. Then there exists a sequence (uk, pk) of weak solutions
of (1.5) such that ū ∈ Cα(T3 × [0, T ]) with uk ⇀ ū and uk ⊗ uk ⇀ ū⊗ ū+ R̄ in
L∞ weak-∗ topology uniformly in time. Furthermore, for all t ∈ [0, T ],∫

T3

|uk(x, t)|2dx =

∫
T3

(|ū(x, t)|2 + trR̄(x, t))dx.

Chronologically, DeLellis and Székelyhidi Jr.[19, 20, 21] first constructed weak
solutions of the Euler equations with Hölder continuity 0 < α < 1/10, which is
a substantial contribution to mathematical investigations of Onsager’s conjecture.
The Hölder exponent was improved to α = 1/5 in various manner [7, 42]. Isett [43]
has then successfully obtained weak solutions belonging to CtC

α
x with 0 < α <

1/3, but they are defined on a compact support in R × T3, which are somewhat
unphysical. Theorem 1.2 provides weak continuous solutions with smooth energy
variations, which are physically admissible.

We call weak solutions of the fluid equations with dissipating the inviscid con-
served quantity “dissipative weak solutions”. A strict subsolution given by Theo-
rem 1.4 can be regarded as one of dissipative weak solutions of the Euler equations.
The next step is clarifying how those dissipative weak solutions of fluid equations
satisfy the statistical laws of turbulence. Kolmogorov [49] derived the statistical
law of the third moment of the velocity increment from the Navier-Stokes equations
under the assumption of the isotropy and the homogeneity as

(1.8)
⟨
(∆ru)

3
⟩
= −4

5
⟨ϵ⟩|r|.

This is called Kolmogorov’s four-fifth law, which is perhaps the only exact relation
that can be derived from the Navier-Stokes equations directly. It also insists that
the constant in the Kolmogorov’s scaling law (1.1) for p = 3 is exactly C3 = −4/5.

Duchon and Robert [24] and Eyink [29] have made an important progress in
the understanding of the relation between weak solutions of the Euler equations
with the anomalous energy dissipation and Kolmogorov’s scaling law. Let φ be any
infinitely differentiable function with compact support on R3, which is spherically
symmetric and non-negative and

∫
R3 φ(x)dx = 1. With φε(ξ) = (1/ε3)φ(ξ/ε) for

ε > 0, they introduce the following quantity Dε[u](x, t) for a given velocity field
u(x, t),

Dε[u](x, t) =
1

4

∫
∇φε(ξ) · δu(x, ξ, t)|δu(x, ξ, t)|2dξ,

where δu(x, ξ, t) = u(x + ξ, t) − u(x, t) denotes the velocity increment in the ξ-
direction. Then the following proposition claims that Dε[u] works as a dissipative
term of the energy for weak solutions of the unforced Navier-Stokes equations.
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SINGULAR SOLUTIONS OF HYDRODYNAMICS EQUATIONS FOR TURBULENCE 5

Proposition 1.5. Let uν ∈ L2([0, T );H1(T3)) ∩ L∞([0, T );L2(T3)) be weak solu-
tions of the Navier-Stokes equations. Then, as ε→ 0, the function Dε[u] converges
to DNS [u

ν ], which is independent of φ, in the sense of distributions on (0, T )×T3.
Furthermore, it satisfies the following the energy budget equality.

(1.9) ∂t

(
|uν |2

2

)
+∂i

(
uνi

(
|uν |2

2
+ p

))
−ν∂2i

(
|uν |2

2

)
+ν|∇uν |2+DNS [u

ν ] = 0.

The limitDNS [u
ν ] is called the defect distribution and the weak solution is called

dissipative, if the defect term satisfies D[uν ] ≥ 0 in the sense of distributions. We
also remark that Leray-Hopf weak solutions [55, 56] are dissipative weak solutions
in this sense. They showed the similar result on dissipative weak solutions of the
Euler solutions.

Proposition 1.6. Let u ∈ L3([0, T );L3(T3)) be a weak solution of the Euler equa-
tion. Then the term Dε[u] converges, in the sense of distributions, to D[u], not
depending on φ, and the following local energy equation holds:

∂t

(
|u|2

2

)
+ div

(
u

(
|u|2

2
+ p

))
+D[u] = 0.

In relation to Onsager’s conjecture, we obtain the following sufficient condition
that the inviscid velocity field u satisfying D[u] = 0.

Proposition 1.7. Let a weak solution of the Euler equations u ∈ L3([0, T );L3(T3))
satisfy

(1.10)

∫
T3

|u(x+ r, t)− u(x, t)|3dx ≤ C(t)|r|σ(|r|),

where σ(a) tends to 0 with a → 0, and C(t) satisfies
∫ T

0
C(t)dt < +∞. Then

D[u] = 0.

The weak solution u is smoother than the Hölder continuity with exponent 1/3
owing to the existence of the function σ(a) in the sufficient condition (1.10).

Dissipative weak solutions with D[u] > 0 are of a great significance in relation
with Kolmogorov’s theory of turbulence, since it recovers some statistical laws of
turbulence [24]. Let us now introduce the function S[u, l](x, t) ∈ L1(T3 × [0, T ]) as

S[u, l](x, t) :=
3

4π|l|3

∫
|ξ|=|l|

δuL(x, t ; ξ) |δξu(x, t)|2 H2(d ξ̂ )

=
3

4π|l|

∫
S2
δuL(x, t ; |l|ω̂) |δξu(x, t)|2 H2(d ω̂ ),

where
δuL(x, t ; l) := (u(x+ l, t)− u(x, t)) · l,

and H2 denotes the 2-dimensional Haar measure on the surface of sphere S2.
Duchon and Robert [24] have shown that S[u, l] converges as l = |l| → 0 and
the limit satisfies the following equality in the sense of distributions:

(1.11) S[u] := lim
l→0

S[u, l] = −4

3
D[u].

On the other hand, applying the Kolmogorov’s theory, we obtain the following
statistical laws, known as Kármán-Howarth-Monin 4/3-law [32, 47, 63]．

(1.12)
⟨
δuL|δu|2

⟩
∼ −4

3
⟨ϵ⟩|l|.
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6 T. SAKAJO

The equality (1.11) for the dissipative weak solutions with D[u] > 0 corresponds to
the statistical law (1.12), when we regard the defect term as the energy dissipation
rate, i.e., D[u] ∼ ϵ > 0. Additionally, Eyink [29] has shown that the quantity,

SL[u, l](x, t) =
1

4π|l|

∫
S2
(δuL(x, t; |l|ω̂))

3 H2(dω̂)

also converges as l → 0 in the sense of distributions and it satisfies

SL[u] = −4

5
D[u],

when SL[u] = lim|l|→0 SL(u, l) exists. This is equivalent to the Kolmogorov’s four-
fifth law (1.8) in terms of dissipative weak solutions.

