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Abstract 

The Internet of Things (IoT) is a concept where physical objects of various sizes can 

seamlessly connect and communicate with each other without human intervention. 

The concept covers various applications, including healthcare, utility services, 

automotive/vehicular transportation, smart agriculture and smart city. The number of 

interconnected IoT devices has recently grown rapidly as a result of technological 

advancement in communications and computational systems. Consequently, this 

trend also highlights the need to address issues associated with IoT, the biggest risk of 

which is commonly known to be security. This thesis focuses on three selected security 

challenges from the IoT application areas of connected and autonomous vehicles 

(CAVs), Internet of Flying Things (IoFT), and human body interface and control systems 

(HBICS). For each of these challenges, a novel and innovative solution is proposed to 

address the identified problems. The research contributions of this thesis to the 

literature can be summarised as follows: 

• A blockchain-based conditionally anonymised pseudonym management 

scheme for CAVs, supporting multi-jurisdictional road networks. 

• A Sybil attack detection scheme for IoFT using machine learning carried out on 

intrinsically generated physical layer data of radio signals. 

• A potential approach of using inter-pulse interval (IPI) biometrics for frequency 

hopping to mitigate jamming attacks on HBICS devices. 

Details of these three studies are briefly given in the paragraphs below. 

To introduce the first study, a feasible approach commonly discussed in the literature 

for mitigating location privacy threats for CAVs is the use of pseudonyms instead of 

real vehicle identifications. However, for relevant authorities to be able to identify 

misbehaving vehicles through their pseudonyms, it is essential that the privacy 
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protection mechanisms only allow for conditional anonymity and not complete 

anonymity. This study proposes the use of a permissioned consortium blockchain 

system with smart contract feature to facilitate secure and conditional privacy-

preserving vehicular pseudonym issuance and management in a multi-jurisdictional 

road network. The use of a permissioned consortium blockchain helps mitigate 

security risks associated with the complexities in interorganisational data handling, 

such as in the areas of access control, data integrity, confidentiality, and availability. 

The proposed system architecture takes advantage of the predicted wide availability 

of Roadside Units (RSUs), and the highly viable, flexible and mature Public Key 

Infrastructure (PKI) technology for usage in vehicular pseudonymous 

communications. A small-scale simulation of the proposed architecture was 

successfully carried out using the Vehicles in Network Simulation (Veins) platform for 

integrated traffic and network simulation services (SUMO as the traffic simulator and 

OMNeT++ as the network simulator), and the Hyperledger Fabric platform as the 

permissioned consortium blockchain system. Simulation and performance analysis 

results reveal the feasibility of practical deployment of the scheme, and show that the 

scheme addresses the identified shortfalls of existing works, including the ability to 

achieve a better balance between connectivity and storage requirements. 

The second study concentrates on the Sybil attack security threat, which refers to the 

situation when a malicious node falsely claims to have numerous identities. Due to 

the recent increase usage of unmanned aerial vehicles (UAVs) in various applications, 

the Sybil attack has been identified as a threat to the flying ad hoc network (FANET) 

paradigm and its integration with the IoT to form the IoFT. This study proposes an 

intelligent Sybil attack detection approach for FANETs-based IoFT using physical layer 

characteristics of the radio signals emitted from the UAVs as detected by two ground 

nodes. A supervised machine learning approach is employed and experimented with 

several different classifiers available in the Weka workbench platform. The 

experiment was carried out based on two features of the radio signals, namely, the 
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received signal strength difference (RSSD) and the time difference of arrival (TDoA). 

Simulation results revealed that the proposed scheme can achieve a high correct 

classification accuracy of above 91% on average, even for smart malicious nodes with 

power control capability operating at power levels not directly trained. In addition to 

the high performance, the proposed scheme is also less susceptible to various attacks 

commonly carried out on the upper layers, such as data spoofing, due to the use of 

only intrinsically generated physical layer data. Furthermore, no additional 

communications overheads of the UAV nodes are required for the functionality of this 

scheme.  

Finally, the third study is relating to the security of human wearable and implantable 

devices in HBICS. More specifically, the use of physiological biometrics such as the 

timing between heartbeats, also known as the IPI, has been well-researched for 

mitigating threats to confidentiality and integrity; however, not quite so for the 

mitigation of threats to availability. The jamming of communication links to cause 

denial-of-service (DoS) is one such type of threat to availability. This study proposes, 

simulates and analyses four alternative algorithms which use IPI to add another layer 

of protection to the traditional pseudorandom frequency hopping system, to mitigate 

jamming attacks on communication links. The results reveal the feasibility for some of 

the algorithms to be used.  
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Chapter 1 Introduction 

This thesis focuses on improving security for the Internet of Things (IoT), which has 

been and is still a very active research area. This chapter introduces the IoT concept 

and the associated security challenges, with emphasis on three application domains 

that will be explored in subsequent chapters, namely, connected and autonomous 

vehicles (CAVs), Internet of Flying Things (IoFT), and human body interface and control 

systems (HBICS). Furthermore, this chapter also outlines the motivations and 

objectives, as well as the contributions of the research works carried out in later 

chapters of this thesis. 

1.1. Internet of Things 

The Internet of Things (IoT) is a concept originally introduced in 1999 by Kevin Ashton, 

describing physical objects of various sizes that can seamlessly connect and 

communicate with each other without human intervention [1]. Since the concept’s 

introduction, the amount of interconnected devices has grown rapidly due to 

technological advancement in communications and computational systems [2]. The 

types variety of interconnected IoT devices has also expanded to cover various 

application areas, including healthcare, utility services, automotive/vehicular 

transportation, smart agriculture and smart city [3]. Consequently, IoT devices 

expanded to include things like blood pressure meters, home televisions, restaurant 

refrigerators, connected cars, robotic manufacturing systems, smart grid, and 

countless industrial control systems [4]. According to the latest global forecast and 

analysis reporting by Cisco, it is estimated that by 2023, there will be 29.3 billion 

networked devices, which is equivalent to approximately 3.6 devices per person when 

taking into account the world population. The same report also states that the number 
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of networked devices in 2018 was 18.4 billion devices, or 2.4 devices per person, 

indicating significant growth within just half a decade [5]. 

As can be seen, IoT is a broad concept covering a variety of different application 

domains. As depicted in Figure 1.1, the focus of this thesis will be on three application 

domains, namely, connected and autonomous vehicles (CAVs), Internet of Flying 

Things (IoFT), and human body interface and control systems (HBICS). Brief 

introductions of these application domains are given in the following subsections. 

 
Figure 1.1: IoT Application Domains Focused in This Thesis 

 

IoFT

CAVs

HBICS
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1.1.1. Connected and Autonomous Vehicles  

The connected and autonomous vehicles (CAVs) concept is known to be forming the 

backbone of future next-generation intelligent transportation systems (ITS) to provide 

travel comfort, road safety, and other value-adding services [6]. Due to CAVs requiring 

to be equipped with many sensors, there are also additional requirements for these 

sensors to communicate critical sensory information with other systems, both 

internally and externally, such as to other nearby vehicles. Consequently, there 

appears to be more and more research on vehicular communications concurrently 

with the evolution of various related technologies.  

Apart from the term “connected and autonomous vehicles (CAVs)”, there are also 

many different descriptive terms used in the literature that are associated with 

vehicular communications, such as Vehicular Networks, Vehicular Ad Hoc Networks 

(VANETs), Internet of Vehicles (IoV), Connected Vehicles, Vehicle to Vehicle (V2V), 

Vehicle to Infrastructure (V2I), Vehicle to Grid (V2G) and Vehicle to Everything (V2X) 

[6] [7] [8]. Although these terms may have some slight differences in meaning, they 

share a common element, which is that communications systems are required 

between entities, whether it be internal or external to the vehicle, to connect them to 

each other.  

Prominent radio access technologies for vehicular communications include DSRC and 

cellular networks (LTE-V/4G/5G) [7] [9] [10]. It is envisioned that connected cars to be 

released to the world’s public roadways will first be using DSRC technology [11]. This 

is because DSRC is a mature technology that has been developed for over ten years 

[9]; however, there is also a lack of clear plan for future evolution of the standards. 

Conversely, LTE-V appears to have a brighter future going forward, as although it is 

still in the early stage of development, it has several advantages such as more 

bandwidth, wider coverage and the ability to reuse existing cellular network 
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infrastructure. Emerging radio access technologies such as millimeter-wave and visible 

light are also discussed in the literature as potential new trends for vehicular 

communications [10]. 

Vehicular communications has some special characteristics that are unique among 

other IoT systems. As the vehicle’s communications systems are assumed to be 

powered by the more abundance drivetrain power, there would be less constraints on 

power availability; in fact, several studies such as Obaidat et al. [12] and Arif et al. [13] 

infer that this means there is no power constraint. There is also a higher degree of 

mobility pattern predictability. Vehicular networks can also potentially be highly 

dynamic because of high mobility and the number of vehicles joining and leaving. Due 

to the characteristics of vehicular networks, it is not surprising to see that many 

research challenges in vehicular communications are associated with mobility. 

Furthermore, the expected high number of vehicles means that the network is 

predicted to be quite large in scale [7]. 

1.1.2. Internet of Flying Things  

The Internet of Flying Things (IoFT) concept is a relatively new research area that is 

built upon the integration of Unmanned Aerial Vehicles (UAVs) and IoT [14] [15]. UAVs 

are pilotless aerial vehicles either autonomously controlled by a computer or remotely 

controlled by a pilot on the ground. They are also commonly known as drones, and 

have recently gained increasing usage in civilian applications, including agricultural 

remote sensing, search and rescue operations, disaster monitoring, weather 

monitoring, pollutant studies and delivery of products such as food. These relatively 

new applications are in addition to their military applications, such as strike, 

reconnaissance and border surveillance, which have been in place since several 

decades back. With such increasing usage, the global UAV market compound growth 

rate is estimated to be as strong as 19.99% between 2016 to 2022 [16]. 
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UAV is known to be an important element of the Unmanned Aircraft Systems (UAS), 

together with the other two elements being the ground control station (GCS) and the 

communications links [14] [15]. To enable more effective operations, different UAVs 

are often operated together in different arrangements. For example, they can be 

coupled together using physical links. Alternatively, they can be arranged in a 

formation where the UAVs are not physically connected but their relative motions are 

constrained to keep such a formation. Another example is homogenous teams of 

UAVs operating in swarms [16]. The UAV swarm arrangement has especially been 

increasingly discussed as an operation model of great potential for various 

applications, including search and rescue operations [17] [18] and air quality index 

monitoring [19].  

The UAVs communications network is known as a flying ad hoc network (FANET), 

which is a subclass of mobile ad hoc networks (MANETs), but with nodes possessing 

aviation characteristics [14]. In the FANET paradigm, UAVs can communicate with 

each other without requiring an access point, given that at least one of them connects 

to a GCS or a satellite [16]. This allows the UAV nodes to cooperate through ad-hoc 

networking, enabling the achievement of operations requiring higher scalability, 

reliability, survivability, and a lower cost [14].  

Given the aviation nature of FANET, there exist several unique characteristics. Firstly, 

the nodes are expected to be of relatively high mobility. Multiple connections among 

these nodes are also anticipated. Consequently, from the perspective of the network 

topology, frequent change is also an expectation. Nevertheless, node density is 

projected to be much lower than some other paradigms, such as VANET. In terms of 

radio propagation, line-of-sight (LoS) links between the nodes and the GCS can 

generally be assumed. As for the power consumption, this is limited by the energy 

source of the specific UAV, where battery capacity can vary subjecting to the UAV type 

and size [14] [15] [16]. Due to the uniqueness of FANET, several challenges have been 
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identified, including in the areas of networking protocols, mobility models, security, 

quality of service and standards [16]. 

From the perspectives of radio frequency and access technology, FANET uses a variety 

of these depending on applications. The frequencies can range from lower ones such 

as below 1 GHz, which is suitable for control links and telemetry, to higher ones such 

as above 5 GHz, where quality video broadcasts can be carried out. Due to the 

different FANET applications and communications ranges, various radio access 

technologies are expected to be used, such as multi-hop IEEE 802.11, Zigbee, WiMAX, 

EDGE, UMTS and LTE [16]. 

1.1.3. Human Body Interface and Control Systems  

The concept of human body interface and control systems (HBICS) refers to the 

information exchange between devices inside, on, and within the proximity of a 

human body. It is also known as wireless body area networks (WBAN). As the names 

suggest, the focus of the concept is substantially on human wearable and implantable 

devices. Due to such nature of the concept, HBICS cover both medical and non-

medical applications. Medical applications can include the monitoring and control of 

health conditions, such as fatigue, asthma, diabetes, cardiovascular diseases and 

cancer detection. As for non-medical applications, these can range from things like 

entertainment to non-medical emergency management and security management 

[20]. 

Currently, HBICS implantable devices appear to be primarily for medical applications. 

However, wearable devices tend to cover a broader range of applications. For 

example, Seneviratne et al. [21] classified wearable devices into three categories, 

namely, accessories, e-textile and e-patch. Accessories can be broken down further 

into wrist-worn devices, head-mounted devices and other accessories. Wrist-worn 

devices include things like smart watches and wristbands. Examples of head-mounted 
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devices include smart eyewear, headsets and earbuds. Examples of other accessories 

include smart jewellery and various straps for health tracking and other 

functionalities. As for e-textile, items that fall into this category include smart clothing 

garments such as shirts, pants and undergarments, as well as foot and hand-worn 

items like shoes, socks and gloves. Finally, the e-patch category includes items such as 

sensor patches and e-tattoo/e-skin. 

Similar to many other IoT systems, challenges associated with HBICS devices stem 

from the limitations in resources due to the constraints associated with the intended 

operation scenarios. These resources are such as energy, storage, computing and 

communication [22] [23]. Nevertheless, safety and security are often cited as concerns 

that are especially important to HBICS when compared to some other IoT application 

domains, due to the possibility of direct involvement in life-critical information and 

potentially in hostile environments [20] [23] [24] [25]. 

Communications in HBICS can generally be classified into three to four tiers [24] [26] 

[27]. Tier-1 generally refers to communications where both the sender and the 

receiver are inside a human body. Tier-2, Tier-3 and Tier-4 then gradually refer to 

communications from a human body to an off-body device and beyond. In terms of 

communications protocols, HBICS operational scenarios generally favour those that 

support low power, such as Bluetooth Low Energy (BLE), IEEE 802.15.4, IEEE 802.15.6 

and IEEE 802.11ah [21] [24] [28]. 

1.2. Security for the Internet of Things  

With the trend of increasingly interconnected IoT devices also comes the exacerbation 

of issues associated with IoT, the biggest risk of which is commonly known to be 

security issues [29]. Mitigating IoT security issues is quite challenging as most IoT 

devices are designed to be small in size and have inherently limited resources (i.e., 
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battery, processing, and storage) [1]. Research in IoT security is also known to still be 

in the conceptual stage, requiring further exploration to develop new innovative 

security solutions [29]. 

Another challenge for the security of IoT is the associated heterogeneous 

characteristic. There exists a large variety of IoT technologies, including protocols and 

standards [30] [31]. This leads to the lack of interoperability between systems, a 

reduced number of skilled personnel available to contribute to works in each 

technology type, and a reduced number of solutions with cross-domain applicability 

[30]. 

As outlined in Section 1.1, this thesis focuses on three IoT application domains, 

namely, connected and autonomous vehicles (CAVs), Internet of Flying Things (IoFT), 

and human body interface and control systems (HBICS), each of which is a broad field 

of study in its own right. As a consequence, each application domain has associated 

security challenges that are more or less unique, but often still share some similar 

characteristics with those found in other domains. This thesis explores three selected 

security challenges, each of which belongs to an application domain mentioned 

above. It is the author’s aspiration that the studies carried out and captured in this 

thesis will contribute to enabling more secure IoT devices integration, and 

subsequently lead to more effective and robust use of IoT technology.  

1.3. Research Motivations and Objectives 

As outlined in Section 1.1, the number of interconnected IoT devices has recently 

grown rapidly due to technological advancement in communications and 

computational systems. Consequently, IoT devices are now quite ubiquitous, as well 

as becoming an integral part of human lives. Since interconnected IoT devices are used 

in many different application areas, this phenomenon brings about tremendous 
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benefits to humanity. Nevertheless, with such trends also come the associated 

challenges awaiting to be tackled to safeguard the benefits realisation, one interesting 

area of which is security. Due to the rapid growth of the IoT paradigm, there are still 

a lot of open challenges as to how to improve IoT security. These elements collectively 

form the motivation factors for the studies carried out in this thesis, with the primary 

objective being that the solutions developed hereby would lead to a world where the 

IoT system is robust, effective and safe to use, which would then lead to the 

enhancement of various other societal developments. 

With IoT being such an enormous area of study, this thesis cannot address the 

improvement of security in all domains. Notwithstanding that, the literature review 

on IoT security carried out in Chapter 2 has identified three interesting challenges, 

which are individually addressed in Chapter 3, Chapter 4 and Chapter 5 of this thesis. 

To categorise, the selected three challenges are in the areas of connected and 

autonomous vehicles (CAVs), Internet of Flying Things (IoFT), and human body 

interface and control systems (HBICS). Additionally, the literature review also 

identified ideas, techniques, and most notably technologies such as blockchain and 

machine learning systems, which may be useful in contributing to the formation of 

potential solutions. The motivations and objectives of the three studies captured in 

this thesis are briefly given below. 

Firstly, a challenge identified relating to vehicular communications is location privacy 

preservation. Although the use of pseudonyms instead of real vehicle identifications 

has been known as a mitigation for this problem, there is a trade-off for this with non-

repudiation. To resolve such a trade-off, the use of vehicular pseudonyms needs to be 

made conditional, allowing the real identity to be traceable by authorised parties. In 

this context, the distinct immutable distributed ledger property of blockchain systems 

is a potential solution to assist in the management of conditionally anonymised 

vehicular pseudonyms. This is especially so for the consortium blockchain type, which 

has great potential in the provision of a secured integrated solution for a road network 
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jointly managed by different jurisdictions, such as different states within a country. 

