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Abstract

Learning over smooth nonlinear spaces has found wide applications. A princi-

pled approach for addressing such problems is to endow the search space with

a Riemannian manifold geometry and numerical optimization can be performed

intrinsically. Recent years have seen a surge of interest in leveraging Riemannian

optimization for nonlinearly-constrained problems. This thesis investigates and

improves on the existing algorithms for Riemannian optimization, with a focus

on unified analysis frameworks and generic strategies. To this end, the first chap-

ter systematically studies the choice of Riemannian geometries and their impacts

on algorithmic convergence, on the manifold of positive definite matrices. The

second chapter considers stochastic optimization on manifolds and proposes a

unified framework for analyzing and improving the convergence of Riemannian

variance reduction methods for nonconvex functions. The third chapter intro-

duces a generic acceleration scheme based on the idea of extrapolation, which

achieves optimal convergence rate asymptotically while being empirically effi-

cient.
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Chapter 1

Introduction

Learning and estimation over nonlinear spaces have been rapidly gaining mo-

mentum in machine learning, statistics, engineering, and neuroscience, among

others. In particular, many problems are concerned with objects that naturally

possess nonlinear geometric structure (or constraints), such as orthogonality

(Absil et al., 2009; Theis et al., 2009), unit norm (H. Zhang et al., 2016), posi-

tive definiteness (Bhatia, 2009), fixed-rank positive semi-definiteness (G. Meyer

et al., 2011), hyperbolic (Nickel & Kiela, 2017), unit determinant (Boumal & Ab-

sil, 2011a), simplex (Sun et al., 2015), doubly stochasticity (Douik & Hassibi,

2019), to name a few. Being able to identify and incorporate such geometries

and constraints in the process of learning and estimation is crucial to ensure ef-

ficiency and quality of the results. Common methods for solving the nonlinearly

constrained optimization problems include projected gradient methods and re-

laxation techniques (Nocedal & Wright, 1999; Boyd et al., 2004). Nevertheless,

the methods can only accommodate specific problem instances and constraints,

and require tailored treatment for each case. Further, both the approaches can

be inefficient as they usually lift the problem to a high-dimensional Euclidean

ambient search space.

For these reasons, there is a surge of interest in considering optimization

on Riemannian manifolds, also known as Riemannian optimization (Absil et al.,

7



CHAPTER 1. INTRODUCTION

2009; Boumal, 2023). In fact, all the aforementioned nonlinear (constraint) spaces

form smooth manifolds. When equipped with a smooth inner product struc-

ture (i.e., a Riemannian metric), the manifolds become Riemannian manifolds, a

class of geometric objects with well-studied tools for both analysis and practical

operations (Absil et al., 2009; J. M. Lee, 2018; Boumal, 2023). Riemannian op-

timization guarantees feasibility with respect to the constraints at each update

and provides a flexible framework that directly operates on the intrinsic, low-

dimensional search space. This potentially avoids the difficulties of addressing

the constraints from the ambient space and thus requires a computational cost

scaling with only the intrinsic dimension of the manifolds. Besides the efficiency,

Riemannian optimization often results in better-quality solutions by preserving

numerical properties of the geometry, such as symmetries and invariants (Ab-

sil et al., 2009). More interestingly, many problems that are nonconvex (when

considering as constrained optimization in the Euclidean space) turn out to be

geodesic (strongly) convex (a generalized notion of convexity) on Riemannian

manifolds (Vishnoi, 2018; R. Hosseini & Sra, 2020), thus allowing global optimal

solutions to be sought with fast convergence guarantees.

1.1 Learning over nonlinear spaces: from Euclidean

space to Riemannian manifolds

Feature representation learning has been central to machine learning and data

science, particularly amid the ever-increasing complication of data structure and

expanding dimensionality. Among all the methods for representation learning,

deep learning methods have revolutionized the fields such as computer vision

(LeCun et al., 1998), natural language processing (Bengio et al., 2000), molecular

modelling (Jumper et al., 2021), with theoretically guaranteed learning capacity

(Hornik et al., 1989). Despite the success of deep learning models, most existing

8
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(a) Hyperbolic geometry (b) Grassmann geometry (c) SPD geometry

Figure 1.1: (1.1a) 2-dimensional Poincaré disk model of hyperbolic geometry,

which is well-suited for embedding relational data with hierarchies. (1.1b)

Grassmann geometry, the set of subspaces. The figure shows 2-dimensional

subspaces in R3. (1.1c) Symmetric positive definite matrix (SPD) geometry. The

figure shows the convex cone defined by a 2 × 2 SPD matrix.

efforts are concerned with finding good vector representation over the Euclidean

space. One downside of the Euclidean representation is that the learning diffi-

culty often escalates with the feature dimensions, a phenomenon known as the

curse of dimensionality (Bellman, 1966). One notorious example is the unavoid-

able large distortion when learning tree-structured data even with unbounded

dimensions (Linial et al., 1995). In addition, many tasks often come with latent

geometric structure that can be leveraged to enhance learning efficiency and

quality (Bronstein et al., 2017, 2021).

Riemannian manifolds have received significant attention over the recent

decades for modelling structured data. Specifically, symmetric positive definite

matrices can be endowed with a Riemannian manifold structure, and have been

utilized to represent images via covariance descriptors (Tuzel et al., 2006, 2008),

to model water molecule diffusion in human brains (Pennec et al., 2006), to pa-

rameterize metrics and kernels (Guillaumin et al., 2009; P. K. Jawanpuria et al.,

2015) and for acoustic model compression (Shinohara et al., 2010). Subspaces,

form the so-called Grassmann manifold, have been exploited to represent im-

age sets, videos (Hamm & Lee, 2008; Turaga et al., 2011), shape spaces (Turaga

et al., 2008) and for graph embeddings (Cruceru et al., 2021; B. Zhou et al.,

9



CHAPTER 1. INTRODUCTION

2022). Spheres are common in directional statistics (Mardia et al., 2000; Pewsey

& García-Portugués, 2021) and have been used for topic modelling (Batmanghe-

lich et al., 2016), text embeddings (Meng et al., 2019). Hyperbolic space has been

successful in embedding hierarchical relations, such as taxonomies (Nickel &

Kiela, 2017), images (Khrulkov et al., 2020), graphs (Chamberlain et al., 2017;

Chami et al., 2020). Hyperbolic geometry has been shown to overcome the large

distortion issue faced in the Euclidean space due to the exponential growth of

distance (Sala et al., 2018). Other applications concern manifolds such as oblique

manifolds (Absil & Gallivan, 2006), Lie groups of transformations (Boumal & Absil,

2011a), product Riemannian manifolds with mixed curvatures (Gu et al., 2018), het-

erogeneous manifolds (Di Giovanni et al., 2022), pseudo-Riemannian manifolds (Sim

et al., 2021; Xiong et al., 2022), and many more.

1.2 Riemannian optimization: the framework for learn-

ing on manifolds

Riemannian optimization has become the primary framework for solving learn-

ing tasks on manifolds. The key idea is to forgo the extrinsic view of variables

restricting to a constraint manifold and instead undertake the intrinsic view that

the variables see only the manifold where they are allowed to move freely. Such

transition of viewpoint allows unconstrained optimization algorithms to be de-

veloped on manifolds by generalizing the many iterative algorithms for solving

unconstrained problems in the Euclidean space, which date back to Luenberger

(1972); Gabay (1982); Udriste (1994). Although classic optimization algorithms

in the Euclidean space rely heavily on the linear space and the Euclidean metric

in order to measure the function variations and design the updates between iter-

ates, Riemannian optimization provides an elegant framework with generalized

notions from differential geometry, including exponential map (or retraction) for

10
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taking the update, as well as Riemannian gradient/Hessian for measuring function

variations.

The recent decades have witnessed drastic advancements in Riemannian op-

timization, from developments of more advanced optimization algorithms, theo-

retical understanding of the convergence properties to exploration of more gen-

eral objectives and problem settings. Absil et al. (2009) provides a unified treat-

ment for numerical optimization on matrix manifolds, including line-search and

trust-region Newton’s methods, and H. Zhang & Sra (2016) offers a framework

for analyzing iteration complexities of Riemannian optimization via geodesic

convexity. Since then, many works have proposed more advanced algorithms on

manifolds, generalizing the ideas in the Euclidean space, such as stochastic gra-

dient based methods (Bonnabel, 2013; Tripuraneni et al., 2018; Kasai et al., 2019),

stochastic variance reduction (H. Zhang et al., 2016; Kasai et al., 2018b; Sato et

al., 2019; P. Zhou, Yuan, & Feng, 2019), Nesterov acceleration (Y. Liu et al., 2017;

H. Zhang & Sra, 2018b; Ahn & Sra, 2020), quasi-Newton methods (Savas & Lim,

2010; W. Huang, Gallivan, & Absil, 2015), cubic-regularized Newton’s methods

(N. Agarwal et al., 2021), among many other works.

Apart from the algorithmic developments, many studies have also explored

more general problem instances on manifolds, including nonsmooth objectives

(H. Zhang & Sra, 2016; Chen et al., 2020; W. Huang & Wei, 2022; J. Li, Ma,

& Srivastava, 2022), submanifold-constrained objectives (Weber & Sra, 2022a,b),

min-max objectives (F. Huang & Gao, 2023; P. Zhang et al., 2022), decentralized

settings (Chen et al., 2021; L. Wang & Liu, 2022; J. Li & Ma, 2022), and derivative-

free settings (J. Li, Balasubramanian, & Ma, 2022).

1.3 Research questions and contributions

This thesis aims to further advance the developments and expand the poten-

tial of Riemannian optimization, with a particular focus on generic and unified

11
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strategies. This is achieved through various efforts including providing useful

insights and analysis on existing methods, proposing novel algorithms, as well

as exploring a variety of problem instances, which lead to applications in a wide

range of fields. The thesis is composed of three main chapters, each addressing

a research question, which are discussed below.

Research question 1: the choice of Riemannian metric and its impacts on the

algorithmic performance of Riemannian optimization.

A metric (an inner product) is crucial for optimization, including defining

the local function variations, i.e., the gradient and Hessian. Unlike the Eu-

clidean space where the Euclidean metric is the major choice for optimization

algorithms, the nonlinear manifold can be equipped with different Riemannian

metrics, which in turn leads to different sets of operations essential for the de-

sign of numerical algorithms, such as exponential map. For example, hyperbolic

space can be equivalently represented with at least five isometric models, in-

cluding the most famous Poincaré disk model and Hyperboloid model (Cannon

et al., 1997). The space of symmetric positive definite matrices could result in a

non-positively curved geometry (Bhatia, 2009), non-negatively curved geometry

(Malagò et al., 2018) and a flat geometry (Arsigny et al., 2007), depending on

the choice of Riemannian metrics. The study of different Riemannian metrics

has been central for statistical analysis and estimation. Nevertheless, compara-

tively little attention has been given on the choice of Riemannian metrics for the

purpose of Riemannian optimization and its implications for algorithm perfor-

mance.

In Chapter 3, we provide the first systematic study on the implications of Rie-

mannian metric on Riemannian optimization, with a focus on symmetric posi-

tive definite (SPD) matrices. Particularly, we show that the recently introduced

Bures-Wasserstein metric (Malagò et al., 2018) is a more suitable and robust

choice for several Riemannian optimization problems compared to the classic
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choice of Affine-Invariant metric (Bhatia, 2009), especially over ill-conditioned

SPD matrices. This work has been published at NeurIPS 2021 (Han et al., 2021).

Research question 2: Unified framework for accelerating and analyzing vari-

ance reduction methods for Riemannian optimization.

Existing studies in the field of Riemannian optimization have been focused on

developing more advanced optimization algorithms by generalizing the coun-

terparts in the Euclidean space. Successful generalizations not only should pro-

vide efficient numerical procedures for practical problems, but also need to be

grounded with theoretical guarantees. Due to the curved geometries of Rieman-

nian manifolds, there exists no ad hoc or ‘correct’ generalization. For this rea-

son, various designs and analysis frameworks for the algorithms on manifolds

are developed.

One example is variance reduction (Johnson & Zhang, 2013; Defazio et al.,

2014), which has shown to improve gradient descent and stochastic gradient de-

scent for finite-sum and online optimization in the Euclidean space. The key

idea is to construct a variance reduced stochastic estimate of gradient by cor-

recting the difference between full gradient/large-batch gradient and stochastic

gradient. Variance reduction literature abounds with the designs of such esti-

mate, including SAGA (Defazio et al., 2014), SVRG (Johnson & Zhang, 2013),

SRG (Nguyen et al., 2017a), SPIDER (Fang et al., 2018), just to name the most

popular ones. Although many existing works have successfully adapted the

varaince reduction techniques for Riemannian optimization, including R-SAGA

(Babanezhad et al., 2018) R-SVRG (H. Zhang et al., 2016; Han & Gao, 2021), R-

SRG (Kasai et al., 2018b) and R-SPIDER (J. Zhang et al., 2018; P. Zhou, Yuan,

Yan, & Feng, 2019), the algorithms are analyzed under different frameworks,

with established convergence rates to be both curvature-dependent (H. Zhang

et al., 2016) and independent (J. Zhang et al., 2018). This increases the diffi-

culty of comparing the utility across different algorithms on manifolds. In ad-
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dition, existing analysis of variance reduction on manifolds is suboptimal and

incomplete, leaving a performance gap between the Riemannian and Euclidean

versions, particularly with the R-SVRG and R-SRG.

In Chapter 4, we propose a unified framework for analyzing variance re-

duction methods on manifolds, motivated by a recent work (Ji et al., 2020) that

proposes batch size adaptation in the Euclidean space. With such a framework,

we derive and complete the convergence analysis for both R-SVRG and R-SRG,

under both finite-sum and online settings, for both nonconvex and gradient-

dominated function classes, with and without the use of general retraction and

vector transport. The unified analysis also allows insights to be generated re-

garding the utility difference between SVRG- and SRG-type of gradient esti-

mates on manifolds. Furthermore, thanks to the batch size adaptation strategy,

both R-SVRG and R-SRG potentially require lower gradient complexities, which

enhances the computational efficiency of the algorithms. This work has been

published on IEEE Transactions on Pattern Analysis and Machine Intelligence

(IEEE TPAMI) (Han & Gao, 2021).

Research question 3: Generic acceleration technique for first-order Rieman-

nian optimization.

One of the outstanding questions in the literature of Riemannian optimiza-

tion is how to design an accelerated (first-order) numerical algorithm such that it

achieves the optimal rate of convergence (established in the Euclidean space by

Y. Nesterov (2003)). However, classic acceleration strategies depend critically on

the flat geometry of the Euclidean space, hence rendering generalization to Rie-

mannian manifolds nontrivial. Nonetheless, a plethora of existing studies have

been successful in designing the Nesterov type of acceleration for Riemannian

optimization (Y. Liu et al., 2017; H. Zhang & Sra, 2018a; Ahn & Sra, 2020; Kim &

Yang, 2022; Jin & Sra, 2022).

Despite the great efforts, Nesterov acceleration on manifolds exhibits several
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notable deficiencies. First, to achieve the optimal convergence rate, the algo-

rithm requires a careful choice of stepsize and coupling parameters that depend

on the smoothness and strong convexity constants, which are often unknown in

practical settings. In addition, most of the algorithms for acceleration on man-

ifolds overly rely on the use of (inverse) exponential map, parallel transport,

which further amplifies the implementation difficulties. It therefore remains an

open question whether there exists a generic yet effective acceleration strategy

on manifolds, more favorable both numerically and theoretically.

In Chapter 5, we answer the above question affirmatively by designing an

acceleration scheme based on the idea of extrapolation, i.e., a postprocessing av-

eraging step for a sequence of iterates. We show when the iterates are generated

from Riemannian gradient descent method, the accelerated scheme achieves the

optimal convergence rate asymptotically and is computationally more favorable

than the recently proposed Riemannian Nesterov accelerated gradient methods

(H. Zhang & Sra, 2018a; Alimisis et al., 2020, 2021; Kim & Yang, 2022).

1.4 Thesis outline

The remainder of the thesis is organized as follows. Chapter 2 provides a pre-

liminary review of concepts and notations from Riemannian geometry and Rie-

mannian optimization. Chapter 3, 4, and 5 are the main chapters addressing the

above research questions. Finally Chapter 6 concludes the thesis by summariz-

ing the contributions in a wider context and discusses future research directions.
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Chapter 2

Preliminaries

This chapter provides a preliminary overview of the notions from Riemannian

geometry and Riemannian optimization, as well as sets the notations for the rest

of the thesis.

Although most manifolds we deal with in this thesis can be represented via

vectors and matrices, the classic definitions of manifolds come with more ab-

stract notions, such as topological spaces, charts, atlas, and tangent spaces. In

fact, the most familiar and intuitive examples of manifolds, such as spheres and

hyperboloids, are all embedded submanifolds of a linear space, which consti-

tutes only a small part of the manifold family. Hence, the chapter starts with

brief introduction to smooth manifolds, as well as general definitions of tan-

gent space and differential of mappings. Then, we introduce Riemannian metric

and Riemannian manifolds, along with the many ingredients and operations

of Riemannian manifolds. For Riemannian optimization, this chapter also cov-

ers various function classes, including geodesic/retraction (strong) convexity,

smoothness and gradient dominance.

Most results are presented without proofs. For more detailed exposition of

the topics, readers shall refer to the general texts such as Boothby (1986); J. Lee

(2012); J. M. Lee (2018) for Riemannian geometry and Absil et al. (2009); Boumal

(2023) for Riemannian optimization.
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2.1 Riemannian geometry

2.1.1 Smooth manifolds

ϕU
R2

S2

Figure 2.1: Illustration of a chart on a 2-

d sphere S2 := {x ∈ R3 : x⊤x = 1}.

In the simplest terms, a manifold of

dimension d is a set that locally resem-

bles Rd. For example, a 2-d sphere,

although embedded in R3 can be lo-

cally identified by a 2-d surface (see

Figure 2.1). Such resemblance is for-

mally defined via the notion of charts.

The union of compatible charts form

an atlas, which together with the set

forms the manifold. In the rest of the thesis, smoothness is always referred to as

C∞, i.e., infinitely differentiable.

Definition 2.1 (Charts and compatible charts). Suppose M is a set. A chart is

the tuple (U, ϕ) where U ⊂ M is a subset and ϕ is a bijection between U and

an open set of Rd. Two charts (U, ϕ), (V, ψ) are (smoothly) compatible if either

U ∩ V = ∅ or U ∩ V ̸= ∅ and satisfy (1) both ϕ(U ∩ V), ψ(U ∩ V) are open

sets of Rd; (2) the chart transition map ϕ ◦ ψ−1 is a smooth diffeomorphism (i.e.,

smooth function and its inverse).

Definition 2.2 (Smooth atlas and manifold). A smooth atlas on M is a collection

of compatible charts A = {(Ui, ϕi)}i∈I such that ∪i∈I Ui = M. A smooth mani-

fold M is the tuple (M, A+) where A+ is the maximal atlas of A that contains

all charts compatible with A.

One trivial example of smooth manifolds is the vector space Rd with a global

identity chart map ϕ = id. The definition of manifolds M via charts and atlas

allows manifolds to be locally represented as linear patches, which ultimately fa-

cilitates tools from calculus to be properly established later. Nevertheless, one
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can simply treat M and M equivalently because in most if not all cases, mani-

folds are described without explicitly constructing an atlas.

2.1.2 Tangent spaces

M

TxM
x

Figure 2.2: Tangent space and tangent

vector with respect to an ambient space.

Tangent space is one of the most es-

sential property of a manifold as it

represents a linear approximation to

the manifold locally around a point.

For embedded submanifolds of a vec-

tor space, one can imagine the tangent

space as a tangent plane to a surface in

Rd as shown in Figure 2.2. This char-

acterization however is made with respect to the ambient space and is usually

less desirable. To properly define tangent space intrinsically, consider a smooth

curve on the manifold, i.e., γ : I −→ M where I ⊆ R is an interval on the

real line. Suppose γ(0) = x, and denote F(M) as the set of smooth functions

on manifolds, also called scalar fields. We consider a linear map defined as

vγ,x : F(M) −→ R such that

vγ,x( f ) := ( f ◦ γ)′(0) =
d f (γ(t))

dt

∣∣∣
t=0

(2.1)

This linear map is known as the directional derivative operator and the tangent

space is the collection of all such operators, defined as follows.

Definition 2.3 (Tangent space). For x ∈ M, the set TxM := {vγ,x | γ is smooth}

is called the tangent space to M at x and the elements vγ,x are called tangent

vectors.

Although we identify tangent vectors with reference to a curve γ, it is im-

portant to notice that there could be infinitely many such curves, which form
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an equivalence class. With Definition 2.3, it is not difficult to verify that TxM

is a vector space, i.e., it satisfies (αvγ,x + βvδ,x)( f ) = αvγ,x( f ) + βvβ,x( f ) for any

α, β ∈ R, f ∈ F(M). The dimension of a tangent space is equal to the dimension

of the manifold.

Example 2.1. One trivial example of tangent spaces when M = Rd is identified

as Rd. Another example is when M is an embedded submanifold of a vector

space, e.g. M ⊂ Rd. In this case, γ′(t) = d
dt γ(t) is well-defined. The tangent

space thus simplifies to TxM = {v = γ′(0) | γ is smooth and γ(0) = x}.

It is often useful to study vector fields, which assigns a tangent vector to

points on a manifold. Vector field has natural substance in many fields of ap-

plications. For example in physics, vector fields are used to model forces and in

climate science, vector fields are used to simulate the wind movement (Hutchin-

son et al., 2021).

Formal definition of vector fields requires the definition of tangent bundle,

which is defined as the disjoint union of tangent spaces, i.e., TM :=
⋃

x∈M TxM.

In addition, let π : TM −→ M be the surjective projection map that π(u) −→ x

for any u ∈ TxM. One can construct a (smooth) manifold structure on TM

where vector fields are defined as smooth mapping from M to TM.

Definition 2.4 (Vector fields). A (smooth) vector field X : M −→ TM is defined

such that π ◦ X = id. It assigns a tangent vector X(p) ∈ TpM for any p ∈ M

(also can be written as Xp for notational convenience). The set of smooth vector

fields is denoted as X(M).

For a vector field X ∈ X(M), its act on a smooth function f ∈ F(M) is a

scalar field X f ∈ F(M) such that for any p ∈ M, (X f )p = (Xp)( f ) as defined

in (2.1) for Xp ∈ TpM. This should be differentiated with f X, which is another

vector field, i.e., f X ∈ X(M) and its evaluation at p ∈ M is given by f (p)Xp ∈

TpM. It can be verified that for any X, Y ∈ X(M), f , g ∈ F(M), f X + gY ∈

X(M).
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M

c(t)
x

v

F

F(c(t)) F(x)

N

DF(x)[v]

Figure 2.3: Illustration of differential of F : M → N .

One important example of vector field on manifolds is Riemannian gradient,

which will be defined in the subsequent section where we introduce Riemannian

optimization.

2.1.3 Smooth mapping between manifolds

We first define smooth maps between manifolds, where the smoothness on man-

ifolds is characterized as smoothness on the vector space via the chart maps.

Definition 2.5 (Smooth mapping). Let M,N be two smooth manifolds. A map

F : M −→ N is smooth, i.e. of C∞ class if for all x ∈ M, there exist charts (U, ϕ)

of M that contains x, (V, ψ) of N that contains F(x) such that ψ ◦ F ◦ ϕ−1 :

ϕ(U) −→ ψ(V) is smooth.

Definition 2.6 (Differential of smooth maps). The differential of a smooth map

F : M −→ N , denoted as DF(x) is a linear map from TxM to TF(x)N . Its

evaluation at v ∈ TxM is denoted as DF(x)[v], defined as for any f ∈ F(N ),

(DF(x)[v])( f ) = v( f ◦ F) as defined in (2.1).

Proposition 2.1 (Chain rule of differential). Suppose M1,M2,M3 are smooth man-

ifolds and F : M1 −→ M2, G : M2 −→ M3 are smooth maps. Then D(G ◦ F)(x) =

DG(F(x))[DF(x)], which is a linear map from TxM1 to TG(F(x))M3.

We are particularly interested in the following cases that simplify the abstract

definition of differential.
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Example 2.2 (Embedded submanifolds of linear spaces). Suppose in Definition

2.6, M is an embedded submanifold of a linear vector space. Then DF(x)[v] =

d
dt F(c(t))

∣∣
t=0 where c is a smooth curve on M such that c(0) = x, c′(0) = v.

Such definition naturally holds for the case M = Rd.

2.1.4 Riemannian manifolds

A Riemannian manifold is a smooth manifold equipped with a smoothly varying

inner product structure on each tangent space. Such inner product structure is

called a Riemannian metric. This allows to measure the length and angles for

tangent vectors. Subsequently, we introduce notions of Levi-Civita connection,

distance on manifolds and shortest curves (geodesics), as well as curvature.

Definition 2.7 (Riemannian metric). Let M be a smooth manifold. For any

x ∈ M, a Riemannian metric gx : TxM −→ TxM −→ R is a bilinear, symmetric

positive definite form that varies smoothly across tangent spaces. Oftentimes,

Riemannian metric is written as an inner product ⟨·, ·⟩x where the subscript

indicates the base point of the tangent space. The induced norm of a tangent

vector u ∈ TxM is given by ∥u∥x :=
√
⟨u, u⟩x.

To represent a Riemannian metric as mapping from vector fields to scalar

fields, we use g : X(M)× X(M) −→ F(M) or ⟨·, ·⟩ both without the subscript.

In some cases, when the tangent space is clear from contexts, we also drop the

subscript to represent ⟨·, ·⟩x on TxM , with a slight abuse of notation.

Definition 2.8 (Riemannian manifold). Let M be a smooth manifold and g be a

Riemannian metric. The pair (M, g) is a Riemannian manifold.

It should be noted that the choice of different metrics leads to different Rie-

mannian manifolds. When the metric is clear from contexts, we simply use

M to represent the Riemannian manifold. For example, we refer to Rd as the

Euclidean space, which is the vector space Rd equipped with Euclidean inner
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product ⟨·, ·⟩2. Hence Euclidean space is a special instance of Riemannian man-

ifold.

Riemannian connection. A connection provides a way to differentiate a vector

field with respect to another, which is an additional structure for smooth man-

ifolds, parallel to the metric structure. However, we are particularly concerned

with the Riemannian connection (also known as Levi-Civita connection), that

are affine connections additionally satisfying symmetry and metric compatibil-

ity. Riemannian connection, as its name suggests, is specific to smooth manifolds

with a metric structure, i.e., Riemannian manifolds. The connections are crucial

for defining geodesics and Riemannian Hessian.

Definition 2.9 (Affine connection). For a smooth manifold M, an affine connec-

tion is a smooth mapping ∇ : X(M)× X(M) −→ X(M), (X, Y) 7→ ∇XY that

satisfies

(1) ∇ f X+gYZ = f∇XZ + g∇YZ.

(2) ∇X(aY + bZ) = a∇XY + b∇XZ.

(3) ∇X( f Y) = (X f )Y + f∇XY

for any X, Y, Z ∈ X(M), f , g ∈ F(M), a, b ∈ R.

For general smooth manifolds, there can be infinitely many affine connec-

tions. The next theorem shows that for a Riemannian manifold, there exists a

particular affine connection that additionally satisfies two properties.

Theorem 2.1 (Riemannian connection). For a Riemannian manifold (M, g), there

exists a unique affine connection ∇ that satisfies (1) ∇XY −∇YX = [X, Y] (sym-

metry) and (2) Zg(X, Y) = g(∇ZX, Y) + g(X,∇ZY) (Riemannian metric compati-

bility). The notation [X, Y] denotes the Lie bracket, which is a vector field, defined as

[X, Y] f = X(Y f )− Y(X f ).
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When the manifold is the Euclidean space Rd with Euclidean inner product,

the Riemannian connection reduces to the classic differential of vector fields.

From now onward, we only consider Riemannian manifolds with the Rieman-

nian connection.

Riemannian distance and geodesics. For a Riemannian manifold M, and a

differentiable curve γ : I −→ M, where I is an interval on R. Let γ′ be the

velocity of the curve, which defines a vector field on γ as γ′(t) ∈ Tγ(t)M. When

M is an embedded submanifold of Rd, then γ′(t) = limδ−→0
γ(t+δ)−γ(t)

δ .

Riemannian metric provides a measure of the length of such curve as well as

the notion of Riemannian distance.

Definition 2.10 (Length of a curve). The length of a differentiable curve γ : I −→

M is defined as length(γ) :=
∫

I

√
⟨γ′(t), γ′(t)⟩γ(t)dt.

Definition 2.11 (Riemannian distance). For a Riemannian manifold M, the Rie-

mannian distance is defined as d : M −→ M −→ R+, such that for any x, y ∈ M,

d(x, y) := infγ:γ(0)=x,γ(1)=y length(γ).

In this thesis, we only consider connected Riemannian manifolds, where for

each two points, there exists a curve connecting them. This allows the Rieman-

nian distance in Definition 2.11 to satisfy the metric properties, i.e., symmetry,

positive definiteness and triangle inequality.

Next we introduce geodesic as generalization of straight lines on manifolds.

A geodesic is a curve with zero acceleration, with respect to the Riemannian

connection.

Definition 2.12 (Geodesic). For a Riemannian manifold M with connection ∇,

a curve γ : I −→ M with open interval I is called a geodesic if it has zero

acceleration, i.e., ∇γ′(t)γ
′(t) = 0 ∈ Tγ(t)M for all t ∈ I.

Definition 2.13 (Geodesic completeness). A Riemannian manifold is geodesic

complete if every geodesic can be extended indefinitely, i.e., the interval I = R.
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Notably, if the infimum in Definition 2.11 is attained for a curve γ, then γ is

a geodesic under constant-speed parameterization. The converse however is not

true, i.e., not every geodesic is distance-minimizing. For example, on a sphere,

each pair of points can be connected by at least two geodesics. Nonetheless,

every geodesic is in fact locally distance-minimizing. Finally, for a geodesic

complete Riemannian manifold, every pair of points can always be connected by

a geodesic that contains the distance-minimizing geodesic.

Definition 2.14 (Uniquely geodesic). For a subset X ⊆ M on a Riemannian

manifold, if for any two points x, y ∈ X , there exists only one geodesic connect-

ing them, the set X is called uniquely geodesic.

In a uniquely geodesic set X ⊆ M, Riemannian distance is equal to the

length of geodesics. Importantly, there always exists such subset as long as

it is sufficiently small. In addition, simply-connected manifolds that are non-

positively curved, i.e., all sectional curvatures (defined later) are non-positive,

such as hyperbolic space and symmetric positive definite matrices with the

affine-invariant metric (Bhatia, 2009), are uniquely geodesic.

Curvature. On a Riemannian manifold, curvature has been critical for conver-

gence of numerical sequences because of its implications for geodesic spreading,

angles and Riemannian distance. We particularly introduce Riemann curvature

tensor as well as sectional curvature, where the latter notion appears in many

convergence analysis of iterative algorithms on Riemannian manifold.

Definition 2.15 (Riemann curvature tensor). The Riemann curvature tensor of

a Riemannian manifold M with connection ∇ is defined as Riem : X(M) ×

X(M)× X(M) −→ X(M) such that for any X, Y, Z ∈ X(M), Riem(X, Y)Z :=

∇X∇YZ −∇Y∇XZ −∇[X,Y]Z.

It can be shown that Riem is multilinear over F(M), i.e., for any f ∈ F(M), it

satisfies (1) Riem( f X, Y)Z = f Riem(X, Y)Z, (2) Riem(X, f Y)Z = f Riem(X, Y)Z,
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(3) Riem(X, Y) f Z = f Riem(X, Y)Z. When evaluated at p ∈ M, Riemp : TpM×

TpM× TpM −→ TpM is also multilinear, i.e., Riemp(Xp, Yp)Zp is linear in each

input, Xp, Yp, Zp ∈ TpM.

Another curvature measure is the sectional curvature. For a manifold with

dimension at least two, sectional curvature provides a scalar-valued curvature

measure, and is often easier to work with than the Riemann curvature tensor.

Sectional curvature measures the curvature of a 2-dimensional linear subspace

on each tangent space.

Definition 2.16 (Sectional curvature). For each point x on a Riemannian mani-

fold M, let Π ⊆ TxM be a linear subspace of dimension 2, spanned by linearly

independent tangent vectors u, v ∈ TxM, the sectional curvature of Π is

K(Π) = K(u, v) =
⟨Riemx(u, v)v, u⟩x

∥u∥2
x∥v∥2

x − (⟨u, v⟩x)2 .

When the tangent vectors are orthonormal with respect to the Riemannian

metric, the denominator in Definition 2.16 becomes one. We also remark that sec-

tional curvature uniquely determines the Riemann curvature tensor and hence

no information is lost when choosing one over another for analysis.

Remark 2.1 (Relationship with Gaussian curvature). Gaussian curvature pro-

vides an intrinsic measure of curvature for a 2-dimensional surface. When M

has dimension 2, the sectional curvature is equivalent to the Gaussian curvature

of M. When M has dimension larger than 2, and for a point x ∈ M, consider

a two-dimensional subspace Π ⊂ TxM. The union of all geodesics enumerating

from x and tangent to Π (i.e., the image of exponential map of Π, defined later),

form a two-dimensional submanifold of M. The sectional curvature K(Π) turns

out to be identical to Gaussian curvature of the submanifold.

Example 2.3. The Euclidean space, sphere with radius 1 and hyperbolic space

have constant sectional curvature of 0, 1 and −1 respectively.
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2.2 Riemannian optimization

In this section, we introduce ingredients necessary for developing optimization

algorithms on Riemannian manifolds. In the Euclidean space, iterative meth-

ods for solving unconstrained optimization problems involve updating vari-

ables according to some descent directions, which requires the computation of

(Euclidean) gradient and/or Hessian. We shall see how such notions can be

adapted to Riemannian manifolds for measuring function variations. To up-

date the variables on a manifold, we also need the concepts of exponential map

and retraction, which generalize the addition in the Euclidean space. Further-

more, for more advanced algorithms where past update directions are useful

for current update, parallel transport and vector transport are needed for relat-

ing tangent vectors on different tangent spaces. Next, we also discuss various

function classes on Riemannian manifolds, including gradient and function Lip-

schitzness, smoothness, as well as generalized notions of (strong) convexity and

gradient dominance. These are useful for analyzing the convergence and itera-

tion complexities of different numerical algorithms on manifolds.

2.2.1 Riemannian gradient and Hessian

Riemannian gradient and Hessian generalize classic notions of (Euclidean) gra-

dient and Hessian to Riemannian manifolds.

Definition 2.17 (Riemannian gradient). Consider a Riemannian manifold M and

a differentiable function f : M −→ R. The Riemannian gradient of f at x ∈ M,

denoted as grad f (x), is the unique tangent vector that satisfies ⟨grad f (x), u⟩x =

D f (x)[u], for all u ∈ TxM.

When M is an embedded submanifold of the Euclidean space, we have

D f (x)[u] = ⟨∇ f (x), u⟩2, which is the directional derivative of f (x) along u,

where ∇ f (x) denotes the Euclidean gradient. When M = Rd, one can show
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grad f (x) = ∇ f (x).

Similar to the case of Euclidean gradient, Riemannian gradient can be inter-

preted as the steepest ascent direction with respect to the Riemannian metric, i.e.,

∥grad f (x)∥x = arg maxu∈TxM:∥u∥x=1 D f (x)[u] where the maximum is achieved

at grad f (x)/∥grad f (x)∥x. Hence, following the direction of negative Rieman-

nian gradient ensures descent in the function value. For this reason, Riemannian

steepest descent and Riemannian gradient descent are usually used interchange-

ably. Nevertheless, the former term is usually referred to Riemannian gradient

descent with line-search algorithms and the latter often involves the use of fixed

stepsize.

Next we provide the definition of Riemannian Hessian, which is the deriva-

tive of gradient vector field grad f ∈ X(M), via the Riemannian connection ∇.

Definition 2.18 (Riemannian Hessian). Consider a Riemannian manifold M and

a twice-differentiable function f : M −→ R. The Riemannian Hessian of f

at x is a symmetric, linear operator, Hess f (x) : TxM −→ TxM, defined as

Hess f (x)[u] = (∇Ugrad f )x, for any vector field U ∈ X(M) such that Ux =

u ∈ TxM.

The symmetry property (self-adjointness) of Riemannian Hessian, claims that

⟨Hess f (x)[u], v⟩x = ⟨Hess f (x)[v], u⟩x for any u, v ∈ TxM and x ∈ M.

2.2.2 Moving on manifolds: exponential map and retraction

In the Euclidean space Rd, consider a point x and a direction u (a tangent vector

at x). Then the addition x + u can be interpreted as updating x in the direction u.

Exponential map generalizes such an idea by following a geodesic enumerating

from x ∈ M with a velocity u ∈ TxM, while staying on the manifold M.

However, unlike the Euclidean case, exponential map may not be defined over

the entire tangent space, if the manifold is not geodesic complete. Precisely, let

γx,u : I −→ M be the unique geodesic such that γx,u(0) = x, γ′
x,u(0) = u, taking
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M

TxM

x u

y

cx,u(t)

Figure 2.4: Illustration of exponential map and retraction where cx,u(t) is either a

geodesic or a retraction curve that satisfies cx,u(0) = x, cx,u(1) = y and c′x,u(0) =

u. Exponential or retraction maps x to y following the direction of u.

to be the maximal for I (J. M. Lee, 2018, Corollary 4.28). Define the subset of

tangent spaces DTM := {(x, u) ∈ TM : γx,u : I −→ M, [0, 1] ∈ I}. If M is

geodesic complete, then DTM = TM and the exponential map is well-defined

over the entire TxM for any x ∈ M.

Definition 2.19 (Exponential map). On a Riemannian manifold M, for any

(x, u) ∈ DTM ⊆ TM, the exponential map of u at x is given by Expx(u) =

γx,u(1).

Under Definition 2.19, it is not difficult to show the exponential map is

smooth on DTM and further satisfies the first-order properties Expx(0) = x and

DExpx(0)[u] = u for any (x, u) ∈ DTM, as well as the second-order property

of zero acceleration γ′′
x,u(0) := ∇γ′

x,u(0)γ
′
x,u(0) = 0. Particularly, the first-order

properties are crucial to ensure exponential map is a local diffeomorphism (bi-

jective with differentiable inverse). That is, there always exists a (sufficiently

small) neighbourhood around the root point such that exponential map has a

smooth inverse, which is called inverse exponential map or logarithm map. In a

uniquely geodesic domain, exponential map is a diffeomorphism.

Definition 2.20 (Inverse exponential map). Suppose x, y ∈ X ⊆ M where ex-

ponential map is a diffeomorphism. The inverse exponential map or logarithm

map at a point x ∈ M, denoted by either Exp−1
x or Logx is a smooth mapping

from M to TxM, defined as for any y ∈ M such that Expx(u) = y, Logx(y) = u.
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Remark 2.2 (Relationship to Riemannian distance). Under the conditions in Def-

inition 2.20, the geodesic γ(t) = Expx(tu), t ∈ [0, 1] is the distance minimizing

geodesic between x, y, unique up to reparameterization. Hence, the Riemannian

distance, d(x, y) = ∥Exp−1
x (y)∥x = ∥Exp−1

y (x)∥y.

For many practical applications, evaluating exponential map can be extremely

expensive particularly for some high-dimensional matrix manifolds. Oftentimes,

it is sufficient to consider an approximation to the exponential map, known as

retraction.

Definition 2.21 (Retraction). A retraction on a manifold M is a smooth mapping

Retr : TM −→ M where it takes any (x, u) ∈ TM to Retrx(u) that satisfies (1)

Retrx(0) = x and (2) DRetrx(0)[u] = u.

Retraction can be seen as first-order approximation of exponential map by

satisfying only the first-order properties. This renders exponential map to be a

special instance of retraction. Further, retraction can be made into second-order

if it satisfies ∇c′x,u(0)c
′
x,u(0) = 0 where cx,u(t) := Retrx(tu) is the retraction curve.

In other words, a retraction is second-order if it has zero initial acceleration.

Similar to exponential map, retraction also admits a smooth inverse (locally),

called inverse retraction. Such local neighbourhood where retraction is a dif-

feomorphism is called a totally retractive neighbourhood. Inverse retraction is

denoted as Retr−1
x (u) for (x, u) ∈ TM if exists and is similarly defined as in

Definition 2.20.

2.2.3 Connecting tangent spaces: parallel transport and vector

transport

In the Euclidean space, tangent vectors (or simply vectors) with different root

points can be directly compared with one another. On a Riemannian manifold

however, we require a specialized tool, called parallel transport, for tangent vec-
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X(c(t))

c(t)
M

(a) Parallel transport

y
Tξ u

x
u

ξ

M

(b) Vector transport

Figure 2.5: (2.5a) A parallel vector field X(c(t)) along a given curve c(t), which

defines parallel transport along the curve. (2.5b) Vector transport of u along the

retraction curve defined by c(t) = Retrx(tξ) with c(1) = y.

tors from different tangent spaces to be compared. To define such concept, we

require the notion of parallel vector field below.

Definition 2.22 (Parallel vector field). A vector field X ∈ X(M) is called parallel

along a curve c : I −→ M if ∇c′(t)X(c(t)) = 0 for all t ∈ I.

It is worth mentioning that here the curve c is not necessarily geodesic and

it can be checked that there always exist one and only one such parallel vector

field along a given curve c (Boumal, 2023, Theorem 10.34).

Definition 2.23 (Parallel transport). Let x, y ∈ M be connected by a curve c :

[t0, t1] −→ M (not necessarily a geodesic) with c(t0) = x, c(t1) = y. Parallel

transport is a linear map Γc
t0→t1

: TxM −→ TyM (or simply Γy
x when the curve

is explicit from contexts), defined as Γc
t0→t1

u = X(c(t1)) where X is the parallel

vector field along the curve c with X(c(t0)) = u ∈ TxM.

Remark 2.3. Parallel transport admits many useful properties. First, Γc
t0→t1

◦

Γc
t1→t0

= id and for t′ ∈ (t0, t1), we have Γc
t0→t′ ◦ Γc

t′→t1
= Γc

t0→t1
. More impor-

tantly, parallel transport is an isometry with respect to Riemannian metric, i.e.,

it satisfies ⟨Γc
t0→t1

u, Γc
t0→t1

v⟩c(t1)
= ⟨u, v⟩c(t0) for any u, v ∈ Tc(t0)M.

To compute parallel transport, one often needs to solve differential equations

on manifolds when no closed-form solutions are available. This can be compu-

tationally prohibitive. Thankfully, there exist some first-order approximations to
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parallel transport, called vector transports, which are often sufficient for practi-

cal purposes. Vector transports are defined with respect to a given retraction.

Definition 2.24 (Vector transport). Let TM⊕ TM := {(u, v) : u, v ∈ TxM, x ∈

M} denote the Whitney sum of tangent bundle. Vector transport is a smooth

mapping T : TM⊕ TM → TM that satisfies for all x ∈ M,

(1) there exists a retraction Retr such that Tξu ∈ TRetrx(ξ)M (associated retrac-

tion),

(2) T0v = v (consistency),

(3) Tξ(au + bv) = aTξu + bTξv (linearity).

Remark 2.4. For most cases, it is desirable to treat vector transport as a map-

ping between tangent spaces along a curve, similar to parallel transport. For

this purpose, we denote c(t) = Retrx(tξ) as the retraction curve where c(0) =

x, c(1) = y. We denote T y
x : TxM −→ TyM as the vector transport, defined as

T y
x u := Tc′(0)u = Tξu. Without mentioning otherwise, we will be using such

notation for the rest of the thesis for representing vector transport.

In particular, an isometric vector transport similarly preserves angles and

lengths as parallel transport, i.e., ⟨T y
x u, T y

x v⟩y = ⟨u, v⟩x.

2.2.4 Function classes on Riemannian manifolds

To properly characterize and analyze the behaviours of optimization algorithms

on manifolds, this section discusses various function classes of interest on Rie-

mannian manifolds.

Geodesic convexity. We start with a generalized notion of convexity on mani-

folds, called geodesic convexity for both functions and sets. We adopt the defi-

nition of geodesic convex set in H. Zhang & Sra (2016); Boumal (2023), which is

sufficient for the purpose of optimization.
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Definition 2.25 (Geodesic convex set). A subset X ⊆ M is called geodesic con-

vex if for any pair x, y ∈ X , there exists a geodesic γ : [0, 1] −→ M satisfying

γ(0) = x, γ(1) = y and for all t ∈ [0, 1], γ(t) ∈ X .

It is important to note that Definition 2.25 only requires some, rather than all

geodesics connecting x, y to lie entirely in X . The stronger notion of convexity

is known as (geodesic) total convexity (Vishnoi, 2018), which we do not pursue

in this thesis.

Example 2.4. Any connected, geodesic complete, and non-positively curved Rie-

mannian manifold is geodesic convex. This includes the Euclidean space, hyper-

bolic space and positive definite matrices with affine-invariant or log-Euclidean

metric. For general manifolds, any sufficiently small subset is always geodesic

convex.

Definition 2.26 (Geodesic convex function). For a geodesic convex set X ⊆ M,

a real-valued function f : X −→ R is (strictly) geodesic convex if for all geodesics

γ : [0, 1] −→ M that lies entirely in X , f ◦ γ is (strictly) convex on [0, 1]. That

is, f is geodesic convex if f (γ(t)) ≤ (1 − t) f (γ(0)) + t f (γ(1)) and f is geodesic

strictly convex if the equality only holds when t = 0, 1.

Definition 2.27 (Geodesic strongly convex function). For a geodesic convex set

X ⊆ M, a real-valued function f : X −→ R is called geodesic strongly convex

with parameter µ if for all geodesics γ : [0, 1] −→ M that lies entirely in X , it

satisfies f (γ(t)) ≤ (1 − t) f (γ(0)) + t f (γ(1))− t(1−t)
2 µ∥γ′(0)∥γ(0).

Remark 2.5. For geodesic convex functions, any local minimizer is also a global

minimizer and for geodesic strictly convex functions, there exists at most one

local minimizer, which is the global minimizer.

In this thesis, we focus on differentiable functions on manifolds, with well-

defined Riemannian gradient and Hessian. In this case, we have the following
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equivalent first-order and second-order characterizations of geodesic (strong)

convexity in terms of Riemannian gradient and Hessian respectively.

Proposition 2.2 (First-order characterizations of geodesic convexity). Let X ⊆ M

be a geodesic convex set and consider f : M −→ R to be differentiable. Then for all

geodesics γ : [0, 1] −→ M that are contained entirely in X , with γ(0) = x, γ′(0) = u,

we have

(1) f : X → R is geodesic convex if and only if it satisfies f (Expx(tu)) ≥ f (x) +

t⟨grad f (x), u⟩x for all t ∈ [0, 1];

(2) f : X → R is geodesic strictly convex if and only if f (Expx(tu)) > f (x) +

t⟨grad f (x), u⟩x whenever u ̸= 0, for all t ∈ (0, 1];

(3) f : X → R is geodesic µ-strongly convex for some µ > 0 if and only if

f (Expx(tu)) ≥ f (x) + t⟨grad f (x), u⟩x + t2 µ
2∥u∥2

x for all t ∈ [0, 1],

where for all the cases, we notice γ(t) = Expx(tu). If the geodesic γ happens to be dis-

tance minimizing, we can replace ∥u∥x with the Riemannian distance d(x, Expx(tu)).

Proposition 2.3 (Second-order characterizations of geodesic convexity). Under

the same settings as in Proposition 2.2, the function f : X −→ R is (1) geodesic convex

if and only if Hess f (x) ⪰ 0, (2) geodesic strictly convex if Hess f (x) ≻ 0, (3) geodesic

strongly convex if and only if Hess f (x) ⪰ µ id, for all x ∈ X .

The second-order characterizations in Proposition 2.3 can be also equivalently

translated as follows.