As mentioned in this section, a great progress in mathematical investigations
of Onsager’s conjecture has been made in relation to the isotropic turbulence in
the past decades. We also see dissipative weak solutions to the Euler equations
would play an important role in the understanding of turbulent phenomena. In
the meantime, those studies mainly focus on the regularity of weak solutions of the
Navier-Stokes equations and the Euler equations satisfying the dissipation anomaly,
which is the assumption of the Kolmogorov’s theory of turbulence. Regarding the
statistical laws, the Kolmogorov’s scaling law for p = 3 is just described in terms
of dissipative weak solutions, but it is still uncertain whether or not the dissipa-
tive weak solutions satisfy the 5/3-law of the energy spectra (1.2). Moreover, more
importantly, it is uncertain how dissipative weak solutions look like as fluid flows
and how they generate the statistical laws as dynamical systems. In this sense,
theoretical understanding on turbulence has just started, and more mathematical
investigations are required from various points of view. In this regard, we here intro-
duce our recent works of hydrodynamic model equations, characterizing turbulent
flow phenomena mathematically in terms of the theory of dynamical systems.

2. Finite-time collapse of point vortices with anomalous enstrophy
dissipation

It is not an easy task to describe dissipative weak solutions of the Navier-Stokes
equations and the Euler equations in three-dimensional spaces as dynamical sys-
tems, since the existence and the uniqueness of global weak solutions have not yet
been established. To make a mathematical argument rigorous, we consider two-
dimensional incompressible flows in the unbounded plane R2 for simplicity. In 2D
turbulence, it is also pointed out that there appears an inertial range in the en-
ergy spectra in the inviscid limit corresponding to the anomalous dissipation of
the enstrophy, which is L2-norm of the vorticity and an inviscid conserved quan-
tity [3, 52, 57]．Suppose that 2D turbulent flows in the inviscid limit are subject
to the Euler equations whose smooth solutions conserve the enstrophy. Then, it is
expected that weak solutions of the Euler equations with the anomalous enstrophy
dissipation would play a certain role in the understanding of the statistical laws
of 2D turbulence as analogous to that of 3D turbulence mentioned in Section 1.
Moreover, since there are many mathematical results on 2D Euler equations, the
existence of weak solutions can be established globally in time, and we thereby
characterize the dynamic properties of weak solutions with the anomalous enstro-
phy dissipation rigorously. In [70], we consider the Euler-α equations, which is a
dispersive regularization of the Euler equations with a scale parameter α, for an
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SINGULAR SOLUTIONS OF HYDRODYNAMICS EQUATIONS FOR TURBULENCE 7

initial data consisting of point wise δ-distributions, called “point vortices”. It has
been shown that a variational part of the enstrophy dissipates anomalously at the
singular time when the three point vortices collapse as α → 0. Later, the result
still holds true for more general dispersively regularized Euler equations [36, 37],
which will be explained in detail in what follows.

The 2D Euler equations have a unique weak solution if the initial data belongs
to L1(R2)∩Lp(R2) with 1 < p ≤ ∞. See, e.g., [23, 33, 60, 76]. Eyink [28] has shown
that the enstrophy never dissipates for weak solutions in Lp with p > 2. Hence, it
is required to deal with the initial vorticity distributions having a weaker regularity
such as the space of Radon measures M(R2) on R2. The existence of a global-in-
time weak solution has been established when the initial data ω0 ∈ M(R2) with a
distinguished sign induces the velocity field belonging to L2

loc(R2) [22, 59]. Inspired
by the numerical computation of three point vortices [70], we want to consider
point-vortex distributions as the initial data. However, unfortunately, since the
velocity field induced by the point vortices is no longer the element of L2

loc(R2), it
is difficult to construct weak solutions of the Euler equations. To overcome this
contradictory situation, let us first construct a unique global weak solution of a
regularized Euler equation with a scaling parameter ε, and we then take the limit
ε→ 0 to obtain singular inviscid and incompressible flows.

The dispersively regularized Euler equations [31, 39, 40, 41] considered here are
derived as follows. For a given incompressible vector field v, we introduce a new
velocity field uε as

(2.1) uε(x) = (hε ∗ v) (x) =
∫
R2

hε (x− y)v(y)dy,

where hε is defined from a smooth scalar function h(x) on R2 as follows.

(2.2) hε(x) =
1

ε2
h
(x
ε

)
.

Since uε is smoother than v, it is a regularized velocity. From the velocity fields
v and uε, we introduce the vorticity and its regularization as q = curlv and ωε =
curluε, respectively. Note that divuε = 0 and ωε = hε ∗ q are satisfied. Then we
consider the following equations for (uε,v) on R2:

(2.3) ∂tv + (uε · ∇)v − (∇v)T · uε −∇Π = 0, divuε = div v = 0,

where Π denotes a (generalized) pressure term. The equations are equivalent to
the Euler equations when ε is exactly 0. We remark that they are derived from an
application of Hamilton’s principle to Hamiltonian

H =
1

2

∫
R2

v(x) · uε(x)dx

subject to the divergence-free condition. Applying the operator∇× to the equations
(2.3), we obtain the equations for the regularized vorticity.

(2.4) ∂tq + (uε · ∇)q = 0, uε = Kε ∗ q, Kε = K ∗ hε.
The function Kε is defined by Kε = ∇⊥Gε, where Gε is the solution of Poisson’s
equation −△Gε = hε. We further assume that the regularization function h is
radially symmetric, i.e., hr(|x|) = h(x), and

(2.5)

∫
R2

h(x)dx = 2π

∫ ∞

0

rhr(r)dr = 1.
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8 T. SAKAJO

Then, Gε also becomes radially symmetric, say Gε(x) = Gε
r(|x|), which satisfies

(2.6) Gε(x) = G1
(x
ε

)
− 1

2π
log ε, Kε(x) =

x⊥

ε|x|
dG1

r

dr

(
|x|
ε

)
.