The identified challenge and the existence of consortium blockchain systems as a 

potential solution enabling technology, thus, motivate the development of a novel 

pseudonym issuance and management system. 

The next challenge identified is related to IoFT security. More specifically, the recent 

trend of increasing UAV usage in civilian applications, in addition to the traditional 

deployment in the military domain since several decades back, has highlighted the 

need for additional countermeasures against security threats, including the Sybil 

attack. In this context, the use of machine learning has been identified as a tool of high 

potential to intelligently detect Sybil attack instances in FANETs-based IoFT. 

Consequently, this challenge, and the existence of machine learning systems as a 

potential solution enabling technology, stimulate the invention of a state-of-the-art 

Sybil attack detection scheme. 

Finally, the last challenge identified is related to HBICS security. The literature review 

conducted indicates that numerous authentication and encryption applications that 

use biometrics, such as inter-pulse interval (IPI), have been developed to address 

various security challenges in the past. These developments were largely in 

conjunction with the fuzzy commitment scheme, which allows for errors in what is 

equivalent to a decryption key, to be tolerable to a certain degree. On the other hand, 

denial-of-service (DoS) is known to be a major attack type in HBICS, and one method 

of carrying out such an attack is through the launch of wireless communications link 

jamming. In this context, the existing solutions, which would have worked fine with 

authentication and encryption applications, cannot be adopted for use in frequency 

hopping applications due to the fundamental difference in how frequency hopping 

operates.  This gap triggers the development of a new frequency hopping approach 

that uses IPI biometrics to add another layer of protection to the traditional 

pseudorandom frequency hopping system, potentially bringing enormous benefits to 

HBICS. 
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1.4. Thesis Contributions 

The contributions of this thesis can be divided into three areas. Firstly, the 

contributions associated with the proposed pseudonym issuance and management 

system outlined in Chapter 3. Secondly, the contributions resulting from the 

development of the novel IoFT Sybil attack detection scheme proposed in Chapter 4. 

Thirdly, the contributions arose from the development of potential solutions to enable 

IPI biometrics to be used for frequency hopping sequence determination, as outlined 

in Chapter 5.  

The main contributions of Chapter 3 are summarised as follows: 

• To fill a knowledge gap in the literature relating to conditionally anonymised 

vehicular pseudonym management in a multi-jurisdictional road network. 

• To achieve conditionally anonymised vehicular pseudonym management 

supporting multi-jurisdictional road networks, while also concurrently: 

o minimising the associated complexities and security risks at interfaces 

between different jurisdictions; and  

o enabling integrated collaboration between different organisations. 

• To investigate and demonstrate the use of permissioned consortium 

blockchain paired with the traditional PKI-based cryptography system in 

carrying out pseudonym issuance and management in a dynamic, secure, 

conditional privacy-preserving and distributed manner. 

The main contributions of Chapter 4 are summarised as follows: 

• To fill a knowledge gap in the literature relating to Sybil attack detection in 

FANETs-based IoFT which is still quite deficient in general. 

• To achieve Sybil attack detection in FANETs-based IoFT using intrinsically 

generated physical layer data of radio signals emitted from the UAVs. 
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Advantages associated with this are such as less susceptibility to attacks 

involving information spoofing and not requiring additional communications 

overheads. 

• To achieve Sybil attack detection in FANETs-based IoFT, where both classic 

malicious nodes with fixed power and smart malicious nodes with power 

control capability may be presented. 

• To investigate and demonstrate the use of machine learning in carrying out 

Sybil attack classification determination based on two attributes, namely RSSD 

and TDoA ratios of two different radio signals, obtained using only two 

monitoring nodes. 

The main contributions of Chapter 5 are summarised as follows: 

• To fill a knowledge gap in the literature relating to the use of IPI biometrics as 

an added layer of protection to the traditional pseudorandomly determined 

frequency hopping pattern. 

• To investigate and demonstrate the derivation of IPI biometrics frequency 

hopping determinants that are tolerant to noise and errors caused through IPI 

measurements being taken at different parts of the body. 

1.5. Thesis Organisation 

This chapter outlines an overview of the Internet of Things (IoT) concept, focusing on 

three application domains, namely, connected and autonomous vehicles (CAVs), 

Internet of Flying Things (IoFT), and human body interface and control systems 

(HBICS). It also briefly introduces the topic of IoT security, laying the foundation for 

further discussions in Chapter 2 and subsequent chapters. Furthermore, research 

motivations and objectives, as well as a summary of the contributions of this thesis 
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are also discussed in this chapter. As for the remaining chapters, they are organised 

as follows.  

In Chapter 2, a comprehensive literature review on the topic of IoT security is given. 

More specifically, in Section 2.1, general IoT security threats are discussed. This 

follows by Section 2.2 which discusses IoT security by application domain, including 

vehicular communications security, Internet of Flying Things (IoFT) and human body 

interface and control systems (HBICS). Section 2.3 then discusses IoT security solution 

enabling technologies, including blockchain and machine learning. Finally, Section 2.4 

outlines a brief introduction to quantum technology and how its materialisation is 

likely to affect the future of IoT quite significantly. 

Chapter 3 proposes the use of a permissioned consortium blockchain system with 

smart contract feature to facilitate secure and conditional privacy-preserving 

vehicular pseudonym issuance and management in a multi-jurisdictional road 

network. More specifically, Section 3.1 outlines an introduction to connected and 

autonomous vehicles and the associated vehicular location privacy threats, especially 

in the context of a multi-jurisdictional road network. In Section 3.2, the existing related 

works are reviewed, including in the areas of vehicular pseudonyms, roadside units 

(RSU) and blockchain technology. Section 3.3 then outlines the motivations and 

contributions of the chapter. This is followed by Section 3.4, which outlines the 

proposed vehicular pseudonym management system architecture. Section 3.5 

outlines the simulation environment, including the use of the Veins vehicular network 

simulation framework and the Hyperledger Fabric permissioned consortium 

blockchain platform. Subsequently, the simulation results are discussed and evaluated 

in Section 3.6. Finally, the chapter concludes in Section 3.7. 

Chapter 4 outlines a state-of-the-art intelligent Sybil attack detection approach for 

FANETs-based IoFT using supervised machine learning carried out on two physical 

layer features of the radio signals emitted from UAV nodes, namely, the received 
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signal strength difference (RSSD) and the time difference of arrival (TDoA). More 

specifically, Section 4.1 outlines an introduction to the increasing usage of UAVs and 

how this trend accentuates various security threats, including the Sybil attack. In 

Section 4.2, the existing related works are reviewed, including on the use of physical 

layer features of the radio signal for positioning systems, the existing Sybil attack 

detection approaches and the use of machine learning for IoT security. Section 4.3 

then outlines the motivations and contributions of the chapter. This is followed by 

Section 4.4, which outlines the proposed intelligent Sybil attack detection scheme. 

Section 4.5 outlines the simulation environment, including the OMNeT++/INET 

simulator and the Weka machine learning workbench platform. Subsequently, the 

simulation results are discussed and evaluated in Section 4.6. Finally, the chapter 

concludes in Section 4.7. 

Chapter 5 presents a novel frequency hopping approach in HBICS, which uses inter-

pulse Interval (IPI) biometrics to add another layer of protection to the traditional 

pseudorandom frequency hopping system. More specifically, Section 5.1 outlines an 

introduction to HBICS and the associated security matters, including how biometrics 

are known to be potentially suitable for various security applications. In Section 5.2, 

the existing related works are reviewed, including the use of IPI for security 

applications and the use of frequency hopping to counteract frequency jamming 

attacks. Section 5.3 then outlines the motivations and contributions of the chapter. 

This is followed by Section 5.4, which outlines the proposed algorithms to be used 

with IPI biometrics data. Section 5.5 outlines the simulation environment, including 

the source of IPI data and the MATLAB/Simulink simulation platform. Subsequently, 

the simulation results are discussed and evaluated in Section 5.6. Finally, the chapter 

concludes in Section 5.7. 

Chapter 6 is the concluding chapter of this thesis. It summarises all the studies carried 

out and the contributions they make to the literature. Remaining challenges and 

future research directions are also briefly outlined.  
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Chapter 2 Internet of Things Security: 

A Literature Review 

Before proceeding to derive new solutions for Internet of Things (IoT) security issues, 

it needs to be known what problems exist and what solutions have already been 

developed. These findings will then identify gaps where the creation of novel security 

solutions would be beneficial. To progress forward, the literature needs to be 

thoroughly reviewed, as summarised in this chapter. In this context, references to 

relevant articles are also provided throughout the chapter, and interested readers are 

strongly encouraged to refer to these for more comprehensive reading. As illustrated 

in Figure 2.1, the literature review covers both the topic of general IoT security threats, 

as well as more specific emphasis on IoT security by application domain. Additionally, 

it also encompasses the topics of blockchain and machine learning from the aspect of 

their use as IoT enabling technologies. Furthermore, it also briefly covers the area of 

quantum security, which will likely play an important role in the future of IoT.  

 

Figure 2.1: Literature Review Organisation  

Internet of Things Security: A Literature Review

General IoT Security Threats (2.1)

IoT Security by Application Domain (2.2)

IoT Security Solution Enabling Technologies (2.3)
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Vehicular Communications Security (2.2.1)

Intra-Vehicular and Inter-Vehicular Networks Security Threats (2.2.1.1) 

Privacy Threats and Pseudonym Changing Approach (2.2.1.2)

Internet of Flying Things Security (2.2.2)

Human Body Interface and Control Systems Security (2.2.3)

Blockchain (2.3.1)

Machine Learning (2.3.2)
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2.1. General IoT Security Threats 

Common IoT security requirements in the literature include attributes such as 

confidentiality, integrity, authentication, accountability, availability, non-repudiation 

and privacy [3] [32] [33].  Privacy is an interesting concept, as it is frequently discussed 

as a separate entity, but is still often used alongside the concept of security. For 

example, Arif et al. [13] and van Der Heijden et al. [34] discussed the concept of trading 

off between security and privacy. However, as inferred by authors such as Eckhoff and 

Wagner [35], there is no privacy in the absence of security. Therefore, it is most logical 

to consider privacy as being one of the security attributes. When the trade-off 

between security and privacy is discussed, it can be viewed as a trade-off between 

privacy and other security attributes. 

Many research papers on IoT security have divided IoT security architecture into three 

layers: perception, transportation/network, and application, such as defined in Zhao 

and Ge [36] and Jing et al. [37]. A review of recent survey papers suggests that there 

are currently various challenges associated with all layers, including those that may 

potentially be beneficial if solved using cross-layered solutions. 

Security attacks in IoT have been classified into different types by various authors. 

Common types of attacks in IoT are summarised in Table 2.1, following a review of 

various publications, including Ramezan et al. [33], Butun et al. [38] and Chaabouni et 

al. [31]. 

Table 2.1: Common IoT Security Attack Types Summarised From Ramezan et al. [33], 
Butun et al. [38] and Chaabouni et al. [31] 

Attack Type Description 

Denial-of-Service (DoS) / 
Distributed Denial-of-
Service (DDoS) 
 

Causing losses in the availability of services. This may be 
achieved through several means, such as: 

• Jamming (e.g., transmit on the same radio frequency) 

• Flooding (e.g., sending excessive data to a node) 
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Attack Type Description 

• Energy depletion (e.g., keeps sending unnecessary 
information to a battery powered node to prevent it 
from going to sleep mode) 

DDoS refers to when DoS is carried out through multiple 
compromised systems. 

Eavesdropping/Traffic 
Analysis 

Passive attack that listens to and gathers information 
transmitted over a communication channel for analysis. 

Hole Attacks (e.g., 
blackhole, greyhole, 
sinkhole and wormhole) 

When a node manipulates the received messages in one or 
more ways that deviate from the behaviours expected by other 
nodes: 

• Blackhole: Node drops the received messages. 

• Greyhole: Node selectively drops some received 
messages. Because only some messages are affected, 
this can be difficult to detect. 

• Sinkhole: Node attracts high traffic by pretending to be 
the optimal path for all messages to reach their 
destinations.  

• Wormhole: Two nodes working together to form a 
secret tunnel and advertised as neighbours even 
though they may actually be far apart. 

Man-in-the-Middle 
(MITM) 

Intercepting communication channel to eavesdrop (e.g., for the 
purpose of launching a replay attack later). 

Replay  Attacker eavesdrops information and retransmits this at a later 
time (e.g., retransmits a user’s credentials to gain unauthorised 
access to a system). 

Spoofing/Impersonation Attacker generates illegitimate imitated information. 

Sybil A single node pretends to be multiple identities, causing 
confusion to other nodes (e.g., in an attempt to gain an unfair 
advantage in the voting / trust evaluation process). 

 

According to Nespoli et al. [39], there are four phases in the cyber defence cycle, 

where each feeds the next phase and forms a loop back to the start, namely and in 

the order of: prevention, detection, reaction and forensics. There are numerous 

potential mechanisms in the literature to defend against security attacks in IoT. For 

example, Intrusion Prevention Systems (IPS) can be used for the prevention phase, 

Intrusion Detection Systems (IDS) can be used for the detection phase, and the robust 

design of system architectures and protocols can be used to mitigate threats in all 

phases. Auditing and logging activities are also collectively known as one of the 
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traditional defence mechanisms [31], and can be used to support activities carried out 

in most, if not all, phases. Nevertheless, due to the previously discussed IoT 

characteristics, such as the continuing technological advancement, the inherently 

limited resources available, and the diversity in protocols and standards, there is still 

much room for improvement in IoT security. 

2.2. IoT Security by Application Domain 

This section captures the literature review of some IoT security issues categorised by 

application domains being focused on in this thesis. Firstly, the topic of vehicular 

communications security is reviewed, in preparation for the content of Chapter 3. 

Next, the topic of the Internet of Flying Things (IoFT) security is explored, in 

preparation for the content of Chapter 4. Finally, security threats to human body 

interface and control systems are given, in preparation for the content of Chapter 5. 
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2.2.1. Vehicular Communications Security 

 

Figure 2.2: Road Network With Connected Vehicles and Infrastructures  

Consider a road network with connected vehicles and infrastructures as shown in  

Figure 2.2. There are numerous potential security issues in this scenario, both those 

that are applicable to communications internally within the vehicle and externally. 

Security, including privacy, is known to be a challenge in vehicular communications 

[40] [41]. Contributory factors include the heightened need for protection, as well as 

the lack of standardised security guidelines, architectures and protocols [7] [41]. In 

addition, security is considered to be an afterthought in many systems [42]. Therefore, 

it is imperative that security gets considered early in the design of vehicular 

communications systems. The following subsection explores some challenging 

security issues commonly discussed in the literature, including both intra-vehicular 

and inter-vehicular threats. The subsection after then explores more specifically into 

the topic of location privacy threats and the use of pseudonym changing approach as 

a mitigation technique. 
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2.2.1.1. Intra-Vehicular and Inter-Vehicular Networks Security 

Threats 

As most vehicles internal systems are connected using bus network topology [7], intra-

vehicular networks security threats usually involve bus system exploitation. Common 

bus systems include Controller Area Network (CAN), Local Interconnect Network (LIN), 

FlexRay, Media Oriented Systems Transport (MOST) and Ethernet. Interfaces that 

enable attacks include physical ports, such as On-Board Diagnostics (OBD) ports, USB 

ports, and ports attached to electric vehicle charging systems, as well as infotainment 

and telematics systems [43]. Potential attacks are such as impersonation, 

eavesdropping, injection, replay, denial-of-service (DoS), and bus-off attacks [43] [44]. 

Inter-vehicular communication refers to communication between the vehicle On-

Board Units (OBUs) and other external entities, including other vehicles and 

infrastructures, such as roadside Units (RSUs). Several terms, such as V2V, V2I and 

V2X, are commonly found in the literature (e.g., throughout Mahmood et al. [7] and 

El-Rewini et al. [43]) to describe this type of communication. 

Unlike intra-vehicular networks, inter-vehicular networks security threats generally 

involve more exploitation of wireless communications technologies. These 

technologies range from Remote Keyless Entry Systems (RKES) to a wide variety of 

wireless communications access technologies (e.g., DSRC, Cellular, ZigBee, Bluetooth 

and Wi-Fi). Potential attacks include eavesdropping, Global Positioning System (GPS) 

spoofing, modification/replay and jamming/denial-of-service [43] [44]. 

2.2.1.2. Privacy Threats and Pseudonym Changing Approach 

One of the major vehicular communications security concerns that get frequently 

discussed in the literature  is the topic of threats to privacy [7] [8] [13] [34] [42] [43] 
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[45] [46] [47] [48] [49]. This is driven by both users preference to potentially be 

anonymous, as well as privacy related legislation that have been in place, or may be 

in place in the future, to protect users privacy. As outlined previously, mobility 

contributes to many vehicular communications security challenges, and privacy is one 

of them. Although user privacy issues may be common in other types of IoT systems, 

location privacy is an additional aspect that is more applicable to vehicular 

communications due to the associated mobility. Preserving location privacy is known 

to be more challenging than that of user privacy [42]. 

Other related issues that need to also be considered include trade-offs between 

privacy and other security and functionality attributes [13] [45] [47]. For example, in 

order to obtain location proof, there would be an inherent trade-off between this and 

location privacy. There would also be potential trade-offs between privacy and 

liability/non-repudiation. 

There are several requirements for location privacy in vehicular communications [49]. 

Firstly, the amount of information to be revealed by a user should just be the minimal 

required for ensuring the functionalities of the vehicular network. Secondly, the 

messages sent out should have anonymity. However, note that this is where the trade-

off with liability/non-repudiation occurs. To solve this issue, anonymity should be 

made conditional, with the real identity still being traceable by authorised parties. 

Thirdly, messages from the same vehicle should not be linkable for an extended period 

of time. Finally, there should be perfect forward privacy, meaning that any credential 

revocation of a vehicle should not affect the unlinkability of any of its other 

credentials. 