Corollary 2.1. Under settings of Proposition 2.3, the function f is geodesic convex if

and only if d2 f (γ(t))
dt2 ≥ 0 for all valid geodesics contained in X and geodesic strongly

convex if and only if d2 f (γ(t))
dt2 ≥ µ for all valid geodesics with ∥γ′(0)∥γ(0) = 1.

Proof. The proof follows from that d f (γ(t))
dt = ⟨grad f (γ(t)), γ′(t)⟩γ(t) and

d2 f (γ(t))
dt2 = ⟨Hess f (γ(t))[γ′(t)], γ′(t)⟩γ(t) + ⟨grad f (γ(t)), γ′′(t)⟩γ(t)
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= ⟨Hess f (γ(t))[γ′(t)], γ′(t)⟩γ(t)

where we use the fact γ′′(t) = 0 for any geodesic γ. The proof is complete by

noticing ∥γ′(t)∥γ(t) = ∥γ′(0)∥γ(0) = 1 due to constant velocity of geodesics.

Remark 2.6. Corollary 2.1 translates the geodesic (strong) convexity of f to the

Euclidean (strong) convexity of f ◦ γ.

The same as for the Euclidean case, geodesic convexity leads to the so-called

first-order stationarity at optimality.

Proposition 2.4. If f is geodesic convex on an open geodesic convex set and is differen-

tiable, then x∗ is a global minimizer of f is and only if grad f (x∗) = 0.

Geodesic Lipschitzness and smoothness. Lipschitz continuity and smooth-

ness are standard regularity conditions for functional analysis in the Euclidean

space. On general Riemannian manifolds, these notions translate to geodesic

Lipschitzness and smoothness.

We first introduce geodesic Lipschitz gradient, which has close connections

to bounded Hessian and function smoothness.

Definition 2.28 (Geodesic Lipschitz gradient). A differentiable function f : M −→

R has geodesic L-Lipschitz gradient if for all x, y ∈ M such that y = Expx(u) in

the domain of the exponential map, we have

∥Γx
γ(t)grad f (γ(t))− grad f (x)∥x ≤ L∥tu∥x,

for all t ∈ [0, 1] and γ(t) = Expx(tu).

Proposition 2.5 (Lipschitz gradient and bounded Hessian). A twice-differentiable

function f : M −→ R has geodesic L-Lipschitz gradient if and only if its Hessian is

upper bounded, i.e., ∥Hess f (x)∥x := maxu∈TxM:∥u∥x=1 ∥Hess f (x)[u]∥x ≤ L, for all

x ∈ M, where ∥Hess f (x)∥x denotes the operator norm of Riemannian Hessian.
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Corollary 2.2. A twice-differentiable function f : M −→ R has geodesic L-Lipschitz

gradient if and only if d2 f (γ(t))
dt2 ≤ L for any geodesics satisfying ∥γ′(0)∥γ(0) = 1.

Proof. The proof follows from that of Corollary 2.1.

Proposition 2.6 (Lipschitz gradient and function smoothness). If a differentiable

function f has geodesic L-Lipschitz gradient, then function f is geodesic L-smooth,

which satisfies

| f (y)− f (x)− ⟨grad f (x), u⟩x| ≤
L
2
∥u∥2

x,

for all x, y ∈ M such that y = Expx(u).

Further, the notions of Lipschitzness can be defined for higher-order deriva-

tives on Riemannian manifolds. Below we introduce the Hessian Lipschitzness.

Lemma 2.1 (Geodesic Hessian Lipschitzness). A function f has geodesic ρ-Lipschitz

Hessian in M if for all x, y ∈ M such that y = Expx(u) in the domain of the exponen-

tial map, we have

∥Γx
γ(t) ◦ Hess f (γ(t)) ◦ Γγ(t)

x − Hess f (x)∥x ≤ ρ∥tu∥3
x,

for all t ∈ [0, 1] and γ(t) := Expx(tu). If function f has geodesic ρ-Lipschitz Hessian,

then function f satisfies

| f (y)− f (x)− ⟨grad f (x), u⟩x −
1
2
⟨u, Hess f (x)[u]⟩x| ≤

ρ

6
∥u∥3

x

∥Γx
ygrad f (y)− grad f (x)− Hess f (x)[u]∥x ≤ ρ

2
∥u∥2.

Extensions to general retractions and vector transports. All the aforemen-

tioned notions, including geodesic convexity and geodesic Lipschitzness and

smoothness, also have well-defined analogues for more general retractions and

vector transports, which are mainly developed in W. Huang, Gallivan, & Absil

(2015).
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The following definitions of retraction convexity generalize geodesic convex-

ity by considering general retraction curves other than geodesics.

Definition 2.29 (Retraction convex set). A subset X ⊆ M is called a retraction

convex set with respect to a retraction Retr if for x, y ∈ X , there exists a retraction

curve c(t) := Retrx(tξ) satisfying c(1) = y and c(t) lies entirely in X .

Definition 2.30 (Retraction convex function). For a retraction convex set X ⊆ M,

a function f : X → R is (strictly) retraction convex if for all x ∈ M and retraction

curve c : [0, 1] −→ S , f ◦ c is (strictly) convex in t ∈ [0, 1].

Definition 2.31 (Retraction strongly convex function). For a retraction convex

set X ⊆ M, a function f : X → R is called retraction µ-strongly convex for

some constant µ > 0, if for all x ∈ M and retraction curve c(t) = Retrx(tξ) with

∥ξ∥x = 1, it satisfies that d2 f (Retrx(tξ))
dt2 ≥ µ for all t ≥ 0 such that c|[0,t] lies entirely

in X .

There exist similar equivalent characterizations of retraction (strong) convex-

ity, which we refer readers to W. Huang, Gallivan, & Absil (2015); W. Huang,

Absil, & Gallivan (2015) for more details.

Next we introduce function smoothness and gradient Lipschitzness with re-

spect to a retraction.

Definition 2.32 (Retraction smoothness). Under settings of Definition 2.31, a

function f : X −→ R is called retraction L-smooth for some constant L > 0 with

respect to a retraction Retr, if for all x ∈ M and retraction curve c(t) = Retrx(tξ)

with ∥ξ∥x = 1, it satisfies that d2 f (Retrx(tξ))
dt2 ≤ L for all t ≥ 0 such that c|[0,t] lies

entirely in X .

Proposition 2.7. If f : X → R is retraction L-smooth as per Definition 2.32, then we

have for all x, y ∈ X such that y = Retrx(u) and the constant L, we have

f (y)− f (x)− ⟨grad f (x), u⟩x ≤ L
2
∥u∥2

x.
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Proof. The result is proved in (W. Huang, Gallivan, & Absil, 2015, Lemma 3.2).

It is worth highlighting that unlike the case for exponential map, the use of

retraction does not necessarily ensure correspondence between Lipschitz gradi-

ent and function smoothness. We particularly define retraction Lipschitzness as

follows, where the constant Lℓ ̸= L in general.

Definition 2.33 (Retraction Lipschitz gradient). Under settings of Definition 2.32,

a function f : X → R has retraction Lℓ-Lipschitz gradient for some constant

Lℓ > 0 with respect to a retraction Retr, if for all retraction curves c : [0, 1] −→ X

that lies entirely in X with c(0) = x, c(1) = y such that y = Retrx(u), we have

∥Γc
1→0grad f (y)− grad f (x)∥x ≤ Lℓ∥u∥x,

where we recall Γc
1→0 is the parallel transport along curve c from y to x.

When the retraction is the exponential map, we can see from Proposition 2.6

that Lℓ = L and the retraction curve c becomes a geodesic.

Riemannian PL condition. The Polyak-Łojasiewic (PL) condition (Polyak, 1963)

is a sufficient condition for establishing linear convergence of first-order opti-

mization solvers to global optimal solutions. The PL condition is weaker than

strong convexity as functions satisfying PL condition can be nonconvex in gen-

eral. The PL condition can be adapted to Riemannian manifolds in a straightfor-

ward manner as follows.

Definition 2.34 (Riemannian PL condition). For a differentiable function f :

M → R, consider a neighbourhood X that contains a global minimizer x∗ of

f , i.e., x∗ = arg minx∈M f (x). The function satisfies Riemannian PL condition in

X with constant τ > 0 (also called τ-gradient dominance) if for any x ∈ X , it
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satisfies

f (x)− f (x∗) ≤ τ∥grad f (x)∥2
x.

However, we shall notice that the global solution x∗ needs not to be unique,

thus including many nonconvex functions. In particular, as shown in H. Zhang

et al. (2016), the objective of computing the leading eigenvector on sphere satis-

fies the Riemannian PL condition with high probability, while it is both noncon-

vex in the Euclidean sense and geodesic nonconvex on Riemannian manifolds.
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Optimization on SPD matrices with

Bures-Wasserstein geometry

Learning on symmetric positive definite (SPD) matrices is a fundamental prob-

lem in various machine learning applications, including metric and kernel learn-

ing (Tsuda et al., 2005; Guillaumin et al., 2009; P. K. Jawanpuria et al., 2015;

Bhutani et al., 2018; Suárez et al., 2021), medical imaging (Pennec et al., 2006;

Pennec, 2020), natural language processing (P. Jawanpuria et al., 2019, 2020a),

computer vision (M. T. Harandi et al., 2014; Z. Huang et al., 2017; Z. Huang &

Gool, 2017), multi-task learning (P. Jawanpuria & Mishra, 2018; Nimishakavi et

al., 2018), domain adaptation (Mahadevan et al., 2019; P. Jawanpuria et al., 2021),

modeling time-varying data (Brooks et al., 2019), object detection (Tuzel et al.,

2008), and quantum mechanics (Mishra et al., 2020; Luchnikov et al., 2021). The

set of SPD matrices of size n × n, defined as Sn
++ := {X : X ∈ Rn×n, X⊤ =

X, and X ≻ 0}, has a smooth manifold structure with a richer geometry than

the Euclidean space. When endowed with a metric (inner product structure),

the set of SPD matrices becomes a Riemannian manifold (Bhatia, 2009). Hence,

numerous existing works (Pennec et al., 2006; Arsigny et al., 2007; Jayasumana

et al., 2013; Z. Huang et al., 2015; Z. Huang & Gool, 2017; Z. Lin, 2019; Pennec,

2020) have studied and employed the Riemannian optimization framework for
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learning over the space of SPD matrices (Absil et al., 2009; Boumal, 2023).

Several Riemannian metrics on Sn
++ have been proposed such as the Affine-

Invariant (Pennec et al., 2006; Bhatia, 2009), the Log-Euclidean (Arsigny et al.,

2007; Quang et al., 2014), and the Log-Cholesky (Z. Lin, 2019), to name a few.

One can additionally obtain different families of Riemannian metrics on Sn
++

by appropriate parameterization based on the principles of invariance and sym-

metry (Dryden et al., 2009; Chebbi & Moakher, 2012; Thanwerdas & Pennec,

2019; Pennec, 2020). However, to the best of our knowledge, a systematic study

comparing the different metrics for optimizing generic cost functions defined

on Sn
++ is missing. Practically, the Affine-Invariant (AI) metric seems to be

the most widely used metric in Riemannian first-order and second-order al-

gorithms (e.g., steepest descent, conjugate gradients, and trust regions) as it is

the only Riemannian SPD metric available in toolboxes specifically for mani-

fold optimization, such as Manopt.jl (Bergmann, 2019), Pymanopt (Townsend et

al., 2016), ROPTLIB (W. Huang et al., 2018), and McTorch (Meghwanshi et al.,

2018). Moreover, many interesting problems in machine learning are found to

be geodesic convex (generalization of Euclidean convexity) under the AI metric,

which allows fast convergence of optimization algorithms (H. Zhang et al., 2016;

R. Hosseini & Sra, 2020).

Recent works have studied the Bures-Wasserstein (BW) distance on SPD ma-

trices (Malagò et al., 2018; Bhatia et al., 2019; van Oostrum, 2020). It is a well-

known result that the Wasserstein distance between two multivariate Gaussian

densities is a function of the BW distance between their covariance matrices. In-

deed, the BW metric is a Riemannian metric. Under this metric, the necessary

tools for Riemannian optimization, including the Riemannian gradient and Hes-

sian expressions, can be efficiently computed (Malagò et al., 2018). Hence, it is a

promising candidate for Riemannian optimization on Sn
++.

In this chapter, we theoretically and empirically analyze the quality of opti-

mization with the BW geometry and show that it is a viable alternative to the
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default choice of AI geometry. Our analysis discusses the classes of cost func-

tions (e.g., polynomial) for which the BW metric has better convergence rates

than the AI metric. We also discuss cases (e.g., log-det) where the reverse is true.

In particular, our contributions for this chapter are as follows.

• We observe that the BW metric has a linear dependence on SPD matrices

while the AI metric has a quadratic dependence. We show this impacts the

condition number of the Riemannian Hessian and makes the BW metric

more suitable to learning ill-conditioned SPD matrices than the AI metric.

• In contrast to the non-positively curved AI geometry, the BW geometry is

shown to be non-negatively curved, which leads to a tighter trigonometry

distance bound and faster convergence rates for optimization algorithms.

• For both metrics, we analyze the convergence rates of Riemannian steepest

descent and trust region methods and highlight the issues arising from

the differences in the curvature and condition number of the Riemannian

Hessian.

• We verify that common optimization problems that are geodesic convex

under the AI metric are also geodesic convex under the BW metric.

• We support our analysis with extensive experiments on applications such

as weighted least squares, trace regression, metric learning, and Gaussian

mixture model.

3.1 Preliminaries and backgrounds

This section builds upon Chapter 2 where we review the classic Riemannian

optimization solvers, Riemannian steepest descent and trust region as represen-

tatives for first-order and second-order methods respectively, for the purpose

of the subsequent analysis. In addition, the spectrum of Riemannian Hessian
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is also introduced, which is crucial for quantifying the linear versus quadratic

dependence of BW and AI metrics.

Riemannian steepest descent and Riemannian trust region. The Riemannian

steepest descent method (Udriste, 1994) generalizes the standard gradient de-

scent in the Euclidean space to Riemannian manifolds by ensuring that the

updates are along the geodesic and stay on the manifolds. That is, xt+1 =

Expxt
(−ηt grad f (xt)) for some step size ηt, often set as fixed or computed via a

line-search algorithm.

Second-order methods such as trust region and cubic regularized Newton

methods are generalized to Riemannian manifolds (Absil et al., 2007; N. Agar-

wal et al., 2021). Both the trust region and cubic regularized Newton methods

are Hessian-free in the sense that only evaluation of the Hessian acting on a tan-

gent vector, i.e., Hess f (x)[u] is required. Similar to the Euclidean counterpart,

the Riemannian trust region method approximates the Newton step by solving a

subproblem, i.e.,

min
u∈TxtM:∥u∥xt≤∆

mxt(u) = f (xt) + ⟨grad f (xt), u⟩xt +
1
2
⟨Hxt [u], u⟩xt ,

where Hxt : TxtM −→ TxtM is a symmetric and linear operator that approxi-

mates the Riemannian Hessian. ∆ is the radius of trust region, which may be

increased or decreased depending on how model value mxt(u) changes. The

subproblem is solved iteratively using a truncated conjugate gradient algorithm.

The next iterate is given by xt+1 = Expxt
(u) with the optimized u.

Spectrum of Riemannian Hessian. Next, we introduce the eigenvalues and

the condition number of the Riemannian Hessian, which we critically rely on for

the analysis in the following sections.

Definition 3.1. The minimum and maximum eigenvalues of Hess f (x) are de-
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Table 3.1: Riemannian optimization ingredients for AI and BW geometries.

Affine-Invariant Bures-Wasserstein

R.Metric gai(U, V) = tr(X−1UX−1V) gbw(U, V) = 1
2 tr(LX[U]V)

R.Exp Expai,X(U) = X exp(X−1U) Expbw,X(U) = X + U + LX[U]XLX[U]

R.Gradient gradai f (X) = X∇ f (X)X gradbw f (X) = 4{∇ f (X)X}S

R.Hessian Hessai f (X)[U] = X∇2 f (X)[U]X +
{U∇ f (X)X}S

Hessbw f (X)[U] = 4{∇2 f (X)[U]X}S +
2{∇ f (X)U}S + 4{X{LX[U]∇ f (X)}S}S −
{LX[U]gradbw f (X)}S

fined as λmin = min∥u∥2
x=1⟨Hess f (x)[u], u⟩x, λmax = max∥u∥2

x=1⟨Hess f (x)[u], u⟩x.

The condition number of Hess f (x) is defined as κ(Hess f (x)) := λmax/λmin.

3.2 Comparing BW with AI for Riemannian optimiza-

tion

This section starts with an observation of a linear-versus-quadratic dependency

between the two metrics. From this observation, we analyze the condition num-

ber of the Riemannian Hessian. Then, we further compare the sectional cur-

vature of the two geometries. Together with the differences in the condition

number, this allows us to compare the convergence rates of optimization algo-

rithms on the two geometries. We conclude this section by showing geodesic

convexity of several generic cost functions under the BW geometry. The proofs

for this section are included in Appendix.

AI and BW geometries on SPD matrices. When endowed with a Riemannian

metric g, the set of SPD matrices of size n becomes a Riemannian manifold

M = (Sn
++, g). The tangent space at X is TXM := {U : U ∈ Rn×n and U⊤ = U}.

Under the AI and BW metrics, the Riemannian exponential map, Riemannian

gradient, and Hessian are compared in Table 3.1, where we denote {A}S :=

43



CHAPTER 3. OPTIMIZATION ON SPD MATRICES WITH BW GEOMETRY

(A + A⊤)/2 and exp(A) as the matrix exponential of A. LX[U] is the solution to

the matrix linear system LX[U]X + XLX[U] = U and is known as the Lyapunov

operator. We use ∇ f (X) and ∇2 f (X) to represent the first-order and second-

order derivatives, i.e., the Euclidean gradient and Hessian, respectively. The

derivations in Table 3.1 can be found in Pennec (2020); Bhatia et al. (2019). In the

rest of the chapter, we use Mai and Mbw to denote the SPD manifolds under

the two metrics.

From Table 3.1, the computational costs for evaluating the AI and BW ingre-

dients are dominated by the matrix exponential/inversion operations and the

Lyapunov operator L computation, respectively. Both at most cost O(n3), which

implies a comparable per-iteration cost of optimization algorithms between the

two metric choices. This claim is validated in Section 3.3.

A key observation. From Table 3.1, the Affine-Invariant metric on the SPD

manifold can be rewritten as for any U, V ∈ TXM,

⟨U, V⟩ai = tr(X−1UX−1V) = vec(U)⊤(X ⊗ X)−1vec(V), (3.1)

where vec(U) and vec(V) are the vectorizations of U and V, respectively. Note

that we omit the subscript X for inner product ⟨·, ·⟩ to simplify the notation. The

specific tangent space where the inner product is computed should be clear from

contexts.

The Bures-Wasserstein metric is rewritten as, for any U, V ∈ TXM,

⟨U, V⟩bw =
1
2

tr(LX[U]V) =
1
2

vec(U)⊤(X ⊕ X)−1vec(V), (3.2)

where X ⊕ X = X ⊗ I + I ⊗ X is the Kronecker sum.

Remark 3.1. Comparing Eq. (3.1) and (3.2) reveals that the BW metric has a

linear dependence on X while the AI metric has a quadratic dependence. This
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suggests that optimization algorithms under the AI metric should be more sen-

sitive to the condition number of X compared to the BW metric.

The above observation serves as a key motivation for further analysis.

3.2.1 Condition number of Riemannian Hessian at optimality

Throughout the rest of the chapter, we make the following assumptions.

Assumption 3.1. (a). f is at least twice continuously differentiable with a non-

degenerate local minimizer X∗. (b). The subset X ⊆ M (usually as a neighbour-

hood of a center point) we consider throughout this chapter is totally normal,

i.e., the exponential map is a diffeomorphism.

Assumption 3.1 is easy to satisfy. Particularly, Assumption 3.1(b) is guaran-

teed for the SPD manifold under the AI metric because its geodesic is unique.

Under the BW metric, for a center point X, we can choose the neighbourhood

such that X = {ExpX(U) : I + LX[U] ∈ Sn
++} as in Malagò et al. (2018). In other

words, X is assumed to be unique-geodesic under both the metrics.

We now formalize the impact of the linear-versus-quadratic dependency,

highlighted in Remark 3.1. At a local minimizer X∗ where the Riemannian gra-

dient vanishes, we first simplify the expression for the Riemannian Hessian in

Table 3.1.

On Mai, ⟨Hessai f (X∗)[U], U⟩ai = tr(∇2 f (X∗)[U]U) = vec(U)⊤H(X∗)vec(U),

where H(X) ∈ Rn2×n2
is the matrix representation of the Euclidean Hessian

∇2 f (X) and U ∈ TX∗Mai. The maximum eigenvalue of Hessai f (X∗) is then given

by λ∗
max = max∥U∥2

ai=1 vec(U)⊤H(X∗)vec(U), where ∥U∥2
ai = vec(U)⊤(X∗ ⊗

X∗)−1vec(U). This is a generalized eigenvalue problem with the solution to

be the maximum eigenvalue of (X∗ ⊗ X∗)H(X∗). Similarly, λ∗
min corresponds to

the minimum eigenvalue of (X∗ ⊗ X∗)H(X∗).

On Mbw, ⟨Hessbw f (X∗)[U], U⟩bw = vec(U)⊤H(X∗)vec(U) and the norm is
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∥U∥2
bw = vec(U)⊤(X∗ ⊕ X∗)−1vec(U). The minimum/maximum eigenvalue of

Hessbw f (X∗) equals the minimum/maximum eigenvalue of (X∗ ⊕ X∗)H(X∗).

Let κ∗ai := κ(Hessai f (X∗)) = κ((X∗⊗X∗)H(X∗)) and κ∗bw := κ(Hessbw f (X∗)) =

κ((X∗ ⊕X∗)H(X∗)). The following lemma bounds these two condition numbers.

Lemma 3.1. For a local minimizer X∗ of f (X), the condition number of Hess f (X∗)

satisfies

κ(X∗)2/κ(H(X∗)) ≤κ∗ai ≤ κ(X∗)2κ(H(X∗))

κ(X∗)/κ(H(X∗)) ≤κ∗bw ≤ κ(X∗)κ(H(X∗)).

It is clear that κ∗bw ≤ κ∗ai when κ(H(X∗)) ≤
√

κ(X∗). This is true for linear,

quadratic, higher-order polynomial functions and in general holds for several

machine learning optimization problems on the SPD matrices (discussed in Sec-

tion 3.3).

Case 3.1 (Condition number for linear and quadratic optimization). For a lin-

ear function f (X) = tr(XA), its Euclidean Hessian matrix is H(X) = 0. For

a quadratic function f (X) = tr(XAXB) with A, B ∈ Sn
++, H(X) = A ⊗ B +

B ⊗ A. Therefore, κ(H(X∗)) is a constant and for ill-conditioned X∗, we have

κ(H(X∗)) ≤
√

κ(X∗), which leads to κ∗ai ≥ κ∗bw.

Case 3.2 (Condition number for higher-order polynomial optimization). For

an integer α ≥ 3, consider a function f (X) = tr(Xα) with derived H(X) =

α ∑α−2
l=0 (X

l ⊗ Xα−l−2). We get κ∗ai = α ∑α−1
l=1 ((X

∗)l ⊗ (X∗)α−l) and κ∗bw = α(X∗ ⊕

X∗)(∑α−2
l=0 (X

l ⊗ Xα−l−2)). It is apparent that κ∗ai = O(κ(X∗)α) while κ∗bw =

O(κ(X∗)α−1). Hence, for ill-conditioned X∗, κ∗ai ≥ κ∗bw.

One counter-example where κ∗bw ≥ κ∗ai is the log-det function.

Case 3.3 (Condition number for log-det optimization). For the log-det func-

tion f (X) = − log det(X), its Euclidean Hessian is ∇2 f (X)[U] = X−1UX−1
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and H(X) = X−1 ⊗ X−1. At a local minimizer X∗, Hessai f (X∗)[U] = U with

κ∗ai = 1. While on Mbw, we have κ∗bw = κ((X∗ ⊕ X∗)((X∗)−1 ⊗ (X∗)−1)) =

κ((X∗)−1 ⊕ (X∗)−1) = κ(X∗). Therefore, κ∗ai ≤ κ∗bw.

3.2.2 Sectional curvature and trigonometry distance bound

To study the curvature of Mbw, we first show in Lemma 3.2, the existence of

a matching geodesic between the Wasserstein geometry of zero-centered non-

degenerate Gaussian measures and the BW geometry of SPD matrices. Denote

the manifold of such Gaussian measures under the L2-Wasserstein distance as

(N0(Σ),W2) with Σ ∈ Sn
++.

Lemma 3.2. For any X, Y ∈ Sn
++, a geodesic between N0(X) and N0(Y) on (N0(Σ),W2)

is given by N0(γ(t)), where γ(t) is the geodesic between X and Y on Mbw.

The following lemma builds on a result from the Wasserstein geometry (Am-

brosio et al., 2008) and uses Lemma 3.2 to analyze the sectional curvature of

Mbw.

Lemma 3.3. Mbw is an Alexandrov space with non-negative sectional curvature.

It is well-known that Mai is a non-positively curved space (Cruceru et al.,

2021; Pennec, 2020) while, in Lemma 3.3, we show that Mbw is non-negatively

curved. The difference affects the curvature constant in the trigonometry dis-

tance bound of Alexandrov space (H. Zhang & Sra, 2016). This bound is crucial

in analyzing convergence for optimization algorithms on Riemannian manifolds

(H. Zhang & Sra, 2016; H. Zhang et al., 2016). In Section 3.2.3, only local con-

vergence to a minimizer X∗ is analyzed. Therefore, it suffices to consider a

neighbourhood Ω around X∗. In such a compact set, the sectional curvature is

known to be bounded and we denote the lower bound as K−.

The following lemma compares the trigonometry distance bounds under the

AI and BW geometries. This bound was originally introduced for Alexandrov
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Figure 3.1: Geodesic triangle on spaces with positive and negative curvature.

space with lower bounded sectional curvature (H. Zhang & Sra, 2016). The re-

sult for non-negatively curved spaces has been applied in many work (H. Zhang

et al., 2016; Sato et al., 2019; Han & Gao, 2021) though without a formal proof.

We show the proof in Appendix 3.D, where it follows from the Toponogov com-

parison theorem (W. Meyer, 1989) on the unit hypersphere and Assumption 3.1.

Lemma 3.4. Let X, Y, Z ∈ Ω, which forms a geodesic triangle on M. Denote x =

d(Y, Z), y = d(X, Z), z = d(X, Y) as the geodesic side lengths and let θ be the angle

between sides y and z such that cos(θ) = ⟨Exp−1
X (Y), Exp−1

X (Z)⟩/(yz). Then, we

have

x2 ≤ ζy2 + z2 − 2yz cos(θ),

where ζ is a curvature constant. Under the AI metric, ζ = ζai =

√
|K−

ai |D
tanh(

√
|K−

ai |D)
with

D as the diameter bound of Ω, i.e. maxX1,X2∈Ω d(X1, X2) ≤ D. Under the BW metric,

ζ = ζbw = 1.

It is clear that ζai > ζbw = 1, which leads to a tighter bound under the BW

metric.

3.2.3 Convergence analysis

We now analyze the local convergence properties of the Riemannian steepest

descent and trust region methods under the two Riemannian geometries. Con-

vergence is established in terms of the Riemannian distance induced from the

48



CHAPTER 3. OPTIMIZATION ON SPD MATRICES WITH BW GEOMETRY

geodesics. We begin by presenting a lemma that shows in a neighbourhood of

X∗, the second-order derivatives of f ◦ ExpX are both lower and upper bounded.

Lemma 3.5. In a totally normal neighbourhood Ω around a non-degenerate local min-

imizer X∗, for any X ∈ Ω, it satisfies that λ∗
min/α ≤ d2

dt2 f (ExpX(tU)) ≤ αλ∗
max, for

some α ≥ 1 and ∥U∥ = 1. λ∗
max > λ∗

min > 0 are the largest and smallest eigenvalues

of Hess f (X∗).

For simplicity of the analysis, we assume such an α is universal under both

the Riemannian geometries. We, therefore, can work with a neighbourhood Ω

with diameter uniformly bounded by D, where we can choose D := min{Dai, Dbw}

such that α is universal.

One can readily check that under Lemma 3.5 the function f is both µ-geodesic

strongly convex and L-geodesic smooth in Ω where µ = λ∗
min/α and L = αλ∗

max.

We now present the local convergence analysis of the two algorithms, which are

based on results in H. Zhang & Sra (2016); Absil et al. (2007).

Theorem 3.1 (Local convergence of Riemannian steepest descent). Under As-

sumption 3.1 and consider a non-degenerate local minimizer X∗. For a neighbourhood

Ω ∋ X∗ with diameter bounded by D on two Riemannian geometries Mai,Mbw, run-

ning Riemannian steepest descent from X0 ∈ Ω with a fixed step size η = 1
αλ∗

max
yields

for t ≥ 2,

d2(Xt, X∗) ≤ α2D2κ∗ (1 − min{ 1
ζ

,
1

α2κ∗
})t−2 .

Theorem 3.2 (Local convergence of Riemannian trust region). Under the same

settings as in Theorem 3.1, assume further in Ω, it holds that (1) ∥HXt −Hess f (Xt)∥ ≤

ℓ∥grad f (Xt)∥ and (2) ∥∇2( f ◦ ExpXt
)(U)−∇2( f ◦ ExpXt

)(0)∥ ≤ ρ∥U∥ for some

ℓ, ρ universal on Mai,Mbw. Then running Riemannian trust region from X0 ∈ Ω

yields,

d(Xt, X∗) ≤ (2
√

ρ + ℓ)(κ∗)2d2(Xt−1, X∗).

Theorems 3.1 and 3.2 show that Mbw has a clear advantage compared to
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Mai for learning ill-conditioned SPD matrices where κ∗bw ≤ κ∗ai. For first-order

algorithms, Mbw has an additional benefit due to its non-negative sectional cur-

vature. As ζai > ζbw = 1, the convergence rate degrades on Mai. Although the

convergence is presented in Riemannian distance, it can be readily converted

to function value gap by noticing µ
2 d2(Xt, X∗) ≤ f (Xt) − f (X∗) ≤ L

2 d2(Xt, X∗).

Additionally, we note that these local convergence results hold regardless of

whether the function is geodesic convex or not, and similar comparisons also

exist for other Riemannian optimization methods.

3.2.4 Geodesic convexity under BW metric for cost functions of

interest

Finally we show geodesic convexity of common optimization problems on Mbw.

Particularly, we verify that linear, quadratic, log-det optimization, and also cer-

tain geometric optimization problems, that are geodesic convex under the AI

metric, are also geodesic convex under the BW metric.

Proposition 3.1. For any A ∈ Sn
+, where Sn

+ := {Z : Z ∈ Rn×n, Z⊤ = Z, and Z ⪰

0}, the functions f1(X) = tr(XA), f2(X) = tr(XAX), and f3(X) = − log det(X) are

geodesic convex on Mbw.

Based on the result in Proposition 3.1, we also prove geodesic convexity of a

reparameterized version of the Gaussian density estimation and mixture model

on Mbw (discussed in Section 3.3). Similar claims on Mai can be found in

R. Hosseini & Sra (2020).

We further show that monotonic functions on sorted eigenvalues are geodesic

convex on Mbw. This is an analogue of (Sra & Hosseini, 2015, Theorem 2.3) on

Mai.

Proposition 3.2. Let λ↓ : Sn
++ −→ Rn

+ be the decreasingly sorted eigenvalue map and

h : R+ −→ R be an increasing and convex function. Then f (X) = ∑k
j=1 h(λ↓

j (X)) for
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1 ≤ k ≤ n is geodesic convex on Mbw. Examples of such functions include f1(X) =

tr(exp(X)) and f2(X) = tr(Xα), α ≥ 1.

3.3 Experiments

In this section, we compare the empirical performance of optimization algo-

rithms under different Riemannian geometries for various problems. In addition

to AI and BW, we also include the Log-Euclidean (LE) geometry (Arsigny et al.,

2007) in our experiments.

The LE geometry explores the the linear space of symmetric matrices where

the matrix exponential acts as a global diffeomorphism from the space to Sn
++.

The LE metric is defined as

⟨U, V⟩le = tr(DU log(X)DV log(X)) (3.3)

for any U, V ∈ TXM, where DU log(X) is the directional derivative of matrix log-

arithm at X along U. Following Tsuda et al. (2005); G. Meyer et al. (2011); Quang

et al. (2014), for deriving various Riemannian optimization ingredients under

the LE metric (3.3), we consider the parameterization X = exp(S), where S ∈ Sn,

i.e., the space of n × n symmetric matrices. Equivalently, optimization on the

SPD manifold with the LE metric is identified with optimization on Sn and the

function of interest becomes f (exp(S)) for S ∈ Sn. While the Riemannian gra-

dient can be computed efficiently by exploiting the directional derivative of the

matrix exponential (Al-Mohy & Higham, 2009), deriving the Riemannian Hes-

sian is tricky and we rely on finite-difference Hessian approximations (Boumal,

2015).

We present convergence mainly in terms of the distance to the solution X∗

whenever applicable. The distance is measured in the Frobenius norm, i.e., ∥Xt −

X∗∥F. When X∗ is not known, convergence is shown in the modified Euclidean
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gradient norm ∥Xt∇ f (Xt)∥F. This is comparable across different metrics as the

optimality condition X∗∇ f (X∗) = 0 arises from problem structure itself (Journée

et al., 2010). We initialize the algorithms with the identity matrix for the AI and

BW metrics and zero matrix for the LE metric (i.e., the matrix logarithm of the

identity).

We mainly present the results on the Riemannian trust region (RTR) method,

which is the method of choice for Riemannian optimization. Note for RTR,

the results are shown against the cumulative sum of inner iterations (which

are required to solve the trust region subproblem at every iteration). We also

include the Riemannian steepest descent (RSD) and Riemannian stochastic gra-

dient (RSGD) (Bonnabel, 2013) methods for some examples. The experiments

are conducted in Matlab using the Manopt toolbox (Boumal et al., 2014) on a

i5-10500 3.1GHz CPU processor.

In our extended report (Han et al., 2021), we include additional experiments

comparing convergence in objective function values for the three geometries. We

also present results for the Riemannian conjugate gradient method, and results

with different initializations (other than the identity and zero matrices) to further

support our claims.

The code can be found on https://github.com/andyjm3/AI-vs-BW.

Weighted least squares. We first consider the weighted least squares problem

with the symmetric positive definite constraint. The optimization problem is

minX∈Sn
++

f (X) = 1
2∥A ⊙ X − B∥2

F, which is encountered in for example, SPD

matrix completion (R. L. Smith, 2008) where A is a sparse matrix. The Euclidean

gradient and Hessian are ∇ f (X) = (A ⊙ X − B) ⊙ A and ∇2 f (X)[U] = A ⊙

U ⊙ A, respectively. Hence, at optimal X∗, the Euclidean Hessian in matrix

representation is H(X∗) = diag(vec(A ⊙ A)). We experiment with two choices

of A, i.e. A = 1n1⊤n (Dense) and A as a random sparse matrix (Sparse). The

former choice for A leads to well-conditioned H(X∗) while the latter choice leads
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Figure 3.2: Weighted least squares problem.

to an ill-conditioned H(X∗). Also note that when A = 1n1⊤n , κ∗ai = κ(X∗)2 and

κ∗bw = κ(X∗).

We generate X∗ as a SPD matrix with size n = 50 and exponentially decaying

eigenvalues. We consider two cases with condition numbers κ(X∗) = 10 (LowCN)

and 103 (HighCN). The matrix B is generated as B = A ⊙ X∗. Figure 3.2 compares

both RSD and RTR for different metrics. When A is either dense or sparse, con-

vergence is significantly faster on Mbw than both Mai and Mle. The advantage

of using Mbw becomes more prominent in the setting when condition number

of X∗ is high. Figure 3.2(e) shows that Mbw is also superior in terms of runtime.

Lyapunov equations. Continuous Lyapunov matrix equation, AX + XA = C

with X ∈ Sn
++, is commonly employed in analyzing optimal control systems and

differential equations (Rothschild & Jameson, 1970; Y. Lin & Simoncini, 2015).

When A is stable, i.e., λi(A) > 0 and C ∈ Sn
++, the solution X∗ ≻ 0 and is unique

(Lancaster, 1970). When C ∈ Sn
+ and is low rank, X∗ ∈ Sn

+ is also low rank.

We optimize the following problem for solving the Lyapunov equation (Van-

dereycken & Vandewalle, 2010), i.e., minX∈Sn
++

f (X) = tr(XAX) − tr(XC). The

Euclidean gradient and Hessian are respectively ∇ f (X) = AX + XA − C and

∇2 f (X)[U] = AU + UA with H(X) = A ⊕ A. At optimal X∗, the condition

number κ(H(X∗)) = κ(A).

We experiment with two settings for the matrix A, i.e. A as the Laplace
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operator on the unit square where we generate 7 interior points so that n = 49

(Ex1), and A is a particular Toeplitz matrix with n = 50 (Ex2). The generated

A matrices are ill-conditioned. The above settings correspond to Examples 7.1

and 7.3 in Y. Lin & Simoncini (2015). Under each setting, X∗ is set to be either

full or low rank. The matrix C is generated as C = AX∗ + X∗A. The full rank

X∗ is generated from the full-rank Wishart distribution while the low rank X∗ is

a diagonal matrix with r = 10 ones and n − r zeros in the diagonal. We label

the four cases as Ex1Full, Ex1Low, Ex2Full, and Ex2Low. The results are shown

in Figures 3.3(a)-(d), where we observe that in all four cases, the BW geometry

outperforms both AI and LE geometries.

Trace regression. We consider the regularization-free trace regression model

(Slawski et al., 2015) for estimating covariance and kernel matrices (Schölkopf &

Smola, 2002; Cai & Zhang, 2015). The optimization problem is minX∈Sd
++

f (X) =

1
2m ∑m

i=1(yi − tr(A⊤
i X))2, where Ai = aia⊤i , i = 1, ..., m are some rank-one mea-

surement matrices. Thus, we have ∇ f (X) = ∑m
i=1(a

⊤
i Xai −yi)Ai and ∇2 f (X)[U] =

∑m
i=1(a

⊤
i Uai)Ai.

We create X∗ as a rank-r Wishart matrix and {Ai} as rank-one Wishart ma-

trices and generate yi = tr(AiX∗) + σϵi with ϵi ∼ N (0, 1), σ = 0.1. We consider

two choices, (m, d, r) = (1000, 50, 50) and (1000, 50, 10), which are respectively

labelled as SynFull and SynLow. From Figures 3.3(e)&(f), we also observe that

convergence to the optimal solution is faster for the BW geometry.

Metric learning. Distance metric learning (DML) aims to learn a distance func-

tion from samples and a popular family of such distances is the Mahalanobis

distance, i.e. dM(x, y) =
√
(x − y)⊤M(x − y) for any x, y ∈ Rd. The distance is

parameterized by a symmetric positive semi-definite matrix M. We refer read-

ers to this survey (Suárez et al., 2021) for more discussions on this topic. We

particularly consider a logistic discriminant learning formulation (Guillaumin
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Figure 3.3: Lyapunov equation (a, b, c, d), trace regression (e, f), and metric

learning (g, h) problems.

et al., 2009). Given a training sample {xi, yi}N
i=1, denote the link tij = 1 if

yi = yj and tij = 0 otherwise. The objective is given by minM∈Sd
++

f (M) =

−∑i,j
(
tij log pij + (1 − tij) log(1 − pij)

)
, with pij = (1+ exp(dM(xi, xj)))

−1. We

can derive the matrix Hessian as H(M) = ∑i,j pij(1 − pij)(xi − xj)(xi − xj)
⊤ ⊗

(xi − xj)(xi − xj)
⊤. Notice κ(H(M∗)) depends on M∗ only through the constants

pij. Thus, the condition number will not be much affected by κ(M∗).

We consider two real datasets, glass and phoneme, from the Keel database

(Alcalá-Fdez et al., 2009). The number of classes is denoted as c. The statistics

of these two datasets are (N, d, c) = (241, 9, 7) for glass (5404, 5, 2) for phoneme.

In Figures 3.3(g)&(h), we similarly see the advantage of using the BW metric

compared to the other two metrics that behave similarly.

Log-det maximization. As discussed in Section 3.2.1, log-det optimization is

one instance where κ∗bw ≥ κ∗ai. We first consider minimizing negative log-

determinant along with a linear function as studied in C. Wang et al. (2010). For

some C ∈ Sn
++, the objective is minX∈Sn

++
f (X) = tr(XC)− log det(X). The Eu-

clidean gradient and Hessian are given by ∇ f (X) = C − X−1 and ∇2 f (X)[U] =

X−1UX−1. This problem is geodesic convex under both AI and BW metrics.
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We generate X∗ the same way as in the example of weighted least square with

n = 50 and set C = (X∗)−1. We consider two cases with condition number

cn = 10 (LowCN) and 103 (HighCN). As expeted, we observe faster convergence of

AI and LE metrics over the BW metric in Figures 3.4(a)&(b). This is even more

evident when the condition number increases.

Gaussian mixture model. Another notable example of log-det optimization is

the Gaussian density estimation and mixture model problem. Following R. Hos-

seini & Sra (2020), we consider a reformulated problem on augmented sam-

ples y⊤
i = [x⊤i ; 1], i = 1, ..., N where xi ∈ Rd are the original samples. The

density is parameterized by the augmented covariance matrix Σ ∈ Rd+1. No-

tice that the log-likelihood of Gaussian is geodesic convex on Mai, but not on

Mbw. We, therefore, define S = Σ−1 and the reparameterized log-likelihood

is pN (Y; S) = ∑N
i=1 log

(
(2π)1−d/2 exp(1/2)det(S)1/2 exp(−1

2 y⊤
i Syi)

)
, which is

now geodesic convex on Mbw due to Proposition 3.1. Hence, we can solve the

problem of Gaussian mixture model similar as in R. Hosseini & Sra (2020).

Here, we test on a dataset included in the MixEst package (R. Hosseini &

Mash’al, 2015). The dataset has 1580 samples in R2 with 3 Gaussian components.

In Figure 3.4(c), we observe a similar pattern with RTR as in the log-det example.

We also include performance of RSGD, which is often preferred for large scale

problems. We set the batch size to be 50 and consider a decaying step size, with

the best initialized step size shown in Figures 3.4(d)&(e). Following Arthur &

Vassilvitskii (2006), the algorithms are initialized with kmeans++. We find that

the AI geometry still maintains its advantage under the stochastic setting.

3.4 Discussions

In this chapter, we show that the less explored Bures-Wasserstein (BW) geometry

for SPD matrices should often be the preferable choice than the Affine-Invariant
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Figure 3.4: Log-det maximization (a, b) and Gaussian mixture model (c, d, e)

problems.

geometry for optimization, particularly for learning ill-conditioned matrices. We

propose three main reasons for this claim:

(1) Riemannian Hessian under BW geometry is often less ill-conditioned com-

pared to the Affine-Invariant (AI) geometry.

(2) BW geometry is non-negatively curved, which provides a tighter trigono-

metric distance bound and thus leads to better convergence rates.

(3) BW geometry preserves geodesic convexity of some popular cost functions,

including linear, quadratic and negative log-det functions.

We also theoretically discuss a ‘counter-example’ of log-det optimization

where the AI geometry enjoys a better second-order conditioning and validate

our findings empirically. This issue is addressed in our recent work (Han et al.,

2023), where we propose a generalized Bures-Wasserstein (GBW) geometry that

is built on a generalization of the Lyapunov operator in the metric:

⟨U, V⟩gbw =
1
2

vec(U)⊤(X ⊗ M + M ⊗ X)−1vec(V), (3.4)

where U and V are symmetric matrices and M is a given SPD matrix. When

M = I, the metric (3.4) reduces to the special BW metric (3.2). The use of

the parameter M in (3.4) allows great flexibility for optimization algorithms.

For one, choosing a particular M allows preconditioning the Hessian by locally
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approximating the AI geometry. This leads to improved convergence for log-det

optimization.

Our comparisons between AI and BW geometries are based on optimization

over generic cost functions. For specific problems, however, there may exist other

alternative metrics that potentially work better. This is an interesting research

direction to pursue. We also remark that optimization is not the only area where

the AI and BW geometries can be compared. It would be useful to qualitatively

compare the two metrics for other learning problems on SPD matrices, such as

barycenter learning.
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Appendices

The appendix sections are organized as follows. Section 3.A reviews the Bures-

Wasserstein geometry, particularly the derivation of geodesics. Section 3.B sum-

marizes the Log-Euclidean geometry and operations necessary for Riemannian

optimization. Section 3.C, 3.D, 3.E, 3.F include proofs for the main texts.

3.A Bures-Wasserstein geometry of SPD matrices

Here, we include a complete summary of the Bures-Wasserstein geometry. We

refer readers to Bhatia et al. (2019); van Oostrum (2020); Malagò et al. (2018) for

a more detailed discussion.

The Bures-Wasserstein distance on Sn
++ is given by:

dbw(X, Y) =
(

tr(X) + tr(Y)− 2tr(X1/2YX1/2)1/2
)1/2

, (3.5)

which corresponds to the L2-Wasserstein distance between zero-centered non-

degenerate Gaussian measures. The distance is realized by solving the Pro-

crustes problem, i.e. dbw = minP∈O(n) ∥X1/2 − Y1/2P∥F, where O(n) denotes the

orthogonal group. The minimum is attained when P is the unitary polar factor

of Y1/2X1/2. The distance defined in (3.5) is indeed a Riemannian distance on

Sn
++ induced from a Riemannian submersion. That is, the space of SPD matrices

can be identified as a quotient space on the general linear group GL(n) with the

action of orthogonal group O(n). The quotient map π : GL(n) −→ GL(n)/O(n)
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thus defines a Riemannian submersion. By endowing a Euclidean metric on

GL(n), we can induce the BW metric on SPD manifold, shown in Table 3.1. Sim-

ilarly the induced geodesic is given by the following proposition (Bhatia et al.,

2019; van Oostrum, 2020).

Proposition 3.3 (Geodesics of Mbw (Bhatia et al., 2019; van Oostrum, 2020)). For

any X, Y ∈ Mbw, a geodesic γ connecting X, Y is given by

γ(t) =
(
(1 − t)X1/2 + tY1/2P

) (
(1 − t)X1/2 + tY1/2P

)⊤
,

where P ∈ O(n) is the unitary polar factor of Y1/2X1/2.

Followed by this proposition, one can derive the Riemannian exponential

map as ExpX(U) = X + U + LX[U]XLX[U]. The inverse exponential map, also

known as the logarithm map only exists in a open set around a center point X.

This is because the BW geometry is not unique-geodesic due to the non-negative

curvature. Such open neighbourhood around X is given by Ω = {ExpX(U) :

I + LX[U] ∈ Sn
++}. In this set, the exponential map is a local diffeomorphism

from the manifold to the tangent space and the logarithm map is provided by

LogX(Y) = (XY)1/2 + (YX)1/2 − 2X, for any X, Y ∈ Ω. It is noted that Mbw

is geodesic incomplete while Mai and Mle are geodesic complete. One can

follow Takatsu (2008) to complete the space by extending the metric to positive

semi-definite matrices.

Relationship between the BW metric and the Procrustes metric. Here we

highlight that the BW metric is a special form of the more general Procrustes

metric, which is studied in Dryden et al. (2009).