Gotoda [38] has shown the existence of a unique global weak solution of (2.4)
for initial vorticity distributions belonging to the space of Radon measures M(R2).
Suppose that the regularization function h ∈ C1(R2 \ {0}) vanishes as |x| → ∞,
and it satisfies the following conditions.

(2.7) χ1h ∈ L1(R2), ∇h ∈ L1(R2), χ−
logh ∈ L∞(R2), χ−

1 ∇h ∈ L∞(R2),

in which χα(x) = |x|α on x ∈ R2 and

χ−
log(x) =

{
(1− log |x|)−1

, |x| ≤ 1,
0 , |x| > 1,

χ−
α (x) =

{
|x|α , |x| ≤ 1,
0 , |x| > 1.

Moreover, let ηε denote the orbit of a particle advected by the regularized velocity
fields uε, called Lagrangian flow map, which is the solution of the following initial
value problem.

(2.8) ∂tη
ε(x, t) = uε (ηε(x, t), t) , ηε(x, 0) = x.

For any initial vorticity distribution q0 ∈ M(R2), there exists a unique global solu-
tion of (2.4) such that ηε ∈ C1(R;G ), uε ∈ C(R;C(R2;R2)) and q ∈ C(R;M(R2)),
where G denotes the group of homeomorphisms on R2 that preserve the Lebesgue
measure.

The dispersive Euler equations has a unique global weak solution for any initial
vortex distribution in the space of Randon measures M(R2), which gives rise to
a different situation from the Euler equations. Let us suppose, in particular, that
the initial vortex distribution is represented by a linear combination of δ-measures,
called ε-point vortices, i.e.,

(2.9) q0(x) =

N∑
n=1

Γnδ(x− x0
n),

where x0
n = (x0n, y

0
n) ∈ R2 for n = 1, . . . N denotes the supports of the δ-measures.

The coefficient Γn ∈ R is referred to as the strength of the nth ε-point vortex at
x0
n. It corresponds to the circulation around the points that is conserved along the

orbit ηε. For the initial data, the unique global solution of (2.4) is then expressed
by

(2.10) q(x, t) =

N∑
n=1

Γnδ(x− ηε(x0
n, t)).

Since the Lagrangian flow map ηε is defined globally in time, the orbits of the
ε-point vortices never collide with each other in finite time. Furthermore, the
evolution of the ε-point vortices at xε

n(t) = ηε(x0
n, t) = (xεn(t), y

ε
n(t)) is governed

by
(2.11)

d

dt
xε
n(t) = uε (xε

n(t), t) = − 1

2π

N∑
m ̸=n

Γm
(xε

n − xε
m)⊥

(lεmn)
2

PK

(
lεmn

ε

)
, n = 1, . . . , N,
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SINGULAR SOLUTIONS OF HYDRODYNAMICS EQUATIONS FOR TURBULENCE 9

in which lεmn(t) = |xε
n(t)− xε

m(t)| is the distance between the two ε-point vortices
at xε

n and xε
m. The function PK(r) in the equation is defined by

PK(r) = −2πr
dG1

r

dr
,

where G1
r(|x|) = G1(x) is the radially symmetric solution of Poisson’s equation

−△Gε = hε for the regularization function hεr(|x|) = hε(x) with ε = 1. The
evolution equation (2.11) is called the ε-point vortex (ε-PV) system. The equation
(2.11) is formulated as a Hamiltonian dynamical system with the Hamiltonian

(2.12) H ε = − 1

2π

N∑
n=1

N∑
m=n+1

ΓnΓm

[
log lεmn +HG

(
lεmn

ε

)]
,

in which HG(r) = − log r − 2πG1
r(r). The ε-PV system admits the first integrals

(H ε, (Qε)2 + (P ε)2, Iε) that are in involution with each other, which are given by

Qε + iP ε =

N∑
n=1

xεn + iyεn, Iε =

N∑
n=1

Γn

[
(xεn)

2 + (yεn)
2
]
.

Hence, the ε-PV system for N ≤ 3 is integrable for any vortex strengths. The
following conserved quantity, defined by these first integrals, plays an important
role in the analysis stated in this section.

(2.13) Mε =

N∑
n ̸=m

ΓnΓm(lεmn)
2 = 2(ΓIε − (Qε)2 − (P ε)2).

Here, Γ =
∑N

m=1 Γm.
Since the unique global weak solution of the dispersive Euler equations (2.4) is

given by (2.10), the variations of the energy and the enstrophy, denoted by Z ε(t)
and Eε(t) respectively, are expressed in terms of the solution of the ε-PV system
based on Novikov’s argument [69]. See [34] for the detailed derivations.

Z ε(t) :=
1

2πε2

N∑
n=1

N∑
m=n+1

ΓnΓm

∫ ∞

0

s
∣∣∣2πĥ(s)∣∣∣2 J0(s lεmn(t)

ε

)
ds,

(2.14)

Eε(t) := − 1

2π

N∑
n=1

N∑
m=n+1

ΓnΓm

[
log lεmn(t) +

∫ ∞

0

1

s

(
1−

∣∣∣2πĥ(s)∣∣∣2) J0(s lεmn(t)

ε

)
ds

]
,

in which J0 is the Bessel function of the first kind, ĥ denotes the Fourier transform

of h. The second term in the energy variation is non-singular since 2πĥ(0) = 1
owing to (2.5). Let us remark that the energy and the enstrophy themselves are
not well-defined from the solution of the ε-PV system as ε→ 0, since each of them
contains a divergent term in the limit.

In what follows, we pay attention to the evolution of the triple ε-point vortices
of N = 3. We first introduce the following new scaled variables with the parameter
ε.

(2.15) Xn(t) =
1

ε
xε
n(ε

2t+ t∗), Lmn(t) =
1

ε
lεmn(ε

2t+ t∗),

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



10 T. SAKAJO

wherem,n = {1, 2, 3} (m ̸= n), and t∗ ∈ R is an arbitrary real, which is determined
later. Then the evolution equation for the new variables Xn(t) is derived from (2.4)
as follows.

