
Online Scheduling with Predictions

TIANMING ZHAO

Doctor of Philosophy

Supervisor: Professor Albert Y. Zomaya
Associate Supervisor: Doctor Wei Li

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Computer Science
Faculty of Engineering

The University of Sydney
Australia

3 August 2023

Authorship Attribution Statement

Chapter 3 of this thesis is published as [1] and [2].
I initiated the study, designed the algorithms, conducted the analysis and experiments, and wrote the
drafts of the manuscripts.

Chapter 4 of this thesis is published as [3].
I initiated the study, designed the algorithms, conducted the analysis, and wrote the drafts of the
manuscript.

Chapter 5 of this thesis is published as [4].
I initiated the study, designed the algorithms, conducted the analysis and experiments, and wrote the
drafts of the manuscript.

Chapter 6 of this thesis is published as [5].
I designed the algorithms, conducted the analysis and experiments, and wrote the drafts of the manuscript.

In addition to the statements above, in cases where I am not the corresponding author of a published
item, permission to include the published material has been granted by the corresponding author.

Student Name: Tianming Zhao
Signature:
Date:

As supervisor for the candidature upon which this thesis is based, I can confirm that the authorship
attribution statements above are correct.

Supervisor Name: Albert Y. Zomaya
Signature:
Date:

ii

AUTHORSHIP ATTRIBUTION STATEMENT iii

Publications

[1] T. Zhao, W. Li, and A. Y. Zomaya, “Uniform machine scheduling with predictions,” Proceedings of
the International Conference on Automated Planning and Scheduling, vol. 32, pp. 413–422, Jun.
2022.

[2] T. Zhao, W. Li, and A. Y. Zomaya, “Learning-augmented scheduling,” IEEE Transactions on Com-
puters, 2023. Submitted.

[3] T. Zhao, C. Li, W. Li, and A. Y. Zomaya, “Brief announcement: Towards a more robust algorithm for
flow time scheduling with predictions,” in Proceedings of the 34th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’22, (New York, NY, USA), p. 385–388, Association for
Computing Machinery, 2022.

[4] T. Zhao, W. Li, and A. Y. Zomaya, “Real-time scheduling with predictions,” in 2022 IEEE Real-Time
Systems Symposium (RTSS), pp. 331–343, 2022.

[5] T. Zhao, W. Li, B. Qin, L. Wang, and A. Y. Zomaya, “Pulsed power load coordination in mission and
time critical cyber-physical systems,” ACM Trans. Model. Perform. Eval. Comput. Syst., Dec. 2022.

Publications not included in the thesis:

[6] T. Zhao, W. Si, W. Li, and A. Y. Zomaya, “Optimizing the maximum vertex coverage attacks under
knapsack constraint,” IEEE/ACM Transactions on Networking, vol. 29, no. 3, pp. 1088–1104, 2021.

[7] T. Zhao, W. Si, W. Li, and A. Y. Zomaya, “Towards minimizing the r metric for measuring network
robustness,” IEEE Transactions on Network Science and Engineering, vol. 8, no. 4, pp. 3290–3302,
2021.

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own work. This thesis
has not been submitted for any degree or other purposes.

I certify that the intellectual content of this thesis is the product of my own work and that all the
assistance received in preparing this thesis and sources have been acknowledged.

Name: Tianming Zhao

Signature: Date:

iv

Student Plagiarism: Compliance Statement

I certify that:

I have read and understood the University of Sydney Student Plagiarism: Coursework Policy and
Procedure;

I understand that failure to comply with the Student Plagiarism: Coursework Policy and Procedure
can lead to the University commencing proceedings against me for potential student misconduct under
Chapter 8 of the University of Sydney By-Law 1999 (as amended);

This Work is substantially my own, and to the extent that any part of this Work is not my own I have
indicated that it is not my own by Acknowledging the Source of that part or those parts of the Work.

Name: Tianming Zhao

Signature: Date:

v

Abstract

Online scheduling is the process of allocating resources to tasks to achieve objectives with uncertain
information about future conditions or task characteristics. This thesis presents a new online scheduling
framework named online scheduling with predictions. The framework uses predictions about unknowns
to manage uncertainty in decision-making. It considers that the predictions may be imperfect and include
errors, surpassing the traditional assumptions of either complete information in online clairvoyant
scheduling or zero information in online non-clairvoyant scheduling. The goal is to create algorithms
with predictions that perform better with quality predictions while having bounded performance with poor
predictions. The framework includes metrics such as consistency, robustness, and smoothness to evaluate
algorithm performance. We prove the fundamental theorems that give tight lower bounds for these
metrics. We apply the framework to central scheduling problems and cyber-physical system applications,
including minimizing makespan in uniform machine scheduling with job size predictions, minimizing
mean response time in single and parallel identical machine scheduling with job size predictions, and
maximizing energy output in pulsed power load scheduling with normal load predictions. Analysis and
simulations show that this framework outperforms state-of-the-art methods by leveraging predictions.

vi

Acknowledgements

I would like to express my gratitude to my supervisor, Professor Albert Y. Zomaya, and Dr. Wei Li,
for their supervision, support, and encouragement throughout my PhD journey. They have created an
extraordinary academic environment for my research and provided me with all the necessary support
along the way. Without them, the research outcomes would not have been possible. I would also
like to extend my thanks to Dr. Weisheng Si for his supervision, support, and encouragement in my
early academic career. He taught me valuable approaches to good academic writing that I will always
remember and benefit from.

I am grateful to my family. My parents, Lei Zhao and Yin Zhao, provided me with a childhood filled
with freedom and support for my interests. My grandfather, Zhengxue Zhao, taught me that the secret
to successful learning is thinking. My grandmother, Shuying Sun, instilled in me a love for math. My
uncle and aunt, Yuan Zhao and Yan Jiang, hosted me during my university studies.

Last but certainly not least, I would like to express my deepest appreciation to my wife, Min Li, for
being my unwavering source of support and love throughout this journey. You have been my rock. You
have been my cornerstone. You mean the world to me.

vii

Contents

Authorship Attribution Statement ii

Statement of Originality iv

Student Plagiarism: Compliance Statement v

Abstract vi

Acknowledgements vii

Contents viii

List of Figures x

List of Tables xii

Chapter 1 Introduction 1

Chapter 2 Fundamentals of Online Scheduling with Predictions 4
2.1 Online Scheduling with Predictions . 4
2.2 Fundamental Theorems of Consistency . 6
2.3 Fundamental Theorems of Robustness . 7
2.4 Fundamental Theorems of Smoothness . 8
2.5 Conclusions . 10

Chapter 3 Uniform Machine Scheduling with Predictions 11
3.1 Introduction . 11
3.2 Preliminaries . 12
3.3 Robust Online Scheduling with Job Size Predictions . 14
3.4 Analysis . 20
3.5 Experimental Evaluation . 30
3.6 Conclusions and Future Work . 34

Chapter 4 Single Machine Response Time Scheduling with Predictions 36
4.1 Introduction . 36
4.2 Problem Definition . 37
4.3 Robust Single Machine Response Time Scheduling with Job Size Predictions 38
4.4 Conjecture: An O(η2)-Competitive Algorithm. 41
4.5 Conclusions and Future Work . 42

viii

CONTENTS ix

Chapter 5 Real-Time Scheduling with Predictions 43
5.1 Introduction . 43
5.2 Preliminaries . 45
5.3 Robust Response Time Scheduling with Job Size Predictions . 47
5.4 Algorithm Analysis . 50
5.5 Experimental Evaluation . 66
5.6 Conclusions and Future Work . 69

Chapter 6 Pulsed Power Load Scheduling with Predictions 70
6.1 Introduction . 70
6.2 Modeling of the Coordination Problem . 72
6.3 Problem Formulation . 74
6.4 Optimal Solution: Case of Constant NL Functions . 79
6.5 Optimal Solution: Case of General NL Functions . 86
6.6 Simulation . 92
6.7 Related Results . 96
6.8 Conclusions and Future Work. 97

Chapter 7 Conclusion 98
Future Work . 98

Bibliography 100

List of Figures

III.1 The connection between the algorithms. Algorithm 2 is a decision procedure that decides
if a given set of jobs (sizes) can be completed within a given makespan. Algorithm 3 uses
Algorithm 2 as a subroutine to estimate the optimal makespan and the actual job sizes online
via a doubling technique. Algorithm 5 reruns Algorithm 3 as a subroutine upon every job
release to handle release times. Algorithm 4 uses Algorithm 3 as a subroutine to estimate the
prediction error online via a doubling technique. Finally, Algorithm 6 reruns Algorithm 4 as a
subroutine upon every job release to handle release times. 15

III.2 Algorithm execution. Subfigure (a) is a dynamic scheduling workload. Subfigure (b) is the
execution (up to time 9.0) of Algorithm 6 with 5 machines (s1 = 2.5, s2 = 2.0, s3 = 1.0, s4 =

0.1, s5 = 0.1 and, thus, sup = 3) against the workload. Jobs J1, J2, J3, J4, J5 are available at
time 0.0 when the algorithm starts with an inner procedure round with d = 2 and ηe = 1.
At time 1.0 when job J4 is completed, the algorithm detects p4

ηe
= p4 = 3.5 > 1.0 = p∗4 (an

underestimation of the prediction error); thus, it cancels the current inner procedure; then, it
doubles the prediction error estimate ηe; correspondingly, it updates the job size estimates by
dividing every estimate by 2 and the makespan estimate by setting d = 1. Time [1.0, 3.0)

covers the first complete inner procedure round; at the round termination, the algorithm
doubles the makespan estimate. Time [3.0, 4.0) covers the second complete inner procedure
round during which the algorithm completes jobs J1, J2, J3; at the round termination, the
algorithm updates the job size estimate of J5 by setting pe5 = 8.8. The algorithm is supposed
to run the following inner procedure round in [7.0, 11.0), but the arrival of J6 at time 9.0

interrupts. At time 9.0, the algorithm must rerun Algorithm 4 with jobs J5 and J6. In the
following run, job J5 will be allocated to machine M1 and J6 to M2. Algorithm 6 will
complete the workload with makespan 10.6; for just the first five jobs (a static scheduling
workload), the algorithm will still complete with the same makespan (10.6). For comparison,
the optimal makespan for the first five jobs is 6.0 (J1, J3 on M1, J4, J5 on M2, and J2 on M3)
and that for all six jobs is 9.4. 19

III.3 Performance ratios for static scheduling algorithms with varying m and η. Every algorithm
has two figures: the dashed line representing the maximum performance ratio for all problem
instances and the solid line representing the mean. The figures for the max performance ratio
have observable fluctuations as they represent the extremes of the data and thus are sensitive
to workload generation. 31

III.4 Performance ratios for dynamic scheduling algorithms with varying m and η. 32

x

LIST OF FIGURES xi

III.5 Performance ratio of Algorithm 5 with varying η. The horizontal bars across the middle of
the boxes represent the median of each boxplot. The box covers the middle 50% of the data
points, while the lower and upper boundary of the box represents the 25th (75th) percentile. 33

III.6 Performance ratio of Algorithm 6 with varying η. 34
V.1 Problem illustration with two identical parallel machines and five jobs. SRPT always

processes the jobs with minimal remaining sizes. This example shows that SRPT is not
optimal, as the mean response time achieved by SRPT is 3.6, while the optimal (OPT) is 3.2. 44

V.2 PEDRMLF performs the workload given in Figure V.3 on three machines up to time 3.0.
Subfigure (a) shows the schedule and (b) the status of the queues at time 3.0. PEDRMLF
processes the jobs from the lowest to highest queues and within any queue in increasing
order of job index. In this example, every job except for J5 has been processed due to the
earliest release time first policy within queues. At time 3.0, J8 is promoted to Q−1, J9 is just
completed, and a new job J10 arrives. The running jobs will become J7, J8, and J4 right after
time 3.0. Observe that the multilevel feedback queues are created on the fly with positive and
non-positive queue indices. 47

V.3 Workload parameters for Figure V.2. The total prediction error η is 2. During execution,
PEDRMLF knows the job size predictions and η. The job size estimates pej,b depend on
random choices β, so the last row presents one possible outcome in PEDRMLF’s execution. 48

V.4 Proof structure for deterministic analysis. 52
V.5 Proof structure for probabilistic analysis. 59
V.6 Performance comparison between PEDRMLF, RMLF, and SRPT. PEDRMLF is executed

four times with different prediction error η = {1, 2, 4, 64}. 66
V.7 Performance ratio of PEDRMLF with varying η. The performance ratio represents the mean

response time of PEDRMLF over that of SRPT. The horizontal bars across the middle of
the boxes represent the median of each boxplot. The box covers the middle 50% of the data
points, while the lower and upper boundary of the box represents the 25th (75th) percentile. 68

VI.1 System modeling. 73
VI.2 A simple numerical example. Figure (a) gives the parameter values in the example. For

simplicity, the units are omitted, and the values are normalized. Figure (b) visualizes (a
segment of) the dependency graph of DP states. Computing F1(97, 3) requires the values of
F1(91, 2) and F2(97, 3); computing F2(97, 3) requires F1(90, 2), F1(89, 2), ..., F1(0, 2). The
computation must therefore follow the topological order of the dependency graph. Figure (c)
shows the order of computation. The algorithm computes F1 and F2 simultaneously row by
row (increasing t) and column by column (increasing S) inside a row. The table represents the
computed DP values, where a dash indicates an invalid DP state. The maximum number of
pulses deployable in this instance is 3. 84

VI.3 Critical points in Procedure VI.11. 87
VI.4 Sample executions. 94
VI.5 Energy output comparison between PSO, Heuristic, Greedy, and DP 95
VI.6 Run time comparison between PSO, Heuristic, Greedy, and DP with varying r and increasing

T . 96

List of Tables

III.1 A table of notations. 20
III.2 The workload parameters, with time-related ones in milliseconds. 30
V.1 A table of notations. 50
V.2 The workload parameters, with time-related ones in milliseconds. 67
VI.1 A table of modeling parameters. 74
VI.2 The range of key parameters used in the experiments. 92
VI.3 Parameters for the sample executions. 93

xii

CHAPTER 1

Introduction

Scheduling is the process of allocating resources to tasks to achieve goals. Examples include matching
CPUs to run programs, energy to perform operations, and human resources to projects. This thesis
focuses on scheduling in computer systems where resources are machines and tasks are jobs, as well
as scheduling in cyber-physical systems. Scheduling is critical to computer systems as it effectively
matches the processing units and the computational tasks, ensuring low latency and high quality of
service. The goal is that the right resources are allocated to the right tasks at the right time to optimize
objectives. Quality scheduling is inevitable due to the constant conflict between limited resources and
demanding tasks.

The challenges of scheduling involve decision-making under uncertainty, also known as online schedul-
ing. In online scheduling, we often do not have complete information about certain parameters or the
future when making decisions. Specifically, we do not know the existence of a future job until it arrives
in the system, and sometimes we do not know the size of a job (i.e., the processing time) until it is com-
pleted. Under these uncertainties, we aim to optimize specific objectives, such as makespan and response
time, and ensure that the schedule is effective even if the unknowns work against us. Two approaches to
this goal have been taken in the literature. One, called online clairvoyant scheduling, assumes that we
have all the information about a job upon its arrival. The other, called online non-clairvoyant scheduling,
assumes that we do not know the job size until its completion. The former approach is optimistic, and
the latter is pessimistic.

Both approaches have issues. Online clairvoyant scheduling can guarantee excellent performance,
but it is too optimistic to assume known job sizes. Online non-clairvoyant scheduling may have low
competitiveness, but it is too pessimistic to assume no information. With the increasing power of learning
models and forecast algorithms, more accurate job size predictions are possible. Although they may not
be entirely accurate, predictions can help us achieve effective scheduling. Therefore, the assumptions in
online scheduling should be re-examined, and a new framework is required. This motivates the thesis,
which develops a new framework called online scheduling with predictions.

The proposed framework assumes that instead of having complete or no information, we can access
some predictions of unknowns, which are assumed to be (possibly) imperfect. This is a compromise
and an extension of online clairvoyant scheduling and online non-clairvoyant scheduling. Under this
framework, the goal is to develop algorithms that use predictions and have performance depending on
prediction quality. We want to achieve near-optimal performance under good predictions and bounded

1

1 INTRODUCTION 2

performance under bad predictions. This thesis first formulates the framework of online scheduling with
predictions and presents the performance metrics used in this framework and the fundamental results for
these metrics. It then applies the framework to solve several central scheduling problems and concludes
the technical chapters with an application to cyber-physical systems scheduling. The technical chapters
make the following contributions.

In Chapter 2, we formulate the framework of online scheduling with predictions. We present the
performance evaluation metrics, consistency, robustness, and smoothness, and prove the fundamental
results on them. These results provide universal lower bounds for these metrics, prove the existence of
algorithms that achieve these bounds, and link online scheduling with predictions to online clairvoyant
scheduling and online non-clairvoyant scheduling.

In Chapter 3, we solve the problem of uniform machine scheduling to minimize makespan with job
size predictions. Under the assumptions of knowing and not knowing the prediction error, we construct
O(min{logm, log η})-competitive algorithms using online doubling techniques, where m denotes the
machine number and η the prediction error. The algorithms achieve optimal O(1) consistency, optimal
O(logm) robustness, and O(min{logm, log η}) smoothness. We also extend the algorithms to static
and dynamic scheduling and show that they retain the competitive ratio results. We perform extensive
simulations to verify the theoretical results and show that the algorithms outperform the state-of-the-art.

In Chapter 4, we solve the problem of single machine scheduling to minimize the mean response time
with job size predictions. We prove a sufficient condition for any algorithm to achieve the optimal O(P)
robustness and construct an algorithm with optimal O(1) consistency and O(P) robustness, where P
denotes the maximum job size ratio. We also present an algorithm and conjecture that it achieves an
O(η2) competitive ratio.

In Chapter 5, we solve the problem of single and parallel machine scheduling to minimize the mean
response time with job size predictions. We propose PEDRMLF, Predictions Enhanced Dynamic
Randomized MultiLevel Feedback, with optimal O(min{log n

m
, logP}) consistency and the best-known

O(min{log n log n
m
, log n logP}) robustness. PEDRMLF incorporates job size predictions into a multi-

level feedback queue scheduling policy. We show that the algorithm performance is deterministic under
perfect predictions and matches the lower bounds. We also show that the (randomized) algorithm has
the worst-case expected performance matching the best-known bounds under arbitrarily bad predictions.
We perform extensive simulations to verify the theoretical results and compare the algorithm with the
state-of-the-art. The simulations show that PEDRMLF outperforms the best-known non-clairvoyant
algorithm by consistently achieving near-optimal objectives and staying close to the optimal clairvoyant
algorithm.

In Chapter 6, we solve the problem of pulsed power load scheduling in cyber-physical systems to
maximize energy output with normal load predictions. We formulate the pulsed power load scheduling
model with normal load predictions and propose exact dynamic programming-based algorithms for
constant and general normal loads. We prove the optimality of the algorithms and perform extensive
simulations to compare the performance with existing algorithms. The simulations show that our

1 INTRODUCTION 3

algorithms outperform the state-of-the-art by having strong performance guarantees under the worst-case
normal loads.

Many chapters in this thesis share a large portion of similar symbols and notations. However, due to the
unavoidable difference in the problem settings, each chapter is assumed to have an independent set of
notations to avoid the reader’s confusion. Chapters 2 — 5 are closely related to each other as all are
dedicated to the theory of online scheduling with predictions. The final technical chapter is a case study
of cyber-physical system scheduling with predictions of some system parameters. These results not only
solve the problems in this thesis but also extend to any application if the model fits the problem settings.

Online scheduling with predictions belongs to the general research agenda of algorithms with predictions.
This field assumes that an algorithm can access the predictions of unknowns in decision-making, and
the algorithm can use this (possibly imperfect) information to improve performance. Beginning in
2018, this young and active field has been a fast-growing area with many results not only in scheduling
but also caching, auctioning, paging, clustering, and graphs [8]. The increasing power of learning
models has enabled us with increased predictive capacity. These models are becoming accurate and
lightweight, fitting all parts of a system nicely to support decision-making. The author believes that the
next generation of computing paradigms will build upon algorithms and predictions.

CHAPTER 2

Fundamentals of Online Scheduling with Predictions

The major challenge of online scheduling is managing uncertainty. The literature has considered two
typical information settings: clairvoyant and non-clairvoyant scheduling. The former assumes knowing
complete information; the latter assumes knowing nothing. This chapter formulates the framework
of online scheduling with predictions, an extension of clairvoyant and non-clairvoyant scheduling.
The framework assumes the algorithms have access to predictions for some unknowns. We expect
these predictions can improve our decision-making, although they may be imperfect. Our objective is
algorithms with performance tied to prediction quality. We first introduce the concept of prediction
error and several metrics that quantify prediction quality. We then present consistency, robustness, and
smoothness that measure algorithm performance under our framework. We show the fundamental results
of these metrics, connecting the proposed framework with clairvoyant and non-clairvoyant scheduling.

2.1 Online Scheduling with Predictions

Consider any online non-clairvoyant scheduling problem P n: we have jobs to complete using the
given (one or more) machines with the goal of optimizing an objective. The superscript n indicates
non-clairvoyance. With Graham notations, P n can be uniquely determined by α|β|γ, where α denotes
machine characteristics, β job characteristics, and γ the objective [9]. Two typical online settings are
online over time and online over list. The former assumes that jobs arrive in the system over time; we
do not know the existence of a job until it has arrived. The latter assumes that jobs arrive as a list; we
do not know the existence of the following job until we have (irrevocably) assigned a machine to the
current job. Independently of the online settings, two typical information settings are clairvoyance and
non-clairvoyance. The former assumes that we have every arrived job’s complete information, e.g.,
job size or processing time of a job; the latter assumes that we only have this information after the
job’s completion. We use P c to denote the clairvoyant counterpart of P n, i.e., P c is the same problem
as P n except that the unknowns are known. The superscript c indicates clairvoyance. As an example
for P n, Qm | online-time-nclv, pmtn-restart | Cmax, the problem we study in Chapter 3, denotes the
problem of the uniform machine (machines have different processing speeds) scheduling for jobs arriving
online over time to minimize makespan. The pmtn-restart means that jobs are preemptive, but once
preempted, the job must restart running from scratch. The online-time-nclv indicates online over time
and non-clairvoyance. The clairvoyant counterpart P c, Qm | online-time-clv, pmtn-restart | Cmax, is the
same problem except that job size is known upon the job’s arrival.

4

2.1 ONLINE SCHEDULING WITH PREDICTIONS 5

Augmenting P n with predictions p̂ for some unknowns (e.g., job sizes), we end up with a problem of
online scheduling with predictions, which we denote by P . Our goal is to design algorithms that can use
predictions in scheduling. Such algorithms are also called learning-augmented algorithms, as learning
models are common sources of predictions. This is, however, not mandatory; the predictions can come
from any source.

2.1.1 Prediction Error

The predictions are possibly imperfect. We use prediction error η to quantify prediction quality. No
universal definition for prediction error exists. For convention, we assume prediction quality decreases
as η increases, and there exists a lower bound ηmin for η, where the predictions are perfect if η = ηmin,
i.e., where the predictions equal the exact values. The value ηmin varies as the prediction error metric
varies. One example prediction error is η = max1≤j≤nmax{ pj

p∗j
,
p∗j
pj
}, the maximum multiplicative gap

between the exact value p∗j and the prediction pj , where predictions are for job sizes. The predictions
are perfect if η = 1 (ηmin = 1 in this case); the worst predictions have unbounded η. This error metric
has been used in [1, 3, 4, 10]. Another example is η =

∑
1≤j≤n |p∗j − pj|, the sum of the absolute error

between the exact value p∗j and the prediction pj . The predictions are perfect if η = 0 (ηmin = 0 in this
case); the worst predictions, again, have unbounded η. This error metric has been used in [11–13]. It is
possible to have predictions for different kinds of unknowns where each has an independent prediction
error metric.

2.1.2 Competitive Framework

We measure algorithm performance with the classic competitive framework. A learning-augmented
algorithm A for problem P will compare against an optimal offline algorithm A∗, which knows all the
(present and future) information in advance and achieves the optimal objective. Let cost(I, A) denote
the objective achieved by A on problem instance I . We say A is c-competitive or has competitive
ratio c for problem P , if it satisfies that, for any problem instance I in problem P , cost(I, A) ≤
c · cost(I, A∗) for some function c of problem input and prediction error η. The above definition works
for deterministic algorithms. If instead A is a randomized algorithm with execution depending on
some random choice β, we say A is c-competitive, if it satisfies that, for any problem instance I in
P , Eβ[cost(I, A)] ≤ c · cost(I, A∗), where the expectation is taken over all possible β. The function c
represents the performance of an algorithm; it represents the worst-case performance bound.

For the following discussions, we use symbol I , Ic, and In to indicate a problem instance for problem P ,
P c, and P n. An observation is the equality cost(I, A∗) = cost(Ic, Ac∗) = cost(In, An∗) holds for any
optimal algorithms A∗, Ac∗, and An∗ for problems P , P c, and P n, as they refer to the same scheduling
problem.

2.2 FUNDAMENTAL THEOREMS OF CONSISTENCY 6

2.1.3 Consistency, Robustness, and Smoothness

The work [11] proposes two metrics to measure how learning-augmented algorithms perform against
changing prediction quality. Consistency measures the performance under the perfect predictions;
(worst-case) robustness measures it under the worst predictions. We present their formal definitions.

Definition II.1 (Consistency). AlgorithmA is said υ-consistent or has υ consistency, ifA is υ-competitive
under η = ηmin for υ independent to η.

Definition II.2 (Robustness). Algorithm A is said τ -robust or has τ robustness, if A is τ -competitive
under any η ≥ ηmin for τ independent to η.

The generalization of consistency and robustness is smoothness. We define smoothness as the competitive
ratio of A under any η. Here, the competitive ratio is a function of η, indicating how smoothly the
algorithm performance degrades with degrading predictions.

Definition II.3 (Smoothness). Algorithm A is said ψ(η)-smooth or has ψ(η) smoothness, if A is ψ(η)-
competitive under any η ≥ ηmin.

Smoothness covers what is provided by consistency and robustness: a ψ(η)-smooth learning-augmented
algorithm is ψ(ηmin)-consistent and supη≥ηmin

ψ(η)-robust. It is, however, difficult for some algorithms
to have an explicit smoothness function. In such cases, consistency and robustness are often used to
outline the performance by showing the extreme behaviors of an algorithm. In the following sections,
we present and prove several fundamental results for these metrics.

2.2 Fundamental Theorems of Consistency

Any learning-augmented scheduling algorithm that solves P has consistency bounded below by the
competitive ratio lower bound of the clairvoyant counterpart P c. Suppose the competitive ratio lower
bound for P c is Cc

min, i.e., any c-competitive algorithm for P c must have c ≥ Cc
min. Then, any learning-

augmented algorithm that solves problem P cannot have consistency lower than Cc
min. The following

theorem shows this.

Theorem II.4 (Universal Bound on Consistency). Any υ-consistent algorithm for problem P must have
υ ≥ Cc

min, where Cc
min is the competitive ratio lower bound for P c, the clairvoyant counterpart of P .

Proof. We prove this by contradiction. Suppose there exists an υ-consistent algorithm A with
υ < Cc

min. For any problem instance Ic in problem P c, run A with the information provided as part of
the problem input (A treats the information as predictions). Since the information is exact, i.e., η = ηmin,
we have

cost(Ic, A) = cost(I, A) ≤ υ · cost(Ic, A∗)

where A∗ is the optimal offline algorithm solving P c. Therefore, A is υ-competitive for problem P c

with υ < Cc
min, which contradicts with the Cc

min competitive ratio lower bound. Thus, it must be that

2.3 FUNDAMENTAL THEOREMS OF ROBUSTNESS 7

υ ≥ Cc
min. The same result holds, by similar arguments, for randomized algorithms with the randomized

competitive ratio lower bound. □

Conversely, any c-competitive clairvoyant scheduling algorithm for problem P c can construct, by treating
the predictions as exact values, a c-consistent learning-augmented algorithm for problem P . This gives
us a recipe for consistent learning-augmented algorithms; it connects clairvoyant scheduling and online
scheduling with predictions.

Theorem II.5 (Universal Existence of Consistency). Any c-competitive algorithm for problem P c

constructs a c-consistent learning-augmented algorithm for problem P .

Proof. Suppose algorithm A is c-competitive for problem P c. Construct a learning-augmented
algorithm A′ that follows exactly what A does by treating the predictions as exact values. Algorithms A
and A′ see the same information and construct the same schedule when η = ηmin. Therefore, for any
problem instance I in problem P , we have

cost(I, A′) = cost(Ic, A) ≤ c · cost(I, A∗)

under η = ηmin, whereA∗ is the optimal offline algorithm solving P . It must hold thatA′ is c-competitive
under η = ηmin and thus c-consistent (c is independent to η by definition). □

2.3 Fundamental Theorems of Robustness

Any learning-augmented scheduling algorithm that solves P has robustness bounded below by the
competitive ratio lower bound of the non-clairvoyant counterpart P n. Suppose the competitive ratio
lower bound for P n is Cn

min, i.e., any c-competitive algorithm for P n must have c ≥ Cn
min. Then, any

learning-augmented algorithm that solves problem P cannot have robustness lower than Cn
min. The

following theorem shows this.

Theorem II.6 (Universal Bound on Robustness). Any τ -robust algorithm for problem P must have
τ ≥ Cn

min, where Cn
min is the competitive ratio lower bound for P n, the non-clairvoyant counterpart of

P .

Proof. We prove this by contradiction. Suppose there exists a τ -robust algorithm A with τ < Cn
min.

Construct a non-clairvoyant scheduling algorithmA′ that follows exactly whatA does as if the predictions
are all set to 0, i.e., A′ always uses 0 as the prediction for every unknown. For any problem instance In

in problem P n, run A′. We have

cost(In, A′) = cost(I(p̂=0), A) ≤ ψ(η′) · cost(In, A∗) ≤ sup
η≥ηmin

ψ(η) · cost(In, A∗) ≤ τ · cost(In, A∗)

where A∗ is the optimal offline algorithm solving P n and η′ is the prediction error for 0 as predictions
(I(p̂=0) denotes the problem instance I with predictions set to 0). Therefore, A′ is τ -competitive for
problem P n with τ < Cn

min, which contradicts with the Cn
min competitive ratio lower bound. Thus, it

2.4 FUNDAMENTAL THEOREMS OF SMOOTHNESS 8

must be that τ ≥ Cc
min. The same result holds, by similar arguments, for randomized algorithms with

the randomized competitive ratio lower bound. □

Similarly, as in consistency, any c-competitive non-clairvoyant scheduling algorithm for problem P n

can construct, by ignoring the predictions, a c-robust learning-augmented algorithm for problem P . This
gives us a recipe for robust learning-augmented algorithms; it connects non-clairvoyant scheduling and
online scheduling with predictions.

Theorem II.7 (Universal Existence of Robustness). Any c-competitive algorithm for problem P n con-
structs a c-robust learning-augmented algorithm for problem P .

Proof. Suppose algorithm A is c-competitive for problem P n. Construct a learning-augmented
algorithm A′ that follows exactly what A does by ignoring the predictions. Algorithms A and A′ see the
same information and construct the same schedule. Therefore, for any problem instance I in problem P ,
we have

cost(I, A′) = cost(In, A) ≤ c · cost(I, A∗)

under any η ≥ ηmin, where A∗ is the optimal offline algorithm solving P . It must hold that A′ is
c-competitive under any η ≥ ηmin and thus c-robust (c is independent to η by definition). □

2.4 Fundamental Theorems of Smoothness

The previous theorems bound the smoothness.

Theorem II.8 (Universal Bound on Smoothness). Any ψ(η)-smooth algorithm for problem P must have

Cc
min ≤ ψ(ηmin) and Cn

min ≤ sup
η≥ηmin

ψ(η)

where Cc
min and Cn

min are the competitive ratio lower bounds for P c and P n.

Proof. It immediately follows from Theorems II.4 and II.6. □

Unlike single metric consistency and robustness, designing algorithms that achieve the lower bounds of
consistency and robustness simultaneously is non-trivial. There is no simple recipe unless we have the
additional information — the prediction error.

2.4.1 The Effect of Knowing the Prediction Error

Suppose the prediction error η is also part of the input along with the predictions. In this case, we still do
not have the exact values but the maximum "distance" between a prediction and the exact value. We show
that this information suffices to build a learning-augmented algorithm that achieves optimal consistency
and robustness simultaneously. Fix any problem P . Let Ac be a Cc

min-competitive clairvoyant algorithm
for problem P c. Let An be a Cn

min-competitive non-clairvoyant algorithm for problem P n. Both Ac

2.4 FUNDAMENTAL THEOREMS OF SMOOTHNESS 9

Algorithm 1: Trivial learning-augmented algorithm
Data :scheduling problem inputs, predictions p̂, and the prediction error η
Result :schedule with optimal consistency and robustness

1 if η = ηmin then
2 run algorithm Ac by feeding p̂ as exact values.
3 else
4 run algorithm An by ignoring p̂.

and An exist by the definition of (tight) lower bound on the competitive ratio. Construct a learning-
augmented algorithm A as follows. Algorithm A runs Ac by treating all the predictions as the exact
values if η = ηmin; A runs An by ignoring the predictions if η > ηmin. The pseudo-code is in Algorithm
1. The following theorem shows the effect of knowing the prediction error.

Theorem II.9 (Universal Existence of Smoothness). There exists, assuming a known prediction error
η, a (trivial) ψ(η)-smooth algorithm for problem P that simultaneously achieves the lower bounds of
consistency and robustness:

Cc
min = ψ(ηmin) and Cn

min = sup
η≥ηmin

ψ(η)

where Cc
min and Cn

min are the competitive ratio lower bounds for P c and P n.

Proof. We show that Algorithm 1 achieves the desired property. When η = ηmin, we run Ac

which gives us Cc
min = ψ(η) by Theorems II.4 and II.5. When η > ηmin, we run An which gives us

Cn
min = supη>ηmin

ψ(η) by Theorems II.6 and II.7. Observe that Cc
min ≤ Cn

min: the competitive ratio
lower bound for P c is at most that for P n. Therefore, we have Cn

min = supη≥ηmin
ψ(η). □

Although Algorithm 1 achieves optimal consistency and robustness, it discards the predictions even
if they are close (but not equal) to the exact values. This is not desirable for online scheduling with
predictions, as our primary goal is to improve performance with (possibly imperfect) predictions. Thus,
we are interested in the non-trivial algorithms that either (1) do not assume a known prediction error or
(2) do not use the known prediction error to distinguish cases of perfect predictions and others explicitly.

Theorem II.9 does not guarantee that learning-augmented algorithms with smoothness optimal at two
ends are always achievable. This is because, more often, the optimal clairvoyant or the optimal non-
clairvoyant algorithms achieving the competitive ratio lower bounds are challenging to find, i.e., many
problems have a gap between the competitive ratio lower bound and the best-known competitive ratio.
It is also possible that matching-bound algorithms exist for one end (e.g., clairvoyant counterpart)
but not for the other (e.g., non-clairvoyant counterpart). Theorem II.9 can be extended to these cases.
Rather than constructing algorithms with smoothness optimal at two ends, we can follow the same
recipe to construct an algorithm with consistency matching the competitive ratio of the best-known
clairvoyant algorithm and robustness matching the competitive ratio of the best-known non-clairvoyant
algorithm. Thus, any advance in clairvoyant or non-clairvoyant scheduling advances online scheduling
with predictions. The converse also holds.

2.5 CONCLUSIONS 10

Nevertheless, the assumption of knowing the prediction error is realistic. In particular, when predictions
come from learning algorithms, the models are often trained on large historical data sets mirroring the
characteristics of future jobs; the prediction error found in training and testing at least approximates
the actual prediction error. With a known prediction error, our objective should be non-trivial learning-
augmented algorithms. By not explicitly using the prediction error to distinguish perfect predictions
from the others, the non-trivial algorithms (smoothly) bridge clairvoyant and non-clairvoyant scheduling.
This also indicates that the design of learning-augmented algorithms can start with the clairvoyant or the
non-clairvoyant competitive algorithms.

2.5 Conclusions

We have introduced the framework of online scheduling with predictions and shown how it extends from
and connects clairvoyant and non-clairvoyant scheduling. We have introduced the prediction error metric
and performance metrics — consistency, robustness, and smoothness — that measure the performance
of learning-augmented algorithms. Fundamental results for these metrics have been shown. These
results lower bound the metrics and thus define the optimum. Finally, we have considered the effect of
knowing the prediction error: this information suffices in constructing algorithms with the best-known
consistency and robustness. These results are the fundamentals of online scheduling with predictions.