Definition 3.2 (Procrustes metric). For any X, Y ∈ Sn
++, the Procrustes distance

is defined as dpc(X, Y) = minP∈O(n) ∥LX − LYP∥F, where X = LXL⊤
X , Y = LYL⊤

Y

for some decomposition factors LX, LY.
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Thus it is easy to see that under the BW metric, LX = X1/2, LY = Y1/2. An-

other choice of LX, LY can be the Cholesky factor, which is a lower triangular

matrix with positive diagonals. The optimal P = UV⊤ is obtained from the sin-

gular value decomposition of L⊤
Y LX = UΣV⊤. Under Procrustes metric, one can

similarly derive a geodesic as c(t) = ((1 − t)LX + tLYP) ((1 − t)LX + tLYP)⊤,

which corresponds to γ(t) in Proposition 3.3. This space is also incomplete with

non-negative curvature.

3.B Log-Euclidean geometry and its Riemannian gra-

dient computation

This section presents a summary on the Log-Euclidean (LE) geometry (Arsigny

et al., 2007; Quang et al., 2014) and derives its Riemannian gradient for Rieman-

nian optimization, which should be of independent interest.

The Log-Euclidean metric is a bi-invariant metric on the Lie group structure

of SPD matrices with the group operation X⊙Y := exp(log(X)+ log(Y)) for any

X, Y ∈ Sn
++. This metric is induced from the Euclidean metric on the space of

symmetric matrices, Sn, through the matrix exponential. Hence the LE metric is

given by ⟨U, V⟩le = tr(DU log(X)DV log(X)), for U, V ∈ Sn and the LE distance

is dle(X, Y) = ∥ log(X) − log(Y)∥F. One can also derive the exponential map

associated with the metric as ExpX(U) = exp(log(X) + DU log(X)).

Because of the derivative of matrix logarithm in the LE metric, it appears

challenging to derive a simple form of Riemannian gradient based on the def-

inition given in the main text. Hence, we follow the works (Tsuda et al., 2005;

G. Meyer et al., 2011; Quang et al., 2014) to consider the parameterization of SPD

matrices by the symmetric matrices through the matrix exponential. Therefore,

the optimization of f (X), X ∈ Sn
++ becomes optimization of g(S) := f (exp(S)),

S ∈ Sn, which is a linear space with the Euclidean metric. Then, the Riemannian
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gradient of g(S) is derived as

gradg(S) = {D∇ f (exp(S)) exp(S)}S.

To compute the Riemannian gradient, we need to evaluate the directional deriva-

tive of matrix exponential along ∇ f (exp(S)). This can be efficiently computed

via the function over a block triangular matrix (Al-Mohy & Higham, 2009). That

is, for any V ∈ Sn, the directional derivative of exp(S) along V is given by the

upper block triangular of the following matrix:

exp


S V

0 S


 =

exp(S) DV exp(S)

0 exp(S)

 .

This provides an efficient way to compute the Riemannian gradient of g(S) over

Sn. However, computing the Riemannian Hessian of g(S), requires further eval-

uating the directional derivative of grad g(S), which, to the best of our knowl-

edge, is difficult. Thus in experiments, we approach the Hessian with finite

difference of the gradient. This is sufficient to ensure global convergence of the

Riemannian trust region method (Boumal, 2015).

Remark 3.2 (Practical considerations). For Riemannian optimization algorithms,

every iteration requires to evaluate the matrix exponential for a matrix of size

2n × 2n, which can be costly. Also, the matrix exponential may result in un-

stable gradients and updates, particularly when ∇g(S) involves matrix inver-

sions. This is the case for the log-det optimization problem where f (exp(S)) =

− log det(exp(S)). Hence, ∇ f (exp(S)) = (exp(S))−1. Nevertheless, for log-

det optimization, we can simplify the function to f (exp(S)) = −tr(S), with

∇ f (exp(S)) = −I.
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3.C Proof for Section 3.2.1: Condition number of Rie-

mannian Hessian

Proof of Lemma 3.1. Under AI metric, first note that for any X ∈ Sn
++,

κ(X ⊗ X) = ∥X ⊗ X∥2∥(X ⊗ X)−1∥2

= ∥X ⊗ X∥2∥X−1 ⊗ X−1∥2

= ∥X∥2
2∥X−1∥2

2 = κ(X)2,

where we apply the norm properties for Kronecker product. Next denote the

i-th largest eigenvalue as λi(A) for 1 ≤ i ≤ d where A ∈ Rd×d. Then,

κai = κ((X ⊗ X)H(X)) =
λ1((X ⊗ X)H(X))
λn2((X ⊗ X)H(X))

≥ λ1((X ⊗ X))λn2(H(X))
λn2((X ⊗ X))λ1(H(X))

= κ((X ⊗ X))/κ(H(X))

= κ(X)2/κ(H(X)),

where the first inequality uses the eigenvalue bound for matrix product, i.e.

λi(A)λd(B) ≤ λi(AB) ≤ λi(A)λ1(B) for A, B ∈ Rd×d (Merikoski & Kumar,

2004). The upper bound on κ∗ai is easily obtained by noting k(AB) ≤ κ(A)κ(B).

Similarly for the BW metric, we first note that because X ∈ Sn
++, X⊕X ∈ Sn2

++

by spectrum property of Kronecker sum (Hardy & Steeb, 2019). Then we have

κ(X ⊕ X) =
λ1(X ⊕ X)
λn2(X ⊕ X)

=
2λ1(X)
2λn(X)

= κ(X),

where the second equality is again due to the spectrum property. Then the lower

and upper bounds of the condition number on κ((X ⊕ X)H(X)) are derived

similarly.
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3.D Proofs for Section 3.2.2: Sectional curvature and

trigonometry distance bound derivation

Proof of Lemma 3.2. The proof follows by noticing that the push-forward inter-

polation between two non-degenerate Gaussians is a Gaussian with covariance

given by interpolation of the covariances.

From (Takatsu, 2008, Lemma 2.3), for any X, Y ∈ Sn
++, the geodesic between

N0(X) and N0(Y) under L2-Wasserstein metric is N0(ω(t)), where

ω(t) = ((1 − t)I + tT)X ((1 − t)I + tT) , (3.6)

with T = Y1/2(Y1/2XY1/2)−1/2Y1/2 as the pushforward map from N0(X) to

N0(Y). It is clear that the interpolation of two non-degenerate Gaussian mea-

sures is also a non-degenerate Gaussian. To show ω(t) = γ(t), We only need

to show Y1/2PX−1/2 = T, where P is the unitary polar factor of Y1/2X1/2. By

noting that P = Y1/2(XY)−1/2X1/2 from eq. (35) in Bhatia et al. (2019), we have

Y1/2PX−1/2 = Y(XY)−1/2. On the other hand, T = YY−1/2(Y1/2XY1/2)−1/2Y1/2 =

Y(XY)−1/2, where the second equality can be seen as follows. Denote C :=

(Y1/2XY1/2)−1/2, then

I = CY1/2XY1/2C = Y−1/2CY1/2XY1/2CY1/2

= Y−1/2CY1/2XYY−1/2CY1/2.

From this result, we have Y−1/2CY1/2 = (XY)−1/2. This completes the proof.

Proof of Lemma 3.3. Let µ0, µ1, ν ∈ N0 with covariance matrix X, Y, Z ∈ Sn
++ and

denote µt := ((1 − t)id + tTµ0−→µ1)#µ0, which is the interpolated Gaussian mea-

sure between µ0, µ1. From the matching geodesics in Lemma 3.2, we have

µt ≡ N0(γ(t)). Then based on standard Theorem on Wasserstein distance, e.g.

(Ambrosio et al., 2008, Theorem 7.3.2), we have W2
2 (µt, ν) ≥ (1 − t)W2

2 (µ0, ν) +
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tW2
2 (µ1, ν)− t(1 − t)W2

2 (µ0, µ1). Given the accordance between L2-Wasserstein

distance between zero-mean Gaussians and geodesic distance between their cor-

responding covariance matrices on Mbw, we have

d2
bw(γ(t), Z) ≥ (1 − t)d2

bw(X, Z) + td2
bw(Y, Z)− t(1 − t)d2

bw(X, Y)

holds for any X, Y, Z ∈ Sn
++. This suggests Mbw is a non-negatively curved

Alexandrov space with non-negative sectional curvature.

Proof of Lemma 3.4. Given Mai is a non-positively curved space, the proof under

AI metric can be found in H. Zhang & Sra (2016), which reduces to proving

the claim for hyperbolic space with constant curvature −1. Similarly, for non-

negatively curved space, it becomes studying the hypersphere with constant

curvature 1. Let △x̃ỹz̃ be the comparison triangle on TXMbw such that ỹ =

y, z̃ = z and θ is the angle between side ỹ and z̃. Because Ω is a uniquely

geodesic subset as per Assumption 3.1, we have d(X, Y) = ∥Exp−1
X (Y)∥bw for any

X, Y ∈ Ω. Thus, we can immediately see x̃2 = ∥Exp−1
X (Y)−Exp−1

X (Z)∥2
bw = y2 +

z2 − 2yz cos(θ). Then from the Toponogov Theorem (Theorem 2.2 in W. Meyer

(1989)) and the assumption of unique geodesic, we have x ≤ x̃, which shows for

unit hypersphere:

x2 ≤ y2 + z2 − 2yz cos(θ). (3.7)

Next, we see that for the space of constant curvature 0, it satisfies x2 = y2 + z2 −

2yz cos(θ). Thus we can focus on where the curvature is positive, i.e. K > 0. For

such space, we have the following generalized law of cosines (W. Meyer, 1989):

cos(
√

Kx) = cos(
√

Ky) cos(
√

Kz) + sin(
√

Ky) sin(
√

Kz) cos(θ),

which can be viewed as a geodesic triangle on unit hypersphere with side

lengths
√

Kx,
√

Ky,
√

Kz. Thus, substituting these side lengths in (3.7) proves
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the desired result for positively curved space.

3.E Proofs for Section 3.2.3: Convergence analysis

Proof of Lemma 3.5. The proof follows mainly from the continuity of d2

dt2 ( f ◦ Exp)

in both t, X, U. First note at optimality, we have for U ∈ TX∗Ω with ∥U∥ =

1, λ∗
min ≤ ⟨Hess f (X∗)[U], U⟩ ≤ λ∗

max. Because exponential map is a second-

order retraction, by standard theory (e.g. Proposition 5.5.5 in Absil et al. (2009)),

Hess f (X) = ∇2( f ◦ ExpX)(0) and ⟨Hess f (X)[U], U⟩ = d2

dt2 f (ExpX(tU))|t=0 for

any X ∈ M, U ∈ TXM. Thus at optimality, we have

λ∗
min ≤ d2

dt2 f (ExpX(tU))|X=X∗,t=0 ≤ λ∗
max.

By the continuity of d2

dt2 ( f ◦ Exp), we can always find a constant α ≥ 1 such that

λ∗
min/α ≤ d2

dt2 f (ExpX(tU)) ≤ αλ∗
max holds for all X ∈ Ω, ∥U∥ = 1 and t such that

ExpX(tU) ∈ Ω. In general, α scales with the size of Ω.

Proof of Theorem 3.1. From Theorem 14 in H. Zhang & Sra (2016), we have for

either metric,

f (Xt)− f (X∗) ≤ 1
2
(1 − min{1

ζ
,

µ

L
})t−2D2L,

where L, µ are the constants for geodesic smoothness and strongly convex. As

discussed in the main text, L = αλ∗
max and µ = λ∗

min/α, where λ∗
min and λ∗

max

are eigenvalues under either metric. Based on standard result on µ-geodesic

strongly convexity, we have f (Xt)− f (X∗) ≥ µ
2 d2(Xt, X∗). Combining this result

and Lemma 3.4 and 3.1 gives the result.

Proof of Theorem 3.2. From Theorem 4.13 in Absil et al. (2007), we have for either

metric, d(Xt, X∗) ≤ c d2(Xt−1, X∗) for some c ≥ ( ρ
λ∗

min
+ λ∗

min + ℓ)(κ∗)2 ≥ (2
√

ρ +

ℓ)(κ∗)2.
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3.F Proofs for Section 3.2.4: Geodesic convexity

3.F.1 Proofs

Proof of Proposition 3.1. The main idea is to apply the second-order characteriza-

tion of geodesic convexity. Let f1(X) = tr(XA) and f2(X) = tr(XAX). For claim

of linear function, given any A ∈ Sn
+, it can be factorized as A = L⊤L for some

L ∈ Rm×n. Thus f1(X) = tr(LXL⊤). Denote π(t) := (1 − t)X1/2 + tY1/2P and

thus the geodesic γ(t) = π(t)π(t)⊤. By standard calculus, we can write the

first-order and second-order derivatives as

d f1(γ(t))
dt

= 2tr
(

L(Y1/2P − X1/2)π(t)⊤L⊤
)

,

d2 f1(γ(t))
dt2 = 2tr

(
L(Y1/2P − X1/2)(Y1/2P − X1/2)⊤L⊤

)
≥ 0.

For claim on quadratic function f2(X), let X̃ := X1/2, Ỹ := Y1/2P and the first-

order derivative can be similarly derived as

d f2(γ(t))
dt

=2tr(Ỹπ(t)⊤Aπ(t)π(t)⊤)− 2tr(X̃π(t)⊤Aπ(t)π(t)⊤)

− 2tr(X̃π(t)⊤π(t)π(t)⊤A) + 2tr(Ỹπ(t)⊤π(t)π(t)⊤A).

The second-order derivative is derived and simplified as

d2 f2(γ(t))
dt2 =2∥Ỹπ(t)⊤L⊤ − X̃π(t)⊤L⊤∥2

F + 2∥LỸπ(t)⊤ − LX̃π(t)⊤∥2
F (3.8)

+ 4tr
(
(X̃ − Ỹ)(X̃ − Ỹ)⊤{Aπ(t)π(t)⊤}S

)
(3.9)

+ 4tr
(

L
(

Ỹπ(t)⊤ − X̃π(t)⊤
)2

L⊤
)
≥ 0, (3.10)

where ∥ · ∥F is the Frobenius norm. Terms (3.8) and (3.10) are clearly non-

negative. Term (3.9) is also non-negative by noting {Aπ(t)π(t)⊤}S ∈ Sn
+.

To prove the claim on geodesic convexity of f3(X) = − log det(X), we use the
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definition of geodesic convexity and applies the fact that det(AA⊤) = (det(A))2

and det(A + B) ≥ det(A) + det(B) for A, B ≻ 0.

That is, for any X, Y ∈ Sn
++ and t ∈ [0, 1], the geodesic γ(t) with respect to

metric gbw joining X, Y is given in Proposition 3.3. Thus,

log det(γ(t)) = 2 log det(π(t)) (3.11)

= 2 log det((1 − t)I + tY1/2PX−1/2)X1/2)

= 2 log det((1 − t)I + tY1/2PX−1/2) + 2 log det(X1/2)

≥ 2 log((1 − t)det(I) + t det(Y1/2PX−1/2)) + 2 log det(X1/2)

(3.12)

≥ 2(1 − t) log det(I) + 2t log det(Y1/2PX−1/2) + 2 log det(X1/2)

(3.13)

= 2t log det(Y1/2P)− 2t log det(X1/2) + 2 log det(X1/2)

= t log det(Y) + (1 − t) log det(X) (3.14)

where (3.11) uses the fact that det(AA⊤) = (det(A))2 and inequality (3.12) uses

the fact that det(A+B) ≥ det(A)+det(B) for A, B ∈ Sn
++ and from Lemma 1 in

van Oostrum (2020), we have Y1/2PX−1/2 ∈ Sn
++ with P as the orthogonal polar

factor of X1/2Y1/2. Inequality (3.13) follows from the concavity of logarithm.

Equality (3.14) uses the fact that det(P)2 = 1 for P ∈ O(n). This shows log det

is geodesically concave. And because logarithm is strictly concave, inequality

(3.13) reduces to equality only when t = 0, 1. Thus strict geodesic concavity is

proved. Now the proof is complete.

Proposition 3.4. The log-likelihood of reparameterized Gaussian f (S) = pN (Y; S) is

geodesic concave on Mbw.

Proof of Proposition 3.4. To prove f (S) is geodesic convex, it suffices to show that

f (S) = log(det(S)1/2 exp(−1
2 y⊤

i Syi)) is geodesic concave. That is, for a geodesic
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γ(t) connecting X, Y, we have

f (γ(t)) = log
(

det(γ(t))1/2 exp(−1
2

y⊤
i γ(t)yi)

)
=

1
2

log det(γ(t))− 1
2

y⊤
i γ(t)yi

≥ 1 − t
2

log det(X) +
t
2

log det(Y)− 1 − t
2

y⊤
i Xyi −

t
2

y⊤
i Yyi (3.15)

= (1 − t) f (X) + t f (Y).

where inequality (3.15) follows from Proposition 3.1. We further notice that as

log det is strictly geodesically concave, so is f (S).

Remark 3.3 (Gaussian mixture model). Under the BW metric, consider the re-

formulated GMM model with K components:

max
{Sj∈Sd+1

++ }K
j=1,{ωj}K−1

j=1

L =
n

∑
i=1

log

(
K

∑
j=1

exp(ωj)

∑K
j=1 exp(ωj)

pN (yi; S)

)
, (3.16)

where ωK = 0, pN (yi; S) := (2π)1−d/2 det(S)1/2 exp(1
2 − 1

2 y⊤
i Syi). It is easy to

see that problem (3.16) is geodesically convex for each component. Also, the op-

timal solution for problem (3.16) is unchanged given the inverse transformation

on SPD matrices is one-to-one. That is, if S∗
j maximizes problem (3.16), (S∗

j )
−1

maximizes the problem in R. Hosseini & Sra (2020). Based on Theorem 1 in

R. Hosseini & Sra (2020), our local maximizer can be written as parameters of

the original GMM problem, i.e. {µj, Σj}:

(S∗
j )

−1 =

Σ∗
j + µ∗

j µ∗
j

T µ∗
j

µ∗
j
⊤ 1

 , for j = 1, 2, ..., K.

Proof of Proposition 3.2. The proof is based on (Bhatia et al., 2019, Theorem 6),

where we can show the geometric mean under BW geometry also satisfies the

convexity with respect to the Loewner ordering. That is, γ(t) ⪯ (1 − t)X + tY.

Then the proof then follows as in Theorem 2.3 in Sra & Hosseini (2015).
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Chapter 4

Improved variance reduction for

Riemannian optimization

This chapter considers the following online and finite-sum optimization prob-

lems on a Riemannian manifold M.

min
x∈M

f (x) :=


E[ f (x; ω)], online

1
n ∑n

i=1 fi(x), finite-sum
(4.1)

where f : M −→ R is a smooth, real-valued, possibly nonconvex function. The

finite-sum formulation of minimizing the average of n component functions is a

special case of online optimization where ω can be finitely sampled. For some

cases, n can be large or possibly infinite where only stochastic gradients are

available. This corresponds to the online problem with ω indexed by i. Hence,

for notational clarity, we consider the case f (x) := 1
n ∑n

i=1 fi(x) and refer to

it as finite-sum or online optimization depending on the size of n. Problem

(4.1) covers many machine learning applications, including principal component

analysis (Sato et al., 2019), low rank matrix completion (Boumal & Absil, 2011b),

Riemannian centroid computation (Yuan et al., 2016), independent component

analysis (Theis et al., 2009) and many applications in deep learning (Vorontsov
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et al., 2017; J. Wang et al., 2020).

There is a growing interest to solve problem (4.1) directly over the mani-

fold space via Riemannian gradient based methods. Two basic algorithms are

Riemannian steepest descent (R-SD) (Udriste, 1994) and Riemannian stochastic

gradient descent (R-SGD) (Bonnabel, 2013). Although R-SD enjoys a faster con-

vergence rate of O(1/T) than O(1/
√

T) of R-SGD for nonconvex optimization

(Boumal et al., 2019a; R. Hosseini & Sra, 2020), R-SD requires a full pass over n

component functions per iteration. This computation is extremely costly when

n is large, thereby prohibiting its applicability for online optimization. On the

other hand, despite with higher per-iteration efficiency, R-SGD suffers from high

gradient variance, similar to its Euclidean version. Therefore it usually relies on

a decaying stepsize to ensure convergence (R. Hosseini & Sra, 2020).

To improve on R-SD and R-SGD and achieve lower gradient complexity,

many studies leverage variance reduction techniques from unconstrained op-

timization in the Euclidean space. This includes Riemannian stochastic variance

reduction method (R-SVRG) (H. Zhang et al., 2016; Sato et al., 2019), Riemannian

stochastic recursive gradient method (R-SRG) (Kasai et al., 2018b) and Rieman-

nian stochastic path integrated differential estimator (R-SPIDER) (J. Zhang et al.,

2018; P. Zhou, Yuan, Yan, & Feng, 2019), which are generalized from the Eu-

clidean counterparts (Reddi, Hefny, et al., 2016; Johnson & Zhang, 2013; Nguyen

et al., 2017b; Fang et al., 2018). Among them, R-SPIDER is shown to achieve

the optimal complexity for both finite-sum and online optimization (Fang et al.,

2018; Arjevani et al., 2023).

Nevertheless, existing convergence results on R-SVRG and R-SRG appear to

be incomplete and suboptimal. In particular, convergence of R-SVRG for non-

convex functions under retraction and vector transport (more general than ex-

ponential map and parallel transport) is missing. Existing work either analyzes

R-SVRG for retraction strongly convex functions (Sato et al., 2019) or for noncon-

vex functions but restricted to exponential map and parallel transport (H. Zhang
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et al., 2016). Also, R-SRG in Kasai et al. (2018b) is analyzed in terms of single-

loop convergence, which is suboptimal compared to R-SPIDER for finite-sum

optimization (Fang et al., 2018). Moreover, analysis under online setting seems

to be absent for both methods.

Apart from the gap in the convergence analysis, it is also useful to study if the

complexities of existing Riemannian variance reduction methods can be further

improved. Indeed, a common feature among these methods is periodic compu-

tations of full batch gradient, which potentially limits convergence particularly

during early stage of training. This is because at early stage, stochastic gradients

are pointing to similar directions and therefore it becomes unnecessary to use

exact gradients to correct for deviations (Balles et al., 2017). While approaching

optimal point, larger batch gradient becomes increasingly important to reduce

variance of stochastic gradients. Furthermore, gradient noise at the outset of

training helps to escape sharp minima, leading to higher generalization power

(Keskar et al., 2016). Therefore, a reasonable strategy is to gradually increase the

batch size throughout optimization path.

In this chapter, we propose a unified and general framework for analyzing

and improving the Riemannian variance reduction methods with adaptive batch

size. This framework includes the non-adaptive versions as special cases. Under

such framework, we show the batch size adaptation improves gradient complex-

ities of Riemannian variance reduction methods. We also close the gap in the

convergence analysis of R-SVRG and R-SRG, which matches the state-of-the-art

analysis for their Euclidean counterparts. Specifically, our main contributions

for this chapter are summarized as follows.

• The proposed framework is more general than H. Zhang et al. (2016); Sato

et al. (2019); Kasai et al. (2018b) by considering retraction and vector trans-

port as well as mini-batch stochastic gradients.

• We show that batch size adaptation improves the gradient complexities of
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R-SVRG and R-SRG for both general nonconvex functions and gradient

dominated functions (see Definition 4.1).

• We first analyze nonconvex R-SVRG under retraction and vector transport

following the standard Lyapunov analysis. Then we derive the same com-

plexities (but curvature-free) under the new framework, which requires

much simpler analysis without constructing the Lyapunov function and

using the trigonometric distance bound. To the best of our knowledge, this

is the first curvature-free result for SVRG-type methods on Riemannian

manifold.

• Under the new framework, we also prove an improved complexity for R-

SRG under double-loop convergence. This result matches the optimal com-

plexity achieved by R-SPIDER, but without requiring a small stepsize.

• In addition, we show the first complexity results of R-SVRG and R-SRG for

online optimization.

• Finally, experiments over a number of applications, including principal

component analysis, low rank matrix completion and Riemannian Fréchet

mean computation, verify the effectiveness of batch size adaptation.

4.1 Related works

Recent progress on accelerating Riemannian gradient methods can be broadly

classified into three directions: Nesterov acceleration, adaptive gradient and

variance reduction.

Acceleration and adaptive gradient. Several studies consider extending the

Nesterov acceleration to Riemannian manifold for retraction (strongly) convex

optimization (Ahn & Sra, 2020; H. Zhang & Sra, 2018b; Alimisis et al., 2021).
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But for general nonconvex functions, it is unknown whether faster convergence

guarantee is maintained. In terms of advancement on R-SGD, recent studies have

been devoted to adapting the gradient and stepsize, motivated by the success of

adaptive methods on Deep Learning applications. In particular, some successful

efforts have been made that generalize AdaGrad, Adam and RMSProp to Rie-

mannian optimization (Kumar Roy et al., 2018; Kasai et al., 2019; Sakai & Iiduka,

2021; Becigneul & Ganea, 2019). These methods can be viewed as preconditioned

R-SGD and do not theoretically outperform R-SGD with better complexity.

Variance reduction. The first Riemannian variance reduction method, R-SVRG

(H. Zhang et al., 2016; Sato et al., 2019), extends the ideas in Reddi, Hefny, et

al. (2016); Johnson & Zhang (2013). By occasionally evaluating full gradient

of a reference point, R-SVRG allows for a larger stepsize and hence converges

faster particularly around optimal point. But on manifold space, when the ref-

erence point is far from current iterates, the use of vector transport can incur

unintended distortion. Therefore, inspired by Nguyen et al. (2017b), Kasai et al.

(2018b) introduces R-SRG that transports gradients between consecutive iterates.

More recently, R-SPIDER (J. Zhang et al., 2018; P. Zhou, Yuan, Yan, & Feng, 2019)

hybrids the same recursive gradient estimator with gradient normalization as in

Fang et al. (2018). Other related works for reducing variance of R-SGD include

Tripuraneni et al. (2018); Babanezhad et al. (2018) where Polyak iterate averaging

(Polyak & Juditsky, 1992) and SAGA (Defazio et al., 2014) are also generalized

for Riemannian optimization. However, their analysis are limited to retraction

(strongly) convex functions. In the Euclidean space, some variance reduction

methods that also achieve near-optimal complexities include SNVRG (D. Zhou

et al., 2020), Geom-SARAH (Horváth et al., 2022) and PAGE (Z. Li et al., 2021).

Batch size adaptation. Increasing batch size for SGD is also an approach to

reduce variance so that stepsize decay is no longer necessary (Balles et al., 2017;
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S. L. Smith et al., 2018). This is usually achieved by pre-specifying a strategy for

batch size increase, such as exponential or linear (Friedlander & Schmidt, 2012;

P. Zhou et al., 2018). Alternatively, adaptively changing the batch size based on

gradient variance or model quality often yields improved convergence rates (De

et al., 2017; Balles et al., 2017; Sievert & Charles, 2019). For variance reduction

methods, SVRG is proved to be robust to inexact gradient at reference point

provided that batch size is increasing (Harikandeh et al., 2015; Lei et al., 2017).

Still, a fixed increase scheme is considered. To the best of our knowledge, Ji et al.

(2020) is the only work that adapts the batch size based on gradient information

and proves an improved complexity for generic variance reduction methods.

4.2 Preliminaries and settings

In this section, based on Chapter 2, we describe the settings we consider and

introduce some concepts and notations for the rest of the analysis.

Throughout this chapter, we implicitly assume vector transport is isometric,

i.e., inner product preserving (see Section 2.2.3 for formal definition). Clearly,

parallel transport is an isometric vector transport by definition. Also, there are

many ways to construct isometric vector transport, which we discuss in Section

4.4. In addition, we require the notion of Riemannian PL or gradient domi-

nance condition (introduced in Chapter 2). For better reference, we reiterate the

definition below.

Definition 4.1 (τ-Gradient Dominance). A differentiable function f : M −→ R is

τ-gradient dominated in X ⊂ M if for any x ∈ X , there exists a τ > 0 such that

f (x)− f (x∗) ≤ τ∥grad f (x)∥2
x,

where x∗ = arg minx∈M f (x) is a global minimizer of f .

With a slight abuse of notation. we in general refer to x∗ ∈ M as an optimal
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point within its neighbourhood X , can be either local or global. Only Section 4.7

considers the existence of global minimizer as per Definition 4.1.

Further, this chapter measures algorithm quality by the total IFO complexity

to achieve ϵ-accurate solution, defined as follows.

Definition 4.2 (ϵ-accurate solution and IFO complexity). ϵ-accurate solution from

a stochastic algorithm is an output x with expected gradient norm no larger than

ϵ. That is, E∥grad f (x)∥x ≤ ϵ. Incremental First-Order (IFO) oracle (A. Agarwal

& Bottou, 2015) takes a component index i and a point x ∈ X and outputs an

unbiased stochastic gradient grad fi(x) ∈ TxM. IFO complexity counts the total

number of IFO oracle calls.

Notations. For notational clarity, we omit the subscripts for norm and in-

ner product. Specific indication to the tangent space should be clear from

contexts. Also, we denote [n] := {1, ..., n} and 1{·} as the indicator function.

grad fI(x) := 1
|I| ∑i∈I grad fi(x) is a mini-batch Riemannian stochastic gradient

on TxM, where I ⊂ [n] is an index set with cardinality |I|. When I ≡ [n], we

obtain the full gradient as grad f (x) = 1
n ∑n

i=1 grad fi(x).

4.3 Algorithms

4.3.1 Riemannian SGD and variance reduction

A default solution for optimizing problem (4.1) is to use R-SGD that iteratively

updates

xt+1 = Retrxt

(
− ηt grad fIt(xt)

)
, (4.2)

where ηt > 0 is the stepsize. The updates move along the retraction curve

from current iterate with the direction determined by negative gradient. When

M ≡ Rd, (4.2) reduces to xt+1 = xt − ηt∇ fIt(xt), which is the standard SGD

update in the Euclidean space. Variance reduction techniques leverage previous

77



CHAPTER 4. IMPROVED RIEMANNIAN VARIANCE REDUCTION

gradient information to construct a modified stochastic gradient with variance

that decreases as training progresses.

R-SVRG adopts a double loop structure where, at the start of each epoch (i.e.

outer loop), a snapshot point x̃ is fixed and full gradient is evaluated. Within

each inner iteration, mini-batch stochastic gradients are computed for the cur-

rent iterate xt as well as for the snapshot point. A modified gradient vt at xt is

then constructed as in (4.3) by adjusting deviations according to the difference

between the stochastic gradient and full gradient at x̃. Since Riemannian gradi-

ents of xt and x̃ are defined on disjoint tangent spaces, vector transport is used

to combine gradient information.

vt = grad fIt(xt)− T xt
x̃
(
grad fIt(x̃)− grad f (x̃)

)
. (4.3)

Instead of using gradient information from a distant reference point, R-SRG

recursively modifies stochastic gradients based on the previous iterate. That is,

after computing batch gradient v0 = grad f (x0) on an initial point, a modified

gradient is constructed within each inner loop as

vt = grad fIt(xt)− T xt
xt−1

(
grad fIt(xt−1)− vt−1

)
. (4.4)

This is followed by a standard retraction update xt+1 = Retrxt(−ηtvt). Note

for both R-SVRG (Sato et al., 2019; H. Zhang et al., 2016) and R-SRG (Kasai

et al., 2018b), stochastic gradient grad fit(xt) rather than mini-batch gradient

grad fIt(xt) is considered in (4.3) and (4.4). We show in the analysis sections

that the mini-batch formulation allows more flexible choices of the stepsize and

inner loop size and potentially speeds up the algorithms in distributed settings.

R-SPIDER employs the same recursive gradient estimator as in (4.4). A fun-

damental difference is the use of normalized gradient for its update, which is

given by xt+1 = Retrxt

(
− ηt

vt
∥vt∥
)
. Therefore, it requires a changing stepsize ηt
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proportional to the desired accuracy ϵ and depend on ∥vt∥. Also, R-SPIDER

does not adopt the inner-outer loop framework. This results in distinct con-

vergence analysis that shows progress every iteration by bounding the distance

between consecutive iterates.

4.3.2 Proposed Riemannian variance reduction with batch size

adaptation

In this work, we propose a unified framework motivated by the idea in Ji et al.

(2020), for adapting batch size based on the norm of modified gradients in the

previous epoch. It is believed that the gradient norm decreases as optimization

proceeds and hence is indicative of optimization stages.

Our primary analysis is based on the inner-outer loop formulation of R-SVRG

and R-SRG. For R-SPIDER, we defer its analysis to Appendix because we notice

the use of variable stepsize imposes some difficulties in generalizing this adap-

tive strategy. By assuming a bounded gradient norm, we can similarly prove its

convergence. Nevertheless, the total complexity can be worse than its original

complexity.

The proposed Riemannian adaptive batch-size SVRG (R-AbaSVRG) and SRG

(R-AbaSRG) are shown in Algorithms 1 and 2. Let s and t respectively repre-

sent the outer loop and inner loop index. For each epoch, Bs is set as α1σ2m
∑t ∥vs−1

t ∥2

where α1 is a sufficiently large constant and m, σ2 are the size of inner loop and

the variance of stochastic gradient respectively. As training progresses, Bs would

gradually increase to n under finite-sum setting and to α2σ2/ϵ2 under online set-

ting. Without-replacement sampling is employed to construct batch gradients.

This is to ensure that full batch gradient can be computed under finite-sum set-

ting, thus recovering vanilla R-SVRG and R-SRG. Under online setting, it makes

no theoretical difference between with- and without-replacement sampling as n

approaches infinity. Here we consider setting the initial point (or the reference
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point for R-SVRG) as the last iterate from previous epoch. This is in contrast

to some update rules such as uniform selection in R-SRG (Kasai et al., 2018b)

or Riemannian centroid in R-SVRG (Sato et al., 2019). Especially for R-SRG,

this simple modification allows us to derive double loop convergence, which is

stronger than single loop convergence in Kasai et al. (2018b) under finite-sum

setting (details in Section 4.6).

4.4 Assumptions

We first present three sets of assumptions as follows that are necessary for con-

vergence analysis. Assumption 4.1 is standard for all Riemannian variance re-

duction methods and is sufficient for SRG-type methods. Assumption 4.2 is fur-

ther required for analysing SVRG-type methods and Assumption 4.3 is needed

to establish convergence of R-SVRG under traditional Lyapunov analysis. All as-

sumptions are common in the analysis of optimization algorithms using retrac-

tion and vector transport, see for example W. Huang, Gallivan, & Absil (2015);

Kasai et al. (2018b); Sato et al. (2019); P. Zhou, Yuan, Yan, & Feng (2019).

Assumption 4.1.

(4.1.1) Function f and its components fi, i = 1, ..., n are at least twice continu-

ously differentiable.

(4.1.2) Iterate sequences produced by algorithms stay continuously in a neigh-

bourhood X ⊂ M around an optimal solution x∗. Additionally, X is a

totally retractive neighbourhood of x∗ where retraction Retr is a diffeo-

morphism.

(4.1.3) Norms of Riemannian gradient and Riemannian Hessian are bounded.

That is, for all x ∈ X and any component function fi, there exists con-

stants G, H > 0 where ∥grad fi(x)∥ ≤ G and ∥Hess fi(x)∥ ≤ H hold.
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(4.1.4) Variance of Riemannian gradient is bounded. That is, for all x ∈ X ,

E∥grad fi(x)− grad f (x)∥2 ≤ σ2.

(4.1.5) Function f is retraction L-smooth with respect to retraction R. That is, for

all x, y = Retrx(ξ) ∈ X , there exists a constant L > 0 such that

f (y) ≤ f (x) + ⟨grad f (x), ξ⟩+ L
2
∥ξ∥2.

(4.1.6) Function f is average retraction Ll-Lipschitz. That is, for all x, y ∈ X ,

there exists a constant Ll > 0 such that

E∥grad fi(x)− Γx
ygrad fi(y)∥ ≤ Ll∥ξ∥,

where Γx
y is the parallel transport from y to x along the retraction curve

c(t) := Retrx(tξ) with c(0) = x, c(1) = y.

(4.1.7) (Lemma 3.5 in W. Huang, Gallivan, & Absil (2015)) Difference between

vector transport T and parallel transport Γ associated with the same

retraction Retr is bounded. That is, for all x, y = Retrx(ξ) ∈ X and

u ∈ TxM, there exists a constant θ ≥ 0, such that

∥T y
x u − Γy

xu∥ ≤ θ∥ξ∥∥u∥.

Assumptions (4.1.2) to (4.1.4) clearly hold for compact manifolds, including

sphere, (compact) Stiefel and Grassmann manifolds. For non-compact mani-

folds, like symmetric positive definite (SPD) matrices, the assumptions hold by

choosing a sufficiently small neighbourhood X . Note that Assumption (4.1.4)

is introduced to bound the deviation resulting from inexact batch gradient.

For vanilla R-SRG and R-SVRG, this assumption is not required. Assumption

(4.1.5) generalizes the notion of smoothness in the Euclidean space to Rieman-

nian manifold and is satisfied if d2 f (Retrx(tξ))
dt2 ≤ L for all x ∈ X , ξ ∈ TxM with
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∥ξ∥ = 1 (Kasai et al., 2018b, Lemma 3.5). In a compact set X , we can simply

choose L = supx∈X ,t,ξ
d2 f (Retrx(tξ))

dt2 . Finally, Assumption (4.1.6) and (4.1.7) are

required given we use vector transport to approximate parallel transport. Based

on W. Huang, Absil, & Gallivan (2015); W. Huang, Gallivan, & Absil (2015), these

two assumptions can be derived by requiring the vector transport T to be iso-

metric and satisfy ∥T y
x u − DRetrx(ξ)[u]∥ ≤ c0∥ξ∥∥u∥, where DRetrx(ξ)[u] is the

differentiated retraction. The latter condition is ensured by Taylor approxima-

tion in a compact set X (Kasai et al., 2018b) and the following remark discusses

the condition of isometric vector transport.

Remark 4.1. First we remark that parallel transport trivially satisfies Assumption

(4.1.6) and (4.1.7) with Ll = L and θ = 0. In addition, one can follow W. Huang,

Gallivan, & Absil (2015) to construct other isometric vector transports that meet

these two assumptions. For the manifold of SPD matrices of size d × d, denoted

as Sd
++, an isometric vector transport can be derived by parallelization. That

is, for any X, Y ∈ Sd
++, T Y

X ξ = BYB♭
X¸, where BX ∈ Rd×d is the orthonormal

bases on TXSd
++ and B♭

X : TXSd
++ −→ R such that B♭

XU = ⟨BX, U⟩X. Similar

construction also exists for Stiefel and Grassmann manifolds (W. Huang, 2013).

Assumption 4.2.

(4.2.1) The neighbourhood X is also a totally normal neighbourhood of x∗ where

exponential map is a diffeomorphism.

(4.2.2) (Lemma 3 in W. Huang, Absil, & Gallivan (2015)) There exists µ, ν, δµ,ν >

0 where for all x, y = Retrx(ξ) ∈ X with ∥ξ∥ ≤ δµ,ν, we have ∥ξ∥ ≤

µ d(x, y) and d(x, y) ≤ ν∥ξ∥.

These two assumptions are also standard as in Sato et al. (2019). Assump-

tion (4.2.1) ensures that the Riemannian distance can be expressed in terms of

the inverse exponential map. Assumption (4.2.2) hence relates the exponential

map with the retraction. Indeed, we have ∥Retr−1
x (y)∥ ≤ µ∥Exp−1

x (y)∥ and
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∥Exp−1
x (y)∥ ≤ ν∥Retr−1

x (y)∥. This assumption is also satisfied with X suffi-

ciently small (Ring & Wirth, 2012, Lemma 6).

Assumption 4.3.

(4.3.1) The neighbourhood X is compact with its diameter upper bounded by D,

i.e., maxx,y∈X d(x, y) ≤ D. In addition, X has sectional curvature lower

bounded by κ.

(4.3.2) For all x, y ∈ X , there exists a constant cR > 0 such that ∥Retr−1
x (y) −

Exp−1
x (y)∥ ≤ cR∥Retr−1

x (y)∥2.

Assumption (4.3.1) is required to establish the trigonometric distance bound

(Lemma 4.5), which is an important result for proving convergence for first-

order algorithms (H. Zhang & Sra, 2016). This assumption is natural as for any

compact set on Riemannian manifold, its diameter is upper bounded and the

curvature is both lower and upper bounded. Although Assumption (4.3.2) can

be implied from Assumption (4.2.2) by triangle inequality, we state it separately

because it is a common assumption as in Sato et al. (2019).

Remark 4.2. Assumptions 4.2 and 4.3 can be satisfied by further bounding the

neighbourhood X . These two sets of Assumptions introduce additional con-

straints on exponential map that bound its difference with retraction. This is

because SVRG-type algorithms require tracing the distances between a remote

snapshot point and the iterate sequence, which can only be characterized by the

exponential map. This is in contrast with the recursive gradient estimator that

only depends on successive iterates.
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Algorithm 1: R-AbaSVRG
1: Input: stepsize η, epoch size S, inner loop size m, mini-batch size b,

adaptive batch size parameters α1, α2, β1, initialization x̃0, desired accuracy
ϵ.

2: for s = 1, ..., S do
3: xs

0 = x̃s−1.

4: Bs =

{
min{α1σ2/βs, n}, (finite-sum)
min{α1σ2/βs, α2σ2/ϵ2}, (online)

5: Draw a sample Bs from [n] of size Bs without replacement.
6: vs

0 = grad fBs(xs
0).

7: βs+1 = 0.
8: for t = 0, ..., m − 1 do
9: Draw a sample I s

t from [n] of size b with replacement.
10: vs

t = grad fI s
t
(xs

t)− T xs
t

xs
0

(
grad fI s

t
(xs

0)− vs
0
)
.

11: xs
t+1 = Retrxs

t
(−ηvs

t).
12: βs+1 = βs+1 + ∥vs

t∥2/m.
13: end for
14: x̃s = xs

m.
15: end for
16: Output: x̃ uniformly selected at random from {{xs

t}m−1
t=0 }S

s=1.

4.5 Convergence guarantees for Riemannian SVRG

and AbaSVRG

Riemannian adaptive batch size SVRG is presented in Algorithm 1 where the

batch size Bs is adjusted based on the accumulated gradient information from

last epoch. By simply fixing Bs = n, s = 1, ..., S, Algorithm 1 reduces to the

vanilla R-SVRG under finite-sum setting.

4.5.1 Finite-sum R-SVRG under standard analysis

We first prove nonconvex convergence for finite-sum R-SVRG under standard

Lyapunov analysis, which is currently missing in the literature. Theorem 4.1

generalizes the analysis for exponential map and parallel transport (H. Zhang et

al., 2016, Theorem 2) to the more general retraction and vector transport.

Theorem 4.1. Suppose Assumptions 4.1, 4.2 and 4.3 hold and consider Algorithm 1
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with full batch gradients Bs = n, s = 1, ..., S under finite-sum setting. There ex-

ist some global constants a1, a2, µ0 ∈ (0, 1) and ψ > 0 such that by choosing η =

µ0b
(Ll+θG)µna1 (ζν2+2cRD)a2 , m = ⌊n3/2a1/2bµ0(ζν2 + 2cRD)1−2a2⌋, b ≤ na1 , the output x̃

after running T = Sm iterations satisfies

E∥grad f (x̃)∥2 ≤ (Ll + θG)na1(ζν2 + 2cRD)a2∆
bTψ

,

where ∆ := f (x̃0) − f (x∗), ζ ≥ 1 is a curvature constant defined in Lemma 4.5

(Appendix) along with other parameters defined in the Assumptions. Setting a1 =

2/3, a2 = 1/2, the IFO complexity to achieve ϵ-accurate solution is

O
(

n +
(Ll + θG)(ζν2 + 2cRD)1/2n2/3

ϵ2

)
.

Proof sketch. We first derive bounds on the norm of modified gradients ∥vs
t∥2 and

also on the distance between current iterates and the reference point within an

epoch, d2(xs
t , xs

0). Then we construct a Lyapunov function f (xs
t) + ctd2(xs

t , xs
0).

We therefore can show the norm of gradient at current iterate is upper bounded

by the difference in Lyapunov functions at consecutive iterates. In the process,

the trigonometric distance bound is applied to relate d2(xs
t , xs

0) to d2(xs
t+1, xs

0).

By carefully choosing parameters and managing the coefficients ct, we obtain

the desired result.

Theorem 4.1 is an extension of (H. Zhang et al., 2016, Theorem 2), which is

analyzed with exponential map and parallel transport. Because we use retraction

and vector transport as approximation, more parameters are involved. But if

we choose the special exponential map and parallel transport, the parameters

simplify as Ll = L, θ = 0, ν = 1, cR = 0 and the complexity reduces to O(n +

Ln2/3ζ1/2

ϵ2 ) as in H. Zhang et al. (2016).
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4.5.2 R-AbaSVRG and R-SVRG under new analysis

In this section, we first show convergence and gradient complexity of R-AbaSVRG.

As a corollary, we derive convergence results of vanilla R-SVRG with much sim-

pler analysis. The new formulation also allows analysis of R-SVRG under online

setting, which is to the best of our knowledge, novel on Riemannian manifold.

Define the sigma algebras F s
t := {B1, ..., I1

m−1,B2, ..., I2
m−1, ...,Bs, ..., I s

t−1}. From

Algorithm 1, vs
t−1 and xs

t are measurable in F s
t . Thus, conditional on F s

t , ran-

domness at current iteration t only comes from sampling I s
t or Bs. We first

present a lemma that bounds the estimation error of the SVRG-type modified

gradient vs
t to the full gradient grad f (xs

t).

Lemma 4.1. Suppose Assumptions 4.1 and 4.2 hold and consider Algorithm 1. Then

we have the estimation bound as

E[∥vs
t − grad f (xs

t)∥2|F s
0 ] ≤

t
b
(Ll + θG)2µ2ν2η2

t−1

∑
i=0

E[∥vs
i∥2|F s

0 ] + 1{Bs<n}
σ2

Bs .

Proof sketch. The idea is to first show that E[∥vs
t −grad f (xs

t)∥2|F s
t ] can be bounded

by d2(xs
t , xs

0) and ∥vs
0 − grad f (xs

0)∥2. Then simply applying triangle inequality

recursively along with Assumption (4.2.2), we bound d2(xs
t , xs

0) by O(t ∑t−1
i=0 ∥vs

i∥2).

And E[∥vs
0 − grad f (xs

0)∥2|F s
0 ] are bounded based on Assumption (4.1.4). Then

the law of iterated expectation is applied to complete the proof.

This suggests the deviation of modified gradient vs
t to the full gradient can

be controlled with proper choice of parameters. When choosing Bs = n as in the

vanillas R-SVRG, the second term vanishes and we hence obtain a tighter bound

on the estimation error. Next, based on this lemma, we analyze convergence for

R-AbaSVRG as follows.

Theorem 4.2 (Convergence of R-AbaSVRG). Suppose Assumptions 4.1 and 4.2 hold

and consider Algorithm 1. Choose a fixed stepsize η ≤ 2− 2
α

L+

√
L2+4(1− 1

α )
(Ll+θG)2µ2ν2m2

b

for
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α ≥ 4. Then under both finite-sum and online settings, output x̃ after running T = Sm

iterations satisfies

E∥grad f (x̃)∥2 ≤ 2∆
Tη

+
ϵ2

2
,

where ∆ := f (x̃0)− f (x∗) and ϵ is the desired accuracy.

Proof sketch. The analysis is motivated by Ji et al. (2020). We start with the re-

traction L-smoothness to obtain f (xs
t+1) − f (xs

t) ≤ − η
2∥grad f (xs

t)∥2 + η
2∥vs

t −

grad f (xs
t)∥2 − ( η

2 − Lη2

2 )∥vs
t∥2. This is different to the bound in Ji et al. (2020),

i.e., f (xs
t+1)− f (xs

t) ≤ η
2∥vs

t − grad f (xs
t)∥2 − ( η

2 − Lη2

2 )∥vs
t∥2. Our bound is ap-

parently stronger and we can also directly bound ∥grad f (xs
t)∥2 based on this

inequality. This allows for a simpler proof and a choice of larger stepsize than

Ji et al. (2020). Taking the expectation and applying Lemma 4.1, we can bound

E∥grad f (xs
t)∥2 by cumulative sum of E∥vs

t∥2. Then carefully selecting the pa-

rameters yields the result.