(2.16)
d

dt
Xn = − 1

2π

3∑
m ̸=n

Γm
(Xn −Xm)⊥

L2
mn

PK (Lmn) , Xn(0) =
xε
n(t

∗)

ε
.

This is formally equivalent to (2.4) with ε = 1 and it also defines a Hamiltonian
dynamical system with the Hamiltonian,

(2.17) H = H 1 = − 1

2π

[
Γ2Γ3HP

(
L2
23

)
+ Γ3Γ1HP

(
L2
31

)
+ Γ1Γ2HP

(
L2
12

)]
.

Here, HP (r) = log
√
r + HG (

√
r). It follows from (2.13) that the system has the

following invariant.

(2.18) M =M1 = Γ2Γ3L
2
23 + Γ3Γ1L

2
31 + Γ1Γ2L

2
12.

The evolution equations of the distance Lmn is obtained from (2.16) as follows.

(2.19)
d

dt
L2
mn =

2

π
ΓkA

[
1

L2
nk

PK (Lnk)−
1

L2
km

PK (Lkm)

]
.

Here, A is the signed area of the triangle formed by the three ε point vortices at
X1(t), X2(t) and X3(t). It is important to note that the evolution equation (2.16)
does not contain the parameter ε except for the initial data. Hence, the solution of
the original equation (2.11) is constructed from those of (2.16) and (2.19) via

(2.20) xε
n(t) = εXn

(
t− t∗

ε2

)
, lεmn(t) = εLmn

(
t− t∗

ε2

)
.

In terms of the scaled variables, the enstrophy variation Z ε(t) is expressed as

(2.21) Z ε(t) = − 1

ε2
Z0

(
t− t∗

ε2

)
, Z0(τ) = − 1

2π

N∑
n=1

N∑
m=n+1

ΓnΓmZmn(τ),

in which

(2.22) Zmn(τ) =

∫ ∞

0

s
∣∣∣2πĥ(s)∣∣∣2 J0 (sLmn(τ)) ds.

Since H ε remains a constant along the solution of (2.16), the energy variation
Eε(t) is rewritten as

Eε(t) = H ε + E0

(
t− t∗

ε2

)
, E0(τ) = − 1

2π

N∑
n=1

N∑
m=n+1

ΓnΓmEmn(τ),

in which Emn is given by

Emn(τ) = −HG (Lmn(τ)) +

∫ ∞

0

1

s

(
1−

∣∣∣2πĥ(s)∣∣∣2) J0 (sLmn(τ)) ds.

The energy dissipation rate Dε
E(t) is obtained by differentiating the energy Eε(t)

with respect to t.
We are concerned with whether or not there exists a singular weak solution of

the dispersive Euler equation with the anomalous enstrophy dissipation in the limit
of ε→ 0. As a candidate of such singular weak solutions, we consider a well-known
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SINGULAR SOLUTIONS OF HYDRODYNAMICS EQUATIONS FOR TURBULENCE 11

solution where three point vortices collapses self-similarly in finite time [48]. A
necessary condition for the existence of the triple collapse is given by

(2.23)
1

Γ1
+

1

Γ2
+

1

Γ3
= 0,

which we also assume here. Note that this condition (2.23) says that Γ3 is deter-
mined from Γ1 and Γ2. To state the main result, let us introduce the function ψ(r)
and the constants k±.
(2.24)

ψ(r) =

(
1

1 + r

)1/Γ1
(

r

1 + r

)1/Γ2

, k± =

(
Γ1 + Γ2 ±

√
Γ2
1 + Γ1Γ2 + Γ2

2

Γ2

)2

.

We also use the constant k0 = argmin
k∈{k−,k+}

ψ(Γ1/Γ2k). Then the following theorem

holds.

Theorem 2.1. Let h ∈ C1(R2\{0}) be a positive radial function satisfying dhr/dr <
0, (2.5), (2.7), χ1∇h ∈ L1(R2), χ3+ηh ∈ L∞(R2) (η > 0), and let Hc be the con-
stant satisfying

(2.25)
Γ2
1Γ

2
2

4π(Γ1 + Γ2)
log

(
ψ

(
Γ1

Γ2
k0

)[
ψ

(
Γ1

Γ2

)]−1
)
< Hc < 0.

Suppose (2.23) and that for any initial condition with H ε = Hc, the solution of
(2.16) does not converge to a relative equilibrium as either of t→ ±∞. Then, there
exists a constant t∗ such that ε→ 0 as lεmn(t

∗) → 0, and

lim
ε→0

Z ε = −z0δ(· − t∗), lim
ε→0

Dε
E = 0

holds in the sense of distributions. Here, the constant z0 is given by

(2.26) z0 =

∫ ∞

−∞
Z0(τ)dτ.

This theorem asserts that, in the limit of ε→ 0, for any initial data with (2.25),
the distance of the three ε point vortices tends to zero. Hence, at the critical time
t∗ when the collapse of three point vortices occurs, the enstrophy variation tends to
a δ-measure with the weight −z0 in the sense of distributions. In other words, the
total enstrophy variation converges, in the sense of distributions, to the Heaviside
function H.

(2.27)

∫ t

−∞
Z ε(τ)dτ −→ −z0H(t− t∗).

This indicates that if z0 > 0 the enstrophy dissipates discontinuously at the col-
lapse time t∗. Since the ε-PV Hamiltonian system is time-reversible, the enstrophy
dissipation still occurs when the time is reversed. This means the emergence of the
irreversibility of time direction in the conservative dynamical system as ε→ 0.

With the function defined from (2.22),

(2.28) Z(r) =

∫ ∞

0

s
∣∣∣2πĥ(s)∣∣∣2 J0 (s√r) ds,

a sufficient condition for z0 > 0 is given as follows.
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Figure 1. (a) The orbit of a self-similar triple collapse. (b) A
schematic of the anomalous enstrophy dissipation, showing the to-
tal enstrophy variation drops discontinuously by −z0 at the col-
lapsing time t = 0. Our results prove the existence of this singular
phenomena.

Corollary 2.2. Suppose that Z(r) is monotonically decreasing and concave. Then,
for any initial configuration satisfying the assumptions of Theorem 2.1 and M ≥ 0,
we have z0 > 0. For the case of M < 0, if the functions Z(r) and HP (r) satisfy
the additional condition

(2.29) Z ′′(r)H ′
P (r)− Z ′(r)H ′′

P (r) > 0,

then we have z0 > 0.