CHAPTER 3

Uniform Machine Scheduling with Predictions

This chapter contributes to the research agenda of online scheduling with predictions by studying the
makespan minimization in uniformly related machine non-clairvoyant scheduling with job size predic-
tions. Our task is to design online algorithms that use predictions and have performance guarantees tied
to the quality of predictions. We first propose a simple algorithm-independent prediction error metric to
quantify prediction quality. Then we design an offline improved 2-relaxed decision procedure approxim-
ating the optimal schedule to effectively use predictions. With the decision procedure, we propose an
online O(min{log η, logm})-competitive (O(min{log η, logm})-smooth) static scheduling algorithm
assuming a known prediction error. We use this algorithm to construct a robust O(min{log η, logm})-
competitive (O(min{log η, logm})-smooth) static scheduling algorithm that does not assume a known
error. Finally, we extend these static scheduling algorithms to address dynamic scheduling, where jobs
arrive over time. The dynamic scheduling algorithms attain the same competitive ratios and smooth-
ness as the static ones. All the algorithms achieve optimal consistency and robustness. They require
only moderate predictions to break the well-known Ω(logm) lower bound, showing the potential of
predictions in managing uncertainty.

3.1 Introduction

Managing uncertainty is the focus of online optimization. Against the uncertainty from problem inputs,
traditional methods strive to bound the worst-case performance under the assumption of incomplete
information [14, 15]. However, dealing with uncertainty under such assumptions incurs high costs in the
solution quality compared with when the needed information is known [16, 17]. To reduce the costs,
recent works have introduced augmenting algorithms with advice [18, 19]. With additional relevant
information, one can improve the performance and achieve cost-efficiency [20–22]. At the same time,
recent works in learning theory have introduced models with accurate predictions to wide applications
[23, 24]. Online optimization with predictions, a new framework that combines the advice model and
learning theory techniques emerges.

One of the most significant fields boosted by the framework is online scheduling [1, 3]. Multiple works
have shown that predictions can improve the theoretical performance bounds. Online scheduling with
predictions is the new trend for scheduling studies. [11] develops a preferential round-robin algorithm
using job size predictions for single-machine scheduling to minimize total completion time. [10]
develops an online rounding algorithm using machine weight predictions for parallel machine scheduling

11

3.2 PRELIMINARIES 12

under restricted assignments to minimize makespan. [25] develops greedy and binning algorithms
using job size predictions for single-machine scheduling to minimize weighted flow time. [26] revisits
the problem of single-machine scheduling to minimize total completion time, and develops a new
prediction error measurement and an improved round-robin algorithm using job size predictions. All
these works reduce the attainable competitive ratios via predictions. This work extends scheduling with
predictions to another online scheduling problem: makespan minimization in uniformly related machine
non-clairvoyant scheduling. We study how to use imperfect predictions to improve online optimization
and present the first such algorithms for uniformly related machine non-clairvoyant scheduling.

We develop algorithms with job size predictions, yielding significantly improved performance bounds.
The development begins with defining a simple algorithm-independent prediction error measurement
η. With this error measurement and the job size predictions, our algorithm simultaneously schedules
jobs and computes (under-)estimations on the actual job sizes and the error η on the fly. We propose
an (improved) offline approximation compared with [27] and four online algorithms. The first two
online algorithms deal with static scheduling where all jobs are available for processing at time 0. The
first algorithm assumes a known prediction error; the second does not. Then, we extend these two
algorithms to deal with dynamic scheduling where jobs have arbitrary release times. Again, we develop
one algorithm that assumes a known prediction error, and the other one does not. We use online doubling
techniques to deal with uncertain job sizes, optimal makespan, and prediction errors. We use a simple
but effective rerunning strategy to deal with uncertain release times. We prove that our proposed online
algorithms achieve O(min{log η, logm})-competitive ratio with m machines, breaking the previous
Ω(logm) lower bound. Our contributions are summarized below.

(1) An improved offline 2-relaxed decision procedure for approximating the optimal schedule. (Theorem
III.1)

(2) An online O(min{log η, logm})-competitive static scheduling algorithm with known prediction
error (Theorem III.2) and a robust online O(min{log η, logm})-competitive static scheduling al-
gorithm with unknown prediction error (Theorem III.3).

(3) An online O(min{log η, logm})-competitive dynamic scheduling algorithm with known prediction
error (Theorem III.4) and a robust online O(min{log η, logm})-competitive dynamic scheduling
algorithm with unknown prediction error (Theorem III.5).

(4) Extensive experiments to evaluate the theoretical results and the practicality of the proposed al-
gorithms.

3.2 Preliminaries

3.2.1 Problem Definition

We study the makespan minimization problem in uniformly related machine non-clairvoyant scheduling.
There are m uniformly related parallel machines and n independent jobs. A machine is denoted by
Mi, 1 ≤ i ≤ m, and a job is denoted by Jj , 1 ≤ j ≤ n. Job Jj has size p∗j , but this value remains

3.2 PRELIMINARIES 13

unknown until Jj is completed. This setting is known as non-clairvoyant in literature. In this work, we
assume p∗j ≥ 1 for all 1 ≤ j ≤ n, which is known to the scheduler. Machines are heterogeneous in
processing power, and machine Mi has a processing speed si. For convenience, we sort the machines
by non-increasing speeds, i.e., s1 ≥ s2 ≥ ... ≥ sm. If job Jj is assigned to machine Mi, the processing
time for this job will be

p∗j
si

. The jobs are priority-free and preemptive-restart. Preemptive-restart means
that running jobs are non-preemptive but can be canceled and restarted later on any machine. Job Jj
has a release time rj . The system does not know the existence of Jj until it arrives at rj . We will first
assume rj = 0 for every job, i.e., static scheduling. Later, we remove this assumption and study dynamic
scheduling. Our objective is to minimize the makespan, Cmax, the time when the last job completes. Our
scheduling problem can be defined as Qm | online-time-nclv, pmtn-restart | Cmax for static scheduling,
or Qm | online-time-nclv, pmtn-restart, rj | Cmax for dynamic scheduling [9]. In addition, the scheduler
is allowed to make decisions with the predictions of some parameters to manage uncertainty. However,
the predictions are possibly imperfect. The performance of the scheduler could be adversely affected by
prediction quality. We discuss the metrics of algorithm performance and prediction quality below.

3.2.2 Predictions and Prediction Error

When integrating predictions into a scheduler, one must consider what to predict and how the prediction
quality is measured. In principle, we expect the predictions to improve the competitive ratio. The
scheduler should guarantee a bounded performance under poor predictions and a near-optimal solution
with accurate predictions. Last, the learning problem itself must be feasible. A counterexample is
predicting the optimal schedule, which simplifies the scheduling algorithm but makes learning extremely
hard.

This work considers job size predictions. Recent works [28–30] have shown that job sizes are highly
predictable in many scenarios, e.g., cloud, clusters, and factories. Our online algorithms can access the
job size prediction pj for every job Jj of size p∗j . Similar to the works [1, 3, 10] that measure the error by

ratios, we define the error for job Jj as ηj = max{ pj
p∗j
,
p∗j
pj
}, the multiplicative gap between the prediction

and the exact value, and the overall prediction error η as

η = max
1≤j≤n

ηj = max
1≤j≤n

max{pj
p∗j
,
p∗j
pj
}

Observe that ηj ≥ 1 for any j, so η ≥ 1. The prediction is perfect if and only if η = 1. The prediction
error measurement is simple, natural, and algorithm-independent.

3.2.3 Performance Evaluation

We evaluate the performance of the algorithms by the competitive framework [14] and the metrics of
consistency, robustness, and smoothness introduced in Chapter 2.

3.3 ROBUST ONLINE SCHEDULING WITH JOB SIZE PREDICTIONS 14

3.2.4 Related Results

Let us review some important related results: (1) the problem is NP-complete in the strong sense for
m arbitrary, (2) the offline version of the problem has a polynomial-time 2-relaxed decision procedure,
(3) the online version has a lower bound Ω(logm) on the competitive ratio, and (4) there exists an
O(logm)-competitive algorithm matching this lower bound.

For computational complexity, we consider the simpler offline problem with identical machines where
the job sizes are known. This problem is NP-complete in the strong sense for m arbitrary [31]. A simple
reduction to our problem shows that the offline version of the uniformly related machine scheduling is
NP-complete in the strong sense for m arbitrary.

There exists a 2-relaxed decision procedure for the offline version [27]. An algorithm is a 2-relaxed
decision procedure if, given a makespan d, the algorithm either determines that no schedule of length d
exists or produces a schedule of at most 2d makespan. With this procedure, a bisection search leads to
a 2-approximation. Our online algorithms will use a similar 2-relaxed decision procedure, with slight
improvement, to approximate a near-optimal schedule.

The best result that has resolved this problem for decades is [27]. It has been shown that any online de-
terministic algorithm has a competitive ratio of Ω(logm), and the authors give an O(logm)-competitive
algorithm matching this lower bound. This algorithm is, therefore, asymptotically optimal in non-
clairvoyant scheduling. The recent advances in learning theory lead to higher and higher prediction
accuracy, thus enabling new ways to minimize makespan.

3.3 Robust Online Scheduling with Job Size Predictions

3.3.1 Algorithm Overview

The development of our solutions involves four stages and produces five algorithms. We consider, in the
first three stages, static scheduling, where all jobs are available for processing at time 0. We consider,
in the final stage, dynamic scheduling, where jobs have arbitrary release times. Figure III.1 shows the
connection between the proposed algorithms.

Our first stage assumes that job size p∗j and the optimal makespan d are known. There is a 2-relaxed
decision procedure for producing a schedule of length at most 2d [27]. We will use this procedure, with
slight improvement, as our base algorithm. The second stage solves the problem online by no longer
using the actual job sizes and the optimal makespan d. Instead, we use the job size prediction pj and the
known prediction error η. Here, we note that accessing the prediction error η is a reasonable assumption
as the predictive model is often trained offline on large labeled datasets — the error in the training stage
will likely reflect the error in run time. We propose an O(min{log η, logm})-competitive algorithm for
this case. The algorithm estimates the actual job sizes in at most O(min{log η, logm}) rounds. The
2-relaxed decision procedure is executed each round while the optimal makespan is searched online

3.3 ROBUST ONLINE SCHEDULING WITH JOB SIZE PREDICTIONS 15

Algorithm 1
Improved

2-relaxed procedure

Algorithm 2
Static scheduling
with known error

Algorithm 4
Dynamic scheduling

with known error

Algorithm 3
Static scheduling

with unknown error

Algorithm 5
Dynamic scheduling
with unknown erroronline doubling to estimate makespan and job sizes

online doubling to estimate the prediction error

rerunning upon every job release

rerunning upon every job release

Figure III.1: The connection between the algorithms. Algorithm 2 is a decision proced-
ure that decides if a given set of jobs (sizes) can be completed within a given makespan.
Algorithm 3 uses Algorithm 2 as a subroutine to estimate the optimal makespan and the
actual job sizes online via a doubling technique. Algorithm 5 reruns Algorithm 3 as a
subroutine upon every job release to handle release times. Algorithm 4 uses Algorithm 3
as a subroutine to estimate the prediction error online via a doubling technique. Finally,
Algorithm 6 reruns Algorithm 4 as a subroutine upon every job release to handle release
times.

using a standard doubling method. Estimating the job sizes incurs a cost of O(min{log η, logm}) factor
in makespan, while the doubling method introduces a multiplicative factor of 2 to the competitive
ratio. In the third stage, we further remove the assumption of knowing the prediction error η. The
prediction error will be searched online using a doubling method. The search will impose an extra
log η term on the competitive ratio. To provide an O(logm) strong worst-case guarantee, we switch
to the guaranteed O(logm)-competitive algorithm once we believe the prediction error is too large.
This will give us back an O(min{log η, logm})-competitive algorithm. In the final stage, we extend
the online static scheduling algorithms to deal with the release times by rerunning from the scratch the
whole static scheduling algorithm upon any job arrival. We prove that this rerunning strategy retains the
O(min{log η, logm}) competitive ratio.

3.3.2 An Improved 2-Relaxed Procedure

Consider offline scheduling with all job sizes p∗j and the makespan d given. Our proposed 2-relaxed
procedure ensures to produce a schedule of length at most 2d, or otherwise indicate that no d-length
schedule exists. The procedure works as follows. When a machine Mi is idle, it starts processing
either the largest uncompleted job that can be completed in period d or the smallest job not yet started.
Specifically, machine Mi will first consider the largest uncompleted job Jj with p∗j ≤ si · d that is either
not started or currently being processed on another machine Mk with p∗j > sk · d. If there is no such
job, the machine will process the smallest non-running job. Machine Mi stays idle if all the above

3.3 ROBUST ONLINE SCHEDULING WITH JOB SIZE PREDICTIONS 16

Algorithm 2: Improved 2-relaxed procedure
Data : job sizes p∗j and a makespan d
Result :schedule of length at most 2d, or output no indicating that it is impossible to construct a schedule

of length d
1 Function GETJOB(i) // function that returns the next job for machine Mi

2 set Jnext1 ← Jj with p∗j ≤ si · d and either Jj not begin or is being processed on Mk with p∗j > sk · d,
such that p∗j is maximal.

3 set Jnext2 ← Jj with p∗j > si · d and Jj not begin, such that p∗j is minimal.
4 return the first nonempty Jnextp (smallest p) or null.

5 Event Function MACHINEIDLE() // machine Mi is idle
6 set Jj ← GETJOB (i).
7 Mi starts processing Jj or stays idle if Jj is null.

8 Event Function SCHEDULECOMPLETE() // all jobs have been completed
9 return the whole schedule completes.

10 Event Function TIMEOUT() // run time exceeds 2d
11 return no.

conditions fail. As a rule, if, at any time, there are multiple idle machines, event function MachineIdle
is executed sequentially for the machines in the non-increasing order of machine speed. The entire
procedure lasts until all jobs are processed or until time 2d. If there are uncompleted jobs at time 2d, the
procedure outputs no indicating that it is impossible to construct a schedule of length d. Otherwise, it
has constructed a schedule of length at most 2d.

We outline the improvement of our 2-relaxed procedure over the original one [27]. First, our procedure
uses the largest job first strategy to assign the large jobs to fast machines for processing. It provides
slow machines opportunities to complete relatively small jobs that could be otherwise allocated to fast
machines. This strategy contributes to a smaller makespan as letting fast machines process small jobs
often increases the makespan. Second, our procedure can invoke idle machines to complete large jobs
that can be completed in 2d but not in d time. In contrast, the procedure [27] leaves such machines
idle. If there exists a schedule with makespan at most 2d, our procedure can generate one with a shorter
length than that by [27]. The pseudo-code is shown in Algorithm 2. Our first result is the correctness of
the decision procedure stated as follows.

Theorem III.1 (Theorem III.6 Restated). The improved 2-relaxed procedure can produce a schedule of
length at most 2d, or otherwise confirms that it is impossible to have a schedule of length d.

3.3.3 Online Static Scheduling with Job Size Predictions and a Known η

We consider the online static scheduling where job sizes and the optimal makespan are unknown. Instead,
the scheduler knows the job size prediction pj and the prediction error η.

The pseudo-code is shown in Algorithm 3. Initially, the job size estimate of job Jj is set by pej =
pj
η

. This
estimate will last k rounds of doubling where p∗j ≤ 2k · pj

η
< 2 · p∗j . The number of rounds is bounded

3.3 ROBUST ONLINE SCHEDULING WITH JOB SIZE PREDICTIONS 17

Algorithm 3: Online static scheduling with known error
Data : job size predictions pj and the prediction error η
Result :schedule with makespan O(min{log η, logm}) · C∗

max

1 set sup← min{k |
∑k

i=1 si ≥
1
2

∑m
i=1 si, 1 ≤ k ≤ m}.

2 Function GETJOB(i) // function that returns the next job for machine Mi

3 if i ≤ sup then
4 set Jnext1 ← Jj with pej ≤ si · d and either Jj not begin or is being processed on Mk with

pej > sk · d or k > sup, such that pej is maximal.
5 else
6 set Jnext1 ← Jj with pej ≤ si · d and either Jj not begin or is being processed on Mk with

pej > sk · d, such that pej is maximal.

7 set Jnext2 ← Jj with pej > si · d and Jj not begin, such that pej is minimal.
8 return the first nonempty Jnextp (smallest p) or null.

9 set pej ←
pj
η , ∀ 1 ≤ j ≤ n. // job size estimates

10 set d← max1≤j≤n pj
η·s1 . // makespan estimate

11 set Time← 0. // Time variable that increases as the real-time

12 Event Function MACHINEIDLE() // machine Mi is idle
13 set Jj ← GETJOB (i).
14 Mi starts processing Jj or stays idle if Jj is null.

15 Event Function SCHEDULECOMPLETE() // all jobs have been completed
16 return the whole schedule completes.

17 Event Function TIMEOUT() // Time > 2d
18 if there is an uncompleted job not started by any machine Mi with i ≤ sup and pej ≤ si · d before

time d or machine M1 processes any job for more than d time then
19 set d← 2d. // double the makespan estimate
20 else
21 for job Jj that has been processing on Mi for time t do
22 set pej ← max{2pej , 2si · t}.

23 set Time← 0.
24 idle all machines Mi ∀ 1 ≤ i ≤ n.

and we show that k ≤ [2 log η + 2]. Meanwhile, the algorithm also estimates the optimal makespan
C∗

max in rounds. Initially, we set the makespan estimate d =
max1≤j≤n pj

η·s1 , where d ≤ C∗
max. Then we run

a similar procedure as Algorithm 2 to test if the makespan estimate is achievable. This estimate will
undergo k′ rounds of doubling where C∗

max ≤ 2k
′ · max1≤j≤n pj

η·s1 < 2 · C∗
max. Finally, to bound, under the

worst-case predictions, the number of doubling rounds for job size estimation, we refine getJob function
in Algorithm 2. This refinement induces some fast machines to carry out more jobs. Define a critical
machine index threshold sup = min{k |

∑k
i=1 si ≥

1
2

∑m
i=1 si, 1 ≤ k ≤ m} (according to [27]). For

machine Mi with i > sup, the definition of getJob remains the same. Otherwise, the definition of Jnext1

changes to Jnext1 ← Jj with the maximal p∗j such that p∗j ≤ si · d, where Jj is not started or currently
processed on another Mk′′ with p∗j > sk′′ · d or k′′ > sup. It means that a fast machine Mi (i ≤ sup) can

3.3 ROBUST ONLINE SCHEDULING WITH JOB SIZE PREDICTIONS 18

Algorithm 4: Online static scheduling with unknown error
Data : job size predictions pj
Result :schedule with makespan O(min{log η, logm}) · C∗

max

1 set ηe ← 1.
2 while (ηe)2 < m do
3 run Algorithm 3 with job size predictions pj for uncompleted jobs and prediction error ηe; stop when

detecting any job Jj with pj
ηe > p∗j upon its completion.

4 if all jobs have been completed then
5 return the whole schedule completes.

6 set ηe ← 2ηe.
7 idle all machines Mi ∀ 1 ≤ i ≤ n.

8 if there are uncompleted jobs then
9 run Algorithm 3 with pj = 1 for all uncompleted job Jj and η =∞.

10 return the whole schedule completes.

cancel a running job on a slow machine Mk′′ (k′′ > sup) regardless its completion time. The benefit of
this refinement is to bound the number of doubling rounds for job size estimation by [logm+ 2].

In Algorithm 3, Time variable is initially set to 0 and increases as the real-time. When Time reaches
2d, event function TimeOut is triggered; at the end of TimeOut, Time is set back to 0. When Time is
increasing in [0, 2d], machines process jobs outputted by getJob function, as described in event function
MachineIdle. For the following discussion, we refer inner procedure as one circle of execution from Time
variable starting with 0 until either it reaches 2d or the schedule completes. The inner procedure will run
multiple rounds until it completes all jobs. After each round, the job size estimates are updated, or the
makespan estimate is updated. These updates could change the output of getJob function in the following
rounds. As a rule, if, at any time, there are multiple idle machines, event function MachineIdle is
executed sequentially for the machines in the non-increasing order of machine speed. We will show that
the doubling strategy for estimating the job sizes incurs a cost of O(min{log η, logm}) multiplicative
factor in the competitive ratio, and the doubling strategy for estimating the optimal makespan incurs only
a cost of constant 2 multiplicative factor. Combining these, we obtain the following significant result.

Theorem III.2 (Theorem III.12 Restated). Given the job size predictions pj and the prediction error
η = max1≤j≤n max{ pj

p∗j
,
p∗j
pj
}, Algorithm 3 has an O(min{log η, logm}) competitive ratio in online

makespan minimization for uniformly related machine static scheduling.

3.3.4 Online Static Scheduling with Job Size Predictions and Unknown η

We now consider a more general situation where the scheduler has no knowledge of the prediction error
but just the predictions. The pseudo-code is given in Algorithm 4. We will first assume the predictions
are perfect, i.e., ηe = 1. Run Algorithm 3 with ηe until we detect that ηe underestimates the prediction
error. To detect underestimation, we check if any job Jj can complete on machine Mi within time t and
si · t < pj

ηe
. Once Algorithm 3 detects an underestimation, it stops; it doubles ηe; it runs again with the

updated ηe. These operations will repeat at most O(log η) times before reaching the actual prediction

3.3 ROBUST ONLINE SCHEDULING WITH JOB SIZE PREDICTIONS 19

Release time

Job size

0.0 0.0 0.0 0.0 0.0

8.0 3.6 7.0 1.0 9.0

9.0

1.0

Job size prediction 5.0 4.8 4.0 3.5 3.6 2.0

0

machine 1
(speed = 2.5)

machine 2
(speed = 2.0)

machine 3
(speed = 1.0)

3.0 6.0

machine 4
(speed = 0.1)

machine 5
(speed = 0.1)

Job size estimates for

5.0 4.8 4.0 3.5 3.6

1.0

,

3.2 4.8 7.0 9.0

Job size estimates for

2.5 2.4 2.0 1.8
,

Job size estimates for

2.5 2.4 2.0 1.8
,

Job size estimates for

8.8
,

(a) (b)

Figure III.2: Algorithm execution. Subfigure (a) is a dynamic scheduling workload.
Subfigure (b) is the execution (up to time 9.0) of Algorithm 6 with 5 machines (s1 =
2.5, s2 = 2.0, s3 = 1.0, s4 = 0.1, s5 = 0.1 and, thus, sup = 3) against the workload.
Jobs J1, J2, J3, J4, J5 are available at time 0.0 when the algorithm starts with an inner
procedure round with d = 2 and ηe = 1. At time 1.0 when job J4 is completed, the
algorithm detects p4

ηe
= p4 = 3.5 > 1.0 = p∗4 (an underestimation of the prediction error);

thus, it cancels the current inner procedure; then, it doubles the prediction error estimate
ηe; correspondingly, it updates the job size estimates by dividing every estimate by 2
and the makespan estimate by setting d = 1. Time [1.0, 3.0) covers the first complete
inner procedure round; at the round termination, the algorithm doubles the makespan
estimate. Time [3.0, 4.0) covers the second complete inner procedure round during which
the algorithm completes jobs J1, J2, J3; at the round termination, the algorithm updates
the job size estimate of J5 by setting pe5 = 8.8. The algorithm is supposed to run the
following inner procedure round in [7.0, 11.0), but the arrival of J6 at time 9.0 interrupts.
At time 9.0, the algorithm must rerun Algorithm 4 with jobs J5 and J6. In the following
run, job J5 will be allocated to machine M1 and J6 to M2. Algorithm 6 will complete the
workload with makespan 10.6; for just the first five jobs (a static scheduling workload),
the algorithm will still complete with the same makespan (10.6). For comparison, the
optimal makespan for the first five jobs is 6.0 (J1, J3 on M1, J4, J5 on M2, and J2 on M3)
and that for all six jobs is 9.4.

error. To also bound the performance for arbitrarily bad predictions, Algorithm 4 assumes η =∞ when
it realizes (ηe)2 ≥ m. With η =∞, Algorithm 3 is O(logm)-competitive. We obtain a general online
static scheduling algorithm with job size predictions.

Theorem III.3 (Theorem III.17 Restated). Given only the job size predictions pj , Algorithm 4 has an
O(min{log η, logm}) competitive ratio in online makespan minimization for uniformly related machine
static scheduling, where η is the prediction error and η = max1≤j≤nmax{ pj

p∗j
,
p∗j
pj
}.

3.3.5 Online Dynamic Scheduling with Job Size Predictions

We extend the static scheduling algorithms (Algorithms 3 and 4) to deal with release times, i.e., dynamic
scheduling. We show that the simple strategy of rerunning a static scheduling algorithm upon every job
release is effective enough to yield (asymptotically) the same competitive ratio as the static scheduling
algorithm. The performance bound for this strategy follows the observation that the optimal makespan is
at least the latest release time. Thus, rerunning incurs at most a cost of an additive one in the competitive

3.4 ANALYSIS 20

Algorithm 5: Online dynamic scheduling with known error
Data : job size predictions pj and the prediction error η
Result :schedule with makespan O(min{log η, logm}) · C∗

max

1 Event Function JOBRELEASE() // Job Jj is released at time rj
2 idle all machines Mi ∀ 1 ≤ i ≤ n.
3 run Algorithm 3 with job size predictions pj for uncompleted jobs and prediction error η.

Algorithm 6: Online dynamic scheduling with unknown error
Data : job size predictions pj
Result :schedule with makespan O(min{log η, logm}) · C∗

max

1 Event Function JOBRELEASE() // Job Jj is released at time rj
2 idle all machines Mi ∀ 1 ≤ i ≤ n.
3 run Algorithm 4 with job size predictions pj for uncompleted jobs.

ratio. Formally, we present Algorithms 5 and 6 for dynamic scheduling with known and unknown errors.
Figure III.2 presents a sample run of Algorithm 6; the execution shows the scenarios of updating the
prediction error estimate, doubling the makespan estimate, doubling the job size estimates, and rerunning
the static scheduling algorithm.

Theorem III.4 (Theorem III.24 Restated). Given the job size predictions pj and the prediction error
η = max1≤j≤n max{ pj

p∗j
,
p∗j
pj
}, Algorithm 5 has an O(min{log η, logm}) competitive ratio in online

makespan minimization for uniformly related machine dynamic scheduling.

Theorem III.5 (Theorem III.25 Restated). Given only the job size predictions pj , Algorithm 6 has an
O(min{log η, logm}) competitive ratio in online makespan minimization for uniformly related machine
dynamic scheduling, where η is the prediction error and η = max1≤j≤nmax{ pj

p∗j
,
p∗j
pj
}.

3.4 Analysis

In this section, we prove the above theorems. See Table III.1 for the table of notations.

S Meaning S Meaning
n number of jobs m number of machines
Jj job with index j Mi machine with index i
p∗j job size of Jj pj job size prediction of Jj
ηj prediction error of Jj η total prediction error
rj release time of Jj si processing speed of Mi

sup machine threshold pej job size estimate of Jj
d makespan estimate ηe prediction error estimate

Table III.1: A table of notations.

3.4 ANALYSIS 21

3.4.1 Correctness for Algorithm 2

Theorem III.6 (Correctness of Improved 2-Relaxed Procedure). The improved 2-relaxed procedure
either produces a schedule of length at most 2d or otherwise ensures no d-length schedule exists.

Proof. The whole schedule completes only when the run time does not exceed 2d. Thus, it suffices
to show that no valid d-length schedule exists if the procedure outputs no. Consider an uncompleted job
Jj . No valid d-length schedule exists if p∗j > s1 · d; we thus assume p∗j ≤ s1 · d. Let k be the largest
machine index that satisfies p∗j ≤ sk · d. For this statement to hold, machines M1, ...,Mk must be fully
occupied by jobs with size at least p∗j before time d. Indeed, otherwise, the function getJob will let
one of these k machines process Jj before time d and complete Jj by time 2d. To construct, if there
exists, a d-length schedule, any job with size at least p∗j must be processed on one of the first k machines,
M1, ...,Mk. Observe that, by the existence of Jj and the definition of getJob, no job is canceled on the
first k machines before time d. Then, the sum of the size of the jobs that must be processed on machines
Mi (i ≤ k) is already more than

∑k
i=1 si · d. Thus, no d-length schedule exists. □

3.4.2 Performance Bounds for Algorithm 3

We show the competitive ratio of Algorithm 3. Recall that we refer inner procedure one circle of
execution from Time variable starting with 0 until either it increases to 2d or the schedule completes. We
prove the following bounds. (1) For a given makespan d, the number of rounds of the inner procedure
is bounded by either O(log η) or O(logm), whichever is smaller. (2) Every inner procedure incurs
a cost of O(1) · C∗

max in makespan, where C∗
max denotes the optimal makespan. (3) The rounds that

end up doubling makespan estimate d incur, in total, a constant multiplicative factor cost in makespan.
Combining these results establishes the proof for the O(min{log η, logm}) competitive ratio.

Lemma III.7 (Bound on Inner Procedure Rounds by log η). For a fixed makespan estimate d, the number
of inner procedure rounds is at most [2 log η + 2].

Proof. Execute the inner procedure once. We double the makespan estimate d when there is an
uncompleted job Jj not started on any machine Mi with i ≤ sup and pej ≤ si ·d before time d or machine
M1 processes any job for more than d time. Otherwise, the inner procedure continues the following
round with the same makespan estimate, which happens only if there are at most sup− 1 uncompleted
jobs. Suppose, then, the job size estimates undergo k doubling rounds until either the whole schedule
completes or the makespan estimate is doubled. Consider the inner procedure after the (k − 1)-th round
of doubling. We claim, for any uncompleted job Jj (uncompleted after the k-th round), that pej < p∗j at
the termination of the (k− 1)-th round. Indeed, otherwise, pej ≥ p∗j ; as the algorithm runs the k-th round
without ending up doubling the makespan estimate, Jj must start running on some machine Mi with
pej ≤ si · d before time d. Then, by time 2d in the k-th round, the job will have been completed since
p∗j ≤ pej ≤ si · d. This contradicts Jj being uncompleted. Finally, observe that every round (at least)

3.4 ANALYSIS 22

double the job size estimate — we obtain

2k−1 · pj
η
≤ pej < p∗j

which implies

2k−1 < η ·
p∗j
pj

= η · ηj ≤ η2 =⇒ k ≤ [2 log η + 1]

and the number of inner procedure rounds is at most k + 1 ≤ [2 log η + 2] □

Lemma III.8 (Bound on Inner Procedure Rounds by logm). For a fixed makespan estimate d, the
number of inner procedure rounds is at most [logm+ 2].

Proof. Execute the inner procedure once. Similar to Lemma III.7, the inner procedure continues,
with the same makespan estimate, the following round only if there are at most sup− 1 uncompleted
jobs each running on one of M2, ...,Msup for more than d time. Without loss of generality, rename these
uncompleted jobs be J1, ..., Jr (r < sup). After updating the job size estimates for the first time, it
follows that pej ≥ 2 · ssup · d, j ≤ r. Suppose, then, the job size estimates undergo k doubling rounds
before either the whole schedule completes or the makespan estimate doubles. Consider the inner
procedure after the (k − 1)-th round of doubling. Any uncompleted job Jj must start running on some
machine Mi with pej ≤ si · d. We let pej1 and pej(k−1) denote the job size estimate of Jj after the first and
after the (k − 1)-th doubling. We obtain

2k−2 · 2 · ssup · d ≤ 2k−2 · pej1 ≤ pej(k−1) ≤ si · d ≤ s1 · d

which implies
2k−1 ≤ s1

ssup
=⇒ k ≤ [log

s1
ssup

+ 1]

We show, by definition of sup, that s1
ssup
≤ m. Recall sup← min{k |

∑k
i=1 si ≥

1
2

∑m
i=1 si, 1 ≤ k ≤ m}.

If s1 ≥ 1
2

∑m
i=1 si, then sup = 1 and apparently s1

ssup
= 1 ≤ m. From now on, we assume s1 < 1

2

∑m
i=1 si.

Suppose, for contradiction, that s1
ssup

> m. Then, ssup+1, ..., sm ≤ ssup <
s1
m

;
∑sup−1

i=1 si =
∑m

i=1 si −∑m
i=sup si >

∑m
i=1 si−m·

s1
m
> 1

2

∑m
i=1 si. This contradicts the definition of sup. It follows that s1

ssup
≤ m.

The number of inner procedure rounds, therefore, is at most k + 1 ≤ [log s1
ssup

+ 2] ≤ [logm+ 2]. □

Lemma III.9 (Bound on Inner Procedure Rounds). For a fixed makespan estimate d, the number of
inner procedure rounds is bounded by min{[2 log η + 2], [logm+ 2]}.

Proof. It immediately follows from Lemma III.7 and III.8. □

Next we prove that every inner procedure incurs a cost of O(1) · C∗
max in makespan. We consider the

worst case when every job running on machines Mi (i > sup) are canceled by some machines Mk

(k ≤ sup), as if only the fastest sup machines are processing jobs. We first show that, for any job set,
the optimal makespan achieved with just the fastest sup machines is at most 3 · C∗

max. It then follows
that Algorithm 3 completes the whole schedule if the makespan estimate d ≥ 6 · C∗

max and every inner
procedure costs O(1) · C∗

max time.

3.4 ANALYSIS 23

Lemma III.10 (Bound on Optimal Makespan with Just Fast Machines). Let the optimal makespan be
C∗

max. The optimal makespan achieved with just the fast machines M1, ...,Msup is at most 3 · C∗
max.

Proof. It suffices to show that with just the fastest sup machines, there exists a schedule with
makespan at most 3 ·C∗

max. The schedule is constructed as follows. For the first 2 ·C∗
max time, run all the

jobs arbitrarily on machines M1, ...,Msup: whenever a machine becomes idle, it selects a non-running
job to process; the machine stays idle if every job has been completed. No jobs are canceled before
time 2 · C∗

max. At time 2 · C∗
max, there must be at least one idle machine. Indeed, otherwise, if every fast

machine is busy at time 2 ·C∗
max, the sum of job size exceed

∑sup
i=1 2 · si · C∗

max >
∑m

i=1 si · C∗
max, which

contradicts the optimal makespan C∗
max. If there is at least one idle machine at time 2 ·C∗

max, the number
of uncompleted jobs is at most sup− 1. Without loss of generality, we rename these uncompleted jobs
as J1, ..., Jr (r < sup). Cancel these jobs at time 2 · C∗

max. Consider the optimal schedule with all the
machines; in this schedule, jobs J1, ..., Jr must be assigned on some machines Mi1,Mi2, ...,Mil with
i1 < i2 < ... < il and il ≤ r < sup. With just the fast machines, we process these remaining jobs that
are assigned to machine Mi1 (in the optimal schedule) on machine M1, jobs to machine Mi2 on machine
M2, and so on. Formally, process the remaining jobs that are assigned to machine Mip on machine Mp.
Since sip ≥ sp, the time for processing these remaining jobs on the fast machines with this assignment
is no more than C∗

max. This constructs a (at most) 3 · C∗
max-length schedule with just the fast machines

M1, ...,Msup. □

Lemma III.11 (Bound on Makespan Estimate). The whole schedule completes after several rounds of
the inner procedure if the makespan estimate d ≥ 6 · C∗

max.

Proof. The proof follows three observations. (1) For every problem instance I with optimal
makespan C, if we double every job size, the newly created (doubled) problem instance has optimal
makespan at most 2 · C. (2) When an inner procedure terminates, it follows pej < 2 · p∗j for every
uncompleted job Jj . (3) The makespan estimate is doubled only when the algorithm confirms that no
d-length schedule exists with just the fast machines M1, ...,Msup.

Observation (1) is trivial. If every job size is doubled, the optimal schedule is also doubled. Thus, the
optimal makespan for the newly created problem is at most 2 ·C. Observation (2) follows from the proof
of Lemma III.7. Suppose, with a fixed makespan estimate d, the job size estimates undergo k doubling
rounds. We have shown that after the (k − 1)-th round, any uncompleted job Jj has pej < p∗j . Then,
after the final doubling round, it follows that pej < 2 · p∗j for any uncompleted job Jj . Observation (3) is
supported by similar arguments in Theorem III.6. If machine M1 processes any job for more than d time,
no valid d-length schedule exists with just the fast machines M1, ...,Msup. If there is an uncompleted job
Jj not started by any machine Mi with i ≤ sup and pej ≤ si · d before time d, every machine M1, ...,Mq

(q is the largest index such that pej ≤ sq · d and q ≤ sup) must be busy processing the jobs that cannot
complete on machine Mq+1 or slower before time d, which implies that no valid d-length schedule exists
with just the fast machines M1, ...,Msup. Observation (3), therefore, holds.