Several privacy protection mechanisms against vehicular tracking have been discussed 

in the literature. For more details, interested readers may refer to studies such as van 

Der Heijden et al. [34], Wang et al. [45], Chen et al. [46], Sharma and Kaushik [47], 

Manivannan et al. [48], Boualouache et al. [49], Ali et al. [50] and Khelifi et al. [41]. 
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Among these, the most prominent approach appears to be where pseudonyms are 

used instead of real identifications. Nevertheless, there are also other schemes in 

discussion, such as those involving the use of group signatures, identity-based public 

key cryptography (ID-PKC), and hybrid approaches in which different schemes are 

combined [49] [50]. 

As outlined above, the pseudonym changing approach has been discussed in 

numerous research works. The approach involves the use of pseudonyms instead of 

real vehicle identifications [48]. The approach works on the principle that if vehicles 

attach long-term identities to outgoing messages, they can potentially be tracked 

using a trace of received messages and the associated location information [34]. 

Therefore, the use of short-term pseudonyms for the vehicle’s identity has been 

proposed to be used to prevent tracking. 

Nevertheless, simply changing pseudonyms can be ineffective and inefficient [49]. For 

example, such schemes may not properly address linkability issues. According to van 

der Heijden et al. [34], linkability is classified into four categories. Firstly, full linkability 

is where there is no pseudonym change at all, and thus all messages transmitted from 

the same OBU can be linked. Explicit linkability is where some sort of pseudonym 

scheme gets deployed; however, it still allows for direct access to an identity. Implicit 

linkability or inference is where pseudonyms can still be linked to reveal partial or 

complete identities, even without direct identification. Sources of information 

available to be used for this type of linkability include certificates that may contain 

attributes of a vehicle, such as length, height and colour, the message content itself, 

and the transmission signal properties. The final category is where there is no 

linkability. This is the ideal scenario and occurs when it is not possible to determine 

whether two messages originate from the same or different vehicles; however, it is 

nearly impossible to provide any system functionality in this scenario. Furthermore, 

even in the no linkability scenario, tracking is still possible by simply following a 

vehicle. 



CHAPTER 2 INTERNET OF THINGS SECURITY: A LITERATURE REVIEW 

23 
 

As can be seen from the above, schemes that use pseudonym changing approach need 

to be well-designed and take different types of linkability into consideration. 

Consequently, the use of pseudonym changing approach poses several challenges. To 

prevent linkability between messages from the same OBU, the time and location of 

when and where vehicles change their pseudonyms are important. The concepts of 

mix-zone and radio silence periods have been discussed in various studies (e.g., 

Sharma and Kaushik [47], Boualouache et al. [49] and Ali et al. [50]) to resolve these 

issues. The idea is that vehicles that participate in a particular pseudonym changing 

scheme would change their pseudonyms in the mix-zone, and after the radio silence 

period, to prevent linkability. However, there are challenges associated with these 

concepts. For example, the mix-zone may be functional on multi-lane roads but not so 

much on one-way roads [47], and the radio silence period may impact safety as no 

safety messages get broadcast during such periods [49]. 

Another challenge is if vehicles are required to participate in voting or other trust-

based evaluations of data, the use of pseudonyms may hinder the intended operation. 

Therefore, a voting scheme needs to be designed to allow participants in pseudonym 

changing schemes to still be able to successfully participate in [34]. 
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2.2.2. Internet of Flying Things Security 

 
Figure 2.3: IoFT Formation Through Ubiquitous UAV Deployments 

As already outlined in Section 1.1.2, the IoFT scenario, which is hereby illustrated in 

Figure 2.3, is becoming more prevalent due to the increasing usage of UAVs in civilian 

applications. There are several challenges in IoFT that are quite unique because of the 

traits associated with FANET, one of which is security. To elaborate, the specific nature 

of FANET networks is of collaborative characteristics; consequently, many wireless 

communications links would be expected between highly mobile UAV nodes and with 

GCS or satellite. The nature of FANET operations also means that the UAV nodes are 

not anticipated to always be connected directly to the GCS and satellite. In contrast, 

UAV nodes are still expected to communicate with other UAV nodes, even without 

access to the GCS and satellite. Such unique characteristics create an environment 
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with a tendency for things to become uncontrollable relatively easily, thus making 

securing IoFT quite challenging [14] [15] [16]. 

In terms of areas of focus, Chriki et al. [16] suggested consideration of seven main 

security criteria: availability, integrity, confidentiality, authenticity, non-repudiation, 

authorisation and anonymity. The authors also suggested that the main security 

services that an attacker would likely want to break are authentication, availability, 

confidentiality and integrity. Additionally, Zaidi et al. [14] recommended enhancing 

IoFT security and privacy in three layers, namely, application, transportation and 

physical layers. Furthermore, Pigatto et al. [15] highlighted the security issues 

associated with big data that would be brought in with IoFT, especially when such big 

data are expected to most likely be nonstructured. 

An example of a potential security threat to IoFT is the Sybil attack. As already briefly 

described in Section 2.1, the Sybil attack is a well-known security threat to the IoT. 

More specifically, it is an authenticity threat, where a node tries to cause confusion to 

other nodes by pretending to be of multiple identities. In the context of FANETs, the 

Sybil attack is identified as a threat with several incentives, such as allowing a 

malicious node to illegitimately acquire more weight in a voting system and creating 

an illusion of traffic congestion in a particular area [51] [52].  
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2.2.3. Human Body Interface and Control Systems Security 

 
Figure 2.4: HBICS Devices Implanted and Worn on a Human Body 

As introduced in Section 1.1.3 and illustrated in Figure 2.4, the focus of the HBICS 

concept is substantially on human wearable and implantable devices. Together with 

safety, security is often cited as a concern that is especially important to HBICS due to 

the possibility of HBICS devices being directly involved with life-critical information 

and potentially in hostile environments [20] [23] [24] [25]. Therefore, it is unsurprising 

that security is one of the most frequently discussed aspects of HBICS in the literature. 

As an example, adverse events to a cardiac implant device can cause heart failure [53]. 

This is reflected in a well-known case study in which the US Vice President Dick Cheney 

disabled the wireless functionality of his heart implant pacemaker due to fear of 

assassination through the device being hacked [26] [54] [55].  
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In terms of more specific security requirements, different studies cite various security 

attributes as applicable to HBICS. Nevertheless, confidentiality, integrity and 

availability appear to possibly be those that get discussed most often [20] [21] [26] 

[55] [56] [57] [58]. These security requirements can be addressed by using various 

security solutions. For example, confidentiality and integrity can be addressed through 

the use of cryptographic key generation and exchange, as well as appropriate 

authentication protocols [21]. As for availability, denial-of-service is known to be a 

major attack type in HBICS [21] [26] [53] [54] [59]. One method of carrying out such 

attacks is through the launch of wireless communications link jamming; to counteract 

this, the use of frequency hopping can be considered [24] [60].  

Various security mechanisms have been proposed for HBICS. They generally cater to 

the unique characteristics of such systems, such as resource limitations and direct 

contact or close proximity to the human body. The following paragraphs briefly 

describe several interesting HBICS security mechanisms discussed in the literature. 

Due to their inherently low resource availability, the more traditional cryptography 

approaches are not suitable for HBICS [24]. As an alternative, lightweight techniques, 

such as elliptical curve cryptography (ECC), may be used. ECC offers a higher security 

level, with a relatively smaller size cryptographic key. As an example, a 160-bit ECC-

based key can provide an equivalent security level to a 1025-bit RSA-based key [22]. 

Nevertheless, ECC-based systems are also known to be more complex to build 

practically [57]. Another alternative approach is the use of attribute-based encryption 

(ABE), where messages can be encrypted for users that have a particular set of 

attributes [22].  

Since many HBICS devices are located inside or on a human body, the use of biometrics 

for security purposes is often advantageous. This can be viewed as a situation in which 

a particular unique physiological feature of a human body is used to produce and 

maintain cryptographic keys [24]. Common types of features include 
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electrocardiogram (ECG), photoplethysmogram (PPG), fingerprint and iris [24] [26] 

[28] [54] [59] [61] [62]. The inter-pulse interval (IPI), or the timing between heartbeats, 

is perhaps one of the most prominently discussed physiological biometrics. IPI is an 

ECG-based mechanism and has a benefit in that it can be measured anywhere on the 

body. Additionally, IPI is known to have a high level of randomness, making its use as 

a physiological entropy source advantageous [55]. Other examples of biometrics 

discussed in the literature include palm images, blood pressure, blood glucose and 

temperature [27] [55] [61]. 

The fuzzy commitment scheme [63] is often discussed as being an enabler for various 

biometrics to be useable [28] [62] [64]. This is because biometric data are subject to 

random noise. Consequently, support for small variabilities in such physiological data 

is required. This can be catered for by the fuzzy commitment scheme, which allows 

for errors in what is equivalent to a decryption key to be tolerable to a certain degree 

[63] [65]. 

For intra-body communication, which is mostly applicable to Tier 1 devices, the use of 

nano-communication has also been discussed [26] [66] [67]. Besides the classic 

electromagnetic communication, nano-communication also covers the emerging field 

of molecular communication. This is where the human biological systems get used to 

encode information to biological molecules, such as proteins, which would then act as 

information carriers. Security-wise, biochemical cryptography is a relatively new field 

of study from this aspect. 

There are also other interesting studies relevant to HBICS security. For example, the 

use of physical unclonable function (PUF) for authentication based on unique 

hardware attributes [61] [68], the use of game theory to counteract anti-jamming [69], 

the use of blockchain for authentication and distributed secure storage [21] [59], and 

the use of machine learning to detect attacks and to assist with authentication [28] 

[59]. 
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2.3. IoT Security Solution Enabling Technologies 

As previously introduced in Section 2.1, literature review has indicated that Intrusion 

Prevention Systems (IPS), Intrusion Detection Systems (IDS), and robust design of 

systems architectures and protocols are used as solutions to mitigate security threats. 

Enabling technologies for these solutions range from more traditional security 

technologies, such as encryption and digital signature, to more newly emerging 

technologies with a lot of active research happening, such as blockchain and machine 

learning.  

This section is a literature review of IoT security solution enabling technologies, 

categorised by the focus of Chapter 3 and Chapter 4 of this thesis. Firstly, the use of 

blockchain is explored, in preparation for the content of Chapter 3. Subsequently, the 

use of machine learning is reviewed, in preparation for the content of Chapter 4.  

2.3.1. Blockchain 

Blockchain is one of the enabling technologies for IoT communications security 

solutions that is being very actively discussed in the literature. Blockchain is a secured 

and distributed ledger that can aid in resolving many of the problems with 

centralisation [70]. The term was first used by S. Haber and W.S. Stornetta in a 1991 

article [30]. However, it was not until 2008 when the first blockchain system was 

created, which is the Bitcoin cryptocurrency system [71]. Since then, blockchain has 

become quite popular, with usage in various industries, such as finance, insurance, 

logistics, and agriculture [30]. 

Trust has traditionally been a barrier to the implementation of decentralised 

architecture. Blockchain addresses this issue through the use of distributed consensus 

mechanism to prove the validation of new transactions while still recognising the 
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earlier transaction history [72]. Popular consensus algorithms include Proof-of-Work 

(PoW), Proof-of-Stake (PoS) and Practical Byzantine Fault Tolerance (PBFT) [70] [73].  

A few types of blockchains have been discussed in the literature, each of which has its 

own distinct features. The first popular one is public blockchain which is truly 

decentralised and permissionless, allowing anyone to maintain a copy of the 

blockchain and to validate new blocks. This is the type of blockchain that Bitcoin uses. 

The second one is private blockchain which is suitable for a single organisation usage, 

as it is permissioned, requiring nodes to be known members. The third type is 

consortium or federated blockchain which is similar to the private blockchain, but with 

expanded access given to multiple organisations [30]. 

Smart contracts can also be utilised through the use of blockchain. This is where 

programmable applications are stored inside the blockchain to manage and 

automatically execute transactions when specific terms and conditions are met. Smart 

contracts are supported in newer blockchain platforms such as Ethereum and 

Hyperledger [30]. 

The use of blockchain has been identified as a potential security solution for many IoT 

applications, including intra-vehicular and inter-vehicular networks [30] [43] [74]. 

Potential IoT security use cases of blockchain are such as for encryption, 

authentication and access control, privacy, data provenance, and integrity assurance 

services [70].  

Nevertheless, the suitability of blockchain in IoT has also been questioned, as the 

system involves significant energy usage, delay and computational overhead [38] [72]. 

There are also other integration issues, such as security, privacy, data management, 

and lack of standardisation and interoperability [30]. Consequently, blockchain usage 

in IoT is still currently an active research area.  
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An alternative approach to blockchain, where directed acyclic graphs (DAG) are used, 

has also been discussed in the literature [30] [75]. An advantage of this approach is 

that scalability can be improved [30]. The consensus mechanisms used for DAG are 

also known to potentially be more suitable for IoT applications than traditional 

approaches, such as PoW and PoS, because of lower transaction fees, lower resource 

consumption, and the ability to achieve much higher transaction throughput [75]. 

2.3.2. Machine Learning 

Machine Learning (ML) is another enabling technology for IoT security solutions that 

is being very actively discussed in the literature. Applications are such as 

authentication and access control, jamming attack detection, anomaly/intrusion 

detection, side channel leakage detection, and trust management [76] [77] [78] [79]. 

Apart from security, there are also many other applications that ML can be used for. 

Within the communications area alone, other applications include spectrum 

allocation, interference alignment, hardware resource allocation, link evaluation, 

routing path search, etc [80].  

There are several ways in which ML is categorised in the literature. One way is to 

categorise by learning approach. When the data are labelled and the learning system 

is trained using such data, this is called supervised learning. When the learning is done 

through classifying unlabelled data, this is called unsupervised learning. The approach 

with algorithms that can be used on a mixture of labelled and unlabelled data is called 

semi-supervised learning. Finally, the approach in which learning is performed through 

rewards obtained after interacting with the environment, which is similar to the 

learning behaviours of humans and animals, is called Reinforcement Learning (RL) [76] 

[81] [82].  
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Another way of categorising ML is by whether if the learning is done through shallow 

learning network or large deep neural network, described using the terms 

typical/basic ML and Deep Learning (DL), respectively [76] [80].  

A typical/basic ML system comprises three layers. The first layer is the input layer 

which takes the pre-processed data as input. Subsequently, this gets passed on to the 

next layer, which is the feature extraction and processing layer. Within this second 

layer, data processing is used to extract the data patterns. Then the output layer, 

which is the last layer, provides the results of the given classification task [80]. 

With DL, however, there are multiple hidden layers between the input and output 

layers. This provides an advantage in allowing the data to be input to the system in 

raw form without requiring complex input data pre-processing. This is possible 

because each of the hidden layers can extract different features and progressively 

strengthen relevant features while weakening irrelevant features [80]. Due to the DL 

model being more sophisticated, it is also more effective than a typical ML model in 

scenarios with higher data volume [82] [83]. Nevertheless, this also comes at a cost, 

which is the longer training time and the higher computational power requirement 

[83].  

There are various DL architectures found in the literature, such as Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and Generative 

Adversarial Networks (GANs) [82] [84]. Another popular approach is Deep 

Reinforcement Learning (DRL), which is a combination of DL and RL [76] [84]. 

There exist several issues related to the use of ML for IoT security that are yet to be 

resolved, making this a very active research area. For example, the availability of 

suitable IoT security related datasets was identified as one of the issues [31] [76] [82]. 

Another issue is the potential computational and storage overheads incurred in 

ML/DL, which may not be suitable for IoT devices. Furthermore, the longer 
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convergence time of ML/DL may not be suitable for real-time applications, particularly 

for safety-critical systems [76]. 

The next issue is the susceptibility of ML/DL to misclassification and overclassification 

[76]. This also relates to another issue, which is the potential intentional attack to 

misclassify data through the use of adversarial perturbations introduced in the 

learning process. These perturbations may be so small that they are imperceptible to 

humans but can cause the system to generate harmful outputs [6] [76] [85] [86].  

Several studies such as those by Chaabouni et al. [31], Al-Garadi et al. [82] and Hussain 

et al. [76] have also identified issues related to the applicability of current knowledge 

and how to keep knowledge up to date. One issue is that the model trained to solve 

one problem may not perform well in solving a slightly different problem in a similar 

field. For example, a trained model may have difficulty detecting unknown and zero-

day attacks. In addition, there is a need to develop schemes for managing knowledge 

transfer and the continuous learning of new threats.  

2.4. The Future of IoT Security: Quantum Technology 

Quantum technology is known to be revolutionising communications systems and 

networks in the near future [87]. Quantum communications and computing can 

provide strong security through the use of quantum keys based on the quantum no-

cloning theorem and uncertainty principle. The security comes from the physics of 

quantum science, in which if eavesdroppers carry out observations, measurements or 

copy actions, the quantum state will be disturbed, and consequently, their actions 

would be easily detected. Quantum computing will also provide an enabling platform 

for artificial intelligence applications requiring big data and massive training [88]. This 

would potentially aid in resolving some ML timing and performance issues identified 

in Section 2.3.2. 
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On the downside, quantum technology will also cause many functions of current 

communications security systems to be significantly degraded. For example, Sliwa [89] 

stated that quantum computing can break public cryptography and will consequently 

disable all electronic payment systems, potentially destroying the economy. The 

Elliptic Curve Digital Signature Algorithm (ECDSA), which is widely used in blockchain 

systems, is also known to be vulnerable to quantum computing attacks due to the 

elliptic curve digital logarithm problem not being a hard problem for quantum 

computing [71]. Consequently, quantum computer processing power may enable 

adversaries with sufficient resources to execute majority attacks to take over certain 

blockchain systems in the future [74].  

Major research efforts in the field of quantum technology are currently in progress 

[90]. Quantum computing and communications have been identified as security and 

long-distance networking enabling technologies for research in 6G communications 

systems and beyond [88] [90]. The Quantum Internet, which is a network envisioned 

to connect quantum devices with classical ones [91], is also being researched. 
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Chapter 3 Blockchain for Vehicular Privacy 

Enhancement 

Research areas relating to connected and autonomous vehicles (CAVs) are currently 

of high interest to both academia and industry. This is not surprising as transportation 

is one of the essential aspects that people around the world interact with on a daily 

basis. With the increasing communications signal transmissions from vehicles, comes 

an increasing risk of those vehicles being easily tracked. This issue has triggered the 

formation of a significant research area in vehicular location privacy, which is still very 

active. The advancement of blockchain development, over the past decade or so, 

triggers it to become a potential Internet of Things (IoT) security solution enabling 

technology that is worthy of investigation. In this chapter, the use of a consortium 

blockchain system to enhance vehicular privacy in a multi-jurisdictional road network 

is explored. 