Theorem 2.1 indicates the existence of the collapse time when the enstrophy
dissipates anomalously, but it is still uncertain how the three vortex points behaves
dynamically. The following theorem answers the question.

Theorem 2.3. Under the same assumptions of Theorem 2.1, in the limit of ε →
0, the orbit of three point vortices defined by (2.11) converges to the self-similar
singular orbits collapsing to a point for t < t∗ and expanding to infinity for t∗ < t
with the same value of the Hamiltonian in the three PV system.

Hence, in the ε → 0 limit, the orbit of the three vortex points is self-similarly
collapsing at t = t∗ to a point as shown in Figure 1(a). The total enstrophy variation
dissipates discontinuously as in Figure 1(b) at the event of the collapse.

According to Corollary 2.2, the sufficient condition for the existence of the
anomalous enstrophy dissipation via the self-similar triple collapse is reduced to
the condition (2.29) described by the regularization function h. We provide some
examples of h that are of significance from the application points of view. The

first example is a Gaussian regularization function h(r) = e−r2/π, which is used
in a numerical method for the Euler equations, called the vortex method [16]. The
second example is given by hb(r) = 1/(

√
π(r2 + 1))2, which also appears in a nu-

merical method for the Euler equation, called the vortex-blob method [54]. The last
example is found in the Euler-α equations, which is a model of turbulent flows.
Then the regularization function is hα(r) = K0(r), where K0 denotes the mod-
ified Bessel function of the first kind. These regularization functions satisfy the
condition (2.29). This indicates that the anomalous enstrophy dissipation via the
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SINGULAR SOLUTIONS OF HYDRODYNAMICS EQUATIONS FOR TURBULENCE 13

triple collapse of point vortices is less dependent on the choice of the regularization
function.

Although the self-similar collapse of three point vortices with the anomalous
enstrophy dissipation is a special solution, this is the first example of weak solutions
of the 2D incompressible flow equations whose dynamical behavior is clarified with
a mathematical rigor. Physically, it would be interesting to investigate the relation
between the vortex collapse with the vortex merger that is regarded to be one of
the fundamental mechanisms generating in 2D free decaying turbulence. Numerical
study of the regularized point vortices showed that the collapse of four point vortices
is also a trigger of the anomalous enstrophy dissipation [35]. Hence, we expect the
existence of collapsing solution of more than three point vortices dissipating the
enstrophy. However, it would be difficult to construct such singular solutions with
the method using here, since the ε-PV system is no longer integrable for N ≥ 4.
Another mathematical approach is required.

3. One-dimensional hydrodynamic PDE model for the cascade of
conserved quantity in turbulent flows

As mentioned in Section 1, many flow experiments and numerical simulations
have supported the emergence of the 5/3-law of the energy spectra (1.2) in the
inertial range. Up to this point, we focus on constructing weak solutions of the hy-
drodynamic equations dissipating of an inviscid conserved quantity, whose existence
is required for the generation of the inertial range. In this section, changing the view
point, we consider how the inertial range is formed dynamically in terms of such
singular solutions of hydrodynamic equations. Let us imagine, for instance, that a
turbulent flow generated by a big fan in a wind tunnel attains the scaling law (1.2).
Then, a large scale (a low wavenumber) energy input by the fan cascades towards
small scales (high wavenumbers) where the energy dissipates strongly. The energy
input in the large scale and the energy dissipation in small scales are balanced
as a whole. Otherwise, the total energy keeps increasing or decreasing. Roughly
speaking, the inertial ranges connect these two scales. In physics of turbulence, it is
considered that the large scale energy input is transferred to small scale dissipation
range at a constant rate in the inertial range without losing energy. That is to
say, the downstream energy flux is locally “balanced” in the inertial range, which is
called the energy cascade. As the viscosity tends to zero, the inertial range expands,
while the energy for smooth flows should be conserved in the inviscid limit. This
gives rise to a contradiction. Hence, we expect turbulent flows in the inviscid limit
become singular. This anomalous cascade of the inviscid conserved quantity is a
phenomenon not limited to 3D turbulence. Indeed, as we mentioned in Section 2,
there emerges the inertial range of energy spectra corresponding to the cascade of
the enstrophy in 2D turbulence. Hence, the cascade of inviscid conserved quantities
is a common feature shared with turbulent flow phenomena.

Since it is mathematically difficult to deal with the Euler equations and the
Navier-Stokes equations, one way to tackle this problem is to investigate phe-
nomenological and qualitative models with reduced degrees of freedom by choosing
a few selected aspects of turbulence. The famous models are Burgers’ equation [5]
and the shell models [6], which are certainly more amenable to analytical and nu-
merical studies. In this section, we propose another model family of turbulent flows
based on the Constantin-Lax-Majda (CML) model [14], from which we gain some
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insights into the anomalous cascade phenomena in terms of singular solutions of
hydrodynamic equations.

The one-dimensional hydrodynamic equation is constructed by observing some
analytic properties of the 3D Navier-Stokes equations. First, applying ∇× to (1.3)
yields the following equations for the vorticity ω(x, t) = ∇× u(x, t).

(3.1) ∂tω + (u · ∇)ω − (ω · ∇)u = ν△ω + F , u = D(ω),

where F = ∇ × f is an external force, and D denotes the Biot-Savart operator
recovering the velocity field from the vorticity field. The nonlinear terms (u · ∇)ω
and (ω · ∇)u in the first equation of (3.1) are called the advection term and the
vortex stretching term. Naively speaking, since the large scale energy input and the
dissipation at small scales are represented by F and ν△ω respectively, the cascade
phenomenon in the inertial range between these scales is generated by a subtle
balance between these nonlinear terms. To model this situation, we consider the
following one-dimensional partial differential equation for a scalar “model vorticity”
ω(x, t) and a “model velocity” u(x, t) as follows.

(3.2) ∂tω + auωx − ωux = νωxx + f, ux = H(ω).