Now we show the gradient complexities of R-AbaSVRG and R-SVRG respec-

tively in Corollary 4.1 and 4.2.

Corollary 4.1 (IFO complexity of R-AbaSVRG). With same Assumptions in Theorem

4.2, choose b = m2, η = 3
2L+2

√
L2+3(Ll+θG)2µ2ν2

(α = 4). Set m = ⌊n1/3⌋ under finite-

sum setting and m = (σ
ϵ )

2/3 under online setting. The IFO complexity of Algorithm 1

to achieve ϵ-accurate solution is given by


O
(

B̃ + Θ1B̃
n1/3ϵ2 +

Θ1n2/3

ϵ2

)
, (finite-sum)

O
( Θ1B̃

σ2/3ϵ4/3 +
Θ1σ4/3

ϵ10/3

)
, (online)

where Θ1 := L +
√

L2 + ϱ1(Ll + θG)2µ2ν2 with ϱ1 > 0 is a constant that does not de-

pend on any parameter. B̃ is the average batch size, i.e., B̃ := 1
S ∑S

s=1 min{α1σ2/βs, n}

under finite-sum setting and B̃ := 1
S ∑S

s=1 min{α1σ2/βs, α2σ2/ϵ2} under online set-

ting.

87



CHAPTER 4. IMPROVED RIEMANNIAN VARIANCE REDUCTION

Corollary 4.2 (Convergence and IFO complexity of R-SVRG under new analysis).

With the same assumptions as in Theorem 4.2 and consider Algorithm 1 with fixed batch

size Bs = B for s = 1, ..., S. Choose a fixed stepsize η ≤ 2

L+

√
L2+4

(Ll+θG)2µ2ν2m2

b

. Output

x̃ after running T = Sm iterations satisfies E∥grad f (x̃)∥2 ≤ 2∆
Tη + 1{B<n}

σ2

B . If we

further choose b = m2, η = 2
L+

√
L2+4(Ll+θG)2µ2ν2

and the following parameters

B = n, m = ⌊n1/3⌋ (finite-sum)

B =
2σ2

ϵ2 , m = (
σ

ϵ
)2/3 (online)

IFO complexity to obtain ϵ-accurate solution is


O
(
n + Θ1n2/3

ϵ2

)
, (finite-sum)

O
(Θ1σ4/3

ϵ10/3

)
, (online)

We first compare the complexities of vanilla R-SVRG under two analysis

frameworks. From Theorem 4.1, the complexity is O(n+ (Ll+θG)(ζν2+2cRD)1/2n2/3

ϵ2 ),

which is the same as O(n + Θ1n2/3

ϵ2 ) in Corollary 4.2 up to a constant.

Remark 4.3. Under standard analysis of Lyapunov function, the complexity is

further controlled by the curvature constant ζ. We note that such constant does

not occur in the complexity with our new analysis. The is because we replace

the bounded curvature assumption, i.e., Assumption (4.3.1) with Assumption

(4.2.2) that relates Riemannian distance to inverse retraction. Thus the curvature

ζ is hidden in the constants µ, ν.

Nevertheless, this leads to much simpler analysis using the triangle inequal-

ity, rather than the complex trigonometric distance bound and the Lyapunov

function. Moreover, such analysis allows insights to be drawn between SVRG

and SRG-type methods under a unified framework (see Section 4.6).

Comparing with R-SD that requires a complexity of O(n + n
ϵ2 ), R-SVRG is
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superior with complexity lower by a factor of O(n1/3). The new analysis also

provides a complexity of O
(Θ1σ4/3

ϵ10/3

)
under online setting, which is the first online

complexity established on SVRG-type methods over Riemannian manifold. This

corresponds to the best known rate O
( 1

ϵ10/3

)
for SVRG-based algorithms on Eu-

clidean space, such as SCSG (Lei et al., 2017) and ProxSVRG+ (Z. Li & Li, 2018).

Compared with the O( 1
ϵ4 ) complexity of R-SGD, R-SVRG under online setting

outperforms R-SGD by a factor of O
( 1

ϵ2/3

)
.

From Theorem 4.2, R-AbaSVRG enjoys the same convergence rate as vanilla

R-SVRG. This shows that the iteration complexities to achieve ϵ-accurate solu-

tion are identical. Therefore with the same choices of parameters, R-AbaSVRG

requires O
(

B̃ + Θ1B̃
n1/3ϵ2 +

Θ1n2/3

ϵ2

)
under finite-sum setting and O

( Θ1B̃
σ2/3ϵ4/3 +

Θ1σ4/3

ϵ10/3

)
under online setting. These complexities can be theoretically much lower than

R-SVRG from the definition of B̃. That is, because B̃ ≤ n under finite-sum set-

ting, the complexity of R-AbaSVRG is at most O
(
n + Θ1n2/3

ϵ2

)
, which matches the

complexity of R-SVRG. Similar argument holds for online setting.

Lastly, we comment on the choice of parameters. Theorem 4.1 suggests a

choice of m = O(n/b) with b ≤ n2/3 while both Corollary 4.1 and 4.2 simply

select b = m2 = n2/3. Similar to Ji et al. (2020), our new analysis does not easily

allow more flexible choices of b and m as we do not construct any nontrivial

auxiliary variable to achieve this purpose.

4.6 Convergence guarantees for Riemannian SRG and

AbaSRG

The key steps of R-AbaSRG in Algorithm 2 are nearly identical to R-AbaSVRG

except that the modified gradient vs
t is constructed recursively from vs

t−1. We

first similarly present a bound on the gradient estimation error for SRG-type

modified gradient.
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Algorithm 2: R-AbaSRG
1: Input: stepsize η, epoch length S, inner loop size m, mini-batch size b,

adaptive batch size parameters α1, α2, β1, initialization x̃0, desired accuracy
ϵ.

2: for s = 1, ..., S do
3: xs

0 = x̃s−1.

4: Bs =

{
min{α1σ2/βs, n}, (finite-sum)
min{α1σ2/βs, α2σ2/ϵ2}, (online)

5: Draw a sample Bs from [n] of size Bs without replacement.
6: vs

0 = grad fBs(xs
0).

7: xs
1 = Retrxs

0
(−η vs

0).
8: βs+1 = ∥vs

0∥2/m.
9: for t = 1, ..., m − 1 do

10: Draw a sample I s
t from [n] of size b with replacement.

11: vs
t = grad fI s

t
(xs

t)− T xs
t

xs
t−1

(
grad fI s

t
(xs

t−1)− vs
t−1
)
.

12: xs
t+1 = Retrxs

t
(−η vs

t).
13: βs+1 = βs+1 + ∥vs

t∥2/m.
14: end for
15: x̃s = xs

m.
16: end for
17: Output: x̃ uniformly selected at random from {{xs

t}m−1
t=0 }S

s=1.

Lemma 4.2. Suppose Assumption 4.1 hold and consider Algorithm 2. Then we obtain

the estimation bound as

E[∥vs
t − grad f (xs

t)∥2|F s
0 ] ≤

(Ll + θG)2η2

b

t

∑
i=0

E[∥vs
i∥2|F s

0 ] + 1{Bs<n}
σ2

Bs .

Proof sketch. We first bound E[∥vs
t − grad f (xs

t)∥2|F s
t ] by ∥vs

t−1∥2 and ∥vs
t−1 −

grad f (xs
t−1)∥2. Applying the bound recursively with proper conditioning yields

the result.

Compared with Lemma 4.1, the bound for SRG-type gradient is tighter than

SVRG-type gradient as the first term on the right hand side is smaller by a factor

of O(t). This is because the use of recursive gradients does not accumulate

errors, in contrast to using gradients of a distant reference point. Next, we prove

convergence and complexity results for R-SRG and R-AbaSRG.
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Theorem 4.3 (Convergence of R-AbaSRG). Suppose Assumption 4.1 holds and con-

sider Algorithm 2. Choose a fixed stepsize η ≤ 2− 2
α

L+

√
L2+4(1− 1

α )
(Ll+θG)2m

b

for α ≥ 4. Then

under both finite-sum and online setting, output x̃ after running T = Sm iterations

satisfies E∥grad f (x̃)∥2 ≤ 2∆
Tη + ϵ2

2 .

Corollary 4.3 (IFO complexity of R-AbaSRG). With the same Assumptions and set-

tings in Theorem 4.3, choose b = m, η = 3
2L+2

√
L2+3(Ll+θG)2

(α = 4). Set m = ⌊n1/2⌋

under finite-sum setting and m = σ
ϵ under online setting. The IFO complexity of Algo-

rithm 1 to obtain ϵ-accurate solution is
O
(

B̃ + Θ2B̃√
nϵ2 +

Θ2
√

n
ϵ2

)
, (finite-sum)

O
(Θ2B̃

σϵ + Θ2σ
ϵ3

)
, (online)

where Θ2 := L +
√

L2 + ϱ2(Ll + θG)2 with ϱ2 > 0 independent of any parameter. B̃

is the same average batch size defined in Corollary 4.1.

Corollary 4.4 (Double-loop convergence and IFO complexity of R-SRG). With

the same assumptions in Theorem 4.3 and consider Algorithm 2 with fixed batch size

Bs = B, for s = 1, ..., S. Consider a stepsize η ≤ 2

L+

√
L2+4

(Ll+θG)2m
b

. After running

T = Sm iterations, output x̃ satisfies E∥grad f (x̃)∥2 ≤ 2∆
Tη + 1{B<n}

σ2

B . If we further

choose b = m, η = 2
L+

√
L2+4(Ll+θG)2

and following parameters

B = n, m = ⌊n1/2⌋, (finite-sum)

B =
2σ2

ϵ2 , m =
σ

ϵ
, (online)

IFO complexity to obtain ϵ-accurate solution is


O
(
n + Θ2

√
n

ϵ2

)
, (finite-sum)

O
(Θ2σ

ϵ3

)
, (online)
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We first compare Corollary 4.4 with the existing complexity result on R-SRG.

In Kasai et al. (2018b), they only prove single-loop convergence for R-SRG under

finite-sum setting where x̃s for the next epoch is uniformly chosen from iterates

within the current epoch. This leads to a complexity of O(n + Θ2

ϵ4 ), with Θ :=

max{L,
√

L2
l + θ2G2}. However, this is suboptimal when n ≤ O( 1

ϵ4 ). Indeed,

under such condition, the optimal complexity has been proved to be O(n + L
√

n
ϵ2 )

in the Euclidean space (Fang et al., 2018). By simply choosing x̃s as the last

iterate of current epoch, we prove double-loop convergence for R-SRG with a

complexity of O(n + Θ2
√

n
ϵ2 ), matching the lower bound up to some constants.

Furthermore, we prove the first online complexity for R-SRG, which is O(Θ2σ
ϵ3 ).

The complexity of O(ϵ−3) has been recently proved to be optimal for online op-

timization in the Euclidean space (Arjevani et al., 2023). Thus, R-SRG achieves

the optimal complexity under both finite-sum and online settings.

Remark 4.4 (Comparison to R-SPIDER). R-SPIDER (J. Zhang et al., 2018; P. Zhou,

Yuan, Yan, & Feng, 2019) also achieves the same optimal complexities as in

Corollary 4.4. Nevertheless, R-SPIDER bears high relevance to R-SRG. In fact,

the only key difference of R-SPIDER is to normalize gradient vs
t before tak-

ing a retraction step. Therefore, by selecting a small stepsize η = O( ϵ
L ), they

can bound distances between successive iterates d(xt, xt+1) by a small quantity

O(ϵ). Also, we highlight that our result is stronger than P. Zhou, Yuan, Yan,

& Feng (2019) because the output x̃ satisfies E∥grad f (x̃)∥2 ≤ ϵ2, which implies

E∥grad f (x̃)∥ ≤ ϵ (Definition 4.2 of ϵ-accurate solution) by Jensen’s inequality.

The latter is considered and analyzed in P. Zhou, Yuan, Yan, & Feng (2019).

Corollary 4.4 suggests the gradient normalization in R-SPIDER is non-essential

for acceleration. Similar claims are also made in Z. Wang, Ji, et al. (2019). Thus

we note that R-SPIDER is equivalent to R-SRG with a variable stepsize η/∥vs
t∥.

But in practical settings, R-SRG has an advantage of using a large and fixed

stepsize. More discussions are in Section 4.8.
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Comparing with R-SVRG, R-SRG strictly improves on the complexity by a

factor of O(n1/6) under finite-sum setting and O
(
(σ

ϵ )
1/3) under online setting.

Similar to R-AbaSVRG, R-AbaSRG maintains the same iteration complexity as

R-SRG and thus with the same choices of inner loop size m and mini batch size

b, ϵ-accurate solution can be returned with potentially much lower total IFO

complexity.

Lastly, the strict parameter choices, b = m =
√

n are unnecessary to achieve

the optimal rate. That is, consider R-SRG under finite-sum setting with the

choice mb = n. From the proof of Corollary 4.4, the number of epochs required

to achieve ϵ-accurate solution is S = 2∆
mηϵ2 =

L+
√

L2+4(Ll+θG)2 m
b

mϵ2 ≤
2L

√
1+4

(Ll+θG)2m
L2b

mϵ2 .

Then total IFO complexity is given by S(n + 2mb) ≤ n +
6L

√
b2+4

(Ll+θG)2n
L2

ϵ2 . Hence

as long as b ≤
√

n, total complexity is at most O(n +
√

n
ϵ2 ) ignoring constants.

This suggests that we can freely choose b ∈ [1,
√

n] and m ∈ [
√

n, n] as long as

mb = n. stepsize can also be selected larger when choosing a larger mini-batch

size. We remark that the total complexity does not improve for larger mini-batch

size. But it potentially provides linear speedups in distributed systems where b

stochastic gradients are computed in parallel (Goyal et al., 2017).

4.7 Convergence under gradient dominance

As an important class of nonconvex functions, gradient dominated functions

(Definition 4.1) assume existence of a global solution x∗ where function value

difference of any point to x∗ is upper bounded by its gradient. This condition

allows linear convergence to be established for nonconvex functions. It is worth

noticing that retraction ς-strongly convex function is 1
2ς -gradient dominated.1

Common strategy of adapting variance reduction methods to gradient dom-

inance condition is by restarting (H. Zhang et al., 2016; J. Zhang et al., 2018). We

1Proof of this claim can be seen in (H. Zhang et al., 2016, Corollary 5). Retraction ς-strongly
convex f satisfies f (y) ≥ f (x) + ⟨grad f (x), ξ⟩+ ς

2∥ξ∥2, for all x, y = Rx(ξ) ∈ M.
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Algorithm 3: R-GD-VR
1: Input: Initial accuracy ϵ0 and desired accuracy ϵ, initialization x0.
2: for k = 1, ..., K do
3: ϵk =

ϵk−1
2 and set other parameters (args) according to the solver choice.

4: (R-SVRG): xk = R-AbaSVRG(xk−1, ϵk, Bk, args)
5: (R-AbaSVRG): xk = R-AbaSVRG(xk−1, ϵk, args)
6: (R-SRG): xk = R-AbaSRG(xk−1, ϵk, Bk, args)
7: (R-AbaSRG): xk = R-AbaSRG(xk−1, ϵk, args)
8: end for
9: Output: xK.

hence provide a unified framework in Algorithm 3. For vanilla R-SVRG and R-

SRG, we consider Algorithm 1 and 2 respectively with batch size Bk = n under

finite-sum setting and Bk =
2σ2

ϵ2
k

.

The idea is to gradually shrink the desired accuracy at each mega epoch, thus

requiring increasing number of iterations Sk. By running sufficient number of

mega epochs, output xK is guaranteed to be ϵ-accurate. We first show the lin-

ear convergence for any variance reduction method under gradient dominance

condition.

Theorem 4.4. Suppose Assumptions 4.1 and 4.2 hold and suppose function f is τ-

gradient dominated. Consider Algorithm 3 with any solver and choose appropriate

parameters to return ϵk-accurate solution. Then at mega epoch k, iterate xk satisfies

E∥grad f (xk)∥ ≤ ϵ0
2k and E[ f (xk)− f (x∗)] ≤ τϵ2

0
4k .

Based on this result, we show the IFO complexities of R-AbaSVRG, R-SVRG

in Corollary 4.5 and R-AbaSRG and R-SRG in Corollary 4.6.

Corollary 4.5 (Complexities of R-AbaSVRG and R-SVRG). Consider R-AbaSVRG

solver with the following parameters at each mega epoch. η = 3
2L+2

√
L2+3(Ll+θG)2µ2ν2

,

bk = m2
k, where mk = ⌊n1/3⌋ under finite-sum setting and mk = ( σ

ϵk
)2/3 under online
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setting. To achieve ϵ-accurate solution, it requires IFO complexity of


O
(

∑K
k=1 B̃k(1 +

Θ1τ
n1/3 ) + (Θ1n2/3τ) log(1

ϵ )
)
, (finite-sum)

O
(Θ1τ ∑K

k=1 B̃kϵ2/3
k

σ2/3 + Θ1τσ4/3

ϵ4/3

)
, (online)

where the average batch size at mega epoch k is B̃k := 1
Sk

∑Sk
s=1 min{α1σ2/βs, n} under

finite-sum setting and B̃k := 1
Sk

∑Sk
s=1 min{α1σ2/βs, α2σ2/ϵ2

k} under online setting.

Consider R-SVRG solver with the same parameters except for η = 2
L+

√
L2+4(Ll+θG)2µ2ν2)

and Bk = n under finite-sum setting and Bk = 2σ2

ϵ2
k

under online setting. To achieve

ϵ-accurate solution, it requires IFO complexity of


O
(
(n + Θ1τn2/3) log(1

ϵ )
)
, (finite-sum)

O
(Θ1τσ4/3

ϵ4/3

)
, (online)

Corollary 4.6 (Complexities of R-AbaSRG and R-SRG). Consider R-AbaSRG solver

with η = 3
2L+2

√
L2+3(Ll+θG)2

, bk = mk where mk = ⌊n1/2⌋ under finite-sum setting

and mk = σ
ϵk

under online setting. To achieve ϵ-accurate solution, it requires IFO

complexity of


O
(

∑K
k=1 B̃k(1 +

Θ2τ
n1/2 ) + (Θ2n1/2τ) log(1

ϵ )
)
, (finite-sum)

O
(Θ2τ ∑K

k=1 B̃kϵk
σ + Θ2τσ

ϵ

)
, (online)

Consider R-SRG solver with the same parameters except for η = 2
L+

√
L2+4(Ll+θG)2

and Bk = n under finite-sum setting and Bk = 2σ2

ϵ2
k

under online setting. To achieve

ϵ-accurate solution, it requires IFO complexity of


O
(
(n + Θ2τn1/2) log(1

ϵ )
)
, (finite-sum)

O
(Θ2τσ

ϵ

)
, (online)

Apart from the results, we also prove in Appendix that under gradient domi-
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nance condition, R-SD requires a complexity of O
(
(n + Lτn) log(1

ϵ )
)

and R-SGD

requires O
( LG2

ϵ2

)
. These results are consistent with the results established in the

Euclidean space (Polyak, 1963; Karimi et al., 2016).

Compared with R-SD and R-SGD, R-SVRG requires fewer gradient queries,

with a factor of O(n1/3) lower than R-SD and a factor of O
( 1

ϵ2/3

)
lower than R-

SGD. R-SRG further improves on the complexities by O(n1/6) and O
( 1

ϵ1/3

)
under

finite-sum and online settings respectively.

Similar to the general nonconvex case, these results can be further improved

by batch size adaptation. For example, consider R-AbaSVRG under finite-sum

setting with complexity given by O
(

∑K
k=1 B̃k(1 + Θ1τ

n1/3 ) + (Θ1n2/3τ) log(1
ϵ )
)
. By

definition, ∑K
k=1 B̃k(1 + Θ1τ

n1/3 ) ≤ ∑K
k=1 n(1 + Θ1τ

n1/3 ) = (n + Θ1n2/3τ) log(1
ϵ ). Hence

the complexity is at worst the same as the vanilla R-SVRG, which is O
(
(n +

Θ1n2/3τ) log(1
ϵ )
)
. These arguments also hold for R-AbaSRG and online setting.

Existing result (Kasai et al., 2018b) shows that R-SRG under gradient domi-

nance condition requires a complexity of O
(
(n + τ2Θ2) log( 1

ϵ2 )
)
. This is because

the inner-loop convergence does not require restarting the algorithm and simply

running O
(

log( 1
ϵ2 )
)

outer iterations is sufficient to achieve linear convergence.

Comparing with the rate of O
(
(n + Θ2τn1/2) log(1

ϵ )
)

under the current analysis,

we again highlight a trade-off between the sample size and the desired accuracy.

When n is small relative to ϵ, our rate is superior. The complexity we prove for

R-SRG matches that of R-SPIDER (P. Zhou, Yuan, Yan, & Feng, 2019) up to some

constants.

Finally, we comment on the convergence under strongly convex functions in

Remark 4.5, and also discuss the convergence under the more restricted expo-

nential map and parallel transport in Remark 4.6.

Remark 4.5 (Convergence under strongly convex functions). The results in this

section can be readily extended for the retraction strongly convex functions, a

special instance of gradient dominated functions. For example, under finite-sum
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setting, suppose f is retraction ς-strongly convex, R-SVRG requires a complex-

ity of O
(
(n + Θ1ς−1n2/3) log(1

ϵ )
)

and R-SRG requires a complexity of O
(
(n +

Θ2ς−1n1/2) log(1
ϵ )
)
.

Remark 4.6 (Convergence under exponential map and parallel transport). Our

analysis of retraction and vector transport easily adapts to the exponential map

and parallel transport for both general nonconvex and gradient dominated func-

tions. That is, we can simply replace the assumptions of retraction L-smooth

and Ll-Lipschitz by geodesic L-smoothness and L-Lipschitzness (H. Zhang et

al., 2016). Therefore, Θ1, Θ2 reduce to L as θ = 0, µ = ν = 1. See table 4.1 for

comparisons. In general, Θ1, Θ2 > L and hence the complexity bounds become

tighter under the exponential map and parallel transport. The improvement on

the complexity however, does not bring practical advantages due to the expen-

sive computation of the operations (P. Zhou, Yuan, Yan, & Feng, 2019).

Note that the curvature constant ζ that appears in the standard complex-

ity results of R-SVRG does not occur under the new analysis. In addition, the

constants µ, ν (regulated by the curvature) also vanish when considering the

exponential map and parallel transport. This leads to improved complexity

bounds that are curvature-free, which are the first such results to the best of

our knowledge. However, whether the curvature affects the convergence rate of

Riemannian optimization remains an open question. Similar discussions in this

regard can be found in Criscitiello & Boumal (2019).

4.8 Experiments

This section empirically evaluates batch size adaptation on variance reduction

algorithms over a number of tasks. To make a comparison with some first-

order baseline methods, we also include results from R-SD, R-SGD as well as

the Riemannian conjugate gradient (R-CG) (Absil et al., 2009). Except for R-
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Figure 4.1: PCA problem on Grassmann manifold

SD and R-CG that have inbuilt line search algorithm, all other methods require

fine-tuning stepsize. For simplicity, we consider a fixed stepsize η for SVRG

and SRG based methods. Following Kasai et al. (2018b); P. Zhou, Yuan, Yan, &

Feng (2019), we set a decaying stepsize for R-SGD, i.e., ηk = η(1 + ηληk) and

an adaptive stepsize for R-SPIDER, i.e., ηk = α
⌊k/p⌋
η · βη where k is the iteration

index and p is the batch gradient frequency for R-SPIDER.

Remark 4.7 (Stepsize of R-SPIDER). In theory, R-SPIDER requires a small step-

size proportional to desired accuracy (J. Zhang et al., 2018; P. Zhou, Yuan, Yan, &

Feng, 2019). Such choice of stepsize empirically slows down convergence partic-

ularly for initial epochs where gradient is large. The adaptive stepsize generally

performs better, as seen from P. Zhou, Yuan, Yan, & Feng (2019).

Some global parameter settings are as follows. For variance reduction meth-

ods and their adaptive batch size versions, we set inner loop size m, mini-batch

size b and batch gradient frequency p to be m = b = p =
√

n, in accordance with
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Figure 4.2: Additional PCA results on Syn dataset

theory. We set λη = 0.01 for R-SGD and select αη from {0.1, 0.2, ..., 0.8, 0.85, 0.9, 0.95, 0.99}

and βη from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} for R-SPIDER. This search grid is

more extensive than the one adopted in P. Zhou, Yuan, Yan, & Feng (2019) as

we found for some applications, a smaller search grid is unable to ensure con-

vergence. We set adaptive batch size Bs = min{n, cβ/βs}, s > 1. Initial batch

size B1 is set to be 50 and therefore we only need to tune cβ. To achieve fairness

in comparisons, we first tune stepsize η on vanilla variance reduction methods.

Then the best tuned η is fixed for their adaptive versions, where cβ is tuned

accordingly. We select η from {1, 2, ..., 9} × 10q and cβ from {1, 3, ..., 15} × 10l,

where q, l are to be determined for each problem.

Practical implementation of batch size adaptation. On Riemannian manifolds,

due to the error caused by vector transport, inexact batch gradients at initial

epochs can further deviate when inner loop size m is large. Hence practically,

we set ms = min{Bs,
√

n}. Also, mini-batch size is set to be bs = min{Bs,
√

n}

because it is unreasonable for batch gradient to be less exact than mini-batch

gradients.

All experiments are coded in Matlab based on the ManOpt package (Boumal

et al., 2014) on a i5-8600 3.1GHz CPU processor. The codes are available on

https://github.com/andyjm3/R-AbaVR.
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Figure 4.3: LRMC problem on Grassmann manifold
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Figure 4.4: RKM problem on SPD manifold

4.8.1 PCA and LRMC on Grassmann manifold

We first consider principal component analysis (PCA) and low rank matrix com-

pletion (LRMC) over the set of subspaces, which is often identified as the Grass-

mann manifold.

Preliminaries on Grassmann manifold. Grassmann manifold G(r, d), is the

set of r-dimensional subspaces in Rd (r ≤ d). Points on Grassmann manifold

are equivalence classes of column orthonormal matrices under the orthogonal

group O(r). That is, a point on Grassmann manifold can be represented by a

column orthonormal matrix U ∈ Rd×r such that U⊤U = Ir and any point is

deemed equivalent to U if they can be represented as UR for any R ∈ O(r).

Recall that Stiefel manifold St(r, d) is the set of column orthonormal matrices in

Rd×r. Grassmann manifold can be identified as a quotient manifold of Stiefel
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manifold, written as St(r, d)/O(r).

To satisfy the assumptions, we consider the polar-based retraction, which

is commonly used for Riemannian optimization (P. Zhou, Yuan, Yan, & Feng,

2019; Boumal et al., 2014; Absil et al., 2009). That is, RX(V) = pf(X + V), where

pf extracts the polar factor from polar decomposition. The inverse retraction

is R−1
X (Y) = Y(X⊤Y)−1 − X. The associated vector transport is the orthogonal

projection to the horizontal space, i.e. T Y
X (V) = (I − YY⊤)V. However, such

vector transport is not isometric. Following Remark 4.1, one can construct iso-

metric vector transport that involves singular value decomposition (W. Huang,

2013), which can be expensive. Nevertheless, from the experiments, the use of

non-isometric vector transport appears to work well.

The PCA problem

The PCA problem considers minimizing reconstruction error between projected

and original samples over the set of orthonormal projection matrices U ∈ St(r, d),

which is minU∈St(r,d)
1
n ∑n

i=1 ∥xi − UU⊤xi∥2, where xi ∈ Rd, i = 1, ..., n repre-

sent data samples. Note the objective function is invariant under the action

of orthogonal group. That is, f (U) = f (UR) for R ∈ O(r). Thus, the opti-

mization search space is Grassmann manifold and the problem is equivalent to

minU∈G(r,d) − 1
n ∑n

i=1 x⊤i UU⊤xi.

We first consider a synthetic dataset with (n, d, r) = (105, 200, 5), which is

generated by a random normal matrix in Rn×d with r significant columns. Then

we also experiment on two practical datasets, MNIST dataset (LeCun et al., 1998)

with (n, d, r) = (60000, 784, 5) and ijcnn1 dataset from LibSVM (Chang & Lin,

2011) with (n, d, r) = (49990, 22, 5). We set q = −3, l = 5 for synthetic and

MNIST datasets and q = −1, l = 2 for ijcnn. Fig. 4.1 presents convergence re-

sults for the PCA problem in terms of both optimality gap and gradient norm.

Optimality gap is computed as the function value difference between iterates to
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the optimal point, returned by the pca function in Matlab. From the figures, it

is clear that variance reduction with batch size adaptation outperforms their full

batch size versions, especially on large datasets like synthetic and MNIST. Due

to small batch size in the initial epochs, R-AbaSVRG and R-AbaSRG behave sim-

ilarly to R-SGD with rapid function value decrease, while still maintaining fast

convergence around optimal point due to variance reduction. similar observa-

tions can be made in terms of gradient norm decrease. Fig. 4.2 shows additional

results on synthetic dataset. Specifically, Fig. 4.2a illustrates how optimality

gap decreases with algorithm runtime, which aligns closely with Fig. 4.1a. This

suggests the additional cost of tracing gradient norm within each epoch is neg-

ligible. Also from Fig. 4.2b, 4.2c, we find that R-AbaSVRG and R-AbaSRG are

insensitive to the parameter cβ as long as it is sufficiently large.

The LRMC problem

Given a matrix A ∈ Rd×n with missing entries, the LRMC problem aims to re-

cover the full matrix by assuming a low rank structure. Denote Ω as an index set

corresponding to observed entries and PΩ as an operator that projects the known

entries. Formally, Ω := {(i, j) | Aij is observed }. PΩ(Aij) = Aij if (i, j) ∈ Ω and

PΩ(Aij) = 0 otherwise. Then the problem is to minU,V ∥PΩ(A) − PΩ(UV)∥2,

with U ∈ Rd×r, V ∈ Rr×n. Since the factorization into U, V is not unique and

depends only on the column space of U, the problem is defined on Grassmann

manifold G(r, d). Denote a1, ..., an as column vectors of A and PΩi , i = 1, ..., n as

the corresponding projection for the i-th column. We can reformulate LRMC into

minU∈G(r,d),vi∈Rr
1
n ∑n

i=1 ∥PΩi(ai) − PΩi(Uvi)∥2. Note given U, vi has a closed

form solution given by the least square.

A baseline dataset with n = 20000, d = 100, r = 5 is generated similarly as in

Kasai et al. (2018a). We set condition number of the generated matrix as cn = 50,

Oversampling ratio is set as os = 8, which determines the number of known

102



CHAPTER 4. IMPROVED RIEMANNIAN VARIANCE REDUCTION

entries given by os× (n+ d− r)r. The known entries are subsequently perturbed

by injecting Gaussian noise with a noise level ε = 10−10. In general, the larger

the condition number, the smaller the oversampling ratio, the higher the noise

level, the more difficult the LRMC problem is. In addition, we consider two

movie recommendation datasets as follows. Netflix prize (Bennett & Lanning,

2007) contains over 100 million movie ratings, which are integers from 1 to 5. We

first choose a random subset of 10 million instances and subsequently include

movies and users with more than 100 observed entries. This leaves 1372 movies

(n) rated by 13088 users (d). Movielens-1M (Harper & Konstan, 2015) is a dataset

with 6040 users (d) and 3706 movies (n). For these two datasets, we randomly

extract 20 ratings per user as test sets, which results in 15% and 12% of total

observed entries for testing. We set q = −2,−5,−5, l = 2, 8, 8 for synthetic,

Netflix and Movielens datasets respectively.

Fig. 4.3 presents test mean square error (MSE) on three datasets. We include

training MSE results in the Appendix, which display similar patterns. From Fig.

4.3, we see that batch size adaptation accelerates variance reduction methods

particularly for the first few epochs and thus perform no worse than their vanilla

versions.

4.8.2 RKM on SPD manifold

We also consider the task of computing Riemannian Karcher mean (RKM) on

d × d symmetric positive definite (SPD) manifold Sd
++. Given n sample points

X1, ..., Xn ∈ Sd
++, Riemannian Karcher mean with respect to the affine-invariant

Riemannian metric (AIRM) (Pennec et al., 2006), involves solving the problem

minC∈Sd
++

1
n ∑n

i=1 ∥ log(C−1/2XiC−1/2)∥2
F, where log(·) represents the principal

matrix logarithm.

We follow Kasai et al. (2018b); Jeuris et al. (2012) to use an efficient retraction,

RX(V) = X + V + 1
2 VX−1V along with the isometric vector transport in Remark
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4.1 that satisfies the assumptions.

We first test on a synthetic dataset with (n, d, cn) = (5000, 10, 20) generated

as in (Bini & Iannazzo, 2013). In addition, we compare algorithms on Extended

Yale B dataset (Wright et al., 2008) that collects 2414 (n) frontal face images

of 38 individuals under various lighting conditions and Kylberg dataset (Kyl-

berg, 2011) that contains 4480 (n) images of 28 different texture classes. Original

images are resized to 32 × 32 pixels and region covariance descriptors are con-

structed for each image. Particularly, we generate 8-dimensional feature vectors

consisting of pixel locations, intensity, first- and second-order pixel gradients

and edge orientation at each pixel location (Pang et al., 2008). As a result, we

obtain n 8 × 8 SPD matrices for which we calculate Riemannian Karcher mean.

For all datasets, we set q = −2, l = 5. The optimal solution is obtained by the

relaxed Richardson iteration (Bini & Iannazzo, 2013). From Fig. 4.4, we observe

that R-AbaSVRG and R-AbaSRG still perform better compared to R-SVRG and

R-SRG. The improvement is not as significant as in the PCA and LRMC problem

because all methods converge rapidly and therefore batch size adaptation only

takes place in the first epoch.

4.8.3 Additional experiment results

To further evaluate sensitivity of batch size adaptation, we also include results on

synthetic datasets with different characteristics in Appendix 4.F for all three ap-

plications, such as large-scale, high-dimension, high-rank, ill-conditioning. We

find in general, R-AbaSVRG and R-AbaSRG are insensitive when characteristics

of dataset vary and perform comparatively better across all methods considered.

At last, we empirically compare R-SRG and R-SPIDER with matching com-

plexities. We notice a similar performance for PCA and LRMC problem while

R-SPIDER fails on RKM problem. One reason is that the search grid might not be

extensive enough to reflect the best performance of R-SPIDER. For more difficult
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LRMC problems, we find that R-SPIDER can converge faster near optimal point

(Appendix 4.F). This is reasonable as gradient normalization allows magnitude

of each step to be dictated precisely by the adaptive stepsize, which gives more

flexibility than fixed stepsize. However, it also requires more effort in tuning two

stepsize parameters αη, βη, which poses difficulty particularly for large datasets

in high dimensions.

4.9 Discussions

In this chapter, we show that the batch size adaption can improve the complex-

ity bounds and empirically accelerate the convergence of vanilla Riemannian

variance reduction methods. Additionally, we show that the unified framework

allows convergence analysis to be simplified and improved for vanilla R-SVRG

and R-SRG.

In the Euclidean space, variance reduction has shown its popularity, not

only for general smooth problems, but also for nonsmooth optimization (Z. Li

& Li, 2018; Reddi, Sra, Poczos, & Smola, 2016; Pham et al., 2020), convex-

constrained optimization (Reddi, Sra, Póczos, & Smola, 2016; Yurtsever et al.,

2019), derivative-free optimization (S. Liu et al., 2018; Ji et al., 2019), composi-

tional optimization (Lian et al., 2017; Yu & Huang, 2017), to name a few. In

addition, variance reduction also improves the convergence of stochastic quasi-

Newton methods (Moritz et al., 2016; X. Wang et al., 2017) and even second-order

optimization algorithms (Shen et al., 2019; Z. Wang, Zhou, et al., 2019).

On the manifold space however, only a few studies consider extending Rie-

mannian variance reduction to the broader settings. For nonsmooth optimiza-

tion, Riemannian stochastic proximal gradient method with recursive variance

reduction is proposed on Stiefel manifold (B. Wang et al., 2022). In Weber & Sra

(2019), Riemannian stochastic Frank-Wolfe is introduced for constrained Rie-

mannian optimization where the constrained set is geodesically convex. Other
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works also incorporate variance reduction for Quasi-Newton (Kasai et al., 2018a)

and cubic-regularized Newton method (D. Zhang & Tajbakhsh, 2020) on Rie-

mannian manifold.

For all the aforementioned Riemannian variance reduction methods, we be-

lieve the proposed framework is helpful for further accelerating the convergence.

To validate such claim, we show in Appendix that batch size adaptation simi-

larly improves on the complexity of Riemannian proximal stochastic recursive

gradient (B. Wang et al., 2022) for nonsmooth composite optimization. The batch

size is however adapted based on the norm of the generalized gradient defined

by the Riemannian proximal mapping.

Furthermore, with the new analysis in this chapter, we suspect that vari-

ance reduction methods (in different settings) can be more easily generalized

to Riemannian manifold with simplified analysis. Particularly, In D. Zhang

& Tajbakhsh (2020) where SVRG-based variance reduction is considered, the

analysis is curvature-dependent and involves the trigonometric distance bound.

This can be potentially simplified under the proposed framework and derive

curvature-free bounds.
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Appendices

The appendix sections are structured as follows. Section 4.A presents several

lemmas used widely for the subsequent proofs. Section 4.B derives the conver-

gence and complexity of R-SVRG under classic Lyapunov analysis. Section 4.C

proves convergence of R-AbaSVRG and R-SVRG under the unified framework.

Section 4.D proves convergence of R-AbaSRG and R-SRG. Section 4.E analyzes

existing algorithms under gradient dominance condition. Section 4.F include ad-

dition experiment results. Finally Section 4.G proposes and analyzes batch size

adaptation for nonsmooth composite optimization on Riemannian manifolds.

4.A Useful lemmas

Lemma 4.3 (Variance bound for sampling without replacement). Consider a set of

population vectors {x1, ..., xN} in RD with ∑N
i=1 xi = 0, and a subset I of cardinality

b, which is uniformly drawn at random from [N] without replacement. Then

EI∥
1
b ∑

i∈I
xi∥2 ≤ 1

Nb
N − b
N − 1

N

∑
i=1

∥xi∥2.

Proof. See Lemma A.1 in (Lei et al., 2017).

Lemma 4.4 (Retraction Lipschitzness with vector transport). Suppose f is average

retraction Ll-Lipschitz as in Assumption (4.1.6) and norm of gradient is bounded by

G. Also suppose difference between parallel transport Γx
y and vector transport T x

y under
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same retraction is bounded as in Assumption (4.1.7). Then for all x, y = Retrx(ξ) ∈ X ,

E∥grad fi(x)− T x
y grad fi(y)∥ ≤ (Ll + θG)∥ξ∥,

where expectation is taken with respect to index i and θ is parameter defined in Assump-

tion (4.1.7).

Proof.

E∥grad fi(x)− T x
y grad fi(y)∥

= E∥grad fi(x)− Γx
ygrad fi(y) + Γx

ygrad fi(y)− T x
y grad fi(y)∥

≤ E∥grad fi(x)− Γx
ygrad fi(y)∥+ E∥Γx

ygrad fi(y)− T x
y grad fi(y)∥

≤ Ll∥ξ∥+ θ∥ξ∥E∥grad fi(y)∥

≤ (Ll + θG)∥ξ∥,

where the first inequality is by triangle inequality and the last two inequalities

follow from Assumptions (1.6) and (1.7) and the bounded gradient.

4.B Proof of Theorem 4.1

The proofs in this section are inspired by Reddi, Hefny, et al. (2016); H. Zhang

et al. (2016). We first present the trigonometric distance bound (H. Zhang & Sra,

2016) that extends law of cosines on Euclidean space to Riemannian manifold

with bounded sectional curvature. Next we show that the norm of gradient

is bounded by difference in a properly constructed Lyapunov function. Then

telescoping this result completes the proof.

Lemma 4.5 (Trigonometric distance bound). If a, b, c are side lengths of a geodesic

triangle in a length space with curvature lower bounded by κ, and θ is the angle between
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sides b and c,

a2 ≤
√
|κ|c

tanh(
√
|κ|c)

b2 + c2 − 2bc cos(θ).

Assume Assumption 4.3 holds and define the following curvature constant

ζ :=


√

|κ|D
tanh(

√
|κ|D)

, if κ < 0

1, if κ ≥ 0

where D is the diameter of compact set X . Then for a, b, c as side lengths of a geodesic

triangle in X ,

a2 ≤ ζb2 + c2 − 2bc cos(θ).

Proof. See Lemma 5 in H. Zhang & Sra (2016).

Lemma 4.6. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Let

ct = ct+1 + ct+1ηλ + ct+1
(ζν2 + 2cRD)(Ll + θG)2µ2η2

b
+

L(Ll + θG)2µ2η2

2b
,

δt = η − ct+1η

λ
− Lη2

2
− ct+1(ζν2 + 2cRD)η2.

Suppose we choose {ct}, η and λ > 0 such that δt > 0. Then iterate sequence {xs
t}

produced by Algorithm 1 with full batch gradient Bs = n satisfies

∥grad f (xs
t)∥2 ≤

E[Rs
t − Rs

t+1|F s
t ]

δt
,

with Rs
t := f (xs

t) + ctd2(xs
t , xs

0), for s = 1, ..., S, t = 0, ..., m − 1.

Proof. By retraction L-smoothness and taking expectation with respect to F s
t , we

have

E[ f (xs
t+1)|F s

t ] ≤ f (xs
t)− η⟨grad f (xs

t), E[vs
t |F s

t ]⟩+
Lη2

2
E[∥vs

t∥2|F s
t ]

= f (xs
t)− η∥grad f (xs

t)∥2 +
Lη2

2
E[∥vs

t∥2|F s
t ]
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We first establish a bound on norm of modified gradient vs
t .

E[∥vs
t∥2|F s

t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

(
grad fI s

t
(xs

0)− vs
0
)
∥2|F s

t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

grad fI s
t
(xs

0)− grad f (xs
t) + T xs

t
xs

0
grad f (xs

0) + grad f (xs
t)∥2|F s

t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

grad fI s
t
(xs

0)− grad f (xs
t) + T xs

t
xs

0
grad f (xs

0)∥2|F s
t ] + ∥grad f (xs

t)∥2

≤ E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

grad fI s
t
(xs

0)∥2|F s
t ] + ∥grad f (xs

t)∥2

≤ (Ll + θG)2µ2

b
d2(xs

t , xs
0) + ∥grad f (xs

t)∥2,

where third equality is due to unbiasedness of stochastic gradient. The first

inequality holds due to E∥x − E[x]∥2 ≤ E∥x∥2 and the last inequality is by

Lemma 4.4 ans Assumption (4.2.2). Then we use Lemma 4.5 to bound distance

d2(xs
t+1, xs

0). For a geodesic triangle △xs
t+1xs

t xs
0, we have

E[d2(xs
t+1, xs

0)|F s
t ] ≤ E[ζd2(xs

t+1, xs
t) + d2(xs

t , xs
0)− 2⟨Exp−1

xs
t
(xs

t+1), Exp−1
xs

t
(xs

0)⟩|F s
t ]

≤ E[ζν2η2∥vs
t∥2 + d2(xs

t , xs
0)− 2⟨Exp−1

xs
t
(xs

t+1), Exp−1
xs

t
(xs

0)⟩|F s
t ],

(4.5)

where the second inequality is by Assumption (4.2.2). Also note that

− 2⟨Exp−1
xs

t
(xs

t+1), Exp−1
xs

t
(xs

0)⟩

= 2⟨Retr−1
xs

t
(xs

t+1)− Exp−1
xs

t
(xs

t+1), Exp−1
xs

t
(xs

0)⟩ − 2⟨Retr−1
xs

t
(xs

t+1), Exp−1
xs

t
(xs

0)⟩

≤ 2∥Retr−1
xs

t
(xs

t+1)− Exp−1
xs

t
(xs

t+1)∥∥Exp−1
xs

t
(xs

0)∥+ 2η⟨vs
t , Exp−1

xs
t
(xs

0)⟩

≤ 2cRDη2∥vs
t∥2 + 2η⟨vs

t , Exp−1
xs

t
(xs

0)⟩,

where the last inequality uses Assumption (4.3.1) and (4.3.2) with ∥Exp−1
xs

t
(xs

0)∥ =
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d(xs
t , xs

0) ≤ D. Substitute this result back to (4.5) gives

E[d2(xs
t+1, xs

0)|F s
t ]

≤ E[(ζν2 + 2cRD)η2∥vs
t∥2 + d2(xs

t , xs
0) + 2η⟨vs

t , Exp−1
xs

t
(xs

0)⟩|F s
t ]

= (ζν2 + 2cRD)η2E[∥vs
t∥2|F s

t ] + d2(xs
t , xs

0) + 2η⟨grad f (xs
t), Exp−1

xs
t
(xs

0)⟩

≤ (ζν2 + 2cRD)η2E[∥vs
t∥2|F s

t ] + d2(xs
t , xs

0) + 2η(
1

2λ
∥grad f (xs

t)∥2 +
λ

2
∥Exp−1

xs
t
(xs

0)∥2)

= (ζν2 + 2cRD)η2E[∥vs
t∥2|F s

t ] + (1 + ηλ)d2(xs
t , xs

0) +
η

λ
∥grad f (xs

t)∥2.

The second inequality is due to Young’s inequality ⟨a, b⟩ ≤ 1
2λ∥b∥2 + λ

2 ∥a∥2 with

parameter λ > 0. Now construct a Lyapunov function Rs
t := f (xs

t) + ctd2(xs
t , xs

0).

Then,

E[Rs
t+1|F s

t ] (4.6)

= E[ f (xs
t+1) + ct+1d2(xs

t+1, xs
0)|F s

t ]

≤ f (xs
t)− η∥grad f (xs

t)∥2 +
Lη2

2
E[∥vs

t∥2|F s
t ]

+ ct+1
(
(ζν2 + 2cRD)η2E[∥vs

t∥2|F s
t ] + (1 + ηλ)d2(xs

t , xs
0) +

η

λ
∥grad f (xs

t)∥2)
= f (xs

t)− (η − ct+1η

λ
)∥grad f (xs

t)∥2 + (ct+1 + ct+1ηλ)d2(xs
t , xs

0)

+
(Lη2

2
+ ct+1(ζν2 + 2cRD)η2)E[∥vs

t∥2|F s
t ]

≤ f (xs
t)− (η − ct+1η

λ
)∥grad f (xs

t)∥2 + (ct+1 + ct+1ηλ)d2(xs
t , xs

0)

+
(Lη2

2
+ ct+1(ζν2 + 2cRD)η2)( (Ll + θG)2µ2

b
d2(xs

t , xs
0) + ∥grad f (xs

t)∥2)
= f (xs

t)−
(
η − ct+1η

λ
− Lη2

2
− ct+1(ζν2 + 2cRD)η2)∥grad f (xs

t)∥2

+
(
ct+1 + ct+1ηλ + ct+1

(ζν2 + 2cRD)(Ll + θG)2µ2η2

b
+

L(Ll + θG)2µ2η2

2b
)
d2(xs

t , xs
0)

= Rs
t − δt∥grad f (xs

t)∥2,

with ct = ct+1 + ct+1ηλ + ct+1
(ζν2+2cRD)(Ll+θG)2µ2η2

b + L(Ll+θG)2µ2η2

2b and δt := η −
ct+1η

λ − Lη2

2 − ct+1(ζν2 + 2cRD)η2. Suppose we choose parameters such that δt >
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0. Then, we have the desired result.

Lemma 4.7. With the same assumptions and settings in Lemma 4.6, choose cm = 0

and define δ̃ := min0≤t≤m−1 δt. Denote T = Sm as the total number of iterations and

∆ = f (x̃0)− f (x∗). Then output x̃ from Algorithm 1 with full batch gradient Bs = n

satisfies

E∥grad f (x̃)∥2 ≤ ∆
Tδ̃

.