Now we combine these observations. First, by Lemma III.10, there exists a schedule of length at most
3 ·C∗

max with just the fast machines M1, ...,Msup. At any time, we have pej < 2 ·p∗j for every uncompleted

3.4 ANALYSIS 24

job (observation (2)); there exists, if every job Jj has size pej , a schedule of length at most 6 · C∗
max with

just the fast machines M1, ...,Msup (observation (1)). Then, if the makespan estimate d ≥ 6 · C∗
max, the

algorithm will not double d in the following inner procedure rounds (observation (3)); subsequently,
after a bounded number of inner procedure rounds (Lemma III.9), the algorithm will complete the whole
schedule. □

It immediately follows that, since an inner procedure lasts at most 2d time, an inner procedure costs at
most 12 · C∗

max time. By putting all the above lemmas together, we obtain the performance bound for
Algorithm 3.

Theorem III.12 (Performance Bound for Algorithm 3). Given the job size predictions pj and the
prediction error η = max1≤j≤n max{ pj

p∗j
,
p∗j
pj
}, Algorithm 3 computes a schedule with makespan Cmax at

most 48 ·min{[2 log η + 2], [logm+ 2]} · C∗
max, where C∗

max denotes the optimal makespan.

Proof. Initially, the algorithm sets the makespan estimate d ← d0 :=
max1≤j≤n pj

η·s1 and executes
the inner procedure. Clearly d0 ≤ C∗

max. Suppose the algorithm will undergo x rounds of doubling
makespan estimate with d = 2d0, 2

2d0, ..., 2
xd0. Fixing a makespan estimate d, the number of inner

procedure rounds is at most min{[2 log η + 2], [logm+ 2]} by Lemma III.9, with each spending at most
2d time. Observe that 2x−1d0 < 6 · C∗

max, since otherwise, it would have completed the whole schedule
before the x-th round by Lemma III.11. Thus, the makespan of the entire schedule is bounded by

Cmax ≤ 2 · (d0 + ...+ 2xd0) ·min{[2 log η + 2], [logm+ 2]}

< 2 · (2x+1d0) ·min{[2 log η + 2], [logm+ 2]}

< 48 ·min{[2 log η + 2], [logm+ 2]} · C∗
max □

Remark III.13. It follows from Theorem III.12 that Algorithm 3 has an O(min{log η, logm}) competit-
ive ratio. Let Cmax be the makespan of the produced schedule. With η = 1, we have Cmax < 96 · C∗

max;
the algorithm is 96-consistent or O(1)-consistent. With η =∞, we have Cmax < 48 · [logm+2] ·C∗

max;
the algorithm is 48 · [logm + 2]-robust or O(logm)-robust. Finally, under any η ≥ 1, we have
Cmax < 48 ·min{[2 log η+2], [logm+2]} ·C∗

max; the algorithm is 48 ·min{[2 log η+2], [logm+2]}-
smooth or O(min{log η, logm})-smooth.

Theorem III.14 (Optimality of Consistency and Robustness for Algorithm 3). Algorithm 3 has asymp-
totically optimal consistency and asymptotically optimal robustness.

Proof. The lower bound for the competitive ratio of any clairvoyant algorithm is Ω(1). The lower
bound for the competitive ratio of any non-clairvoyant algorithm is Ω(logm). By the Fundamental
Theorems of Consistency (Theorem II.4) and the Fundamental Theorems of Robustness (Theorem II.6),
Algorithm 3 has consistency and robustness both matching the corresponding lower bound. □

Note that, even in the worst case of η = ∞, our algorithm returns a schedule of makespan at most
48 · [logm+ 2] · C∗

max, which outperforms the algorithm proposed in [27] with a 48 · [logm+ 6] · C∗
max

bound.

3.4 ANALYSIS 25

3.4.3 Performance Bounds for Algorithm 4

We prove the performance bound for Algorithm 4. Unknowing the prediction error, the algorithm
estimates η in rounds. Our proof builds on the following key observation. With a fixed prediction error
estimate ηe, the time spent in running an inner procedure round is bounded by O(1) ·C∗

max if pj
ηe
> p∗j for

some job Jj and is bounded by O(min{log η, logm}) · C∗
max otherwise. To bound overall performance,

we maintain (ηe)2 < m but switch to the O(logm)-competitive algorithm if (ηe)2 ≥ m. With such a
strategy, the makespan can be bounded by O(logm) · C∗

max even if η is arbitrarily large.

Lemma III.15 (Bound on Time with Fixed ηe for Case of pj
ηe
> p∗j for some j). Fix ηe with pj

ηe
> p∗j for

some uncompleted job Jj . The time spent in running Algorithm 3 is at most 24 · C∗
max.

Proof. Let Jj′ denote the largest overestimated job, i.e., pj′

ηe
> p∗j′ with pj′

ηe
maximal. We show that,

with a fixed prediction error estimate ηe and a makespan estimate d, an inner procedure either detects an
underestimation of ηe or doubles d until d ≥ 3 · C∗

max. With every inner procedure round spending at
most 2d time, the total time spent is then bounded by O(1) · C∗

max.

First consider a special case when pj′

ηe
=

max1≤j≤n pj
ηe

≥ s1 · C∗
max. In such case, the first makespan

estimate d := d0 =
pj′

s1ηe
≥ C∗

max. By Algorithm 3, machine M1 first selects an overestimated job to

process; then, the algorithm confirms an underestimation of ηe within at most
max1≤j≤n p∗j

s1
≤ C∗

max time.
The prediction error estimate ηe is then doubled, and the time spent is, apparently, no more than 24 ·C∗

max.
From now on, we assume that pj′

ηe
≤ s1 · C∗

max so the first makespan estimate d := d0 ≤ C∗
max.

Under a fixed ηe, Algorithm 3 experiences several rounds of doubling makespan estimate d. We show
that if d < 3 ·C∗

max, an inner procedure either detects an underestimation of ηe or doubles d at the end —
the job size estimates never get updated. We prove this by contradiction. Suppose the algorithm updates
the job size estimates at the end of an inner procedure round. Then, job Jj′ must run on a machine Mi

with i ≤ sup and pej′ ≤ si · d before time d. However, p∗j′ <
pj′

ηe
≤ pej′ ≤ si · d, indicating that job Jj′

should have been completed and that an underestimation of ηe is confirmed, which is a contradiction.

Next we show that Algorithm 3 must detect an underestimation of ηe if d ≥ 3 · C∗
max. We prove, by

contradiction, that job Jj′ must start running on a machine Mi with i ≤ sup and pej′ ≤ si · d before time
d. Suppose job Jj′ fails to do so. Then, every machine M1, ...,Mq, where q is the largest machine index
such that pej′ ≤ sq · d and q ≤ sup, must be busy processing, before time d, the (non-overestimated) jobs
with job size estimate at least pej′; these jobs have size at least pej′ and cannot be processed on a slower
machine if we aim to achieve makespan d with just the fast machines M1, ...,Msup. The existence of Jj′
and function getJob ensure that no job is canceled on the first q machines before time d. Then, the sum
of the size of the jobs that, if we aim to achieve makespan d with just the fast machines M1, ...,Msup,
must be processed on machines Mi (i ≤ q) is already more than

∑q
i=1 si · d. This, however, contradicts

Lemma III.10, which shows that there exists a schedule to complete all jobs in 3 · C∗
max time with just

the fast machines M1, ...,Msup. Thus, job Jj′ must start running on a machine Mi with i ≤ sup and
pej′ ≤ si · d before time d; since p∗j′ < pej′ ≤ si · d, job Jj′ is completed before time 2d. Upon completing
Jj′ , Algorithm 3 detects an underestimation of ηe.

3.4 ANALYSIS 26

Finally, suppose Algorithm 3 terminates after x rounds of doubling d with d = 2d0, 2
2d0, ..., 2

xd0, where
d0 =

max1≤j≤n pj
s1

. With a fixed makespan estimate d, the number of inner procedure rounds is at most
1. Each round spends at most 2d time. Observe that 2x−1d0 < 3 · C∗

max. Thus, before confirming an
underestimation of ηe, the total time spent in running Algorithm 3 is at most

2 · (d0 + ...+ 2xd0) < 24 · C∗
max □

Lemma III.16 (Bound on Time with Fixed ηe for Case of pj
ηe
≤ p∗j for all j). Fix ηe with pj

ηe
≤ p∗j

for every uncompleted job Jj . Algorithm 3 completes the whole schedule with makespan at most
48 ·min{[2 log ηe + 2], [logm+ 2]} · C∗

max.

Proof. The lemma holds by the same arguments for Theorem III.12. All bounds apply. □

Theorem III.17 (Performance Bound for Algorithm 4). Given only the job size predictions pj , Algorithm
4 computes a schedule of makespan Cmax at most min{[120 log η+216], [60 logm+216]} ·C∗

max, where
C∗

max denotes the optimal makespan and η denotes the prediction error and η = max1≤j≤nmax{ pj
p∗j
,
p∗j
pj
}.

Proof. First, assume that the algorithm returns the whole schedule when (ηe)2 < m. Suppose the
algorithm undergoes x rounds of doubling ηe with ηe = 1, 2, ..., 2x. There must be a job Jj with pj

ηe
> p∗j

when ηe = 1, 2, ..., 2x−1, since otherwise the algorithm would experience fewer rounds of doubling ηe.
Every round spends at most 24 · C∗

max time by Lemma III.15. Thus, the first x rounds spend at most
24 · x ·C∗

max time. After setting ηe = 2x, the algorithm, by Lemma III.16, completes the schedule within
48 ·min{[2 log 2x +2], [logm+2]} ·C∗

max = 48 · (2x+2) ·C∗
max time (since (ηe)2 < m). Observe that

2x−1 < η. Thus, the makespan of the whole schedule, if returned when (ηe)2 < m, is at most

24 · x · C∗
max + 48 · (2x+ 2) · C∗

max ≤ [120 log η + 216] · C∗
max

Next, assume that the algorithm returns the whole schedule by running Algorithm 3 with pj = 1 for
every uncompleted job Jj and η = ∞. Suppose the algorithm undergoes x − 1 rounds of doubling
ηe with ηe = 1, 2, ..., 2x−1 before breaking the while loop. Every round spends at most 24 · C∗

max

time. Thus, the while loop spends at most 24 · x · C∗
max time. With (2x−1)2 < m, it follows that

24 · x · C∗
max < (12 logm + 24) · C∗

max. After breaking the while loop, running Algorithm 3 costs at
most 48 · [logm+ 2] · C∗

max. Thus, the makespan of the whole schedule, if returned when (ηe)2 ≥ m, is
at most

24 · x · C∗
max + 48 · [logm+ 2] · C∗

max ≤ [60 logm+ 120] · C∗
max

The whole schedule, therefore, has makespan Cmax at most min{[120 log η + 216], [60 logm+ 216]} ·
C∗

max. □

Remark III.18. It follows from Theorem III.17 that Algorithm 4 has an O(min{log η, logm}) competit-
ive ratio. The algorithm is 216-consistent orO(1)-consistent, [60 logm+120]-robust orO(logm)-robust,
and min{[120 log η + 216], [60 logm+ 216]}-smooth or O(min{log η, logm})-smooth.

Theorem III.19 (Optimality of Consistency and Robustness for Algorithm 4). Algorithm 4 has asymp-
totically optimal consistency and asymptotically optimal robustness.

3.4 ANALYSIS 27

Proof. The theorem holds by the same arguments for Theorem III.14, the Fundamental Theorems
of Consistency (Theorem II.4), and the Fundamental Theorems of Robustness (Theorem II.6). □

3.4.4 Performance Bounds for Algorithms 5 and 6

We extend the static scheduling results to derive performance bounds for Algorithms 5 and 6. The heart
of the proof is that any competitive static scheduling algorithm can construct, with a negligible cost in
makespan, a competitive dynamic scheduling algorithm via rerunning itself upon every job release. We
prove this claim via the following series of lemmas, followed by the competitiveness results.

Lemma III.20 (Bound on Makespan for a Subset of Jobs). Let C∗
max denote the optimal makespan

for a set of jobs with no release times and C ′∗
max denote that for any subset of these jobs. We have

C ′∗
max ≤ C∗

max.

Proof. The optimal schedule can construct a new schedule by keeping (from the schedule) just the
jobs in the subset. The constructed schedule has a makespan at most C∗

max. By optimality of C ′∗
max, we

have C ′∗
max ≤ C∗

max. □

Lemma III.21 (Bound on Optimal Static Makespan). Let C∗
max denote the optimal makespan for a set of

jobs with arbitrary release times and C{0}∗
max the optimal makespan if we ignore the release times. We

have C{0}∗
max ≤ C∗

max.

Proof. The optimal schedule for the jobs with arbitrary release times is also a valid schedule for
these jobs if we ignore release times. By optimality of C{0}∗

max , we have C{0}∗
max ≤ C∗

max. □

Lemma III.22 (Bound on Release Time).

max
1≤j≤n

rj ≤ C∗
max

where C∗
max denotes the optimal makespan for a set of jobs with arbitrary release times.

Proof. A job can complete no earlier than its release time. Thus, the optimal makespan is no less
than the latest release time. □

We now prove the key result for the rerunning strategy by combining the above lemmas.

Theorem III.23 (Performance Bound for Rerunning Strategy). Given a static scheduling algorithm A

with competitive ratio α, construct a dynamic scheduling algorithm A+ by rerunning A against the
uncompleted jobs upon every job release. It follows that A+ has a competitive ratio of α+1 for dynamic
scheduling.

Proof. Fix any dynamic scheduling problem instance with jobs J1, ..., Jn. Run A+ against this
instance. Let C∗

max denote the optimal makespan. Let rmax denote the latest release time, i.e., rmax =

max1≤j≤n rj . By Algorithm A+, A will run from the stretch against the present uncompleted jobs when
the last job arrives. Consider the set of uncompleted jobs at rmax immediately after the last job arrives.

3.4 ANALYSIS 28

Let C ′∗
max denote the optimal makespan for these jobs if we ignore release times and C{0}∗

max the optimal
makespan for the whole set of jobs J1, ..., Jn if we ignore release times. Combining Lemma III.20 and
III.21, we have

C ′∗
max ≤ C{0}∗

max ≤ C∗
max

If Cmax is the makespan of the schedule produced by A+, we have, by the competitiveness of A, that

Cmax ≤ rmax + α · C ′∗
max ≤ C∗

max + α · C ′∗
max ≤ (α + 1) · C∗

max

where the second inequality holds by Lemma III.22. Therefore, A+ has competitive ratio α + 1 for
dynamic scheduling. □

Theorem III.24 (Performance Bound for Algorithm 5). Given the job size predictions pj and the
prediction error η = max1≤j≤n max{ pj

p∗j
,
p∗j
pj
}, Algorithm 5 computes a schedule with makespan Cmax at

most (48 ·min{[2 log η + 2], [logm+ 2]}+ 1) · C∗
max, where C∗

max denotes the optimal makespan.

Proof. It immediately follows from Theorem III.12 and III.23. □

Theorem III.25 (Performance Bound for Algorithm 6). Given only the job size predictions pj , Algorithm
6 computes a schedule of makespan Cmax at most min{[120 log η+217], [60 logm+217]} ·C∗

max, where
C∗

max denotes the optimal makespan and η denotes the prediction error and η = max1≤j≤nmax{ pj
p∗j
,
p∗j
pj
}.

Proof. It immediately follows from Theorem III.17 and III.23. □

Remark III.26. It follows from Theorem III.24 that Algorithm 5 has an O(min{log η, logm}) compet-
itive ratio. The algorithm is 97-consistent or O(1)-consistent, (48[logm] + 97)-robust or O(logm)-
robust, and (48 · min{[2 log η + 2], [logm + 2]} + 1)-smooth or O(min{log η, logm})-smooth. It
follows from Theorem III.25 that Algorithm 6 has an O(min{log η, logm}) competitive ratio. The
algorithm is 217-consistent or O(1)-consistent, [60 logm + 121]-robust or O(logm)-robust, and
min{[120 log η + 217], [60 logm+ 217]}-smooth or O(min{log η, logm})-smooth.

Theorem III.27 (Optimality of Consistency and Robustness for Algorithms 5 and 6). Algorithms 5 and
6 have asymptotically optimal consistency and asymptotically optimal robustness.

Proof. The theorem holds by the same arguments for Theorem III.14, the Fundamental Theorems
of Consistency (Theorem II.4), and the Fundamental Theorems of Robustness (Theorem II.6). □

3.4.5 Correctness

We give the correctness proof for the proposed Algorithms 3 — 6.

Theorem III.28 (Correctness of Algorithms 3 — 6). Both of Algorithms 3 and 4 construct a valid
schedule for Qm | online-time-nclv, pmtn-restart | Cmax (static scheduling). Both of Algorithms 5 and 6
construct a valid schedule for Qm | online-time-nclv, pmtn-restart, rj | Cmax (dynamic scheduling).

3.4 ANALYSIS 29

Proof. The correctness follows the established bounds. Pick Algorithm 3 or 4 or 5 or 6. The
algorithm terminates within a bounded number of inner procedure rounds. Every round terminates
within a bounded time by Theorem III.6. Therefore, the algorithm terminates in a bounded time; by
the termination condition that no job is left uncompleted, a valid schedule is constructed upon the
termination. □

3.4.6 Complexity Analysis

Finally, we give the complexity results for the proposed algorithms. Maintaining uncompleted jobs in
ordered sets sorted by job size estimate, both of the function getJob and event function MachineIdle
take O(log n) time per call. At the end of an inner procedure when TimeOut is triggered, doubling
makespan estimate takes O(1) time, doubling job size estimates O(sup) ⊆ O(m) time, and idling all
machines O(m log n) time. Both Algorithms 5 and 6 rerun the static counterpart upon every job release,
which needs to idle all machines and thus costs O(m log n) time. Moreover, we can achieve these time
complexities with O(n) space.

Theorem III.29 (Time and Space Complexity). The proposed algorithms admit an implementation with
complexities:

(1) Function getJob takes O(log n) time per call.
(2) Event function MachineIdle takes O(log n) time per call.
(3) Event function TimeOut takes O(m log n) time per call.
(4) Event function JobRelease takes O(m log n) time per call.
(5) O(n) space is used.

Proof. Consider three partitions of uncompleted jobs: non-running jobs, jobs running on machines
Msup+1, ...,Mm, and jobs running on machines M1, ...,Msup but the machine is not fast enough to
complete it in makespan estimate time. Maintain each partition as a balanced binary search tree (BST)
sorted by job size estimate. Apparently, the data structures use O(n) space.

The function getJob accesses at most 3 BSTs for searching a job, resulting in O(log n) time per call.
Event function MachineIdle may delete a job from a BST (when completing the job), call getJob, and
move a job from one BST to another (due to an update in the job status), resulting in O(log n) time
per call. Event function TimeOut either updates the makespan estimate (O(1) time) or the job size
estimates (O(sup) ⊆ O(m) time as this happens only if there are at most sup jobs). Finally, TimeOut
idles all machines, which moves O(m) jobs from one BST to the BST of non-running jobs, resulting in
O(m log n) time per call. Event function JobRelease reruns the static counterpart, which must idle all
machines first, resulting in O(m log n) time per call. □

Remark III.30. Theorem III.29 shows the complexity per call for every (event) function. At any time
instant, there are at most n jobs moving between the BSTs. Thus, the real-time complexity for any of the
proposed algorithms is bounded by O(n log n) at any time.

3.5 EXPERIMENTAL EVALUATION 30

3.5 Experimental Evaluation

This section performs an experimental evaluation to show the competitiveness of the proposed algorithms.
For static scheduling, we implement four algorithms: (1) an offline near-optimal algorithm based on
Algorithm 2, (2) the O(logm)-competitive algorithm [27], (3) Algorithm 3 with a known prediction
error, and (4) Algorithm 4 without a known error. We denote these algorithms by Aopt, Aclassic, AknowError,
and AunknowError. Finding the optimal solution is computationally infeasible due to NP-hardness. Instead,
we implement Aopt with a bisection method on Algorithm 2 as a 2-approximation; this gives us a baseline
for the other algorithms. The reported performance ratios are, therefore, approximations of the analytical
ones — every reported performance ratio is no less than half of the analytical competitive ratio.

For dynamic scheduling, we extend the static scheduling algorithms via the rerunning strategy to deal
with release times. We end up with four dynamic scheduling algorithms A+

opt, A+
classic, A+

knowError, and
A+

unknowError. Each algorithm reruns the static counterpart upon every job release. As the rerunning
strategy incurs an additive cost of one optimal makespan (Theorem III.23), the baseline A+

opt turns into
a 3-approximation. Thus, every reported performance ratio, for dynamic scheduling, is no less than a
third of the analytical one.

3.5.1 Workload Generation

Parameter Range Default value
number of jobs (n) 256 256

number of machines (m) [2, 128] 32
job size of Jj (p∗j) [1, 1024] N/A

processing speed of Mi (si) [1, 64] N/A
release time of Jj (rj) [0, 64] 0

total prediction error (η) [1,∞) N/A

job size prediction of Jj (pj) [
p∗j
η , η · p

∗
j] N/A

Table III.2: The workload parameters, with time-related ones in milliseconds.

We generate 140000 problem instances to evaluate, under different settings, the performance ratios of
the proposed algorithms. Table III.2 lists the range and the default value of every parameter in workload
generation. The number of jobs (n) is fixed at 256 to observe performance variations caused by other
variables: prediction error (η), the number of machines (m), and release times (rj). Our experiment
turns every problem instance with arbitrary release times, i.e., every dynamic scheduling instance, into a
static scheduling instance by ignoring the release times — by doing so, we can observe the effect of
introducing release times. With a fixed prediction error η, we randomly generate a job size prediction for
every job Jj (with actual size p∗j) from [max{1, p

∗
j

η
}, η · p∗j]. To minimize measurement deviation caused

by randomly generated predictions, every problem instance is executed 50 times. We evaluate both the
average-case execution performance and the worst-case execution performance.

3.5 EXPERIMENTAL EVALUATION 31

3.5.2 Experimental Results: Static Scheduling

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0

6.0

pe
rfo

rm
an

ce
 ra

tio

performance under = 1
classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0

6.0
performance under = 2
classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0

6.0
performance under = 4
classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0

6.0
performance under = 8
classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0

6.0
performance under = 16

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0

6.0

pe
rfo

rm
an

ce
 ra

tio

performance under = 32
classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0

6.0
performance under = 64

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0

6.0
performance under = 128

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0

6.0
performance under = 256

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0

6.0
performance under =

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

Figure III.3: Performance ratios for static scheduling algorithms with varying m and η.
Every algorithm has two figures: the dashed line representing the maximum performance
ratio for all problem instances and the solid line representing the mean. The figures for
the max performance ratio have observable fluctuations as they represent the extremes of
the data and thus are sensitive to workload generation.

Figure III.3 shows the performance comparisons between Aclassic, AknowError, and AunknowError under
increasing machines m and prediction error η. We observe that performance ratios generally increase
as we increase machines. The intuition is that, for any job set, additional machines allow the optimal
scheduler to show a greater advantage in job allocation and complete the jobs as soon as possible; thus,
additional machines lower the relative performance of the other algorithms. The experimental results
show that AknowError and AunknowError consistently outperform Aclassic in both mean and max performance
ratios, even under arbitrarily bad predictions, which confirms that our improved 2-relaxed procedure
ensures the worst-case performance of our algorithms is better than the performance of Aclassic. Unlike
Aclassic, both AknowError and AunknowError have a small gap between the max (worst-case) performance and
the mean (average-case) performance. Our algorithms, therefore, have a slight performance deviation: the
max performance ratios are just a constant distance away from the mean. In addition, the performance
ratios of our algorithms increase sub-linearly as logm increases, revealing the theoretical result of
O(min{log η, logm})-competitive ratio. At almost all times, our algorithms bound the performance
ratio by small constants: their performance is within three times the optimum.

Next we discuss the performance difference between AknowError and AunknowError. They have the same
performance under η = 1. If the predictions are perfect, the performance no longer depends on the
machine number, as the competitive ratio O(min{log η, logm}) = O(log η) = O(1) turns to a constant
regardless of m. Indeed, the experimental results (under η = 1) show that, under η = 1, the performance
ratios for both AknowError and AunknowError are bounded by 2.0 at all times. On the other extreme of η =∞,
AknowError outperforms AunknowError since the latter spends extra time in estimating η before realizing that
η is too large and that it is better to switch to the O(logm)-competitive algorithm by setting ηe =∞.

3.5 EXPERIMENTAL EVALUATION 32

Regardless of η, the performance of AknowError and AunknowError stay close to each other when m is small
(m ≤ 8). This is because, even under large η, when one may expect that AunknowError should have wasted
significant time in realizing the large prediction error, the performance is bounded by the logm term.
We also observe that knowing the error is favorable only if both η and m are large. If η is small (η ≤ 4),
the performance of AknowError and AunknowError stay close to each other as AunknowError requires only a few
more rounds of doubling η to estimate the actual prediction error precisely.

1 2 3 4 5 6 7

1.0

2.0

3.0

4.0

5.0

pe
rfo

rm
an

ce
 ra

tio

performance under = 1
classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0
performance under = 2

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0
performance under = 4

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0
performance under = 8

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7
1.0

2.0

3.0

4.0

5.0
performance under = 16

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0

pe
rfo

rm
an

ce
 ra

tio

performance under = 32
classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0
performance under = 64

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0
performance under = 128

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0
performance under = 256

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

1 2 3 4 5 6 7

log2m

1.0

2.0

3.0

4.0

5.0
performance under =

classicmax

classicmean

unknow_errormax

unknow_errormean

know_errormax

know_errormean

Figure III.4: Performance ratios for dynamic scheduling algorithms with varying m
and η.

3.5.3 Experimental Results: Dynamic Scheduling

This section concerns dynamic scheduling. We observe the effect of release times and the performance
of Algorithms 5 and 6 (A+

knowError and A+
unknowError). Figure III.4 shows the performance comparisons

in dynamic scheduling.

A static scheduling instance, if we enforce a release time to every job, is “relaxed” in that a near-optimal
performance becomes easier. Direct evidence is that every dynamic scheduler, shown in Figure III.4,
achieves a lower performance ratio than the static counterpart. The intuition is that release times force the
scheduler to wait until rmax, the latest release time, before completing all jobs. Suppose, for scheduling
jobs except for the last, A+

opt uses t time, but another algorithm A+ uses t + ∆t time (∆t > 0); if
rmax ≥ t+∆t, both algorithms need to wait, after completing all the other jobs, for the last job to arrive
and A+

opt, in turn, loses the advantage of a ∆t earlier completion; even if t < rmax < t+∆t, release
times weaken the advantage of A+

opt from a ∆t earlier completion to a t +∆t− rmax (< ∆t) earlier
completion. The previous Figure III.2 shows the case where the advantage of an optimal scheduler
is weakened by the release time of job J6. If we have more machines, the release times weaken the
advantage of A+ further: additional machines reduce not only t but also ∆t, increasing the chance for
rmax ≥ t+∆t or t < rmax < t+∆t to happen. As a result, we see from Figure III.4 that performance
ratios decrease as we increase machines, revealing the effect of release times.

3.5 EXPERIMENTAL EVALUATION 33

20 21 22 23 24 25 26 27 28

Prediction error

1.1

1.2

1.3

1.4

1.5

1.6

Pe
rfo

rm
an

ce
 ra

tio

Figure III.5: Performance ratio of Algorithm 5 with varying η. The horizontal bars
across the middle of the boxes represent the median of each boxplot. The box covers the
middle 50% of the data points, while the lower and upper boundary of the box represents
the 25th (75th) percentile.

In addition to the observation of the release times effect, the data display the same comparison results as
those observed in static scheduling; they are: (1) A+

knowError and A+
unknowError consistently outperforms

A+
classic, even under arbitrarily bad predictions, (2) our algorithms have a slight performance deviation,

(3) knowing the error η is favorable only if both η and m are large, to list three.

To take a closer look at how η affects the performance, we fix the machine number m at 32 and
randomly sample 100 problem instances to plot the performance ratios of A+

knowError and A+
unknowError

with increasing η (Figures III.5 and III.6). Algorithm 5 experiences a performance drop from η = 1

to η = 2; after η ≥ 2, the performance ratio increases very slightly as η increases — the algorithm
is crying for high-quality predictions. Nevertheless, the performance ratio is bounded approximately
between 1.4 and 1.6 under η = ∞, showing the robustness of the algorithm under bad predictions.
In comparison, Algorithm 6 experiences a two-stage performance drop. The first drop happens when
predictions change from perfect (η = 1) to reasonable (2 ≤ η ≤ 4); the second drop happens when
predictions change from reasonable to poor (η ≥ 8). If the predictions have reasonable accuracy
(η ∈ [2, 4]), A+

unknowError bounds the performance ratio approximately between 1.4 and 1.6, which is
similar to the performance of A+

knowError; with reasonable predictions, unknowing the prediction error

3.6 CONCLUSIONS AND FUTURE WORK 34

20 21 22 23 24 25 26 27 28

Prediction error

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Pe

rfo
rm

an
ce

 ra
tio

Figure III.6: Performance ratio of Algorithm 6 with varying η.

does not degrade, compared with knowing the error, the performance much. If the predictions have
poor accuracy (η ≥ 8), unknowing the error comes with a high cost. Algorithm 6 still attains a bounded
performance ratio (approximately between 1.6 and 1.9) under bad predictions, but knowing the error
can, in this case, improve the performance by about 16.67%.

3.6 Conclusions and Future Work

We study online scheduling with predictions and show how job size predictions improve the competitive
ratio for makespan minimization in uniformly related machine scheduling. We first design an offline im-
proved 2-relaxed decision procedure approximating the optimal schedule with given job sizes. The online
algorithms use this procedure as a base. With a simple algorithm-independent prediction metric η and the
decision procedure, we design an O(min{log η, logm})-competitive (O(min{log η, logm})-smooth)
algorithm assuming a known prediction error for online static scheduling. Built upon this algorithm,
we design a robust O(min{log η, logm})-competitive (O(min{log η, logm})-smooth) static scheduling
algorithm that does not assume a known error. Both algorithms improve the known Ω(logm) lower
bound via the predictions. We extend these algorithms to address dynamic scheduling under the known
and unknown prediction error. Both dynamic scheduling algorithms achieve an O(min{log η, logm})

3.6 CONCLUSIONS AND FUTURE WORK 35

competitive ratio and O(min{log η, logm}) smoothness. All the proposed algorithms with predictions
achieve optimal consistency and optimal robustness. We prove the performance bounds and conduct
extensive experiments to evaluate the algorithms.

Many interesting problems remain open in online optimization with predictions. An immediate direction
is to extend this work to other online scheduling or optimization problems. It will be interesting to see
how the proposed error metric and the algorithm design technique lead to improved competitiveness.
Finally, with predictions exposing rich information to algorithms, finding the theoretical lower bounds
for smoothness is another direction. These lower bounds will help us better understand the potential of
predictions in managing uncertainty.

CHAPTER 4

Single Machine Response Time Scheduling with Predictions

This chapter considers the problem of online scheduling on a single machine to minimize the mean
response time with job size predictions. The existing algorithm achieves 2-consistency to predictions,
but no algorithm can simultaneously attain bounded robustness. We find a sufficient condition for any
algorithm to achieve the optimal O(P)-robustness, where P denotes the maximum ratio of any two
job sizes. We present the first algorithm that achieves, using the condition, optimal robustness up to a
constant multiplicative factor and optimal consistency. Finally, for small prediction errors, we present an
algorithm that we conjecture to achieve the optimal O(η2) competitive ratio (O(η2) smoothness), where
η denotes the prediction error.

4.1 Introduction

Recent advance in learning theory has boosted the development of online scheduling with predictions
[11, 25, 32]. In this work, we study minimizing the mean response time or, equivalently, the total
response time, i.e., the sum of job service time, in single machine online non-clairvoyant scheduling
with job size predictions. A recent work [25] considers this problem and develops a 2η4-competitive
algorithm, where η is the prediction error. This algorithm is 2-competitive when the predictions are
perfect (η = 1). However, it performs poorly in the worst-case scenario where the predictions are
arbitrarily bad since 2η4 approaches∞ while η approaches∞. The algorithm has unbounded robustness.
To the best of our knowledge, no algorithm can simultaneously achieve constant consistency and bounded
robustness.

It is challenging to obtain near-optimal consistency and bounded robustness simultaneously. The
intuition is that if an algorithm relies on the predictions heavily, it can perform well if the predictions
are perfect but would fail quickly when the predictions are bad. On the other hand, if the algorithm has
no trust in the predictions, it loses the benefits of quality predictions. We overcome this challenge by
observing a sufficient condition for bounded robustness. The idea is that the performance is bounded if
the time spent in processing the partial jobs, the ones that have started processing, is small. We achieve
this condition by using the predictions conservatively: we intentionally underestimate the job sizes via
job size predictions. Analysis shows that our approach uses predictions just enough to achieve optimal
consistency and bounded robustness simultaneously.

36

4.2 PROBLEM DEFINITION 37

We propose the first algorithm that is consistent and robust to the predictions. The proposed algorithm
is O(1)-consistent and O(P)-robust, where P denotes the maximum ratio of any two job sizes. First,
we prove a sufficient condition for any algorithm to achieve an O(P) competitive ratio (Theorem
IV.1), which is significant for proving the performance bound for our algorithm and designing robust
algorithms in the future. Then, we design an algorithm that meets this condition by using the predictions
to underestimate job sizes intentionally (Algorithm 7). This robustness result is optimal since any
non-clairvoyant algorithm has an Ω(P) competitive ratio [33]. Finally, we consider the case when η
is guaranteed to be reasonably small so that we allow the competitive ratio depends purely on η. We
present an algorithm that we conjecture to achieve the optimal O(η2) competitive ratio.

4.2 Problem Definition

We study the response time minimization problem in single machine online non-clairvoyant scheduling.
Assume n independent jobs arrive at the machine over time. Job Jj has arrival time rj , but the machine
does not know Jj until it arrives. Each job Jj also has a size p∗j , but this value remains unknown until
the job is completed. This setting is known as non-clairvoyant in literature. The jobs are priority-free
and preemptive. For a schedule, denote Cj as the completion time of Jj so that the response time of
Jj is Fj = Cj − rj . Our objective is to minimize the mean response time, 1

n

∑n
j=1 Fj , equivalently to

minimize the total response time or
∑n

j=1 Fj for any problem instance. Our scheduling problem can be
defined as 1 | online-time-nclv, pmtn |

∑
Fj in Graham notation [9]. In addition, an oracle that provides

a job size prediction for every job is accessible to the system. The scheduler is allowed to make decisions
using the predictions. However, the prediction is possibly imperfect. Let the job size prediction for Jj be
pj . We define the prediction error for job Jj as ηj = max{ pj

p∗j
,
p∗j
pj
}, and the total prediction error η as

η = max
1≤j≤n

ηj = max
1≤j≤n

max{pj
p∗j
,
p∗j
pj
}

Observe that η ≥ 1 and pj
η
≤ p∗j ≤ η · pj for any Jj . The prediction is perfect if and only if η = 1. Our

proposed prediction error metric η for response time minimization is very similar to the one used in the
previous work [25]. The quantity η is crucial in our work and will be used directly in the algorithm.

4.2.1 Consistency and Robustness

We evaluate the performance of the algorithms by the competitive framework [14] and the metrics of
consistency, robustness, and smoothness introduced in Chapter 2.

4.3 ROBUST SINGLE MACHINE RESPONSE TIME SCHEDULING WITH JOB SIZE PREDICTIONS 38

4.3 Robust Single Machine Response Time Scheduling with Job
Size Predictions

Let p∗max, p∗min denote the maximum and the minimum job sizes, respectively. Define P = p∗max/p
∗
min,

the ratio of the two extremes. This section gives a 1-consistent and 3P -robust algorithm with predictions.
Before presenting the algorithm, we first introduce a sufficient condition for any algorithm to achieve
an O(P) competitive ratio. This condition helps prove our algorithm’s performance bound and design
general robust algorithms for response time minimization. For an algorithm A, we define SA as the
schedule produced by A, and δA(t) as the number of unfinished jobs at time t in SA. It is known that
the total response time of SA, denoted by FA, can be re-written as FA =

∑n
j=1 Fj =

∫
t≥0

δA(t) dt. By
integrating δ over t, it follows that A is c-competitive if δA(t) ≤ c · δA∗(t) for all t. Our goal is to
bound δA(t). To limit δA(t), we desire the machine spends the most time processing the jobs that can be
finished by t rather than those left unfinished at t. This is because every unfinished job, regardless of
how long it has been processed, increases δA(t) by 1. Define PA(t) as the set of unfinished jobs at time t,
and xAj (t) the time spent in processing job Jj before t in SA. We expect

∑
Jj∈PA(t) x

A
j (t) to be bounded.

In addition, we prefer algorithm A to be non-lazy, i.e., it does not unnecessarily idle the machine. It
turns out that bounding

∑
Jj∈PA(t) x

A
j (t) is crucial in bounding δA(t) by P for any non-lazy algorithm,

which is stated in the following theorem.