Here, H represents the Hilbert transform and a ∈ R is a parameter. The correspon-
dence between the first equation of (3.1) and that of (3.2) is clear. A remarkable
similarity can be found in the second equation where the vorticity and the velocity
is connected. That is to say, by differentiating the Biot-Savart integrable, u = D(ω)
in the 3D vorticity equation (3.1), we find that the derivative of the velocity is given
by the convolution of the vorticity with the singular kernel 1/|x|3 whose singularity
is the same as the spatial dimension 3. Similarly, the second equation ux = H(ω) in
(3.2) is equating the derivative of the velocity and the convolution of the vorticity
with the singular kernel 1/|x| whose singularity is the spatial dimension 1.

The idea of modeling the Biot-Savart integral with the Hilbert transform was
originally proposed by Constantin, Lax and Majda [14]. They derived the cele-
brated Constantin-Lax-Majda (CLM) model for the 3D Euler equations, which is
equivalent to (3.2) with a = 0, ν = 0, f = 0. They obtain an analytic solution
of this equation that blows up in finite time. Soon later, adding the viscous term
νωxx to the CLM equations, Schochet [73] obtained an analytic solution that blows
up in finite time. However, the critical time of this solution is earlier than that of
the inviscid solution, which is unphysical. To understand the balance between the
vortex stretching term with the viscous diffusion term, the following generalized
CLM equation with the hypo-viscous term was considered subject to the periodic
boundary condition in [67, 68].

(3.3) ∂tω − ωux = −ν(−∂xx)
α
2 ω, ux = H(ω),

where α ∈ R is a parameter. For any α ≥ 0, there exists ν∗ depending on ∥ω0∥L2

such that the following theorem holds.

Theorem 3.1. For every 0 < ν < ν∗, the solution of (3.3) blows up in L2 in finite
time. Namely, there exists a time T ∗(ν) such that ∥ω(·, t)∥L2 → ∞ as t→ T ∗(ν).

This theorem indicates that however large the viscous dissipation rate sets in the
system, the solution of (3.3) blows up for sufficiently small viscous coefficients. In
other words, the viscous dissipation cannot control the rapid growth of the vorticity
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due to the vortex stretching term. This is in contrast to the fact that the solution
of the Navier-Stokes with the hypo-viscosity of α > 5/2 exists globally in time.

To improve the model, DeGregorio [17] added an advection term, which is a
missing term in the CLM equation. This is equivalent to (3.2) with ν = 0, f = 0 and
a = 1. Furthermore, the model has been generalized by introducing a free parameter
a ∈ R in the advection term to observe the balance between the nonlinear terms. We
thus obtain the generalized Constantin-Lax-Majda-DeGregorio (gCLMG) equation.
Under the periodic boundary condition, the existence of unique local solution of
this equation for the initial data ω0 ∈ H1(S1)/R is proved in [64]．

Theorem 3.2. For any ω0 ∈ H1(S1)/R, there exists T > 0 depending only on a
and ∥∂xω0∥L2 such that a unique solution of the (3.2) with ν = 0, f = 0 and a = 1
exists locally in time, i.e., ω ∈ C0([0, T ];H1(S1)/R) ∩ C1([0, T ];L2(S1)/R).

In addition, a sufficient condition for the existence of global solutions is provided.

Theorem 3.3. Suppose that the solution of (3.2) with ν = 0, f = 0, a ∈ R exists
for ω0 ∈ H1(S1)/R in [0, T ) and it satisfies∫ T

0

∥Hω(·, t)∥L∞dt <∞.

Then the solution exists in 0 ≤ t ≤ T + δ for some δ > 0.

This theorem is an analogue of Beale-Kato-Majda criterion for the global exis-
tence of solutions of the 3D Euler equations [4]. In this regard, gCLMG equation
is a valid mathematical model of the 3D Euler equation. Although this criterion
has not yet been proved, we can confirm numerically the existence of global-in-time
solution by using the criterion in [64], according to which it is expected that there
exists an ac ∈ (0, 1) such that the solution blows up in finite time for a < ac (a ≤ ac)
and exists globally in time for a ≥ ac (a > ac). It claims that the original equation
given by DeGregorio [17] has a unique solution globally in time, but it is interesting
to note that numerical simulations in [64] and mathematical studies [12, 26] suggest
more subtle issues on the existence of blowing-up/growing-up solutions for a = 1.
The existence of a blowing-up solution has been shown for a < 0 in [11] and for
sufficiently small |a| in [25].

In the meantime, for negative a < −1, the model equation (3.2) without the
viscous term and the forcing term, i.e., ν = 0 and f = 0, admits a conserved
quantity [64].

Proposition 3.4. Let us consider the equation (3.2) with ν = 0, f = 0 and the
parameter −∞ < a ≤ −1. Then, for any p = −a, its solution for the initial data
ω0 satisfies ∥ω(·, t)∥Lp = ∥ω0∥Lp .

Since there exists no inviscid conserved quantity for a > 0, we confirm numer-
ically whether the one-dimensional model (3.2) for a ≤ −1 becomes a model for
the cascade of the inviscid conserved quantity subject to a random forcing, which
has been considered in [61, 62]. Let us remark that although the Galilean invari-
ance is lost in this model for general a, we focus on the formal resemblance of the
mathematical structures between this model equation and Navier-Stokes equations
to understand the cascade phenomenon in terms of dynamical system.

To achieve a statistically steady state, the forcing f is set to be random whose

Fourier coefficient f̂ is nonzero only for the wave numbers k = ±1 and whose real
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Figure 2. Snapshots of numerical solutions ω(x, t) of the gGLMG
equation (3.2) with the parameters a = −2 and ν = ν1 :=
2.5 × 10−5 and a large-scale Gaussian random forcing. They are
illustrated in one figure.
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Figure 3. (a) Time-averaged energy spectra E(k) of the solutions
of the gCLMG equation (3.2) for the viscous coefficients, ν = ν1,
ν1/4, ν1/8, indicating that there appears an inertial range in the
energy spectra. (b) Time-averaged enstrophy flux ΠQ(k), which
shows that the flux is almost constant independently on wavenum-
bers k in the inertial range. Hence, the enstrophy cascades from
the region of low wavenumbers to that of high wavenumbers at a
constant rate.
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and imaginary parts are set to a Gaussian distribution. We also take the kinematic
viscosity to be sufficiently small in the equation (3.2). We use the pseudo-spectral
method and the fourth order Runge-Kutta method as the temporal integration to
solve the equation numerically. The initial data is given by ω(x, 0) = sinx. We then
investigate the statistical properties of numerical solution after a long-time evolu-
tion when the solution becomes a statistically equilibrium state. The parameter a
can be taken arbitrarily from a ≤ −1, but we here use a = −2 where the L2 norm
of the solution, the model enstrophy, becomes the inviscid conserved quantity [61].
Figure 2 shows some snapshots of the numerical solutions for ν = ν1 := 2.5× 10−5,
in which we observe sharp pulses moving randomly, which sometimes merge and
emerge. We plot in Figure 3(a) the time averaged energy spectra,