Proof. Summing over result over t = 0, ..., m − 1 from Lemma 4.6 and taking

expectation with respect to F s
0 yields

m−1

∑
t=0

E[∥grad f (xs
t)∥2|F s

0 ] ≤
E[Rs

0 − Rs
m|F s

0 ]

δ̃
=

E[ f (xs
0)− f (xs+1

0 )|F s
0 ]

δ̃
,

where we note that Rs
0 = f (xs

0) and Rs
m = f (xs

m) = f (xs+1
0 ) for cm = 0. Telescop-

ing this inequality from s = 1, ..., S and taking full expectation, we have

1
T

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ f (x̃0)− E[ f (xS

m)]

Tδ̃
≤ ∆

Tδ̃
.

Finally, by noting that output x̃ is uniformly drawn at random from all iterates

and thus E∥grad f (x̃)∥2 = 1
T ∑S

s=1 ∑m−1
t=0 E∥grad f (xs

t)∥2, the proof is complete.

Now we are ready to prove Theorem 4.1.

Theorem 4.1. Suppose Assumptions 4.1, 4.2 and 4.3 hold and consider Algo-

rithm 1 with full batch gradient Bs = n. Choose stepsize η = µ0b
(Ll+θG)µna1 (ζν2+2cRD)a2 ,

m = ⌊n3/2a1/2bµ0(ζν2 + 2cRD)1−2a2⌋, b ≤ na1 , where a1, a2, µ0 ∈ (0, 1). Then for

a constant ψ > 0 such that

ψ ≤ µ0

µ

(
1 − Lµ0(e − 1)

2(Ll + θG)(ζν2 + 2cRD)2−a2µ
− Lµ0b

2(Ll + θG)(ζν2 + 2cRD)a2µna1

−
Lµ2

0(e − 1)b
2(Ll + θG)(ζν2 + 2cRD)a2µn3/2a1

)
,
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the output x̃ after running T = Sm iterations satisfies

E∥grad f (x̃)∥2 ≤ (Ll + θG)na1(ζν2 + 2cRD)a2∆
bTψ

,

where ∆ := f (x̃0) − f (x∗). By choosing a1 = 2/3, a2 = 1/2, the total IFO

complexity to achieve ϵ-accurate solution is O
(

n + (Ll+θG)n2/3(ζν2+2cRD)1/2

ϵ2

)
.

Proof. First note that ct = ct+1(1 + ηλ + (ζν2+2cRD)(Ll+θG)2µ2η2

b ) + L(Ll+θG)2µ2η2

2b =

ct+1(1 + ϕ) + L(Ll+θG)2µ2η2

2b , where ϕ := ηλ + (ζν2+2cRD)(Ll+θG)2µ2η2

b . Choose η =

µ0b
(Ll+θG)µna1 (ζν2+2cRD)a2 , µ0 ∈ (0, 1) and λ = (Ll+θG)µ(ζν2+2cRD)1−a2

na1/2 gives

ct = (1 + ϕ)ct+1 +
Lµ2

0b
2n2a1(ζν2 + 2cRD)2a2

, (4.7)

Applying (4.7) recursively to c0 and noting cm = 0, we have

c0 =
Lµ2

0b
2n2a1(ζν2 + 2cRD)2a2

(1 + ϕ)m − 1
ϕ

. (4.8)

It is noted that the sequence {ct}m−1
t=0 is a decreasing sequence and achieves its

maximum at c0. Therefore we derive a bound on c0. Note that

ϕ =
µ0b(ζν2 + 2cRD)1−2a2

n3/2a1
+

µ2
0b(ζν2 + 2cRD)1−2a2

n2a1

∈
(µ0b(ζν2 + 2cRD)1−2a2

n3/2a1
,

2µ0b(ζν2 + 2cRD)1−2a2

n3/2a1

)
. (4.9)

Choosing m = ⌊n3/2a1/2bµ0(ζν2 + 2cRD)1−2a2⌋ suggests

ϕ ≤ 2µ0b(ζν2 + 2cRD)1−2a2

n3/2a1
≤ 1

m
, and (1 + ϕ)m ≤ e, (4.10)

where e is the Euler’s constant. Note for the second inequality, we loosely use ≤
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instead of < for consistency. Then applying (4.9) and (4.10) into (4.8), we have

c0 ≤
Lµ2

0b
2n2a1(ζν2 + 2cRD)2a2

× n3/2a1(e − 1)
µ0b(ζν2 + 2cRD)1−2a2

=
Lµ0(e − 1)

2n1/2a1(ζν2 + 2cRD)
.

Next we consider a lower bound on δ̃.

δ̃ = min
t

(
η − ct+1η

λ
− Lη2

2
− ct+1(ζν2 + 2cRD)η2

)
≥
(

η − c0η

λ
− Lη2

2
− c0(ζν2 + 2cRD)η2

)
≥ η

(
1 − Lµ0(e − 1)

2(Ll + θG)(ζν2 + 2cRD)2−a2µ
− Lµ0b

2(Ll + θG)(ζν2 + 2cRD)a2µna1

−
Lµ2

0(e − 1)b
2(Ll + θG)(ζν2 + 2cRD)a2µn3/2a1

)
≥ bψ

(Ll + θG)na1(ζν2 + 2cRD)a2
,

where ψ > 0 is a constant such that the last inequality holds. That is, we choose

ψ satisfying

0 < ψ ≤ µ0

µ

(
1 − Lµ0(e − 1)

2(Ll + θG)(ζν2 + 2cRD)2−a2µ
− Lµ0b

2(Ll + θG)(ζν2 + 2cRD)a2µna1

−
Lµ2

0(e − 1)b
2(Ll + θG)(ζν2 + 2cRD)a2µn3/2a1

)
.

This condition holds by setting a sufficiently small µ0 ∈ (0, 1) and also b ≤

na1 . The requirement on b is to ensure the third term and fourth term do not

increase with n. Therefore, combining this result with Lemma 4.7 yields

E∥grad f (x̃)∥2 ≤ (Ll + θG)na1(ζν2 + 2cRD)a2∆
bTψ

.

To achieve ϵ-accurate solution, it is sufficient to require E∥grad f (x̃)∥2 ≤ ϵ2. That

is, E∥grad f (x̃)∥ ≤
√

E∥grad f (x̃)∥2 ≤ ϵ by Jensen’s inequality. Therefore, we
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require at least

S =
(Ll + θG)na1(ζν2 + 2cRD)a2

bmψϵ2 = ⌈2µ0(Ll + θG)(ζν2 + 2cRD)1−a2n−a1/2

ψϵ2 ⌉

= O
(

1 +
(ζν2 + 2cRD)1−a2n−a1/2

ϵ2

)

number of epochs. Each epoch requires n+ 2mb IFO calls, which is n+ ⌊n3/2a1/µ0(ζν2 +

2cRD)1−2a2⌋ = O
(
n + n3/2a1(ζν2 + 2cRD)2a2−1). Hence the total complexity is

given by

O
((

1 +
(ζν2 + 2cRD)1−a2n−a1/2

ϵ2

)(
n + n3/2a1(ζν2 + 2cRD)2a2−1))

= O
(

n +
na1(ζν2 + 2cRD)a2

ϵ2 +
(ζν2 + 2cRD)1−a2n1−a1/2

ϵ2 + n3/2a1(ζν2 + 2cRD)2a2−1)).

With the standard choice of α1 = 2
3 and α2 = 1

2 , we obtain the desired result.

4.C Convergence Analysis for R-AbaSVRG

Proof of Lemma 4.1. First note that F s
0 ⊆ F s

t , for 0 ≤ t ≤ m − 1 and therefore

it holds that E[∥vs
t − grad f (xs

t)∥2|F s
0 ] = E[E[∥vs

t − grad f (xs
t)∥2|F s

t ]|F s
0 ]. Hence

we first consider bounding E[∥vs
t − grad f (xs

t)∥2|F s
t ] as

E[∥vs
t − grad f (xs

t)∥2|F s
t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

(
grad fI s

t
(xs

0)− vs
0
)
− grad f (xs

t)∥2|F s
t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

grad fI s
t
(xs

0)− grad f (xs
t) + T xs

t
xs

0
grad f (xs

0)

+ T xs
t

xs
0

vs
0 − T xs

t
xs

0
grad f (xs

0)∥2|F s
t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

grad fI s
t
(xs

0)− grad f (xs
t) + T xs

t
xs

0
grad f (xs

0)∥2|F s
t ]

+ E[⟨grad fI s
t
(xs

t)− T xs
t

xs
0

grad fI s
t
(xs

0)− grad f (xs
t) + T xs

t
xs

0
grad f (xs

0), vs
0 − grad f (xs

0)⟩|F s
t ]

+ ∥vs
0 − grad f (xs

0)∥2

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

grad fI s
t
(xs

0)− grad f (xs
t) + T xs

t
xs

0
grad f (xs

0)∥2|F s
t ]
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+ ∥vs
0 − grad f (xs

0)∥2

≤ E[∥grad fI s
t
(xs

t)− T xs
t

xs
0

grad fI s
t
(xs

0)∥2|F s
t ] + ∥vs

0 − grad f (xs
0)∥2

≤ 1
b

E[∥grad fi(xs
t)− T xs

t
xs

0
grad fi(xs

0)∥2|F s
t ] + ∥vs

0 − grad f (xs
0)∥2

≤ 1
b
(Ll + θG)2∥Retr−1

xs
0
(xs

t)∥2 + ∥vs
0 − grad f (xs

0)∥2

≤ 1
b
(Ll + θG)2µ2d2(xs

t , xs
0) + ∥vs

0 − grad f (xs
0)∥2. (4.11)

The fourth equality is based on the facts that grad fI s
t
(x) is unbiased estima-

tor of grad f (x) and also the isometric property of vector transport T xs
t

xs
0

. Note

that T xs
t

xs
0

depends on both xs
0 and xs

t , which are measurable in F s
t . Therefore

E[T xs
t−1

xs
0

grad fI s
t
(xs

0)|F s
t ] = T xs

t−1
xs

0
E[grad fI s

t
(xs

0)|F s
t ] = T xs

t−1
xs

0
grad f (xs

0). The first

inequality is due to E∥x − E[x]∥2 ≤ E∥x∥2 and the second inequality is due

to independence of with replacement sampling. The last two inequalities are

from Assumption (4.2.2) and Lemma 4.4. Taking expectation with respect to

F s
0 gives E[∥vs

t − grad f (xs
t)∥2|F s

0 ] ≤ 1
b (Ll + θG)2µ2E[d2(xs

t , xs
0)|F s

0 ] + E[∥vs
0 −

grad f (xs
0)∥2|F s

0 ]. Next, we further simplify (4.11) by telescoping iterates within

epoch s. Note that by triangle inequality and Assumption (4.2.2),

d2(xs
t , xs

0) ≤
(
d(xs

t , xs
t−1) + d(xs

t−1, xs
t−2) + · · ·+ d(xs

1, xs
0)
)2

≤ ν2η2(∥vs
t−1∥+ · · ·+ ∥vs

0∥
)2 ≤ ν2η2t

t−1

∑
i=0

∥vs
i∥2, (4.12)

where the last inequality follows from ∥∑d
i=1 wi∥2 ≤ d ∑d

i=1 ∥wi∥2. On the other

hand, by Lemma 4.3 and variance bound assumption (4.1.4), we have

E[∥vs
0 − grad f (xs

0)∥2|F s
0 ] = E[∥grad fBs(xs

0)− grad f (xs
0)∥2|F s

0 ]

= E[∥ 1
Bs ∑

i∈Bs
grad fi(xs

0)− grad f (xs
0)∥2|F s

0 ]

≤ n − Bs

n − 1
1

nBs

n

∑
i=1

∥grad fi(xs
0)− grad f (xs

0)∥2
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≤ n − Bs

n − 1
σ2

Bs ≤ 1{Bs<n}
σ2

Bs . (4.13)

Note if Bs is chosen from [n] with replacement or under online setting where n

approaches infinity, we simply have E[∥vs
0 −grad f (xs

0)∥2|F s
0 ] =

1
Bs E[∥grad fi(xs

0)−

grad f (xs
0)∥2|F s

0 ] ≤ σ2

Bs , which does not vanish when Bs = n. Substituting (4.12)

and (4.13) back to (4.11) gives the desired result.

Proof of Theorem 4.2. By retraction L-smoothness in Assumption (4.1.5),

f (xs
t+1)− f (xs

t) ≤ −η⟨grad f (xs
t), vs

t⟩+
Lη2

2
∥vs

t∥2

= −η

2
∥grad f (xs

t)∥2 − η

2
∥vs

t∥2 +
η

2
∥vs

t − grad f (xs
t)∥2 +

Lη2

2
∥vs

t∥2

= −η

2
∥grad f (xs

t)∥2 +
η

2
∥vs

t − grad f (xs
t)∥2 − (

η

2
− Lη2

2
)∥vs

t∥2.

Rearranging the term and taking expectation with respect to F s
0 yields

E[∥grad f (xs
t)∥2|F s

0 ]

≤ 2
η

E[ f (xs
t)− f (xs

t+1)|F s
0 ] + E[|vs

t − grad f (xs
t)∥2|F s

0 ]− (1 − Lη)E[∥vs
t∥2|F s

0 ]

≤ 2
η

E[ f (xs
t)− f (xs

t+1)|F s
0 ] +

t
b
(Ll + θG)2µ2ν2η2

t−1

∑
i=0

E[∥vs
i∥2|F s

0 ] + 1{Bs<n}
σ2

Bs

− (1 − Lη)E[∥vs
t∥2|F s

t ].

Summing this result over t = 0, ..., m − 1 gives

m−1

∑
t=0

E[∥grad f (xs
t)∥2|F s

0 ]

≤ 2
η

E[ f (xs
0)− f (xs

m)|F s
0 ] +

(Ll + θG)2µ2ν2η2

b

m−1

∑
t=0

t
t

∑
i=0

E[∥vs
i∥2|F s

0 ] + 1{Bs<n}
mσ2

Bs

− (1 − Lη)
m−1

∑
t=0

E[∥vs
t∥2|F s

0 ]

≤ 2
η

E[ f (xs
0)− f (xs

m)|F s
0 ] +

(Ll + θG)2µ2ν2η2m2

b

m−1

∑
t=0

E[∥vs
t∥2|F s

0 ] + 1{Bs<n}
mσ2

Bs
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− (1 − Lη)
m−1

∑
t=0

E[∥vs
t∥2|F s

0 ]

=
2
η

E[ f (xs
0)− f (xs

m)|F s
0 ]− (1 − Lη − (Ll + θG)2µ2ν2η2m2

b
)

m−1

∑
t=0

E[∥vs
t∥2|F s

0 ]

+ 1{Bs<n}
mσ2

Bs . (4.14)

The second inequality uses the fact t ≤ m − 1. Telescoping (4.14) from s = 1, ..., S

and taking expectation over all randomness gives

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ −(1 − Lη − (Ll + θG)2µ2ν2η2m2

b
)

S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2

+
2
η

E[ f (x̃0)− f (xS
m)] +

S

∑
s=1

E[1{Bs<n}
mσ2

Bs ]

≤ 2∆
η

− (1 − Lη − (Ll + θG)2µ2ν2η2m2

b
)

S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2

+
S

∑
s=1

E[1{Bs<n}
mσ2

Bs ], (4.15)

where ∆ := f (x̃0) − f (x∗) and we use the fact that E[ f (xS
m)] ≥ f (x∗). Since

Bs depends on whether finite-sum or online setting is considered, we consider

these two cases separately.

(1) Under the finite-sum setting,

1{Bs<n}
1
Bs =

1
min{α1σ2/βs, n} ≤ βs

α1σ2 ≤ βs

ασ2 ,

where we choose α1 ≥ α. Note also from the definition of βs and the choice of

β1 ≤ ϵ2S, we have

S

∑
s=1

E[βs] = β1 +
1
m

S−1

∑
s=1

m−1

∑
t=0

E∥vs
t∥2 ≤ ϵ2S +

1
m

S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2, (4.16)
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Combining these two results and substituting into (4.15) gives

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ −(1 − Lη − (Ll + θG)2µ2ν2η2m2

b
)

S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2 +

2∆
η

+
m
α
[ϵ2S +

1
m

S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2]

= −(1 − Lη − (Ll + θG)2µ2ν2η2m2

b
− 1

α
)

S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2

+
2∆
η

+
ϵ2mS

α
. (4.17)

Let η ≤ 2− 2
α

L+

√
L2+4(1− 1

α )
(Ll+θG)2µ2ν2m2

b

, which is the larger root of the equation 1 −

Lη − (Ll+θG)2µ2ν2η2m2

b − 1
α = 0. The other root is smaller than zero. Therefore,

this choice of η can ensure coefficients before E∥vs
t∥2 is smaller than zero. Then

dividing (4.17) by T = Sm yields,

E∥grad f (x̃)∥2 =
1
T

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ 2∆

Tη
+

ϵ2

α
,

where we note that output x̃ is uniformly drawn at random from {{xs
t}m−1

t=0 }S
s=1.

(2) Similarly, under the online setting,

1{Bs<n}
1
Bs =

1
min{α1σ2/βs, α2σ2/ϵ2} = max{ βs

α1σ2 ,
ϵ2

α2σ2} ≤ βs + ϵ2

ασ2 , (4.18)

where the last inequality uses the fact that max{a, b} ≤ a + b and α1, α2 ≥ α.

Following the same procedure and choice of η, we have

E∥grad f (x̃)∥2 =
1
T

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ 2∆

Tη
+

2ϵ2

α
.

Hence, by choosing α ≥ 2 for finite-sum setting and α ≥ 4 for online setting, we

have

E∥grad f (x̃)∥2 ≤ 2∆
Tη

+
ϵ2

2
.
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For simplicity, we consider α ≥ 4 for both cases.

Proof of Corollary 4.1. Consider the following parameter setting, b = m2, α = 4

and η = 3
2L+2

√
L2+3(Ll+θG)2µ2ν2

. To obtain ϵ-accurate solution, we require at least

S =
4∆

ϵ2mη
=

8∆
3ϵ2m

(
L +

√
L2 + 3(Ll + θG)2µ2ν2

)
= O

( Θ1

mϵ2

)
where Θ1 := L +

√
L2 + ϱ1(Ll + θG)2µ2ν2, where ϱ1 > 0 is a constant that does

not depend on any parameter. Define average batch size B̃ as

B̃ :=
1
S

S

∑
s=1

Bs =


1
S ∑S

s=1 min{α1σ2/βs, n}, (finite-sum)

1
S ∑S

s=1 min{α1σ2/βs, α2σ2/ϵ2}, (online)
(4.19)

Then one epoch requires B̃ + 2mb = O(B̃ + m3) IFO calls. Choosing m = ⌊n1/3⌋

under finite-sum setting and m = (σ
ϵ )

2/3 under online setting, the total IFO

complexity is given by

O
(
S(B̃ + m3)

)
= O

(
SB̃ + Sm3) = O

(Θ1B̃
mϵ2 +

Θ1m2

ϵ2

)
=


O
(

B̃ + Θ1B̃
n1/3ϵ2 +

Θ1n2/3

ϵ2

)
, (finite-sum)

O
( Θ1B̃

σ2/3ϵ4/3 +
Θ1σ4/3

ϵ10/3

)
, (online)

which completes the proof.

Proof of Corollary 4.2. From (4.14),

m−1

∑
t=0

E[∥grad f (xs
t)∥2|F s

0 ] ≤
2
η

E[ f (xs
0)− f (xs

m)|F s
0 ] + 1{B<n}

mσ2

B

− (1 − Lη − (Ll + θG)2µ2ν2η2m2

b
)

m−1

∑
t=0

E[∥vs
t∥2|F s

0 ].

(4.20)
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Choosing a choice of fixed stepsize η ≤ 2

L+

√
L2+4

(Ll+θG)2µ2ν2m2

b

, which ensures 1 −

Lη − (Ll+θG)2µ2ν2η2m2

b ≥ 0. Telescoping this (4.20) from s = 1, ..., S and dividing

by T = Sm gives

1
T

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ 2∆

Tη
+ 1{B<n}

σ2

B
.

Note that output x̃ satisfies E∥grad f (x̃)∥2 = 1
T ∑S

s=1 ∑m−1
t=0 E∥grad f (xs

t)∥2. Un-

der the finite-sum setting where B = n, 1{B<n}
mσ2

B = 0, we have E∥grad f (x̃)∥2 ≤
2∆
Tη . Under the online setting where B = 2σ2

ϵ2 , 1{B<n}
σ2

B = ϵ2

2 , E∥grad f (x̃)∥2 ≤
2∆
Tη + ϵ2

2 . Given b = m2 and η = 2
L+

√
L2+4(Ll+θG)2µ2ν2

, under both finite-sum and

online settings, to obtain ϵ-accurate solution, we require at least

S = O
( ∆

mηϵ2

)
= O

( ∆
mϵ2

(
L +

√
L2 + 4(Ll + θG)2µ2ν2

))
= O

( Θ1

mϵ2

)
.

Hence, we obtain the same iteration complexity as adaptive batch size ver-

sion. Note for one epoch, we require B + 2mb = O(B + m3) IFO calls. With

the same choice of m = ⌊n1/3⌋ under finite-sum setting and m = (σ
ϵ )

2/3 under

online setting, total IFO complexity is given by

O
(
S(B + m3)

)
=


O
(
n + Θ1n2/3

ϵ2

)
, (finite-sum)

O
(Θ1σ4/3

ϵ10/3

)
, (online)

4.D Convergence Analysis for R-AbaSRG

Proof of Lemma 4.2. Note that similarly, we can write E[∥vs
t − grad f (xs

t)∥2|F s
0 ] =

E[E[∥vs
t − grad f (xs

t)∥2|F s
t ]|F s

0 ] and we first bound E[∥vs
t − grad f (xs

t)∥2|F s
t ]. To

121



CHAPTER 4. IMPROVED RIEMANNIAN VARIANCE REDUCTION

this end,

E[∥vs
t − grad f (xs

t)∥2|F s
t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
t−1

grad fI s
t
(xs

t−1) + T xs
t

xs
t−1

vs
t−1 − grad f (xs

t)∥2|F s
t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
t−1

grad fI s
t
(xs

t−1)− grad f (xs
t) + T xs

t
xs

t−1
grad f (xs

t−1)

+ T xs
t

xs
t−1

vs
t−1 − T xs

t
xs

t−1
grad f (xs

t−1)∥2|F s
t ]

= E[∥grad fI s
t
(xs

t)− T xs
t

xs
t−1

grad fI s
t
(xs

t−1)− grad f (xs
t) + T xs

t
xs

t−1
grad f (xs

t−1)∥2|F s
t ]

+ E[∥vs
t−1 − grad f (xs

t−1)∥2|F s
t ]

≤ E[∥grad fI s
t
(xs

t)− T xs
t

xs
t−1

grad fI s
t
(xs

t−1)∥2|F s
t ] + E[∥vs

t−1 − grad f (xs
t−1)∥2|F s

t ]

=
1
b

E[∥grad fi(xs
t)− T xs

t
xs

t−1
grad fi(xs

t−1)∥2|F s
t ] + E[∥vs

t−1 − grad f (xs
t−1)∥2|F s

t ]

≤ 1
b
(Ll + θG)2η2∥vs

t−1∥2 + ∥vs
t−1 − grad f (xs

t−1)∥2.

Note the expectation is taken with respect to randomness of sample I s
t where

both xs
t−1 and xs

t are measurable. The vector transport T xs
t

xs
t−1

is therefore fixed con-

ditional on F s
t . Hence, the third equality holds due to unbiasedness. The first in-

equality is due to E∥x − E[x]∥2 ≤ E∥x∥2 and the last inequality is from Lemma

4.4. Therefore we have E[∥vs
t −grad f (xs

t)∥2|F s
0 ] ≤ 1

b (Ll + θG)2η2E[∥vs
t−1∥2|F s

0 ]+

E[∥vs
t−1 − grad f (xs

t−1)∥2|F s
0 ]. Recursively applying this inequality gives

E[∥vs
t − grad f (xs

t)∥2|F s
0 ]

≤ (Ll + θG)2η2

b

t−1

∑
i=0

E[∥vs
i∥2|F s

0 ] + E[∥vs
0 − grad f (xs

0)∥2|F s
0 ]

≤ (Ll + θG)2η2

b

t

∑
i=0

E[∥vs
i∥2|F s

0 ] + E[∥vs
0 − grad f (xs

0)∥2|F s
0 ], (4.21)

where we note that E[∥vs
0 − grad f (xs

0)∥2|F s
0 ] ≤ 1{B<n}

σ2

B by similar argument in

(4.15). Combining this inequality with (4.21) completes the proof.

Proof of Theorem 4.3. Here we adopt a similar procedure as the proof of R-AbaSVRG.
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By retraction L-smoothness, we have

f (xs
t+1)− f (xs

t) ≤ −η⟨grad f (xs
t), vs

t⟩+
Lη2

2
∥vs

t∥2

= −η

2
∥grad f (xs

t)∥2 − η

2
∥vs

t∥2 +
η

2
∥vs

t − grad f (xs
t)∥2 +

Lη2

2
∥vs

t∥2

= −η

2
∥grad f (xs

t)∥2 +
η

2
∥vs

t − grad f (xs
t)∥2 − (

η

2
− Lη2

2
)∥vs

t∥2.

Taking expectation of this inequality with respect to F s
0 and summing over t =

0, ..., m − 1 gives

m−1

∑
t=0

E[∥grad f (xs
t)∥2|F s

0 ]

≤ 2
η

E[ f (xs
0)− f (xs

m)|F s
0 ] +

m−1

∑
t=0

E[∥vs
t − grad f (xs

t)∥2|F s
0 ]

− (1 − Lη)
m−1

∑
t=0

E[∥vs
t∥2|F s

0 ]

≤ 2
η

E[ f (xs
0)− f (xs

m)|F s
0 ]− (1 − Lη)

m−1

∑
t=0

E[∥vs
t∥2|F s

0 ] + 1{Bs<n}
mσ2

Bs

+
(Ll + θG)2η2

b

m−1

∑
t=0

t

∑
i=0

E[∥vs
i∥2|F s

0 ]

≤ 2
η

E[ f (xs
0)− f (xs

m)|F s
0 ]− (1 − Lη)

m−1

∑
t=0

E[∥vs
t∥2|F s

0 ] + 1{Bs<n}
mσ2

Bs

+
(Ll + θG)2η2m

b

m−1

∑
t=0

E[∥vs
t∥2|F s

0 ]

=
2
η

E[ f (xs
0)− f (xs

m)|F s
0 ]−

(
1 − Lη − (Ll + θG)2η2m

b

) m−1

∑
t=0

E[∥vs
t∥2|F s

0 ]

+ 1{Bs<n}
mσ2

Bs , (4.22)

where the second first inequality is by Lemma 4.2 and the third inequality is due

to the fact that t ≤ m − 1. Summing this inequality over s = 1, ..., S and taking

full expectation, we have

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2
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≤ 2∆
η

−
(

1 − Lη − (Ll + θG)2η2m
b

) S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2 +

S

∑
s=1

E[1{Bs<n}
mσ2

Bs ],

where ∆ := f (x̃0)− f (x∗). Same as in (4.16), we can show ∑S
s=1 E[βs] ≤ ϵ2S +

1
m ∑S

s=1 ∑m−1
t=0 E∥vs

t∥2, with the choice β1 ≤ ϵ2S. (1) Under finite-sum setting,

1{Bs<n}
1
Bs ≤ βs

cβσ2 ≤ βs
ασ2 where we choose α1 > α. This gives

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2

≤ 2∆
η

−
(

1 − Lη − (Ll + θG)2η2m
b

) S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2 +

m
α

S

∑
s=1

E[βs]

≤ 2∆
η

−
(

1 − 1
α
− Lη − (Ll + θG)2η2m

b

) S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2 +

Smϵ2

α
.

Let η ≤ 2− 2
α

L+

√
L2+4(1− 1

α )
(Ll+θG)2m

b

, which is the larger root of the equation 1 − 1
α −

Lη − (Ll+θG)2η2m
b = 0. Dividing both sides by T = Sm gives

E∥grad f (x̃)∥2 =
1
T

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ 2∆

Tη
+

ϵ2

α
,

where x̃ is uniformly selected at random from {{xs
t}m−1

t=0 }S
s=1. (2) Under online

setting, from (4.18), we have 1{Bs<n}
1
Bs ≤ βs+ϵ2

ασ2 , where we choose α1, α2 ≥ α.

This results in

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ 2∆

η
−
(

1 − 1
α
− Lη − (Ll + θG)2η2m

b

) S

∑
s=1

m−1

∑
t=0

E∥vs
t∥2

+
2Smϵ2

α
.

Choose the same η ≤ 2− 2
α

L+

√
L2+4(1− 1

α )
(Ll+θG)2m

b

, we have

E∥grad f (x̃)∥2 =
1
T

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ 2∆

Tη
+

2ϵ2

α
.
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By simply setting α ≥ 4 for both finite-sum and online setting, we can ensure

E∥grad f (x̃)∥2 ≤ 2∆
Tη

+
ϵ2

2
.

Proof of Corollary 4.3. By choosing α = 4, b = m, η = 3
2L+2

√
L2+3(Ll+θG)2

, to en-

sure E∥grad f (x̃)∥ ≤ ϵ, we require at least

S =
4∆

mηϵ2 =
8∆

3mϵ2 (L +
√

L2 + 3(Ll + θG)2) = O
( Θ2

mϵ2

)
,

with Θ2 := L +
√

L2 + ϱ2(Ll + θG)2 where ϱ2 > 0 is a constant that does

not depend on any parameters. Let B̃ be the average batch size defined in

(4.19). That is, B̃ = 1
S ∑S

s=1 min{α1σ2/βs, n} under finite-sum setting and B̃ =

1
S ∑S

s=1 min{α1σ2/βs, α2σ2/ϵ2} under online setting. Then one epoch requires

B̃ + 2mb = O(B̃ + m2) IFO calls. Consider the choice of m = ⌊n1/2⌋ and m = σ
ϵ

under finite-sum and online setting respectively. The total IFO complexity is

given by

O
(
SB̃ + Sm2) = O

(Θ2B̃
mϵ2 +

Θ2m
ϵ2

)
=


O
(

B̃ + Θ2B̃√
nϵ2 +

Θ2
√

n
ϵ2

)
, (finite-sum)

O
(Θ2B̃

σϵ + Θ2σ
ϵ3

)
, (online)

Proof of Corollary 4.4. From (4.22), we have

m−1

∑
t=0

E[∥grad f (xs
t)∥2|F s

0 ] ≤
2
η

E[ f (xs
0)− f (xs

m)|F s
0 ] + 1{B<n}

mσ2

B

−
(

1 − Lη − (Ll + θG)2η2m
b

) m−1

∑
t=0

E[∥vs
t∥2|F s

0 ].

Consider stepsize choice η ≤ 2

L+

√
L2+4

(Ll+θG)2m
b

, which ensures 1− Lη − (Ll+θG)2η2m
b ≥
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0. Summing this result over s = 1, ..., S and dividing by T = Sm yields

E∥grad f (x̃)∥2 =
1
T

S

∑
s=1

m−1

∑
t=0

E∥grad f (xs
t)∥2 ≤ 2∆

Tη
+ 1{B<n}

σ2

B
.

Considering the choice of b = m and η = 2
L+

√
L2+4(Ll+θG)2

and following exactly

the same procedures as in proof of Corollary 2.2, we require at least

S = O
( ∆

mηϵ2

)
= O

( ∆
mϵ2

(
L +

√
L2 + 4(Ll + θG)2

))
= O

( Θ2

mϵ2

)
.

One epoch requires B+ 2mb = O(B+m2) IFO complexity. With the same choice

of m = ⌊n1/2⌋ under finite-sum setting and m = σ
ϵ under online setting, total

IFO complexity is given by

O
(
S(B + m2)

)
=


O
(
n + Θ2

√
n

ϵ2

)
, (finite-sum)

O
(Θ2σ

ϵ3

)
, (online)

4.E Convergence under gradient dominance condi-

tion

Proof of Theorem 4.4. At mega epoch k, we have E∥grad f (xk)∥ ≤ ϵk = ϵ0
2k and

E[ f (xk)− f (x∗)] ≤ τE∥grad f (xk)∥2 ≤ τϵ2
0

4k .

Proof of Corollary 4.5. Define ∆k := E[ f (xk)− f (x∗)]. At mega epoch k, to obtain

ϵk-accurate solution, we require number of epochs

Sk =
4∆k−1

mkηϵ2
k
=

8Θ1∆k−1

3mkϵ2
k

≤ 8Θ1

3mkϵ2
k

τE∥grad f (xk−1)∥2 ≤ 8Θ1τ

3mk

ϵ2
k−1

ϵ2
k

=
32Θ1τ

3mk
,

where the first inequality uses the definition of gradient dominance and the sec-
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ond inequality is by the fact that xt−1 is output from the preceding mega epoch

and hence has gradient bounded by desired accuracy ϵk−1. The last equality is

from the choice of ϵk. Define the average batch size B̃k =
1
Sk

∑Sk
s=1 min{α1σ2/βs, n}

under finite-sum settings and B̃k =
1
Sk

∑Sk
s=1 min{α1σ2/βs, α2σ2/ϵ2

k} under online

settings. Then IFO complexity at mega epoch k is

Sk(B̃k + 2mkbk) = O
(
SkB̃ + Skm3

k
)
=


O
(

B̃k +
Θ1B̃kτ
n1/3 + Θ1n2/3τ

)
, (finite-sum)

O
(Θ1B̃kτϵ2/3

k
σ2/3 + Θ1σ4/3τ

ϵ4/3
k

)
, (online)

(4.23)

To ensure E∥grad f (xK)∥2 ≤ ϵ2, it is equivalent to requiring ϵ2
K =

ϵ2
0

22K ≤ ϵ2.

Therefore, we require at least K = log( ϵ0
ϵ ) mega epochs. Accordingly, un-

der finite-sum setting, the complexity in (4.23) depends on mega epoch k only

through B̃k. So total IFO complexity after running K mega epochs is simply

O
(

∑K
k=1 B̃k(1 + Θ1τ

n1/3 ) + (Θ1n2/3τ) log(1
ϵ )
)
. Under online setting, both B̃k and ϵk

of its complexity depend on mega epoch k. Hence we need to sum this result

from k = 1, ..., K = log( ϵ0
ϵ ). Note that ∑K

k=1
1

ϵ4/3
k

= 24/3

ϵ4/3
0

(2k)4/3−1
24/3−1 ≤ 24/3(2k

ϵ0
)4/3 =

O
(
(1

ϵ )
4/3). Hence, total IFO complexity can be written as O

(Θ1τ ∑K
k=1 B̃kϵ2/3

k
σ2/3 +

Θ1τσ4/3

ϵ4/3

)
. Similarly, R-SVRG with fixed batch size Bk = n under finite-sum cases

and Bk =
2σ2

ϵ2
k

under online cases requires complexities O
(
(n + Θ1τn2/3) log(1

ϵ )
)

and O
(Θ1τσ4/3

ϵ4/3

)
respectively. The proof is exactly the same except that we replace

B̃k with Bk.

Proof of Corollary 4.6. The proof is exactly the same as that for R-AbaSVRG and

R-SVRG and hence skipped.

Next, we provide complexity results for R-SD and R-SGD under gradient

dominance condition. We simply restart the algorithms similar to variance re-

duction methods.
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Algorithm 4: R-GD-SD/SGD
1: Input: Initial accuracy ϵ0 and desired accuracy ϵ, initialization x0.
2: for k = 1, ..., K do
3: ϵk =

ϵk−1
2 .

4: Set Tk sufficient to achieve ϵk-accurate solution and choose stepsize η
accordingly.

5: xk
0 = xk−1.

6: for t = 1, ..., Tk do
7: (R-SD): xk

t = Retrxk
t−1

(−η grad f (xk
t−1)).

8: (R-SGD): xk
t = Retrxk

t−1
(−η grad fik

t
(xk

t−1)), with ik
t ∈ [n] random.

9: end for
10: xk is chosen uniformly at random from {xk

t }
Tk−1
t=0 .

11: end for
12: Output: xK.

Theorem 4.5 (IFO complexity of R-SD and R-SGD under gradient dominance

condition). Suppose f is retraction L-smooth and also τ-gradient dominated. Consider

Algorithm 4 with R-SD solver. Then total IFO complexity to achieve ϵ-accurate solution

is given by O
(
(n+ Lτn) log(1

ϵ )
)
. Suppose additionally that f has G-bounded gradient.

That is, ∥grad fi(x)∥ ≤ G, with i being a random index from [n]. Consider Algorithm

4 with R-SGD solver. Total IFO complexity to achieve ϵ-accurate solution is O
( LG2

ϵ2

)
.

Proof. The proof idea is similar to that of Theorem 4.4. We first consider a single

epoch k. By retraction L-smoothness,

f (xk
t+1) ≤ f (xk

t ) + ⟨grad f (xk
t ),−ηgrad f (xk

t )⟩+
L
2
∥ − ηgrad f (xk

t )∥2

= f (xk
t )− (η − Lη2

2
)∥grad f (xk

t )∥2.

Choose η = 1
L and summing this inequality from t = 0, ..., Tk − 1 gives

1
Tk

Tk−1

∑
t=0

E∥grad f (xk
t )∥2 ≤

2LE[ f (xk
0)− f (xk

Tk
)]

Tk
≤ 2L∆k−1

Tk
,

where ∆k−1 := E[ f (xk−1)− f (x∗)]. Note the update rule of xk gives E∥grad f (xk)∥2 =

1
Tk

∑Tk−1
t=0 E∥grad f (xk

t )∥2. Therefore, to ensure E∥grad f (xk)∥2 ≤ ϵ2
k , we require
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at least

Tk =
2L∆k−1

ϵ2
k

≤ 2LτE∥grad f (xk−1)∥2

ϵ2
k

≤
2Lτϵ2

k−1

ϵ2
k

= 8Lτ.

IFO complexity of a single epoch is given by 8Lτn = O(n + Lτn). By similar

argument, to ensure E∥grad f (xK)∥2 ≤ ϵ2, we require log(1
ϵ ) epochs. Hence

the total IFO complexity of R-SD is given as O
(
(n + Lτn) log(1

ϵ )
)
. This result

matches the complexity of Euclidean gradient descent under gradient domi-

nance condition (see Reddi, Hefny, et al. (2016); Polyak (1963)). Similarly, for

R-SGD, we have

E[ f (xk
t+1)] ≤ E[ f (xk

t ) + ⟨grad f (xk
t ),−ηgrad fik

t
(xk

t )⟩+
L
2
∥ − ηgrad fik

t
(xk

t )∥2]

= E[ f (xk
t )]− ηE∥grad f (xk

t )∥2 +
Lη2G2

2
.

Choosing η = z√
Tk

where z > 0 is a constant and summing over t = 0, ..., Tk − 1,

we have

1
Tk

Tk−1

∑
t=0

E∥grad f (xk
t )∥2 ≤ ∆k−1

z
√

Tk
+

LG2z
2
√

Tk
.

Choose z =
√

2∆k−1
LG2 to minimize right hand side as

√
2LG2∆k−1√

Tk
. Hence to ensure

E∥grad f (xk)∥2 ≤ ϵ2
k , we require at least

Tk =
2LG2∆k−1

ϵ4
k

≤
2LG2ϵ2

k−1

ϵ4
k

=
8LG2

ϵ2
k

.

IFO complexity of a single epoch is therefore O( LG2

ϵ2
k
). To achieve ϵ-accurate

solution, we require log(1
ϵ ) epochs and hence, the total IFO complexity of R-

SGD is O
( LG2

ϵ2

)
.
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4.F Additional experiment results

4.F.1 PCA problem on Grassmann manifold

We here present results on synthetic datasets by varying n and d and also exam-

ine result sensitivity on all datasets by conducting three independent runs.
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Figure 4.5: Synthetic dataset with n = 100000, d = 200, r = 5.
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Figure 4.6: Synthetic dataset with n = 200000, d = 200, r = 5.
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Figure 4.7: Synthetic dataset with n = 100000, d = 300, r = 5.
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4.F.2 LRMC on Grassmann manifold

Additional results on synthetic datasets. We first present three independent

runs in Fig. 4.8 to test the sensitivity of batch size adaptation on baseline syn-

thetic dataset with n = 20000, d = 100, r = 5, cn = 50, os = 8, ε = 10−10. We

also compare algorithms on datasets with different characteristics. Specifically,

we consider a large-scale dataset with n = 40000, a high dimensional dataset

with d = 200, a high-rank dataset with r = 10, an ill-conditioned dataset with

cn = 100, a low-sampling dataset with os = 4 and a noisy dataset with ε = 10−8.

Test MSE results are presented in Fig. 4.9.
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Figure 4.8: LRMC Result sensitivity on baseline synthetic dataset
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(d) Ill condition
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Figure 4.9: LRMC results on datasets with different characteristics.

Additional results for Netflix and Movielens dataset. We present training

MSE results on Netflix and Movielens datasets accompanying test MSE results

in the main text. Also, we examine sensitivity of R-AbaSVRG and R-AbaSRG to

parameter cβ.
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Figure 4.10: Additional LRMC results on Netflix dataset.
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Figure 4.11: Additional LRMC results on Movielens dataset.

Additonal results on Jester dataset. We also consider Jester dataset Goldberg

et al. (2001) that contains continuous ratings in [−10, 10] from 24983 (d) users on

100 jokes (n). We extract 10 ratings per user as test set. We choose q = −6, l = 10.
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Figure 4.12: LRMC results on Jester dataset.

4.F.3 RKM on SPD manifold

Additional results on synthetic datasets. Similar to PCA and LRMC, result sen-

sitivity on baseline synthetic dataset with (n, d, cn) = (5000, 10, 20) is evaluated

by presenting three independent results in Fig. 4.13. We also evaluate algorithms

on datasets with large samples n = 10000, with high dimension d = 30 and with

high condition number cn = 50. Optimality gap results are presented in Fig.

4.14.
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Figure 4.13: RKM Result sensitivity on baseline synthetic dataset.
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Figure 4.14: RKM Result on datasets with different characteristics.

4.G Batch size adaptation for Riemannian proximal

gradient methods

To validate the claim that the proposed batch size adaptation is helpful for

broader settings, we consider the example of nonsmooth optimization with com-

posite functions. The problem is

min
x∈M

F(x) = f (x) + h(x) =
1
n

n

∑
i=1

fi(x) + h(x), (4.24)

where fi, i = 1, ..., n are smooth, possibly nonconvex functions on Riemannian

manifold while h is retraction-convex and nonsmooth (in the manifold sense).

The convexity of h is to ensure the proximal mapping is well-defined. Similarly,

we refer to problem (4.24) as finite-sum and online settings depending on the
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Algorithm 5: R-AbaPSRG
1: Input: stepsize η, epoch length S, inner loop size m, mini-batch size b,

adaptive batch size parameters α1, α2, β1, initialization x̃0, desired accuracy
ϵ.

2: for s = 1, ..., S do
3: xs

0 = x̃s−1.
4: Draw a sample Bs from [n] of size Bs without replacement, where

Bs =

{
min{α1σ2/βs, n}, (finite-sum)
min{α1σ2/βs, α2σ2/ϵ2}, (online)

5: vs
0 = grad fBs(xs

0).
6: Solve ξs

0 = arg minξ∈Txs
0
M⟨vs

0, ξ⟩+ 1
2η∥ξ∥2 + h(Retrxs

0
(ξ)).

7: xs
1 = Retrxs

0
(ξs

0).
8: βs+1 = ∥ξs

0∥2/(mη2).
9: for t = 1, ..., m − 1 do

10: Draw a sample I s
t from [n] of size b with replacement.

11: vs
t = grad fI s

t
(xs

t)− T xs
t

xs
t−1

(
grad fI s

t
(xs

t−1)− vs
t−1
)
.

12: Solve ξs
t = arg minξ∈Txs

t
M⟨vs

t , ξ⟩+ 1
2η∥ξ∥2 + h(Retrxs

t
(ξ)).

13: xs
t+1 = Retrxs

t
(ξs

t).
14: βs+1 = βs+1 + ∥ξs

t∥2/(mη2)
15: end for
16: x̃s = xs

m.
17: end for
18: Output: x̃ uniformly selected at random from {{xs

t}m−1
t=0 }S

s=1.

size of n. If the manifold is the Stiefel manifold (or any embedded submanifold

of the Euclidean space), one can solve the problem efficiently using the Rieman-

nian proximal stochastic recursive gradient (B. Wang et al., 2022). For general

manifolds, we refer readers to W. Huang & Wei (2022) while no analysis has

been made for nonconvex functions under stochastic settings.

Here we present the Riemannian proximal stochastic recursive gradient with

batch size adaptation (R-AbaPSRG) in Algorithm 5, with a particular focus on

the embedded submanifold of the Euclidean space. One can follow similar ideas

in the main text to design SVRG-based method. Hence, with a slight abuse

of notation, for the subsequent section, ⟨·, ·⟩, ∥ · ∥ denote the Euclidean inner

product and norm respectively.

Compared to R-AbaSRG for smooth optimization, Algorithm 5 simply re-
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places the retraction step with the proximal mapping after constructing the mod-

ified gradient. However, now the batch size is adapted based on the norm of ξs
t

rather than vs
t , which corresponds to the generalized modified gradient. Also we

highlight in Algorithm 5, the proximal subproblem is defined with h(Retrx(ξ)).

This can pose difficulties for both the analysis and practical implementation.

Thus we follow B. Wang et al. (2022) to approximate h(Retrx(ξ)) with h(x + ξ)

for embedded submanifolds where the addition is performed in the ambient Eu-

clidean space. Such manifolds include Sphere, Stiefel and fixed-rank manifolds.

Hence, the subproblem becomes ξ∗ = arg minξ∈TxM⟨v, ξ⟩+ 1
2η∥ξ∥2 + h(x +

ξ). Accordingly we define the generalized gradient G(x, v, η) = −ξ∗/η. Hence

the update becomes xs
t+1 = Retrxs

t
(−η G(xs

t , vs
t , η)) so that we can analyze simi-

larly as for the smooth optimization.

Note that the simplified subproblem is a function defined on the tangent

space of embedded submanifold usually with standard inner product. This is

equivalent to optimizing in the Euclidean space without nonlinear retraction,

which can be solved efficiently.

In Section 4.G.1 below, we first briefly review some preliminary knowledge

for Riemannian nonsmooth optimization along with necessary assumptions and

important lemmas for convergence analysis. See B. Wang et al. (2022); W. Huang

& Wei (2022) for more detailed treatments on the topic.

4.G.1 Preliminaries, assumptions and lemmas

We first define the stationary point of problem (4.24), which is based on (B. Wang

et al., 2022, Definition 2), as well as the ϵ-approximate solution and IFO com-

plexity.

Definition 4.3 (Stationary point of composite function). A point x∗ ∈ M is a

stationary point of problem (4.24) if 0 ∈ ∂̂F(x∗) := grad f (x∗) + Px∗
(
∂h(x∗)

)
,

where ∂̂F is the generalized Clarke subdifferential defined in (S. Hosseini et al.,
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2018) and Px∗ is the projection to tangent space Tx∗M. Moreover, if ξ∗ = 0, i.e.

G(x∗, v, η) = 0, x∗ is a stationary point.

Definition 4.4 (ϵ-accurate solution and IFO complexity). Output x from a stochas-

tic algorithm is an ϵ-accurate solution if E∥G(x, grad f (x), η)∥ ≤ ϵ. Similarly, an

IFO oracle call takes in an index i and outputs grad fi(x) as in the smooth setting.

We need to make the same assumptions as in Assumption 4.1 in the main

text, but only for function f and its components fi. In addition, we require

assumptions for the nonsmooth term h(x). For the purpose, we again consider

the neighbourhood X ⊆ M around a stationary point x∗.

Assumption 4.4.