Theorem IV.1 (Sufficient Condition for O(P) Competitive Ratio). Fix any constant c > 0 and consider
any non-lazy algorithm A. At any time t, it follows that δA(t) ≤ (c+1) ·P · δA∗(t) if

∑
Jj∈PA(t) x

A
j (t) ≤

c · p∗max.

Proof. Let QA and QA∗ denote the set of unfinished jobs at time t in SA and SA∗ , respectively.
Define QU = QA∩QA∗ , m = |QA∗ −QU |, l = |QA−QU |, and o = |QU |. Then, we have δA(t) = l+ o

and δA∗(t) = m + o. It immediately follows that δA(t) ≤ δA∗(t) ≤ (c + 1) · P · δA∗(t), if l ≤ m.
Therefore, we assume l > m for the rest of the proof, which contains the following two cases.

Case 1 (m = 0). First, suppose that o = 0 with δA∗(t) = 0. By non-laziness of A, δA(t) = 0 and the
result follows. Suppose o ≥ 1. We have

δA(t)

δA∗(t)
=

l + o

m+ o
=
l

o
+ 1 ≤ l + 1

Since m = 0 indicates QA∗ = QU and l is the number of jobs completed by A∗ but not by A at time t,
the total time spent by A∗ on processing jobs in QA −QU is at most

∑
Jj∈PA(t) x

A
j (t) by non-laziness. It

follows that

l + 1 ≤
∑

Jj∈PA(t) x
A
j (t)

p∗min

+ 1 ≤ c · p∗max

p∗min

+ 1 = c · P + 1 ≤ (c+ 1) · P

and therefore δA(t) ≤ (c+ 1) · P · δA∗(t).

4.3 ROBUST SINGLE MACHINE RESPONSE TIME SCHEDULING WITH JOB SIZE PREDICTIONS 39

Algorithm 7: Robust Online Scheduling
Data : job size predictions pj and the total prediction error η
Result :schedule with the optimal consistency and 3P robustness
// maintain xj(t), yj(t) as processing time and remaining time estimate of job Jj at time t, i.e.,
yj(t) =

pj
η − xj(t).

1 Event Function JOBRELEASE() // job Jj is released at time t
2 yj(t)← pj

η .
3 if the machine is idle then
4 start processing Jj .
5 else
6 let Jq be the job currently being processed.
7 if yj(t) ≤ yq(t) then
8 preempt Jq and start processing Jj .

9 Event Function JOBCOMPLETE() // job Jj has been processed for p∗j time
10 if there is no unfinished job then
11 idle the machine.
12 else
13 let Jq be the unfinished job with the minimum yq(t).
14 start (or resume) processing Jq.

Case 2 (m ≥ 1). Since l > m, we have

δA(t)

δA∗(t)
=

l + o

m+ o
≤ l

m

Observe that the total time spent by A∗ on processing the l jobs in QA −QU is at most the total time
spent by A on the m jobs in QA∗ − QU plus the term

∑
Jj∈PA(t) x

A
j (t), which is bounded above by

m · p∗max +
∑

Jj∈PA(t) x
A
j (t). Thus, we obtain

l

m
≤
m · p∗max +

∑
Jj∈PA(t) x

A
j (t)

p∗min ·m
≤ P +

c

m
· P ≤ (c+ 1) · P □

Theorem IV.1 shows that any algorithm is O(P)-competitive regardless of the value of η, which is also
O(P)-robust if the processing time spent on partial jobs is bounded by a constant multiple of p∗max.
Meanwhile, the algorithm must follow the Shortest Remaining Processing Time (SRPT) strategy for
optimal consistency to hold. We then present a simple but effective algorithm that ensures both constant
consistency and bounded robustness. The algorithm uses η to underestimate the job sizes intentionally.
Note that knowing the error is also assumed in previous works [25]. To underestimate job sizes, the
algorithm assigns pej ←

pj
η

to job Jj and uses pej − xAj (t) to estimate the remaining size of Jj . The
algorithm maintains the invariant of processing the unfinished job with the minimum remaining size
estimate.

Algorithm 7 shows the pseudo-code. Here, we give an overview of the algorithm. When a job Jj arrives,
we compute the job size estimate pej =

pj
η

. Process Jj immediately if there is no running job. Otherwise,
let Jq be the running job. We preempt Jq and process Jj if pej ≤ yq(t), or we change nothing otherwise.

4.3 ROBUST SINGLE MACHINE RESPONSE TIME SCHEDULING WITH JOB SIZE PREDICTIONS 40

When the machine completes a job, the job leaves the system, and the machine starts processing the
unfinished job with the minimum job size estimate computed as pej − xj(t). Idle the machine if there is
no unfinished job. The algorithm always processes the unfinished job with the minimum remaining size
estimate with the above operations.

We prove the performance bounds for Algorithm 7 in the following theorem.

Theorem IV.2 (Performance Bounds for Algorithm 7). Algorithm 7 is 1-consistent and 3P -robust.

Proof. The 1-consistency follows because pq
η
= pq = p∗q when η = 1, which forces the algorithm

strictly follow the SRPT strategy. Therefore, we focus on proving the 3P -robustness below. Fix a time
t. Define P (t) as the set of unfinished jobs. We need to bound term

∑
Jj∈P (t) xj(t) to apply Theorem

IV.1. Consider the unprocessed jobs in P (t) with positive xj(t) and denote these jobs as Ji1, ..., Jik
in the increasing order of the time it starts processing, i.e., Ji1 is the first job that has been processed
among the k jobs, followed by Ji2, Ji3, ..., Jik. We make three observations for every Jir. (1) For the
first time Jir starts being processed, jobs Ji1, ..., Ji(r−1) must be pending in the system. (2) At the first
time t′(t′ < t) when Jir starts being processed, the term yir(t

′) = pir
η

must be the minimal one among
yi1(t

′), ..., yi(r−1)(t
′). (3) After Jir starts being processed at time t′, jobs Ji1, ..., Ji(r−1) will never be

processed before t, i.e., yil(t) = yil(t
′) for l = 1, ..., r − 1. Combing the above observations, we obtain

pir
η
≤ yi(r−1)(t) =

pi(r−1)

η
− xi(r−1)(t)

for r = 2, ..., k. Summing these k − 1 inequalities with telescoping, we have

xi1(t) + ...+ xi(k−1)(t) ≤
pi1
η
− pik

η

Since Jik has not been completed at time t, it follows that xik(t) ≤ p∗ik and we can bound term∑
Jj∈P (t) xj(t) as follows. ∑

Jj∈P (t)

xj(t) = xi1(t) + ...+ xi(k−1)(t) + xik(t)

≤ pi1
η
− pik

η
+ p∗ik ≤ p∗i1 + p∗ik ≤ 2p∗max

By Theorem IV.1, we have δA(t) ≤ 3P · δA∗(t) for our algorithm A for every time t. By integrating
δ over t, it follows that our algorithm is 3P -competitive. This result holds for any error η; thus, the
algorithm is 3P -robust. □

Theorem IV.3 (Optimality of Consistency and Robustness for Algorithm 7). Algorithm 7 has asymptot-
ically optimal consistency and asymptotically optimal robustness.

Proof. The lower bound for the competitive ratio of any clairvoyant algorithm is Ω(1). The lower
bound for the competitive ratio of any non-clairvoyant algorithm is Ω(P). By the Fundamental Theorems
of Consistency (Theorem II.4) and the Fundamental Theorems of Robustness (Theorem II.6), Algorithm
7 has consistency and robustness both matching the corresponding lower bound. □

4.4 CONJECTURE: AN O(η2)-COMPETITIVE ALGORITHM 41

Algorithm 8: Greedy-bin Scheduling
Data : job size predictions pj
Result :schedule with an O(η2) competitive ratio
// initialize a set F and a LIFO stack P .

1 Event Function JOBRELEASE() // job Jj is released
2 F ← F ∪ {Jj}
3 if δF (t) > δP (t) then
4 let Jq be the job with the minimum job size prediction in set F .
5 F ← F − {Jq}.
6 push Jq to the top of stack P .

7 start (or resume) processing the job at the top of stack P .

8 Event Function JOBCOMPLETE() // job Jj has been processed for p∗j time
9 if there is no unfinished job then

10 idle the machine.
11 else
12 if δF (t) > δP (t) then
13 let Jq be the job with the minimum job size prediction in set F .
14 F ← F − {Jq}.
15 push Jq to the top of stack P .

16 start (or resume) processing the job at the top of stack P .

4.4 Conjecture: An O(η2)-Competitive Algorithm

Another interesting question is how to use predictions if the error is reasonably small. We aim to bound
the performance by the error metric η in this case. The existing work [25] studies this scenario and
proposes an O(η4)-competitive algorithm via binning technique. Later, the same authors [32] improve
the competitive ratio to O(η2 log η) and prove a lower bound of Ω(η2) for the problem of response time
scheduling with predictions on a single machine. This section presents an error-oblivious algorithm
that we conjecture to achieve the optimal O(η2) competitive ratio (Conjecture IV.4). By error-oblivious,
we mean that the algorithm does not require the value of η. Inspired by the existing techniques used in
designing the O(η4)-competitive algorithm [25], we also apply the binning technique to our algorithm.
The enhancement is that our algorithm directly uses the job size predictions to decide the job to process.
Intuitively, the algorithm relies on predictions more when making scheduling decisions.

Our algorithm maintains a set F of full jobs and a Last In First Out (LIFO) stack P of partial jobs. The
algorithm always processes the job at the top of stack P . The full jobs are unprocessed jobs, while
the partial jobs are those processed but not completed. Newly arrived jobs are inserted into set F .
Denote δF (t) and δP (t) as the size of set F and stack P at time t, respectively. When δF (t) > δP (t),
we move the job with the minimum job size prediction from set F to the top of stack P . We name this
algorithm Greedy-bin since the choice from set F follows predictions greedily. Algorithm 8 shows the
pseudo-code.

4.5 CONCLUSIONS AND FUTURE WORK 42

We discuss the intuition behind the O(η2) competitive ratio. The algorithm keeps roughly half of the jobs
as full jobs so that it never runs into a bad situation where most jobs are partial and nearly completed. Fix
time t. Consider the worst-case scenario when the ratio δA(t)/δA∗(t) is maximized, where A represents
Algorithm 8. Let A complete no jobs by time t, and also it faces the worst-case situation where all
jobs in stack P are almost complete, i.e., p∗j − xAj (t) is infinitely small for every job Jj ∈ stack P .
We define two types of jobs as "large" and "small" to classify the jobs to be processed. Roughly, the
size of a "large" job is η2 times of a "small" job. We force that, by time t, algorithm A spends all the
time processing "large" jobs, while A∗ completes all "small" jobs, leaving the "large" jobs as full jobs.
Observe that A starts processing the job Jq with the minimum job size prediction in set F . Therefore,
for any job Jj in stack F , we have p∗q

η
≤ pq ≤ pj ≤ η · p∗j , which implies that p∗q ≤ η2 · p∗j and that

the time needed for completing Jq can complete at most η2 jobs for A∗. Every unfinished job in the
optimal schedule at time t corresponds to at most η2 completed jobs in the schedule produced by A.
Therefore, it follows that δA(t)/δA∗(t) ∈ O(η2) and Algorithm 8 is O(η2)-competitive. We conjecture
that this reasoning is core to proving the O(η2) competitiveness. The main difficulty of the formal proof
is showing that the structural properties of the worst-case input lead to the above situation. However,
showing this seems non-trivial, thus making the proof of Conjecture IV.4 our ongoing work.

Conjecture IV.4 (Performance Bound for Algorithm 8). Algorithm 8 is O(η2)-competitive.

4.5 Conclusions and Future Work

This work presents the first algorithm for online non-clairvoyant scheduling on a single machine to
minimize the mean response time with job size predictions, which simultaneously achieves optimal
consistency and optimal robustness up to a constant multiplicative factor. Our proposed algorithm is
1-consistent and 3P -robust, where P denotes the maximum ratio between any two job sizes. We derive
a sufficient condition for O(P) robustness in our analysis, which is helpful for algorithm design and
analysis in the future. Finally, we conjecture that an optimal O(η2)-competitive algorithm exists for the
case where the prediction error is small, making it preferable to have performance depending purely on
the error. Proving this conjecture is our ongoing work.

The most desirable algorithm has constant consistency, bounded robustness, and a good competitive
ratio on η. It appears challenging to design such an algorithm or show that such one does not exist.
The milestones towards this ambitious goal are sufficient conditions for constant consistency, bounded
robustness, and a good competitive ratio on η. Then, one may attempt to design an algorithm to maintain
the invariant satisfying the right conditions. Our work finds one sufficient condition for bounded
robustness. Finding others is our future work.

CHAPTER 5

Real-Time Scheduling with Predictions

The recent revival in learning theory gives us improved capabilities for accurate predictions and increased
opportunities for performance enhancement. This chapter extends the research agenda of online
scheduling with predictions to one of the central problems — soft real-time scheduling on single and
parallel machines to minimize the mean response time. We design an algorithm, PEDRMLF (Predictions
Enhanced Dynamic Randomized MultiLevel Feedback), that incorporates job size predictions, achieving
an optimal competitive ratio under perfect predictions and the best-known competitive ratio under any
predictions. PEDRMLF is the first algorithm that simultaneously achieves optimal consistency and
bounded robustness. Simulations show that the proposed algorithm performs close to the theoretically
optimal bound while consistently outperforming state-of-the-art benchmarks.

5.1 Introduction

Guaranteed quality of service (QoS) is the focus of soft real-time systems. Typical applications include
CPU scheduling in time-sharing operating systems, multimedia processing, and web browsing [34, 35].
In soft real-time systems, jobs do not have hard deadline requirements but prefer earlier completion times
[34, 36]. A common metric to measure QoS in such systems is the mean response time, i.e., the average
time a job spends in the system, including waiting time and service time. Minimizing this metric is
good for soft real-time systems [36] and desirable in scheduling low-priority jobs under non-emergency
conditions for mixed-criticality systems [37]. However, scheduling jobs to minimize mean response time
is NP-hard on identical parallel machines, even if we allow preemption and know the exact job sizes
upon job arrival [38].

Assuming clairvoyance where exact job sizes are known, Shortest Remaining Processing Time (SRPT)
achieves an optimal competitive ratio of O(min{log n

m
, logP}) on parallel machines and optimal

performance on a single machine [39, 40], where n is the number of jobs, m the number of machines,
and P the maximum ratio between any two job sizes (see Figure V.1 for a problem illustration). At the
other extreme, assuming non-clairvoyance where exact job sizes are unknown, Randomized Multilevel
Feedback (RMLF) achieves the best-known competitive ratio of O(min{log n log n

m
, log n logP}) on

parallel machines and an optimal O(log n) competitive ratio on a single machine [35, 41, 42]. Its
deterministic version serves as the basis for the scheduling algorithms used in Windows NT and Unix
[43]. SRPT is too optimistic about knowing exact job sizes, often unavailable in practice. RMLF is too

43

5.1 INTRODUCTION 44

Release time
Job size

0 0 0 4 4
2 2 4 3 3

SRPT

0 2 4 6 9

machine 1

machine 2

OPT

0 2 4 7

machine 1

machine 2

7

Figure V.1: Problem illustration with two identical parallel machines and five jobs.
SRPT always processes the jobs with minimal remaining sizes. This example shows that
SRPT is not optimal, as the mean response time achieved by SRPT is 3.6, while the
optimal (OPT) is 3.2.

pessimistic about having no information on job sizes. Though the job sizes are almost impossible to
know precisely in advance, they are not entirely invisible to us.

The recent revival in learning theory has shown improved capabilities for predicting job sizes [28–30]
and advancing online decision-making [1, 3, 10, 11, 25, 26, 44]. However, the predictions are likely
imperfect, which may degrade algorithm performance [44]. We expect the performance to improve as
the predictions become more accurate but to stay bounded under arbitrarily bad predictions. The metric
consistency and robustness reveal this desirable property. A good algorithm should obtain near-optimal
consistency and maintain bounded robustness.

Existing learning-augmented algorithms have shown great success in online scheduling with objectives
like minimizing makespan [1, 10] and total completion time [11, 26]. However, limited results have
been found in mean response time minimization. A recent work [25] studies the weighted response time
minimization with job size predictions on a single machine. The algorithm achieves good competitive
ratios with good predictions, but the performance is unbounded under arbitrarily bad predictions. No
results have yet been found for mean response time minimization on parallel machines.

There are two main challenges in designing algorithms to incorporate predictions. The first is quantifying
the prediction error, which should be simple enough for learning models to optimize. Counterexamples
are the error metrics strongly correlated with the target problem [26] or algorithm performance [10].
Such metrics, indeed, simplify algorithm design but complicate the training of the predictive model.

5.2 PRELIMINARIES 45

The error metric is thus expected to be problem- and algorithm-independent, often making algorithm
design difficult. The second challenge is achieving near-optimal consistency and bounded robustness
simultaneously [1, 3]. The intuition is that if an algorithm relies heavily on predictions, it may perform
well under good predictions but likely goes arbitrarily bad against unbounded prediction errors. On the
other hand, the algorithm may overlook the benefits of good predictions if the predictions are not trusted
enough.

We define total prediction error η to be the largest multiplicative factor between the prediction and the
exact value. This error metric is simple, intuitive, and also problem- and algorithm-independent. The
worse the predictions become, the greater η grows. We design an algorithm in the spirit of RMLF, which
creates a set of priority queues to schedule jobs. We use the ratio between job size prediction and the
total error to intentionally underestimate the actual job size. This job size estimate is used to decide
which priority queue the job enters, determining the job’s priority over the others.

Contributions. In this work, we present the first scheduling algorithm with predictions on single
and parallel machines to minimize mean response time. We define a suitable prediction error met-
ric η and propose PEDRMLF (Predictions Enhanced Dynamic Randomized MultiLevel Feedback)
that combines predictions with classic RMLF. We show that PEDRMLF achieves an optimal com-
petitive ratio of O(min{log n

m
, logP}) under perfect predictions and a best-known competitive ratio

of O(min{log n log n
m
, log n logP}) under any prediction error. We derive a sufficient condition for

optimal consistency, useful for algorithm design and analysis in future. In addition, we show that
PEDRMLF has a scalable time complexity of O(log n), suitable for large-scale applications. Finally,
we perform extensive simulations to show the performance improvement achieved by PEDRMLF. The
evaluation shows that PEDRMLF has similar performance to the optimal offline algorithm SRPT when
the predictions are reasonably accurate while consistently outperforming RMLF even if the prediction
error is unusually large. The solid performance guarantees pave the way for PEDRMLF to schedule soft
real-time jobs or mixed-criticality applications on real-time systems.

5.2 Preliminaries

5.2.1 Problem Definition

We study non-clairvoyant scheduling to minimize the mean response time on single and parallel
machines. There are m unit-speed machines and n jobs arriving over time. A job is denoted by Jj ,
1 ≤ j ≤ n, with a release time rj and job size p∗j . The release time rj is unknown until Jj arrives,
and the job size p∗j is unknown until Jj is completed. This setting is known as non-clairvoyant in
the literature. We let P denote the maximum ratio between any two job sizes. Jobs arrive over time,
so they are time indexed by their release time: j1 < j2 implies rj1 ≤ rj2 . Jobs are dependency-free,
preemptive, and non-parallelizable, meaning they have no dependencies in between, any running job
can be preempted and resumed on any machine, and any job can run on at most one machine at a time.
Given a schedule, let Cj be the completion time of job Jj . The response time for job Jj is defined as

5.2 PRELIMINARIES 46

Fj = Cj − rj . Our objective is to minimize the mean response time, i.e., 1
n

∑n
j=1 Fj , or equivalently the

total response time F =
∑n

j=1 Fj given any problem instance I . The scheduling problem is defined as
Pm | online-time-nclv, pmtn, rj |

∑
Fj (Graham notation [9]).

The scheduler can use the job size predictions from an oracle. However, the predictions are likely
imperfect and may adversely affect algorithm performance. Denote by pj the job size prediction for Jj .
We define the prediction error of Jj as ηj = max{ pj

p∗j
,
p∗j
pj
} and the total prediction error η as

η = max
1≤j≤n

ηj = max
1≤j≤n

max{pj
p∗j
,
p∗j
pj
}

The predictions are perfect if and only if η = 1. Otherwise, η increases toward +∞ as the predictions are
getting worse. We argue that knowing η is a reasonable assumption since the prediction error measured
during predictive model training will likely represent the prediction error in practice. Similar prediction
error definitions can be found in [1, 3, 25].

5.2.2 Performance Evaluation

We evaluate the performance of our algorithm using the competitive framework while also examining
its consistency and robustness to the prediction error [11]. Real-time systems strive to have worst-case
performance guarantees at all times. The competitive framework provides solid support by showing
algorithm behavior in the worst case and the distance from the optimum.

5.2.2.1 Competitive Framework

A randomized online algorithm A will compare against an oblivious optimal adversary A∗ that decides
a sequence of jobs along with their release times and sizes in advance without knowing the random
choices used by A [14]. Let FA

β (I) denote the total response time obtained by A on problem instance I
with a set of random choices β and FA∗

(I) the optimal total response time. We say A has a competitive
ratio c or is c-competitive if E[FA

β (I)] ≤ c · FA∗
(I) for any I , where c is a function of problem input

and E denotes the expectation function. The expectation of FA
β (I) is taken over all possible β.

5.2.2.2 Consistency and Robustness

In addition to the competitive ratio, we evaluate the performance of the algorithms by the metrics of
consistency and robustness introduced in Chapter 2.

5.2.3 Related Results

The work in [33] has been the first to study non-clairvoyant scheduling to minimize the mean response
time. The authors prove an Ω(n1/3) lower bound on the competitive ratio for deterministic algorithms
and an Ω(log n) lower bound for randomized algorithms on a single machine. Later, [45] gives the
first o(n)-competitive algorithm for the single machine case. The authors show that RMLF achieves an

5.3 ROBUST RESPONSE TIME SCHEDULING WITH JOB SIZE PREDICTIONS 47

0

machine 1

machine 2

machine 3

0.3 0.9

2.1 2.7 3.0

(a) (b)

Figure V.2: PEDRMLF performs the workload given in Figure V.3 on three machines
up to time 3.0. Subfigure (a) shows the schedule and (b) the status of the queues at time
3.0. PEDRMLF processes the jobs from the lowest to highest queues and within any
queue in increasing order of job index. In this example, every job except for J5 has been
processed due to the earliest release time first policy within queues. At time 3.0, J8 is
promoted to Q−1, J9 is just completed, and a new job J10 arrives. The running jobs will
become J7, J8, and J4 right after time 3.0. Observe that the multilevel feedback queues
are created on the fly with positive and non-positive queue indices.

O(log n log log n) competitive ratio. Extending RMLF to parallel machines, [41] conducts a strengthened
analysis to show that RMLF achieves O(min{log n log n

m
, log n logP}) competitive ratio on parallel

machines and an optimal O(log n) competitive ratio on a single machine. These results remain unaltered
for decades until the recent [25] has studied non-clairvoyant scheduling with predictions. The authors
propose an O(η4)-competitive algorithm for the single machine case, while the same algorithm is
extensible to the weighted version of the problem.

The problem of response time scheduling has been also tackled from other perspectives. In clairvoyant
settings, the single machine case can be optimally solved by SRPT [40]. For parallel machines, [39]
proves that SRPT is O(min{log n

m
, logP})-competitive, and this is optimal since the same work also

shows an Ω(log n
m
) and an Ω(logP) lower bound on the competitive ratio for randomized algorithms,

where P denotes the maximum ratio of any two job sizes. There are also scheduling algorithms under
resource augmentation framework [46] or related objectives like minimizing stretch [47].

5.3 Robust Response Time Scheduling with Job Size Predictions

This section describes the design of our robust response time scheduling algorithm, PEDRMLF, for
single and parallel machines. The elements of our algorithm are (1) real-time randomized estimation
of job sizes boosted by predictions, (2) dynamic multilevel feedback queues, and (3) classic RMLF.
PEDRMLF evolves RMLF [41, 45] via (1) using predictions to make more accurate estimations on
job sizes, (2) dynamically creating multilevel feedback queues to discard the idealistic assumption of
knowing the exact smallest job size, and (3) limiting probability distribution for the random variables to
minimize the occurrence of "bad" jobs that are small in size but cause a long response time (see Section
5.4.2 for formal definition).

We fix any schedule for the below discussion. PEDRMLF schedules active jobs in the system. Formally,
define xj(t) to be the processed size of job Jj by time t, and yj(t) = p∗j − xj(t) the actual remaining
size of Jj at time t. Job Jj is said to be active at time t if yj(t) > 0 and rj ≤ t.

5.3 ROBUST RESPONSE TIME SCHEDULING WITH JOB SIZE PREDICTIONS 48

Release time
Job size

0.0 0.0 0.3 0.9 1.5
40.0 36.0 120.0 10.0 39.0 9.0

2.1 2.7 2.7 2.7 3.0
6.0 0.5 0.4 0.3

Job size prediction 42.0 33.0 60.0 6.0 39.0 9.07.8 0.3 0.4 0.4
Initial queue index 5 5 5 2 5 32 -2 -2 -2

40.0 56.0 37.0 4.5 62.0 9.07.0 0.4 0.3 0.4Job size estimate

Figure V.3: Workload parameters for Figure V.2. The total prediction error η is 2. During
execution, PEDRMLF knows the job size predictions and η. The job size estimates
pej,b depend on random choices β, so the last row presents one possible outcome in
PEDRMLF’s execution.

Active jobs are partitioned into a set of priority queues Qk1 , Qk2 , ..., Qkd , where the subscript ki is an
integer and may take a negative value. We say Qi is lower than Qk if i < k. A lower queue has a higher
priority, i.e., the jobs in a lower queue will be processed before the ones from a higher queue. Within a
queue, the earliest release time first policy determines the job priority. Formally, job Jj1 has a higher
priority than Jj2 if they are within the same queue and j1 < j2. Recall that j1 < j2 implies rj1 ≤ rj2 .
Jobs thus have a fixed relative priority within a queue since their indices are fixed. The same policy was
also used in [41].

Every active job Jj is assigned with a job size estimate pej,i when it enters Qi. This estimation is updated
when Jj is promoted to a higher priority queue. We estimate the job size using the ratio of the job size
prediction over the total prediction error, i.e., pj

η
. This is an underestimation of the actual job size, since

pj
η
≤ pj

ηj
≤ p∗j . Note that it is our intention to ensure that the job Jj enters a queue Qb initially with

pj
η
≤ p∗j ≤ 2b, where b denotes the initial queue index.

For randomization used by PEDRMLF, define βj,i to be a random variable with distribution P [βj,i ≤
x] = 1 − (j + 1)−λ· x

2i , where λ is a symbolic constant and set to 4 in this work. This exponential
distribution is crucial according to [41].

5.3.1 Algorithm PEDRMLF

The pseudo-code of PEDRMLF is given in Algorithm 9. The core of PEDRMLF is always processing
the active jobs from the lowest to the highest queue, within any queue in increasing order of job index,
on any available machine(s). At first, no queue is created. When any job Jj is released at time rj ,
PEDRMLF takes the following actions:

• Compute the initial queue index b = [log2
pj
η
] + 1.

• Job Jj enters Qb with pej,b = max{2b, 2b+1 − βj,b}. Create Qb if it does not exist.
• If at least one available machine exists, start processing Jj on any available machine.

5.3 ROBUST RESPONSE TIME SCHEDULING WITH JOB SIZE PREDICTIONS 49

Algorithm 9: PEDRMLF
Data : job size predictions pj and the total prediction error η
Result :schedule with the optimal consistency and best-known robustness

1 Event Function JOBRELEASE() // job Jj is released
2 set b← [log2

pj
η] + 1.

3 if Qb does not exist then
4 create Qb of jobs in increasing order of job index.

5 push Jj into Qb and set pej,b ← max{2b, 2b+1 − βj,b}.
6 if there exists at least one available machine then
7 run Jj on any available machine.
8 else
9 let Jr be the running job from the highest queue with the largest job index in the queue.

10 let Qh be the queue that contains Jr.
11 if b < h then
12 preempt Jr and run Jj on the same machine.

13 Event Function JOBPROMOTE() // job Jj ∈ Qi−1 has been processed for pej,i−1 time
14 remove Jj from Qi−1.
15 if Qi does not exist then
16 create Qi of jobs in increasing order of job index.

17 push Jj into Qi and set pej,i ← max{2i, 2i+1 − βj,i}.

18 Event Function JOBCOMPLETE() // job Jj ∈ Qi has been processed for p∗j time
19 remove Jj from Qi.
20 if there is at least one active non-running job then
21 let Js be the active non-running job from the lowest queue with the smallest job index within the

queue.
22 run Js on the machine that has completed Jj .
23 else
24 idle the machine that has completed Jj .

• If there is at least one machine processing a job from a higher queue than Qb when no available
machine exists, preempt the running job from the highest queue (tie breaks by the larger job
index) and process Jj .

When a job Jj ∈ Qi−1 runs for pej,i−1 < p∗j time, PEDRMLF takes the following actions:

• Job Jj leaves Qi−1 and enters Qi. Create Qi if it does not exist.
• Set pej,i = max{2i, 2i+1 − βj,i}.

When a job Jj ∈ Qi has run for p∗j ≤ pej,i time, it is completed and leaves the system. Process the active
non-running job from the lowest queue with the smallest job index within the queue on the machine
completing Jj . Idle the machine if no such job exists. Figures V.2 and V.3 present a sample run of
PEDRMLF.

5.4 ALGORITHM ANALYSIS 50

5.4 Algorithm Analysis

This section proves the performance bounds for PEDRMLF on single and parallel machines. We show
that PEDRMLF behaves optimally under perfect predictions while achieving the same competitive ratio
as the best-known non-clairvoyant algorithm under any predictions. We prove the time complexity of
PEDRMLF at the end. See Table V.1 for the table of notations.

S Meaning S Meaning
n number of jobs m number of machines
Jj job with index j rj release time of Jj
p∗j job size of Jj Cj completion time of Jj
ηj prediction error of Jj η total prediction error
Fj response time of Jj F total response time
A algorithm PEDRMLF A∗ the optimal scheduler
Qi queue with index i pej,i job size estimate of Jj
βj,i a random choice of Jj β set of random choices
P max job size ratio b the initial queue index
λ constant (λ = 4) I a problem instance
xj processed size of Jj yj remaining size of Jj
U uncompleted jobs cj class of Jj
k minimal job class k near-maximal job class
Tj a partition of timeline |Tj | sum of time in Tj

tp last partial time instant ti a partition time instant
tl, tu release time in (tl, tu] cl, cu class in [cl, cu]
V volume of jobs ∆V volume difference
Xu

j unlucky job indicator X l
j lucky job indicator

Xb
j big job indicator Xa

j active job indicator
Uu unlucky active jobs U l lucky active jobs
U b big active jobs R a trivial algorithm
W busy time of R Wβ busy time of A
|W | sum of time in W |Wβ| sum of time in Wβ

Table V.1: A table of notations.

Theorem V.1 (Consistency). Algorithm PEDRMLF is O(min{log n
m
, logP})-competitive with η = 1

on single and parallel machines (m ≥ 1).

Theorem V.2 (Robustness). Algorithm PEDRMLF is O(log n)-competitive with any η on a single
machine (m = 1). It is O(min{log n log n

m
, log n logP})-competitive with any η on parallel machines

(m > 1).

Theorem V.3 (Complexity). Algorithm PEDRMLF has run-time complexity O(log2 n) to make any
online decision. The space complexity required by PEDRMLF is O(n).

These theorems will be proved via the following lemmas. We first prove the consistency results assuming
η = 1 and then extend these results to any η. In proving the consistency, we first fix the random choices
β to show several critical bounds (Lemma V.6 – V.12) holding in all deterministic executions. These
results are also useful in analyzing robustness. To prove the bounds, we simplify and enhance the tools

5.4 ALGORITHM ANALYSIS 51

developed in the studies [41, 45] of response time scheduling. We fix a problem instance I and drop the
symbol I when the context is clear. The subscript β represents the execution of PEDRMLF determined
by given random choices β = (βj,i).

A widely used formula for total response time is F =
∫
t≥0
|U(t)| dt, where U(t) is the set of uncompleted

active jobs at time t [48]. We denote Uβ(t) and U∗(t) as the set of uncompleted active jobs at time
t for PEDRMLF and the optimal scheduler, respectively. By linearity of expectation, it follows
E[FA

β] =
∫
t≥0

E[|Uβ(t)|] dt, allowing us to bound FA
β via bounding E[|Uβ(t)|].

Define class of job Jj to be cj , where we let cj = [log2 p
∗
j]. By our definition, the jobs with sizes in

the range [2i, 2i+1) will be considered in the same class i. Note that cj can take a negative value. For
job Jj , a sequence of βj,i is generated until the term βj,k reaches pej,k = max{2k, 2k+1 − βj,k} ≥ p∗j ,
where k = cj or k = cj + 1. If η = 1, the first generated random variable βj,b already satisfies

pej,b = max{2b, 2b+1 − βj,b} ≥ 2b = 2[log2
pj
η
]+1 = 2[log2 p

∗
j]+1 ≥ p∗j , where b = [log2

pj
η
] + 1 =

[log2 p
∗
j] + 1 = cj + 1. Thus, job Jj initially enters Qcj+1 and is completed within the queue. We name

such property as good predictions property and will show that it is a sufficient condition to achieve
optimal consistency.

Property V.4 (Good Predictions Property). Every job Jj initially enters Qcj+1 and is completed within
the queue.

The following basic result bounds the total job size by FA∗ .

Lemma V.5 (Bound on Total Job Size).
n∑

j=1

p∗j ≤ FA∗

Proof. Any job can only be processed on one machine at any time. Therefore, it follows that
p∗j ≤ Cj − rj and

∑n
j=1 p

∗
j ≤

∑n
j=1Cj − rj ≤ FA∗ for the optimal schedule. □

5.4.1 Deterministic Analysis

For the analysis below, we fix the random variable β, so the execution of PEDRMLF is deterministic.
The purpose is to prove several results for any β. Thus, we discard the symbol β below and will use it
again in later probabilistic analysis.

We begin with the intuitions and key ideas in our deterministic analysis. Our target is to relate the
uncompleted jobs in PEDRMLF and those in the optimal scheduler, i.e., bounding |U(t)| by |U∗(t)| at
any time t. No direct relationship can be found. To study |U(t)|, we expand and express it in terms of
volume V that represents the total remaining size of jobs. This expansion is from the observation that
every job of class i has its size of at least 2i. Then, we bound V by |U∗(t)|. Observe that V = V ∗ +∆V ,
where V ∗ is the volume for the optimal scheduler and ∆V the volume difference between PEDRMLF
and the optimal scheduler. Relating V ∗ with |U∗(t)| is immediate. We bound ∆V by |U∗(t)| instead.

5.4 ALGORITHM ANALYSIS 52

Lemma 8: Bound on Volume Difference Sum

Lemma 7: Bound on Volume Difference

Lemma 9: Bound on Inverse Volume Difference

 +

Lemma 12: Bound on Response Time of Running Jobs

Lemma 6: Bound on Full Time Instant Sum

 Theorem 13
The Competitive Ratio

+

Lemma 11: Bound on Uncompleted jobs

 Theorem 14
 The Competitive Ratio

+

Lemma 10: Bound on Volume

Figure V.4: Proof structure for deterministic analysis.

To study ∆V , we examine the behavioral difference between PEDRMLF and the optimal scheduler. To
do so, we partition the whole timeline into intervals composed of time instances. The time instants are
either full or partial ones according to the number of running machines. We first show that the partial
instances are insignificant in our analysis. We further partition the full instants according to the highest
queue where PEDRMLF is processing jobs at any given time. This partitioning allows us to bound ∆V

by |U∗(t)| individually on all intervals. We finally derive the relationship between |U(t)| and |U∗(t)|
with the above results for bounding FA by FA∗ . The proof structure for deterministic analysis is given
in Figure V.4.

Define two terms k and k for two job classes of our primary interest. Define k to be the minimal class
of all jobs, i.e., k = min{cj|1 ≤ j ≤ n} and k to be the maximal class while having at least m jobs
with the class equal to or higher than k, i.e., k = max{cj|1 ≤ j ≤ n ∧ |{Jk|ck ≥ cj}| ≥ m}. Note
that the definitions of k and k are asymmetric: k is not necessarily the maximal class of all jobs. It is
easy to derive that at most m − 1 jobs are of a class higher than k. We prove several bounds related
to the jobs with class in between k and k. Here, we assume n > m because PEDRMLF is trivially
optimal otherwise. We say a time instant t is full if |U(t)| ≥ m, or partial otherwise. We focus on
full time instants since the contribution of partial time instants to the total response time is marginal,
which is supported by Lemma V.12. Partition the full time instants into disjoint sets Tk, Tk+1, ..., Tk.
The set Tj , k ≤ j < k, includes the full time instants when the largest class of the running jobs is j, and
the set Tk includes the other full time instants. Let |Tj| denote the sum of the time instants in Tj , i.e.,
|Tj| =

∫
t∈Tj

dt. Lemma V.6 relates |Tj| with FA∗ .