3.1. Introduction 

Connected and autonomous vehicles (CAVs) are known to form the backbone of 

future intelligent transportation systems (ITS) to provide travel comfort, road safety, 

and other value-adding services [6]. It is therefore unsurprising to find that vehicular 

ad hoc networks (VANETs) have become a very active topic of discussion in both 

industry and academia. 

Security is described in the literature as being of high importance in VANETs because 

connected vehicles are directly related to road safety. A compromised system could 

therefore directly result in potential accidents, injuries, and possibly casualties [92]. 
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Moreover, security, including privacy, is known to be a challenge in VANETs because 

of contributing factors such as vehicles being highly mobile, making it difficult to 

ensure security and non-repudiation [40] [41] [47]. Furthermore, identification 

information included in the messages sent out by vehicles, such as a public key 

certificate, together with the associated radiofrequency emission, can be used to 

derive the identity of a particular vehicle’s operator and track their exact location 

information at a particular time [92]. Consequently, vehicular location privacy is a 

topic that has been actively discussed in the literature. A feasible approach for 

mitigating location privacy threats is the use of pseudonyms instead of real vehicle 

identifications. Nevertheless, there is also a trade-off for this with non-repudiation. A 

solution to this is to make the use of vehicular pseudonyms conditional, allowing real 

identity to be traceable by authorised parties [92]. 

Roadside units (RSUs) are stationary infrastructure usually deployed on the roadside 

or at other designated locations, such as intersections or carparks [93]. They are 

known to be typical components of VANETs [94]. There is an expectation that owing 

to the ease of deployment and inexpensive price of wireless technology, RSUs will be 

abundantly available on roadsides to provide wireless access to vehicles [95]. This 

seems even more likely given the potential increase in spectrum availability for short-

range communications from technologies such as millimeter-wave (mmWave) and 

visible light communication (VLC), which are emerging trends in vehicular 

communications [10].  

As will be discussed further in Section 3.2, the use of Public Key Infrastructure (PKI) 

for pseudonymous communications is known to be highly viable. Indeed, PKI is also 

known to be flexible and is well recognised as being reliable for use in trust 

establishment owing to its evolution over a time span of more than twenty years [96]. 

For the above reasons, it is possible that economically practical pseudonym schemes 

used in the near future will take advantage of the mature PKI technology and the wide 
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availability of RSUs. Such schemes would need to be designed in a security-focused 

manner. 

Blockchain is known to have an underlying technological architecture similar to that 

of PKI; however, authentication and nonrepudiation cannot be guaranteed reliably. 

Conversely, blockchain can be used together with PKI to eradicate weaknesses and 

form a more strengthened system [96].  

As will be further discussed in Section 3.2, blockchain is an area that is still being very 

actively researched and developed, owing to the fact that it is a relatively new 

technology. Since its inception, the definition of blockchain has shifted away from 

being associated with cryptocurrency to much broader associations covering 

numerous applications. Such evolution also comes with changes to the blockchain’s 

fundamentals. For instance, there have been developments in alternatives to the use 

of the original but inefficient Proof-of-Work (PoW) consensus algorithm. Newer types 

of blockchains, such as the permissioned and the consortium types, help in this regard, 

as they limit access to only authorised and authenticated users, thereby removing the 

requirement for PoW.  

The evolution of blockchain to become more efficient, flexible, and scalable, together 

with its distinct immutable distributed ledger property, has been identified as a 

potential solution to assist in the management of conditionally anonymised vehicular 

pseudonyms. This is especially so for the consortium blockchain type, which has great 

potential in the provision of a secured integrated solution for a road network jointly 

managed by different jurisdictions (e.g., a national road network made up of portions 

managed by different states). A literature review conducted has identified no existing 

research on this particular topic. However, there appear to be some limited existing 

works that discuss the use of more traditional blockchain architectures to improve 

vehicular pseudonym allocation and issuance management, which also have other 

shortcomings that should be addressed.  
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For the above reasons, this chapter proposes a novel scheme of PKI vehicular 

pseudonym issuance and management system by taking advantage of the forecasted 

abundant presence of RSUs and the consortium permissioned blockchain system, a 

high-level conceptual operating model of which is depicted in Figure 3.1. As will be 

further explained in Section 3.3, the proposed scheme also addresses shortfalls 

identified in the very limited existing research works briefly discussed above.  

The remainder of this chapter is organised as follows. Section 3.2 outlines existing 

related works, including a preliminary overview of vehicular pseudonym change 

approaches and of blockchain as an enabling technology for security, decentralisation, 

and collaboration. Section 3.3 captures the motivations and contributions of the 

proposed scheme. The architecture of the proposed framework is then presented in 

Section 3.4. Section 3.5 discusses the simulation environment used for the proposed 

scheme. This follows by Section 3.6 which discusses the simulation results and 

performance analysis. Finally, conclusion is given in Section 3.7.
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Figure 3.1: Conceptual Operating Model of the Proposed Scheme 
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3.2. Related Works 

3.2.1. Vehicular Pseudonym Change Approaches 

The use of vehicular pseudonyms works on the principle that if vehicles attach long-

term identities to outgoing messages, they could potentially be tracked and linked 

using a trace of received messages and the associated location information [34]. 

Therefore, for pseudonym schemes to be effective in mitigating linkability, the 

pseudonym needs to be frequently changed. The European standard ETSI TS 102 867 

recommends that pseudonyms are changed every five minutes, whereas the 

American standard SAE J2735 recommends that this is done every 120 s or 1 km, 

whichever occurs last [97] [98].  

3.2.1.1. Pseudonym Schemes 

A number of privacy-preserving authentication schemes are discussed in the 

literature, also often referred to interchangeably as pseudonym schemes. These 

schemes can be classified into five categories: Public Key Infrastructure (PKI) or 

asymmetric cryptography schemes, identity-based cryptography schemes, 

certificateless cryptography schemes, symmetric cryptography schemes, and group 

signature schemes. Interested readers can refer to existing survey papers such as [92] 

and [93] for a more detailed analysis of these.  

This chapter focuses on the PKI category, which is known to be one of the most viable 

approaches, and is what early vehicular networks privacy-preserving authentication 

proposals were based on, after which many major initiatives also followed [92]. In this 

category, vehicles use public key certificates issued by a trusted certification authority 
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(CA) as a means of authentication. Communication is achieved by attaching a public 

key certificate and the corresponding digital signature to any message being sent out. 

The certificate and signature can then be verified for authenticity by message 

receivers [93].  

To preserve communication privacy, vehicles would use their public key certificates 

and the associated public/private key pair in a short-term manner, essentially 

operating a public key certificate as a pseudonym. 

3.2.1.2. Pseudonym Lifecycle 

Vehicular pseudonyms undergo the following three life cycle phases: pseudonym 

issuance, pseudonym use, and pseudonym change. In addition, there are additional 

optional phases of pseudonym resolution where the real identities of misbehaving 

vehicles are determined from their pseudonyms, and pseudonym revocation where 

the pseudonyms of misbehaving vehicles are revoked. As can be seen, in order for 

relevant authorities, such as law enforcement agencies, to be able to identify 

misbehaving vehicles through their pseudonyms, it is essential that the privacy 

protection mechanisms of such vehicular pseudonym schemes only allow for 

conditional anonymity and not complete anonymity [92].  

There are two major approaches of pseudonym issuance discussed in the literature, 

namely, third-party issuance and self-issuance. The third-party issuance approach 

involves an external pseudonym issuing authority to create pseudonyms for vehicles. 

In some schemes, vehicles would request short-term pseudonyms in certain intervals, 

while in others, pseudonyms would be pre-loaded in large amounts sufficient to last 

up to a few years. The self-issuance approach was introduced to reduce 

communication overhead with the CA by enabling vehicles to generate pseudonyms 

themselves [92] [93]. 
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The possibility of vehicles having multiple pseudonyms available for use at a given 

time introduces the risk of potential Sybil attacks [34]. This is when an adversary claims 

to be multiple vehicles with different identities and acts maliciously to mislead other 

vehicles to make harmful decisions [7]. Self-issuance approaches are known to be 

more difficult to avoid Sybil attacks because of the higher level of autonomy of 

vehicles [92]. In contrast, a controlled on-demand approach to pseudonym issuance 

that can limit the number of valid pseudonyms available to each vehicle at a time 

would potentially offer higher protection against Sybil attacks [34]; however, this also 

means that vehicles must request new pseudonyms at certain intervals, which may 

introduce scalability issues [92]. The revocation of pseudonym certificates is known to 

be another scalability challenge, as the verification of pseudonyms against a large 

certificate revocation list (CRL) may be impractical because of the associated high 

computational cost [93]. 

3.2.1.3. Support from Roadside Units (RSU) 

As RSUs are known to be a typical component of VANETs [94], it is unsurprising to find 

them being used to perform different tasks in pseudonym schemes. The roles of RSU 

in existing pseudonym schemes include the issuance of pseudonyms, the 

management of group keys, and pseudonyms verification [92].  

3.2.2. Blockchain: Security, Decentralisation and Collaboration 

Blockchain is known to have the potential to constitute security solutions, including in 

the areas of access control, data integrity, confidentiality, and availability. This 

partially emerged from the blockchain’s inherent security properties in 

cryptocurrency networks that have been shown to be capable of mitigating attacks 

such as distributed denial-of-service (DDoS) attacks, modification attacks, and double 
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spending [30]. Furthermore, the use of blockchain has been recommended to replace 

centralised cloud platforms, which are susceptible to single point of failure issues 

around security and privacy [99]. The use of blockchain has also been identified more 

specifically as a potential security solution for many Internet of Things (IoT) 

applications, including VANETs [30] [43] [100].  

At a higher level, blockchain is an enabling technology for various solution domains 

that is being actively discussed in the literature. It is a secured and distributed 

immutable ledger that can assist in rectifying many problems related to centralisation 

[70]. The term was originally used by Haber and Stornetta in their article from 1991 

[30]. However, it was only as recently as 2008, when the first blockchain system was 

created, being the Bitcoin cryptocurrency system [71]. Blockchain has since become 

quite popular, with its usage in numerous other industries, such as insurance, logistics, 

and agriculture [30].  

The issue of trust has traditionally been an obstacle to the implementation of a 

decentralised architecture. Blockchain addresses this issue by using distributed 

consensus mechanism that recognises earlier transaction history when validating new 

transactions [72]. Well-known consensus algorithms include Proof-of-Work (PoW), 

Proof-of-Stake (PoS) and Practical Byzantine Fault Tolerance (PBFT) [70] [73].  

Smart contracts can also be used with blockchain. This refers to programmable 

applications stored inside the blockchain to manage and automatically carry out 

transactions in situations where specific terms and conditions are met. Turing-

complete smart contracts are supported in newer blockchain platforms, including 

Hyperledger and Ethereum [101] [102]. 

Several types of blockchains exist in the literature, each of which has its own unique 

features. Firstly, one popular type is the public blockchain, which Bitcoin uses. This 

type is truly permissionless and decentralised, allowing anyone to maintain a copy of 

the blockchain and validate new blocks. Next is the private blockchain, which is 
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permissioned, requiring nodes to be known members. This blockchain type is thus 

suitable for single-organisation use. Similar to the private blockchain, but with 

expanded access to multiple organisations is the consortium or federated blockchain. 

This blockchain type allows auditable, reliable, and synchronised distributed database 

recording of data exchanges between participating members [30]. Consortium 

blockchain, therefore, has the potential to improve the effectiveness of collaboration 

between different organisations. 

3.2.2.1. Hyperledger Fabric Blockchain Platform 

Hyperledger is an open-source production of cross-industry blockchain technologies 

introduced by the Linux Foundation in 2016 [100] [103]. It consists of multiple 

blockchain platform projects, a result of the adherence to the “no one fits all” concept. 

These platforms include Fabric, Iroha, and Sawtooth [104]. 

Hyperledger Fabric was the first proposal of Hyperledger projects [104]. The platform 

is known to be multi-purpose [99], has permissioned access control [104], and can 

operate across multiple different organisations with private data support that can also 

be exchanged between members of a subset of a consortium [103].  

In terms of the support for private data, the official documentation [105] states that 

Hyperledger Fabric breaks this down into two different elements, namely the actual 

private data and a hash of the private data. The actual private data are sent to 

authorised organisations in a peer-to-peer manner using the gossip protocol. It is only 

the hash of such private data that gets submitted to the consensus services and stored 

in the blockchain’s blocks. This mechanism allows the immutability verification of 

private data while disallowing unauthorised organisations from accessing it even 

when they have access to the blocks. 
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As mentioned earlier, Hyperledger Fabric also has smart contract feature, which the 

platform calls “chaincodes”. Furthermore, the platform is known to have low latency, 

with the ability to process up to 10000 tps and record a blockchain transaction in 

approximately 0.5 s, even with peer nodes located in different continents [104]. For 

these reasons, this platform was selected for use in a simulation of the proposed 

scheme, as detailed in Sections 3.5 and 3.6. 

The Hyperledger framework proposes the use of the Crash Fault Tolerant (CFT) 

ordering service as its consensus protocol, which offers faster speed and higher 

scalability than the more common PoW and PoS algorithms [73] [100]. Although this 

may provide lower security against malicious or faulty nodes, it is not so much an issue 

because the framework is a permissioned blockchain, and consequently, the ability to 

modify its ledger can be controlled by only allowing trusted parties [100].  

The CFT protocol works by having a leader ordering service node getting dynamically 

elected, and the followers adhering to the leader’s decisions. It is known to be capable 

of tolerating failures up to 50% [103]. 

3.2.3. Blockchain for Vehicular Pseudonym Management 

As outlined in Section 3.1, existing works that discuss the use of more traditional 

blockchain architecture to improve vehicular pseudonym allocation and issuance 

management are quite limited. Bao et al. [98] and Benarous et al. [106] appear to be 

the only relevant existing works in this area. A summary of these and their shortfalls 

are provided below.  

In [98], a pseudonym shuffling scheme is proposed, based on the authors previous 

work on blockchain-based dynamic key management [107]. Their proposed scheme 

works by having existing PKI-based pseudonyms shuffled and reused by different 

vehicles where the shuffling allocation between different vehicles is done through the 
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RSUs acting as access points. The RSUs form groups, each of which is managed by a 

privacy manager based on geographical distribution. Shuffling results are recorded in 

a blockchain that uses the original but inefficient PoW consensus mechanism. The 

scheme allows for the flexibility to minimise the storage space and potential CRL size 

if each vehicle only carries a few allocated pseudonyms at a time; however, this would 

require very frequent contacts with RSUs, which may be impractical in locations such 

as remote areas. 

In [106], a blockchain-based pseudonym management framework is proposed, where 

pseudonym generation is performed purely by vehicles without interference by 

authorities. The main part of the framework consists of two blockchains for storing 

certified pseudonyms and revoked pseudonyms, managed by registered vehicles and 

RSUs, respectively. However, in order to authenticate any received message, a vehicle 

must also check the two blockchains to ensure that the pseudonym used has actually 

been certified and has not been revoked. Therefore, for this scheme to function 

effectively, the participating vehicles would need near real-time access to the 

blockchains, which may be impractical in reality. Furthermore, scalability of the 

blockchain system may also be an issue, as it would need to support read and write 

access from all participating vehicles, and would need to allow vehicles to access its 

ledger’s most recent state in a very timely manner. The paper also did not include any 

simulation results to confirm the feasibility of the proposed scheme. 

It is important to note that there are other works in the literature that discuss the use 

of blockchain with authentication, admission, and revocation in VANETs, such as [108], 

[109], [110] and [111]. However, the focus of these works is not on vehicular 

pseudonym allocation and issuance management, although some partial overlaps may 

exist because of the common properties of blockchain.  
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3.3. Motivations and Contributions 

As introduced in previous sections, the use of pseudonyms instead of real vehicle 

identifications is a known mitigation for location privacy preservation. Nevertheless, 

there is also a trade-off for location privacy, which is non-repudiation. To resolve such 

a trade-off, the use of vehicular pseudonyms needs to be made conditional, so that 

the real identity is allowed to be traced by authorised parties. The use of blockchain 

systems has a potential to assist in the management of conditionally anonymised 

vehicular pseudonyms due to the associated distinct immutable distributed ledger 

property. However, as can be seen from the discussions in Section 3.2.3, none of the 

existing related works have focused on vehicular pseudonym issuance and 

management in a multi-jurisdictional road network, and in particular, the complexities 

in data handling at interfaces between these different jurisdictions and the associated 

security risks. These shortfalls and the existence of consortium blockchain systems as 

a potential solution enabling technology, thus, motivate the development of a novel 

pseudonym issuance and management scheme proposed in this chapter. The 

proposed scheme uses permissioned consortium blockchain paired with the 

traditional PKI-based cryptography system to carry out pseudonym issuance and 

management in a dynamic, secure, conditional privacy-preserving and distributed 

manner, while also enabling integrated collaboration between different 

organisations.  

Table 3.1 summarises the comparison of the proposed scheme to the existing works 

derived from the discussions in Section 3.2.3 and from the analysis results in Section 

3.6. 

Table 3.1: Comparison of the Proposed Scheme to Existing Works 

 Bao et al. [98] Benarous et al. [106] Proposed Scheme 

Conditional 
Privacy Support 

Yes Yes Yes 
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 Bao et al. [98] Benarous et al. [106] Proposed Scheme 

Conditional 
Privacy Support 
for Multiple 
Jurisdictions 
Road Network 

Not discussed. Likely 
to require additional 
high complexity for 
secured access and 
management. 

Not discussed. Likely 
to require additional 
high complexity for 
secured access and 
management. 

Fundamental 
integrated secured 
access and 
management support 
through consortium 
blockchain 
architecture. 