(4.4.1) Function h is convex (in the Euclidean sense). That is, for any x, y ∈ X , it

satisfies h((1 − t)x + t(y)) ≤ (1 − t) f (x) + t f (y) for t ∈ [0, 1].

(4.4.2) Function h is Lh-Lipschitz continuous (in the Euclidean sense). That is,

for any x, y ∈ X , |h(x)− h(y)| ≤ Lh∥x − y∥.

Note that the convexity and Lipschitzness are notions in the Euclidean sense

because we use h(x + ξ) instead of h(Retrx(ξ)). The l1 norm is one common

example that satisfies the assumption.

Lastly, given that we replace retraction with addition for the subproblem,

we need to assume the difference is bounded as in B. Wang et al. (2022). This

assumption naturally follows from the Taylor approximation and can be ensured

in a compact set X .

Assumption 4.5. For any x ∈ X , ξ ∈ TxM, there exists a constant M > 0 such

that ∥Retrx(ξ)− (x + ξ)∥ ≤ M∥ξ∥2.

Denote g(ξ; v) := ⟨v, ξ⟩+ 1
2η∥ξ∥2 + h(x + ξ) where one can verify that g(ξ; v)

is (1/η)-strongly convex due to the convexity of h. The following lemma is

modified from (B. Wang et al., 2022, Lemma 8).
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Lemma 4.8. Suppose Assumption 4.4 holds. Then the optimized ξs
t satisfies g(ξs

t ; vs
t)−

g(0; vs
t) ≤ − η

2∥G(xs
t , vs

t , η)∥2.

Proof. By strongly convexity of g, we have for ξs
t , 0 ∈ Txs

t
M,

g(0; vs
t) ≥ g(ξs

t ; vs
t) + ⟨∂̂g(ξs

t ; vs
t),−ξs

t⟩+
1

2η
∥ξs

t∥2 = g(ξs
t ; vs

t) +
1

2η
∥ξs

t∥2. (4.25)

where the equality is due to the optimality condition of g(ξ; vs
t) and ξs

t is the

optimal solution. That is, ⟨∂̂g(ξs
t ; vs

t), u⟩ = 0 for any u ∈ Txs
t
M. Hence this is

equivalent to h(xs
t + ξs

t)− h(xs
t) ≤ −⟨vs

t , ξs
t⟩ − 1

η∥ξs
t∥2. Applying the definitions

of g(ξ; v) and generalized gradient completes the proof.

4.G.2 Convergence analysis

Lemma 4.9 (Gradient estimation bound of R-AbaPSRG). Suppose Assumption 4.1

(in the main text) holds for function f and consider Algorithm 5. Then we have the

following bound on the estimation error.

E[∥vs
t − grad f (xs

t)∥2|F s
0 ] ≤

(Ll + θG)2η2

b

t

∑
i=0

E[∥G(xs
i , vs

i , η)∥2|F s
0 ] + 1{Bs<n}

σ2

Bs .

Proof. The proof follows from the proof of Lemma 4.2 where we replace vs
t with

the generalized gradient.

The following lemma bounds the iteration function value gap.

Lemma 4.10. Suppose Assumption 4.1 and 4.4 hold. Then for the optimized ξs
t , we

have

F(xs
t+1)− F(xs

t)

≤ η⟨vs
t − grad f (xs

t), G(xs
t , vs

t , η)⟩+
(Lη2

2
− η

)
∥G(xs

t , vs
t , η)∥2 + h(xs

t+1)− h(xs
t + ξs

t).

Proof. Firstly F(xs
t+1)− F(xs

t) ≤ −η⟨grad f (xs
t), G(xs

t , vs
t , η)⟩+ Lη2

2 ∥G(xs
t , vs

t , η)∥2 +
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h(xs
t+1)− h(xs

t) by retraction L-smoothness of f . Also from the definition of g,

we have

g(ξs
t ; vs

t)− g(0; vs
t) = ⟨vs

t , ξs
t⟩+

1
2η

∥ξs
t∥2 + h(xs

t + ξs
t)− h(xs

t)

= −η⟨vs
t , G(xs

t , vs
t , η)⟩+ η

2
∥G(xs

t , vs
t , η)∥2 + h(xs

t + ξs
t)− h(xs

t).

Substitute this result in the above inequality and apply Lemma 4.8 yields the

result.

Now we present a lemma that bounds the norm of generalized gradient.

Lemma 4.11. We can show ∥G(xs
t , grad f (xs

t), η)∥2 ≤ 2∥G(xs
t , vs

t , η)∥2 + 2∥vs
t −

grad f (xs
t)∥2.

Proof. Let ξ̃s
t := arg minξ∈Txs

t
M g(ξ; grad f (xs

t)) = −ηG(xs
t , grad f (xs

t), η).

∥G(xs
t , grad f (xs

t), η)∥2 ≤ 2∥G(xs
t , vs

t , η)∥2 + 2∥G(xs
t , vs

t , η)− G(xs
t , grad f (xs

t), η)∥2

= 2∥G(xs
t , vs

t , η)∥2 +
2
η2∥ξs

t − ξ̃s
t∥2

≤ 2∥G(xs
t , vs

t , η)∥2 + 2∥vs
t − grad f (xs

t)∥2, (4.26)

where the last inequality is due to (B. Wang et al., 2022, Lemma 12) derived from

the optimality condition of the subproblem.

Theorem 4.6 (Convergence of R-AbaPSRG). Suppose Assumptions 1, 4.4 and 4.5

hold. Consider Algorithm 5 and choose a stepsize η ≤
1
2−

2
α

L̃+

√
L̃2+(1− 4

α )
(Ll+θG)2m

2b

, then

under both finite-sum and online settings, we have

E∥G(x̃, grad f (x̃), η)∥2 ≤ 11∆
Tη

+
13
8

ϵ2,

where ∆ := F(x̃0)− F(x∗).
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Proof. By Lemma 4.10, we have

F(xs
t+1)− F(xs

t)

≤ η⟨vs
t − grad f (xs

t), G(xs
t , vs

t , η)⟩+
(Lη2

2
− η

)
∥G(xs

t , vs
t , η)∥2 + h(xs

t+1)− h(xs
t + ξs

t)

≤ η

2
∥vs

t − grad f (xs
t)∥2 +

(Lη2

2
− η

2
)
∥G(xs

t , vs
t , η)∥2 + Lh∥Retrxs

t
(ξs

t)− (xs
t + ξs

t)∥

≤ η

2
∥vs

t − grad f (xs
t)∥2 +

(Lη2

2
− η

2
)
∥G(xs

t , vs
t , η)∥2 + LhM∥ξs

t∥2

=
η

2
∥vs

t − grad f (xs
t)∥2 + (L̃η2 − η

2
)∥G(xs

t , vs
t , η)∥2,

where we denote L̃ := L
2 + LhM. The second inequality applies Lipschitz conti-

nuity of h and ⟨a, b⟩ ≤ 1
2∥a∥2 + 1

2∥b∥2. The third inequality is due to Assumption

4.5. Taking the expectation with respect to F s
0 and applying Lemma 4.9 yield

E[F(xs
t+1)− F(xs

t)|F s
0 ]

≤ η

2
E[∥vs

t − grad f (xs
t)∥2|F s

0 ] + (L̃η2 − η

2
)E[∥G(xs

t , vs
t , η)∥2|F s

0 ]

≤ (Ll + θG)3η2

2b

t

∑
i=0

E[∥G(xs
i , vs

i , η)∥2|F s
0 ] + 1{Bs<n}

ησ2

2Bs

+ (L̃η2 − η

2
)E[∥G(xs

t , vs
t , η)∥2|F s

0 ].

Telescoping the inequality from t = 0, ..., m − 1 gives

E[F(xs
m)− F(xs

0)|F s
0 ]

≤ (Ll + θG)2η3

2b

m−1

∑
t=0

t

∑
i=0

E[∥G(xs
i , vs

i , η)∥2|F s
0 ] + 1{Bs<n}

mησ2

2Bs

+ (L̃η2 − η

2
)

m−1

∑
t=0

E[∥G(xs
t , vs

t , η)∥2|F s
0 ]

≤ −η
(1

2
− L̃η − (Ll + θG)2η2m

2b
) m−1

∑
t=0

E[∥G(xs
t , vs

t , η)∥2|F s
0 ] + 1{Bs<n}

mησ2

2Bs .
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Then summing over s = 1, ..., S and taking full expectation gives

−∆ ≤ −η
(1

2
− L̃η − (Ll + θG)2η2m

2b
) S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , vs

t , η)∥2 + 1{Bs<n}
S

∑
s=1

E[
mησ2

2Bs ],

where ∆ := F(x̃0) − F(x∗). The following analysis follows closely as that of

R-AbaSRG.

(1) Under the finite-sum setting,

−∆ ≤ −η
(1

2
− 1

α
− L̃η − (Ll + θG)2η2m

2b
) S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , vs

t , η)∥2 +
Smϵ2η

2α

≤ −η

4

S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , vs

t , η)∥2 +
Smϵ2η

2α
,

where we choose η ≤
1
2−

2
α

L̃+

√
L̃2+(1− 4

α )
(Ll+θG)2m

2b

. Thus we have

1
T

S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , vs

t , η)∥2 ≤ 4∆
Tη

+
2ϵ2

α
.

(2) Under the online setting, similarly we have 1
T ∑S

s=1 ∑m−1
t=0 E∥G(xs

t , vs
t , η)∥2 ≤

4∆
Tη + 4ϵ2

α . Choose α = 8 for both cases, we have under both finite-sum and online

settings,
1
T

S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , vs

t , η)∥2 ≤ 4∆
Tη

+
ϵ2

2
.

Note the ϵ-accurate solution is with respect to E∥G(xs
t , grad f (xs

t), η)∥. Thus we

further need the following bound. From Lemma 4.9, we have

1
T

S

∑
s=1

m−1

∑
t=0

E∥vs
t − grad f (xs

t)∥2

≤ 1
T

(
(Ll + θG)2η2m

b
+

1
8

) S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , vs

t , η)∥2 +
ϵ2

8
.
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Finally, from Lemma 4.11 and the above inequality, we have

1
T

S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , grad f (xs

t), η)∥2

≤ 2
T

S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , vs

t , η)∥2 +
2
T

S

∑
s=1

m−1

∑
t=0

E∥vs
t − grad f (xs

t)∥2

≤
(

2 +
2(Ll + θG)2η2m

b
+

1
4

)
1
T

S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , vs

t , η)∥2 +
ϵ2

4

≤
(

2(Ll + θG)2η2m
b

+
9
4

)
(

4∆
Tη

+
ϵ2

2
) +

ϵ2

4

≤ 11
4
(

4∆
Tη

+
ϵ2

2
) +

ϵ2

4
=

11∆
Tη

+
13
8

ϵ2,

where the last inequality is due to the choice of η. Finally, we notice that x̃ is

uniformly chosen from all the iterates, which gives

E∥G(xs
t , grad f (x̃), η)∥2 =

1
T

S

∑
s=1

m−1

∑
t=0

E∥G(xs
t , grad f (xs

t), η)∥2,

thus completing the proof.

Corollary 4.7 (IFO complexity of R-AbaPSRG). With the same assumptions as in

Theorem 4.6, choose b = m, η = 1
4L̃2+2

√
4L̃+(Ll+θG)2

(α = 8). Set m = ⌊n1/2⌋ under

finite-sum setting and m = σ
ϵ under online setting. The IFO complexity of Algorithm 5

to obtain
√

2ϵ-accurate solution is


O
(

B̃ + Θ3B̃√
nϵ2 +

Θ3
√

n
ϵ2

)
, (finite-sum)

O
(Θ3B̃

σϵ + Θ3σ
ϵ3

)
, (online)

where Θ3 := L̃ +
√

L̃2 + ϱ3(Ll + θG)2 and ρ3 > 0 is parameter-free. The average

batch size is defined the same way as in the smooth setting.

Proof. To return an
√

2ϵ-accurate solution, we require 11∆
Tη ≤ 3

8 ϵ2, which gives

S ≥ 88∆
3mηϵ2 =

88∆
3mϵ2

(
4L̃ + 2

√
4L̃2 + (Ll + θG)2

)
= O(

Θ3

mϵ2 ).
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Hence the IFO complexity is similarly derived as in the smooth setting.
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Chapter 5

Generic acceleration for Riemannian

optimization via extrapolation

In contrast to Chapters 3 and 4 that focus on particular manifold (i.e., SPD mani-

fold in Chapter 3) or problem types (i.e., finite-sum/online problems in Chapter

4), this chapter considers the general optimization problem on Riemannian man-

ifolds

min
x∈M

f (x), (5.1)

where M is a Riemannian manifold. Optimization problem of the form (5.1)

naturally appears in various fields of applications and is more general than the

one considered in Chapter 4. Examples include principal component analysis

(Edelman et al., 1998; H. Zhang et al., 2016), matrix completion and factorization

(Keshavan & Oh, 2009; Vandereycken, 2013; Boumal & Absil, 2015; P. Jawanpuria

& Mishra, 2018), dictionary learning (Cherian & Sra, 2016; M. Harandi et al.,

2013), cross-lingual translation (P. Jawanpuria et al., 2020a,b, 2021), and optimal

transport (Shi et al., 2021; P. Jawanpuria et al., 2021; Mishra et al., 2021; Han et

al., 2022), etc.

The Riemannian gradient descent method1 (Udriste, 1994; H. Zhang & Sra,

1Here we use Riemannian gradient descent rather than steepest descent to emphasize the
fixed stepsize as opposed to variable stepsize computed by line-search in the previous chapters.
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2016; Absil et al., 2009; Boumal, 2023) has been considered as the default solver

for problem (5.1). Existing works have also explored generalizing Nesterov ac-

celeration (Y. E. Nesterov, 1983) to Riemannian manifolds, including (Y. Liu et

al., 2017; Ahn & Sra, 2020; H. Zhang & Sra, 2018a; Alimisis et al., 2020; Jin & Sra,

2022; Kim & Yang, 2022; Criscitiello & Boumal, 2022a). However, they primarily

involve exponential map, inverse exponential map, and parallel transport, which

are computationally expensive operations. In addition, the Nesterov accelera-

tion based methods require the knowledge of smoothness and strong convexity

constants, which are often unknown. Furthermore, recent studies (Hamilton &

Moitra, 2021; Criscitiello & Boumal, 2022b) show that global acceleration cannot

be achieved on manifolds in general. In particular, they claim for Hadamard

manifolds with strictly negative curvature, such as hyperbolic and positive def-

inite manifolds, acceleration is impossible for smooth, geodesic strongly convex

functions, when domain expands.

In this chapter, we focus on an extrapolation based strategy to produce an

accelerated sequence. The core idea is to compute extrapolation as a linear com-

bination of the iterates where the weights depend nonlinearly on the iterates.

Existing works (Aitken, 1927; Shanks, 1955; Brezinski et al., 2018; Wynn, 1956;

Sidi et al., 1986; Walker & Ni, 2011; Scieur et al., 2020) have explored such strat-

egy in the Euclidean setting. Recently, it has been shown in Scieur et al. (2020)

that such nonlinear acceleration (Euclidean) scheme achieves optimal conver-

gence rates asymptotically without knowing the function-specific constants.

A natural question is can such extrapolation idea be generalized to Riemannian

manifolds so that we achieve acceleration? The nonlinear structure of manifolds im-

poses key technical challenges such as averaging on manifolds, distortion due to

varying metric, computationally expensive operations, like exponential map and

parallel transport, to name a few. Nevertheless, we answer the above question

affirmatively and our contributions of this chapter are as follows.

• We propose an acceleration strategy for Riemannian optimization based
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on the idea of extrapolation, which we call the Riemannian nonlinear ac-

celeration (RiemNA) strategy. We analyze several averaging schemes that

generalize weighted averaging in the Euclidean space from various per-

spectives.

• When the iterates are generated by the Riemannian gradient descent method,

we show RiemNA achieves the optimal asymptotic first-order convergence

rate. We show the convergence is robust to the choice of different averaging

schemes on manifolds.

• A salient feature is that convergence of RiemNA holds under general re-

traction and vector transport. This is in contrast to existing analyses for

Riemannian accelerated gradient methods which employ exponential map

and parallel transport (Y. Liu et al., 2017; H. Zhang & Sra, 2018a; Ahn &

Sra, 2020; Kim & Yang, 2022).

• We empirically demonstrate the superiority of RiemNA over state-of-the-

art methods both in terms of convergence speed and computational effi-

ciency.

5.1 Preliminaries on metric distortion and related works

Metric distortion. Building on the preliminary chapter, i.e., Chapter 2, we first

introduce several results bounding the metric distortion, which are essential for

the subsequent analysis. Due to the curved geometry of Riemannian manifolds,

many of the metric properties in the linear space are lost. The following geomet-

ric lemmas on manifolds provide standard bounds on the metric distortion.

Lemma 5.1 (Ahn & Sra (2020); Sun et al. (2019)). Consider a compact subset X ⊆ M

with unique geodesic. Let x, y = Expx(u) ∈ X for some u ∈ TxM. Then for any

v ∈ TxM, we have d(Expx(u + v), Expy(Γ
y
xv)) ≤ min{∥u∥, ∥v∥}Cκ(∥u∥ + ∥v∥),

where X has curvature upper bounded by κ in magnitude and Cκ(r) := cosh(
√

κr)−
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sinh(
√

κr)/(
√

κr).

Lemma 5.2 (Ahn & Sra (2020); Karcher (1977); Mangoubi & Smith (2018); Sun et

al. (2019)). For a compact subset X ⊆ M with unique geodesic, there exists constants

C0 > 0, C1, C2 ≥ 1 that depend on the curvature and diameter of X such that for all

x, y, z ∈ X , u ∈ TxM we have

(1). ∥Γz
yΓy

xu − Γz
xu∥z ≤ C0d(x, y)d(y, z)∥u∥x.

(2). C−1
1 d(x, y) ≤ ∥Exp−1

z (x)− Exp−1
z (y)∥z ≤ C2d(x, y).

(3). d
(
Expx(u), Expy(Γ

y
xu)
)
≤ C3d(x, y).

Related works on Riemannian acceleration. Generalizing Nesterov accelera-

tion strategy (Y. E. Nesterov, 1983) from the Euclidean space to Riemannian

manifolds for geodesic (strongly) convex functions has been explored in Y. Liu

et al. (2017); H. Zhang & Sra (2018a); Ahn & Sra (2020); Kim & Yang (2022); Jin &

Sra (2022). Works such as Alimisis et al. (2020); Duruisseaux & Leok (2022) have

approached acceleration on manifolds inspired by the continuous dynamics for-

mulation of the Nesterov acceleration in the Euclidean space (Su et al., 2014;

Wibisono et al., 2016). Lastly, acceleration has also been studied for specific

manifolds, including sphere and hyperbolic manifolds (Martínez-Rubio, 2022)

and the Stiefel manifold (Siegel, 2019).

In the next section, we explore Riemannian nonlinear acceleration based on

an extrapolation strategy for iterates generated from a Riemannian solver. Since

our convergence analysis is local, the contributions can benefit both geodesic

(strongly) convex functions and many nonconvex functions. Further, our con-

vergence rates hold beyond the use of exponential map and parallel transport,

which are the primary focus of the aforementioned works.
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5.2 Riemannian nonlinear acceleration

We generalize the nonlinear acceleration strategy for Riemannian optimization

via a weighted Riemannian averaging on the manifold. For a set of weights

{ci}k
i=0 and points {xi}k

i=0 on the manifold, we define the weighted Riemannian

average x̄c,x as

x̄c,x = x̃k, x̃i = Expx̃i−1

( ci

∑i
j=0 cj

Exp−1
x̃i−1

(
xi
))

, (Avg.1)

for i = 0, ..., k and x̃−1 = x0. When M is the Euclidean space, (Avg.1) recovers

the weighted mean as x̄c,x = ∑k
i=0 cixi (see Lemma 5.11 in Appendix 5.C).

The coefficients {ci}k
i=0 are determined by minimizing a weighted combina-

tion of the residuals Exp−1
xi
(xi+1) ∈ TxiM, i = 0, ..., k. Specifically, we consider

the following optimization problem:

min
c∈Rk+1:c⊤1=1

∥
k

∑
i=0

ciri∥2
xk
+ λ∥c∥2

2, (5.2)

which is a linear system of dimension k + 1 and has a simple closed-form solu-

tion (see Proposition 5.2 in Appendix 5.D). Here, ri = Γxk
xi Exp−1

xi
(xi+1) ∈ TxkM

and Γxk
xi is the parallel transport from xi to xk.

Our Riemannian nonlinear acceleration (RiemNA) strategy is presented in

Algorithm 6, which takes a sequence of non-diverging iterates from any solver

as input and constructs an extrapolation using coefficients {ci}k
i=0 that solve (5.2).

The extrapolation is performed in parallel to the update of the iterate sequence.

Note that when the manifold M is the Euclidean space, Algorithm 6 exactly

recovers the nonlinear acceleration algorithm in Scieur et al. (2020).
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Algorithm 6: Riemannian nonlinear acceleration (RiemNA)
1: Input: Iterate sequence x0, ..., xk+1. Regularization parameter λ.
2: Compute ri = Γxk

xi Exp−1
xi
(xi+1), i = 0, ..., k.

3: Solve c∗ = arg minc∈Rk+1:c⊤1=1 ∥∑k
i=0 ciri∥2

xk
+ λ∥c∥2

2.

4: Output: x̄c∗,x = x̃k computed from x̃i = Expx̃i−1

(
c∗i

∑i
j=0 c∗j

Exp−1
x̃i−1

(
xi
))

, with

x̃−1 = x0.

5.3 Convergence acceleration for Riemannian gradi-

ent descent

This section analyzes the convergence acceleration of RiemNA (Algorithm 6)

when the iterates are generated by the Riemannian gradient descent (RGD)

method (Absil et al., 2009). In particular, we show that the extrapolated point

(output of Algorithm 6) is a good estimate of the optimal solution and bound its

distance to optimality. We start by making the following assumption throughout

the chapter.

Assumption 5.1. Let x∗ ∈ M be a (strictly) local minimizer of f . The iterates

generated, i.e., x0, x1, . . . stay within a neighbourhood X around x∗ with unique

geodesic. Furthermore, the sequence of iterates is non-divergent, i.e., d(xk, x∗) =

O(d(x0, x∗)) for all k ≥ 0.

The former condition in Assumption 5.1 ensures the exponential map is in-

vertible and is standard for analyzing accelerated gradient methods on mani-

folds (Ahn & Sra, 2020; Jin & Sra, 2022; Kim & Yang, 2022). This condition is

satisfied for any non-positively curved manifolds, such as symmetric positive

definite (SPD) manifold with the affine-invariant metric (Bhatia, 2009). In addi-

tion, this also holds true for any sufficiently small subset X of any manifold.

Linear iterates and error decomposition in the Euclidean space. First, we re-

call that the convergence analysis for Euclidean nonlinear acceleration (Scieur et

al., 2020) relies critically on a sequence of linear fixed-point iterates that satisfy
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x̂i − x∗ = G(x̂i−1 − x∗) for some positive semi-definite and contractive matrix

G (with ∥G∥2 < 1). The main idea is to show that the algorithm converges

optimally on x̂i and then bound the deviation arising from the nonlinearity. In

particular, let {xi}k
i=0 be the given iterates and {x̂i}k

i=0 be the linear iterates de-

fined above. Consider c∗, ĉ∗ as the coefficients solving (5.2) in the Euclidean

setup using {xi}k
i=0, {x̂i}k

i=0 respectively. The convergence analysis in Scieur et

al. (2020) aims to bound each term from the error decomposition:

k

∑
i=0

c∗i xi − x∗ =
k

∑
i=0

ĉ∗i x̂i − x∗︸ ︷︷ ︸
Linear term

+
k

∑
i=0

(c∗i − ĉ∗i )x̂i︸ ︷︷ ︸
Stability

+
k

∑
i=0

c∗i (xi − x̂i)︸ ︷︷ ︸
Nonlinearity

. (5.3)

From linearized iterates to iterates on manifolds. On general Riemannian

manifolds, due to the curved geometry, it becomes nontrivial to generalize the

error decomposition (5.3) to manifolds. Nevertheless, we start with identifica-

tion of linearized iterates on manifolds in the tangent space of x∗. For notational

convenience, we denote ∆x := Exp−1
x∗ (x) for any x ∈ X . We now consider the

linearized iterates x̂i produced by the following progression as

∆x̂i = G[∆x̂i−1 ], (5.4)

for some G : Tx∗M −→ Tx∗M as a self-adjoint, positive semi-definite operator

with ∥G∥x∗ ≤ σ < 1, where we denote ∥A∥x∗ as the operator norm for any

linear operator A on the tangent space Tx∗M. In fact, we show in Lemma 5.3

that the progression of iterates from the Riemannian gradient descent method is

locally linear on the tangent space of the local minimizer x∗, thus satisfying (5.4)

up to some error term. This requires the following regularity assumption on the

objective function f .

Assumption 5.2. The function f has geodesic Lipschitz gradient and Lipschitz

Hessian.
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Remark 5.1. Assumption 5.2 is used to ensure sufficient smoothness of the func-

tion such that the Riemannian gradient and Hessian are bounded at optimality.

Lemma 5.3. Under Assumptions 5.1 and 5.2, suppose the iterates generated by the

Riemannian gradient descent method are xi+1 = Expxi
(−η grad f (xi)). Then, we have

∆xi =
(
id − η Hess f (x∗)

)
[∆xi−1 ] + εi

where id denotes the identity operator and ∥εi∥x∗ = O(d2(xi, x∗)) and ε0 = 0.

Lemma 5.3 suggests that it is reasonable to consider the linearized iterates

{x̂k} defined in (5.4) where G = id − η Hess f (x∗). It is clear that for a strictly

local minimizer x∗, there exist µ, L > 0 such that µ id ⪯ Hess f (x∗) ⪯ L id.

This is irrespective of whether the function f is geodesic strongly convex or has

geodesic Lipschitz gradient. Thus, for proper choices of η, we can always ensure

G is positive semi-definite and contractive.

In this chapter, the convergence analysis focuses on the case when G = id −

η Hess f (x∗) and {xi} are given by Riemannian gradient descent to simplify the

bounds. However, we highlight that most of the analysis holds for more general

and symmetric G.

Hence, the error in the manifold weighted average x̄c∗,x computed from

(Avg.1) leads to the decomposition (due to triangle inequality of Riemannian

distance):

d(x̄c∗,x, x∗) ≤ d(x̄ĉ∗,x̂, x∗)︸ ︷︷ ︸
Linear term

+ d(x̄ĉ∗,x̂, x̄c∗,x̂)︸ ︷︷ ︸
Stability

+ d(x̄c∗,x̂, x̄c∗,x)︸ ︷︷ ︸
Nonlinearity

,

where we denote ĉ∗ as the coefficients solving (5.2) with the residuals r̂i =

∆x̂i+1 − ∆x̂i from the linearized iterates {x̂i} in (5.4) and x̄ĉ∗,x̂, x̄c∗,x̂ as weighted

average computed using pairs {(ĉ∗i , x̂i)}k
i=0 and {(c∗i , x̂i)}k

i=0 respectively. Before

we bound each of the error term, we first present a lemma relating the averaging
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on manifolds to averaging on the tangent space.

Lemma 5.4. Under Assumption 5.1, for some coefficients {ci}k
i=0 with ∑k

i=0 ci = 1

and any iterate sequence {xi}k
i=0, consider x̄c,x computed from (Avg.1) via the given

coefficients and the iterates. Then, we have ∆x̄c,x = ∑k
i=0 ci∆xi + e, where ∥e∥x∗ =

O(d3(x0, x∗)).

Remark 5.2. Lemma 5.4 shows that the error between the averaging on the man-

ifold and averaging on the tangent space is on the order of O(d3(x0, x∗)). This

relies heavily on the metric distortion bound given in Lemmas 5.1 and 5.2, which

only holds for the case of exponential map and parallel transport. Nevertheless,

we highlight that when the general retraction and vector transport are used, we

can follow the idea of (Tripuraneni et al., 2018, Lemma 12) to show the error is

on the order of O(d2(x0, x∗)). Please see Proposition 5.3 in Appendix 5.E and

Section 5.5 for more details where we discuss convergence under a more general

setup.

Error bound from the linear term. We show that extrapolation using the lin-

earized iterates converges in a near-optimal rate, via the regularized Chebyshev

polynomial. This generalizes the development of Scieur et al. (2020) (in the Eu-

clidean setting) to manifolds.

Definition 5.1 (Regularized Chebyshev polynomial (Scieur et al., 2020)). The

regularized Chebyshev polynomial of degree k, in the range of [0, σ] with a

regularization parameter α, denoted as C[0,σ]
k,α (x) is defined as

C[0,σ]
k,α (x) = arg min

p∈P1
k

max
x∈[0,σ]

p2(x) + α∥p∥2
2

where we denote P1
k := {p ∈ R[x] : deg(p) = k, p(1) = 1} as the set of poly-

nomials of degree k with coefficients summing to 1 and ∥p∥2 is the Euclidean

norm of the coefficients of the polynomial p. We write the maximum valued as
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S[0,σ]
k,α :=

√
maxx∈[0,σ](C

[0,σ]
k,α (x))2 + α∥C[0,σ]

k,α (x)∥2
2.

In Lemma 5.5, we present the error bound coming from the linear term,

which follows from the definition of regularized Chebyshev polynomial and

Lemma 5.4. Due to the curvature of the manifold, we observe an additional

error term O(d3(x0, x∗)) compared to the Euclidean counterpart, which becomes

insignificant as approaching optimality.

Lemma 5.5 (Error from the linear term). Under Assumption 5.1, let x̄ĉ∗,x̂ be com-

puted from (Avg.1) using {(ĉ∗i , x̂i)}k
i=0. Then we can bound

d(x̄ĉ∗,x̂, x∗) ≤ d(x0, x∗)
1 − σ

√
(S[0,σ]

k,λ̄ )2 − λ

d2(x0, x∗)
∥ĉ∗∥2

2 + ϵ1,

where λ̄ = λ/d2(x0, x∗) and ϵ1 = O(d3(x0, x∗)).

Error bound from coefficient stability. We now bound the deviation between

the optimal coefficients computed via the Riemannian gradient descent iterates

{xi} and the linearized iterates {x̂i}. To this end, we require the following result

on the coefficients.

Lemma 5.6 (Bound on norm of coefficients). Under Assumptions 5.1 and 5.2, let

the coefficients c∗, ĉ∗ be solved from (5.2) using {xi}, {x̂i} respectively, where {xi}

are given by the Riemannian gradient descent and {x̂i} satisfy (5.4). Then, we have

∥c∗∥2 ≤
√

∑k
i=0 d2(xi,xi+1)+λ

(k+1)λ and ∥c∗ − ĉ∗∥2 ≤ 1
λ

(
2d(x0,x∗)

1−σ ψ + (ψ)2
)
∥ĉ∗∥2 for some

ψ = O(d2(x0, x∗)).

It should be noted that in the Euclidean space, ψ = ∑k
i=0 ∥∆xi − ∆x̂i∥2 =

∥xi − x̂i∥2 and also can be shown to have an order of O(d2(x0, x∗)) under certain

Lipschitz conditions on the function (Scieur et al., 2020, Proposition 3.8). On

manifolds, the term ψ suffers from additional distortion coming from the metric,

which is also on the order O(d2(x0, x∗)).
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Based on Lemma 5.6, the error from coefficient stability can now be bounded

as follows. The proof follows from linearizing the weighted average on the

tangent space Tx∗M where we bound the deviation arising from the coefficients.

Hence, an extra error ϵ2 appears in the bound.

Lemma 5.7 (Error from coefficient estimation). Under the same settings as in Lemma

5.6, let x̄ĉ∗,x̂, x̄c∗,x̂ be computed from (Avg.1) using {(ĉ∗i , x̂i)}k
i=0 and {(c∗i , x̂i)}k

i=0

respectively. Then,

d(x̄ĉ∗,x̂, x̄c∗,x̂) ≤
C1

λ(1 − σ)

(2d2(x0, x∗)
1 − σ

ψ + d(x0, x∗)(ψ)2
)
∥ĉ∗∥2 + ϵ2,

for some ψ = O(d2(x0, x∗)), ϵ2 = O(d3(x0, x∗)).

Error bound from nonlinearity. Next, we show that the nonlinearity term can

be bounded in Lemma 5.8, which follows a similar idea of linearization on a

fixed tangent space. Additional error ϵ3 is again due to the curvature of the

manifold, which vanishes when M is the Euclidean space.

Lemma 5.8 (Error from the nonlinearity). Under the same settings as in Lemma 5.6,

we have

d(x̄c∗,x̂, x̄c∗,x) ≤ C1

√
∑k

i=0 d2(xi, xi+1) + λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ3,

where ∥ε j∥x∗ = O(d2(xj, x∗)) is defined in Lemma 5.3 and ϵ3 = O(d3(x0, x∗)).

Finally, we combine Lemmas 5.5, 5.7, 5.8 to obtain the following convergence

result for Algorithm 6 when the iterates are generated from the Riemannian

gradient descent (RGD).

Theorem 5.1 (Convergence of RiemNA with RGD). Under Assumptions 5.1, 5.2,

let {xi}k
i=0 be the iterates given by the Riemannian gradient descent method, i.e., xi+1 =

Expxi
(−η grad f (xi)) and {x̂i}k

i=0 be the linearized iterates satisfying ∆x̂i = G[∆x̂i−1 ]
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with G = id − η Hess f (x∗) contractive, i.e., ∥G∥x∗ ≤ σ < 1. Then, Algorithm 6 with

regularization parameter λ produces x̄c∗,x∗ that satisfies

d(x̄c∗,x, x∗) ≤ d(x0, x∗)
S[0,σ]

k,λ̄

1 − σ

√
1 +

C2
1d2(x0, x∗)

(2d(x0,x∗)
1−σ ψ + (ψ)2

)2

λ3

+ C1

√
∑k

i=0 d2(xi, xi+1) + λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ1 + ϵ2 + ϵ3,

where ψ = O(d2(x0, x∗)), ϵ1, ϵ2, ϵ3 = O(d3(x0, x∗)) and εi = O(d2(xi, x∗)) is defined

in Lemma 5.3.

We prove that even with additional distortion from the curved geometry

of the manifold, the asymptotic optimal convergence is still guaranteed. This

is mainly due to the fact that all errors incurred by the metric distortion, i.e.,

ϵ1, ϵ2, ϵ3 are on the order of at least O(d2(x0, x∗)), which is primarily attributed

to Lemma 5.4.

Proposition 5.1 (Asymptotic optimal convergence rate of RiemNA with RGD

iterates). Under the same settings as in Theorem 5.1, set λ = O(ds(x0, x∗)) for s ∈

(2, 8
3). Then, limd(x0,x∗)−→0

d(x̄c∗ ,x,x∗)
d(x0,x∗) ≤ 1

1−σ
2

β−k+βk , where β = 1−
√

1−σ
1+

√
1−σ

.

Remark 5.3. The asymptotic optimal convergence rate holds as long as ϵ1, ϵ2, ϵ3

are on the order of at least O(d2(x0, x∗)) such that limd(x0,x∗)−→0
1

d(x0,x∗)(ϵ1 + ϵ2 +

ϵ3) = 0.

Remark 5.4. Suppose at a (strictly) local minimizer, 0 ≺ µ id ⪯ Hess f (x∗) ⪯ L id.

Then, by choosing η = 1
L , we have σ = 1 − µ

L . This corresponds to the optimal

convergence rate obtained by Nesterov acceleration (Y. Nesterov, 2003) and its

Riemannian extensions such as Y. Liu et al. (2017); Ahn & Sra (2020); Kim &

Yang (2022) for geodesic strongly convex functions.

Implementation and complexity. Algorithm 7 presents an implementation for

the proposed RiemNA strategy when the iterates are given by Riemannian gra-
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Algorithm 7: RGD+RiemNA
1: Input: Initialization x0, stepsize η, regularization parameter λ, and memory

depth m.
2: Set t = 0.
3: while t ≤ T do
4: for i = 1, ..., m do
5: xi = Expxi−1

(−η grad f (xi−1)).
6: t = t + 1.
7: end for
8: ri = −η Γxm−1

xi grad f (xi), i = 0, ..., m − 1.
9: Solve c∗ = arg minc∈Rm :c⊤1=1 ∥∑k

i=0 ciri∥2
xm−1

+ λ∥c∥2
2.

10: Set x̄c∗,x = x̃m−1 computed from x̃i = Expx̃i−1

( c∗i
∑i

j=0 c∗j
Exp−1

x̃i−1
(xi)

)
, with

x̃−1 = x0.
11: Restart with x0 = x̄c∗,x.
12: end while

dient descent (RGD) method with fixed stepsize. Specifically, we run RGD to

produce the iterate sequence x0, . . . , xm−1, where m is the memory depth. Then,

we compute x̄c∗,x with these iterates by Algorithm 6. We then restart Rieman-

nian gradient descent with x0 = x̄c∗,x for the next epoch. It should be noted that

in this case, we do not require the inverse exponential map for computing the

residuals.

RGD+RiemNA requires T RGD updates and ⌈T/m⌉ calls to RiemNA. Over-

all, Algorithm 7 needs T + ⌈T/m⌉m calls to the exponential map and ⌈T/m⌉m

calls each to the parallel transport and the inverse exponential map operations.

This is as efficient as the most practical implementation of the Riemannian Nes-

terov accelerated gradient methods (H. Zhang & Sra, 2018a; Kim & Yang, 2022)

(discussed in Appendix 5.A.2) that require 2T calls each to the exponential and

inverse exponential map operations.

5.4 Alternative averaging schemes

In this section, we propose alternative averaging schemes on manifolds used for

extrapolation. For the iterates obtained from the Riemannian gradient descent
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method, we show the schemes ensure the same asymptotically optimal conver-

gence rate obtained in Proposition 5.1.

The first scheme we consider is based on the following equality in the Eu-

clidean space for the weighted mean, i.e., ∑k
i=0 cixi = xk − (∑k−1

i=0 ci)(xk − xk−1)−

(∑k−2
i=0 ci)(xk−1 − xk−2)−· · ·− c0(x1 − x0). Accordingly, let θi = ∑i

j=0 cj, i = 0, ..., k−

1. We define an alternative weighted averaging as

x̄c,x = Expxk

(
−

k−1

∑
i=0

θiΓ
xk
xi Exp−1

xi
(xi+1)

)
. (Avg.2)

Based on the earlier analysis, to show the convergence of x̄c,x defined in (Avg.2),

we only require to show that Lemma 5.4 holds for the new scheme, with an error

of order at least O(d2(x0, x∗)). We formalize this claim in the next lemma and

show the error is in fact on the order of O(d3(x0, x∗)).

Lemma 5.9. Under Assumption 5.1, for some coefficients {ci}k
i=0 with ∑k

i=0 ci = 1

and iterates {xi}k
i=0, consider x̄c,x = Expxk

(
− ∑k−1

i=0 θiΓ
xk
xi Exp−1

xi
(xi+1)

)
, θi = ∑i

j=0 cj.

Then, we have ∥∆x̄c,x − ∑k
i=0 ci∆xi∥x∗ = O(d3(x0, x∗)).

Lemma 5.9 allows convergence under the averaging scheme (Avg.2) to be

established exactly following the same steps as before. This is sufficient to show

that the same convergence bounds hold, i.e., Theorem 5.1 and Proposition 5.1.

Weighted Fréchet mean. In addition, we discuss the weighted Fréchet mean

in Appendix 5.B, which can also be used in place of the two aforementioned

averaging schemes. We have provided similar error bounds as in Lemma 5.9

that lead to similar convergence guarantees.
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5.5 Convergence under general retraction and vector

transport

In this section, we generalize our convergence results for RiemNA with general

retraction and vector transport operations. To the best of our knowledge, Rie-

mannian acceleration has not been studied under general retraction and vector

transport. To this end, we make the following standard assumptions, which in-

clude bounding the deviation between retraction and exponential map as well as

between vector transport and parallel transport. In addition, we require the Lips-

chitz gradient and Hessian to be compatible with retraction and vector transport.

Assumption 5.3. The neighbourhood X is totally retractive where retraction has

a smooth inverse. Function f has retraction Lipschitz gradient and Lipschitz

Hessian.

Assumption 5.4. There exists constants a0, a1, a2, δa0,a1 > 0 such that for all

x, y, z ∈ X , ∥Retr−1
x (y)∥x ≤ δa0,a1 , we have (1) a0d(x, y) ≤ ∥Retr−1

x (y)∥x ≤

a1d(x, y) and (2) ∥Exp−1
x (z)− Retr−1

x (z)∥x ≤ a2∥Retr−1
x (z)∥2

x.

Assumption 5.5. The vector transport T y
x is isometric and there exists a constant

a3 > 0 such that for all x, y ∈ X , ∥T y
x u − Γy

xu∥y ≤ a3∥Retr−1
x (y)∥x∥u∥x.

Assumptions 5.3-5.5 are commonly used for analyzing Riemannian first-

order algorithms implemented with retraction and vector transport (Ring &

Wirth, 2012; W. Huang, Gallivan, & Absil, 2015; Sato et al., 2019; Kasai et al.,

2018b; Han & Gao, 2021).

In this section, we only show convergence under the recursive weighted av-

erage computation for extrapolation, i.e.,

x̄c,x = x̃k, x̃i = Retrx̃i−1

( ci

∑i
j=0 cj

Retr−1
x̃i−1

(xi)
)

. (5.5)
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Similar analysis can be also performed on the alternative two averaging schemes

discussed in Section 5.4.

The next theorem shows that asymptotic optimal convergence rate can also

be achieved using retraction and vector transport. The proof is similar to the case

for exponential map and parallel transport and employs the Assumptions 5.4,

5.5. In particular, both these two assumptions ensure the deviations between re-

traction and exponential map, vector transport and parallel transport are on the

order of O(d2(x0, x∗)). Thus, the additional error terms ϵ1, ϵ2, ϵ3 = O(d2(x0, x∗)).

Theorem 5.2 (Convergence under general retraction and vector transport). Under

Assumptions 5.1, 5.3, 5.4, and 5.5, let {xi}k
i=0 be given by Riemannian gradient descent

via retraction, i.e., xi = Retrxi−1(−η grad f (xi−1)) and {x̂i}k
i=0 be the linearized iter-

ates satisfying Retr−1
x∗ (x̂i) = G[Retr−1

x∗ (x̂i−1)] with G = id − η Hess f (x∗), satisfying

∥G∥x∗ ≤ σ < 1. Then, using retraction and vector transport in Algorithm 6 and letting

x̄c,x be computed from (5.5), the same asymptotic optimal convergence rate (Proposition

5.1) holds under the same choice of λ = O(ds(x0, x∗)), s ∈ (2, 8
3).

Theorem 5.2 allows Algorithm 7 to be implemented with general retraction

and vector transport without affecting the optimal convergence rate achieved

asymptotically.

5.6 Experiments

In this section, we evaluate the performance of our Riemannian nonlinear ac-

celeration (RiemNA) strategy on various applications. For RiemNA, we only

consider the recursive weighted average in (Avg.1) for the main experiments.

The codes are available on https://github.com/andyjm3/RiemNA.

Baselines. We compare the proposed RGD+RiemNA (Algorithm 7) with state-

of-the-art Riemannian Nesterov accelerated gradient (RNAG) methods (Kim &
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Yang, 2022). We also include RAGD, a variant of Nesterov acceleration on man-

ifolds proposed in H. Zhang & Sra (2018a), and RGD as baselines. In particular,

we compare with RNAG-C (Kim & Yang, 2022) (designed for geodesic convex

functions) and RNAG-SC (Kim & Yang, 2022) and RAGD (H. Zhang & Sra,

2018a) (designed for geodesic strongly convex functions) regardless of whether

the objective is of the particular class. More details of the algorithms are in

Appendix 5.A.2.

Parameters. RNAG-C, RNAG-SC, and RAGD require the knowledge of geodesic

Lipschitz constant L (Kim & Yang, 2022). Further, RNAG-SC and RAGD re-

quire the geodesic strong convexity parameter µ. In particular, the stepsize of

RNAG-C, RNAG-SC and RAGD should be set as 1/L. If such constants are

available, we set them accordingly. Otherwise, we tune over the parameters L, µ

for RNAG-C, RNAG-SC to obtain the best results and set the same parameters

for RAGD for comparability. Following Kim & Yang (2022), the additional pa-

rameters ξ, ζ are fixed to be 1 for RNAG-C, RNAG-SC and β =
√

µ/L/5 for

RAGD. We set stepsize of RGD to be 1/L if available and tune the stepsize oth-

erwise. For the proposed RGD+RiemNA, we fix λ = 10−8 and choose memory

depth m ∈ {5, 10}. It should be emphasized that RGD+RiemNA is agnostic to

function specific constants.

For fair comparisons, we use exponential map, inverse exponential map, and

parallel transport for all the algorithms whenever such operations are properly

defined. For other cases, we use retraction, inverse retraction, and vector trans-

port even though the baseline acceleration methods are not analyzed under such

general operations. We emphasize that we maintain consistency in the use of

these operations across all the algorithms. The experiments are coded in Matlab

using Manopt (Boumal et al., 2014). The stopping criterion for all the algorithms

is gradient norm reaching below 10−6.
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Applications. We consider four applications: leading eigenvector computation

(Absil et al., 2007), Fréchet mean of symmetric positive definite (SPD) matri-

ces with the affine-invariant metric (Bhatia, 2009), orthogonal Procrustes prob-

lem (Eldén & Park, 1999), and the nonlinear eigenspace problem (Zhao et al.,

2015). These applications solve problems on sphere, SPD, Stiefel, and Grass-

mann manifolds respectively. See Appendix 5.A.1 for detailed introduction of

the manifolds, along with the relevant operations required for the experiments.

We highlight that except for the task of Fréchet mean which is geodesic strongly

convex, other problems are in general nonconvex.

Leading eigenvector computation. The problem computes the leading eigen-

vector of a symmetric matrix A of size d × d, by solving minx∈Sd−1{ f (x) :=

−1
2 x⊤Ax}, where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} denotes the sphere manifold

of intrinsic dimension d − 1. For the experiment, we generate a positive definite

matrix A with condition number 103 and exponentially decaying eigenvalues

in dimension d = 103. As shown in (Kim & Yang, 2022, Proposition 7.1), the

problem has geodesic L-Lipschitz gradient with L to be the eigengap of matrix

A, i.e., the difference between maximum and minimum eigenvalues of A. The

optimal solution of the problem is given by −1
2 λmax(A), where λmax extracts the

largest eigenvalue of A.

The stepsize is thus set as 1/L for all methods. For RNAG-SC and RAGD, we

set µ = 10. For RiemNA, we set memory depth to be m = 10. We use exponential

and inverse exponential map as well as projection-type vector transport for all

algorithms including RGD+RiemNA.

Fréchet mean of SPD matrices. We consider the problem of computing the

Fréchet mean of symmetric positive definite (SPD) matrices {Ai}N
i=1 of size d × d
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under the affine-invariant metric (Bhatia, 2009), i.e.,

min
X∈Sd

++

1
2N

N

∑
i=1

∥logm(X−1/2AiX−1/2)∥2
F.

Here, Sd
++ is the set of SPD matrices of size d × d, ∥ · ∥F is the Frobenius norm,

and logm(·) is the matrix logarithm. To trace the optimality gap, we compute

the optimal solution of the problem by running R-LBFGS method (W. Huang et

al., 2016) until the gradient norm falls below 10−10.

For the experiments, we use exponential map and its inverse as well as the

parallel transport for all the algorithms. As commented previously, the geometry

is negatively curved, and thus, the Fréchet mean problem is geodesic 1-strongly

convex (µ = 1). For this problem, we generate random N = 100 SPD matrices of

dimension d = 10. The stepsize for all methods are tuned and set to be 0.5. For

RiemNA, we set memory depth m = 5.