5.4 ALGORITHM ANALYSIS 53

Lemma V.6 (Bound on Full Time Instant Sum).
k∑

j=k

(k − j + 1) ·m · |Tj| ≤ (log2
n

m
) · FA∗

+ 2FA∗

Proof. Define variable Sj =
∑

ci≤j p
∗
i , k ≤ j < k that corresponds to set Tj . At any time

instant t ∈ ∪j
k=kTk, k ≤ j < k, every one of the m machines is processing one job of class at most

j, yielding
∑j

k=km · |Tk| ≤ Sj . Similarly, we have
∑k

k=km · |Tk| ≤
∑n

j=1 p
∗
j . Then, it follows∑k

k=km · |Tk| ≤ FA∗ by Lemma V.5. We obtain

k∑
j=k

(k − j + 1) ·m · |Tj| =
k−1∑
j=k

j∑
k=k

m · |Tk|+
k∑

k=k

m · |Tk|

≤
k−1∑
j=k

Sj + FA∗

Define function f(Sk, ..., Sk−1) =
∑k−1

j=k Sj . We then bound f by O(log n
m
) · FA∗ . Observe the

following two facts. First, the sequence Sk, ..., Sk−1 is non-decreasing and is bounded by FA∗ , i.e.,
Sk ≤ ... ≤ Sk−1 ≤

∑n
j=1 p

∗
j ≤ FA∗ . Second, expression Sj − Sj−1, k ≤ j < k, equals the total size

of jobs of class j, with convention Sk−1 = 0. Since any job of class j has size bounded by 2j+1, the
number of jobs of class j is at least Sj−Sj−1

2j+1 . Then, it follows n ≥
∑k−1

j=k
Sj−Sj−1

2j+1 =
∑k−2

j=k
Sj

2j+2 +
Sk−1

2k
.

Consider the following optimization problem

max
Sk,...,Sk−1

f(Sk, ..., Sk−1) =
k−1∑
j=k

Sj

subject to n ≥
k−2∑
j=k

Sj

2j+2
+
Sk−1

2k

FA∗ ≥ Sk−1 ≥ ... ≥ Sk

Function f increases with increasing Sj . Thus, the optimal solution must satisfy that FA∗
= Sk−1 =

... = Sk−l ≥ Sk−l−1 and Sk−l−2 = ... = Sk = 0, for an integer l. Indeed, otherwise, one can transform
any optimal solution into this form via incrementing Sj and decrementing Sj−1, without violating
the constraint or decreasing f . We bound l by solving n = FA∗ · (

∑k−2

j=k−l−1
1

2j+2 + 1

2k
), yielding

l ≤ log2
n·2k
FA∗ . By definition of k, at least m jobs are of class k or higher. Any of these jobs has a size of

at least 2k. Thus, FA∗ ≥
∑n

j=1 p
∗
j ≥ m · 2k and we have l ≤ log2

n·2k
FA∗ ≤ log2

n
m

. It follows that

k−1∑
j=k

Sj ≤ (l + 1) · FA∗ ≤ (log2
n

m
) · FA∗

+ FA∗
□

5.4 ALGORITHM ANALYSIS 54

We bound |U(t)|. By definition, |U(t)| < m for any partial time instant t. Therefore, we study bounding
|U(t)| for full time instants. Fix any full time instant t, and we drop the symbol t when the context is
clear. Let tp be the last (largest) partial time instant before t. Partition the (maximal) full time interval
(tp, t] into disjoint subintervals (ti+1, ti], ti+1 ≤ ti, such that PEDRMLF is processing jobs only from
Qi or lower in (ti, t] and ti is minimal. We have the convention tk−1 = t. Equivalently, ti is the last
time instant before t when PEDRMLF is processing a job from Qi+1 or higher. Define the superscript
and subscript notations to restrict a set of jobs. Formally, U tl,tu

cl,cu
(t) represents a restrictive subset of

U(t): U tl,tu
cl,cu

(t) = {Jj|tl < rj ≤ tu ∧ cl ≤ cj ≤ cu ∧ Jj ∈ U(t)}. The superscript restricts the release
time, and the subscript the class. Define volume V over a set of jobs to be the total remaining size:
V tl,tu
cl,cu

(t) =
∑

Jj∈U
tl,tu
cl,cu

(t)
yj(t). We use U tl,tu

cl,cu
(t), U∗tl,tu

cl,cu
(t) and V tl,tu

cl,cu
, V ∗tl,tu

cl,cu
to denote the quantities for

PEDRMLF and the optimal scheduler, respectively. For simplicity, we write ∆V tl,tu
cl,cu

= V ∗tl,tu
cl,cu
− V tl,tu

cl,cu
.

The following two lemmas bound ∆V ti,t
i,∞(t) by |U∗(t)|.

Lemma V.7 (Bound on Volume Difference). Fix any full time instant t. For any k ≥ k, x ≥ y, we have

∆V
tx,ty
k,∞ (t) ≤ 2x+1 · |U∗tx,ty

k,∞ (t)|

Proof. All quantities in this proof correspond to a fixed time t. Thus, the symbol t is dropped below.
PEDRMLF processes jobs only from Qx or lower in (tx, ty], so every job released in (tx, ty] receives at
most 2x+1 time for processing. We have

V
tx,ty
k,∞ ≥

∑
Jj∈U∗tx,ty

k,∞

(p∗j − 2x+1) ≥ V ∗tx,ty
k,∞ − 2x+1 · |U∗tx,ty

k,∞ | □

Lemma V.8 (Bound on Volume Difference Sum). Fix any full time instant t. For any k ≤ k ≤ k, we
have

k∑
i=k

∆V ti,t
i,∞(t)

2i
≤ 4 · |U∗tk,t

k,∞(t)|

Proof. The symbol t is dropped for the analysis below. By Lemma V.7, we have ∆V
tj+1,tj
k,∞ ≤

2j+2 · |U∗tj+1,tj
k,∞ | for any k and j. With |U∗tj+1,tj

i,∞ | ≤ |U∗tj+1,tj
k,∞ | for any i ≥ k, we obtain

k∑
i=k

∆V ti,t
i,∞

2i
≤

k∑
i=k

i−1∑
j=k−1

2j+2 · |U∗tj+1,tj
i,∞ |

2i

≤
k−1∑

j=k−1

k∑
i=max{j+1,k}

|U∗tj+1,tj
k,∞ |

2i−j−2
≤ 4

k−1∑
j=k−1

|U∗tj+1,tj
k,∞ |

= 4 · |U∗tk,t
k,∞| □

Lemma V.9 bounds the inverse volume difference.

Lemma V.9 (Bound on Inverse Volume Difference). Fix any full time instant t. For any k ≤ i ≤ k, we
have

−∆V 0,t
k,i (t) ≤ (m− 1) · 2i+2 +∆V

ti+1,t
i+1,∞(t)

5.4 ALGORITHM ANALYSIS 55

Proof. The symbol t is dropped for the analysis below. For any i ≥ k, we have−∆V 0,t
k,i −∆V

ti+1,t
i+1,∞ =

V
0,ti+1

k,i − (V ∗0,ti+1

k,i +V ∗ti+1,t
k,i)+V

ti+1,t
k,∞ −V ∗ti+1,t

i+1,∞ ≤ V
0,ti+1

k,i +V
ti+1,t
k,∞ −V ∗ti+1,t

k,∞ = V
0,ti+1

k,i +(−∆V ti+1,t
k,∞).

We then bound V 0,ti+1

k,i + (−∆V ti+1,t
k,∞).

There is at least one active job from Qi+2 or higher and at most m− 1 active jobs from Qi+1 or lower
at time ti+1. By definition of ti+1, the job(s) from Qi+2 or higher are not processed in (ti+1, t]. For the
rest of this proof, we refer to the active jobs from Qi+1 or lower at time ti+1 as remaining jobs. Let
L denote the amount of time PEDRMLF spends in processing the remaining jobs in (ti+1, t]. Since
PEDRMLF does not idle any machine in (ti+1, t], it follows V ti+1,t

k,∞ =
∑

ti+1<rj≤t p
∗
j −m · (t− ti+1)+L.

With V ∗ti+1,t
k,∞ ≥

∑
ti+1<rj≤t p

∗
j −m · (t− ti+1), term −∆V ti+1,t

k,∞ = V
ti+1,t
k,∞ − V ∗ti+1,t

k,∞ is bounded above

by L. Therefore, we have V 0,ti+1

k,i + (−∆V ti+1,t
k,∞) ≤ V

0,ti+1

k,i + L. We then bound V 0,ti+1

k,i + L. For any
remaining job Jj , if cj ≤ i, then p∗j ≤ 2i+1 and Jj contributes at most 2i+1 to V 0,ti+1

k,i and at most 2i+1 to
L. Altogether, Jj contributes 2i+2, if cj ≤ i. Otherwise, Jj contributes 0 to V 0,ti+1

k,i and at most 2i+2 to L,
since any running job in (ti+1, t] is from Qi+1 or lower. With the number of remaining jobs bounded by
m− 1, it holds that

−∆V 0,t
k,i −∆V

ti+1,t
i+1,∞ ≤ V

0,ti+1

k,i + (−∆V ti+1,t
k,∞) ≤ (m− 1) · 2i+2 □

We combine Lemmas V.7, V.8, and V.9 to establish the following important lemma that bounds the
volume in PEDRMLF.

Lemma V.10 (Bound on Volume). Fix any full time instant t. For any k ≤ k ≤ k, we have

k∑
i=k

V 0,t
i,i (t)

2i
≤ 6 · |U∗(t)|+ 2(m− 1)(k − k + 4)

Proof. The symbol t is dropped for the analysis below. With ∆V 0,t
cl,cu

2cu+1 ≤
V ∗0,t

cl,cu

2cu+1 ≤ |U∗0,t
cl,cu
| for any

cl ≤ cu, we have

k∑
i=k

V 0,t
i,i

2i
=

k∑
i=k

V ∗0,t
i,i −∆V 0,t

i,i

2i

≤ 2
k∑

i=k

|U∗0,t
i,i | −

k∑
i=k

∆V 0,t
k,i −∆V 0,t

k,i−1

2i

= 2|U∗0,t
k,k
|+

∆V 0,t
k,k−1

2k
−

∆V 0,t

k,k

2k
−

k−1∑
i=k

∆V 0,t
k,i

2i+1

≤ 2|U∗0,t
k,k
|+ |U∗0,t

k,k−1|+
(m− 1) · 2k+2 +∆V

tk+1,t

k+1,∞

2k

+
k−1∑
i=k

(m− 1) · 2i+2 +∆V
ti+1,t
i+1,∞

2i+1
(By Lemma V.9)

5.4 ALGORITHM ANALYSIS 56

≤ 2|U∗0,t
k,k
|+ 4(m− 1) +

2k+2 · |U∗tk+1,t

k+1,∞|

2k

+ 2(m− 1)(k − k) +
k∑

i=k+1

∆V ti,t
i,∞

2i
(By Lemma V.7)

≤ 2|U∗0,t
k,k
|+ 2(m− 1)(k − k + 2) + 4|U∗tk+1,t

k+1,∞|

+ 4|U∗tk,t
k+1,∞| (By Lemma V.8)

≤ 6|U∗|+ 2(m− 1)(k − k + 4)

The last inequality holds since at most m− 1 jobs are of a class higher than k. □

Lemma V.10 will bound |U(t)| under both the good predictions property (Property V.4) and a general
prediction error. We begin with the former.

Lemma V.11 (Bound on Uncompleted Jobs under the Good Predictions Property). Fix any full time
instant t. For any k ≤ k ≤ k, we have

|U0,t

k,k
(t)| ≤ 3m · (k − k + 3) + 6 · |U∗(t)|

under the good predictions property.

Proof. The symbol t is dropped for the analysis below. By the earliest release time policy, every
Qk+1, ..., Qk+1 contains at most m jobs that have received processing, i.e., yj(t) < p∗j , while the other
jobs have received no processing, i.e., yj(t) = p∗j . Thus, at most m · (k − k + 1) jobs have a remaining

size less than the job size, while at most
V 0,t
i,i

2i
jobs of class i have a remaining size equal to the job size.

We obtain

|U0,t

k,k
| ≤ m · (k − k + 1) +

k∑
i=k

V 0,t
i,i

2i

≤ m · (k − k + 1) + 6 · |U∗|+ 2(m− 1)(k − k + 4)

(By Lemma V.10)

≤ 3m · (k − k + 3) + 6 · |U∗| □

Lemma V.12 shows that the contribution of the running jobs to the total response time is bounded by
FA∗ .

Lemma V.12 (Bound on Response Time of Running Jobs).∫
t≥0

min{|U(t)|,m} dt ≤ FA∗

Proof. At any time t when |U(t)| < m, the machine(s) are processing all the active jobs. At any
time t when |U(t)| ≥ m, every one of the m machines is processing a job. Meanwhile, any job is
processed on at most one machine at any time. We have

∫
t≥0

min{|U(t)|,m} dt ≤
∑n

j=1 p
∗
j ≤ FA∗ . □

5.4 ALGORITHM ANALYSIS 57

With Lemma V.12, for any random choices β we write

FA
β =

∫
t≥0

|Uβ(t)| dt

=

∫
t≥0

min{|Uβ(t)|,m} dt+
∫
t≥0,|Uβ(t)|≥m

|Uβ(t)| −mdt

≤ FA∗
+

∫
t≥0,|Uβ(t)|≥m

|Uβ
0,t

k,k
(t)| dt (By Lemma V.12)

The last inequality holds since at most m− 1 jobs are of a class higher than k. We are ready to prove
our consistency results.

Theorem V.13 (The O(logP) Competitive Ratio under the Good Predictions Property).

FA
β (I) ≤ 3 · (log2 P) · FA∗

(I) + 19 · FA∗
(I)

for any problem instance I and random choices β under the good predictions property.

Proof. Fix a problem instance I and random choices β. The symbols I and β are dropped for the
analysis below. With k − k ≤ 1 + log2 P , we have

FA ≤ FA∗
+

∫
t≥0,|U(t)|≥m

|U0,t

k,k
(t)| dt

≤ FA∗
+

∫
t≥0,|U(t)|≥m

3m · (k − k + 3) dt

+

∫
t≥0,|U(t)|≥m

6 · |U∗(t)| dt (By Lemma V.11)

≤ 7 · FA∗
+ 3 · (log2 P + 4) ·

∫
t≥0,|U(t)|≥m

mdt

≤ 7 · FA∗
+ 3 · (log2 P + 4) · FA∗

(By Lemma V.12)

= 3 · (log2 P) · FA∗
+ 19 · FA∗

= O(logP)FA∗
□

Theorem V.14 (The O(log n
m
) Competitive Ratio under the Good Predictions Property).

FA
β (I) ≤ 3 · (log2

n

m
) · FA∗

(I) + 20 · FA∗
(I)

for any problem instance I and random choices β under the good predictions property.

Proof. The symbols I and β are dropped for the analysis below. Partition the full time instants into
Tk, ..., Tk. At most m− 1 jobs are from Qj−1 or lower at t ∈ Tj . We obtain

FA ≤ FA∗
+

∫
t≥0,|U(t)|≥m

|U0,t

k,k
(t)| dt

≤ FA∗
+

k∑
j=k

∫
t∈Tj

3m(k − j + 3) + 6 · |U∗(t)|+mdt

(By Lemma V.11)

5.4 ALGORITHM ANALYSIS 58

≤ FA∗
+ 7

∫
t≥0,|U(t)|≥m

mdt+ 6

∫
t≥0

|U∗(t)| dt

+ 3 ·
k∑

j=k

(k − j + 1) ·m · |Tj|

≤ 14 · FA∗
+ 3 · ((log2

n

m
) · FA∗

+ 2FA∗
)

(By Lemma V.12 and Lemma V.6)

= 3(log2
n

m
) · FA∗

+ 20 · FA∗
= O(log

n

m
)FA∗

□

Remark V.15. Theorem V.1 is proved by combining Theorems V.13 and V.14. The good predictions
property holds when η = 1, and the above bounds hold for any β. It follows that E[FA

β (I)] ≤
min{3 · (log2 P) + 19, 3 · (log2 n

m
) + 20} · FA∗

(I) = O(min{log n
m
, logP}) · FA∗

(I).

Theorem V.16 (Optimality of Consistency for Algorithm 7). Algorithm PEDRMLF has asymptotically
optimal consistency.

Proof. Recall that the lower bound for the competitive ratio of any clairvoyant algorithm is
Ω(max{log n

m
, logP}). By the Fundamental Theorems of Consistency (Theorem II.4), Algorithm

PEDRMLF has consistency matching the lower bound. □

5.4.2 Probabilistic Analysis

This section considers the general case with η > 1, where randomization is critical in bounding the
performance. We reintroduce subscript β to represent the execution of PEDRMLF determined by given
random choices β = (βj,i).

We begin with the intuitions and key ideas in our probabilistic analysis. Without good predictions
(Property V.4), a job may travel multiple queues before its completion. We thus want PEDRMLF to
minimize the jobs with small remaining sizes in wait or to keep significant remaining sizes when jobs
enter their final queue. The jobs are classified into unlucky, lucky, and big. Unlucky jobs have small
remaining sizes while entering the highest queue they can. Lucky jobs are those not unlucky. Big jobs
are the lucky ones with the additional property of having a significant remaining size when entering their
final queue. We first show that unlucky jobs are neglectable in the analysis. Then, we relate lucky jobs
and big jobs. The key observation is a linear relationship between the expected number of lucky jobs
and big jobs. This observation allows us to bound |U(t)| via bounding big jobs only, which is explicit by
expressing |U(t)| in terms of the volume V . The proof structure for probabilistic analysis is given in
Figure V.5.

We define a job Jj to be unlucky if p∗j < 2cj + 2cj−1 and Jj ends in Qcj+1. Otherwise, job Jj is said to
be lucky. Define a job Jj to be big at time t if Jj is lucky and within Qi at time t and has remaining size
at least

p∗j
2 log2(j+1)

when entering Qi, i.e., if Jj enters Qi at time q ≤ t, yj(q) ≥
p∗j

2 log2(j+1)
for lucky job

Jj . Define Uu
β (t), U

l
β(t), and U b

β(t) to be the set of unlucky active, lucky active, and big jobs at time t,

5.4 ALGORITHM ANALYSIS 59

Theorem 22 Lemma 10: Bound on Volume

Lemma 21: Bound on Uncompleted Big Jobs

Lemma 17: Bound on Working Time

Lemma 18: Bound on Response Time of Constant Jobs

Lemma 19
Promotion Time Lemma

Lemma 20: Bound on Lucky Jobs by Big Jobs

Lemma 16: Bound on Unlucky Jobs

Lemma 12: Bound on Response Time of Running Jobs

Lemma 6: Bound on Full Time Instant Sum

+ The Competitive Ratio

+ The Competitive Ratio

+ The Competitive Ratio

Theorem 23

Theorem 24

Figure V.5: Proof structure for probabilistic analysis.

respectively. For every time t, define indicator variables Xu
j (t), X

l
j(t), X

b
j (t), and Xa

j (t), which takes
value 1 if Jj is unlucky, lucky, big, and active at time t or 0 otherwise, respectively. Note that Xu

j and
X l

j are constants under fixed β, independent of time, while Xb
j and Xa

j depend on the time of interest.
We first show that E[|Uu

β (t)|] is small, so unlucky jobs are insignificant to the total response time.

Lemma V.17 (Bound on Unlucky Jobs).

E[|Uu
β (t)|] ≤ 1

for any time t.

Proof. We write Xu
j (t) = Xu

j , as it is constant with fixed β independent to t. By definition of
unlucky jobs, we have

P [Xu
j = 1] = P [p∗j < 2cj + 2cj−1 ∧ pej,cj < p∗j]

≤ P [βj,cj > 2cj−1] = (j + 1)−
λ
2 ≤ 1

(j + 1)2

(By definition of pej,cj and λ ≥ 4)

5.4 ALGORITHM ANALYSIS 60

for any job Jj . Therefore, we obtain

E[|Uu
β (t)|] = E[

n∑
j=1

Xu
j ·Xa

j (t)] ≤ E[
n∑

j=1

Xu
j]

=
n∑

j=1

E[Xu
j] =

n∑
j=1

P [Xu
j = 1] ≤

n∑
j=1

1

(j + 1)2
≤ 1 □

Lemma V.17 shows that our probability distribution for randomization bounds the expected number of
unlucky jobs down to a constant 1. This compares to the previous works [41, 45], where the expected
number of the unlucky jobs is in O(log n).

We then bound the time instants when PEDRMLF is processing job(s). Define set Wβ = {t|t ≥
0 ∧ |Uβ(t)| > 0}. Consider a trivial scheduling algorithm R which uses only one single machine and
always runs the active job with the smallest job index to its completion. Define set W to be the time
instants when R is processing a job. Denote |Wβ| =

∫
t∈Wβ

dt and similarly |W | =
∫
t∈W dt. Clearly, it

holds |W | =
∑n

j=1 p
∗
j ≤ FA∗ . Lemma V.18 bounds Wβ by W .

Lemma V.18 (Bound on Working Time).
Wβ ⊆ W

for any random choices β.

Proof. Both PEDRMLF and R maintain the invariant that at least one machine is processing a job
if there is an active job. Since R uses a single machine while PEDRMLF uses m machines (m ≥ 1), it
follows that t ∈ W for any t ∈ Wβ . □

We show that a constant number of jobs are insignificant to the total response time. This, together with
Lemma V.17, implies that the unlucky jobs are insignificant.

Lemma V.19 (Bound on Response Time of Constant Jobs).

E[

∫
t≥0,|Uβ(t)|>0

α dt] ≤ α · FA∗

for any constant α ≥ 0.

Proof.

E[

∫
t≥0,|Uβ(t)|>0

α dt] = E[

∫
t∈Wβ

α dt] ≤ E[

∫
t∈W

α dt]

= α · |W | ≤ α · FA∗
(By Lemma V.18) □

The following Promotion Time Lemma shows how random choice βj,s controls when job Jj leaves Qs+1,
with the other random choices fixed. We define promotion time of Jj from Qs+1 to be the time instant Jj
leaves Qs+1 or the time instant when Jj leaves Qs if Jj is completed when leaving Qs. We show that the
promotion time of Jj from Qs+1 is non-increasing with decreasing βj,s.

5.4 ALGORITHM ANALYSIS 61

Lemma V.20 (Promotion Time Lemma). For any job Jj and integer s ≤ cj , the promotion time of Jj
from Qs+1 is non-increasing with decreasing βj,s, with fixed random choices βk,i, k ̸= j or i ̸= s.

Proof. If job Jj is completed when leaving Qs, it must hold pej,s ≥ p∗j . Then, every execution of
PEDRMLF is identical to each other before time a, the first time instant when xj(a) increases to p∗j .
Therefore, the promotion time of Jj from Qs+1 remains at constant a, as long as pej,s ≥ p∗j . In the
following analysis, we consider pej,s ≤ p∗j and show that the promotion time of Jj from Qs+1 in the
execution of PEDRMLF with pej,s = x is no less than with pej,s = y, for any x < y ≤ p∗j .

Run PEDRMLF twice with fixed random choices βk,i, k ̸= j or i ̸= s. The first time we set pej,s = x,
and the second time pej,s = y. We use superscripts (1) and (2) to denote the quantities in the first and
second executions. Let t(1) and t(2) denote the promotion time of Jj from Qs+1 in the two executions.
Let t be the promotion time of Jj from Qs in execution 1. Two executions are identical to each other
before t. It follows x(1)k (t) = x

(2)
k (t) for every job Jk. Then, we show that t(1) ≥ t(2) using proof by

contradiction.

Assume t(1) < t(2). There exists a time instant tc ∈ (t, t(1)] such that x(1)j (tc) > x
(2)
j (tc) and Jj is not

running in execution 2 at time tc. Define set S(t) = {Jk|k ̸= j ∧ (Jk is within Qs or lower at time t ∨
Jk is within Qs+1 and k < j at time t)}. PEDRMLF maintains the invariant of processing the jobs with
the highest priority of being within the lowest queue(s) and having the smallest job index(s) within
a queue. For any time t ∈ (t, tc], observe that (i) both executions must be processing the jobs with
the highest priority from S(1)(t) ∪ {Jj} and S(2)(t) ∪ {Jj} respectively, (ii) job Jj is either within Qs

or Qs+1 in execution 2, while it stays within Qs+1 in execution 1, (iii) any job Jk ∈ S(2)(t) running
in execution 2 is also running in execution 1 as long as Jk ∈ S(1)(t) by observation (ii) and the fixed
relative priority between jobs within any queue, and (iv) if Jk ∈ S(2)(t) but Jk /∈ S(1)(t), job Jk must
have been promoted to a higher queue or completed by time t in execution 1. By combining these
observations, it follows x(1)k (t) ≥ x

(2)
k (t) for any Jk ∈ S(2)(t), and S(1)(t) ⊆ S(2)(t) for any t ∈ (t, tc].

By the invariant that PEDRMLF maintains with S(1)(t) ⊆ S(2)(t), the total amount of work done to
jobs in S(2)(t) ∪ {Jj} in execution 2 is at least that in execution 1, for any t ∈ (t, tc]. However, we have
shown x(1)k (tc) ≥ x

(2)
k (tc) for every Jk ∈ S(2)(tc) and x(1)j (tc) > x

(2)
j (tc), i.e., the total amount of work

done to jobs in S(2)(tc) ∪ {Jj} in execution 1 is more than that in execution 2. This is a contradiction.

With pej,s non-decreasing with decreasing βj,s, the promotion time of Jj from Qs+1 is non-increasing
with decreasing βj,s. □

Lemma V.21 bounds E[|U l
β(t)|] by E[|U b

β(t)|].

Lemma V.21 (Bound on Lucky Jobs by Big Jobs).

E[|U l
β(t)|] ≤ 1 + 2λ · E[|U b

β(t)|]

for any time t.

5.4 ALGORITHM ANALYSIS 62

Proof. Fix any time t, and we drop the symbol t for the analysis below. The bound follows the
inequality

P [Xb
j = 1] ≥ 1

2λ
· P [X l

j ·Xa
j = 1]

for any job Jj , j ≥ 2. We first prove this inequality. Fix any lucky job Jj active at time t, and consider
the following cases. If Jj is within Qcj−1 or lower, it is always big: if Jj enters its current queue at

time q, it follows that xj(q) ≤ 2cj−1 and yj(q) = p∗j − xj(q) ≥ p∗j − 2cj−1 ≥ p∗j
2
≥ p∗j

2 log2(j+1)
. Therefore,

P [Xb
j = 1] = P [X l

j ·Xa
j = 1] if Jj is within Qcj−1 or lower. Next, consider the case when Jj is within

Qcj or Qcj+1. If Jj enters Qcj or Qcj+1 at arrival, it immediately follows P [Xb
j = 1] = P [X l

j ·Xa
j = 1].

Otherwise, for Jj within Qcj with fixed random choices βk,i, k ̸= j, i ̸= cj − 1, there exists a minimum
value ρ such that Jj is active within Qcj at time t if βj,cj−1 ≥ ρ by Lemma V.20. We obtain

P [Xb
j = 1|X l

j ·Xa
j = 1]

= P [pej,cj−1 ≤ p∗j(1−
1

2 log2(j + 1)
)|βj,cj−1 ≥ ρ]

≥ P [pej,cj−1 ≤ p∗j(1−
1

2 log2(j + 1)
)]

(By pej,cj−1 non-increasing with increasing βj,cj−1)

= P [βj,cj−1 ≥ 2cj − p∗j(1−
1

2 log2(j + 1)
)]

= (j + 1)
−λ

2
cj−1 ·(2

cj−p∗j (1−
1

2 log2(j+1)
)) ≥ 2−λ

Similarly, for Jj within Qcj+1 with fixed random choices βk,i, k ̸= j, i ̸= cj , there exists a minimum ρ′

such that Jj is active within Qcj+1 at time t if βj,cj ≥ ρ′ by Lemma V.20. Lucky job Jj entering Qcj+1

implies 2cj + 2cj−1 ≤ p∗j < 2cj+1 and pej,cj < p∗j . Observe 2cj ≤ p∗j(1 − 1
2 log2(j+1)

) for any j ≥ 2 and
p∗j ≥ 2cj + 2cj−1. We obtain

P [Xb
j = 1|X l

j ·Xa
j = 1]

= P [pej,cj ≤ p∗j(1−
1

2 log2(j + 1)
)|βj,cj ≥ ρ′ ∧ pej,cj < p∗j]

≥ P [pej,cj ≤ p∗j(1−
1

2 log2(j + 1)
)|βj,cj ≥ 2cj+1 − p∗j]

(By pej,cj non-increasing with increasing βj,cj)

=
P [βj,cj ≥ 2cj+1 − p∗j(1− 1

2 log2(j+1)
)]

P [βj,cj ≥ 2cj+1 − p∗j]
= 2

−λ·p∗j
2
cj+1 ≥ 2−λ

We have P [Xb
j = 1] = P [Xb

j = 1|X l
j ·Xa

j = 1] · P [X l
j ·Xa

j = 1] ≥ 1
2λ
· P [X l

j ·Xa
j = 1] for any job Jj ,

j ≥ 2. We conclude

E[|U l
β|] ≤ 1 +

n∑
j=2

E[X l
j ·Xa

j] = 1 +
n∑

j=2

P [X l
j ·Xa

j = 1]

5.4 ALGORITHM ANALYSIS 63

≤ 1 + 2λ ·
n∑

j=2

P [Xb
j = 1] = 1 + 2λ · E[|U b

β|] □

Lemma V.22 bounds E[|U b
β(t)|].

Lemma V.22 (Bound on Uncompleted Big Jobs under η > 1). Fix any full time instant t, and for any
k ≤ k ≤ k, we have

E[|U b
β

0,t

k,k
(t)|] ≤ 12|U∗(t)| log2(n+ 1) +m(k − k + 2)

+ 4(m− 1)(k − k + 4) log2(n+ 1)

for any η > 1.

Proof. The symbol t is dropped for the analysis below. The bound is established by bounding the
number of big jobs, |U b

β
0,t

k,k
|, by |U∗| for any β. Fix random choices β, and we drop the symbol β below.

We focus on Qk+1 and lower, as the jobs of class at least k occur only in them. Any job Jj with cj ≥ k is
always big in Qk−1 or lower. Every Qk, ..., Qk+1 contains at most m jobs that have received processing
after entering the queue due to the earliest release time first policy. Any other big job Jj has remaining

size at least
p∗j

2 log2(j+1)
≥ 2cj

2 log2(n+1)
. It follows |U b0,t

k,k
| ≤ m · (k− k+ 2) + 2 · log2(n+ 1) ·

∑k
i=k

V 0,t
i,i

2i
≤

2 · log2(n+ 1) · (6 · |U∗|+ 2(m− 1)(k − k + 4)) +m · (k − k + 2) by Lemma V.10. □

Observe |Uβ
0,t

k,k
(t)| ≤ |Uu

β (t)|+ |U l
β
0,t

k,k
(t)| for any t and random choices β. We write

E[FA
β] ≤ FA∗

+

∫
t≥0,|Uβ(t)|≥m

E[|Uβ
0,t

k,k
(t)|] dt

≤ FA∗
+

∫
t≥0,|Uβ(t)|≥m

E[|Uu
β (t)|] + E[|U l

β

0,t

k,k
(t)|] dt

≤ 2λ
∫
t≥0,|Uβ(t)|≥m

E[|U b
β

0,t

k,k
(t)|] dt+ E[

∫
t≥0,|Uβ(t)|>0

2 dt]

+ FA∗
(By Lemma V.17 and Lemma V.21)

≤ 3FA∗
+ 2λ

∫
t≥0,|Uβ(t)|≥m

E[|U b
β

0,t

k,k
(t)|] dt (By Lemma V.19)

from which we prove our robustness results.

Theorem V.23 (The O(log n logP) Competitive Ratio under η > 1 on Parallel Machines).

E[FA
β (I)] ≤ 2λ+2 · (log2(n+ 1) + 1) · (log2 P + 8) · FA∗

(I)

for any problem instance I and m > 1.

Proof. Fix a problem instance I . The symbol I is dropped for the analysis below. We have

E[FA
β] ≤ 3FA∗

+ 2λ
∫
t≥0,|Uβ(t)|≥m

E[|U b
β

0,t

k,k
(t)|] dt

5.4 ALGORITHM ANALYSIS 64

≤ 2λ+2 log2(n+ 1)

∫
t≥0,|Uβ(t)|≥m

(m− 1)(k − k + 4) dt

+ 2λ+2 · 3 · log2(n+ 1)

∫
t≥0,|Uβ(t)|≥m

|U∗(t)| dt

+ 2λ
∫
t≥0,|Uβ(t)|≥m

m(k − k + 2) dt+ 3FA∗

(By Lemma V.22)

≤ 2λ+2 log2(n+ 1)(log2 P + 5)FA∗
+ 2λ(log2 P + 3)FA∗

+ 3 · 2λ+2 · log2(n+ 1) · FA∗
+ 3 · FA∗

(By k − k ≤ 1 + log2 P and Lemma V.12)

≤ 2λ+2(log2(n+ 1) + 1)(log2 P + 8)FA∗
(By λ ≥ 4)

= O(log n logP) · FA∗
□

Theorem V.24 (The O(log n log n
m
) Competitive Ratio under η > 1 on Parallel Machines).

E[FA
β (I)] ≤ 2λ+2 · log2(n+ 1) · (log2

n

m
+ 9) · FA∗

(I)

for any problem instance I and m > 1.

Proof. The symbol I is dropped for the analysis below. Partition the full time instants into Tk, ..., Tk.
At most m− 1 jobs are from Qj−1 or lower at time t ∈ Tj . We have

E[FA
β] ≤ 3FA∗

+ 2λ
∫
t≥0,|Uβ(t)|≥m

E[|U b
β

0,t

k,k
(t)|] dt

≤ 3FA∗
+ 2λ

k∑
j=k

∫
t∈Tj

E[|U b
β

0,t

j,k
|] +mdt

≤ 3FA∗
+ 2λ+2 · 3 · log2(n+ 1)

k∑
j=k

∫
t∈Tj

|U∗(t)| dt

+ 2λ+2 log2(n+ 1)
k∑

j=k

∫
t∈Tj

(m− 1)(k − j + 4) dt

+ 2λ
k∑

j=k

∫
t∈Tj

m(k − j + 3) dt (By Lemma V.22)

≤ 3FA∗
+ 2λ+2 · 3 · log2(n+ 1) ·

∫
t≥0

|U∗(t)| dt

+ (2λ+2 log2(n+ 1) + 2λ)
k∑

j=k

(k − j + 1) ·m · |Tj|

+ (2λ+2 · 3 · log2(n+ 1) + 2λ+1)

∫
t≥0,|Uβ(t)|≥m

mdt

5.4 ALGORITHM ANALYSIS 65

≤ 3FA∗
+ 2λ+2 · 3 · log2(n+ 1) · FA∗

+ (2λ+2 log2(n+ 1) + 2λ) · (log2
n

m
+ 2) · FA∗

+ (2λ+2 · 3 · log2(n+ 1) + 2λ+1) · FA∗

(By Lemma V.6 and Lemma V.12)

≤ 2λ+2 log2(n+ 1)(log2
n

m
+ 9)FA∗

= O(log n log
n

m
)FA∗

(By λ ≥ 4 and n > m > 1) □

Theorem V.25 (The O(log n) Competitive Ratio under η > 1 on a Single Machine).

E[FA
β (I)] ≤ 13 · 2λ · (log2(n+ 1) + 1) · FA∗

(I)

for any problem instance I and m = 1.

Proof. Following the same proof strategy used in Theorem V.24 with m = 1, we have

E[FA
β] ≤ 3FA∗

+ 2λ
k∑

j=k

∫
t∈Tj

E[|U b
β

0,t

j,k
|] +mdt

≤ 3FA∗
+ 2λ+2 · 3 · log2(n+ 1)

k∑
j=k

∫
t∈Tj

|U∗(t)| dt

+ 2λ
k∑

j=k

∫
t∈Tj

m(k − j + 3) dt (By Lemma V.22)

≤ 13 · 2λ · (log2(n+ 1) + 1) · FA∗
= O(log n) · FA∗

□

Remark V.26. Theorem V.2 is proved by combining Theorems V.23 – V.25. It followsE[FA
β (I)] ≤ 13·2λ ·

(log2(n+1)+1)·FA∗
(I) = O(log n)·FA∗

(I) on a single machine, andE[FA
β (I)] ≤ min{2λ+2·(log2(n+

1)+1)(log2 P+8), 2λ+2 ·log2(n+1)(log2
n
m
+9)}·FA∗

(I) = O(min{log n log n
m
, log n logP})·FA∗

(I)

on parallel machines, matching the best-known competitive ratio under the non-clairvoyant case.