Blockchain 
Consensus 
Mechanism 

Proof of Work Proof of Elapsed Time 
for the certifying 
block.  
Round Robin for the 
revocation block. 

Scheme’s architecture 
is flexible. The 
efficient CFT protocol 
used in the 
simulation.  
 

Connectivity to 
Blockchain 
Requirements 

Through very 
frequent contacts 
with RSUs – every 40-
50 minutes based on 
scenario presented in 
their performance 
analysis. 

Vehicles need near 
real-time access to 
the blockchains for 
scheme to function 
effectively. 

Through intermittent 
contacts with RSUs – 
once a week or more 
frequent. 

Vehicle’s 
Storage 
Requirements 

Low to moderate – 
only 10 pseudonyms 
required to be stored 
at a time based on 
scenario presented in 
their performance 
analysis but likely to 
require more for the 
scheme to be 
practical. 

Potentially very high – 
entire blockchain 
records may need to 
be stored if near real 
time remote access to 
the blockchains 
network cannot be 
provided. 

Moderate – consisting 
of longer term default 
pseudonyms 
(indicative guide of 
100 pseudonyms) 
plus dynamically 
assigned pseudonyms 
depending on 
vehicle’s usage time 
(in the order of 10s to 
100s for average daily 
vehicle usage of 11 
hours or less). 

Scheme’s 
Critical Time 
Obstruction 
Point 

Pseudonym 
revocation 
verification by 
infrastructure – CRL 
size is low based on 
scenario presented in 
their performance 
analysis but likely to 
be much higher for 
the scheme to be 
practical. 

Vehicle requires near 
real-time access to 
the blockchains to 
perform pseudonym 
verification and 
revocation checks in 
order for the scheme 
to function 
effectively. 
 

Pseudonym 
revocation 
verification by 
infrastructure – CRL 
size potentially much 
smaller than [98]. 
No requirements for 
vehicle to have near 
real-time access to 
the blockchains. 
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 Bao et al. [98] Benarous et al. [106] Proposed Scheme 

Scheme’s 
Feasibility 
Demonstration 

Simulation carried 
out. 

No records of any 
simulation carried 
out. 

Simulation carried 
out. 

 

3.4. System Architecture 

In this section, the system architecture is proposed, as shown in Figure 3.2, in which 

the components and their integration are further elaborated in Section 3.4.1. The 

architecture considers a scenario in which vehicles are allowed to move freely 

throughout the entire road network, but different areas within the network are 

managed by N different organisations. An example of this is a national road network 

in a country, which is made up of roads managed by different jurisdictions (e.g., 

different states).  

Due to the number of different stakeholders involved, interface management 

between different jurisdictions can become complex. A permissioned consortium 

blockchain technology is proposed to be used to mitigate such complexity and enable 

better collaboration between jurisdictions, while simultaneously ensuring high 

security and conditional anonymity in vehicular pseudonym use. 
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Figure 3.2: System Architecture  
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3.4.1. System Components  

The proposed system consists of several main components, the first of which is a 

consortium blockchain network supporting multiple jurisdictions. The blockchain 

network used in this architecture is to have permissioned access control, which allows 

different jurisdictions to collaborate, yet still maintain their independence. Core 

elements in the network include an agreed smart contract, consensus services, 

authorisation and authentication services, and blockchain nodes managed by each 

local jurisdiction. The blockchain network also includes an immutable ledger for 

storing vehicular pseudonym issuance records and the CRL, which is consistently 

distributed to all jurisdictions and accessible by their local authorised users (e.g., local 

law enforcement agencies). At the same time, any jurisdiction’s internal data 

associated with the issuance of pseudonyms can also be recorded but made 

inaccessible to other jurisdictions.  

Other major components of the system include RSUs, pseudonym CA services, and 

vehicles. The RSUs act as an interface between the blockchain network, pseudonym 

CA services, and vehicles. They liaise with the vehicle and the CA in carrying out 

pseudonym issuance tasks and record relevant information into the blockchain. As for 

CAs, their function is for issuing PKI pseudonym certificates. They are to be managed 

by each local jurisdiction. They can be cloud-based and can be shared among other 

jurisdictions if required. Vehicles, which are the end users of issued pseudonyms, 

interact with the system by requesting pseudonym issuance through RSUs located at 

different roadside locations throughout different jurisdictions.  

Lastly, local authorities, such as the government department responsible for the 

management of transportation or law enforcement agencies also play a major role in 

the system architecture. They access the blockchain through their jurisdiction’s 
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blockchain nodes. Access can be used for purposes such as incident investigations and 

pseudonym certificate revocations. 

3.4.2. System Functionality Description   

The following sub-sections detail the functionality of the proposed system at each 

phase of the pseudonym lifecycle defined in [92]. 

3.4.2.1. Pseudonym Issuance  

In the proposed scheme, a typical vehicle 𝑉𝑖 is preloaded with a set of default 

pseudonyms 𝑃default. This set of pseudonyms is expected to be used infrequently 

when no valid pseudonyms allocated by the proposed scheme are available. The 

pseudonyms in 𝑃default are to have relatively long expiry dates, such as in the order of 

years, so that they do not have to be replaced too often. To reduce the ability of 𝑉𝑖 

from potentially carrying out Sybil attacks on others and to discourage routine usage 

of pseudonyms in this set, the allocation of 𝑃default needs to be limited. 

𝑉𝑖‘s pseudonyms set for regular usage 𝑃usage would get issued in a more dynamic 

manner as illustrated in Figure 3.3. Pseudonyms in this set are to have short expiries, 

in the order of days or even hours. As pointed out earlier, this helps mitigate vehicles 

misusing issued pseudonyms to carry out Sybil attacks. Furthermore, this also helps to 

minimise the potential volume of revoked certificates required to be in the CRL.  

Pseudonym issuance occurs when 𝑉𝑖 travels into a serviceable area of RSU𝑗 which is a 

participant RSU in the scheme. In such a situation, 𝑉𝑖 would use its pseudonym 𝑝𝑥  ∈

 𝑃default  ∪  𝑃usage to identify itself and send a Certificate Signing Request CSR𝑦, which 

contains the public key for its proposed new pseudonym certificate 𝑝𝑦, to RSU𝑗. 

Thereafter, RSU𝑗 would then verify PKI certificate 𝑝𝑥 for validity and check against the 
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CRL using the blockchain’s smart contract to ensure 𝑝𝑥 has not been revoked. If all 

goes well, it then passes on the request to its associated pseudonym issuance 

authority CA𝑗 . Once the issuance of the new pseudonym 𝑝𝑦 by CA𝑗  has been carried 

out, RSU𝑗 would transmit it to 𝑉𝑖 and uses the blockchain’s smart contract to record 

the transaction details in a format pre-agreed with the other jurisdictions. The 

transaction record would at least capture details of 𝑝𝑥 and 𝑝𝑦, and may also include 

the jurisdiction’s internal data that are to be logged but made inaccessible to other 

jurisdictions. 

Note that similar to any typical PKI system, the trust establishment between 𝑉𝑖 and 

RSU𝑗 is done through the verification of each other’s public key certificate (i.e., the 

pseudonym 𝑝𝑥 in the case of 𝑉𝑖) to ensure non-expiry and issuance by a trusted CA. In 

addition, note that the transmissions of CSR𝑦 and 𝑝𝑦 between 𝑉𝑖 and RSU𝑗 need to 

be encrypted to prevent any potential eavesdroppers from being able to link 𝑝𝑦 to 𝑝𝑥. 

With additional overhead, these communications can also be digitally signed by the 

sender to help protect against other security threats such as spoofing. An example of 

this is where hypothetically a malicious vehicle 𝑉𝑚 pretends to be the owner of 

pseudonym 𝑝𝑥 which it actually took from an earlier message sent to it by 𝑉𝑖. In such 

a situation, 𝑉𝑚 might try to use 𝑝𝑥 to launch an attack by falsely identifying itself and 

sending CSRs to waste RSU𝑗’s and CA𝑗 ’s resources on useless tasks. Such a threat 

would be mitigated if 𝑉𝑚 is required to digitally sign the request with the private key 

associated with 𝑝𝑥 it does not have. Nevertheless, this is not functionally necessary 

otherwise because when RSU𝑗 transmits 𝑝𝑦 encrypted using the public key associated 

with 𝑝𝑥, the vehicle 𝑉𝑚 would still not be able to decrypt due to not having the private 

key. 
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Figure 3.3: Pseudonym Issuance Process 
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For practical reasons, the proposed scheme assumes that 𝑉𝑟 does not have access to 

the blockchain or CRL to verify that 𝑝𝑦 has not been revoked. However, the need for 

this has already been mitigated by making 𝑝𝑦 having short expiry and by having 𝑉𝑖’s 

previous pseudonym used when requesting for 𝑝𝑦 checked against the CRL before 𝑝𝑦’s 

issuance. Therefore, the likelihood of 𝑝𝑦 having already been revoked at any given 

time is relatively low. 

Of note, however, is the fact that if 𝑉𝑖 has exhausted all the pseudonyms available in 

𝑃usage set, it may have to fall back on using 𝑝𝑦  ∈  𝑃default, which has long expiry. In 

the case where 𝑉𝑟 receives a message with such 𝑝𝑦 attached, there would be a higher 

likelihood that 𝑝𝑦 may have already been revoked, and therefore, 𝑉𝑟 should give 𝑉𝑖 a 

reduced trustworthiness rating and treatment. 

The trustworthiness ratings can thus be categorised as shown in Table 3.2. 

Table 3.2: Pseudonym Use Trustworthiness Rating Categorisation 

Trustworthiness 
Category 

Criteria 

Highly Trusted 𝑝𝑦  ∈  𝑃usage used (valid pseudonym with 

short expiry period of hours or days) 

Partially Trusted 𝑝𝑦  ∈  𝑃default used (valid pseudonym with 

long expiry period of a few years) 

Not Trusted Invalid/expired pseudonym 

3.4.2.3. Pseudonym Change 

Technical details on the determination of the exact situations when a vehicle would 

change its pseudonym are outside the scope of this study. There have been many 

pseudonym change schemes discussed in the literature during the past few years that 

can possibly be matched with the pseudonym issuance scheme proposed in this study. 

Interested readers may refer to existing survey papers such as [49], which provides a 

comprehensive survey of pseudonym change strategies based on a mix-zone where 
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vehicles change their pseudonyms on the basis of predefined locations, and a mix-

context where vehicles independently determine the time and location to change 

their pseudonyms. 

3.4.2.4. Pseudonym Resolution 

As the proposed scheme ensures conditional anonymity rather than complete 

anonymity, pseudonym resolution by authorised personnel can be carried out. 

Resolutions can be performed using the blockchain’s smart contract to trace the 

pseudonym issuance history of a particular vehicle backward or forward.  

High data integrity in this process can also be expected due to the immutability 

property of blockchain resulting from the distributed consensus mechanism that 

recognises the earlier transaction history. Figure 3.4 illustrates how this is achieved 

based on the implementation found in the Hyperledger Fabric platform, which records 

the cryptographic hash of the previous block in the header of each block.  

 

Figure 3.4: Hyperledger Fabric Blocks Linkages 
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3.4.2.5. Pseudonym Revocation 

Pseudonym revocation is performed by adding revoked pseudonyms to the CRL 

captured in the blockchain ledger. This task is performed by authorised personnel of 

any jurisdiction by invoking a smart contract function. If required, the smart contract 

function can also be programmed to trace the pseudonym issuance history of a 

particular vehicle backward and forward to revoke all unexpired pseudonyms. 

As pseudonyms issued by the proposed system have short expiry, they do not need to 

stay in the CRL for a long time. The smart contract can be used to assist in automating 

the deletion of expired pseudonyms from the CRL. The ability to minimise the size of 

the CRL is quite important as it can alleviate the time taken in the pseudonym 

revocation checking process undertaken during pseudonym issuance as discussed 

previously. 

The process of pseudonym revocation and removal of expired entries is illustrated in 

Figure 3.5. 

 

Figure 3.5: Pseudonyms Revocation and Removal of Expired Entries 
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Here, the design of key components of the blockchain system used in the proposed 
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3.4.3.1. Ledger 

The blockchain ledger consists of two mandatory types of records with the attributes 

as shown in Figure 3.6. The first is the IssuanceRecord type, which captures 

pseudonym issuance transactions. The RSUID attribute is used for storing transaction 

identification information by the managing RSU; this may include information such as 

the RSU’s identification, and the date and time of the transaction. The vehicle’s 

current pseudonym 𝑝𝑥 is stored in the CurrentPseudonym attribute, and the new 

pseudonym 𝑝𝑦 is stored in the NewPseudonymIssued attribute.  

The second type is the RevocationRecord which captures each pseudonym that has 

been revoked. The records of this type collectively form the CRL of the scheme. The 

AuthorityID attribute is used for storing transaction identification information; this 

may include information such as the authorised party’s identification, and the date 

and time of the transaction. The pseudonym being revoked is stored in the 

PseudonymRevoked attribute. The PseudonymExpiry attribute captures the extracted 

expiry date and time information of the pseudonym being revoked. This attribute 

facilitates the automated deletion of expired pseudonyms from the CRL by the smart 

contract.  

It is important to note that RSUID and AuthorityID do not necessarily capture the 

immutable transaction information like what is stored in the actual blockchain’s 

blocks. Thus, the information stored in these attributes should not be solely relied 

upon for security critical auditing tasks. 
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Figure 3.6: Blockchain’s Ledger – Record Types 
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Input: Pseudonym 𝑝 

1 begin 

2  for each ledger record 𝑟 of type 
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3   if 𝑟. PseudonymRevoked =  𝑝 do 

4    return true 

5   end if 

6  end for 

7  return false 

8 end 
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Algorithm 3.2: Record Pseudonym Issuance 

Input: RSU’s transaction identification information 𝑖RSU, 

 Vehicle’s current pseudonym 𝑝𝑥, 

 Newly issued pseudonym 𝑝𝑦 

1 begin 

2  Create record 𝑟 of type IssuanceRecord  

3   Set 𝑟. RSUID =  𝑖RSU 

4   Set 𝑟. CurrentPseudonym = 𝑝𝑥 

5   Set 𝑟. NewPseudonymIssued =  𝑝𝑦 

6  Submit 𝑟 for processing to update ledger and add to 

blockchain 

7 end 

 

Algorithm 3.3: Revoke Pseudonym 

Input: Authority’s transaction identification information 𝑖𝑎, 

 Pseudonym 𝑝, 

 Pseudonym expiry date and time 𝑒 

1 begin 

2  Create record 𝑟 of type RevocationRecord 

3   Set 𝑟. AuthorityID =  𝑖𝑎 

4   Set 𝑟. PseudonymRevoked =  𝑝 

5   Set 𝑟. PseudonymExpiry =  𝑒 

6  Submit 𝑟 for processing to update ledger and add to 

blockchain 

7 end 

 

Algorithm 3.4: Remove Expired Revoked Pseudonym from Ledger 

Input: Current date and time 𝑑 

1 begin 

2  for each ledger record 𝑟 of type RevocationRecord do 

3   if 𝑟. PseudonymExpiry <  𝑑 do 

4    Delete 𝑟 from ledger 

5   end if 

6  end for 

7 end 
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Algorithm 3.5: Record Jurisdiction’s Private Data Associated with Pseudonym 
Issuance 

Input: Private data identification information 𝑖𝑣, 

 RSU’s transaction identification information 𝑖RSU, 

 Private data 𝑣 

1 begin 

2  Submit 𝑖𝑣, 𝑖RSU and 𝑣 for processing to update private 

ledger and add hash of private data to blockchain 

3 end 

 

3.4.3.3. Consensus Mechanism 

The proposed scheme does not prescribe the use of any particular consensus 

algorithm as long as such an algorithm is supported by the consortium blockchain 

platform being used. Nevertheless, in order to optimise the performance, and because 

the consortium blockchain is permissioned, it is envisaged that inefficient consensus 

algorithms required for traditional permissionless blockchain (e.g., PoW) would not be 

used. 

Note that the CFT consensus protocol is used by the Hyperledger Fabric consortium 

blockchain platform in the simulation discussed in Section 3.5. 

3.4.3.4. Pseudonym Issuance Cost  

Based on tasks T1 to T9 illustrated in Figure 3.3, the communication and computation 

time costs associated with the proposed architecture can be derived as detailed in 

Table 3.3.  
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Table 3.3: Pseudonym Issuance Communication and Computation Time Costs 

Task Communication Time Cost Computation Time Cost 

T1 N/A 𝑡T1P1: Generate private key for 𝑝𝑦 

𝑡T1P2: Generate public key for 𝑝𝑦 

𝑡T1P3: Generate CSR𝑦 

T2 𝑡T2M1: Over the air message 
capturing CSR𝑦 and current 

pseudonym 𝑝𝑥  

𝑡T2P1: 𝑉𝑖 encrypts message 

𝑡T2P2: RSU𝑗 decrypts message 

T3 
(fixed 
cost) 

N/A 𝑡T3P1: PKI verification of 𝑉𝑖’s current 
pseudonym 𝑝𝑥  

T4 
(fixed 
cost) 

𝑡T4M1: Message to the 
blockchain’s network capturing 
𝑝𝑥  

𝑡T4P1: Execute smart contract to check 
for 𝑝𝑥’s revocation status 

𝑡T4M2: Message from the 
blockchain’s network capturing 
𝑝𝑥’s revocation status 

T5 𝑡T5M1: Message capturing CSR𝑦  N/A 

T6 𝑡T6M1: Message capturing 𝑝𝑦 𝑡T6P1: Issue new pseudonym 𝑝𝑦 

T7 𝑡T7M1: Over the air message 
capturing 𝑝𝑦 

𝑡T7P1: RSU𝑗 encrypts message 

𝑡T7P2: 𝑉𝑖 decrypts message 

T8 N/A N/A 

T9 𝑡T9M1: Message to the 
blockchain’s network capturing 
𝑝𝑦 and 𝑝𝑥  

𝑡T9P1: Execute smart contract to record 
that new pseudonym 𝑝𝑦 issued to vehicle 

with pseudonym 𝑝𝑥  

 

The total time cost for pseudonym issuance to a vehicle can be summarised as 𝑡total =

 𝑡fixed + 𝑡variable, where 𝑡fixed is the fixed cost regardless of the number of 

pseudonyms a vehicle requests issuance for, and 𝑡variable is the variable cost that 

varies depending on the quantity 𝑞 of pseudonyms being requested. From Table 3.3, 

𝑡fixed and 𝑡variable can be defined as follows: 

𝑡fixed =  𝑡T3P1 + 𝑡T4M1 + 𝑡T4M2 + 𝑡T4P1       (1) 

𝑡variable =  𝑞 × (𝑡T1P1 + 𝑡T1P2 + 𝑡T1P3 + 𝑡T2M1 + 𝑡T2P1 + 𝑡T2P2 + 𝑡T5M1 + 𝑡T6M1 +

𝑡T6P1 + 𝑡T7M1 + 𝑡T7P1 + 𝑡T7P2 + 𝑡T9M1 + 𝑡T9P1)      (2) 



CHAPTER 3 BLOCKCHAIN FOR VEHICULAR PRIVACY ENHANCEMENT 

63 
 

3.5. Simulation Environment 

A simulation of the proposed scheme was set up on a desktop computer with an Intel 

i7 2.90 GHz processor, 32 GB of random access memory (RAM), and Windows 10 

Enterprise operating system. The integrated traffic and network simulator Vehicles in 

Network Simulation (Veins) [112] Version 5.0 was used to pair up with the blockchain 

platform Hyperledger Fabric [113] Version 2.3. Note that Veins integrates the traffic 

simulator SUMO [114] (Version 1.2.0 used in the experiment) with the network 

simulator OMNeT++ [115] (Version 5.5.1 used in the experiment). In addition, 

OpenSSL [116] Version 1.1.1i was also integrated into the simulation for the provision 

of PKI services. The interactions between Veins and Hyperledger Fabric, and between 

Veins and OpenSSL were performed through the command line interface built into 

OMNeT++. Note that version selections of software used were based on the latest 

stable and compatible releases available at the time. 