Orthogonal Procrustes problem. We also consider the orthogonal Procrustes

problem on the Stiefel manifold (Eldén & Park, 1999). Suppose we are given

A ∈ Rr×r, B ∈ Rp×r, the objective is minX∈St(p,r) ∥XA − B∥2
F where St(p, r) :=

{X ∈ Rp×r : X⊤X = I} is the set of column orthonormal matrices, which forms

the so-called Stiefel manifold with the canonical metric. The optimal solution is

similarly computed by running R-LBFGS.

To implement the algorithms, we use QR-based retraction and inverse retrac-

tion as well as projection-type vector transport. We generate random matrices

A, B where the entries are normal distributed. We set p = 100, r = 5. For this

problem, both L and µ are unknown. Hence, we tune and set stepsize to be 1 for

all methods. For RNAG-SC and RAGD, we select µ = 0.005 and for RiemNA we

set memory depth m = 5.
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(a) Sphere: leading Eigenvector
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(b) SPD: Fréchet Mean

0 200 400 600
Iterations

10-10

10-5

100

O
pt

im
al

ity
 g

ap

RGD
RAGD
RNAG-C
RNAG-SC
RGD+RiemNA

0 0.5 1
Time (s)

10-10

10-5

100

O
pt

im
al

ity
 g

ap

RGD
RAGD
RNAG-C
RNAG-SC
RGD+RiemNA

(c) Stiefel: Orthogonal Procrustes
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(d) Grassmann: Nonlinear Eigenspace

Figure 5.1: Comparing proposed RGD+RiemNA with existing approaches:

RGD, RAGD, RNAG-C, and RNAG-SC. We observe that RGD+RiemNA out-

performs all the baselines.

Nonlinear eigenspace problem. Finally, the problem of computing nonlinear

eigenspace arises as the total energy minimization on the Grassmann mani-

fold (Zhao et al., 2015), i.e., minX∈Gr(p,r)
1
2 tr(X⊤LX) + 1

4 ρ(X)⊤L−1ρ(X) where

ρ(X) := diag(XX⊤) and L is a discrete Laplacian operator. The optimal solution

is similarly computed by running R-LBFGS.

For experiment, we implement the algorithms with QR-based retraction and

inverse retraction as well as projection-based vector transport similar to Stiefel

manifold. We generate L as a tridiagonal matrix with main diagonal entries to

be 2 and sub- and super-diagonal entries to be −1. The stepsize is tuned and

set to be 0.1 for all methods and for RNAG-SC, RAGD, µ = 5 and for RiemNA,

m = 5.

Results. In Figure 5.1, we plot optimality gap, f (xt)− f (x∗), against both it-

eration number and runtime for all the algorithms. We make the following

observations:

• Proposed RGD+RiemNA consistently outperforms the baselines in run-

time across all the applications.
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(a) Sphere: Leading Eigenvector
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Figure 5.2: Comparing RGD+RiemNA with additional approaches: SIRNAG,

RAGDsDR, and StAGD. SIRNAG (opt-1) and (opt-2) represent SIRNAG with

two update options. We observe that RGD-RiemNA maintains its superior per-

formance.

• In iteration counts as well, RGD+RiemNA is consistently better than others

in all the applications except in the leading eigevector problem, where

RGD+RiemNA matches the performance of RAGD and RNAG-SC.

• In Figure 5.1a, RGD+RiemNA is faster than RAGD and RNAG-SC even

though the number of iterations needed are similar. This implies that

RGD+RiemNA is computationally more efficient. This is in accordance

with RGD+RiemNA requiring fewer number of calls to manifold opera-

tions like exponential map (or retraction) and parallel transport (or vector

transport).

• For the SPD Fréchet mean problem, which is geodesic strongly convex,

RGD+RiemNA consistently exhibits faster convergence than others where

the extrapolation step leads to significant convergence acceleration.

• RGD+RiemNA does not necessarily ensure descent in the objective for the

initial iterations. Only in the later phase the acceleration takes place. This

is in accordance with our local convergence analysis.
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Figure 5.3: Parameter sensitivity on the leading eigenvector problem. Left: we

vary λ by fixing m = 10. Right: we vary m by fixing λ = 10−8. Our proposed

RGD+RiemNA is robust to parameter changes.

Comparison with additional baselines. We also compare with additional Rie-

mannian acceleration methods in Figure 5.2, including an ODE-based accelera-

tion method SIRNAG (Alimisis et al., 2020), an adaptive momentum-based ac-

celeration method RAGDsDR (Alimisis et al., 2021), and an acceleration method

for the Stiefel manifold StAGD (Siegel, 2019). We notice that the curvature pa-

rameter ζ ≥ 1 is required for both SIRNAG and RAGDsDR, which should be set

as 1 if the manifold is positively curved and ζ > 1 when the minimum curva-

ture is negative. For the case of leading eigenvector problem, which is on sphere,

manifold of positive curvature, we fix ζ = 1. Otherwise, we first tune ζ for SIR-

NAG and RAGDsDR. Then the stepsize is tuned accordingly. For StAGD, only

the stepsize is tuned. In Figure 5.2, we observe that RGD+RiemNA outperforms

the above baselines as well. Even in the Stiefel case, our general RGD+RiemNA

is faster than the specialized acceleration method StAGD.

Ablation studies. In Figure 5.3, we test the sensitivity of RGD+RiemNA to

the choices of regularization parameter λ (on the left with m = 10 fixed) and

memory depth m (on the right with λ = 10−8 fixed). The results show robustness

of RiemNA under various choices of regularization parameter λ and memory

depth m. Additionally, in Appendix 5.A.3, we also test on alternative averaging

schemes where we show that RGD+RiemNA with (Avg.2) performs very similar

to the strategy (Avg.1).
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5.7 Discussions

In this chapter, we introduce a scheme for accelerating first-order Riemannian

optimization algorithms, based on the idea of iterate extrapolation on the mani-

folds. The extrapolation step is performed via novel intrinsic weighted averaging

schemes on manifolds. We show that Riemannian acceleration achieves conver-

gence with asymptotically optimal rates irrespective of function classes. We

also show our analysis holds with computationally cheap retraction and vector

transport operations. Empirically, we see superior performance of the proposed

algorithm RGD+RiemNA against many state-of-the-art Riemannian acceleration

algorithms.

Even though the convergence analysis of our proposed acceleration scheme is

asymptotic, we empirically observe its good performance against the baselines.

It thus raises the question whether non-asymptotic convergence rates can be

established. While we have focused on analyzing the RGD, it is also interesting

to see whether such an acceleration scheme can be applied to other algorithm

classes, such as momentum-based algorithms. An equally rewarding direction

is to analyze acceleration in the stochastic settings where gradient information

is corrupted by noise.

166



Appendices

The appendix sections are organized as follows. In Section 5.A, we include

detailed introduction of the manifolds considered in the chapter, and of the

baseline acceleration methods on Riemannian manifolds. We also include addi-

tional experiment results to consolidate the findings in the main text. Section

5.C shows how weighted averaging in the Euclidean space can be computed re-

cursively, which serves as the main motivation for the introduction of averaging

schemes on manifolds. Section 5.D presents the proofs for the case of exponen-

tial map and parallel transport and Section 5.E proves for the general retraction

and vector transport. Section 5.F introduces several extensions to the current al-

gorithm, including the use of line-search schemes and globalization techniques.

5.A Experiment details and additional experiments

5.A.1 Geometry of specific Riemannian manifolds

Sphere manifold. The sphere manifold Sd−1 is an embedded submanifold of

Rd with the tangent space identified as TxSd−1 = {u ∈ Rd : x⊤u = 0}. The

Riemannian metric is given by ⟨u, v⟩ = ⟨u, v⟩2 for u, v ∈ TxSd−1. We use the ex-

ponential map derived as Expx(u) = cos(∥u∥2)x+ sin(∥u∥2)
u

∥u∥2
and the inverse

exponential map as Exp−1
x (y) = arccos(x⊤y) Projx(y−x)

∥Projx(y−x)∥2
where Projx(v) = v −

(x⊤v)x is the orthogonal projection of any v ∈ Rd to the tangent space TxSd−1.

The vector transport is given by the projection operation, i.e., T y
x u = Projy(u).
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Symmetric positive definite (SPD) manifold. The SPD manifold of dimension

d is denoted as Sd
++ := {X ∈ Rd×d : X⊤ = X, X ≻ 0}. The tangent space

TXM is the set of symmetric matrices. The affine-invariant Riemannian metric

is given by ⟨U, V⟩X = tr(X−1UX−1V) for any U, V ∈ TXSd
++. We make use

of the exponential map, which is ExpX(U) = Xexpm(X−1U) where expm(·) is

the matrix exponential. The inverse exponential map is derived as Exp−1
X (Y) =

Xlogm(X−1Y) for any X, Y ∈ Sd
++. We consider the parallel transport given by

ΓY
XU = EUE⊤ with E = (YX−1)1/2.

Stiefel manifold. The Stiefel manifold of dimension p× r is written as St(p, r) :=

{X ∈ Rp×r : X⊤X = I}. The Riemannian metric is the Euclidean inner product

defined as ⟨U, V⟩X = ⟨U, V⟩2. We consider the QR-based retraction RetrX(U) =

qf(X + U) where qf(·) returns the Q-factor from the QR decomposition. The

inverse retraction is derived as for X, Y ∈ O(d) Retr−1
X (Y) = YR − X, where R

is solved from the system X⊤YR + R⊤Y⊤X = 2I. The vector transport is given

by the orthogonal projection, which is T Y
X = U − Y{Y⊤U}S where {A}S :=

(A + A⊤)/2.

Grassmann manifold. The Grassmann manifold of dimension p × r, denoted

as Gr(p, r), is the set of all r dimensional subspaces in Rp (p ≥ r). Each point

on the Grassmann manifold can be identified as a column orthonormal matrices

X ∈ Rp×r, X⊤X = I and two points X, Y ∈ Gr(p, r) are equivalent if X = YO

for some O ∈ O(r), the r × r orthogonal matrix. Hence Grassmann manifold

is a quotient manifold of the Stiefel manifold. We consider the popular QR-

based retraction, i.e. RX(U) = qf(X + U) where for simplicity, we let X to

represent the equivalence class and U represents the horizontal lift of the tangent

vector. The inverse retraction is also based on QR factorization, i.e. R−1
X (Y) =

Y(X⊤Y)−1 − X. Vector transport is T Y
X U = U − XX⊤U.
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Algorithm 8: RAGD (H. Zhang & Sra, 2018a)

1: Input: Initialization x0, parameter β > 0, stepsize h ≤ 1
L , strong convexity

parameter µ > 0.
2: Initialize v0 = x0.

3: Set α =

√
β2+4(1+β)µh−β

2 , γ =

√
β2+4(1+β)µh−β√
β2+4(1+β)µh+β

µ, γ̄ = (1 + β)γ.

4: for k = 0, ..., K − 1 do
5: Compute αk ∈ (0, 1) from the equation α2

k = hk((1 − αk)γk + αkµ).
6: yk = Expxk

( αγ
γ+αµExp−1

xk
(vk)

)
7: xk+1 = Expyk

(−h grad f (yk))

8: vk+1 = Expyk

( (1−α)γ
γ̄ Exp−1

yk
(vk)− α

γ̄grad f (yk)
)

9: end for
10: Output: xK

5.A.2 Baseline Riemannian acceleration methods

Here, we include the implementation details of the Riemannian Nesterov ac-

celerated gradient methods presented in H. Zhang & Sra (2018a); Kim & Yang

(2022); Alimisis et al. (2020, 2021); Siegel (2019). It is worth noting that those

algorithms have been analyzed under the exponential map, inverse exponential

map, and parallel transport. In contrast, the proposed RGD+RiemNA works

with general retraction and vector transport.

We first present the (constant-stepsize) RAGD method in (H. Zhang & Sra,

2018a, Algorithm 2), which is included in Algorithm 8. We see the algorithm

requires three times evaluation of the exponential map and two times the inverse

exponential map at every iteration.

Below we present RNAG-C (Algorithm 9), which is designed for geodesic

convex functions and RNAG-SC (Algorithm 10) which is for geodesic strongly

convex functions in Kim & Yang (2022). We observe the algorithms require two

times evaluation of the exponential map, inverse exponential map as well as

parallel transport.

We also include SIRNAG (Alimisis et al., 2020), RAGDsDR (Alimisis et al.,

2021) and StAGD (Siegel, 2019). We have included the detailed steps in Algo-
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Algorithm 9: RNAG-C (Kim & Yang, 2022)

1: Input: Initialization x0, parameters ξ, T > 0, stepsize s ≤ 1
L .

2: Initialize v̄0 = 0 ∈ Tx0M.
3: Set λk =

k+2ξ+T
2 .

4: for k = 0, ..., K − 1 do
5: yk = Expxk

( ξ
λk+ξ−1 v̄k

)
6: xk+1 = Expyk

(−s grad f (yk))

7: vk = Γyk
xk

(
v̄k − Exp−1

xk
(yk)

)
8: ¯̄vk+1 = vk − sλk

ξ grad f (yk)

9: v̄k+1 = Γxk+1
yk

(
¯̄vk+1 − Exp−1

yk
(xk+1)

)
10: end for
11: Output: xK

Algorithm 10: RNAG-SC (Kim & Yang, 2022)

1: Input: Initialization x0, parameter ξ, stepsize s ≤ 1
L , strong convexity

parameter µ.
2: Set q = µs.
3: for k = 0, ..., K − 1 do

4: yk = Expxk

( √
ξq

1+
√

ξq
v̄k
)

5: xk+1 = Expyk

(
− s grad f (yk))

6: vk = Γyk
xk

(
v̄k − Exp−1

xk
(yk)

)
7: ¯̄vk+1 =

(
1 −

√
q
ξ

)
vk +

√
q
ξ

(
− 1

µgrad f (yk)
)

8: v̄k+1 = Γxk+1
yk

(
¯̄vk+1 − Exp−1

yk
(xk+1)

)
9: end for

10: Output: xK

rithm 11 and 12 respectively. Specifically, SIRNAG is the discretization of an

ODE on manifolds that achieves acceleration. For the purpose of experiments,

we only consider the version for geodesic convex functions. This is because

the version for geodesic strongly convex functions only differs in one parameter

setting. SIRNAG involves two update options, SIRNAG (opt-1) and SIRNAG

(opt-2), which correspond to two strategies of discretization.

RAGDsDR, accelerates the convergence for both geodesic convex and weakly-

quasi-convex functions by exploiting momentum. For experiments, we only con-

sider the convex version. We follow the empirical choice of βk suggested in the
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Algorithm 11: SIRNAG (Alimisis et al., 2020)
1: Input: Initialization x0. Integration stepsize h. curvature parameter ζ.
2: for k = 0, ..., K − 1 do
3: βk =

k−1
k+2ζ .

4: Option I: ak = βkvk − h grad f (xk).
5: Option II: ak = βkvk − h grad f

(
Expxk

(hβkvk)
)
.

6: xk+1 = Expxk
(h ak).

7: vk+1 = Γxk+1
xk ak.

8: end for
9: Output: xK.

Algorithm 12: RAGDsDR (Alimisis et al., 2021)
1: Input: Initialization x0. Smoothness parameter L. curvature parameter ζ.
2: v0 = x0, A0 = 0.
3: for k = 0, ..., K − 1 do
4: βk =

k
k+2 .

5: yk = Expvk

(
βkExp−1

vk
(xk)

)
6: xk+1 = Expyk

(− 1
Lgrad f (yk))

7: Solve ak+1 > 0 from the equation
ζa2

k+1
Ak+ak+1

= 1
L .

8: Ak+1 = Ak + ak+1.
9: vk+1 = Expvk

(−ak+1Γvk
ykgrad f (yk)).

10: end for
11: Output: xK.

paper.

Finally, specifically for the orthogonal Procrustes problem, we include the

acceleration method (Siegel, 2019) designed for the Stiefel manifold as another

baseline, which we call StAGD. In particular, we implement the version with

function restart (Siegel, 2019, Algorithm 4.1) and without using linesearch for

comparability. It is worth noticing that Siegel (2019) applies the Cayley-based

retraction and canonical Riemannian metric (Edelman et al., 1998) for the imple-

mentation.
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5.A.3 Ablation study: use of alternative averaging schemes

We next evaluate the numerical performance of RiemNA when using alter-

native averaging scheme, i.e. (Avg.2). Specifically, the average is given by

x̄c,x = Retrxk

(
− ∑k−1

i=0 θiΓ
xk
xi Retr−1

xi
(xi+1)

)
= Retrxk

(
− ∑k−1

i=0 θiri
)

where we use

the general retraction. It is worth mentioning that (Avg.2) is more efficient by

avoiding k times evaluation of inverse retraction map. We compare the use of

two averaging schemes in Figure 5.A.1 where we observe almost identical con-

vergence behaviour when measured against the iteration. For runtime, (Avg.2)

can further reduce computational cost compared to (Avg.1), especially for the

Stiefel manifold and Grassmann manifold where the inverse retraction is expen-

sive. Even though for SPD manifold, the inverse exponential map is expensive,

because the number of iteration to convergence is small, we do not observe a

significant reduction in runtime.
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Figure 5.A.1: Comparison of different averaging schemes, i.e., (Avg.1) (used in

the main text) and (Avg.2). We observe almost identical convergence in terms of

iterations. (Avg.2) is more efficient, particularly for the case Stiefel and Grass-

mann manifold where the inverse retraction is costly.
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5.A.4 Sensitivity to data generation and initialization

Here, we provide additional independent experiment runs to test the model

sensitivity to randomness in data generation and initialization. Each column in

Figure 5.A.2 corresponds to a run with a fixed random seed. From Figure 5.A.2,

we observe the proposed RGD+RiemNA maintains its outperformance against

all baselines with good stability.
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Figure 5.A.2: Additional experiment runs with different data and initialization.

Each column corresponds to an independent run. We observe the better perfor-

mance of RGD+RiemNA in all the runs.
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5.B Alternative averaging scheme via weighted Fréchet

mean

We also consider the weighted Fréchet mean for computing the weighted average

on manifolds, defined as

x̄c,x = arg min
x∈X

k

∑
i=0

cid2(x, xi). (Avg.3)

Nevertheless, for general manifolds, it is not guaranteed the existence and

uniqueness of the solution. In fact, one can ensure the uniqueness of the solution

when the function 1
2 d2(x, x′) is geodesic τ-strongly convex in x. From (Alimisis

et al., 2020, Lemma 2), we see that the geodesic strong convexity of problem

(Avg.3) holds for sufficiently small X on any manifold as well as for any non-

positively curved manifold. Specifically, when M is non-positively curved, we

have τ = 1. While for other manifolds, let D be the diameter of X and κ+ > 0

be the upper curvature bound. Then, geodesic strong convexity is satisfied with

τ < 1 when D < π
2
√

κ+
.

Lemma 5.10. Under Assumption 5.1, suppose x 7→ 1
2 d2(x, x′) is geodesic τ-strongly

convex in x for any x′ ∈ X . Consider x̄c,x = arg minx∈X ∑k
i=0 cid2(x, xi). Then

d(x̄c,x, x∗) ≤ τ∥∑k
i=0 ci∆xi∥x∗ and ∥∆x̄c,x − ∑k

i=0 ci∆xi∥x∗ = O(d3(x0, x∗)).

Under the additional assumption of geodesic strong convexity, Lemma 5.10

shows an extra tighter bound on d(x̄c,x, x∗), i.e., d(x̄c,x, x∗) ≤ τ∥∑k
i=0 ci∆xi∥x∗ .

Thus, we see the error from the linear term does not suffer from metric distor-

tion (ϵ1 = 0). The error bound from coefficient stability and nonlinearity terms

however, still incur additional errors as the previous two averaging schemes.

Lemma 5.10 allows convergence under the two averaging schemes to be estab-

lished by exactly following the same steps as before. This is sufficient to show

the same convergence bound holds (i.e., Theorem 5.1 and Proposition 5.1).
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5.C From Euclidean averaging to Riemannian aver-

aging

To extend the idea of weighted average to manifolds, we first rewrite the weighted

average on the Euclidean space as follows.

Lemma 5.11 (Weighted average recursion). Given a set of coefficients {ci}k
i=0 with

∑k
i=0 ci = 1 and a set of iterates {xi}k

i=0. Let the streaming weighted average be defined

as x̃i = x̃i−1 + γi(xi − x̃i−1) where γi =
ci

∑i
j=0 cj

for i = 0, ..., k and x̃−1 = x0. Then

x̃k = ∑k
i=0 cixi.

Proof. For some γ1, ..., γk, the streaming weighted average is defined as x̃i =

x̃i−1 + γi(xi − x̃i−1) for i ∈ [k]. We first show the streaming weighted average

has the form

x̃i =
i

∏
j=1

(1 − γj)x0 + γ1

i

∏
j=2

(1 − γj)x1 + · · ·+ γixi, ∀i ∈ [k].

We prove such argument by induction. For i = 1, it is clear that x̃1 = (1 −

γ1)x0 + γ1x1 and satisfies the form. Suppose at i = k′, the equality is satisfied,

then for i = k′ + 1, we have

x̃k′+1 = x̃k′ + γk′+1(xk′+1 − x̃k′) = (1 − γk′+1)x̃k′ + γk′+1xk′+1

which satisfies the equality. Hence this argument holds for all i ∈ [k]. Finally, at

i = k, we see that the choice that γi =
ci

∑i
j=0 ci

leads to the matching coefficients.

5.D Main proofs

Before we proceed with the proofs of the results in the main text, we introduce

a lemma that is used often in the course of the proof.
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Lemma 5.12. Under Assumption 5.1, for any w, x, y, z ∈ X , we have

∥Γx
wΓw

y Exp−1
y (z)−

(
Exp−1

x (z)− Exp−1
x (y)

)
∥x

≤ C0d(y, w)d(w, x)d(y, z) + C2 min{d(y, z), d(x, y)}Cκ

(
d(y, z) + d(x, y)

)
.

Proof of Lemma 5.12.

∥Γx
wΓw

y Exp−1
y (z)−

(
Exp−1

x (z)− Exp−1
x (y)

)
∥x

≤ ∥Γx
wΓw

y Exp−1
y (z)− Γx

yExp−1
y (z)∥x + ∥Γx

yExp−1
y (z)−

(
Exp−1

x (z)− Exp−1
x (y)

)
∥x

≤ C0d(y, w)d(w, x)d(y, z) + C2d
(

Expx
(
Γx

yExp−1
y (z) + Exp−1

x (y)
)
, z
)

≤ C0d(y, w)d(w, x)d(y, z) + C2d
(

Expx
(
Γx

yExp−1
y (z) + Exp−1

x (y)
)
, Expy(Exp−1

y (z))
)

≤ C0d(y, w)d(w, x)d(y, z) + C2 min{d(y, z), d(x, y)}Cκ

(
d(y, z) + d(x, y)

)
.

where we apply Lemma 5.1 and 5.2.

5.D.1 Proof of Proposition 5.2

We show in Proposition 5.2 that the optimal coefficients c∗ has a closed-form

solution.

Proposition 5.2. Let R = [⟨ri, rj⟩xk ]i,j ∈ R(k+1)×(k+1) collects all pairwise inner prod-

ucts. Then the solution c∗ = arg minc∈Rk+1:c⊤1=1 ∥∑k
i=0 ciri∥2

xk
+ λ∥c∥2

2 is explicitly

derived as c∗ = (R+λI)−11
1⊤(R+λI)−11 .

Proof of Proposition 5.2. Let µ ∈ R be the dual variable. Then we have c∗, µ∗

satisfy the KKT system:

2(R + λI) 1

1⊤ 0


c∗

µ∗

 =

0

1


Solving the system yields the desired result.
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5.D.2 Proof of Lemma 5.3

Proof of Lemma 5.3. First, we consider the pushforward operator Expy
x : TxM −→

TyM for any x, y ∈ M, defined as Expy
x(u) := Exp−1

y (Expx(u)) for any u ∈

TxM. The differential of Expy
x at 0 along u ∈ TxM is derived as

DExpy
x(0)[u] = DExp−1

y (Expx(0))[DExpx(0)[u]] = DExp−1
y (x)[u]

= [DExpy(Exp−1
y (x))]−1[u]

= (Tx
y )

−1[u]

where we denote Ty
x (v) = DExpx(Exp−1

x (y))[v] ∈ TyM for v ∈ TxM. The

second equality is due to Expx(0) = 0, DExpx(0) = id and the third equality

follows from the inverse function theorem. Then by Taylor’s theorem for Expx∗
xi

around 0, we have

Exp−1
x∗ (xi+1) = Expx∗

xi
(Exp−1

xi
(xi+1))

= Expx∗
xi
(0) + DExpx∗

xi
(0)[Exp−1

xi
(xi+1)] +

1
2

D2Expx∗
xi
(ζi)[Exp−1

xi
(xi+1), Exp−1

xi
(xi+1)]

= Exp−1
x∗ (xi)− η(Txi

x∗)
−1[grad f (xi)] +

η2

2
D2Expx∗

xi
(ζi)[grad f (xi), grad f (xi)]

= Exp−1
x∗ (xi)− η(Txi

x∗)
−1[grad f (xi)] +

η2

2
ϵi (5.6)

for some ζi = sExp−1
xi
(xi+1), s ∈ (0, 1). Let ϵi := D2Expx∗

xi
(ζi)[grad f (xi), grad f (xi)]

with ∥ϵi∥x∗ = O
(
∥grad f (xi)∥2

xi

)
. Then by Hessian Lipschitzness (Lemma 2.1),

we have around x∗

ei := Γx∗
xi

grad f (xi)− Hess f (x∗)[Exp−1
x∗ (xi)] ≤

ρ

2
∥Exp−1

x∗ (xi)∥2
x∗ . (5.7)

Combining (5.6) with (5.7) yields

Exp−1
x∗ (xi+1)− Exp−1

x∗ (xi) = −η(Γx∗
xi

Txi
x∗)

−1[Γx∗
xi

grad f (xi)] +
η2

2
ϵi
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= −η(Γx∗
xi

Txi
x∗)

−1[Hess f (x∗)[Exp−1
x∗ (xi)] + ei] +

η2

2
ϵi.

(5.8)

To show the desired result, it remains to show the operator (Γx∗
xi

Txi
x∗)

−1 is lo-

cally identity. This is verified in (Tripuraneni et al., 2018, Lemma 6) for general

retraction. We restate here and adapt to the case of exponential map.

Consider the function H(u) := (ΓExpx(u)
x )−1TExpx(u)

x : TxM −→ L(TxM),

where L(TxM) denotes the set of linear maps on TxM. Let γ(t) = Expx(tu).

Then we have

d
dt

H(tu)|t=0 =
d
dt
(Γγ(t)

x )−1Tγ(t)
x |t=0 =

(
(Γγ(t)

x )−1 D
dt

Tγ(t)
x

)
|t=0

=
(D

dt
DExpx(tu)

)
|t=0

=
D2

dt2 Expx(tu)|t=0 = 0.

where the second equality is due to the property of parallel transport (see

for example (Boumal, 2023, Proposition 10.37)). In addition, from (Waldmann,

2012, Theorem A.2.9), we see the second order derivative of H is given by

d2

dt2 H(tu)|t=0 = 1
6Riemx(u, ·)u where we denote Riemx as the Riemann curvature

tensor evaluated at x. We notice that Riemx(u, ·)u : TxM −→ TxM is symmet-

ric with respect to the Riemannian metric (see for example Andrews & Hopper

(2010)).

For any v ∈ TxM, H(u)[v] ∈ TxM, we apply the Taylor’s theorem for H up

to second order, which yields

H(u)[v] = v +
1
6

Riemx(u, v)u + O(∥u∥3),

Let x = x∗ and u = Exp−1
x∗ (xi) = ∆xi . Then we obtain for any v ∈ Tx∗M,
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H(u)[v] ∈ Tx∗M

Γx∗
xi

Txi
x∗ [v] = v +

1
6

Riemx∗
(
∆xi , v

)
∆xi + O(∥∆xi∥

3). (5.9)

It satisfies that (Γx∗
xi

Txi
x∗)

−1 = id − 1
6Riemx∗

(
∆xi , ·

)
∆xi + O(∥∆xi∥3). Substitut-

ing this result into (5.8), we obtain

∆xi+1 − ∆xi

= −η
(

id − 1
6

Riemx∗
(
∆xi , ·

)
∆xi + O(∥∆xi∥

3)
)[

Hess f (x∗)[∆xi ] + ei
]
+

η2

2
ϵi

= −η Hess f (x∗)[∆xi ]− ηei +
η

6
Riemx∗(∆xi , Hess f (x∗)[∆xi ] + ei)∆xi

+
η2

2
ϵi + O(∥∆xi∥

3).

Let εi = −ηei +
η
6 Riemx∗(∆xi , Hess f (x∗)[∆xi ] + ei)∆xi +

η2

2 ϵi +O(∥∆xi∥3). We can

bound the error term as follows.

∥εi∥2
x∗ = O(∥ei∥2

x∗ + ∥∆xi∥
4
x∗∥grad f (xi)∥2

xi
+ ∥ϵi∥2

x∗ + ∥∆xi∥
6
x∗) = O(∥∆xi∥

4),

where we use the bounds on ∥ei∥x∗ , ∥ϵi∥x∗ as well as Hess f (x∗)[∆xi ] + ei =

Γx∗
xi

grad f (xi) and geodesic gradient Lipschitzness such that ∥grad f (xi)∥2 ≤

L∥∆i∥2
x∗ .

5.D.3 Proof of Lemma 5.4

Proof of Lemma 5.4. The proof is by induction. Let γi =
ci

∑i
j=0 cj

and first we rewrite

the averaging on tangent space as following the recursion defined as ∆̃xi =

∆̃xi−1 + γi(∆xi − ∆̃xi−1). As we have shown in Lemma 5.11, ∑k
i=0 ci∆xi = ∆̃xk .

To show the difference between ∆x̄c,x , based on Lemma 5.2, it suffices to show

the distance between x̃k = x̄c,x and Expx∗(∆̃xk) is bounded.

To this end, we first notice that x̃0 = x0 = Expx∗(∆̃x0) and we consider
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bounding the difference between x̃1 and Expx∗(∆̃x1). To derive the bound, we

first observe that by Lemma 5.1,

d
(

Expx∗(∆̃x1), Expx0

(
Γx0

x∗γ1(∆x1 − ∆̃x0)
))

= d
(

Expx∗(∆̃x0 + γ1(∆x1 − ∆̃x0)), Expx0

(
Γx0

x∗γ1(∆x1 − ∆̃x0)
))

≤ d(x0, x∗)Cκ

(
∥∆̃x0∥x∗ + γ1∥∆x1 − ∆̃x0∥x∗

)
, (5.10)

where we see x0 = Expx∗(∆̃x0) with ∆̃x0 = ∆x0 . In addition,

d
(

x̃1, Expx0

(
Γx0

x∗γ1(∆x1 − ∆̃x0)
))

= d
(

Expx0

(
γ1Exp−1

x0
(x1)

)
, Expx0

(
Γx0

x∗γ1(∆x1 − ∆̃x0)
))

≤ γ1C1∥Exp−1
x0
(x1)− Γx0

x∗(∆x1 − ∆x0)∥x0

≤ γ1C1C2d(x0, x∗)Cκ

(
d(x0, x1) + d(x0, x∗)

)
. (5.11)

where the last inequality is from the proof of Lemma 5.12. Thus combining

(5.10), (5.11) leads to

d
(
x̃1, Expx∗(∆̃x1)

)
≤ d(x0, x∗)Cκ

(
∥∆̃x0∥x∗ + γ1∥∆x1 − ∆̃x0∥x∗

)
+ γ1C1C2d(x0, x∗)Cκ

(
d(x0, x1) + d(x0, x∗)

)
.

By noticing Cκ(x) = O(x2), we see d(x̃1, Expx∗(∆̃x1)) = O(d3(x0, x∗)).

Now suppose at i ≤ k − 1, we have d(x̃i, Expx∗(∆̃xi)) = O(d3(x0, x∗)) and

we wish to show d(x̃i+1, Expx∗(∆̃xi+1)) = O(d3(x0, x∗)). To this end, we first see

Expx∗(∆̃xi+1) = Expx∗
(
∆̃xi + γi+1(∆xi+1 − ∆̃xi)

)
and by Lemma 5.1

d
(

Expx∗
(
∆̃xi + γi+1(∆xi+1 − ∆̃xi)

)
, ExpExpx∗ (∆̃xi )

(
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
))

≤ ∥∆̃xi∥x∗Cκ

(
∥∆̃xi∥x∗ + γi+1∥∆xi+1 − ∆̃xi∥x∗

)
= O(d3(x0, x∗)),
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where the last equality is due to Cκ(x) = O(x2) and ∥∆̃xi∥x∗ = O(d(x0, x∗)),

which can be shown by induction.

Further, noticing x̃i+1 = Expx̃i

(
γi+1Exp−1

x̃i
(xi+1)

)
, we can show

d
(

x̃i+1, ExpExpx∗ (∆̃xi )

(
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
))

≤ d
(

Expx̃i

(
γi+1Exp−1

x̃i
(xi+1)

)
, Expx̃i

(
Γx̃i

x∗γi+1(∆xi+1 − ∆̃xi)
))

+ d
(

Expx̃i

(
Γx̃i

x∗γi+1(∆xi+1 − ∆̃xi)
)
, ExpExpx∗ (∆̃xi )

(
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
))

.

(5.12)

The first term on the right of (5.12) can be bounded as

d
(

Expx̃i

(
γi+1Exp−1

x̃i
(xi+1)

)
, Expx̃i

(
Γx̃i

x∗γi+1(∆xi+1 − ∆̃xi)
))

≤ γi+1∥Exp−1
x̃i
(xi+1)− Γx̃i

x∗(∆xi+1 − ∆̃xi)∥x̃i

= γi+1∥Γx∗
x̃i

Exp−1
x̃i
(xi+1)− (∆xi+1 − ∆x̃i) + (∆̃xi − ∆x̃i)∥x∗

≤ γi+1∥Γx∗
x̃i

Exp−1
x̃i
(xi+1)− (∆xi+1 − ∆x̃i)∥x∗ + γi+1∥∆̃xi − ∆x̃i∥x∗

≤ γi+1C2d(x̃i, x∗)Cκ

(
d(xi+1, x̃i) + d(x̃i, x∗)

)
+ γi+1C2d(x̃i, Expx∗(∆̃xi)), (5.13)

where we again use the result from the proof of Lemma 5.12. To see (5.13)

is on the order of O(d3(x0, x∗)), we only need to show ∥∆x̃i∥2
x∗ = d2(x̃i, x∗) =

O(d2(x0, x∗)), which can be seen by a simple induction argument. First, it is

clear that ∥∆x̃0∥2
x∗ = d2(x0, x∗). Then suppose for any i < k, we have d(x̃i, x∗) =

O(d(x0, x∗)). Then from Lemma 5.2, we have

d(x̃i+1, x∗) ≤ C1∥Exp−1
x̃i
(x̃i+1)− Exp−1

x̃i
(x∗)∥x̃i ≤

C1ci+1

∑i+1
j=0 cj

d(x̃i, xi+1) + d(x̃i, x∗)

≤
( C1ci+1

∑i+1
j=0 cj

+ 1
)
d(x̃i, x∗) + d(xi+1, x∗) = O(d(x0, x∗)).

Thus, using d(x̃i, Expx∗(∆̃xi)) = O(d3(x0, x∗)), we see (5.13) is on the order of

O(d3(x0, x∗)).
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Now we bound the second term on the right of (5.12). Particularly,

d
(

Expx̃i

(
Γx̃i

x∗γi+1(∆xi+1 − ∆̃xi)
)
, ExpExpx∗ (∆̃xi )

(
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
))

≤ d
(

Expx̃i

(
Γx̃i

x∗γi+1(∆xi+1 − ∆̃xi)
)
, Expx̃i

(
Γx̃i

Expx∗ (∆̃xi )
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
))

+ d
(

Expx̃i

(
Γx̃i

Expx∗ (∆̃xi )
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
)
, ExpExpx∗ (∆̃xi )

(
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
))

≤ γi+1C1C0∥∆̃xi∥x∗d(x̃i, Expx∗
(
∆̃xi)

)
∥∆xi+1 − ∆̃xi∥x∗ + C3d(x̃i, Expx∗(∆̃xi))

= O(d3(x0, x∗)),

where we apply Lemma 5.2 multiple times. Combining the previous results, we

see

d(x̃i+1, Expx∗(∆̃xi+1))

≤ d
(

x̃i+1, ExpExpx∗ (∆̃xi )

(
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
))

+ d
(

Expx∗
(
∆̃xi + γi+1(∆xi+1 − ∆̃xi)

)
, ExpExpx∗ (∆̃xi )

(
Γ

Expx∗ (∆̃xi )

x∗ γi+1(∆xi+1 − ∆̃xi)
))

= O(d3(x0, x∗))

Now applying Lemma 5.2, we obtain

∥∆x̃i+1 − ∆̃xi+1∥x∗ ≤ C2d(x̃i+1, Expx∗(∆̃xi+1)) = O(d3(x0, x∗))

for all i ≤ k − 1. Let i = k − 1 we have ∥∆x̃k − ∆̃xk∥x∗ = ∥∆x̄c,x − ∑k
i=0 ci∆xi∥x∗ =

O(d3(x0, x∗)). Thus the proof is complete.

5.D.4 Proof of Lemma 5.5

Proof of Lemma 5.5. Directly combining Lemma 5.13 and Lemma 5.4 gives the

result.

Lemma 5.13 (Convergence of the linearized iterates). Consider the linearized iter-

ates {x̂i}k
i=0 satisfying (5.4) for some G ⪰ 0 with ∥G∥x∗ ≤ σ < 1. Let r̂i = ∆x̂i+1 −∆x̂i ,
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ĉ∗ = arg minc⊤1=1 ∥∑k
i=0 ci r̂i∥2

x∗ + λ∥c∥2
2. Then

∥
k

∑
i=0

ĉ∗i ∆x̂i∥x∗ ≤
d(x0, x∗)

1 − σ

√
(S[0,σ]

k,λ̄ )2 − λ

d2(x0, x∗)
∥ĉ∗∥2

2

Proof of Lemma 5.13. The proof follows from (Scieur et al., 2020, Proposition 3.4)

and we include it here for completeness. Denote P1
k := {p ∈ R[x] : deg(p) =

k, p(1) = 1} as the set of polynomials of degree k with coefficients summing

to 1. Noticing that r̂i = ∆x̂i+1 − ∆x̂i =
(
G − id

)
[∆x̂i ] =

(
G − id

)
Gi[∆x0 ], we

have ∥∑k
i=0 ci r̂i∥2

x∗ = ∥(G − id)p(G)[∆x0 ]∥2
x∗ where p ∈ P1

k and {ci}k
i=0 are the

corresponding coefficients. Then we obtain

min
p∈P1

k

{
∥(G − id)p(G)[∆x0 ]∥2

x∗ + λ∥c∥2
2

}
≤ d2(x0, x∗) min

p∈P1
k

{
∥p(G)∥2

x∗ +
λ

d2(x0, x∗)
∥p∥2

2

}
≤ d2(x0, x∗) min

p∈P1
k

max
M:0⪯M⪯σid

{
∥p(M)∥2

x∗ +
λ

d2(x0, x∗)
∥p∥2

2

}
= d2(x0, x∗) min

p∈P1
k

max
x∈[0,σ]

{
p2(x) +

λ

d2(x0, x∗)
∥p∥2

2

}
= (S[0,σ]

k,λ̄ )2d2(x0, x∗),

where λ̄ = λ/d2(x0, x∗) and we use the fact that ∥G − id∥x∗ ≤ 1. Then

∥
k

∑
i=0

ĉ∗i ∆x̂i∥
2
x∗ = ∥

k

∑
i=0

ĉ∗i (G − id)−1r̂i∥2
x∗

≤ ∥(G − id)−1∥2
x∗
(
∥

k

∑
i=0

ĉ∗i r̂i∥2
x∗ + λ∥ĉ∗∥2

2 − λ∥ĉ∗∥2
2

)
≤ d2(x0, x∗)

(1 − σ)2

(
(S[0,σ]

k,λ̄ )2 − λ

d2(x0, x∗)
∥ĉ∗∥2

2

)
,

where we see that ∥(G − id)−1∥x∗ ≤ 1
1−σ .
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5.D.5 Proof of Lemma 5.6

Proof of Lemma 5.6. From Proposition 5.2 and following (Scieur et al., 2020, Propo-

sition 3.2), we obtain

∥c∗∥ ≤

√
∥R∥2 + λ

(k + 1)λ
.

Now we bound ∥R∥2. First we see R can be rewritten as R⊤GxkR, where

Gxk ∈ Rr×r is the positive definite metric tensor at xk and R = [vecri] ∈ Rr×k

is the collection of tangent vector in an orthonormal basis and r is the intrinsic

dimension of the manifold. Thus we can write Riemannian inner product as

⟨ri, rj⟩xk = vecr⊤i Gxkvecrj and

∥R∥2 = ∥G1/2
xk

R∥2
2 ≤ ∥G1/2

xk
R∥2

F =
k

∑
i=0

vecr⊤i Gxkvecri =
k

∑
i=0

∥ri∥2
xk
=

k

∑
i=0

d2(xi, xi+1).

On the other hand, denote the perturbation matrix P = R − R̂. Then from

Proposition 5.2 and following (Scieur et al., 2020, Proposition 3.2), we have

∥δc∥2 ≤ ∥P∥2

λ
∥ĉ∗∥2.

Now we need to bound ∥P∥2. Let Ei = ∆xi − ∆x̂i . Then we have

∥Γx∗
xk

ri − r̂i∥x∗ = ∥Γx∗
xk

ri − (∆xi+1 − ∆xi) + (∆xi+1 − ∆xi)− r̂i∥x∗

≤ ∥Γx∗
xk

ri − (∆xi+1 − ∆xi)∥x∗ + ∥(∆xi+1 − ∆xi)− r̂i∥x∗

= ∥Γx∗
xk

ri − (∆xi+1 − ∆xi)∥x∗ + ∥Ei+1 − Ei∥x∗ (5.14)

where we use Lemma 5.2. Now we respectively bound each of the two terms on

the right. First we see from Lemma 5.12,

∥Γx∗
xk

ri − (∆xi+1 − ∆xi)∥x∗ ≤ C0d(xi, xk)d(xk, x∗)d(xi, xi+1)
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+ C2d(xi, x∗)Cκ

(
d(xi, x∗) + d(xi, xi+1)

)
(5.15)

Further, we bound ∥Ei+1 − Ei∥x∗ . From Lemma 5.3, we have Ei = G[Ei−1] +

εi, E0 = 0 and

∥Ei+1 − Ei∥x∗ = ∥(G − id)Ei + εi+1∥x∗ = ∥(G − id)
i

∑
j=1

Gi−jε j + εi+1∥x∗ ≤
i+1

∑
j=1

∥ε j∥x∗ .

(5.16)

Combining (5.16), (5.15), (5.14) leads to

∥Γx∗
xk

ri − r̂i∥x∗ ≤ C0d(xi, xk)d(xk, x∗)d(xi, xi+1) + C2d(xi, x∗)Cκ

(
d(xi, x∗)

+ d(xi, xi+1)
)
+

i+1

∑
j=1

∥ε j∥x∗ .

Finally, recall we can write R = R⊤GxkR and similarly for R̂ = R̂⊤Gx∗R̂ where

R̂ = [vecr̂i]. By isometry of parallel transport, we have R = R⊤
x∗Gx∗Rx∗ where

Rx∗ = [
−−→
Γx∗

xk
ri]. Let E = G1/2

x∗ (Rx∗ − R̂). Then

∥P∥2 = ∥R⊤
x∗Gx∗Rx∗ − R̂⊤Gx∗R̂∥2 ≤ 2∥E∥2∥G1/2

x∗ R̂∥2 + ∥E∥2
2.

Notice that

∥G1/2
x∗ R̂∥2 ≤ ∥G1/2

x∗ R̂∥F ≤
k

∑
i=0

∥r̂i∥x∗ ≤
k

∑
i=0

∥(G − id)Gi r̂0∥x∗ ≤
k

∑
i=0

σi∥r̂0∥x∗

≤ 1 − σk+1

1 − σ
d(x0, x∗),

Also

∥E∥2 = ∥G1/2
x∗ (Rx∗ − R̂)∥2 ≤

k

∑
i=0

∥Γx∗
xk

ri − r̂i∥x∗

≤ d(xk, x∗)C0

k

∑
i=0

d(xi, xk)d(xi, xi+1) + C2

k

∑
i=0

d(xi, x∗)Cκ

(
d(xi, x∗) + d(xi, xi+1)

)
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+
k

∑
i=0

i+1

∑
j=1

∥ε j∥x∗

= O(d2(x0, x∗)),

where we notice that Cκ(d(xi, x∗) + d(xi, xi+1)) = O(d2(xi, x∗)) and recall that

∥ε j∥x∗ = O(d2(xj, x∗)) = O(d2(x0, x∗)). Thus ∥P∥2 ≤ 2ψ 1−σk+1

1−σ d(x0, x∗) + (ψ)2

where ψ = O(d2(x0, x∗)).

5.D.6 Proof of Lemma 5.7

Proof of Lemma 5.7. From Lemma 5.2, we first observe d(x̄ĉ∗,x̂, x̄c∗,x̂) ≤ C1∥∆x̄ĉ∗ ,x̂ −

∆x̄c∗ ,x̂∥x∗ . Now we derive a bound on the term ∥∆x̄ĉ∗ ,x̂ −∆x̄c∗ ,x̂∥x∗ . Notice that from

Lemma 5.4, we have

∥∆x̄ĉ∗ ,x̂ − ∆x̄c∗ ,x̂∥x∗ = ∥
k

∑
i=0

(ĉ∗i − c∗i )∆x̂i + ϵ̂∥x∗ ≤ ∥δc∥2
( k

∑
i=0

∥∆x̂i∥
2
x∗
)1/2

+ ∥ϵ̂∥x∗

≤ ∥δc∥2(
k

∑
i=0

∥∆x̂i∥x∗) + ∥ϵ̂∥x∗

≤ ∥δc∥2(
k

∑
i=0

∥G∥i∥∆x0∥x∗) + ∥ϵ̂∥x∗

≤ 1 − σk+1

1 − σ
d(x0, x∗)∥δc∥2 + ∥ϵ̂∥x∗

≤ 1
1 − σ

d(x0, x∗)
λ

( 1
1 − σ

2ψd(x0, x∗) + (ψ)2
)
∥ĉ∗∥2 + ∥ϵ̂∥x∗

for some ∥ϵ̂∥x∗ = O(d3(x0, x∗)) and we denote δc = c∗ − ĉ∗. The bound on ∥δc∥2

is from Lemma 5.6.
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5.D.7 Proof of Lemma 5.8

Proof of Lemma 5.8. Similarly to Lemma 5.7, we see d(x̄c∗,x̂, x̄c∗,x) ≤ C1∥∆x̄c∗ ,x̂ −

∆x̄c∗ ,x∥x∗ due to Lemma 5.2. Again using Lemma 5.4, we see

∥∆x̄c∗ ,x̂ − ∆x̄c∗ ,x∥x∗ = ∥
k

∑
i=0

c∗i (∆xi − ∆x̂i) + ϵ̂∥x∗ ≤ ∥c∗∥2(
k

∑
i=0

∥Ei∥2
x∗)

1/2 + ∥ϵ̂∥x∗

≤ ∥c∗∥2(
k

∑
i=0

∥Ei∥x∗) + ∥ϵ̂∥x∗

where ∥ϵ̂∥x∗ = O(d3(x0, x∗)) and Ei = ∆xi − ∆x̂i . From Lemma 5.3, we have

Ei = G[Ei−1] + εi, E0 = 0. Thus we can bound

∥Ei∥x∗ = ∥
i

∑
j=1

Gi−jε j∥x∗ ≤
i

∑
j=1

∥ε j∥x∗ .