5.4.3 Complexity Analysis

Theorem V.27 (Time and Space Complexity). Algorithm PEDRMLF admits an implementation with
O(log n) time complexity for each online decision and O(n) space complexity.

Proof. We present an implementation of PEDRMLF achieving the claimed complexities. For
every job Jj , maintain its processed size, the queue it resides in, and the time it completes running
within its queue for the running job Jj . We maintain these data in list-like structures, so access and
update take O(1) time per operation. Maintain a single priority queue of active non-running jobs stored
as ordered pairs (queue index, job index). A job with a lower queue index has higher priority, with
tie-breaking by a smaller job index. Maintain the upcoming events when job complete their processing as
a balanced binary search tree, in which an event is stored as an ordered pair (completion time, job index).

5.5 EXPERIMENTAL EVALUATION 66

100 200 300 400 500 600 700 800 900 1000
Number of jobs (n)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
re

sp
on

se
 ti

m
e

in
 se

co
nd

s

RMLF
PEDRMLF = 64
PEDRMLF = 4
PEDRMLF = 2
PEDRMLF = 1
SRPT

1 2 3 4 5 6 7 8 9 10
Log of maximum job size ratio (log2P)

(b)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
re

sp
on

se
 ti

m
e

in
 se

co
nd

s

RMLF
PEDRMLF = 64
PEDRMLF = 4
PEDRMLF = 2
PEDRMLF = 1
SRPT

1 2 4 6 8 10 12 14 16 18 20
Number of machines (m)

(c)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

M
ea

n
re

sp
on

se
 ti

m
e

in
 se

co
nd

s

RMLF
PEDRMLF = 64
PEDRMLF = 4
PEDRMLF = 2
PEDRMLF = 1
SRPT

100 200 300 400 500 600 700 800 900 1000
Number of jobs (n)

(d)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ex
ec

ut
io

n
tim

e
in

 m
icr

os
ec

on
ds

RMLF
PEDRMLF = 64
PEDRMLF = 4
PEDRMLF = 2
PEDRMLF = 1
SRPT

Figure V.6: Performance comparison between PEDRMLF, RMLF, and SRPT.
PEDRMLF is executed four times with different prediction error η = {1, 2, 4, 64}.

Finally, maintain the set of running jobs as a balanced binary search tree, in which a job is stored as
an ordered pair (queue index, job index). Accessing and updating a priority queue or balanced binary
search tree takes O(log n) time per operation. Each online decision of PEDRMLF requires a constant
number of times of accessing and updating these data structures, yielding O(log n) run-time complexity.
Meanwhile, the space complexity for maintaining these data is O(n). □

Remark V.28. Theorem V.27 shows the complexity of each online decision made by PEDRMLF. At
most n events can happen at any single time instant. Therefore, the real-time complexity for PEDRMLF
is bounded by O(n log n) at any time.

5.5 Experimental Evaluation

This section evaluates the performance of PEDRMLF on randomly-generated synthetic workloads by
comparing its mean response time and the execution time against those from SRPT [39] and RMLF
[41]. SRPT and RMLF are the best-known algorithms for mean response time scheduling applicable
to single and parallel machines [35, 39, 41, 42]. The former holds an optimal competitive ratio for the
clairvoyant case. The latter represents the state-of-the-art competitive ratio for the non-clairvoyant case.

5.5.1 Workload Generation

We generate 105 workloads to cover a rich set of scenarios. Table V.2 lists the ranges and default values
of the parameters used for workload generation. The parameters n, m, and P are set to default values
unless otherwise noted, while the others are randomly generated from the given ranges. We assume the
prediction error follows the uniform distribution, so pj is randomly selected from the interval [

p∗j
η
, η · p∗j].

The uniform distribution of prediction error allows us to evaluate the performance under an adversary
setting, where the prediction quality is less than under other favorable settings like normal distributions
centered at the exact values.

5.5 EXPERIMENTAL EVALUATION 67

Parameter Range Default value
number of jobs (n) [100, 1000] 600

number of machines (m) [1, 20] 10
maximum job size ratio (P) [2, 1024] 64

job size (p∗j) [1, P] N/A
release time (rj) [0, 1000] N/A

prediction error (η) [1, 64] N/A

job size prediction (pj) [
p∗j
η , η · p

∗
j] N/A

Table V.2: The workload parameters, with time-related ones in milliseconds.

5.5.2 Experiments

We run PEDRMLF, RMLF, and SRPT on each workload. To study the effects of prediction error, we
test PEDRMLF under different prediction errors. We record the mean response time and execution time
per test. Each test result for PEDRMLF and RMLF is computed as the average of 500 independent
executions as the expected performance. We ensure that the algorithms run under the optimum conditions
for a fair comparison. That means during the run, SRPT knows the exact job sizes, RMLF knows the
exact minimum job size, and PEDRMLF knows the job size predictions and the total prediction error η
only.

5.5.3 Experimental Results

Figure V.6 shows the mean response time (Figure V.6 (a) – (c)) and the execution time per test (Figure
V.6 (d)) for the three algorithms. As shown in Figure V.6 (a) – (c), the mean response time increases
with increasing jobs (n) and increasing maximum job size ratio (P), while it decreases with increasing
machines (m). With increasing jobs, the number of uncompleted jobs at any time, |U(t)|, increases
accordingly, causing an increased mean response time. With an increasing maximum job size ra-
tio, the mean job size increases and thus requires more time to complete. In contrast, jobs can be
completed in a shorter time if the system has more machines, which decreases |U(t)| and the mean
response time. Observe that the competitive ratio of PEDRMLF (O(min{log n

m
, logP}) consistency

andO(min{log n log n
m
, log n logP}) robustness) shares the same concern with these parameters, which

increases with increasing n or increasing P or decreasing m.

PEDRMLF steadily outperforms RMLF in mean response time. The mean response time of PEDRMLF
with any prediction error is half of RMLF when jobs increase to 1000. Our algorithm provides
performance at least twice as good in the tests. We also see the performance of PEDRMLF improves as
the prediction error reduces, while it stays not far from SRPT even if the prediction error is as unusually
large as 64.

Besides having a shorter mean response time than RMLF, PEDRMLF also shows a short execution time
(Figure V.6 (d)). It is interesting to note a positive correlation between mean response time and execution
time. The increasing mean response time suggests that increasing uncompleted jobs cause more data to

5.5 EXPERIMENTAL EVALUATION 68

20 21 22 23 24 25 26

Prediction error

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50
Pe

rfo
rm

an
ce

 ra
tio

Figure V.7: Performance ratio of PEDRMLF with varying η. The performance ratio
represents the mean response time of PEDRMLF over that of SRPT. The horizontal bars
across the middle of the boxes represent the median of each boxplot. The box covers the
middle 50% of the data points, while the lower and upper boundary of the box represents
the 25th (75th) percentile.

manage in data structures and cost a higher time in decision-making. Therefore, PEDRMLF performs
better when predictions are accurate. Again, the execution time of PEDRMLF stays close to SRPT even
under large prediction errors. Surprisingly, PEDRMLF has a shorter execution time than SRPT when
1 ≤ η ≤ 2 and n ≥ 400, showing that processing the jobs from the lowest queues with the smallest
index(es) within queues (PEDRMLF) is more time-saving than maintaining the remaining sizes for all
jobs (SRPT). This result provides us with more options when the execution time matters.

Figure V.7 shows the performance ratio of PEDRMLF under increasing prediction error η. These data
provide strong evidence supporting our theoretical results. The performance ratio is approximately 1.15
(close to 1) given perfect predictions, verifying our consistency results, and is bounded by approximately
1.35 as the predictions go arbitrarily bad, verifying our robustness results. The guaranteed robustness is
crucial in dealing with the oracle providing predictions with unbounded errors. Meanwhile, the reward
for an accurate oracle is an improved performance ratio and a reduced variance.

5.6 CONCLUSIONS AND FUTURE WORK 69

5.6 Conclusions and Future Work

This work gives the first real-time scheduling algorithm with job size predictions on single and
parallel machines to minimize the mean response time. We first introduce a simple problem- and
algorithm-independent prediction error metric η to quantify prediction quality. Then, we propose
PEDRMLF achieving the optimal consistency of O(min{log n

m
, logP}) and the best-known robustness

of O(min{log n log n
m
, log n logP}) with a highly scalable logarithmic run-time complexity. We prove

these performance bounds and conduct extensive simulations to verify these results. The experimental
evaluation shows that PEDRMLF stays close to SRPT when η is small while consistently outperforming
RMLF even if η is unusually large.

We observe from the experimental results a clear positive correlation between the performance ratio of
PEDRMLF and η when η is reasonably small. Analyzing how the performance changes with η, i.e., the
smoothness of PEDRMLF, is our future work.

CHAPTER 6

Pulsed Power Load Scheduling with Predictions

Many mission- and time-critical cyber-physical systems deploy an isolated power system for their power
supply. Under extreme conditions, the power system must process critical missions by maximizing
the Pulsed Power Load (PPL) utility while maintaining the normal loads in the cyber-physical system.
Optimal operation requires careful coordination of PPL deployment and power supply processes. In this
chapter, we formulate the coordination problem for maximizing PPL utility under available resources,
capacity, and demand constraints with normal load predictions. The coordination problem has two
scenarios for different use cases: fixed and general normal loads. We develop an exact pseudo-polynomial
time dynamic programming algorithm for each scenario with a proven guarantee to produce an optimal
coordination schedule under the exact normal load prediction, i.e., the algorithm has optimal consistency.
The performance of the algorithms is also experimentally evaluated, and the results agree with our
theoretical analysis, showing the practicality of the solutions.

6.1 Introduction

There are increasing numbers of cyber-physical systems (CPS) deployed in harsh and hostile environ-
ments where decisions are often time- and mission-critical [49–52]. In this work, mission-critical means
that operational failure on critical missions can seriously impact system performance and even cause
catastrophes. Time-critical means that decision-making must be carried out in real time. A representative
of such systems is an Isolated Power System (IPS), which refers to a power system operated in island
mode to ensure carrier operations in deployments such as shipboard, aircraft, and space station. In
particular, an IPS needs to handle the extremes of Pulsed Power Load (PPL) [53] that consume a
substantial amount of energy within a very short period of time for a mission. Deploying PPL is the
primary operation for an IPS to carry out and accomplish critical missions. Many IPSs operate PPL
using a computer program. Thus, it is critical to model the IPS with PPL and study how to maximize the
PPL utility via algorithms.

The system voltage and system frequency will be greatly affected if the PPL directly draws power from
the IPS [54], causing the outage of other critical functions or system instability. To mitigate the negative
impact, an Energy Storage System (ESS), such as a supercapacitor [55] and flywheel [56], is employed
in the IPS as the energy source to support PPLs. The operator knows the operations of the PPL but
cannot foresee the critical missions. We assume that maximizing the PPL utility in any circumstance is
the best outcome the scheduler can guarantee to maximize the likelihood of succeeding in the critical

70

6.1 INTRODUCTION 71

mission completion. At any time, the ESS can be charged by a Power Source (PS) or disconnected from
it to provide the necessary power for the PPL. As such, missions are accomplished within the energy
constraints of the ESS while coordinating with charging processes to maximize the overall output utility.
An energy distribution scheme between multiple PPLs needs to be determined under different conditions
during mission executions. Thus, each PPL is required to maximize its output utility with the available
energy from the PS within a given period. This work studies the coordination of PS charging and PPL
deployment, called PPL scheduling, to allow the optimal coordination of a single PPL and PS in an IPS.

The PPL scheduling problem has attracted increasing attention recently for its extended use in many real-
world applications [57–60]. Some works have focused on the integration of ESSs in IPSs [61–70]. They
focus on studying the impact of PPL on the IPS and developing control strategies for the charging process
of the ESS. The coordination of PPL deployment and charging by the PS has not yet been thoroughly
investigated. Only a few attempts [71–73] have been made recently with heuristic algorithms with no
provable performance guarantee. However, such coordination needs to have worst-case performance
guarantees since it could become vital when an IPS operates under extreme conditions, e.g., severe
weather. Also, the coordination schedule needs to maximize the PPL’s output utility and be responsive
when decision-making is adaptive and contingent upon the task and context. These requirements
prevent the scheduling algorithms from being designed as heuristics [71, 73] without a performance
guarantee to consuming extensive computation time in the worst-case scenarios [72]. Instead, we must
look for solutions with performance guarantees in both mission and time. In our work, the worst-case
performance guarantee means that an algorithm must produce the schedule with the maximum number of
deployed pulses in the studied time period for any problem instances in real time. The existing solutions
or machine learning-based approaches face the common problem of lacking theoretical performance
guarantees. These algorithms are unacceptable to the target mission- and time-critical systems since
a failure in one mission may cause a breakdown of the whole system. Our algorithms provide the
theoretical guarantee of maximizing the PPL utility, outperforming the above approaches.

This work presents and proves the first optimal pseudo-polynomial algorithms for mission- and time-
critical CPS scheduling with normal load predictions via dynamic programming. Our work observes
a dominance rule in the set of (sub-)schedules, leading us to an optimal substructure property of the
problem. Then, the problem is solved via dynamic programming. We prove the dominance rule and
the correctness and optimality of our algorithms. More precisely, we develop schedulers to produce
coordination solutions, ensuring (1) the energy of an ESS is constrained to lie within upper and lower
bounds at all times, (2) the entangled parameters of charging processes are considered altogether towards
producing an optimal coordination schedule, and (3) charging the ESS does not affect the execution of
Normal Loads (NL) in the IPS. Such a schedule requires sequential coordination of PPL deployment and
ESS charging, not just in terms of timing but also duration, intensity, and priority. The problem is solved
under constant and variable NL functions, which have been separately studied using heuristic algorithms
in the earlier works [73] and [71], respectively. This work presents the first provably optimal and
computationally efficient method for the PPL scheduling problem. Our contributions are summarized
below.

6.2 MODELING OF THE COORDINATION PROBLEM 72

(1) We formulate the scheduling problem of single PPL deployment with ESS charging. To
maximize the PPL’s output utility under multiple constraints over time, we considered two
endmember scenarios: the power consumption of normal loads is (1) constant and (2) variable.

(2) We propose optimal Dynamic Programming-based algorithms for the scheduling problems in
the two above scenarios. We prove the correctness of the algorithms and present their time
complexity results. Our solutions guarantee to produce, in both cases, the optimal sequence of
PPL deployment and ESS charging that maximizes the PPL’s utility. Our work is the first to
give pseudo-polynomial algorithms for the optimal solution.

(3) We evaluate our approaches through experimental studies. The result shows that the proposed
algorithms outperform the existing solutions in terms of both energy output and run time,
meeting practical needs.

This chapter has the following structure. In Section 6.2, we model the coordination of PPL deployment
and ESS charging. In Section 6.3, we formally define our optimization problem. Section 6.4 targets
the coordination problem under constant NL functions. We present an optimal algorithm and give its
analysis. Section 6.5 extends the algorithm for the constant NL functions to deal with the general NL
functions. We present an optimal algorithm, for general NL functions, and give its analysis. Section 6.6
presents the simulation that evaluates the proposed algorithms. Section 6.7 discusses some related work.
Conclusions and future work are given in Section 6.8.

6.2 Modeling of the Coordination Problem

This section introduces the overall structure of IPSs, the charging process of ESSs by PSs, and PPL
deployment. We will use the terms ESS charging and PS charging interchangeably to refer to the same
process that the PS is charging the ESS.

A simplified structure of an IPS supporting PPL [73] is depicted in Figure VI.1a. The loads in IPSs
have two types, Normal Loads (NL) and PPL. For example, in an all-electric ship [74], the NL could
include propulsion loads, lighting loads, and other workloads that consume power from the PS. An ESS
is installed to mitigate the negative impact of PPL deployment in the regular operations of the IPS. The
charging process of the ESS comprises trapezoidal-shaped pulses [75], as shown in Figure VI.1b. At the
start and end of a charging process, the charging power changes linearly, subject to the ramp rates of
the converter’s output power. Once completed, the ESS will be disconnected from the IPS and provide
energy for PPL deployment.

We argue the importance of modeling a trapezoid charging process instead of the rectangle one used in
[72]. The Power Source (PS) cannot always reach a given power level instantly, making the practical
charging process a trapezoid one. Rectangles could approximate trapezoids but are associated with a
positive or negative error in energy representation. Such errors accumulated over time can cause the
energy in an ESS to exceed its maximum limit or be below its minimum limit without being noticed
by the scheduler when producing the schedule. Another concern is about the instantaneous power

6.2 MODELING OF THE COORDINATION PROBLEM 73

r+jx

NL

PPL

ESS

PS

(a) Simplified structure of an IPS with PPL (b) Charging process of an ESS

(c) The deployment process of a PPL (d) The power consumption of general normal loads

Figure VI.1: System modeling.

consumption limit. A rectangle cannot capture as much detail in charging as a trapezoid, which may
cause the produced schedule to violate the instantaneous power consumption limit without being noticed
again. When the above situations occur, the IPS may fail on critical missions. Thus, it is essential to
model a trapezoid charging process to ensure precise energy calculation.

The PPL consumes a large amount of energy within a very short period. Thus the power consumption of
a PPL can be modeled as a narrow rectangular-shaped current pulse, as shown in Figure VI.1c. Multiple
pulses could occur in one consecutive PPL deployment process. Each pulse lasts for time ∆t, and its
maximum power is P̄d. The time difference between two adjacent pulses inside one deployment process
is ∆t. A pulse, therefore, consumes P̄d · ∆t amount of energy from the ESS. The number of pulses
deployed in the jd-th deployment process is denoted by Sjd

d . The time interval between two consecutive
PPL deployment processes is constrained by a minimum time interval ∆Tmin. The PPL deployment
becomes unavailable in this time interval so that the PS can charge the ESS.

In this model, the optimal operation of an IPS requires designing both the charging processes of the ESS
and the PPL deployment processes. The parameters for a charging process are tjcc_1, tjcc_2, tjcc_3, tjcc_4, and the
maximum charging power of the trapezoid P jc

c , for 1 ≤ jc ≤ C, where C is the total number of charging
processes. The parameters for a PPL deployment process are the starting time of the process tjdd , the
number of pulses in the jd-th process Sjd

d , for 1 ≤ jd ≤ D, where D is the total number of deployment
processes. As the PPL deployment is strongly correlated with the charging processes, these parameters
must be carefully chosen, so the PPL and PS can be optimally coordinated within the given period.

6.3 PROBLEM FORMULATION 74

6.3 Problem Formulation

This section formulates the coordination problem of PPL deployment and ESS charging. When the IPS
is operating, the processes of PPL deployment and ESS charging take control in turn. The scheduler
needs to decide the upcoming processes for IPS operations. We assume that all system parameters are
known within a so-called studied time T window. The studied time T is a single user-defined parameter
representing how long the system guarantees IPS stability. We present the objective function, problem
constraints, and the overall optimization problem. A table of modeling parameters is provided in Table
VI.1.

This section is organized as follows. Subsection 6.3.1 presents the objective function of our optimization
problem. Then, every subsection (Subsections 6.3.2 — 6.3.7) introduces a type of constraint. In
particular, Subsection 6.3.3 differentiates the case of constant NL functions (Subsection 6.3.3.1) and
general NL functions (Subsection 6.3.3.2). The overall optimization problem is formulated in Subsection
6.3.8.

Symbol Meaning

C number of ESS charging processes
D number of PPL deployment processes
T studied time length

tjcc_1, tjcc_2, tjcc_3, tjcc_4 critical time instants of the jc-th trapezoidal-shaped charging process
P jc
c maximum charging power of the jc-th trapezoid charging process

Ejc area of the jc-th charging trapezoid of the ESS
∆t time that a PPL lasts
∆t time difference between two adjacent pulses inside one deployment process

∆Tmin minimum time distance between two consecutive PPL deployment processes
P̄d maximum power of a PPL deployment process
tjdd starting time of the jd-th deployment process
Sjd
d number of pulses deployed in the jd-th deployment process

PNL power consumption of NL (if the NL function is constant)
PNL(t) power consumption of NL over time
MNL number of the non-differentiable points in the NL function

t1NL, ..., tMNL
NL time instants when the non-differentiable points occur in the NL function

E0 initial energy stored in the ESS
Emin, Emax minimum and maximum energy storage limits in the ESS

Pc(t) power used by charging processes over time
PGmax upper limit of the PS’s output power
Ωjc
c , Ωjd

d the jc-th charging time interval; the jd-th deployment time interval
Ru, Rd ramp-up and ramp-down rate limits in the ESS
Pcmax maximum charging power limit of the PS

Table VI.1: A table of modeling parameters.

6.3 PROBLEM FORMULATION 75

6.3.1 Objective Function

The utility of the PPL in a given period is the total energy output, which is proportional to the number of
pulses deployed. The objective function of the coordination problem is defined as

max P̄d ·∆t ·
D∑

jd=1

Sjd
d (6.1)

With constant P̄d and ∆t, the actual term to optimize is
∑D

jd=1 S
jd
d . For simplicity, we will call term∑D

jd=1 S
jd
d the objective value.

6.3.2 Lower and Upper Energy Bounds of an ESS

Considering the capacity of an ESS, the stored energy should not exceed its maximum limit Emax. The
energy stored in the ESS should not exceed Emax by the end of any charging process, which is

E0 +
a∑

jc=1

Ejc − P̄d ·∆t ·
b∑

jd=1

Sjd
d ≤ Emax,∀a ∈ [1, C] (6.2)

where E0 is the initial energy stored in the ESS, C is the total number of ESS charging processes, and
b is the number of deployment processes before the a-th charging process. According to the charging
process depicted in Figure VI.1b, we define Ejc as below.

Ejc = P jc
c · (

tjcc_2 − t
jc
c_1

2
+ tjcc_3 − t

jc
c_2 +

tjcc_4 − t
jc
c_3

2
) =

1

2
· P jc

c · (t
jc
c_4 + tjcc_3 − t

jc
c_2 − t

jc
c_1)

where P jc
c is the PS’s maximum charging power of the jc-th charging process, tjcc_1, tjcc_2, tjcc_3, and tjcc_4 are

the key time points of the charging process as shown in Figure VI.1b.

To further deal with some extreme conditions, there is a minimum stored energy Emin required. This
constraint is equivalent to the idea that the energy stored in ESS should not go below Emin at the end of
any deployment process, which is

E0 +
a∑

jc=1

Ejc − P̄d ·∆t ·
b∑

jd=1

Sjd
d ≥ Emin,∀b ∈ [1, D] (6.3)

where a is the number of charging processes before the b-th deployment process.

Our model assumes that the lower and upper energy limits (Emin and Emax) cover the ESS State-of-
Charge (SoC) requirement for simplicity. More precisely, the energy of the ESS cannot go below Emin or
exceed Emax at any time. Meanwhile, the ESS is chargeable when the stored energy is below Emax and
is dischargeable if the energy is above Emin. With this assumption, the satisfaction of SoC is equivalent
to the energy in ESS at any time within [Emin, Emax] expressed by Constraints 6.2 and 6.3.

6.3 PROBLEM FORMULATION 76

6.3.3 Available Charging Power Constraint

The IPS must maintain a power balance between ESS charging and the NL. The instantaneous power
consumption of the NL and ESS charging cannot exceed the maximum availability of the PS, which is

PNL(t) + Pc(t) ≤ PGmax (6.4)

where PNL(t) is the power consumed by the NL, Pc(t) is the power for the charging processes, and
PGmax is the upper limit of the PS’s output power. The stability of the DC (direct current) bus is critical
in guaranteeing reliable operations of the IPS. Our work assumes that Constraint 6.4 ensures the DC
bus’s stability and the IPS’s reliable operation. When coordinating the PPL deployment and the PS
charging in real time, a prediction about the NL’s required power in the studied period, PNL(t), is
accessible by the algorithm. In this work, we assume the prediction is perfect and study the optimal
algorithms under this setting. The results can construct consistent algorithms under general predictions.
We consider two scenarios for PNL(t):

6.3.3.1 Constant NL Function

The power consumption of the NL remains constant in the studied period. In this case, we let PNL(t) =

PNL.

6.3.3.2 General NL Function

The power consumption varies in the studied time period. PNL(t) is defined as a piecewise constant
function as shown in Figure VI.1d. In this case, we assume MNL non-differentiable points are included
in PNL(t), denoted by t1NL, ..., tMNL

NL .

We treat these two cases as separate problems since each addresses a different need. The constant NL
scenario has been discussed in [73], and the general NL scenario in [71]. In non-critical cases, an IPS
can see the NL as a constant for routine operations. Otherwise, the NL could be electively sacrificed to
achieve the best possible outcome to complete the mission when the IPS must maximize PPL utility.
It is worth noting that our solution to the case of constant NL functions extends well into the case of
general NL functions. More precisely, any NL functions can be approximated by piecewise constant
functions by discretizing them into fine-granularity time slots.

6.3.4 Asynchronism of PS Charging and PPL Deployment

The ESS must be disconnected from IPS to support PPL deployment. Therefore, the charging period
does not overlap the deployment period. That is, ∀jc = 1, ..., C, and ∀jd = 1, ..., D, the following holds.

Ωjc
c ∩ Ωjd

d = ∅

where Ωjc
c = [tjcc_1, t

jc
c_4) is the jc-th charging duration, and Ωjd

d = [tjdd , t
jd
d + Sjd

d · (∆t + ∆t) − ∆t)

is the jd-th deployment duration. We thus only need to ensure: (i) the start or the end time of each

6.3 PROBLEM FORMULATION 77

charging process must not overlap with any deployment process, and (ii) vice versa. Condition (i) can be
formulated as: ∀jd = 1, ..., D, jc = 1, ..., C,t

jc
c_1 ≥ tjdd + Sjd

d · (∆t+∆t)−∆t or tjcc_1 < tjdd

tjcc_4 > tjdd + Sjd
d · (∆t+∆t)−∆t or tjcc_4 ≤ tjdd

(6.5)

Condition (ii) can be formulated as: ∀jc = 1, ..., C, jd = 1, ..., D,
tjdd < tjcc_1 or tjdd ≥ tjcc_4

tjdd + Sjd
d · (∆t+∆t)−∆t > tjcc_4

or tjdd + Sjd
d · (∆t+∆t)−∆t ≤ tjcc_1

(6.6)

6.3.5 Ramp Rate Constraints and Converter Power Limit

The employment of ESS must limit the power ramp rates and apply power smoothing. Let Ru be the
ramp-up rate limit of the ESS, and Rd be the ramp-down rate limit. Then, the following constraints must
hold during ESS charging. P jc

c ≤ Ru · (tjcc_2 − t
jc
c_1)

P jc
c ≤ Rd · (tjcc_4 − t

jc
c_3)

(6.7)

The PS’s maximum charging power of the jc-th charging process, P jc
c , is also limited by the parameters

of the interfacing converter, which is
P jc
c ≤ Pcmax (6.8)

where Pcmax is the power charging limit of the PS.

6.3.6 Time Sequence Constraints

The ESS charging time and the PPL deployment time must satisfy the following time sequence constraints.
First, the last PPL deployment and the last ESS charging should not exceed the studied time T , that istDd + SD

d · (∆t+∆t)−∆t ≤ T

tCc_4 ≤ T
(6.9)

Second, the time instants within each charging process must satisfy the following conditions.t
jc
c_1 < tjcc_2 ≤ tjcc_3 < tjcc_4

tjcc_4 ≤ tjc+1
c_1

(6.10)

Third, the time interval between two consecutive PPL deployment processes should satisfy the following
conditions.

tjd+1
d − [tjdd + Sjd

d · (∆t+∆t)−∆t] ≥ ∆Tmin (6.11)

6.3 PROBLEM FORMULATION 78

where ∆Tmin is the minimum time interval of two consecutive PPL deployments. The following
condition always holds between ∆Tmin and ∆t: ∆Tmin ≥ ∆t.

6.3.7 The Range of Decision Variables

Other constraints of the decision variables are given below.
tjcc_1, t

jc
c_2, t

jc
c_3, t

jc
c_4, P

jc
c , t

jd
d ≥ 0

tjcc_1, t
jc
c_4, t

jd
d ∈ N

C,D, Sjd
d ∈ N

(6.12)

We also assume the integral representations: ∆t,∆t,∆Tmin, T ∈ N.

6.3.8 Overall Optimization Problem

The proposed coordination problem of the PPL and the PS can be formulated as the following optimiza-
tion problem.

Objective: (6.1)

Constraints: (6.2)− (6.12)
(6.13)

The optimization variables are C, D, tjcc_1, t
jc
c_2, t

jc
c_3, t

jc
c_4, P

jc
c (1 ≤ jc ≤ C), tjdd , and Sjd

d (1 ≤ jd ≤ D).
The main differences between our optimization problem and the counterpart in [71] and [73] are the
number of PPLs considered and the assumption of periodic PPL deployment in the studied period
(both [71] and [73] assume the coordination is periodic while we do not). Our optimization problem
is difficult to solve due to the variety of constraints and non-linearity. First, the number of constraints
(Constraint (6.2), (6.3), (6.5), (6.6), (6.7), (6.8), (6.10), and (6.11)) and the number of the decision
variables associated with the symbol jc or jd increases with the values of the decision variables C and D.
Second, Constraints (6.2), (6.3), and (6.4) are non-linear, and Constraint (6.4) has infinite dimensions
for satisfying all real numbers t ∈ [0, T). We solve this problem in two scenarios: one is for constant NL
functions, and the other is for general NL functions. Both solutions use Dynamic Programming (DP), a
widely used method in CPS scheduling [44, 76–78].

The scenario of general NL functions covers constant NL functions. We consider the problem in two
separate scenarios since each has a different focus. The challenge in the general NL scenario is to design
an algorithm that guarantees optimal PPL utility when NL is a piecewise constant function. Otherwise,
the challenge is more on developing a computationally efficient algorithm by utilizing the assumption of
a constant NL.

6.4 OPTIMAL SOLUTION: CASE OF CONSTANT NL FUNCTIONS 79

6.4 Optimal Solution: Case of Constant NL Functions

This section targets the coordination problem under constant NL functions. In Subsection 6.4.1, we
present the high-level idea and the intuition in the algorithm design for both constant and NL functions.
Subsection 6.4.2 presents the optimal strategy CtLwLE for ESS charging. Subsection 6.4.3 presents
the DP algorithm solving the coordination problem under constant NL functions. It also analyzes the
optimality of the algorithm.

6.4.1 High-level Idea of the Algorithms

Our objective is to produce the maximal number of pulses under all the system constraints. The energy
for pulse deployment mainly comes from charging processes, which requires ESS charging to be efficient.
The core idea of producing an optimal schedule is to find maximal trapezoids under the NL curve. For
constant NL, our strategy is to let the charging process have a maximal ramp rate to reach the maximum
charging power to complete the ESS charging. Section 6.4.2 provides the details. For general NL,
the strategy of finding an optimal solution is much less obvious as it requires searching in an infinite
solution space. Our approach is first to identify the structural properties of an optimal charging process
that can reduce the search space down to finite. Then, we develop a DP for determining the optimal
charging strategies while coping with the changing NL in Section 6.5.1. With the optimal charging
strategies, we use another DP to search for the optimal schedule that determines when the system should
perform charging or deploy PPL and the amount of energy to charge or deploy. We state and prove the
important dominance rule (Theorem VI.5) that will allow us to search only the dominating sub-schedules
efficiently. The idea is as follows. For the sub-schedules that deploy S pulses in a given period [0, t),
the one with the maximal remaining energy dominates the others. We prove that these dominating
sub-schedules possess an optimal substructure property, and thus can be searched using DP. Combining
all these, we finally develop two DP-based algorithms (Algorithm 10 and 11) that solve the problem
under different NLs. Both algorithms can be viewed as computing the partial schedules sequentially
following the topological order of the dependency graph of the DP states. Note that the latter algorithm
is a generalization of the former.

6.4.2 Optimal Charging Strategy

Suppose at some time tjcc_1, the system starts a charging process with duration ∆tjc , so that the ESS
charging lasts for period [tjcc_1, t

jc
c_1+∆tjc). The optimal charging process is the one that charges as much

energy as possible to the ESS under Constraints (6.2), (6.4), (6.7), and (6.8). Any charging trapezoid
should have the maximum ramp rates at both the beginning and end of the process. It should attempt to
make the maximum power reach the limit Pclimit, defined as Pclimit = min{Pcmax, PGmax − PNL}, an
upper bound of the maximum charging power. For now, we ignore Constraint (6.2) and formulate the
above discussion as Charging to the Limit (CtL) strategy as follows.

6.4 OPTIMAL SOLUTION: CASE OF CONSTANT NL FUNCTIONS 80

Definition VI.1 (CtL). Fix, for the jc-th charging process, the charging time duration ∆tjc and the
start charging time instant tjcc_1. CtL strategy sets the parameters for the jc-th charging process
(tjcc_1, t

jc
c_2, t

jc
c_3, t

jc
c_4, P

jc
c) as follows.

If ∆tjc ≥ Pclimit · (R
u+Rd

RuRd), set P jc
c = Pclimit and

tjcc_4 = tjcc_1 +∆tjc

tjcc_2 = tjcc_1 +
P jc
c

Ru

tjcc_3 = tjcc_4 − P jc
c

Rd

We have tjcc_1 < tjcc_2 ≤ tjcc_3 < tjcc_4, and P jc
c = Pclimit = min{Pclimit,

∆tjcRuRd

Ru+Rd }.

If ∆tjc < Pclimit · (R
u+Rd

RuRd), set P jc
c = ∆tjcRuRd

Ru+Rd andt
jc
c_4 = tjcc_1 +∆tjc

tjcc_2 = tjcc_3 = tjcc_1 +
P jc
c

Ru

We have tjcc_1 < tjcc_2 = tjcc_3 < tjcc_4 and P jc
c = ∆tjcRuRd

Ru+Rd = min{Pclimit,
∆tjcRuRd

Ru+Rd }.

Note that when the charging duration is too short (∆tjc < Pclimit · (R
u+Rd

RuRd)), the charging trapezoid
degenerates to a triangle. With CtL, the amount of energy charged depends only on the time duration,
∆tjc , so we define ECtL(∆t

jc) in Definition VI.2 to be the energy charged in one CtL charging process
with the time duration ∆tjc . Observe that ECtL(∆t

jc) is a continuous monotonically increasing function
and thus has its inverse function on [0,∞) (Definition VI.3).

Definition VI.2. We define ECtL(∆t
jc) = (∆tjc)

2
RuRd

2(Ru+Rd)
for ∆tjc < Pclimit · (R

u+Rd

RuRd) and ECtL(∆t
jc) =

Pclimit∆t
jc − 1

2
P 2
climit · (R

u+Rd

RuRd) for ∆tjc ≥ Pclimit · (R
u+Rd

RuRd).

Definition VI.3. We define the inverse function of ECtL(∆t
jc) as E−1

CtL(E) on [0,∞), where E−1
CtL(E) =√

2(Ru+Rd)E
RuRd for E <

P 2
climit(R

u+Rd)

2RuRd and E−1
CtL(E) =

E
Pclimit

+ 1
2
Pclimit · (R

u+Rd

RuRd) for E ≥ P 2
climit(R

u+Rd)

2RuRd .

Now we take Constraint (6.2) back into consideration. With the integer variables tjcc_1s and tjcc_4s, we may
face the situation that CtL strategy cannot produce a feasible charging process. To address this issue, we
introduce an enhanced CtL strategy, Charging to the Limit with Limited Energy strategy, or CtLwLE
strategy. Before giving the details of CtLwLE, we first discuss how CtL strategy does not function as
intended. Suppose the scheduler decides to charge the ESS until time tjcc_4 when ESS has remaining
energy Ejc

R at time tjcc_1. It is feasible and optimal to apply CtL strategy for this charging process when
ECtL(t

jc
c_4 − t

jc
c_1) ≤ Emax − Ejc

R , but it is no longer true if CtL strategy would make the ESS charging
exceeds the upper bound Emax. In this case, the optimal solution is to charge the ESS to the upper bound,
which is formalized in Definition VI.4.

Definition VI.4 (CtLwLE). Fix, for the jc-th charging process, the charging time duration ∆tjc ∈ N, the
start charging time tjcc_1 ∈ N, and an additional parameter ∆Em indicating the maximum energy that

6.4 OPTIMAL SOLUTION: CASE OF CONSTANT NL FUNCTIONS 81

can be charged during the process. CtLwLE strategy sets the parameters of the jc-th charging process
(tjcc_1, t

jc
c_2, t

jc
c_3, t

jc
c_4, P

jc
c) as follows.

If ECtL(∆t
jc) ≤ ∆Em, variables tjcc_2, t

jc
c_3, t

jc
c_4, and P jc

c are set according to the normal CtL strategy
(Definition VI.1).