E(k) = ⟨E(k, t)⟩ =

⟨ ∑
k≤|k′|≤k+1

1

2
|û(k′, t)|2

⟩
,

for various viscous coefficients, where û(k, t) denotes the Fourier coefficients of the
model velocity field. We find the inertial range of the wavenumbers 10 < k < 1000
with a self-similar constant slope. In order to check if the cascade of the model
enstrophy occurs in this inertial range, introducing the enstrophy flux

ΠQ(k, t) =
∑
ℓ≤k

∑
|k′|=l

∑
p+q=k′

Im [ω̂∗(k′, t)(aq − p)û(p, t)û(q, t)] ,

we show the time averaged enstrophy flux ΠQ(k) = ⟨ΠQ(k, t)⟩ in Figure 3(b). In
the inertial range ΠQ(k) forms a plateau region, indicating the enstrophy transfers
from low wavenumbers to high wavenumbers at a constant rate. Moreover, as the
viscous coefficients decreases, the plateau region expands and the inertial range
corresponding to the enstrophy cascade is certainly formed. The scaling law of
the energy spectra in the inertial range deviates from E(k) ∼ k−3 obtained by the

dimensional analysis as well as E(k) ∼ k−3 [ln k]
−1/3

derived from its logarithmic
correction theory [53, 58] for 2D turbulence as shown in Figure 3(a).

In order to study the dependence of the emergence of the inertial range in the
energy spectra on the large-scale forcing in (3.2), we switch the random forcing to
a deterministic and stationary one, i.e., f = C0 sinx for a constant C0 = −0.1. We
have found that the forced gCLMG equation has an asymptotically stable stationary
solution, which has a localized vorticity pulse as shown in Fig. 4(a). We note that
the steady solution looks similar to the randomly moving pulse solutions in Fig. 2.
Furthermore, the energy spectrum of the steady solution is indistinguishable to that
of the gGLMG turbulence in the inertial range as we see in Fig. 4(b). This indicates
that the functional form of the turbulent E(k) can be studied with the stationary

solution, yielding E(k) ∼ k−3 [ln k]
−1.38

, which is a better fit than the slope k−3

and k−3[log k]−1/3 as in Fig. 3(a). Figure 4(b) also shows that the inertial range
for the energy spectra of the steady solutions expands as ν → 0, indicating that
the stationary solution seems to converge to a singular function (infinite vorticity)
in the inviscid limit. The vorticity pulse solutions for various ν are numerically
scaled as ν−0.2ω(ν−0.6(x−2π)) in the neighborhood of the pulse center as shown in
Figure 4(c). Hence, the steady solution acquires a strong self-similarity at the center
and its peak diverges as ν → 0. As a matter of fact, it is numerically confirmed that
the steady solution in the zero viscous limit has a similar profile to a finite-time
blowing-up solution of (3.2) with no viscosity ν = 0 and no forcing f = 0. The
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Figure 4. (a) A steady vorticity pulse ω(x), which is an asymp-
totically stable solution of (3.2) subject to the external force
f(x) = −0.1 sinx. (b) The energy spectra of the steady solutions
to (3.2) with the deterministic forcing for various ν’s. The squares
represent data of the randomly forced case with ν1/8 shown in
Fig. 3. (c) Scaled vorticity pulse of the stationary solution around
the origin, ν−0.2ω(ν−0.6(x− 2π))．

(a) (b)

Figure 5. Orbits of the spectra Im[ω(k, t)] of the randomly forced
gCLMG turbulence projected on the three-dimensional phase space
(k1, k2, k3). The (red) sphere corresponds to the stationary solu-
tion with the same enstrophy and the viscosity. (a) (k1, k2, k3) =
(4, 8, 16). (b) (k1, k2, k3) = (16, 32, 64)．

observations above suggest some connections among asymptotically stable steady
solutions of (3.2) with a sufficiently small viscosity and a deterministic forcing,
blowing-up solutions of (3.2) with no viscosity and no forcing and statistical scaling
law generated by the vorticity pulse obtained by (3.2) subject a large-scale random
forcing.
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Since the evolution of Fourier coefficients of the randomly forced gCLMG tur-
bulence is regarded as an infinitely dimensional dynamical system of the spectra,
we project the orbits of the spectra on a three-dimensional sub-space spanned by
the chosen three wavenumbers in order to see the relation of the stationary solution
to the gCLMG turbulence from the viewpoint of the dynamical system. Figure 5
shows the orbits of the spectra projected on the three-dimensional phase space
of wavenumbers, (a) (k1, k2, k3) = (4, 8, 16) and (b) (k1, k2, k3) = (16, 32, 64) re-
spectively. The red sphere at the upper left of the domain corresponds to the
asymptotically stable stationary solution of the gCLMG equations with the deter-
ministic forcing. We observe that the orbit is within a thin surface of “butterfly-like
two leaves”, and the stationary solution is located on one leaf of this attracting set.
Significantly, the orbits in the two scale ranges are similar. With this self-similarity
of the orbit, modeling of the gCLMG turbulence with a few degrees of freedom is
conceivable.

What was found in the paper [61] for gCLMG turbulence with a = −2 is sum-
marized as follows.

(1): There appears the inertial range in the energy spectra corresponding to
the cascade of the enstrophy that is the inviscid conserved quantity.

(2): The time-averaged energy spectra in the inertial range for the randomly
forced gCLMG turbulence is in good agreement with the energy spectra of
the steady solution of the gCLMG equation with the deterministic forcing.

(3): The asymptotically stable steady solution has a self-similar scaling and
its peak blows up as ν → 0.

(4): Orbits of the spectra of the the randomly forced gCMLG turbulence
evolve within a characteristic manifold having a spatio-temporal self-similar
structure in the infinite-dimensional phase space.