Then using Lemma 5.6 to bound ∥c∗∥2, we obtain

∥∆x̄c∗ ,x̂ − ∆x̄c∗ ,x∥x∗ ≤

√
∑k

i=0 d2(xi, xi+1) + λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ3,

where ϵ3 = O(d3(x0, x∗)).

5.D.8 Proof of Theorem 5.1

Proof of Theorem 5.1. Following the decomposition of error, we show

d(x̄c∗,x, x∗)

≤ d(x̄ĉ∗,x̂, x∗) + d(x̄ĉ∗,x̂, x̄c∗,x̂) + d(x̄c∗,x̂, x̄c∗,x)

≤ d(x0, x∗)
1 − σ

√
(S[0,σ]

k,λ̄ )2 − λ

d2(x0, x∗)
∥ĉ∗∥2

2 +
C1d(x0, x∗)

λ(1 − σ)

(2d(x0, x∗)
1 − σ

ψ + (ψ)2
)
∥ĉ∗∥2

+ C1

√
∑k

i=0 d2(xi, xi+1) + λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ1 + ϵ2 + ϵ3.
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Now we maximize the bound over ∥ĉ∗∥. From (Scieur et al., 2020, Proposition

A.1), we see the maximum of a function g(x) = c
√

a − λ̄x2 + bx is
√

a
√

c2 + b2

λ̄

where λ̄ = λ/d2(x0, x∗). Let a = (S[0,σ]
k,λ̄ )2, b = C1d(x0,x∗)

λ(1−σ)

(
2d(x0,x∗)

1−σ ψ + (ψ)2
)

,

c = d(x0,x∗)
1−σ . We then obtain

d(x̄c∗,x, x∗) ≤ S[0,σ]
k,λ̄

√√√√√d2(x0, x∗)
(1 − σ)2 +

C2
1d4(x0, x∗)

(
2d(x0,x∗)

1−σ ψ + (ψ)2
)2

λ3(1 − σ)2

+ C1

√
∑k

i=0 d2(xi, xi+1) + λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ1 + ϵ2 + ϵ3,

which completes the proof.

5.D.9 Proof of Proposition 5.1

Proof of Proposition 5.1. Dividing the bound from Theorem 5.1 by d(x0, x∗) gives

d(x̄c∗,x, x∗)
d(x0, x∗)

≤
S[0,σ]

k,λ̄

1 − σ

√
1 + O(d(2−3s)(x0, x∗)

(2d(x0, x∗)
1 − σ

ψ + (ψ)2
)2

+ C1

√
∑k

i=0 d2(xi, xi+1)

(k + 1)O(ds(x0, x∗))
+

1
k + 1

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)

+
1

d(x0, x∗)
(
ϵ1 + ϵ2 + ϵ3

)
.

By setting ψ = O(d2(x0, x∗)), the first term of RHS of the bound simplifies to
S[0,σ]

k,λ̄
1−σ

√
1 + O(d(8−3s)(x0, x∗)), and similarly because d(xi, xi+1) = O(d(x0, x∗)),

∥ε j∥x∗ = O(d2(x0, x∗)) under Assumption 5.1, the second term simplifies to

O(
√

d2(x0, x∗) + d(4−s)(x0, x∗)) and the last term reduces to O(d2(x0, x∗)) as

ϵ1, ϵ2, ϵ3 = O(d3(x0, x∗)). Hence we obtain

d(x̄c∗,x, x∗)
d(x0, x∗)

≤
S[0,σ]

k,λ̄

1 − σ

√
1 + O(d(8−3s)(x0, x∗))

+ O(
√

d2(x0, x∗) + d(4−s)(x0, x∗)) + O(d2(x0, x∗)).
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Finally we notice that the last two terms vanish when d(x0, x∗) −→ 0 for the choice

of s. For the first term, given that when d(x0, x∗) −→ 0, λ̄ = O(d(s−2)(x0, x∗)) −→ 0

and O(d(8−3s)(x0, x∗)) −→ 0 for s ∈ (2, 8
3), then

lim
d(x0,x∗)−→0

S[0,σ]
k,λ̄

1 − σ

√
1 + O(d(2−3s)(x0, x∗)) =

S[0,σ]
k,0

1 − σ
=

1
1 − σ

2
β−k + βk

where β = 1−
√

1−σ
1+

√
1−σ

. This follows because without regularization, S[0,σ]
k,0 reduces to

the rescaled and shifted Chebyshev polynomial. See for example d’Aspremont

et al. (2021).

5.D.10 Proof of Lemma 5.9

Proof of Lemma 5.9. First, we write

k

∑
i=0

ci∆xi = ∆xk −
k−1

∑
i=0

θi(∆xi+1 − ∆xi).

By Lemma 5.1, we obtain

d
(

Expx∗
( k

∑
i=0

ci∆xi

)
, Expxk

(
− Γxk

x∗

k−1

∑
i=0

θi(∆xi+1 − ∆xi)
))

≤ d(xk, x∗)Cκ

(
d(xk, x∗) + ∥

k−1

∑
i=0

θi(∆xi+1 − ∆xi)∥x∗
)

≤ d(xk, x∗)Cκ

(
d(xk, x∗) +

k−1

∑
i=0

θi(d(xi+1, x∗) + d(xi, x∗))
)

,

where we use the fact that Cκ(x) is increasing for x > 0. In addition, from

Lemma 5.2,

d
(

x̄c,x, Expxk

(
− Γxk

x∗

k−1

∑
i=0

θi(∆xi+1 − ∆xi)
))

≤ C1∥
k−1

∑
i=0

θi
(
Γxk

x∗(∆xi+1 − ∆xi)− Γxk
xi Exp−1

xi
(xi+1)

)
∥xk
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≤ C1

k−1

∑
i=0

θi∥∆xi+1 − ∆xi − Γx∗
xk

Γxk
xi Exp−1

xi
(xi+1)∥x∗ .

Using Lemma 5.12, we obtain

∥∆xi+1 − ∆xi − Γx∗
xk

Γxk
xi Exp−1

xi
(xi+1)∥x∗ ≤ C0d(xi, xk)d(xk, x∗)d(xi, xi+1)

+ C2d(xi, x∗)Cκ

(
d(xi, x∗) + d(xi, xi+1)

)
.

Let e = ∆x̄c,x − ∑k
i=0 ci∆xi . Now combining the above results gives

∥e∥x∗ = ∥∆x̄c,x −
k

∑
i=0

ci∆xi∥x∗

≤ C2d
(

x̄c,x, Expx∗
( k

∑
i=0

ci∆xi

))
≤ C2d

(
x̄c,x, Expxk

(
− Γxk

x∗

k−1

∑
i=0

θi(∆xi+1 − ∆xi)
))

+ C2d
(

Expx∗
( k

∑
i=0

ci∆xi

)
, Expxk

(
− Γxk

x∗

k−1

∑
i=0

θi(∆xi+1 − ∆xi)
))

≤ C2C1

k−1

∑
i=0

θi

(
C0d(xi, xk)d(xk, x∗)d(xi, xi+1) + C2d(xi, x∗)Cκ

(
d(xi, x∗) + d(xi, xi+1)

)
+ C2d(xk, x∗)Cκ

(
d(xk, x∗) +

k−1

∑
i=0

θi(d(xi+1, x∗) + d(xi, x∗))
)

.

Under Assumption 5.1 and Cκ(x) = O(x2), we see ∥e∥x∗ = O(d3(x0, x∗)).

5.D.11 Proof of Lemma 5.10

Proof of Lemma 5.10. Let D(x) := 1
2 ∑k

i=0 cid2(x, xi). Then we can show gradD(x) =

−∑k
i=0 ciExp−1

x (xi). See for example Alimisis et al. (2020). By the first-order sta-

tionarity,

gradD(x̄c,x) = −
k

∑
i=0

ciExp−1
x̄c,x

(xi) = 0

and gradD(x∗) = −∑k
i=0 ciExp−1

x∗ (xi).

The first claim that d(x̄c,x, x∗) ≤ ∥∑k
i=0 ci∆xi∥x∗ follows from (Tripuraneni et
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al., 2018, Lemma 10) and we include here for completeness. Define a real-valued

function g(t) := D
(
Expx∗(tη)

)
with η =

∆x̄c,x
∥∆x̄c,x∥x∗

. Under the assumption and

definition of geodesic µ-strongly convex, we see g(t) is µ-strongly convex in t.

Thus, we have g′(t0)− g′(0) ≥ µt0 for any t0. Let t0 = ∥∆x̄c,x∥x∗ and denote the

geodesic γ(t) := Expx∗(tη). We derive that g′(t) = ⟨gradD(Expx∗(tη)), γ′(t)⟩ by

chain rule. Then g′(t0) = ⟨gradD(x̄c,x), γ′(t0)⟩x̄c,x = 0 and g′(0) = ⟨gradD(x∗), η⟩.

Finally, we see

∥gradD(x∗)∥2
x∗ ≥ (g′(0))2 = (g′(t0)− g′(0))2 ≥ µ2t2

0 = µ2∥∆x̄c,x∥2
x∗ ,

where the first inequality is due to Cauchy–Schwarz inequality. The first claim is

proved by noticing ∥gradD(x∗)∥x∗ = ∥∑k
i=0 ci∆xi∥x∗ and ∥∆x̄c,x∥x∗ = d(x̄c,x, x∗).

For the second claim, we first observe from the proof of Lemma 5.12 that

∥Exp−1
x̄c,x

(xi)− Γx̄c,x
x∗
(
Exp−1

x∗ (xi)− Exp−1
x∗ (x̄c,x)

)
∥x̄c,x

≤ C2d(x̄c,x, x∗)Cκ

(
d(x̄c,x, x∗) + d(x̄c,x, xi)

)
= O(d3(x0, x∗)),

where the order is based on that d(x̄c,x, x∗) ≤ 1
µ ∑k

i=0 cid(xi, x∗) = O(d(x0, x∗))

from the first claim. Letting ε̄ := Exp−1
x̄c,x

(xi)− Γx̄c,x
x∗
(
Exp−1

x∗ (xi)−Exp−1
x∗ (x̄c,x)

)
, we

obtain ∥ε̄∥x̄c,x = O(d3(x0, x∗)). From the first order stationarity, we see

0 =
k

∑
i=0

ciExp−1
x̄c,x

(xi) =
k

∑
i=0

ci

(
Γx̄c,x

x∗
(
Exp−1

x∗ (xi)− Exp−1
x∗ (x̄c,x)

)
+ ε̄
)

= Γx̄c,x
x∗

( k

∑
i=0

ci∆xi − ∆x̄c,x

)
+ ε̄.

Taking the norm and using the isometry of parallel transport, we obtain the

desired result.
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5.E Proofs under general retraction and vector trans-

port

Discussions on the assumptions. Before we prove the results, we discuss the

assumptions made for the general case. In particular, Assumption 5.4 is re-

quired to bound the deviation from the retraction to the exponential map, which

can be considered natural given retraction approximates the exponential map to

the first-order. In fact, Assumption 5.4 has been commonly used in Sato et al.

(2019); Kasai et al. (2018b); Han & Gao (2021) for analyzing Riemannian first-

order algorithms using retraction and can be satisfied for a sufficiently small

neighbourhood (see for example Ring & Wirth (2012); W. Huang, Absil, & Gal-

livan (2015)). Similarly, Assumption 5.5 is used to bound the deviation between

the vector transport to parallel transport, which is also standard in W. Huang,

Gallivan, & Absil (2015); Kasai et al. (2018b); Han & Gao (2021). One can fol-

low the procedures in W. Huang, Gallivan, & Absil (2015) to construct isometric

vector transport that satisfies such condition for common manifolds like SPD

manifold (W. Huang, Gallivan, & Absil, 2015), Stiefel and Grassmann manifold

(W. Huang, 2013).

Here we show that when we use general retraction Retr in place of the ex-

ponential map Exp, thus invalidating the lemmas on metric distortion (Lemma

5.1, 5.2), we can still show a similar result as Lemma 5.4 but with an error on

the order of O(d2(x0, x∗)) instead of O(d3(x0, x∗)) as for the case of exponential

map. The main idea of proof follows from Tripuraneni et al. (2018). The next

proposition formalizes such claim. For this section, we denote ∆x = Retr−1
x∗ (x)

for any x ∈ X where the retraction has a smooth inverse. For general retraction,

the deviation is on the order of O(∥∆x0∥2
x∗) = O(d2(x0, x∗)) where we use the

fact that retraction approximates the exponential map to the first order.

Proposition 5.3. Suppose all iterates xi ∈ X , a neighbourhood where retraction has
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a smooth inverse. Consider the weighted average x̄c,x = x̃k given by (Avg.1) with

retraction. Assume the sequence of iterates is non-divergent, i.e. ∥∆xi∥x∗ , ∥∆x̃i∥x∗ =

O(∥∆x0∥x∗). Then we have ∆x̄c,x = ∑k
i=0 ci∆xi + e, with ∥e∥x∗ = O(∥∆x0∥2

x∗),

Proof. The proof generalize the proof of (Tripuraneni et al., 2018, Lemma 12).

First denote Retry
x := Retr−1

y ◦ Retrx and we notice that

∆x̃i+1 = Retr−1
x∗ (x̃i+1) = Retr−1

x∗

(
Retrx̃i

(
γi+1Retr−1

x̃i

(
xi+1

)))
= Retrx∗

x̃i

(
γi+1Retr−1

x̃i

(
Retrx∗(∆xi+1)

))
= Retrx∗

x̃i

(
γi+1

(
Retrx∗

x̃i

)−1
(∆xi+1)

)
= F(∆xi+1),

where we denote γi =
ci

∑i
j=0 cj

and F : Tx∗M −→ Tx∗M defined as

F(u) = Retrx∗
x̃i

(
γi+1

(
Retrx∗

x̃i

)−1
(u)
)

In addition, it can be verified that F(∆x̃i) = ∆x̃i .

Now by chain rule, we have

DF(u) = DRetrx∗
x̃i

(
γi+1(Retrx∗

x̃i
)−1(u)

)[
Dγi+1(Retrx∗

x̃i
)−1(u)

]
= γi+1D

( 1
γi+1

Retrx∗
x̃i

)(
γi+1(Retrx∗

x̃i
)−1(u)

)[
Dγi+1(Retrx∗

x̃i
)−1(u)

]
= γi+1

(
Dγi+1(Retrx∗

x̃i
)−1(u)

)−1[
Dγi+1(Retrx∗

x̃i
)−1(u)

]
= γi+1id,

where the third inequality uses the inverse function theorem. Hence the Taylor

expansion of F at ∆x̃i up to second order gives

∆x̃i+1 = F(∆xi+1) = F(∆x̃i) + γi+1(∆xi+1 − ∆x̃i) + ϵ̃i

= (1 − γi+1)∆x̃i + γi+1∆xi+1 + ϵ̃i.

193



CHAPTER 5. RIEMANNIAN ACCELERATION VIA EXTRAPOLATION

where we let ϵ̃i = O(∥∆xi+1 −∆x̃i∥2
x∗). From the expansion, it follows that ∆x̃i+1 =

∑i
j=0 ci

∑i+1
j=0 cj

∆x̃i +
ci+1

∑i+1
j=0 cj

∆xi+1 + ϵ̃i, which yields

(
i+1

∑
j=0

cj)∆x̃i+1 = (
i

∑
j=0

cj)∆x̃i + ci+1∆xi+1 + (
i

∑
j=0

cj)ϵ̃i =
i+1

∑
j=0

cj∆xj +
i

∑
j=0

(
j

∑
ℓ=0

cℓ)ϵ̃j,

where the second equality follows by expanding the first equality. Let i = k − 1,

this leads to

∆x̄c,x = ∆x̃k =
k

∑
j=0

cj∆xj + e,

where we let e = ∑k−1
j=0 (∑

j
ℓ=0 cℓ)ϵ̃j = O

(
∑k−1

j=0 (∑
j
ℓ=0 cℓ)(∥∆xj+1∥2

x∗ + ∥∆x̃j∥2
x∗)
)
.

We observe that ∥∆xi+1∥2
x∗ = O(∥∆x0∥2

x∗) and ∥∆x̃j∥2
x∗ = O(∥∆x0∥2

x∗) due to the

non-divergent assumption. The proof is complete.

5.E.1 Proof of Theorem 5.2

Theorem 5.2 (Restatement). Under Assumption 5.1, 5.3, 5.4 and 5.5, let {xi}k
i=0

be given by Riemannian gradient descent implemented via retraction, i.e., xi =

Retrxi−1(−η grad f (xi−1)) and {x̂i}k
i=0 be the linearized sequence that satisfies

Retr−1
x∗ (x̂i) = G[Retr−1

x∗ (x̂i−1)] with G = id − η Hess f (x∗), satisfying ∥G∥x∗ ≤

σ < 1. Then, using retraction and vector transport in Algorithm 6 and letting

x̄c,x be computed from (5.5), it satisfies that

d(x̄c∗,x, x∗)

≤ ∥Retr−1
x∗ (x0)∥x∗

S[0,σ]
k,λ̄

1 − σ

√√√√ 1
a2

0
+

C2
1∥Retr−1

x∗ (x0)∥2
x∗
( 2ψ

1−σ∥Retr−1
x∗ (x0)∥x∗ + ψ2

)2

λ3

+ C1

√
∑k

i=0 ∥Retr−1
xi
(xi+1)∥2

xi
+ λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ1 + ϵ2 + ϵ3,

where ψ = O(d2(x0, x∗)), ϵ1, ϵ2, ϵ3 = O(d2(x0, x∗)) and εi = O(d2(xi, x∗)). Under

the same choice of λ = O(ds(x0, x∗)), s ∈ (2, 8
3), the same asymptotic optimal
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convergence rate (Proposition 5.1) holds.

Proof of Theorem 5.2. Here we only provide a sketch of proof because the main

idea is exactly the same as the case of exponential map.

Under general retraction and vector transport, an analogue of Lemma 5.3

holds. That is,

Retr−1
x∗ (xi) = (id − ηHess f (x∗))[Retr−1

x∗ (xi−1)] + εi, (5.17)

where ∥εi∥x∗ = O(d2(xi, x∗)). To show (5.17), we follow the exact same steps as

the proof for Lemma 5.3 where we replace exponential map with retraction. The

only difference is that the second order derivative is no longer the Riemann cur-

vature tensor. In addition, we have shown in Proposition 5.3 that for retraction,

we also have

Retr−1
x∗ (x̄c,x) =

k

∑
i=0

ciRetr−1
x∗ (xi) + e (5.18)

with ∥e∥x∗ = O(d2(x0, x∗)).

Further, we still consider the same error bound decomposition, i.e.,

d(x̄c∗,x, x∗) ≤ d(x̄ĉ∗,x̂, x∗) + d(x̄ĉ∗,x̂, x̄c∗,x̂) + d(x̄c∗,x̂, x̄c∗,x).

(I). For the linear term d(x̄ĉ∗,x̂, x∗), we first see the linearized iterates x̂i enjoys

the same convergence as in Lemma 5.13 that

∥
k

∑
i=0

ĉ∗i Retr−1
x∗ (x̂i)∥x∗ ≤

∥Retr−1
x∗ (x0)∥x∗

1 − σ

√
(S[0,σ]

k,λ̄ )2 − λ

∥Retr−1
x∗ (x0)∥2

x∗
∥ĉ∗∥2

2,

(5.19)

where λ̄ := λ/∥Retr−1
x∗ (x0)∥2

x∗ and we use Assumption 5.4. Combining (5.19)
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with (5.18) yields

d(x̄ĉ∗,x̂, x∗) ≤ 1
a0
∥Retr−1

x∗ (x̄ĉ∗,x̂)∥x∗

≤ ∥
k

∑
i=0

ĉ∗i Retr−1
x∗ (x̂i)∥x∗ + ϵ1,

≤
∥Retr−1

x∗ (x0)∥x∗

a0(1 − σ)

√
(S[0,σ]

k,λ̄ )2 − λ

∥Retr−1
x∗ (x0)∥2

x∗
∥ĉ∗∥2

2 + ϵ1,

with ϵ1 = O(d2(x0, x∗)).

(II). For the stability term d(x̄ĉ∗,x̂, x̄c∗,x̂), we first use Assumption 5.4 to show

∥∆x̄ĉ∗ ,x̂ − ∆x̄c∗ ,x̂ −
(
Retr−1

x∗ (x̄ĉ∗,x̂)− Retr−1
x∗ (x̄c∗,x̂)

)
∥x∗

≤ a2∥Retr−1
x∗ (x̄ĉ∗,x̂)∥2

x∗ + a2∥Retr−1
x∗ (x̄c∗,x̂)

)
∥2

x∗

≤ a2a2
1
(
d2(x̄ĉ∗,x̂, x∗) + d2(x̄c∗,x̂, x∗)

)
= O(d2(x0, x∗)).

Let ϵr := ∆x̄ĉ∗ ,x̂ − ∆x̄c∗ ,x̂ −
(
Retr−1

x∗ (x̄ĉ∗,x̂)− Retr−1
x∗ (x̄c∗,x̂)

)
. Then we have ∥ϵr∥x∗ =

O(d2(x0, x∗)). In addition, based on Assumption 5.5, we show

∥T x∗
xk

ri −
(
Retr−1

x∗ (xi+1)− Retr−1
x∗ (xi)

)
− Γx∗

xk
ri +

(
∆xi+1 − ∆xi

)
∥x∗

≤ ∥T x∗
xk

ri − Γx∗
xk

ri∥x∗ + O(d2(x0, x∗)) = O(d2(x0, x∗)),

where we use Assumption 5.4, 5.5 and notice ∥ri∥xi = ∥Retr−1
xi
(xi+1)∥xi ≤

a1d(xi, xi+1) = O(d(x0, x∗)). Let ϵv := T x∗
xk

ri −
(
Retr−1

x∗ (xi+1) − Retr−1
x∗ (xi)

)
−

Γx∗
xk

ri +
(
∆xi+1 − ∆xi

)
, we have ∥ϵv∥x∗ = O(d2(x0, x∗)).

Using Lemma 5.2, we then obtain

d(x̄ĉ∗,x̂, x̄c∗,x̂) ≤ C1∥∆x̄ĉ∗ ,x̂ − ∆x̄c∗ ,x̂∥x∗

≤ C1∥Retr−1
x∗ (x̄ĉ∗,x̂)− Retr−1

x∗ (x̄c∗,x̂)∥x∗ + C1∥ϵr∥x∗
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≤
C1∥Retr−1

x∗ (x0)∥x∗

1 − σ
∥c∗ − ĉ∗∥2 + O(d2(x0, x∗)),

where we apply (5.18). Now we proceed to bound ∥c∗ − ĉ∗∥2 ≤ ∥P∥2
λ ∥ĉ∗∥2 in a

similar manner as Lemma 5.6 where P = R − R̂. From the proof of Lemma 5.6,

we have

∥P∥2 ≤ 2
1 − σ

∥Retr−1
x∗ (x0)∥x∗∥E∥2 + ∥E∥2

2,

where ∥E∥2 ≤ ∑k
i=0 ∥T x∗

xk
ri − r̂i∥x∗ . Thus it remains to bound ∥T x∗

xk
ri − r̂i∥x∗ .

Similarly, we can show

∥T x∗
xk

ri − r̂i∥x∗ ≤ ∥T x∗
xk

ri −
(
Retr−1

x∗ (xi+1)− Retr−1
x∗ (xi)

)
∥x∗ +

i+1

∑
j=1

∥ε j∥x∗

≤ ∥Γx∗
xk

ri −
(
∆xi+1 − ∆xi

)
∥x∗ + ∥ϵv∥x∗ +

i+1

∑
j=1

∥ε j∥x∗ = O(d2(x0, x∗)),

where ε j is defined in (5.17) and we use Lemma 5.12 for the exponential map.

Thus ∥P∥2 ≤ 2ψ a1
1−σ d(x0, x∗) + ψ2 where ψ = O(d2(x0, x∗)). This leads to

d(x̄ĉ∗,x̂, x̄c∗,x̂) ≤
C1∥Retr−1

x∗ (x0)∥x∗

λ(1 − σ)

( 2ψ

1 − σ
∥Retr−1

x∗ (x0)∥x∗ + ψ2
)
∥ĉ∗∥2 + ϵ2,

where ϵ2 = O(d2(x0, x∗)).

(III). Finally for the nonlinearity term d(x̄c∗,x̂, x̄c∗,x), we show

d(x̄c∗,x̂, x̄c∗,x) ≤ C1∥∆x̄c∗ ,x̂ − ∆x̄c∗ ,x∥x∗

≤ C1∥Retr−1
x∗ (x̄c∗,x̂)− Retr−1

x∗ (x̄c∗,x)∥x∗ + O(d2(x0, x∗))

≤ C1∥c∗∥2(
k

∑
i=0

∥Retr−1
x∗ (xi)− Retr−1

x∗ (x̂i)∥x∗) + O(d2(x0, x∗))

≤ C1

√
∑k

i=0 ∥Retr−1
xi
(xi+1)∥2

xi
+ λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ3,

where ϵ3 = O(d2(x0, x∗)) and we follow similar steps as in Lemma 5.6.
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Finally, combining results from (I), (II), (III), we have

d(x̄c∗,x, x∗) ≤
∥Retr−1

x∗ (x0)∥x∗

a0(1 − σ)

√
(S[0,σ]

k,λ̄ )2 − λ

∥Retr−1
x∗ (x0)∥2

x∗
∥ĉ∗∥2

2

+
C1∥Retr−1

x∗ (x0)∥x∗

λ(1 − σ)

( 2ψ

1 − σ
∥Retr−1

x∗ (x0)∥x∗ + ψ2
)
∥ĉ∗∥2

+ C1

√
∑k

i=0 ∥Retr−1
xi
(xi+1)∥2

xi
+ λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ1 + ϵ2 + ϵ3.

Maximizing the bound over ∥ĉ∗∥2 yields

d(x̄c∗,x, x∗)

≤ S[0,σ]
k,λ̄

√√√√∥Retr−1
x∗ (x0)∥2

x∗

a2
0(1 − σ)2

+
C2

1∥Retr−1
x∗ (x0)∥4

x∗
( 2ψ

1−σ∥Retr−1
x∗ (x0)∥x∗ + ψ2

)2

λ3(1 − σ)2

+ C1

√
∑k

i=0 ∥Retr−1
xi
(xi+1)∥2

xi
+ λ

(k + 1)λ

( k

∑
i=0

i

∑
j=0

∥ε j∥x∗
)
+ ϵ1 + ϵ2 + ϵ3.

Finally, to see the asymptotic convergence rate, we notice that ∥Retr−1
x∗ (x0)∥x∗ =

O(d(x0, x∗)) and limd(x0,x∗)−→0
1

d(x0,x∗)(ϵ1 + ϵ2 + ϵ3) = 0.

5.F Extensions

In this section, we consider various extensions to the proposed nonlinear accel-

eration on manifolds.

5.F.1 Online Riemannian nonlinear acceleration

Following Scieur et al. (2018); Bollapragada et al. (2022), we can extend Algo-

rithm 6 to the online setting, where the extrapolated point x̄c,x is used to up-

date the iterate sequence. The idea is to add a mixing step by updating x̄c,x

in the direction of the weighted average of the gradients, i.e., grad f (x̄c,x) =

∑k
i=0 ciΓ

x̄c,x
xi grad f (xi). For the averaging schemes (Avg.1), (Avg.3), the next it-
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Algorithm 13: Riemannian nonlinear acceleration (RiemNA-online)
1: Input: Initialization x0. Regularization parameter λ. Mixing parameter δ.
2: for k = 0, ..., K − 1 do
3: Compute ri = Γxk

xi Exp−1
xi
(xi+1) ∈ TxkM, i = 0, ..., k

4: Solve c∗ = arg minc∈Rk+1:c⊤1=1 ∥∑k
i=0 ciri∥2

xk
+ λ∥c∥2

2.
5: Compute xk+1 =

Expxk

(
− δc∗kgrad f (xk)− ∑k−1

i=0 Γxk
xi

(
θ∗i Exp−1

xi
(xi+1) + δc∗i grad f (xi)

))
,

where θ∗i = ∑i
j=0 c∗j .

6: end for
7: Output: xK.

eration starts with Expx̄c,x
(−δ grad f (x̄c,x)) for some mixing parameter δ > 0.

Particularly for the tangent space averaging scheme (Avg.2), we show a more

efficient strategy of mixing, which we focus in this work. The averaging and

mixing steps are both performed on the same tangent space. Specifically, let

x−1 = x0, we define the following progression of the online nonlinear accelera-

tion on manifolds.

xk+1 = Expxk

(
−

k−1

∑
i=0

θiΓ
xk
xi Exp−1

xi
(xi+1)− δ

k

∑
i=0

ciΓ
xk
xi grad f (xi)

)
= Expxk

(
− δckgrad f (xk)−

k−1

∑
i=0

Γxk
xi

(
θiExp−1

xi
(xi+1) + δcigrad f (xi)

))
.

The complete procedures are presented in Algorithm 13.

5.F.2 Practical considerations

Here are some practical considerations to use nonlinear acceleration on mani-

folds.

Iterates from Riemannian gradient descent with line-search Suppose the iter-

ates {xi}k
i=0 are generated from xi = Expxi

(−ηigrad f (xi−1)) where the stepsize

is determined from a line-search procedure (such as backtracking line-search in

Boumal et al. (2019b)) and thus varies across iterations. Nevertheless, Lemma
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Algorithm 14: Adaptive regularized Riemannian nonlinear acceleration
(AdaRiemNA)

1: Input: A sequence of iterates x0, ..., xk+1. Tentative regularization
parameters {λj}k

j=1.

2: Compute ri = Γxk
xi Exp−1

xi
(xi+1) ∈ TxkM, i = 0, ..., k

3: for j = 1, ..., k do
4: Solve c∗(λj) = arg minc∈Rk+1:c⊤1=1 ∥∑k

i=0 ciri∥2
xk
+ λj∥c∥2

2.
5: Compute x̄(λj) = x̄c,x using c∗(λj).
6: end for
7: Set x̄∗ = arg minj=1,...,k f (x̄(λj)).

8: Compute u = Exp−1
x0
(x̄∗) and set t = 1.

9: while f (Expx0
(2tu)) < f (Expx0

(tu)) do
10: Update t = 2t.
11: end while
12: Output: Expx0

(tu).

5.3 still holds with Gi = id − ηiHess f (x∗). Suppose the stepsize is chosen such

that ∥Gi∥ ≤ σ < 1. Then the analysis still holds under this setting.

Safeguarding decrease Due to the curved geometry of the manifold and non-

linearity of the objective function, it is not guaranteed that f (x̄c,x) will decrease.

In the main text, we only show local convergence of the acceleration strategy. A

typical globalization technique is to only keep the extrapolated point if it shows

sufficient decrease compared to previous iterates, i.e., f (x̄c,x) ≤ τ mini=0,...,k f (xi)

for some τ < 1. In Scieur et al. (2020), an adaptive regularization strategy has

been proposed to select regularization parameter λ. Here we adapt the same

strategy on manifolds, which we show in Algorithm 14. As noticed in Scieur et

al. (2020), a higher value of λ pushes the weights close to uniform and thus stays

closer to x0. Thus the line-search over t tries to enhance the progress compared

to the initialization. In addition, for online Riemannian nonlinear acceleration

specifically, we may consider performing a line-search over the parameter δ to

ensure a sufficient descent condition is met.
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Limited-memory and extrapolation frequency Rather than keeping all the

previous iterates for extrapolation, we can set a memory depth of m and using

only the most recent m iterates to compute the extrapolated point. In practice,

m is usually set to be less than 10. In addition, we notice that compared to the

Euclidean version, the computational cost for the Riemannian nonlinear accel-

eration can be high due to the use of parallel transport. Hence to mitigate this

issue, we may only compute the extrapolated point every m iteration.

Efficient update of the residual matrix R Recall for each application of Rie-

mannian nonlinear acceleration, we need to compute R = [⟨ri, rj⟩xk ]0≤i,j≤k, where

ri = T xk
xi Retr−1

xi
(xi+1), where we write using (isometric) vector transport and gen-

eral retraction. This includes parallel transport and exponential map as special

cases. By isometry, in the next iteration when we receive rk+1, the update of

R only requires computing ⟨Γxk+1
xk ri, rk+1⟩xk+1 , i = 0, ..., k + 1. Denote the vector

r+ := [⟨Γxk+1
xk ri, rk+1⟩xk+1 ]0≤i≤k. Then the updated residual matrix is

R+ =

 R r+

r⊤+ ∥rk+1∥2
xk+1

 .
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Chapter 6

Conclusions

The thesis advances the developments of Riemannian optimization, in terms

of understanding Riemannian geometry in algorithmic performance, improv-

ing and unifying variance reduction methods, as well as designing a generic

acceleration strategy on manifolds. This chapter recaps and summarizes the

achievements of the three main chapters within a larger context. Then the chap-

ter concludes by providing some perspectives into the future research directions.

6.1 Summary of the thesis

Recent years have seen many great developments in the field of optimization on

manifolds. This includes improvements on algorithmic designs, exploration of

general problem settings and introduction of a range of software and packages,

thus expanding the potential of Riemannian optimization for both researchers

and practitioners.

A majority of research efforts focus on proposing more advanced numerical

algorithms on manifolds by generalizing the ideas in the Euclidean space. Suc-

cessful generalizations often exploit the function structure (e.g., geodesic convex-

ity), gradient sequence (e.g., variance reduction methods) and iterate sequence

(e.g., averaging and interpolation), which are primarily characteristics of the
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problem instances.

While the contributions are fruitful and promising, the most commonly used

Riemannian metric is often taken for granted when implementing the proposed

algorithms, despite that different choices may result in fundamentally different

search spaces. Chapter 3 aims to study how the choices of Riemannian met-

ric affects the numerical performance of optimization algorithms on manifolds.

We particularly focus on the SPD manifold, for which we identify two aspects

where the metric impacts the algorithmic performance, i.e., the curvature and

the conditioning of Riemannian Hessian. The former plays a crucial role in

bounding the side lengths of a geodesic triangle, and thus naturally appears

in the convergence rate for first-order algorithms. The latter determines the

shape of level curves, which regulate both the directions of gradient and New-

ton steps. Among the many available metrics for SPD matrices, we show the

Bures-Wasserstein metric is favourable than the default Affine-Invariant metric

in both of the two aspects, for a wide range of function classes. In many cases, we

observe the empirical speedup on the Bures-Wasserstein geometry is significant,

which suggests an equal attention should be placed on choosing or designing

proper Riemannian metrics, orthogonal to the algorithmic developments.

The theory of variance reduction has been central for classic statistical esti-

mation, particularly for Monte Carlo methods. This serves as the building block

for the rise of variance reduction methods for stochastic optimization in the last

decade. Indeed, most variance reduced gradient methods, such as SVRG (John-

son & Zhang, 2013) and SAGA (Defazio et al., 2014) are inspired by the idea

of control variate, a key technique to reduce variance of a random variable for

Monte Carlo methods. Looking back through the history of variance reduction

for optimization, a majority of methods are originally designed for (strongly)

convex problems. The journey to understand the behaviours of variance reduc-

tion methods in the nonconvex regime starts with the analysis of SVRG (Reddi,

Hefny, et al., 2016), showing an improved gradient complexity compared to gra-
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dient descent and stochastic gradient descent. It is later discovered that the

complexity can be further improved in SPIDER (Fang et al., 2018) if the stochas-

tic gradient correction is performed by consecutive iterates instead of anchored

iterates each epoch. Such scheme is proved to be optimal in gradient complexity

for both finite-sum and online settings.

Parallel to the above developments, variance reduction has also been con-

sidered for optimization on manifolds, with the resulting algorithms matching

the complexity established in the Euclidean space, up to some manifold spe-

cific constants. However, a consistent and unified framework is absent for both

analyzing and improving the Riemannian variance reduction methods. Chap-

ter 4 offers such a framework for both SVRG-type and SPIDER-type methods,

unifying the convergence analysis via gradient estimation bound and improving

the complexity via batch size adaptation. This allows principled comparisons

between different styles of variance reduction on manifolds, in terms of the use

of general retraction and vector transport, the choice of stepsize and batch size,

and the impacts of manifold curvature. Further, Chapter 4 also provides the

necessary analysis toolkit for the many prospective developments of Rieman-

nian variance reduction methods in more general contexts and problem settings.

Another long-lasting puzzle in the field of Riemannian optimization is accel-

eration, i.e., the possibility of generating accelerated sequences on manifolds us-

ing only first-order information. In the Euclidean space, Nesterov’s accelerated

gradient methods (Y. E. Nesterov, 1983; Y. Nesterov, 2003) provide an affirmative

and inspiring answer to the above question, achieving optimal convergence rates

among first-order methods. Nevertheless, the original analysis requires intricate

proof strategies as well as algebraic tricks to select the parameters, obscuring the

underlying intuition of the acceleration. Later many research efforts have ap-

proached the Nesterov acceleration from diverse perspectives, including a linear

coupling framework (Allen-Zhu & Orecchia, 2017), continuous dynamics (Su et

al., 2014), variational framework (Wibisono et al., 2016), proximal point method
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(Defazio, 2019; Ahn & Sra, 2022), and continuized formulation (Even et al., 2021).

Generalizing Nesterov acceleration to Riemannian manifold presents signifi-

cant challenges, because most of the analysis in the Euclidean space relies heav-

ily on the vector space structure and careful choice of parameters. The cur-

vature of the search space has been found to be the main culprit obstructing

the global acceleration (Hamilton & Moitra, 2021; Criscitiello & Boumal, 2022b).

Nonetheless, there are continuing efforts in contributing to the understanding

of acceleration on manifolds, particularly in terms of Nesterov’s type of acceler-

ation. Such an understanding is crucial for both Riemannian optimization and

Euclidean optimization as the insights generated may promote better design of

accelerated algorithms on both domains.

In Chapter 5, we depart from the existing endeavors to develop Rieman-

nian Nesterov accelerated gradient methods, and pursue a generic accelera-

tion strategy by extrapolating the iterates produced from Riemannian first-order

methods. We have proved an optimal asymptotic convergence rate of the pro-

posed scheme, coupled with Riemannian gradient descent method. While our

convergence guarantees are weaker than the existing works (with mostly non-

asymptotic optimal rates), our method is simple to implement, efficient, and

allows the use of more general retraction and vector transport. Despite the

significance of Nesterov acceleration, the Chapter suggests new possibilities

and promises for Riemannian acceleration by exploring alternative acceleration

schemes.

6.2 Future research

Following on the developments of the thesis, there are many open questions

and new directions that remain unexplored. Motivated by Chapter 5, it is worth

extending the idea and analysis of extrapolation to other solvers, including

momentum-based solvers and stochastic solvers. Also it is equally interesting
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to study alternative acceleration schemes on manifolds apart from the well-

celebrated Nesterov acceleration, such as by taking inspiration from classical

dynamical systems and control theory. The main aim is to improve the empiri-

cal efficiency, while showing non-asymptotic convergence guarantees. Another

challenging but rewarding direction is on (global) complexity lower bounds of

Riemannian optimization. This requires to construct “hard” functions on man-

ifolds, which may be out of reach for arbitrary Riemannian manifolds. Hamil-

ton & Moitra (2021); Criscitiello & Boumal (2022b) are successful to build such

“hard” geodesic (strongly) convex functions on hyperbolic and more general

Hadamard manifolds, respectively. The functions constructed largely deviate

from the classic ones used in the Euclidean space for proving lower bounds.

Some natural questions arise, such as whether the analysis can be adapted

for establishing lower bounds for general nonconvex functions and min-max

problems on manifolds. In addition, many settings of Riemannian optimiza-

tion are currently underdeveloped, including min-max problems, compositional

problems, bilevel problems, distributed settings, among many others. All the

above are exciting new directions that worth investigation, which may lead to

new applications of Riemannian optimization. Finally, given the versatility of

the framework of Riemannian optimization and its ever-growing applications in

data science, some imperative issues require special attention before deployment

in practice, such as privacy, fairness, and interpretability. Future research efforts

shall also build awareness on trustworthiness and transparency when learning

and optimizing over Riemannian manifolds, by integrating existing frameworks

established in the Euclidean space.
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learning: Grids, groups, graphs, geodesics, and gauges. arXiv:2104.13478.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017).

Geometric deep learning: going beyond Euclidean data. IEEE Signal Processing

Magazine, 34(4), 18–42.

Brooks, D. A., Schwander, O., Barbaresco, F., Schneider, J.-Y., & Cord, M. (2019).

Exploring complex time-series representations for Riemannian machine learn-

ing of radar data. In IEEE International Conference on Acoustics, Speech and Signal

Processing (pp. 3672–3676).

Cai, T. T., & Zhang, A. (2015). ROP: Matrix recovery via rank-one projections.

Annals of Statistics, 43(1), 102–138.

Cannon, J. W., Floyd, W. J., Kenyon, R., & Parry, W. R. (1997). Hyperbolic

geometry. Flavors of geometry, 31(59-115), 2.

Chamberlain, B. P., Clough, J., & Deisenroth, M. P. (2017). Neural embeddings

of graphs in hyperbolic space. arXiv:1705.10359.

211



Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., & Ré, C. (2020). Low-

dimensional hyperbolic knowledge graph embeddings. In Annual Meeting of

the Association for Computational Linguistics (pp. 6901–6914).

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27.

Chebbi, Z., & Moakher, M. (2012). Means of Hermitian positive-definite matrices

based on the log-determinant α-divergence function. Linear Algebra and its

Applications, 436(7), 1872–1889.

Chen, S., Garcia, A., Hong, M., & Shahrampour, S. (2021). Decentralized Rie-

mannian gradient descent on the Stiefel manifold. In International Conference

on Machine Learning (pp. 1594–1605).

Chen, S., Ma, S., Man-Cho So, A., & Zhang, T. (2020). Proximal gradient method

for nonsmooth optimization over the Stiefel manifold. SIAM Journal on Opti-

mization, 30(1), 210–239.

Cherian, A., & Sra, S. (2016). Riemannian dictionary learning and sparse coding

for positive definite matrices. IEEE Transactions on Neural Networks and Learning

Systems, 28(12), 2859–2871.

Criscitiello, C., & Boumal, N. (2019). Efficiently escaping saddle points on man-

ifolds. Advances in Neural Information Processing Systems, 32.

Criscitiello, C., & Boumal, N. (2022a). An accelerated first-order method for non-

convex optimization on manifolds. Foundations of Computational Mathematics,

1–77.

Criscitiello, C., & Boumal, N. (2022b). Negative curvature obstructs accelera-

tion for strongly geodesically convex optimization, even with exact first-order

oracles. In Conference on Learning Theory (pp. 496–542).

212



Cruceru, C., Becigneul, G., & Ganea, O.-E. (2021). Computationally tractable

Riemannian manifolds for graph embeddings. In AAAI Conference on Artificial

Intelligence (pp. 7133–7141).

De, S., Yadav, A., Jacobs, D., & Goldstein, T. (2017). Automated inference with

adaptive batches. In Artificial Intelligence and Statistics (pp. 1504–1513).

Defazio, A. (2019). On the curved geometry of accelerated optimization. Ad-

vances in Neural Information Processing Systems, 32.

Defazio, A., Bach, F., & Lacoste-Julien, S. (2014). SAGA: A fast incremental

gradient method with support for non-strongly convex composite objectives.

Advances in Neural Information Processing Systems, 1646–1654.

Di Giovanni, F., Luise, G., & Bronstein, M. M. (2022). Heterogeneous manifolds

for curvature-aware graph embedding. In ICLR Workshop on Geometrical and

Topological Representation Learning.

Douik, A., & Hassibi, B. (2019). Manifold optimization over the set of dou-

bly stochastic matrices: A second-order geometry. IEEE Transactions on Signal

Processing, 67(22), 5761–5774.

Dryden, I. L., Koloydenko, A., & Zhou, D. (2009). Non-Euclidean statistics for

covariance matrices, with applications to diffusion tensor imaging. The Annals

of Applied Statistics, 3(3), 1102–1123.

Duruisseaux, V., & Leok, M. (2022). A variational formulation of accelerated

optimization on Riemannian manifolds. SIAM Journal on Mathematics of Data

Science, 4(2), 649–674.

d’Aspremont, A., Scieur, D., & Taylor, A. (2021). Acceleration methods. Founda-

tions and Trends® in Optimization, 5(1-2), 1–245.

213



Edelman, A., Arias, T. A., & Smith, S. T. (1998). The geometry of algorithms with

orthogonality constraints. SIAM Journal on Matrix Analysis and Applications,

20(2), 303–353.

Eldén, L., & Park, H. (1999). A procrustes problem on the stiefel manifold.

Numerische Mathematik, 82(4), 599–619.

Even, M., Berthier, R., Bach, F., Flammarion, N., Gaillard, P., Hendrikx, H., . . .

Taylor, A. (2021). A continuized view on Nesterov acceleration for stochas-

tic gradient descent and randomized gossip. Advances in Neural Information

Processing Systems, 1–32.

Fang, C., Li, C. J., Lin, Z., & Zhang, T. (2018). Spider: Near-optimal non-convex

optimization via stochastic path-integrated differential estimator. Advances in

Neural Information Processing Systems, 689–699.

Friedlander, M. P., & Schmidt, M. (2012). Hybrid deterministic-stochastic meth-

ods for data fitting. SIAM Journal on Scientific Computing, 34(3), A1380–A1405.

Gabay, D. (1982). Minimizing a differentiable function over a differential mani-

fold. Journal of Optimization Theory and Applications, 37(2), 177–219.

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant

time collaborative filtering algorithm. Information Retrieval, 4(2), 133–151.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., . . .

He, K. (2017). Accurate, large minibatch SGD: Training imagenet in 1 hour.

arXiv:1706.02677.

Gu, A., Sala, F., Gunel, B., & Ré, C. (2018). Learning mixed-curvature representa-

tions in product spaces. In International Conference on Learning Representations.

214



Guillaumin, M., Verbeek, J., & Schmid, C. (2009). Is that you? metric learning

approaches for face identification. In International Conference on Computer Vision

(pp. 498–505).

Hamilton, L., & Moitra, A. (2021). No-go theorem for acceleration in the hyper-

bolic plane. arXiv:2101.05657.

Hamm, J., & Lee, D. D. (2008). Grassmann discriminant analysis: a unifying view

on subspace-based learning. In International Conference on Machine Learning

(pp. 376–383).

Han, A., & Gao, J. (2021). Improved variance reduction methods for Riemannian

non-convex optimization. IEEE Transactions on Pattern Analysis and Machine

Intelligence.

Han, A., Mishra, B., Jawanpuria, P., & Gao, J. (2022). Riemannian block SPD

coupling manifold and its application to optimal transport. Machine Learning,

1–28.

Han, A., Mishra, B., Jawanpuria, P., & Gao, J. (2023). Learning with symmet-

ric positive definite matrices via generalized Bures-Wasserstein geometry. In

International Conference on Geometric Science of Information.

Han, A., Mishra, B., Jawanpuria, P. K., & Gao, J. (2021). On Riemannian opti-

mization over positive definite matrices with the Bures-Wasserstein geometry.

Advances in Neural Information Processing Systems, 34, 8940–8953.

Harandi, M., Sanderson, C., Shen, C., & Lovell, B. C. (2013). Dictionary learn-

ing and sparse coding on Grassmann manifolds: An extrinsic solution. In

International Conference on Computer Vision (pp. 3120–3127).

Harandi, M. T., Salzmann, M., & Hartley, R. (2014). From manifold to mani-

fold: Geometry-aware dimensionality reduction for SPD matrices. In European

Conference on Computer Vision (pp. 17–32).

215



Hardy, Y., & Steeb, W.-H. (2019). Matrix calculus, kronecker product and tensor

product: A practical approach to linear algebra, multilinear algebra and tensor calcu-

lus with software implementations. World Scientific.

Harikandeh, R. B., Ahmed, M. O., Virani, A., Schmidt, M., Konečnỳ, J., & Salli-
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