If ECtL(∆t
jc) > ∆Em, set P jc

c = (∆tjc −
√
(∆tjc)2 − 2 · (Ru+Rd

RuRd) ·∆Em) · (RuRd

Ru+Rd) and
tjcc_4 = tjcc_1 +∆tjc

tjcc_2 = tjcc_1 +
P jc
c

Ru

tjcc_3 = tjcc_4 − P jc
c

Rd

With CtLwLE strategy, we can develop a dynamic programming algorithm to solve Problem (6.13)
under constant NL functions.

6.4.3 The DP-based Solution

This subsection proposes a DP-based solution for finding the optimal schedule for PPL deployment and
ESS charging. The core of the algorithm observes the following dominance rule. Define partial schedule
to be a sub-schedule over time [0, t) (0 ≤ t ≤ T). We say that a partial schedule A dominates another
partial schedule B, if for every schedule BW over time [0, T) containing B as its sub-schedule, there
exists another schedule AW over time [0, T) containing A as its sub-schedule achieving an objective
function value no less than the schedule BW does.

Theorem VI.5 (Dominance Rule for DP). Among the partial schedules that deploy S pulses during [0, t)

and have an additional pulse deploy at [t, t+∆t), the one(s) with the maximal remaining energy at t
dominates the others. This also holds for the partial schedules that deploy S pulses during [0, t) and
have a charging process ending at t.

Proof. Let Ao be any partial schedule with the maximal remaining energy at time t, which deploys
S pulses during the time interval [0, t) and has an additional pulse to be deployed at period [t, t+∆t).
Consider any schedule A over the time interval [0, T), which deploys S pulses during the time interval
[0, t) and has an additional pulse to be deployed at period [t, t+∆t). We can replace A’s partial schedule
over [0, t) with Ao, and for any jc-th charging process of A, tjcc_1 ≥ t, in increasing jc’s order, we
replace it with CtLwLE strategy with time duration tjcc_4 − t

jc
c_1 and the difference between Emax and the

remaining energy at time tjcc_1 as the maximum chargeable energy bound. This process produces another
schedule, A′, over [0, T). Schedule A′ has the same objective function value as schedule A does. It is
valid since (1) the remaining energy at time t in schedule A′ is no less than that in schedule A, and (2)
for each jc-th charging process, tjcc_1 ≥ t, the remaining energy at time tjcc_4 in schedule A′ is no less than
that in schedule A. Claim (1) is due to the definition of Ao, and Claim (2) can be proved by induction
on jc for all tjcc_1 ≥ t. The partial schedule Ao, therefore, dominates the others. With similar arguments,
we can prove that among the partial schedules that deploy S pulses during period [0, t) and have a

6.4 OPTIMAL SOLUTION: CASE OF CONSTANT NL FUNCTIONS 82

charging process ending at time t, the one(s) with the maximal remaining energy at time t dominates the
others. □

Theorem VI.5 states that only the dominating partial schedules need to be considered. To represent them
compactly, we record, for each partial schedule, the time length t, the number of deployed pulses in [0, t)

(named S), and the remaining energy at time t. With the dominance rule and relations between these
dominating partial schedules, we formulate our DP in Definition VI.6.

Definition VI.6 (Optimal DP Formulation). Let F1(t, S) denote the maximum remaining energy at time
t, given that the schedule deploys S pulses during the time interval [0, t) and has an additional deployed
pulse at time t. Similarly, let F2(t, S) denote the maximum remaining energy at time t, given that the
schedule deploys S pulses during the time interval [0, t) and has a charging process ending at time t.
We have the following DP recurrences.

F1(t, S) = max{F1(t−∆t−∆t, S − 1)− P̄d ·∆t, F2(t, S)} (6.14)

for all 0 ≤ t ≤ max{0, T −∆t}, 1 ≤ S ≤ ⌊ T+∆t

∆t+∆t
⌋.

F2(t, S) = max{min{Emax, F1(t−∆tc −∆t, S − 1)− P̄d ·∆t+ ECtL(∆t)}} (6.15)

for all 0 ≤ t ≤ T , 1 ≤ S ≤ ⌊ T+∆t

∆t+∆t
⌋, 1 ≤ ∆t ≤ ⌈E−1

CtL(Emax −Emin)⌉, and ∆tc = max{∆t,∆Tmin} if

t < T or ∆t if t = T . Additionally, whenever term F1(t−∆t−∆t, S−1) or term F1(t−∆tc−∆t, S−1)
or term F2(t, S) has invalid arguments or values, i.e., the value is less than Emin + P̄d ·∆t for the first
two terms or less than Emin for the term F2(t, S), the value is set to −∞. We have the following base
cases.

F2(t, 0) = min{E0 + ECtL(t), Emax},∀ 0 ≤ t ≤ T (6.16)

F1(t, 0) =

F2(t, 0), F2(t, 0) ≥ Emin + P̄d ·∆t
−∞, F2(t, 0) < Emin + P̄d ·∆t

,∀ 0 ≤ t ≤ max{0, T −∆t} (6.17)

The maximum number of pulses deployed by an optimal schedule is

max{max{1 + S ′|F1(T −∆t, S ′)− P̄d ·∆t ≥ Emin},max{S ′|F2(T, S
′) ≥ Emin}, 0} (6.18)

Theorem VI.7 (Correctness and Optimality of the DP). The DP in Definition VI.6 produces an optimal
solution.

Proof. The theorem is proved by showing the following claims.

(1) The state space(s) for F1(t, S) and F2(t, S) include all dominating partial schedules.
(2) The solution to the DP equals the optimal value of the objective function.
(3) The base cases are correctly set.
(4) The recurrence relation(s) are correct.

Let σ1(t, S), σ2(t, S) denote the partial schedules corresponding to DP states F1(t, S) and F2(t, S).

6.4 OPTIMAL SOLUTION: CASE OF CONSTANT NL FUNCTIONS 83

Algorithm 10: DP (Constant NL case)
Data :problem instance with a constant NL function prediction
Result :an optimal schedule

1 initialize spaces for F1(t, S)s, F2(t, S)s.
2 for t← 0 to T do
3 F2(t, 0)← min{E0 + ECtL(t), Emax}.
4 if F2(t, 0) ≥ Emin + P̄d ·∆t then
5 F1(t, 0)← F2(t, 0).
6 else
7 F1(t, 0)← −∞.

8 for t← 0 to T do
9 for S ← 1 to ⌊ T+∆t

∆t+∆t
⌋ do

10 F2(t, S)← max{min{Emax, F1(t−∆tc −∆t, S − 1)− P̄d ·∆t+ ECtL(∆t)} |

1 ≤ ∆t ≤ ⌈E−1
CtL(Emax − Emin)⌉, ∆tc =

{
max{∆t,∆Tmin}, t < T

∆t, t = T
} .

11 if t ≤ max{0, T −∆t} then
12 F1(t, S)← max{F1(t−∆t−∆t, S − 1)− P̄d ·∆t, F2(t, S)}.
13 if F1(t, S) < Emin + P̄d ·∆t then
14 F1(t, S)← −∞.

15 SMAX ← max{max{1 + S′|F1(T −∆t, S′)− P̄d ·∆t ≥ Emin},max{S′|F2(T, S
′) ≥ Emin}, 0}.

16 return TraceSchedule(F1, F2, SMAX)

Proof for Claim 1. The second parameter, S, in either F1 or F2, takes values in range [0, ⌊ T+∆t

∆t+∆t
⌋],

since the maximum amount of pulses that can be deployed in [0, T) is ⌊ T+∆t

∆t+∆t
⌋, which is achieved by

one long deployment process spanning [0, T). The first parameter of F1(t, S) takes values in range
[0,max{0, T − ∆t}], since σ1 requires an additional pulse starting at time t. Meanwhile, the first
parameter of F2(t, S) takes values in the entire interval [0, T].

Proof for Claim 2. Observe that there exists an optimal schedule with either a pulse ending at time T or a
charging process ending at time T . Otherwise, the optimal schedule would perform no operation during
time interval [T − t′, T) where t′ denotes the maximal number satisfying this condition. In such a case,
we can modify this schedule so that it ends exactly at time T by shifting the whole schedule t′ unit to the
right while retaining the optimality. If an optimal schedule ends with a pulse in time interval [T −∆t, T),
the objective function value equals max{1+S ′|F1(T −∆t, S ′)− P̄d ·∆t ≥ Emin}, in the corresponding
dominating schedules. If, on the other hand, an optimal schedule has a charging process ending at time
T , the objective function value equals max{S ′|F2(T, S

′) ≥ Emin} by similar arguments. Combining
the two cases, the optimal objective value equals max{max{1 + S ′|F1(T − ∆t, S ′) − P̄d · ∆t ≥
Emin},max{S ′|F2(T, S

′) ≥ Emin}, 0}.

Proof for Claim 3. Consider σ2(t, 0) which deploys 0 pulses in [0, t). The maximum energy at time t is
the amount of energy charged by CtLwLE strategy (with time duration t and maximum energy bound
Emax − E0) plus the initial energy E0, which gives Equation (6.16). Consider σ1(t, 0). Since it also
deploys 0 pulses in [0, t), F1(t, 0) equals F2(t, 0). The only exception occurs if σ1(t, 0) is invalid when

6.4 OPTIMAL SOLUTION: CASE OF CONSTANT NL FUNCTIONS 84

Parameter
Value 0.1 3 3 5.0 25.0 5.5 0.15 0.25 0.0003 0.0003 0.04 4 100

(a)

(b)

0 1 2 3 18

0

1

2

3

100

5.5

5.5

5.5

5.5

99

98

97 6.21 5.86 5.48

6.22

6.24

6.25

(c)

0 1 2 3 18

0

1

2

3

100

5.5

5.5

5.5

5.5

99

98

97 6.21 5.86 5.47

6.22

6.24

6.25

5.09

5.88 5.48 5.11

5.89 5.5 5.12

5.91 5.55 5.17

Figure VI.2: A simple numerical example. Figure (a) gives the parameter values in the
example. For simplicity, the units are omitted, and the values are normalized. Figure
(b) visualizes (a segment of) the dependency graph of DP states. Computing F1(97, 3)
requires the values of F1(91, 2) and F2(97, 3); computing F2(97, 3) requires F1(90, 2),
F1(89, 2), ..., F1(0, 2). The computation must therefore follow the topological order
of the dependency graph. Figure (c) shows the order of computation. The algorithm
computes F1 and F2 simultaneously row by row (increasing t) and column by column
(increasing S) inside a row. The table represents the computed DP values, where a dash
indicates an invalid DP state. The maximum number of pulses deployable in this instance
is 3.

F2(t, 0) does not charge enough energy to support one pulse, i.e., F2(t, 0) < Emin + P̄d ·∆t. If σ1(t, 0)
is invalid, F1(t, 0) is set to −∞. This gives Equation (6.17).

Proof for Claim 4. Partial schedule σ1(t, S) either has a deployment process crossing time t or has a
charging process ending at time t. Otherwise, we can shift the partial (sub-)schedule before time t to the
right to satisfy the condition while retaining the optimality. If σ1(t, S) has a deployment process crossing
time t, it must deploy a pulse in [t−∆t−∆t, t−∆t), so the maximum remaining energy at time t equals

6.4 OPTIMAL SOLUTION: CASE OF CONSTANT NL FUNCTIONS 85

F1(t−∆t−∆t, S − 1)− P̄d ·∆t. Note that this case is not valid if term F1(t−∆t−∆t, S − 1) has
invalid arguments or has values less than Emin + P̄d ·∆t. If, on the other hand, σ1(t, S) has a charging
process ending at time t, the maximum remaining energy at time t equals F2(t, S). This case is not valid
if the value of F2(t, S) is less than Emin + P̄d ·∆t when PPL is incapable of supporting an additional
pulse at time t. This proves the recurrence F1(t, S) = max{F1(t−∆t−∆t, S−1)− P̄d ·∆t, F2(t, S)}.

Partial schedule σ2(t, S) has a charging process ending at time t, and we let ∆t denote the length of
this last charging process. We assume that, without loss of generality, the last charging process uses
CtLwLE strategy due to its optimality. We first show that we can force 1 ≤ ∆t ≤ ⌈E−1

CtL(Emax−Emin)⌉.
If the charging process is longer than ⌈E−1

CtL(Emax − Emin)⌉, we can reduce the charging time to
⌈E−1

CtL(Emax−Emin)⌉ using CtLwLE strategy and charge the ESS to its upper boundEmax. Suppose there
is some idle time between processes in σ2(t, S) or idle time introduced by applying CtLwLE strategy to
each charging process in the previous argument. In that case, we can remove these idle times by firstly
shifting them all to the very beginning of the schedule to compact the rest of the schedule, and secondly
combining these idle times at the front together with the first charging process, if there is one, into one
charging process using CtLwLE strategy. Note that DP implements this operation by appropriately
setting F2(t, 0). Next, since there is a deployment process before the last charging process, the last
deployment process must end at time t−∆tc, where ∆tc = max{∆t,∆Tmin} for t < T or ∆tc = ∆t

for t = T (we need to enforce the minimum time distance constraint between consecutive deployment
processes, but there is no such constraint for the last charging process ending at time T). Therefore, the
remaining energy for σ2(t, S) at time t is min{Emax, F1(t−∆tc −∆t, S − 1)− P̄d ·∆t+ECtL(∆t)},
which is obtained by applying CtLwLE strategy for the last charging process. Since we do not know the
value of ∆t in advance, the recurrence (6.15) considers all possible values for ∆t, which guarantees to
find the correct value for term F2(t, S). Note that, for each ∆t, we also need to check the lower energy
bound constraint at time t −∆tc, i.e., F1(t −∆tc −∆t, S − 1) − P̄d ·∆t ≥ Emin, and if there is no
such valid ∆t, set F2(t, S) to −∞. □

We provide the pseudo-code of the DP in Algorithm 10. Lines 1 to 15 compute the values for all
DP states. Let Smax denote ⌊ T+∆t

∆t+∆t
⌋ and ∆tdmax denote min{T, ⌈E−1

CtL(Emax − Emin)⌉}. Figure VI.2
presents a sample run of Algorithm 10. The state space has size O(T ·Smax) and state transition requires
O(∆tdmax) time. Overall, Lines 1 to 15 have complexity O(T · Smax · ∆tdmax). Line 16 uses the
computed DP states and the maximum objective function value to trace the corresponding optimal
schedule in O(Smax · ∆tdmax) time. Tracing the optimal solution from the computed DP states is a
standard procedure, so we omit it. The overall computational complexity of the DP in Definition VI.6 is
O(T · Smax ·∆tdmax), and the space complexity is O(T · Smax).

Theorem VI.8 (Optimality of Consistency for Algorithm 10). Algorithm 10 has optimal consistency.

Proof. The lower bound for the competitive ratio of any clairvoyant algorithm is 1. By Theorem
VI.7, Algorithm 10 has a competitive ratio 1 under perfect NL prediction. By the Fundamental Theorems
of Consistency (Theorems II.4 and II.5), Algorithm 10 has consistency matching the lower bound. □

6.5 OPTIMAL SOLUTION: CASE OF GENERAL NL FUNCTIONS 86

6.5 Optimal Solution: Case of General NL Functions

This section considers the case of general NL functions. Our solution is supported by the prediction of
the variable NL beforehand. This condition is reasonable since mission- and time-critical CPSs often
operate under pre-programmed NL, making the power consumption predictable during the run.

Extending the techniques in Subsection 6.4.2, Subsection 6.5.1 presents the optimal strategy GCtLwLE
(Generalized Charging to the Limit with Limited Energy) for ESS charging under general NL functions.
Extending the techniques in Subsection 6.4.3, Subsection 6.5.2 presents the (extended) DP algorithm
solving the coordination problem under general NL functions.

6.5.1 Optimal Charging Strategy

With the variable NL, we cannot directly apply CtL strategy since the maximum chargeable energy
in a period can no longer be determined by the function ECtL. Fortunately, we can use the same idea
of CtL strategy and measure the maximum chargeable energy for every possible time interval. This
idea will extend the DP to the general NL case. We propose the dynamic program below (Definition
VI.9) to compute the maximum chargeable energy for every time interval. Note that, when determining
C1(i, j) or C(i, j) in the DP, we again first ignore the upper energy bound Emax (Constraint (6.2)) but
still enforce the others (Constraints (6.7) and (6.8)).

Definition VI.9 (DP for Maximum Chargeable Energy). We let C(i, j) denote the maximum chargeable
energy in period [i, j). We let C1(i, j) denote the maximum chargeable energy in a single charging
process starting at instant i and ending at instant j. We have the following DP recurrence.

C(i, j) = max{C(i, k) + C1(k, j) | i ≤ k ≤ j − 1} (6.19)

for 0 ≤ i < j ≤ T . The base cases are

C(i, i) = 0, 0 ≤ i ≤ T

Lemma VI.10. The DP in Definition VI.9 computes the maximum chargeable energy for every time
interval while ensuring all the constraints except for the upper energy bound constraint.

Proof. Consider an optimal strategy that charges the ESS in the time interval [i, j), ignoring the
upper energy bound constraint. The strategy must be a sequence of charging processes providing the
maximum amount of energy. Suppose that the last charging process starts at the time instant k′ (which
must end at the time instant j). It follows that the maximum amount of energy charged in time interval
[k′, j) is C1(k

′, j), and the maximum amount of energy charged in time interval [i, k′) is C(i, k′). The
optimal strategy, therefore, can charge up to C(i, k′)+C1(k

′, j) amount of energy for some k′. Equation
(6.19) considers the expression C(i, k) + C1(k, j) for all possible k, and thus the DP recurrence is
correct. □

6.5 OPTIMAL SOLUTION: CASE OF GENERAL NL FUNCTIONS 87

Figure VI.3: Critical points in Procedure VI.11.

We now present the procedure for computing C1(i, j) and its correctness proof. Essentially, we are
computing, for a charging process starting at the time instant i and ending at j, two time instants
t2, t3 ∈ (i, j) and a maximum charging power P , such that the trapezoidal shape, determined by
parameters i, t2, t3, j, P , is under the curve PR(t) for i ≤ t < j (we define PR(t) = PGmax − PNL(t))
and has the maximal area. Since t2 and t3 are real numbers, enumeration of all combinations of t2, t3
is infeasible. Computing C1(i, j) thus requires extra work. We first introduce some notations for the
function PR(t). Let the non-differentiable points in function PR(t) be t1NL, t2NL, ..., tMNL

NL in increasing
order, and let t1NL = 0 and tMNL

NL = T . The non-differentiable points partition the entire time interval
into sub-intervals [tiNL, t

i+1
NL), 1 ≤ i < MNL, where PR(t) remains constant over each sub-interval, i.e.,

PR(t) = PR(t
i
NL) for tiNL ≤ t < ti+1

NL.

Procedure VI.11. Consider the time interval [i, j) and let the non-differentiable points in PR(t) over
(i, j) be ti

′+1
NL , ti

′+2
NL , ..., ti

′+k
NL , with i < ti

′+1
NL < ... < ti

′+k
NL < j. With ti

′
NL = i and ti

′+k+1
NL = j, interval

[i, j) is then partitioned into sub-intervals [ti
′+c
NL , t

i′+c+1
NL), 0 ≤ c ≤ k. The procedure that computes

C1(i, j) works as follows.

Enumerate sub-intervals [ti
′+c
NL , t

i′+c+1
NL) for 0 ≤ c ≤ k, and for each sub-interval perform the following.

Let P ′ = min(PR(t
i′+c
NL), Pcmax). Extend the interval to the left and to the right to form another interval

[tclNL, t
cr
NL) such that tclNL ≤ ti

′+c
NL < ti

′+c+1
NL ≤ tcrNL and PR(t) ≥ P ′ for t ∈ (tclNL, t

cr
NL) and the interval is

maximal, as demonstrated in Figure VI.3 (a). Then, determine two values t′2 and t′3 (the procedure to
compute these two values will be given later):

• t′2 is the minimal value such that (1) t′2 ≥ tclNL and (2) PR(t) ≥ P ′

t′2−i
· (t− i) for t ∈ [i, tclNL).

• t′3 is the maximal value such that (1) t′3 ≤ tcrNL and (2) PR(t) ≥ P ′

t′3−j
· (t− j) for t ∈ [tcrNL, j).

As the end of an iteration, if t′2 < t′3, we consider a charging process with parameters t2 = t′2, t3 = t′3,
P = P ′, which charges energy Ec =

1
2
· (t′3 − t′2 + j − i) · P ′, referring to Figure VI.3 (b); otherwise,

we consider a charging process with t2 = t3 =
it′3−jt′2

t′3−t′2+i−j
, P = P ′·(i−j)

t′3−t′2+i−j
, which charges energy

Ec =
1
2
· P · (j − i), referring to Figure VI.3 (c).

Finally, C1(i, j) is the maximum Ec in all iterations.

Lemma VI.12. Procedure VI.11 computes C1(i, j).

6.5 OPTIMAL SOLUTION: CASE OF GENERAL NL FUNCTIONS 88

Proof. We claim that one of the iterations in the procedure must contain the optimal charging
scheme. Let to2, t

o
3, P

o denote the parameters for the optimal charging scheme. There are two cases:
(1) when to2 < to3 or the charging process has a trapezoidal shape and (2) when to2 = to3 or the charging
process has a triangular shape.

Case 1: to2 < to3. We have the following observations on optimal charging.

(1) P o is either Pcmax or PR(t
i′+c
NL) for some 0 ≤ c ≤ k, since otherwise we can increase P o by

a sufficiently small amount without changing ramp rates. This creates another strategy that
charges more energy to the ESS.

(2) Extend interval [to2, t
o
3) to the left and to the right to form the interval [tclNL, t

cr
NL) such that

tclNL ≤ to2 < to3 ≤ tcrNL and PR(t) ≥ P o for t ∈ (tclNL, t
cr
NL) and the interval is maximal. One of

the iterations encounters this interval [tclNL, t
cr
NL) with P ′ set to P o.

(3) With the formula for the energy charged in this charging process, Ec =
1
2
· (to3− to2+ j− i) ·P o,

and the optimality of the charging scheme, we must have to3 maximal, to2 minimal, PR(t) ≥
P ′

to2−i
· (t− i) for t ∈ [i, tclNL), and PR(t) ≥ P ′

to3−j
· (t− j) for t ∈ [tcrNL, j).

Therefore, there must be one iteration that contains this optimal charging scheme with the parameters to2,
to3, and P o.

Case 2: to2 = to3. Consider functions yu(t) = P o

to2−i
·(t−i) and yd(t) = P o

to3−j
·(t−j). Let to2 ∈ [ti

′+c
NL , t

i′+c+1
NL)

for some c, and consider the iteration with this interval. Let the parameters used in this iteration be
P ′ = min(PR(t

i′+c
NL), Pcmax) and the extended interval be [tclNL, t

cr
NL) (note that tclNL ≤ ti

′+c
NL ≤ to2 = to3 ≤

ti
′+c+1
NL ≤ tcrNL), and we let t′o2 and t′o3 be the time instants such that yu(t′o2) = yd(t

′o
3) = P ′. We have the

following observations on optimal charging.

(1) We must have (i) P ′ ≥ P o and t′o2 ≥ to2 = to3 ≥ t′o3 , (ii) PR(t) ≥ P ′

t′o2 −i
· (t− i) for t ∈ [i, tclNL),

and (iii) PR(t) ≥ P ′

t′o3 −j
· (t− j) for t ∈ [tcrNL, j) so that the charging strategy is valid.

(2) Functions yu and yd can be rewritten as yu(t) = P ′

t′o2 −i
· (t− i) and yd(t) = P ′

t′o3 −j
· (t− j). Since

yu(t
o
2) = yd(t

o
2), we have to2 =

it′o3 −jt′o2
t′o3 −t′o2 +i−j

and Po = yu(t
o
2) =

P ′·(i−j)
t′o3 −t′o2 +i−j

.
(3) The energy charged in this charging process can be expressed by Ec =

1
2
· yu(to2) · (j − i) =

1
2
· P ′·(i−j)2

t′o2 −t′o3 +j−i
, and, due to the optimality of the charging strategy, we must have t′o2 minimal and

t′o3 maximal.

Again, one iteration must contain the optimal charging scheme with the parameters to2, to3, and P o. Since
C1(i, j) is the maximum Ec in all iterations, it is the maximum energy chargeable in one charging
process that starts at the time instant i and ends at instant j. □

Procedure VI.13 below details how t′2 and t′3 are computed.

6.5 OPTIMAL SOLUTION: CASE OF GENERAL NL FUNCTIONS 89

Procedure VI.13. In the context of computing C1(i, j), given an interval (tclNL, t
cr
NL), we can compute t′2

and t′3, with definitions given in Procedure VI.11, as follows. Let

k1 = min{ PR(t
i′+j
NL)

ti
′+j+1
NL − i

|i′ ≤ i′ + j < cl}, k2 = max{PR(t
i′+j
NL)

ti
′+j
NL − j

|cr ≤ i′ + j ≤ i′ + k}

and we compute t′2 = i+ P ′

min(k1,Ru)
and t′3 = j + P ′

max(k2,−Rd)
. Note that we set k1 =∞ if cl = i′, and

we set k2 = −∞ if cr = i′ + k + 1.

Lemma VI.14. Procedure VI.13 computes t′2 and t′3 as defined in Procedure VI.11.

Proof. We will prove the correctness of the formula for t′2, and the correctness for t′3 will hold by
symmetry. Observe that condition PR(t) ≥ P ′

t′2−i
· (t − i) for t ∈ [i, tclNL) is equivalent to PR(t

i′+j
NL) ≥

P ′

t′2−i
· (ti

′+j+1
NL − i) for i′ ≤ i′ + j < cl, which gives

t′2 ≥ i+
P ′

PR(ti
′+j
NL)

ti
′+j+1
NL −i

for i′ ≤ i′ + j < cl

which is equivalent to t′2 ≥ i+ P ′

k1
. By Constraint (6.7), we also need to enforce t′2 ≥ i+ P ′

Ru . Combining
these inequalities, we have a lower bound for t′2

t′2 ≥ i+
P ′

min(k1, Ru)

Observe that when cl > i′, we have PR(t
cl−1
NL) < P ′ and

i+
P ′

min(k1, Ru)
≥ i+

P ′

k1
≥ i+

P ′

PR(t
cl−1

NL)

t
i′+cl−1+1

NL −i

> tclNL

and when cl = i′, we have

i+
P ′

min(k1, Ru)
= i+

P ′

Ru
= ti

′

NL +
P ′

Ru
≥ tclNL

Therefore, i + P ′

min(k1,Ru)
≥ tclNL, and the minimal value of t′2 such that (1) t′2 ≥ tclNL and (2) PR(t) ≥

P ′

t′2−i
· (t− i) for t ∈ [i, tclNL) is exactly i+ P ′

min(k1,Ru)
. □

Note that the current C(i, j) ignores the upper energy bound constraint, and now we take it back into
consideration. Observe that any charging strategy that charges the ESS with E energy can be adjusted to
charge E ′ energy for E ′ ≤ E. Below we detail the procedure for adjusting any optimal charging strategy
over the time interval [i, j) to satisfy the upper energy bound constraint. This procedure generalizes
Charging to the Limit with Limited Energy, so we name it Generalized Charging to the Limit with
Limited Energy (GCtLwLE).

Definition VI.15 (GCtLwLE). Fix a time interval [i, j) and an additional parameter ∆Em indicating
the maximum amount of energy chargeable during the time interval. GCtLwLE strategy defines an
optimal charging scheme in the time interval [i, j) while ensuring all the constraints, which proceeds as

6.5 OPTIMAL SOLUTION: CASE OF GENERAL NL FUNCTIONS 90

follows. Let CS be an optimal charging scheme, ignoring the upper energy bound constraint, in the
time interval [i, j) that charges C(i, j) amount of energy.

If C(i, j) ≤ ∆Em, scheme CS is already an optimal scheme satisfying all constraints.

If C(i, j) > ∆Em, we adjust CS to make it charge exactly ∆Em energy to the ESS. Let CS be a
sequence of m consecutive charging processes at the time intervals [ik, ik+1), where 1 ≤ k ≤ m,
i1 = i, and im+1 = j. We have

∑m
k=1C1(ik, ik+1) = C(i, j). Let q be the smallest index such that∑q

k=1C1(ik, ik+1) > ∆Em, and let the parameters for the q-th charging process be tqc_1 = iq, t
q
c_2,

tqc_3, t
q
c_4 = iq+1, and P q

c . The adjusted scheme CS ′ is constructed from CS by keeping the first q
charging processes, removing the charging processes after the q-th one, and adjusting the q-th charging
process as follows. Define Ru

q = P q
c

tqc_2−tqc_1
, Rd

q = P q
c

tqc_4−tqc_3
, ∆tq = tqc_4 − tqc_1. Let t

′q
c_1 = iq, t

′q
c_2,

t
′q
c_3, t

′q
c_4 = iq+1, and P

′q
c be the parameters of the charging process after the adjustment, we set

P
′q
c = (∆tq −

√
(∆tq)2 − 2 · (R

u
q+Rd

q

Ru
qR

d
q
) · (∆Em −

∑q−1
k=1C1(ik, ik+1))) · (

Ru
qR

d
q

Ru
q+Rd

q
), t

′q
c_2 = t

′q
c_1 +

P
′q
c

Ru
q

, and

t
′q
c_3 = t

′q
c_4 − P

′q
c

Rd
q

.

Lemma VI.16. GCtLwLE computes the optimal charging scheme for any time interval while ensuring
all the constraints.

Proof. We only need to show that when C(i, j) > ∆Em, the adjusted scheme CS ′ charges exactly
∆Em energy to the ESS. Since we keep the first q − 1 charging processes, the total energy charged in
these processes is

∑q−1
k=1C1(ik, ik+1). As for the q-th charging process, the way we set the parameters

is the same as that in CtLwLE: without changing the ramp rates, by decreasing the maximum power
P

′p
c , we make sure the charging process charges ∆Em −

∑q−1
k=1C1(ik, ik+1) energy (this amount is

non-negative by the definition of the index q). Thus, in total, the adjusted charging scheme charges the
ESS with exactly ∆Em energy. □

6.5.2 The DP-based Solution

This subsection proposes the DP for finding the optimal coordination schedule of PPL deployment and
ESS charging. It is based on the same dominance rule in Theorem VI.5.

Definition VI.17 (Generalized Optimal DP Formulation). Let P1(t, S) denote the maximum remaining
energy at time t, given that the schedule deploys S pulses during the time interval [0, t) and has an
additional pulse to be deployed at period [t, t + ∆t). Similarly, let P2(t, S) denote the maximum
remaining energy at time t, given that the schedule deploys S pulses during the time interval [0, t) and
has a charging process ending at time t. We have the following DP recurrences.

P1(t, S) = max{P1(t−∆t−∆t, S − 1)− P̄d ·∆t, P2(t, S)} (6.20)

for all 0 ≤ t ≤ max{0, T −∆t}, 1 ≤ S ≤ ⌊ T+∆t

∆t+∆t
⌋.

P2(t, S) = max{min{Emax, P1(t−∆tc −∆t, S − 1)− P̄d ·∆t+ C(t−∆tc, t)}} (6.21)

6.5 OPTIMAL SOLUTION: CASE OF GENERAL NL FUNCTIONS 91

Algorithm 11: DP (General NL case)
Data :problem instance with a general NL function prediction
Result :an optimal schedule

1 initialize spaces for C1(i, j)s, C(i, j)s, P1(t, S)s, P2(t, S)s.
2 C1 ← ComputeAllC1().
3 C ← ComputeAllC().
4 for t← 0 to T do
5 P2(t, 0)← min{E0 + C(0, t), Emax}.
6 if P2(t, 0) ≥ Emin + P̄d ·∆t then
7 P1(t, 0)← P2(t, 0).
8 else
9 P1(t, 0)← −∞.

10 for t← 0 to T do
11 for S ← 1 to ⌊ T+∆t

∆t+∆t
⌋ do

12 P2(t, S)← max{min{Emax, P1(t−∆tc −∆t, S − 1)− P̄d ·∆t+ C(t−∆tc, t)} |

1 ≤ ∆t ≤ t−∆t, ∆tc =

{
max{∆t,∆Tmin}, t < T

∆t, t = T
}.

13 if t ≤ max{0, T −∆t} then
14 P1(t, S)← max{P1(t−∆t−∆t, S − 1)− P̄d ·∆t, P2(t, S)}.
15 if P1(t, S) < Emin + P̄d ·∆t then
16 P1(t, S)← −∞.

17 SMAX ← max{max{1 + S′|P1(T −∆t, S′)− P̄d ·∆t ≥ Emin},max{S′|P2(T, S
′) ≥ Emin}, 0}.

18 return TraceSchedule(C1, C, P1, P2, SMAX)

for all 0 ≤ t ≤ T , 1 ≤ S ≤ ⌊ T+∆t

∆t+∆t
⌋, 1 ≤ ∆t ≤ t−∆t, and ∆tc = max{∆t,∆Tmin} if t < T or ∆t if

t = T . Similarly, as in the DP formulation in Definition VI.6, whenever term P1(t−∆t−∆t, S − 1),
term P1(t−∆tc −∆t, S − 1), or term P2(t, S) has invalid arguments or values, i.e., the value is less
than Emin + P̄d ·∆t for the first two terms or less than Emin for the term P2(t, S), its value is set to −∞.
We have the following base cases.

P2(t, 0) = min{E0 + C(0, t), Emax},∀ 0 ≤ t ≤ T (6.22)

P1(t, 0) =

P2(t, 0), P2(t, 0) ≥ Emin + P̄d ·∆t
−∞, P2(t, 0) < Emin + P̄d ·∆t

,∀ 0 ≤ t ≤ max{0, T −∆t} (6.23)

The maximum number of pulses deployed by an optimal schedule is

max{max{1 + S ′|P1(T −∆t, S ′)− P̄d ·∆t ≥ Emin},max{S ′|P2(T, S
′) ≥ Emin}, 0} (6.24)

The correctness proof is by similar arguments used for Theorem VI.7. We provide the pseudo-code of
the DP in Algorithm 11. Let MNL denote the number of non-differentiable points in function PR(t).
Line 2 computes C1(i, j)s by implementing Procedure VI.11 and VI.13, incurring a complexity of
O(T 2 ·MNL). Line 3 computes C(i, j)s using the DP in Definition VI.9, incurring a complexity of
O(T 3). Lines 4 to 17 compute the values for all DP states defined in Definition VI.17 with the computed

6.6 SIMULATION 92

C(i, j)s. With O(T · Smax) ⊆ O(T 2) state space and O(T) transition time, computing all DP states
incurs a cost of O(T 3) time. Finally, Line 18 traces and returns the corresponding optimal schedule
from all computed DP states in O(T 2) time. We again omit the tracing. The computational complexity
of the DP in Definition VI.17 is O(T 3 + T 2 ·MNL), and the space complexity is O(T 2).

Theorem VI.18 (Optimality of Consistency for Algorithm 11). Algorithm 11 has optimal consistency.

Proof. The theorem holds by the same arguments for Theorem VI.8 and the Fundamental Theorems
of Consistency (Theorems II.4 and II.5). □

6.6 Simulation

In this section, we evaluate the performance of the proposed DP algorithms under both scenarios of
constant and general NL functions via extensive simulations. The proposed algorithm, in both constant
and general NL cases, will be compared against the existing Particle Swarm Optimization (PSO) solution
[71] and an improved greedy heuristic. In the constant NL case, we also compare our algorithm with the
heuristic algorithm in [73], which we call Heuristic. The simulations are not meant to be exhaustive but
are designed to validate the theoretical results and show performance improvement over the existing
algorithms. Code for the proposed DP algorithm and the improved greedy heuristic under constant NL
functions and general NL functions have been open-sourced1.

This section is organized as follows. Subsection 6.6.1 gives the experimental setup. Subsection 6.6.2
presents the evaluation results. In particular, Subsection 6.6.2.1 shows the sample execution of the
proposed algorithm; Subsection 6.6.2.2 compares the performance for the energy output between the
proposed algorithms and the existing solutions; Subsection 6.6.2.3 compares the run time between the
proposed algorithms and the existing solutions.

6.6.1 Experimental Setup

The parameters used in the experiments are set to the actual values used in real-world applications
[73, 79–81], and the key parameter ranges are listed in Table 2. The studied time T reaches up to 20,000
ms as the practical time scale for such systems to predict the NL and operate under critical-mission
modes is from milliseconds to thousands of milliseconds.

Parameter P̄d ∆t ∆t Emin Emax E0 PNL PGmax R
u, Rd Pcmax ∆Tmin T

Range [4, 10] [1, 33] [1, 33] (0, 5] [5, 40] [Emin, Emax] (0, 0.85PGmax] [10, 30] [0.1, 3] (0, 10] [∆t, T] (0, 20000]
Unit MW ms ms MJ MJ MJ MW MW MW/s MW ms ms

Table VI.2: The range of key parameters used in the experiments.