The Veins framework was chosen partly because it uses SUMO mobility simulator, 

which has high-performance simulation capability for large networks, and is known to 

be more suitable for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

communications than alternative mobility simulators such as METACOR and 

VanetMobiSim. Another reason is that Veins uses the OMNeT++ network simulator, 

which is known to be a flexible tool for researchers to use in high-mobility VANETs 

applications. Veins enables SUMO and OMNeT++ to work with each other in an 

integrated manner [93]. 

As already introduced in Section 3.2.2.1, Hyperledger Fabric is a feature-rich 

permissioned consortium blockchain platform, which indicates that it is suitable for 

the implementation of the proposed system architecture. In addition to what was 

already discussed, Hyperledger Fabric’s official documentation [117] states that 

versions 2.x of the platform offer several enhancements to the “private data” feature. 
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Consequently, this could also make the Hyperledger Fabric platform more suitable for 

use with the proposed scheme in terms of confidentiality in working with jurisdiction’s 

internal data, as detailed in the architecture outlined in Section 3.4. 

A small-scale version of the proposed architecture was successfully simulated, as 

shown in Figure 3.7. The simulation setup took advantage of the predefined test 

network included with the Hyperledger Fabric platform Version 2.3. The test network 

has two predefined organisations, each of which has one peer node.  
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Figure 3.7: Simulated System Architecture 
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The pseudonym allocation process shown in Figure 3.3 was implemented to test the 

concurrent pseudonym allocations of two RSUs, which represent two different 

locations managed by two different jurisdictions. Ten vehicles were generated to drive 

into each of the service areas at the arrival rate of one vehicle every five seconds. In 

addition, the use of smart contract to keep the CRL short, as shown in Figure 3.5, was 

also tested by using time to trigger an automation process in deleting expired 

pseudonyms from the list.  

From the blockchain’s point of view, Algorithm 3.1 through to Algorithm 3.4 were 

deployed onto the smart contract. In addition, the optional Algorithm 3.5 was also 

deployed to experiment with the private data feature of the blockchain platform. The 

smart contract was written in JavaScript, which is one of the three languages 

supported by the platform, the other two being Go and Java. The smart contract 

functions were called from JavaScript applications using an application programming 

interface (API). Subsequent to the simulation, verification tasks were carried out 

through the use of smart contract to look up the jurisdictions shared data recorded in 

the blockchain, as well as each jurisdiction’s private data permitted to be accessed 

only by its own personnel. 

From the key management and encryption side, 2048-bit RSA asymmetric encryption 

was used for both vehicular pseudonyms and RSU’s public key certificate. Owing to 

file size limitation, encryption of messages communicated between vehicles and the 

RSU was performed using 256-bit AES symmetric encryption, with such symmetric 

keys exchanged securely between the vehicle and the RSU through asymmetric 

encryption. 
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3.6. Simulation Results and Evaluation 

3.6.1. Key Simulation Results 

In general, all functionalities of the integrated simulation system were found to be 

working as expected, and the results demonstrate the feasibility of practical 

deployment of the proposed scheme. Nevertheless, analysis can be done more closely 

on the performance results, focusing on tasks bordered within the red dashed box 

shown in Figure 3.3, which are the time critical tasks that can only be carried out while 

the vehicle is in contact with the RSU. Table 3.4 shows the average execution time 

results of these tasks after ten runs. Note that the results exclude the infrastructure-

to-infrastructure communication costs 𝑡T4M1, 𝑡T4M2, 𝑡T5M1 and 𝑡T6M1 because of the 

assumption that they are negligibly low, and thus were not controlled as part of the 

simulation setup. It is also important to note that it would be possible for the RSU to 

distribute tasks such as 𝑡T2P2, 𝑡T6P1 and 𝑡T7P1 to be executed in parallel by different 

processes, which would improve the performance in terms of the required contact 

time between the vehicle and RSU. Subjecting to collective demand at an RSU, this 

parallel processing may even be deemed essential to cater for cases where a large 

number of pseudonyms are requested by a vehicle for issuance. 

Table 3.4: Average Execution Time of Critical Tasks 

Cost Notation 
(Refer Table 3.3) 

Task Description Average Execution Time (ms) 

𝑡T2P1 𝑉𝑖: Encrypt message containing 
CSR𝑦 

62.9  

𝑡T2M1 𝑉𝑖: Over the air transmission of 
message containing CSR𝑦 and 

current pseudonym 𝑝𝑥  to RSU𝑗  

0.2 Note: artificially 
simulated time as 
obtained from Veins 

𝑡T2P2 RSU𝑗: Decrypt message 

containing CSR𝑦 

114.7 

𝑡T3P1 RSU𝑗: Current vehicle’s 

pseudonym 𝑝𝑥  PKI verification 

53.9 



CHAPTER 3 BLOCKCHAIN FOR VEHICULAR PRIVACY ENHANCEMENT 

68 
 

Cost Notation 
(Refer Table 3.3) 

Task Description Average Execution Time (ms) 

𝑡T4P1 RSU𝑗: Check pseudonym 𝑝𝑥  

revocation status with 
blockchain  
 

15.4 when CRL size = 10 

16.7 when CRL size = 50 

17.7 when CRL size = 100 

36.5 when CRL size = 500 

54 when CRL size = 1000 

188.8 when CRL size = 5000 

356.9 when CRL size = 10000 

1719.1 when CRL size = 50000 

3421.9 when CRL size = 100000 

𝑡T6P1 CA𝑗: Issue new pseudonym 𝑝𝑦 63.9 

𝑡T7P1 RSU𝑗: Encrypt message 

containing  𝑝𝑦 

121.9 

𝑡T7M1 RSU𝑗: Over the air transmission 

of message containing 𝑝𝑦 to 𝑉𝑖 

0.3 Note: artificially 
simulated time as 
obtained from Veins 

 

From the results, it can be seen that the task of checking pseudonym 𝑝𝑥 revocation 

status depends greatly on the blockchain’s CRL size at any given time. For this reason, 

a few different CRL sizes were experimented with. To provide a better illustration, a 

graph is plotted, as shown in Figure 3.8. Indeed, the time taken to carry out a 

pseudonym revocation status check against CRL has the potential to impose a 

significant delay in the order of multiple seconds if the CRL size is sufficiently large. 

When compared to the other tasks, this delay can potentially be seen as the most 

significant performance bottleneck of the scheme. This is not surprising, as it aligns 

with the literature, such as [93], as previously discussed. Therefore, it is crucial to keep 

the CRL size as small as possible. 
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Figure 3.8: Average Pseudonym Revocation Status Check Time – Different CRL Sizes 
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complexities in data handling. For example, the same piece of policy could be 
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confidentiality, and availability. Existing common methods of mitigating these risks, 

especially on an interorganisational basis, do not form an integrated solution. 

Consequently, various other risks, including further security risks introduced through 

human errors, may be exacerbated. Existing solutions, such as [98] and [106] outlined 

in Section 3.3, left the interorganisational interfacing aspect predominantly 

unaddressed; therefore, some or all of these security risks would still remain. In 

contrast, the proposed scheme mitigates these risks using a permissioned consortium 

blockchain system. For instance, access control is mitigated by the permissioned 

blockchain’s authorisation and authentication services. Data integrity is mitigated by 

the distributed consensus mechanism, which recognises the earlier transaction 

history, and the use of smart contracts that ensure intended functionalities are 

consistently implemented. Jurisdiction’s internal confidentiality is also honoured by 

allowing the integrated use of jurisdictions private data. Finally, the use of a 

consortium blockchain promotes availability by connecting different jurisdictions 

together in a distributed manner, with multiple blockchain nodes providing 

redundancy.  

3.6.2.2. Storage Requirement Comparison 

As mentioned in Section 3.2.1.2, some existing pseudonym schemes favour 

pseudonyms being pre-loaded in large amounts sufficient to last up to a few years 

[92]. Assuming the European standard ETSI TS 102 867 is followed where pseudonyms 

are changed every five minutes [97] [98], a vehicle would require 12 pseudonyms per 

one hour usage. For a vehicle that is used for an average of 𝑥 hours a day, in a year 

(365 days), such a car would require 12 × 365𝑥 = 4380𝑥 pseudonyms if none of 

them are to be reused. If the car is to be pre-loaded with pseudonyms to last for 𝑦 

years, the amount would grow linearly, requiring 4380𝑥𝑦 pseudonyms in total. In 

contrast, the amount in the scheme proposed in this chapter would remain constant 
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regardless of 𝑦, requiring only a fraction of pseudonyms to be stored at any given time. 

For example, assuming pseudonyms have a maximum validity duration of one week, 

the maximum storage required at any one time would only be for 7𝑥 × 12 = 84𝑥 

representing a potential storage space saving of over 52𝑦 times less space. Note that 

for simplicity, the small number of default pseudonyms pre-loaded to the proposed 

scheme’s vehicles are excluded in this analysis.  

 

Figure 3.9: Amount of Pseudonyms Required to Be Stored per Vehicle Comparison – 
Proposed Scheme vs. Pre-Loading Pseudonyms 

Figure 3.9 illustrates the comparison of the number of pseudonyms required to be 

stored per vehicle, based on a given average daily vehicle usage hours, for the scheme 

proposed in this study versus what would otherwise be required for pre-loading 

pseudonyms to last from one to five years. Table 3.5 represents this in terms of the 

percentage of additional storage space that would otherwise be required for pre-

loading pseudonyms relative to the scheme proposed in this study. 
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Table 3.5: Storage Space Percentage Comparison Assuming Four Hours per Day 
Average Daily Vehicle Usage – Proposed Scheme vs. Pre-Loading Pseudonyms 

Number of Years 
Pseudonyms Pre-
Loaded to Last For 

Pseudonyms 
Required – 
Proposed 

Pseudonyms 
Required – Pre-

Loaded 

Percentage of More 
Storage Space 

Required Relative to 
the Proposed 

Scheme 

1 336 17520 5214.29% 

2 336 35040 10428.57% 

3 336 52560 15642.86% 

4 336 70080 20857.14% 

5 336 87600 26071.43% 

3.6.2.3. CRL Size Comparison 

As outlined in Section 3.2.1.2 and demonstrated in the simulation carried out, a large 

CRL is undesirable as it increases the computational cost. Because the proposed 

scheme uses pseudonyms with short expiry and a blockchain system that supports 

smart contracts, it is possible to minimise the size of the CRL by removing pseudonym 

entries that have already expired. Borrowing the example from Section 3.6.2.2, in 

order to revoke all pseudonyms of one car in the proposed scheme, the CRL would 

only be required to hold 84𝑥 entries plus a limited number of default pseudonyms 𝑧 

which is to be a very small amount; an indicative value might be 𝑧 = 100. More 

importantly, after no more than a week, most of these pseudonyms can be removed 

from the CRL, leaving only 𝑧 entries there for a longer term. In contrast, revoking a car 

pre-loaded with pseudonyms to last for 𝑦 years would require 4380𝑥𝑦 entries. 

Assuming that one car is revoked per day, in a year, the CRL would have 

4380𝑥𝑦 × 365 = 1598700𝑥𝑦 entries. This is significantly higher than the CRL in the 

proposed scheme, which would only be at approximately (84𝑥 × 7) + (𝑧 × 365) =

588𝑥 + 365𝑧 entries. Figure 3.10 illustrates this graphically based on a given average 

daily vehicle usage hours, where the proposed scheme has a default pseudonym 

amount of 100 versus pre-loading pseudonyms to last for one and two years. 
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Figure 3.10: CRL Entries Comparison – One Vehicle Revoked per Day After a Year – 
Proposed Scheme vs. Pre-Loading Pseudonyms 

Other more recent schemes discussed in the literature, such as [98], anticipated the 

issue with a large CRL and designed their schemes to minimise the CRL size. According 

to the scenario described in the performance analysis discussion of [98], where each 
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in slightly smaller CRL size than the scheme proposed in this study, there is a significant 

trade-off. For the scenario to work, vehicles would need to establish communication 

with the RSU to shuffle pseudonyms every 40-50 minutes if they are to change 

pseudonyms every five minutes, as per the European standard ETSI TS 102 867. 

However, such frequent contacts with RSUs may be impractical in reality at many 

locations, such as in remote areas. A more practical scenario might be for vehicles to 

hold enough pseudonyms to last for a few days, meaning that each vehicle may need 

to hold hundreds of pseudonyms instead. If such a situation occurs, the CRL size of 

their proposed scheme would potentially become much larger than that of the 

scheme proposed in this chapter. In contrast, the example discussed here for the 

scheme proposed in this chapter, where the pseudonym validity period can be up to 

a week, has already taken this potential infrequent contact with RSUs into account. 
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Furthermore, the CRL size of the proposed scheme can be further improved by 

reducing the number of default pseudonyms 𝑧 from 100 to a lower amount; however, 

this would result in a trade-off in terms of location privacy protection in situations 

where the default pseudonyms need to be used. Figure 3.11 illustrates the 

comparison of CRL sizes after a year of one vehicle being revoked per day where an 

average daily vehicle usage is chosen to be four hours per day (𝑥 = 4) as an example.   

 

Figure 3.11: CRL Entries Comparison – One Vehicle Revoked per Day After a Year – 
Proposed Scheme (Four Hours per Day Average Daily Vehicle Usage) vs. Bao et al. 

[98] 
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especially true for situations where the use of permissioned blockchain systems is 

suitable, as it can eliminate the need for such expensive proofs, making consensus 

services a lot more straightforward [30]. The architecture proposed in this chapter 

uses a permissioned blockchain system, allowing for a higher efficiency consensus. 

Furthermore, the rapid development of blockchain solutions in recent years has 

created more suitable option candidates that have been successfully tested in reality 

through various applications. For instance, the Hyperledger Fabric platform used in 

the simulation here, which employs the more resource-efficient CFT consensus 

protocol called RAFT, is known to be one such successful solution in the industrial and 

IoT domains [103].  

3.6.3. Additional Considerations Prior to Deployment 

Although simulation results demonstrate the feasibility of practical deployment of the 

proposed scheme, there are still issues that may require further investigation. This is 

especially in relation to the variability in demand for pseudonym issuance, especially 

their peaks. For example, the demand could be time-dependent and varies 

throughout a given day, week, month, or year at a specific RSU location. It is only when 

the collective demands throughout the network can be characterised that an accurate 

expected system load can be determined. This could greatly affect the design of the 

system, such as the determination of the number of peer nodes in each organisation 

and consensus service redundancy. 

Also related is the blockchain transactions processing throughput limitation; for 

example, as discussed in Section 3.2.2.1, in the case of Hyperledger Fabric, this is 

known to be up to 10000 tps. Although none of the tasks within the proposed scheme 

requiring such processing (e.g., task T9 shown in Figure 3.3) were identified as time 

critical, it might still be important to study more closely how the system would behave 
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if such a limit is reached, to ensure the system’s robustness. Indeed, task T9 can 

probably afford some delay in processing, but cannot afford to be completely ignored. 

Another related point to note is the observation made in Section 3.6.1 regarding the 

potential requirement for parallel execution of RSU’s tasks by different processes. The 

detailed determination of such an arrangement will also need to be studied further 

once the expected time-dependent demand for the RSU at a particular location of 

interest can be quantified. 

Finally, it is important to note that there may be other potential risks associated with 

the selected permissioned consortium blockchain platform. This is especially true 

given that blockchain is a technology that is still under very active research and 

development. Therefore, it is important to thoroughly identify and appropriately 

mitigate these potential risks prior to deployment. 

3.7. Conclusion 

In this chapter, a scheme is proposed to facilitate secure and conditional privacy-

preserving vehicular pseudonym issuance and management in a multi-jurisdictional 

road network. The proposed architecture takes advantage of the increasingly mature 

permissioned consortium blockchain technology, the predicted wide availability of 

RSUs, and the highly viable, flexible, and well-established PKI technology. A small-scale 

simulation of the proposed architecture was successfully carried out using the Veins 

platform for integrated traffic and network simulation services, the Hyperledger 

Fabric platform for blockchain services, and the OpenSSL platform for PKI services. 