It is confirmed in [62] that these findings remain valid for −4 < a ≤ −1, suggesting
that the anomalous cascade of inviscid conserved quantity is understood through
the singular steady solutions of gCLMG equations with the deterministic forcing.

Finally, in connection with Section 1, we formally apply the argument on dissipa-
tive weak solutions of the 3D Euler equations owing to Duchon and Robert [24] to
the gCLMG equation with a = −2. Let us consider the inviscid gCLMG equation
(3.2) without forcing, i.e., ν = f = 0. For a compactly supported smooth function
φ(x) ∈ C∞

0 (R), introducing a test function φε(x) = (1/ε)φ(x/ε), we regularize the
model velocity v and the model vorticity ω as vε = v∗φε and ωε = ω∗φε. Deriving
the equations of vε and ωε from (3.2), we obtain the following equation for the
enstrophy dissipation.

1

2
(ωωε)t − (vωωε)x +

1

2
ω [−2(vω)εx + (vωε)x + vωε

x + (ωvx)
ε] = 0.

While the first and the second terms contribute to the conservation law of the
enstrophy, the third one is regarded as a defect termDε[v, ω] yielding the anomalous
enstrophy dissipation, which is defined as follows.

Dε[v, ω] =
1

2
ω [−2(vω)εx + (vωε)x + vωε

x + (ωvx)
ε] .

This term converges in the sense of distributions as ε→ 0.

D[v, ω] = lim
ε→0

Dε[v, ω] = −(vω)xω + ωxωv + ω2vx.
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Figure 6. Plot of the spatially averaged statistical law of (3.4)
for the gCLMG turbulence with a = −2, which is derived based
on the argument by Duchon and Robert [24].

On the other hand, with the increments of the velocity δξv(x) = v(x + ξ) − v(x)
and the vorticity δξω(x) = ω(x + ξ) − ω(x) at the two points x and x + ξ, let us
introduce the following quantity.

Eε[v, ω](x, t) ≡
∫ π

−π

(δξω(x, t))
2δξv(x, t)∂ξφ

ε(ξ)dξ.

Then we have E[v, ω] := limε→0Eε[v, ω] = 2(vω)x − 2ωxωv + 2ω2vx = 2D[v, w] in
the sense of distributions, which gives rise to a formal relation between the ensemble
averages of E[v, ω] and D[v, ω].

(3.4) E
[∫ π

−π

[(δrω)
2δrv − (δ−rω)

2δ−rv]dξ

]
= 4rE [D[v, w]] .

If the ensemble average of the defect term E [D[v, w]] is strictly positive for dissi-
pative weak solutions of the gCLMG equation, the relation (3.4) is considered to
be a statistical r1-law. Figure 6 shows the relation (3.4) computed for the gCLMG
turbulence, in which we see a clear agreement in the inertial range. However, the
constant in the statistical law is not equivalent. Let us remark that the regular-
ity condition in terms of Hölder continuity on dissipative weak solutions of the
gCLMG equation with a positive defect term is uncertain, which will be another
future direction for mathematical studies of this equation.

4. Epilogue : lessons of mathematical studies of turbulence

We summarize the mathematical studies of turbulent phenomena in terms of sin-
gular solutions of hydrodynamic equations presented in this article. In Section 1,
we introduce the preceding mathematical studies of weak solutions with respect
to Onsager’s conjecture. The flows satisfying the non-vanishing energy dissipation
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rate in the inviscid limit, which is the assumption made by Kolmogorov in the
theory of the isotropic turbulence, are characterized by weak solutions of the Euler
equations and the Navier-Stokes equations with Hölder continuity of the exponent
less than 1/3. Inspired by these works in regards to dissipative weak solutions, we
introduce the two models to investigate the relation between of singular solutions of
some hydrodynamic equations and turbulent flows. In Section 2, we show that an
anomalous enstrophy dissipation of the incompressible and non-viscous flows in 2D
turbulence is brought by the self-similar collapse of three point vortices, which is
obtained as a limit of weak solutions of the dispersively regularized Euler equations
for the initial data belonging to the space of Radon measures. In Section 3, we pro-
pose a one-dimensional hydrodynamic equation of turbulence, called the gCLMG
equation. We demonstrate numerically that the scaling law of the time-averaged
energy spectra corresponding to the cascade of enstrophy for the randomly forced
gCLMG equation agrees with the spectra of the asymptotically stable steady so-
lution of the gCLMG equation with a deterministic forcing. We also find that the
steady solution diverges in the zero-viscous limit. This suggests that the anomalous
dissipation of the inviscid conserved quantity in the turbulent phenomenon can be
understood through the mathematical study of these steady singular solutions.

In each study, we have gained some interesting insights and future directions
toward the understanding of turbulent phenomena. However, we here focus on
nothing but one of characteristic properties of turbulent flows, and we then try to
describe it in terms of singular solutions of hydrodynamic equations. That is to say,
they are mathematical descriptions of turbulence from one limited aspect. Since our
final goal is a complete theoretical understanding of turbulence as a whole, but it is
beyond our reach. Nevertheless, we could have some lessons from these studies. We
have observed that many self-similar structures appear in these studies: Self-similar
collapse of three point vortices is a trigger of the anomalous enstrophy dissipation
and we can describe the cascading phenomena in the inertial ranges via self-similar
singular solutions of the gCLMG equation. This indicates that turbulent phenom-
enon seems to be described through beautiful scale-free singular solutions, where
large scales and small scales are inseparable. This tells us that it is not plausi-
ble to understand the turbulent phenomena by using model equations describing
a certain range of scales. Another aspect we found was the importance of an in-
finitely small “deviation” from complete self-similar structures. In Section 2, since
the self-similar collapse is obtained as a limit of weak solutions of the dispersively
regularized Euler equations, the magnitude of the enstrophy dissipation, say −z0,
is determined by weak solutions of the regularized equation, whose time evolutions
is slightly away from the self-similar solution. In Section 3, while the scaling law
of the energy spectra in the inviscid limit is well represented by self-similar sin-
gular inviscid steady solutions, we have found some intermittent behaviors in the
pth moment of the vorticity difference in [61, 62], which is still an open problem
of intermittency. After one interesting problem solves, another attractive problem
emerges. Mathematical studies of turbulent flows never ends. Like this, the turbu-
lence keeps our mathematical investigations of nonlinear hydrodynamic equations
inspired.
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