1View source code on GitHub.

https://github.com/TianmingZhao-1997/Pulsed-Power-Load-Coordination-in-Mission-and-Time-Critical-Cyber-Physical-Systems.git

6.6 SIMULATION 93

Parameter P̄d ∆t ∆t E0 Emin Emax PNL PGmax Ru Rd Pcmax ∆Tmin T
(a) 9.0 30 30 6.02 5.0 25.5 14.0 24.0 0.3 0.9 4.0 14000 20000
(b) 9.0 30 30 6.02 5.0 25.5 14.0 24.0 0.3 0.9 4.0 40 20000
(c) 9.0 30 30 5.35 5.0 25.5 – – 3.0 2.8 4.0 9000 20000
(d) 9.0 30 30 5.35 5.0 25.5 – – 3.0 2.8 4.0 7000 20000
(e) 9.0 30 30 5.35 5.0 25.5 – – 3.0 2.8 4.0 5000 20000

Table VI.3: Parameters for the sample executions.

The parameter PNL is a function in time, which is generated as follows. Iterate through time 1 to T , and
at every time instant t, we generate, with the probability of r, a non-differentiable point that takes the
function PNL(t) to some value randomly generated from the interval (0, 0.85PGmax]. We set r = 1

1000

so changes happen every few seconds, which is consistent with practical applications.

The existing algorithms do not guarantee feasible solutions. For this reason and to test the practical
effectiveness of our proposed DP, we design two improved greedy algorithms. They guarantee to produce
feasible solutions and aim to outperform the existing solutions in all cases. All the derived optimal
charging processes are re-used in designing the greedy algorithms, i.e., the greedy algorithms exploit the
structural properties of optimal charging as DP does. The greedy algorithms for both scenarios share
the same idea: deploying as many pulses as possible when the ESS has enough energy to output one
more pulse without violating any constraints. Otherwise, the system performs a charging process to
ensure the energy in ESS reaches the threshold Eup defined as Emin + ⌊Emax−Emin

P̄d·∆t
⌋ · P̄d ·∆t. Observe

that the energy above Eup and below Emax cannot be used by IPS, so this strategy makes full use of
charging. The idea behind the greedy algorithms is that efficient charging processes support more pulses
as the energy for pulse deployment comes from the charging processes. Observe that a charging process
receives a high incentive per unit of time if P jc

c is large. Grouping charging processes altogether is
mostly beneficial. To determine the parameters for charging processes, the optimal CtLwLE strategy
(Definition VI.4) is used in the constant NL scenario, and the optimal GCtLwLE (Definition VI.15) is
used in the general NL scenario. We generate 5000 independent problem instances for various r (r = 0

indicates the constant NL case) with T increasing to 20,000 ms at a fixed step. For each instance, PSO,
greedy, and DP algorithms have been executed in turn. The Heuristic also has also been executed for
the instances with constant NL. The energy output and the run time for the algorithms are recorded
and compared. For accurate measurement of execution time, each reported entry is an average of 1000
independent executions. The simulations are implemented in C++ and conducted on computers with
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.60GHz and 32GB Memory. Finally, we note that the time
complexities of greedy algorithms are O(T) and O(T 3 + T 2 ·MNL) for constant and general NL cases,
respectively.

6.6 SIMULATION 94

Figure VI.4: Sample executions.

6.6.2 Evaluation Results

6.6.2.1 Sample Execution

This section presents the results of five sample algorithm executions in Figure VI.4 with the parameters
listed in Table VI.3. Executions (a) and (b) are for constant NL functions, and Executions (c), (d), and
(e) are for general NL functions. Since PR(t) = PGmax − PNL(t) is a function in time for the last
three executions, its values are omitted in the table but identifiable from the figures. The dashed line
on top indicates the function PR(t); a thin rectangle indicates a deployed pulse; a trapezoid or triangle
indicates a charging process. We intend to make the problem instances in the same scenario share similar
parameters to observe the relative changes in the metric. The deployed pulses are 79, 80, 116, 118, and
120 in Executions (a) to (e).

The difference in parameter setting between Executions (a) and (b), or between Executions (c), (d),
and (e), is the value of rest time of deployments, ∆Tmin. Since the parameter ∆Tmin sets additional
time restrictions on deployment processes, the larger the value is, the fewer pulses the IPS can deploy.
This pattern holds in both cases and can be observed in the sample executions. Execution (a) has 79
deployed pulses with ∆Tmin = 14000 while Execution (b) has 80 deployed pulses with ∆Tmin = 40.
Executions (c), (d), and (e) have a decreasing ∆Tmin, from 9000 to 7000 to 5000 but an increasing
number of deployed pulses, from 116 to 118 to 120. We also observe two interesting trends. When
∆Tmin is getting close to ∆t, as shown in Execution (b), the algorithm uses the time between adjacent
pulses for performing tiny charging processes within some periods. Although the waiting time between
adjacent pulses becomes longer than otherwise, the charging process receives more time in return. In the
case of general NL functions, as shown in Executions (c), (d), and (e), the optimal strategy selects the
best period for ESS charging. Instead of directly using one single charging process, it creates multiple

6.6 SIMULATION 95

4000 8000 12000 16000 20000
0.0

5.0

10.0

15.0

20.0

25.0

30.0

to
ta

l e
ne

rg
y

(M
J)

Constant NL (r = 0)
DP
Greedy
PSO
Heuristic

4000 8000 12000 16000 20000
0.0

5.0

10.0

15.0

20.0

25.0

30.0
General NL (r = 0.1)

DP
Greedy
PSO

4000 8000 12000 16000 20000
0.0

5.0

10.0

15.0

20.0

25.0

30.0
General NL (r = 0.2)

DP
Greedy
PSO

4000 8000 12000 16000 20000
0.0

5.0

10.0

15.0

20.0

25.0

30.0
General NL (r = 0.3)

DP
Greedy
PSO

4000 8000 12000 16000 20000
0.0

5.0

10.0

15.0

20.0

25.0

30.0
General NL (r = 0.4)

DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

to
ta

l e
ne

rg
y

(M
J)

General NL (r = 0.5)
DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

5.0

10.0

15.0

20.0

25.0

30.0
General NL (r = 0.6)

DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

5.0

10.0

15.0

20.0

25.0

30.0
General NL (r = 0.7)

DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

5.0

10.0

15.0

20.0

25.0

30.0
General NL (r = 0.8)

DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

5.0

10.0

15.0

20.0

25.0

30.0
General NL (r = 0.9)

DP
Greedy
PSO

Figure VI.5: Energy output comparison between PSO, Heuristic, Greedy, and DP
with varying r and increasing T .

charging processes in a given period. These observations suggest that our proposed algorithm utilizes
different sets of IPS parameters to obtain the optimal objective values.

6.6.2.2 Energy Output Results

Figure VI.5 shows the energy output comparison between PSO, Heuristic, Greedy, and DP under two
scenarios. The first plot corresponds to the constant NL case, while the rest corresponds to the general
NL case with increasing power profiles. All figures indicate that DP consistently outperforms Greedy,
which consistently outperforms PSO. In the case of constant NL, the Heuristic outperforms PSO but
still runs below Greedy. On average, DP has a 175% performance improvement over PSO, 110% over
Heuristic, and 70% over Greedy. The results remain the same no matter how r is changed.

In our experiments, we observe that the feasible solution space for PSO is narrow. Thus the execution
relies heavily on the random initialization that wishes to start with some feasible solutions. In most
cases, PSO finds trivial schedules that produce little pulses. In contrast, the greedy heuristics can find
feasible solutions with the optimal charging strategies (Definitions VI.4 and VI.15). The high-quality
charging processes lead the greedy heuristics to produce more pulses than Heuristic and PSO do.

Nevertheless, the ESS could be fully charged in a charging process under the control of the greedy
algorithm. This operation may restrict the time for PPL deployment and thus lead to mission failure.
DP, in contrast, can make an optimal decision in time allocation for deployment and charging. DP can
also take advantage of overlapping the rest time between adjacent pulse deployment with tiny charging
processes, as shown in the sample Execution (b). This trick is beneficial when ∆Tmin is close enough to
∆t. All these factors contribute to DP outperforming Greedy in energy utilization, revealing the essence
of the proposed DP. The simulation confirms the theoretical results about the optimality of the proposed
DP algorithms. They also show performance improvement when they are deployed to the real IPS.

6.7 RELATED RESULTS 96

4000 8000 12000 16000 20000
0.0

50.0

100.0

150.0

200.0

ru
n

tim
e

(s
)

Constant NL (r = 0)

DP
Greedy
PSO
Heuristic

4000 8000 12000 16000 20000
0.0

50.0

100.0

150.0

200.0

General NL (r = 0.1)
DP
Greedy
PSO

4000 8000 12000 16000 20000
0.0

50.0

100.0

150.0

200.0

General NL (r = 0.2)
DP
Greedy
PSO

4000 8000 12000 16000 20000
0.0

50.0

100.0

150.0

200.0

General NL (r = 0.3)

DP
Greedy
PSO

4000 8000 12000 16000 20000
0.0

50.0

100.0

150.0

200.0

General NL (r = 0.4)
DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

50.0

100.0

150.0

200.0

ru
n

tim
e

(s
)

General NL (r = 0.5)
DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

50.0

100.0

150.0

200.0

General NL (r = 0.6)

DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

50.0

100.0

150.0

200.0

General NL (r = 0.7)
DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

50.0

100.0

150.0

200.0

General NL (r = 0.8)
DP
Greedy
PSO

4000 8000 12000 16000 20000
studied time T (ms)

0.0

50.0

100.0

150.0

200.0

General NL (r = 0.9)

DP
Greedy
PSO

Figure VI.6: Run time comparison between PSO, Heuristic, Greedy, and DP with
varying r and increasing T .

6.6.2.3 Execution Time Results

Figure VI.6 shows the run time comparison between PSO, Heuristic, Greedy, and DP under two scenarios.
Heuristic and Greedy share similar run time results in the case of constant NL. Greedy is slightly faster
than DP, and both are much faster than PSO. The same trend holds under the general NL case. The
exceptions are when both T and r become very large in the last three figures, where PSO becomes the
fastest, leaving Greedy second and DP the last. All the algorithms can finish in a reasonable time. It is
interesting to observe that the run time for PSO stays about the same regardless of the values of T and r.
The consistent run time performance is because PSO’s run time depends on the number of iterations and
particles in the swarm, and these hyper-parameters are constants in our simulations. In contrast, the run
time of both Greedy and DP increases with the studied time T and the number of NL power profiles
MNL. In the constant NL case, the run time increases linearly with T , while it increases cubically in the
general NL case with the other variables fixed. The slopes of the curves reflect these complexity results.
Both the run times for Greedy and DP increase as the number of NL power profiles increases. The run
time for Greedy and DP become closer to each other as r increases since both algorithms use the DP in
Definition VI.9 to compute C(i, j), incurring a computational cost of O(T 3 + T 2 ·MNL) that dominates
the complexities. Increasing r attains stronger dominance, thus leading to much closer run-time results.

As a concluding remark, DP satisfies the real-time requirements and is optimal in energy output and
run time compared with PSO, Heuristic, and Greedy. Greedy has only a slight run time improvement
over DP, but the negligible additional computational cost in DP returns an average of 70% performance
improvement in PPL deployment.

6.7 Related Results

The coordination problem of maximizing a PPL’s output utility is an emerging research problem. As a
complex non-linear optimization, the problem has not yet been extensively studied. To our knowledge,

6.8 CONCLUSIONS AND FUTURE WORK 97

no theoretical analysis has been developed for this problem. We review related works [71–73] on this
topic and outline our differences. These works are all heuristic approaches and have exponential run
times in the worst case.

The PPL scheduling problem has been first introduced and studied in [71]. The formulation in [71]
assumes that both charging and deployment processes are periodic over time and relaxes the energy
bounds constraints (Constraints (6.2) – (6.3)) to ensure their proposed approach finds solutions. The
proposed solution uses PSO to search for sub-optimal solutions. The PSO algorithm requires a long
processing time to find solutions and thus may not be suitable for practical use. If the number of
iterations is reduced, the algorithm can terminate within a reasonable amount of time, but it will no
longer guarantee feasible solutions.

The work in [72] is built on the intuition that more available energy can support more PPL deployment.
Thus, the authors study a morphic equivalence problem of maximally allocating rectangles inside a
region with part of the region marked as pre-allocated NL. Mixed-Integer Linear Programming is used
for finding the optimal allocation. Although the solution is guaranteed optimal, it suffers from the
explicit assumption of Ru = Rd =∞ and an exponential computational cost. More importantly, this
solution cannot apply directly to the PPL coordination problem; it requires further post-processing.

Recent work [73] proposes a solution to the PPL coordination problem under the following assumptions:
(1) charging processes and deployment processes are periodic in time, (2) only the average power bound
is considered, not the instantaneous power bound, and (3) the NL is assumed to be a constant. Their
solution decomposes the problem into two sub-problems and then solves them separately to form the
final solution. The sub-problems are heuristic, making the solution less likely to optimize the original
problem.

6.8 Conclusions and Future Work

This work studies the PPL scheduling problem with NL prediction in mission- and time-critical CPS.
The problem is modeled under two scenarios for different use cases: the constant NL and general NL
functions. Then, we propose and prove the first exact pseudo-polynomial time algorithms based on
Dynamic Programming, outperforming the existing solutions in both energy output and run time. We
show that the algorithms achieve optimal consistency. The experimental results further confirm the
validity and practicality of our approaches. Both algorithms guarantee that an IPS can perform optimally
in completing critical missions, even in the worst case. In the future, we will study how our proposed
solutions could be extended to solve the coordination of multiple and simultaneous PPLs in IPS. We also
plan to study how to enable the scheduler to make reliable decisions under an inaccurate prediction of
the NL. For now, our proposed algorithm for general NL functions relies on the assumption of predicting
the accurate variable NL. Solving PPL scheduling without this assumption requires a formal definition
of the prediction error metric and designing new algorithms using the possibly inaccurate prediction to
yield guaranteed performance which depends on the prediction quality.

CHAPTER 7

Conclusion

In this thesis, we present a framework named online scheduling with predictions that addresses the
challenges classic online scheduling faces. Our framework uses additional predictions about unknowns as
inputs to improve scheduling performance. We introduce a metric for quantifying the prediction error and
demonstrate its integration into the design and analysis of algorithms. We also present three performance
metrics — consistency, robustness, and smoothness — which are used to evaluate the performance
under the framework. We present solutions to central online scheduling problems and applications in
cyber-physical systems scheduling, including uniform machine scheduling with job size predictions
to minimize makespan, single and parallel machine scheduling with job size predictions to minimize
mean response time, and pulsed power load scheduling in cyber-physical systems. Our solutions achieve
near-optimal performance when predictions are accurate and maintain bounded performance even when
predictions are poor. Through analysis and extensive simulations, we show the effectiveness of our
proposed framework. Our algorithms consistently outperform the state-of-the-art methods by leveraging
predictions.

We highlight the connections between online scheduling with predictions and online clairvoyant and
non-clairvoyant scheduling. A best-performing learning-augmented algorithm should function like an
optimal online clairvoyant scheduler with quality predictions and an optimal online non-clairvoyant
scheduler with poor predictions. Our algorithms demonstrate how to manage uncertainty in online
scheduling, with the prediction error as a proxy for the degree of uncertainty. The framework of online
scheduling with predictions provides general solutions for decision-making under uncertainty.

The framework represents a breakthrough by moving beyond traditional assumptions of perfect or no
information and surpassing traditional worst-case algorithm performance analysis by considering the
practical setting of having potentially imperfect information about unknowns in the design and analysis
of algorithms. The fundamental theorems of consistency, robustness, and smoothness reveal the potential
and limitations of information in decision-making. The algorithms under this framework demonstrate
how to use information while being aware of its imperfection. Together, they provide new insights into
the role of information in online decision-making.

Future Work

Much remains to be done to extend the theory and applications of online scheduling with predictions.
98

FUTURE WORK 99

Lower Bounds on Smoothness

The fundamental theorems of consistency and robustness provide tight lower bounds for consistency and
robustness, but determining lower bounds on smoothness is more complex. It depends on the specific
problem and the assumptions of the adversary. To establish such bounds, one must construct worst-case
problem instances with predictions that prove the limitations of predictions. Systematic approaches to
lower bound smoothness are an important area for further research, as the bounds represent the return of
prediction quality in algorithm performance.

Leveraging the Distribution of Prediction Error

Analysis in this thesis considers the worst-case prediction errors. However, in many real-world scenarios,
the prediction errors follow known distributions (e.g., normal distribution). Exploring the potential of
knowing the error distribution and how algorithms can leverage this information is an important area
for further research. Since stochastic scheduling requires known problem parameter distributions, we
expect that online scheduling with predictions can also leverage the assumptions about the prediction
error distributions.

Trade-off of Prediction Quality and Performance

While near-perfect predictions are desirable, achieving them can be computationally expensive and
may not always result in matching performance improvement. The additional computation may serve
better if they are used in decision-making, e.g., running more iterations for the algorithms. Therefore,
the trade-off between prediction quality and performance must be considered to find the equilibrium
between allocating computational resources to prediction quality and decision-making. A model or
objective quantifying the quality of the trade-off is needed. This trade-off will be a key consideration in
the application of online scheduling with predictions.

Bibliography

[1] T. Zhao, W. Li, and A. Y. Zomaya, “Uniform machine scheduling with predictions,” Proceedings
of the International Conference on Automated Planning and Scheduling, vol. 32, pp. 413–422, Jun.
2022.

[2] T. Zhao, W. Li, and A. Y. Zomaya, “Learning-augmented scheduling,” IEEE Transactions on
Computers, 2023. Submitted.

[3] T. Zhao, C. Li, W. Li, and A. Y. Zomaya, “Brief announcement: Towards a more robust algorithm for
flow time scheduling with predictions,” in Proceedings of the 34th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’22, (New York, NY, USA), p. 385–388, Association for
Computing Machinery, 2022.

[4] T. Zhao, W. Li, and A. Y. Zomaya, “Real-time scheduling with predictions,” in 2022 IEEE Real-
Time Systems Symposium (RTSS), pp. 331–343, 2022.

[5] T. Zhao, W. Li, B. Qin, L. Wang, and A. Y. Zomaya, “Pulsed power load coordination in mission
and time critical cyber-physical systems,” ACM Trans. Model. Perform. Eval. Comput. Syst., Dec.
2022.

[6] T. Zhao, W. Si, W. Li, and A. Y. Zomaya, “Optimizing the maximum vertex coverage attacks under
knapsack constraint,” IEEE/ACM Transactions on Networking, vol. 29, no. 3, pp. 1088–1104, 2021.

[7] T. Zhao, W. Si, W. Li, and A. Y. Zomaya, “Towards minimizing the r metric for measuring network
robustness,” IEEE Transactions on Network Science and Engineering, vol. 8, no. 4, pp. 3290–3302,
2021.

[8] “Algorithms with predictions.” https://algorithms-with-predictions.github.

io/. Accessed: 2023-02-28.
[9] R. Graham, E. Lawler, J. Lenstra, and A. Kan, “Optimization and approximation in deterministic

sequencing and scheduling: a survey,” in Discrete Optimization II (P. Hammer, E. Johnson, and
B. Korte, eds.), vol. 5 of Annals of Discrete Mathematics, pp. 287–326, Elsevier, 1979.

[10] S. Lattanzi, T. Lavastida, B. Moseley, and S. Vassilvitskii, “Online scheduling via learned weights,”
in Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’20, (USA), p. 1859–1877, Society for Industrial and Applied Mathematics, 2020.

[11] M. Purohit, Z. Svitkina, and R. Kumar, “Improving online algorithms via ml predictions,” in
Advances in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.

[12] A. Wei and F. Zhang, “Optimal robustness-consistency trade-offs for learning-augmented online
algorithms,” in Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, (Red Hook, NY, USA), Curran Associates Inc., 2020.

100

https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/

BIBLIOGRAPHY 101

[13] E. Bampis, K. Dogeas, A. Kononov, G. Lucarelli, and F. Pascual, “Scheduling with untrusted
predictions,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelli-
gence, IJCAI-22 (L. D. Raedt, ed.), pp. 4581–4587, International Joint Conferences on Artificial
Intelligence Organization, 7 2022. Main Track.

[14] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. USA: Cambridge
University Press, 1998.

[15] J. Leung, L. Kelly, and J. H. Anderson, Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. USA: CRC Press, Inc., 2004.

[16] R. M. Karp, “On-line algorithms versus off-line algorithms: How much is it worth to know the
future?,” in Proceedings of the IFIP 12th World Computer Congress on Algorithms, Software,
Architecture - Information Processing ’92, Volume 1 - Volume I, (NLD), p. 416–429, North-Holland
Publishing Co., 1992.

[17] B. Awerbuch, S. Kutten, and D. Peleg, “Competitive distributed job scheduling (extended abstract),”
in Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC ’92,
(New York, NY, USA), p. 571–580, Association for Computing Machinery, 1992.

[18] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen, “Online algorithms with
advice: A survey,” SIGACT News, vol. 47, p. 93–129, Aug. 2016.

[19] A. Antoniadis, C. Coester, M. Elias, A. Polak, and B. Simon, “Online metric algorithms with
untrusted predictions,” in Proceedings of the 37th International Conference on Machine Learning
(H. D. III and A. Singh, eds.), vol. 119 of Proceedings of Machine Learning Research, pp. 345–355,
PMLR, 13–18 Jul 2020.

[20] S. Gollapudi and D. Panigrahi, “Online algorithms for rent-or-buy with expert advice,” in
Proceedings of the 36th International Conference on Machine Learning (K. Chaudhuri and
R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine Learning Research, pp. 2319–2327,
PMLR, 09–15 Jun 2019.

[21] M. Mitzenmacher, “Scheduling with predictions and the price of misprediction,” in ITCS, 2020.
[22] P. Dütting, S. Lattanzi, R. Paes Leme, and S. Vassilvitskii, “Secretaries with advice,” in Proceedings

of the 22nd ACM Conference on Economics and Computation, EC ’21, (New York, NY, USA),
p. 409–429, Association for Computing Machinery, 2021.

[23] M. Frye, D. Gyulai, J. Bergmann, and R. H. Schmitt, “Adaptive scheduling through machine
learning-based process parameter prediction,” MM Science journal, vol. 2019, pp. HSM2019–023,
Oct 2019.

[24] K. Anand, R. Ge, and D. Panigrahi, “Customizing ML predictions for online algorithms,” in
Proceedings of the 37th International Conference on Machine Learning (H. D. III and A. Singh,
eds.), vol. 119 of Proceedings of Machine Learning Research, pp. 303–313, PMLR, 13–18 Jul
2020.

[25] Y. Azar, S. Leonardi, and N. Touitou, “Flow time scheduling with uncertain processing time,” in
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021,
(New York, NY, USA), p. 1070–1080, Association for Computing Machinery, 2021.

[26] S. Im, R. Kumar, M. Montazer Qaem, and M. Purohit, “Non-clairvoyant scheduling with predic-
tions,” in Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures,

BIBLIOGRAPHY 102

SPAA ’21, (New York, NY, USA), p. 285–294, Association for Computing Machinery, 2021.
[27] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel machines on-line,” SIAM

Journal on Computing, vol. 24, no. 6, pp. 1313–1331, 1995.
[28] M. Amiri and L. Mohammad-Khanli, “Survey on prediction models of applications for resources

provisioning in cloud,” J. Netw. Comput. Appl., vol. 82, p. 93–113, Mar. 2017.
[29] N. Peyravi and A. Moeini, “Estimating runtime of a job in hadoop mapreduce,” Journal of Big

Data, vol. 7, no. 1, p. 44, 2020.
[30] H. Yamashiro and H. Nonaka, “Estimation of processing time using machine learning and real

factory data for optimization of parallel machine scheduling problem,” Operations Research
Perspectives, vol. 8, p. 100196, 2021.

[31] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-
completeness. W.H. Freeman and Company, 2009.

[32] Y. Azar, S. Leonardi, and N. Touitou, “Distortion-oblivious algorithms for minimizing flow time,”
Sep 2021.

[33] R. Motwani, S. Phillips, and E. Torng, “Non-clairvoyant scheduling,” in Proceedings of the Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, (USA), p. 422–431, Society
for Industrial and Applied Mathematics, 1993.

[34] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft Real-Time Systems: Predictability vs.
Efficiency (Series in Computer Science). Plenum Publishing Co., 2005.

[35] K. Pruhs, J. Sgall, and E. Torng, “Online scheduling,” in Handbook of Scheduling: Algorithms,
Models, and Performance Analysis (J. Y.-T. Leung, ed.), USA: CRC Press, Inc., 2004.

[36] S. Bozhko, G. von der Brüggen, and B. B. Brandenburg, “Monte carlo response-time analysis,” in
2021 IEEE Real-Time Systems Symposium (RTSS), pp. 342–355, 2021.

[37] A. a. Bhuiyan, K. Yang, S. Arefin, A. Saifullah, N. Guan, and Z. Guo, “Mixed-criticality multicore
scheduling of real-time gang task systems,” in 2019 IEEE Real-Time Systems Symposium (RTSS),
pp. 469–480, 2019.

[38] O. Bellenguez-Morineau, M. Chrobak, C. Dürr, and D. Prot, “A Note on NP-Hardness of Pree-
mptive Mean Flow-Time Scheduling for Parallel Machines,” Journal of Scheduling, vol. 18, no. 3,
pp. 299–304, 2015.

[39] S. Leonardi and D. Raz, “Approximating total flow time on parallel machines,” Journal of Computer
and System Sciences, vol. 73, no. 6, pp. 875–891, 2007.

[40] K. R. Baker, Introduction to sequencing and scheduling. Wiley, 1974.
[41] L. Becchetti and S. Leonardi, “Nonclairvoyant scheduling to minimize the total flow time on single

and parallel machines,” J. ACM, vol. 51, p. 517–539, jul 2004.
[42] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf, “Simple near-optimal scheduling for the m/g/1,”

Proc. ACM Meas. Anal. Comput. Syst., vol. 4, may 2020.
[43] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, G. Schafer, and T. Vredeveld, “Average case

and smoothed competitive analysis of the multi-level feedback algorithm,” in 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Proceedings., pp. 462–471, 2003.

[44] S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha, and T. Abdelzaher, “On removing
algorithmic priority inversion from mission-critical machine inference pipelines,” in 2020 IEEE

BIBLIOGRAPHY 103

Real-Time Systems Symposium (RTSS), pp. 319–332, 2020.
[45] B. Kalyanasundaram and K. R. Pruhs, “Minimizing flow time nonclairvoyantly,” J. ACM, vol. 50,

p. 551–567, jul 2003.
[46] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoyance,” J. ACM, vol. 47,

p. 617–643, jul 2000.
[47] L. Becchetti, S. Leonardi, and S. Muthukrishnan, “Scheduling to minimize average stretch without

migration,” in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’00, (USA), p. 548–557, Society for Industrial and Applied Mathematics, 2000.

[48] E. G. Coffman and P. J. Denning, Operating Systems Theory. Prentice Hall Professional Technical
Reference, 1973.

[49] B. Wang, X. Li, L. P. de Aguiar, D. S. Menasche, and Z. Shafiq, “Characterizing and modeling
patching practices of industrial control systems,” Proc. ACM Meas. Anal. Comput. Syst., vol. 1,
June 2017.

[50] Q. Zhang, D. K. Hong, Z. Zhang, Q. A. Chen, S. Mahlke, and Z. M. Mao, “A systematic framework
to identify violations of scenario-dependent driving rules in autonomous vehicle software,” Proc.
ACM Meas. Anal. Comput. Syst., vol. 5, June 2021.

[51] N. Périvier, C. Hssaine, S. Samaranayake, and S. Banerjee, “Real-time approximate routing for
smart transit systems,” Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 5, no. 2, p. 1–30, 2021.

[52] G. Pettet, A. Mukhopadhyay, M. J. Kochenderfer, and A. Dubey, “Hierarchical planning for resource
allocation in emergency response systems,” in Proceedings of the ACM/IEEE 12th International
Conference on Cyber-Physical Systems, (New York, NY, USA), pp. 155–166, Association for
Computing Machinery, 2021.

[53] X. Feng, K. L. Butler-Purry, and T. Zourntos, “A multi-agent system framework for real-time
electric load management in mvac all-electric ship power systems,” IEEE Transactions on Power
Systems, vol. 30, no. 3, p. 1327–1336, 2015.

[54] S. Kulkarni and S. Santoso, “Impact of pulse loads on electric ship power system: With and without
flywheel energy storage systems,” 2009 IEEE Electric Ship Technologies Symposium, 2009.

[55] J. Boudjadar and M. H. Khooban, “A cost-effective scheduling control for a safety critical hybrid
power system,” in 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), pp. 1–4, IEEE, 2020.

[56] F. Geth, C. Coffrin, and D. Fobes, “A flexible storage model for power network optimization,” in
Proceedings of the Eleventh ACM International Conference on Future Energy Systems, e-Energy
’20, (New York, NY, USA), p. 503–508, Association for Computing Machinery, 2020.

[57] B. Sun, A. Zeynali, T. Li, M. Hajiesmaili, A. Wierman, and D. H. Tsang, “Competitive algorithms
for the online multiple knapsack problem with application to electric vehicle charging,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems, vol. 4, no. 3, p. 1–32, 2020.

[58] H. Pandžić and V. Bobanac, “An accurate charging model of battery energy storage,” IEEE
Transactions on Power Systems, vol. 34, no. 2, pp. 1416–1426, 2019.

[59] G. Wang, Y. Zhang, Z. Fang, S. Wang, F. Zhang, and D. Zhang, “Faircharge: A data-driven
fairness-aware charging recommendation system for large-scale electric taxi fleets,” Proc. ACM

BIBLIOGRAPHY 104

Interact. Mob. Wearable Ubiquitous Technol., vol. 4, Mar. 2020.
[60] K. Vatanparvar and M. A. A. Faruque, “Electric vehicle optimized charge and drive management,”

ACM Trans. Des. Autom. Electron. Syst., vol. 23, Aug. 2017.
[61] K. K. Tafanidis, K. D. Taxeidis, G. J. Tsekouras, and F. D. Kanellos, “Optimal operation of

war-ship electric power system equipped with energy storage system,” Journal of Computations &
Modelling, vol. 3, no. 4, p. 41–60, 2013.

[62] J. Hou, J. Sun, and H. F. Hofmann, “Mitigating power fluctuations in electric ship propulsion with
hybrid energy storage system: Design and analysis,” IEEE Journal of Oceanic Engineering, vol. 43,
no. 1, p. 93–107, 2018.

[63] C. R. Lashway, A. T. Elsayed, and O. A. Mohammed, “Hybrid energy storage management in ship
power systems with multiple pulsed loads,” Electric Power Systems Research, vol. 141, p. 50–62,
2016.

[64] S. Samineni, B. Johnson, H. Hess, and J. Law, “Modeling and analysis of a flywheel energy storage
system for voltage sag correction,” IEEE Transactions on Industry Applications, vol. 42, no. 1,
p. 42–52, 2006.

[65] F. Scuiller, “Simulation of an energy storage system to compensate pulsed loads on shipboard
electric power system,” 2011 IEEE Electric Ship Technologies Symposium, 2011.

[66] H. Smolleck, S. Ranade, N. Prasad, and R. Velasco, “Effects of pulsed-power loads upon an electric
power grid,” IEEE Transactions on Power Delivery, vol. 6, no. 4, p. 1629–1640, 1991.

[67] B. Cassimere, C. Valdez, S. Sudhoff, S. Pekarek, B. Kuhn, D. Delisle, and E. Zivi, “System impact
of pulsed power loads on a laboratory scale integrated fight through power (iftp) system,” IEEE
Electric Ship Technologies Symposium, 2005., 2005.

[68] J. M. Crider and S. D. Sudhoff, “Reducing impact of pulsed power loads on microgrid power
systems,” IEEE Transactions on Smart Grid, vol. 1, no. 3, p. 270–277, 2010.

[69] W.-S. Im, C. Wang, L. Tan, W. Liu, and L. Liu, “Cooperative controls for pulsed power load
accommodation in a shipboard power system,” IEEE Transactions on Power Systems, vol. 31, no. 6,
p. 5181–5189, 2016.

[70] L. Farrier, C. Savage, and R. Bucknall, “Simulating pulsed power load compensation using lithium-
ion battery systems,” in 2019 IEEE Electric Ship Technologies Symposium (ESTS), pp. 45–51,
IEEE, 2019.

[71] F. Li, Y. Chen, R. Xie, C. Shen, L. Zhang, and B. Qin, “Optimal operation planning for orchestrating
multiple pulsed loads with transient stability constraints in isolated power systems,” IEEE Access,
vol. 6, p. 18685–18693, 2018.

[72] T. Ding, J. Bai, P. Du, B. Qin, F. Li, J. Ma, and Z. Dong, “Rectangle packing problem for battery
charging dispatch considering uninterrupted discrete charging rate,” IEEE Transactions on Power
Systems, vol. 34, no. 3, pp. 2472–2475, 2019.

[73] R. Xie, Y. Chen, Z. Wang, S. Mei, and F. Li, “Online periodic coordination of multiple pulsed loads
on all-electric ships,” IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2658–2669, 2020.

[74] J. F. Hansen and F. Wendt, “History and state of the art in commercial electric ship propulsion,
integrated power systems, and future trends,” Proceedings of the IEEE, vol. 103, no. 12, pp. 2229–
2242, 2015.

BIBLIOGRAPHY 105

[75] M. Ibrahim, S. Jemei, G. Wimmer, and D. Hissel, “Nonlinear autoregressive neural network in an
energy management strategy for battery/ultra-capacitor hybrid electrical vehicles,” Electric Power
Systems Research, vol. 136, pp. 262–269, 2016.

[76] J. Li, B. Xia, X. Geng, H. Ming, S. Shakkottai, V. Subramanian, and L. Xie, “Mean field games in
nudge systems for societal networks,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 3,
Aug. 2018.

[77] H. Chen, Y. Zhang, M. C. Caramanis, and A. K. Coskun, “Energyqare: Qos-aware data center
participation in smart grid regulation service reserve provision,” ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 4, Jan. 2019.

[78] S. K. Mandal, U. Y. Ogras, J. Rao Doppa, R. Z. Ayoub, M. Kishinevsky, and P. P. Pande, “On-
line adaptive learning for runtime resource management of heterogeneous socs,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2020.

[79] Z. Dong, X. Cong, Z. Xiao, X. Zheng, and N. Tai, “A study of hybrid energy storage system
to suppress power fluctuations of pulse load in shipboard power system,” in 2020 International
Conference on Smart Grids and Energy Systems (SGES), pp. 437–441, 2020.

[80] R. Hebner, J. Beno, and A. Walls, “Flywheel batteries come around again,” IEEE Spectrum, vol. 39,
no. 4, pp. 46–51, 2002.

[81] A. T. Elsayed and O. A. Mohammed, “Distributed flywheel energy storage systems for mitigating
the effects of pulsed loads,” in 2014 IEEE PES General Meeting | Conference Exposition, pp. 1–5,
2014.

	Authorship Attribution Statement
	Statement of Originality
	Student Plagiarism: Compliance Statement
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Chapter 2. Fundamentals of Online Scheduling with Predictions
	2.1. Online Scheduling with Predictions
	2.2. Fundamental Theorems of Consistency
	2.3. Fundamental Theorems of Robustness
	2.4. Fundamental Theorems of Smoothness
	2.5. Conclusions

	Chapter 3. Uniform Machine Scheduling with Predictions
	3.1. Introduction
	3.2. Preliminaries
	3.3. Robust Online Scheduling with Job Size Predictions
	3.4. Analysis
	3.5. Experimental Evaluation
	3.6. Conclusions and Future Work

	Chapter 4. Single Machine Response Time Scheduling with Predictions
	4.1. Introduction
	4.2. Problem Definition
	4.3. Robust Single Machine Response Time Scheduling with Job Size Predictions
	4.4. Conjecture: An eta-squared-Competitive Algorithm
	4.5. Conclusions and Future Work

	Chapter 5. Real-Time Scheduling with Predictions
	5.1. Introduction
	5.2. Preliminaries
	5.3. Robust Response Time Scheduling with Job Size Predictions
	5.4. Algorithm Analysis
	5.5. Experimental Evaluation
	5.6. Conclusions and Future Work

	Chapter 6. Pulsed Power Load Scheduling with Predictions
	6.1. Introduction
	6.2. Modeling of the Coordination Problem
	6.3. Problem Formulation
	6.4. Optimal Solution: Case of Constant NL Functions
	6.5. Optimal Solution: Case of General NL Functions
	6.6. Simulation
	6.7. Related Results
	6.8. Conclusions and Future Work

	Chapter 7. Conclusion
	Future Work

	Bibliography