Simulation results demonstrate the feasibility of practical deployment of the scheme 

and identify further performance optimisation issues that should be investigated once 

the time-dependent demand data at different RSU locations throughout the network 

are obtained. In terms of comparison with existing works, performance analysis has 
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revealed that the proposed scheme addresses the identified shortfalls, including the 

ability to achieve a better balance between connectivity and storage requirements. 
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Chapter 4 Machine Learning for Sybil Attack 

Detection in the Internet of Flying Things 

Although unmanned aerial vehicles (UAVs) have been used in the military domain for 

many decades, it was only more recently that UAVs are gaining increasing usage in 

civilian applications. This trend, together with the UAVs integration with the Internet 

of Things (IoT) to form the Internet of Flying Things (IoFT), make the IoFT becoming a 

very active and significant area that is gaining a lot of research attention. Just like 

many other IoT research areas, the topic of IoFT security is still considered challenging, 

with a lot of research efforts being exercised. Having been a well-known security 

threat to the IoT, the Sybil attack is also known as a threat to the IoFT, but relatively 

little research works have been carried out on it so far. On the other hand, machine 

learning (ML) is increasingly being used in the literature to address various challenges, 

including IoT security. Thus, this artificial intelligence tool has a strong potential to be 

suitable in being used for Sybil attack detection in IoFT, as explored in this chapter.  

4.1. Introduction 

Unmanned aerial vehicles (UAVs), also known as drones, refer to pilotless aerial 

vehicles that are either autonomously controlled by a computer or remotely 

controlled by a pilot on the ground. UAVs deployment in the military domain dates 

back several decades, with the primary applications being strike, reconnaissance and 

border surveillance. However, more recently, UAVs have also gained increasing usage 

in civilian applications, including search and rescue operations, environmental sensing 

and monitoring, and delivery of food and other products. In this context, the flying ad 

hoc network (FANET) paradigm, which is a subclass of mobile ad hoc network (MANET) 
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where the nodes possess aviation characteristics, is strongly tied to the operation of 

UAVs due to the needs for UAV nodes to communicate with each other or with other 

node types, such as ground control station and satellite. Consequently, the FANET 

paradigm and its integration with the Internet of Things (IoT) to form the Internet of 

Flying Things (IoFT), as depicted in Figure 4.1, have been gaining increased attention 

in the research community [15] [16] [121].  

 

Figure 4.1: Ubiquitous UAV Deployments for Various Applications 

The arrangement of UAVs to form a swarm has been increasingly highlighted as an 

operating model of great potential for various applications. For example, Gao et al. 

[17] and Zhang et al. [18] discussed the use of UAV swarms for search and rescue 

operations, while Liu et al. [19] discussed the use of UAV swarms for air quality index 

monitoring. Although the deployment of UAV swarms can bring about immense 

advantages from the aspects of resource allocation, control and cooperation, such a 

deployment model can also concurrently introduce additional security risks associated 

 

Military

Environmental Sensing and Monitoring

Search and Rescue

Delivery of Food and Other Products



CHAPTER 4 MACHINE LEARNING FOR SYBIL ATTACK DETECTION IN THE INTERNET OF FLYING THINGS 

80 
 

with malicious use [122]. For instance, there could be a greater potential for attacks 

involving identity falsification, one of which is the Sybil attack. 

Sybil attack is well-known to be one of the security threats to the IoT. It refers to the 

situation when a malicious node falsely claims to have numerous identities [99] [123]. 

There are several incentives for a node to act in such a way; in the context of FANETs, 

examples are such as to allow it to illegitimately acquire more weight in a voting 

system and to create an illusion of traffic congestion in a particular area [51] [52]. 

Countermeasures for Sybil attack include prevention, detection and mitigation. 

Prevention refers to the inhibition of the attack from occurring at all. Detection refers 

to the identification of security breach, the identification of attack type, as well as the 

initiation of relevant mitigation solutions. Finally, mitigation refers to the alleviation 

of resulting outcomes of the attack [124].  

More recently, the use of machine learning (ML) has increasingly been leveraged to 

address various challenges, including IoT security. Machine learning does this by 

intelligently choosing the actions to be taken in response to a given situation based 

on knowledge that the system has learned. Well-known examples of applications are 

such as computer vision, bio-informatics, fraud/malware detection, authentication 

and speech recognition [76].  

As will be discussed further in Sections 4.2 and 4.3, there exist numerous studies in 

the literature that discuss Sybil attack detection methods for wireless ad hoc 

networks, wireless sensor networks and vehicular ad hoc networks (VANETs). 

However, this is not the case for FANETs, which would have had relatively fewer Sybil 

attack threats due to the lower expectation of having high node density presented in 

an area; but the more recent increase in UAV usage is changing all that. Adapting one 

of the numerous existing non-FANET Sybil attack detection methods is also deemed 

to require significant effort, as those schemes were not designed to suit nodes with 

complex three-dimensional mobility. These facts motivated the development of a 
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novel approach for Sybil attack detection to fill this gap, which should be lightweight, 

highly secure, and able to detect smart malicious nodes with power control capability. 

Machine learning has been identified as a tool with high potential to aid in the delivery 

of such identified features. 

In this chapter, a new intelligent Sybil attack detection approach for FANETs-based 

IoFT is proposed. The proposed novel approach employs range-based location 

verification using physical layer characteristics of the radio signals emitted from the 

UAVs as detected by two ground nodes. This is done by utilising a supervised machine 

learning approach and experimenting with several different classifiers available in the 

Weka [125] workbench platform. The learning is carried out on two features of the 

radio signals, namely, the received signal strength difference (RSSD) and the time 

difference of arrival (TDoA).  

The technical contributions of this chapter are summarised as follows: 

• To fill a knowledge gap in the literature relating to Sybil attack detection in 

FANETs-based IoFT which is still quite deficient in general. 

• To achieve Sybil attack detection in FANETs-based IoFT using intrinsically 

generated physical layer data of radio signals emitted from the UAVs. 

Advantages associated with this are such as less susceptibility to attacks 

involving information spoofing and not requiring additional communications 

overheads. 

• To achieve Sybil attack detection in FANETs-based IoFT, where both classic 

malicious nodes with fixed power and smart malicious nodes with power 

control capability may be presented. 

• To investigate and demonstrate the use of machine learning in carrying out 

Sybil attack classification determination based on two attributes, namely, the 
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RSSD and TDoA ratios of two different radio signals, obtained using only two 

monitoring nodes. 

The remainder of this chapter is organised as follows. Section 4.2 reviews existing 

related works on position localisation using physical layer data, Sybil attack detection 

in IoFT and machine learning systems. Section 4.3 then discusses the motivations and 

deduces the contributions of this study. Section 4.4 outlines the details of the 

proposed scheme. Section 4.5 describes the simulation environment, including all the 

key simulation parameters. The results and evaluation of the simulation are then 

discussed in Section 4.6. Finally, conclusion is given in Section 4.7. 

4.2. Related Works 

4.2.1. Position Localisation Using Physical Layer Data  

Many existing positioning systems are known to function using measurements of 

physical layer features of the radio signal. Very commonly used features include 

received signal strength (RSS), angle of arrival (AoA), time of arrival (ToA) and time 

difference of arrival (TDoA). Classical usage of these measurements involves a two-

step process, as briefly described in the subsequent paragraphs. To assist with 

visualisation, Figure 4.2 has been included to add a simplified graphical overview of 

the described mechanisms, as relevant to FANETs. Interested readers can also refer to 

more comprehensive publications, such as Dardari et al. [126] and Munoz et al. [127] 

for more details, including mathematical descriptions. Furthermore, additional details 

around RSS and TDoA, as relevant to the proposed scheme in this chapter, are 

described in Section 4.4. 
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Figure 4.2: Physical Layer Position Localisation Mechanisms – FANETs 

In the first of the two-step process, the position-related signal parameters of interest 

are measured. Out of the four features, RSS is known to be the most easily obtainable 

because it is simply a measurement of the received power, which can easily be done 

in any system without the need for time synchronisation. On the other hand, ToA and 

TDoA require some sort of time synchronisation. In essence, ToA is a measurement of 

signal propagation delay; therefore, time synchronisation between the receivers and 

the transmitter would be required. Similarly, TDoA is a measurement of signals 

propagation delay difference between the receivers; therefore, time synchronisation 

between the receivers of interest would be required. On the other hand, AoA is known 

to perhaps be the least favourable feature, as it requires characterisation of the 

direction of signal propagation; consequently, the use of AoA may dictate the need 

for costly specialised hardware, such as the use of antenna arrays. Additionally, AoA 

position estimation performance also degrades as the distance between transmitter 

and receiver increases [126] [127]. 

The second step is the application of position estimation techniques based on the 

parameters obtained in the first step. This can be achieved by using techniques such 

as lateration and angulation. The use of multiple types of position-related parameters 

can also be combined to form hybrid methods [126]. One constraint of this step is that 
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more than two receiver nodes are generally required for accurate positioning. For 

example, as outlined by Li et al. [128], according to the principles of trilateration, if 

ToA or TDoA are used, three receiver nodes would be required for two-dimensional 

position estimation. More relevant to FANETs is the fact that for three-dimensional 

position estimation, four receivers would be required. 

4.2.2. Sybil Attack Detection in IoFT 

There are quite a number of published articles that outline different Sybil attack 

detection methods that are applicable to slightly different IoT domains; several recent 

survey papers summarise these into their associated categories. Recent surveys on 

Sybil attack detection in wireless ad hoc networks and wireless sensor networks can 

be found in Arshad et al. [124], Vasudeva and Sood [129], and Singh [130]. There are 

also several recent survey papers on Sybil attack detection in VANETs, including 

Shobana and Arockia [131], Zhang et al. [132], Velayudhan and Anitha [133], and 

Hammi et al. [134].  

Existing Sybil attack detection approaches found in the literature include the use of 

location verification, network behaviour monitoring, resource testing, trust systems 

and cryptography. As mentioned in Section 4.1, the scheme proposed in this chapter 

focuses on the range-based location verification approach. To elaborate further, the 

location verification approach is classified into range-free and range-based methods. 

In the range-free methods, high accuracy location is calculated based on data supplied 

through external means, such as Global Positioning System (GPS), radar or other 

localisation schemes. The range-based methods, however, generally can work simply 

by using data obtainable from the physical layer characteristics of the radio signals 

being sent and received [130]. There are several reasons why methods that use 

intrinsically generated physical layer data to detect Sybil attack might be more 

preferable than others. For instance, the use of intrinsically generated physical layer 
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data also brings about a security advantage over methods that use extrinsic data, in 

that such use would be less susceptible to spoofing attacks. Furthermore, unlike many 

other methods in other detection approaches, authentication would not be required; 

consequently, misidentification due to potentially stolen credentials would be less of 

a risk. Cryptography, which is a widely used technique for authentication, also 

consumes a lot of energy [52]. Accordingly, since UAVs operate on limited energy, for 

some applications, it may be desirable to cut down on their cryptographic usage. 

Nevertheless, there may be other advantages associated with the other Sybil attack 

detection methods; therefore, in some situations, it may be desirable to combine the 

advantages associated with different schemes by using two or more detection 

mechanisms on a complementary basis. 

Schemes that use physical layer characteristics of the radio signals do exist in the 

literature. These schemes use features such as RSS, AoA, ToA and TDoA for their 

location verification determination. However, none of these schemes are designed for 

mobile nodes that possess aviation characteristics like UAVs in FANETs. In fact, apart 

from those designed for VANETs, most schemes only cater for static nodes. 

Additionally, most schemes also do not cater for the situation in which malicious 

nodes can adjust their transmit power to fool detectors while carrying out Sybil 

attacks. Furthermore, the ways in which some of these schemes operate impose 

various other undesirable constraints. For example, schemes such as Kabbur and 

Kumar [135] and Yuan et al. [136] use RSS indication values obtained through 

triangulation, requiring at least three monitoring nodes to be used [124] [134]. Other 

examples include schemes like Lv et al. [137], Abbas et al. [138] and Angappan et al. 

[139], which require the use of additional localisation information such as those 

obtainable through neighbours of the suspicious nodes [124]; consequently, unlike 

schemes that purely and directly use intrinsically generated physical layer data, these 

schemes may be more susceptible to attacks involving information spoofing.  
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When looking more specifically at Sybil attack detection for FANETs, there are 

currently no survey papers that discuss this topic. Nevertheless, a limited number of 

existing research works can be found in this area, including de Melo et al. [140], Sun 

et al. [51] and Walia et al. [141], details of which are summarised in the following 

paragraphs. Note that none of these schemes operate on pure use of physical layer 

characteristics of the radio signals.  

In de Melo et al. [140], an identity and location validation scheme called UAVouch is 

proposed to detect malicious UAVs that do not follow expected trajectories, including 

the potential scenario where a Sybil attack is being carried out. The idea is for this 

scheme to supplement the authentication mechanism by requesting position 

validation from neighbouring nodes inside a cell and by using a position 

plausibility/classifier model to detect movement inconsistencies. The scheme is 

reported to have an average position falsification attack detection accuracy of above 

85%. 

In Sun et al. [51], a Bayesian Nash equilibrium game theory-based intrusion detection 

scheme is proposed, which can detect Sybil attacks among other attack types.  The 

game is between the intrusion detection nodes and the attacking nodes, with each 

side strategising to maximise their profits. The scheme works by studying the past 

behaviour of UAV nodes and determining the deployment of intrusion detection 

nodes to achieve optimisation by minimising the overhead while achieving a high 

detection rate. Specific details on the Sybil attack detection mechanism and the 

associated detection accuracy rate are not provided due to not being the focus of the 

paper. 

In Walia et al. [141], a mutual authentication technique to detect Sybil attack in 

FANETs is proposed. The scheme works by having each node checking its neighbouring 

nodes for identification. If nodes with the same identification but with different 

neighbours are found, they are marked as intruder nodes. Each intruder node is then 
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monitored more closely and if found to change its identity then it would get identified 

as malicious. In terms of performance, the paper reports high throughput, low 

overhead and low packet loss; however, it does not mention the overall Sybil attack 

detection accuracy rate. 

4.2.3. Machine Learning for Sybil Attack Detection in IoFT 

A typical machine learning system has three layers: 1) input; 2) feature extraction and 

processing; and 3) output. The input layer takes in pre-processed data, which is then 

passed onto the feature extraction and processing layer where the data patterns get 

extracted; basically, this is where the training of a machine learning system takes 

place. Several classifiers exist in this layer, each of which defines a different 

methodology for data pattern extraction; well-known ones are such as Support Vector 

Machines (SVM), Principal Component Analysis (PCA), and Hidden Markov Model 

(HMM). Finally, the output layer produces the prediction results of the task, such as 

classification for discrete outputs (class labels) and regression for continuous numeric 

outputs [76] [80]. 

Machine learning methods can commonly be grouped into supervised, unsupervised, 

semi-supervised or reinforcement learning approaches. Interested readers can refer 

to survey papers such as Jamalipour and Murali [142], Sarker et al. [143], Farooq et al. 

[144], Hussain et al. [76], Al-Garadi et al. [82], and Wang et al. [145] for more 

information on these machine learning approaches and on the use of machine 

learning in IoT security in general. Of most relevant to the study in this chapter is the 

supervised learning approach, where a class label is assigned to identify each data 

entry in the training set. Learning then takes place based on this known identification 

and the other input features parameters. Subsequently, the learned system can be 

deployed on other datasets to make predictions regarding the correct class label 

associated with each entry.  
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4.3. Motivations and Contributions 

As can be seen from previous sections, there is currently a gap for a Sybil attack 

detection mechanism that can achieve highly accurate detection of mobile Sybil nodes 

in FANETs-based IoFT. This is especially true if the scheme can detect Sybil nodes with 

power control capability. In addition, the use of physical layer features was identified 

as potentially being very useful for Sybil attack detection applications in FANETs. The 

pure use of intrinsically generated physical layer data to carry out detection also 

minimises potential problems such as the risk of data spoofing. A potential approach 

might be to try and adapt existing methods developed for wireless ad-hoc networks, 

wireless sensor networks or VANETs to cater for FANETs; however, significant 

extensions would be required and there is no guarantee that such solutions will work 

well. As an alternative, it might be worth investigating a new innovative scheme. These 

reasons, together with the existence of machine learning systems as a potential 

solution to intelligently detect Sybil attack instances in FANETs-based IoFT, motivate 

the invention of a state-of-the-art Sybil attack detection scheme proposed in this 

chapter. 

From the perspective of selecting the most appropriate physical layer features to use, 

the use of RSS and/or TDoA features makes the most sense. The use of ToA is 

undesirable because it requires synchronisation with the transmitter, which would be 

impractical to implement. Similarly, the use of AoA feature would also be impractical 

unless antenna arrays are already required for other reasons. From the amount of 

monitoring nodes perspective, it would also be desirable to minimise these while still 

maintaining a highly accurate detection functionality.  

As discussed above, it was identified that there is a potential for machine learning to 

be used to aid the construction of a Sybil attack detection scheme. More specifically, 

it is known that RSS and TDoA features capture some location information. A machine 
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learning system can be developed to learn certain characteristics associated with RSS 

and TDoA values confirmed as belonging to Sybil attack events, in preparation for it to 

identify similar malicious instances in the future. More importantly, the learning can 

be performed without the system requiring to know the exact underlying 

mechanisms, such as mathematical operations. Because machine learning can easily 

learn from both features concurrently, a hypothesis can be formed that a minimal 

number of two monitoring nodes may already be sufficient for accurate Sybil attack 

detection functionality. It is important to note that the exact formats of attributes to 

be fed into the machine learning system need to be refined to suit the intended 

application, which is Sybil attack detection in this case. This process is a bit of an 

artwork, and for this study, it resulted in two attributes, namely, the RSSD and TDoA 

ratios of two different radio signals, more details of which can be found in Section 4.4. 

As will be further demonstrated in later sections, the scheme proposed in this chapter, 

incorporating an artificial intelligence mechanism, has been designed with the 

intention of filling the gap for Sybil attack detection in the FANETs environment. The 

proposed scheme addresses all of the above-mentioned design criteria and does not 

require any additional communications overheads. With the use of only two 

monitoring nodes at fixed locations while still able to achieve a high detection 

accuracy of above 91% on average, it supports the hypothesis that such a minimal 

number of nodes may already be sufficient when assisted by a machine learning 

mechanism. To provide further illustration, Table 4.1 summarises the contribution of 

the proposed scheme compared with the existing Sybil attack detection approaches 

described by Singh [130]. 
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Table 4.1: Comparison of the Proposed Scheme to Existing Sybil Attack Detection 
Approaches  

Sybil Attack 
Detection 
Approach 

Approach 
Description 

Typical Advantages Typical Disadvantages 

Range-based 
location 
verification 

Use data 
obtainable from 
the physical layer 
characteristics of 
radio signals 
being sent and 
received. 

• Low in cost since 
device already has 
physical layer 
characteristics of 
communicating radio 
signals by default. 

• Accuracy may be 
reduced by rapid 
changes in node 
position. 

• Difficulties in 
detecting nodes 
that can 
manipulate signal 
strength. 

• Accuracy may be 
reduced by 
interference, 
multipath fading, 
shadowing, etc. 

Range-free 
location 
verification 

Location 
calculated from 
external data 
(e.g., GPS, radar, 
etc). 

• Can provide high 
accuracy distance 
calculation. 

• External data 
means more 
susceptibility to 
data spoofing 
attacks (compared 
with range-based 
location 
verification). 

Network 
behaviour 
monitoring 

Based on nodes 
features and 
behaviour in the 
network. 

• Allow features and 
behaviour in the 
network to be used for 
accurate detection of 
malicious nodes. 

• Malicious nodes 
with specific 
knowledge can 
escape detection. 

• Specialised tools 
required for data 
collection and 
analysis. 

Resource 
testing 

Node challenged 
to provide 
knowledge about 
specific resources 
(usually physical 
fingerprinting or 
energy). 

• Allow uniqueness in 
resources of each node 
to be used for 
verification. 

• Extensive power 
consumption. 

• Genuine nodes 
with resource 
problems due to 
other reasons may 
be falsely classified 
as malicious. 
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Sybil Attack 
Detection 
Approach 

Approach 
Description 

Typical Advantages Typical Disadvantages 

Trust 
systems  

Trust value 
obtainable from 
trusted devices or 
trusted 
neighbours must 
be maintained by 
each node to 
remain in the 
network. 

• Allow periodic 
evaluation which can 
be done in centralised 
or decentralised 
manner. 

• Inability to detect 
malicious node 
already dominating 
trust determination 
process. 

Cryptography Authenticate 
nodes and 
communicate 
securely using 
public/private 
keys. Use 
watermarking to 
guarantee valid 
data. 

• Can also offer 
protection against 
various other attack 
types. 

• High memory, 
computing, and 
communications 
overhead for 
resource constraint 
devices. 

• High costs 
associated with key 
management. 

Proposed 
scheme 

Range-based 
location 
verification using 
physical layer 
characteristics of 
the radio signals, 
namely, RSSD and 
TDoA, paired 
with supervised 
machine learning. 

• Low in cost since 
device already has 
physical layer 
characteristics and only 
require two monitoring 
nodes. 

• Less susceptible to 
attacks on upper 
layers, such as data 
spoofing, stolen 
credential, etc. 

• Designed to work with 
mobile nodes in 
FANETs-based IoFT. 

• High detection 
performance even with 
malicious nodes that 
can manipulate signal 
strength. 

• Potential to extend to 
detect other attack 
types and/or utilise 
unsupervised machine 
learning approach. 

• Prior to 
deployment, some 
further 
performance 
studies may still be 
required, for 
example on: 1. 
effects of 
interference and 
structural 
blockages; and 2. 
networks with high 
node density. 
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4.4. System Architecture 

In this section, the architecture of the proposed scheme is discussed. As depicted in 

Figure 4.3, this study looks at a situation where a number of UAVs fly within a given 

area to carry out certain operations. While doing so, the UAVs communicate with each 

other and/or with ground stations. Some members of the nodes have malicious 

purposes and would attempt to carry out Sybil attacks by falsely identifying 

themselves as other entities. Two monitoring nodes are placed on the ground at fixed 

locations within the operational area in an attempt to detect Sybil UAV nodes.  
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Figure 4.3: Architecture of the Proposed Scheme 

 

Fixed 
Ground 

Monitoring 
Node #2

Ground 
Communications 

Station

For any signal of interest, 
calculate:
• ToA Difference (i.e. TDoA)
• RSS Difference (RSSD)

Pre-process data further for training:
• Calculate the ratios and 

based on last known signals from two 

differently identified UAVs obtained in near real-time
• Label as Sybil attack if the two differently identified UAVs 

are actually the same UAV, otherwise label as Genuine
Machine Learning 

Training

Trained Machine 
Learning System

For two near real-time signals and to be determined if 
actually coming from the same UAV (i.e. Sybil attack):
• Calculate the ratios and 

Fixed 
Ground 

Monitoring 
Node #1

Determination:
• Sybil (signals actually coming from the same UAV) 
or
• Genuine (signals actually coming from two 

different UAVs)

A network of 
UAVs

Training

Operational



CHAPTER 4 MACHINE LEARNING FOR SYBIL ATTACK DETECTION IN THE INTERNET OF FLYING THINGS 

94 
 

The focus of the architecture is on the use of machine learning system to detect Sybil 

attack instances. The supervised machine learning approach was identified as the 

most suitable approach in this study due to the nature of the problem being 

addressed. This is because there are simply two known distinct outcome classes, 

which are whether or not a Sybil attack event is taking place. Furthermore, the use of 

supervised learning is also favourable from the performance assessment perspective, 

as training and test datasets with correctly labelled class events can be generated in a 

straightforward manner through the simulation of UAV networks.  

As outlined in Section 4.2.3, a typical machine learning system has three layers: 1) 

input; 2) feature extraction and processing; and 3) output. In this architecture, the 

focus is mostly on the input layer, more specifically, the derivation of data attributes 

to be fed into the machine learning system. Feature extraction and processing 

activities, which result in the determination of classification output, are mostly 

performed by the machine learning system based on specific algorithms. There exist 

numerous well-researched supervised machine learning algorithms which can 

potentially be used with the proposed architecture, as long as they support two 

numerical attributes (i.e., RSSD and TDoA ratios) and a class attribute (i.e., Sybil attack 

instance or not). Some of these algorithms have been selected for the simulations 

carried out in this study, the details of which can be found in Sections 4.5.3 and 4.5.4. 

Before proceeding further, it is important to note that the proposed scheme has been 

designed with the intention of being flexible for use with a range of UAV mobility 

patterns, density levels, transmit power levels and signal emission rates; however, the 

exact limitations are outside the scope of this study. Another point to note is that this 

study was conducted based on the assumption that the free space path loss 

propagation model holds true. Furthermore, it is also assumed that signals from other 

UAVs and other systems in the surrounding area are coordinated in such a way that 

results in negligible interference effects on the functionality of the system, such as 

through the use of orthogonal frequency-division multiplexing. 
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Regarding how the machine learning attributes were designed, as discussed in 

Sections 4.2 and 4.3, the literature review carried out suggests that RSS and TDoA 

physical layer features contain location information most suitable for the application 

scenario in this study. However, this is not the end of the process as the exact formats 

of machine learning input attributes that would allow for a high classification success 

rate still need to be derived. Based on the assumptions given in the previous 

paragraph, the received power level is assumed to follow the free space path loss 

model developed by Friis [146] as  

𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟 (
𝜆

4𝜋𝑑
)

2

     (1) 

where 𝑃𝑡 is the transmitted signal power, 𝐺𝑡 is the transmit antenna gain, 𝐺𝑟 is the 

receive antenna gain, 𝜆 is the wavelength of the signal, and 𝑑 is the distance between 

transmitter and receiver. As for the signal propagation time taken between the 

transmitter and the receiver, such delay can be represented by the equation 

𝜏 =
𝑑

𝑐
       (2) 

where the constant 𝑐 ≈ 3 × 108 m/s can be used for the speed of light [126].  

The proposition given in this Sybil attack detection problem is that there are to be only 

two monitoring nodes, and the system is to detect if two signals identified as 

transmitted from different UAVs in near real-time are actually likely coming from the 

same location (i.e., the same UAV). Therefore, it is necessary to ensure that the 

attributes are designed to capture maximal information to enable the machine 

learning classifier to recognise such underlying pattern differences. As the use of 

machine learning is an experimental science, the process of determining the precise 

formats of the attributes used in this study requires some creativity and preliminary 

experiments to verify their effectiveness. Because of the proposition to use two 

monitoring nodes, the use of TDoA measured at these different monitoring nodes 

already makes sense. The next step is to represent this characteristic as a numeric 



CHAPTER 4 MACHINE LEARNING FOR SYBIL ATTACK DETECTION IN THE INTERNET OF FLYING THINGS 

96 
 

value that captures the relationship between the two signals. The numeric value 

needs to somehow encompass such a relationship pattern to make it distinguishable 

if the value is likely coming from two signals belonging to the same UAV. 

Consequently, the TDoA ratio between the two signals was selected as one of the 

attributes. Similarly, the process also resulted in the RSSD ratio of the two signals as 

the other attribute, where the RSSD of any signal of interest is the difference between 

the RSS values of the signal measured at the two different monitoring nodes. The 

precise details of these two attributes are captured in Algorithm 4.1 and Algorithm 

4.3. Since the differences in RSS and ToA values received at the two monitoring nodes 

play important roles in the characterisation of the two attributes, it is worth noting 

that the two locations should be sufficiently far apart to enhance effectiveness.  

There are two different phases in this scheme: the training and operational phases. 

Detailed descriptions are elaborated in the following subsections. 

4.4.1. Training Phase 

In the training phase, UAVs would be deployed and carry out radio communications 

in a controlled manner. A given number of these UAVs would be programmed to act 

maliciously and execute Sybil attacks by falsely using multiple identities. Signals from 

each UAV would be sampled by the monitoring nodes every certain interval for a given 

number of times until the end of the training period. The two monitoring nodes would 

detect and collect the RSS and ToA of each signal being sampled. Subsequently and in 

accordance with Algorithm 4.1, the corresponding RSSD and TDoA of each signal 

sampled would be calculated based on the variations in RSS and ToA received at the 

two different nodes. This is followed by the execution of Algorithm 4.2, which also 

calls Algorithm 4.3, to calculate the RSSD and TDoA ratios between the signal being 

sampled and all other latest signals sampled from every other UAV with a differently 
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declared identity. The data generated by Algorithm 4.2 for all collected signals would 

then be collectively fed to the machine learning classifier as training data.  

As previously discussed, the Sybil attack characterisation being performed is carried 

out through the discovering of patterns within the RSSD and TDoA ratios from two 

different signals that would have been emitted from somewhat nearby physical 

positions during the UAV’s movement in the air. Consequently, it is also important to 

note that any signals that were emitted in the past beyond a certain near real-time 

threshold need to be excluded, as the positions of the UAVs emitting those would 

potentially have already changed quite significantly. This threshold is represented by 

the near real-time limit 𝑡thres in Algorithm 4.2. 

4.4.2. Operational Phase 

In the operational phase, UAVs would be deployed and carry out communications 

using either genuine or fake identities. In this phase, the two monitoring nodes would 

collect RSS and ToA data of radio signals and use Algorithm 4.1 to calculate RSSD and 

TDoA similarly to the training phase; however, the difference is that the true identity 

of each signal’s emitter is not known. To predict whether any two near real-time 

signals collected and identified as coming from different UAVs are actually coming 

from the same UAV (i.e., a Sybil attack event), Algorithm 4.3 is executed and the 

resulting values of RSSD and TDoA ratios are passed on to the trained machine 

learning classifier for determination. 

There are various ways in which the operational phase detection mechanism can be 

deployed. As an example, detection can be performed on all pairs of signals detected 

by the monitoring nodes and the machine learning classification results are passed on 

to the upper layers for appropriate risk-based decisions subjecting to other relevant 

information available. Alternatively, perhaps more efficiently, an individual request 
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can be made by a mechanism in one of the upper layers to perform a check on any 

particular signals suspicious of being from a Sybil node. 

Algorithm 4.1: Calculate TDoA and RSSD for a given signal 𝑥 

Input: ToA𝑥#1: ToA of radio signal 𝑥 obtained by fixed ground monitoring station #1, 

 RSS𝑥#1: RSS of radio signal 𝑥 obtained by fixed ground monitoring station #1, 

 ToA𝑥#2: ToA of radio signal 𝑥 obtained by fixed ground monitoring station #2, 

 RSS𝑥#2: RSS of radio signal 𝑥 obtained by fixed ground monitoring station #2 

 begin 

1  Calculate TDoA𝑥 = ToA𝑥#1 − ToA𝑥#2 

2  Calculate RSSD𝑥 = RSS𝑥#1 − RSS𝑥#2 

 end 
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Algorithm 4.2: Execute Algorithm 4.3 on a given signal 𝑥 and all the latest signals 
collected from each of the other differently identified UAVs within a given near real-

time limit 𝑡𝑡ℎ𝑟𝑒𝑠 

Input: Current time 𝑡, 

 Near real-time threshold 𝑡thres, 

 UAVID: the identity of UAV claimed to have emitted signal 𝑥 

1 begin 

2  for each collected signal claimed to have emitted from a UAV other than 

UAVID do 

3   if the signal 𝑦 being checked is the latest emitted from such claimed UAV 

identity at current time 𝑡 and the signal 𝑦 was not sampled prior to 

𝑡 − 𝑡thres do 

4    Execute Algorithm 4.3 with signal 𝑥 and signal 𝑦 as the two signal 

inputs 

5    if the real identity of emitters of signal 𝑥 and signal 𝑦 are actually the 

same UAV do 

6     Mark corresponding entry as “Sybil” class 

7    else 

8     Mark corresponding entry as “Genuine” class 

9    end if 

10   end if 

11  end for 

12 end 

 

Algorithm 4.3: Calculate ratios TDoA𝑥: TDoA𝑦 and RSSD𝑥: RSSD𝑦 for two given 

signals 𝑥 and 𝑦 

Input: TDoA𝑥: Latest known near real-time TDoA of signal 𝑥 obtained from Algorithm 4.1, 

 RSSD𝑥: Latest known near real-time RSSD of signal 𝑥 obtained from Algorithm 4.1, 

 TDoA𝑦: Latest known near real-time TDoA of signal 𝑦 obtained from Algorithm 4.1, 

 RSSD𝑦: Latest known near real-time RSSD of signal 𝑦 obtained from Algorithm 4.1 

 begin 

1  Calculate TDoA𝑥: TDoA𝑦 = TDoA𝑥 ÷ TDoA𝑦 

2  Calculate RSSD𝑥 : RSSD𝑦 = RSSD𝑥 ÷ RSSD𝑦 

 end 
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4.5. Simulation Environment 

A simulation of the proposed scheme was set up on a desktop computer with an Intel 

i7 2.90 GHz processor, 32 GB of random access memory (RAM), and Windows 10 

Enterprise operating system. The simulation can be divided into three stages: 1) 

simulation of a network of flying and communicating UAVs; 2) data pre-processing 

prior to machine learning classification; and 3) machine learning classification. The 

network simulator OMNeT++ [115] (Version 5.7) was used in conjunction with the 

INET framework [147] (Version 4.2.9) for the first stage, the output of which is a log 

file containing all communication records. Subsequently, for the second stage, a 

Python script was written and applied to the log file. This was performed to extract all 

relevant data, execute relevant algorithms described in Section 4.4, and arrange the 

collated data to a format readable by the machine learning classifier used in the next 

stage. Finally, in the third stage, machine learning classification was carried out using 

the previously prepared training and test data. The tool used for the third stage was 

the Weka workbench platform (Version 3.8.5). Details of the three stages and further 

information on the Weka workbench platform are described in the following 

subsections. 

4.5.1. Stage 1: Simulation of UAVs 

In this stage, a network of flying and communicating UAVs was simulated in OMNeT++ 

using INET’s “MassMobility” model. The UAVs movement model was based on INET’s 

“3D Mobility” showcase [148], in which each UAV node moves in a three-dimensional 

space. To summarise, the UAV nodes moved at a speed randomly selected from a 

uniform distribution range between 10 and 20 m/s. Each node also turns at a random 

uniform distribution angle range between −10° and 10° around a random elevation 

angle of the same uniformly distributed angle range. The positioning of the UAVs was 



CHAPTER 4 MACHINE LEARNING FOR SYBIL ATTACK DETECTION IN THE INTERNET OF FLYING THINGS 

101 
 

configured to update every 1 s. In terms of the UAVs flying space, this was defined as 

a square of dimensions 1000 × 1000 m. As for the elevation, range was restricted to 

be between 5 to 150 m to better reflect a more realistic permitted flying height for 

UAVs. On the ground, three fixed nodes were added: 1) the ground communications 

station at coordinates (250, 400); 2) the first monitoring node at coordinates (250, 

250); and 3) the second monitoring node at coordinates (750, 750).  

On the communications side, INET’s “AckingWirelessInterface” wireless network 

interface module was used together with "ApskScalarRadio" hypothetical radios and 

the "ApskScalarRadioMedium" radio model which uses free space path loss by default 

[149]. A transmission frequency of 2 GHz was specified for use with this radio model. 

Antenna gains were not defined, which means that an isotropic antenna with a gain 

of 1 (0 dB) was used for each radio [150].  

Machine learning training data was simulated based on a network of 100 UAV nodes, 

80 of which were genuine in that they only used their true identities to identify 

themselves in communications. Each genuine node transmitted one UDP packet to 

the ground communications station every 1 s period. The initial transmission time was 

different for each node, but ranged between simulation times 𝑡 = 1 and 𝑡 = 2 s. The 

other 20 UAV nodes were Sybil nodes, each of which used two different identities, 

namely, “A” and “B”, to identify itself. Each identity transmitted one UDP packet to 

the ground communications station every 1 s period. Similar to genuine nodes, the 

initial transmission time for Sybil nodes was different for each identity, but ranged 

between simulation times 𝑡 = 1 and 𝑡 = 2 s. Note that relating back to the near real-

time limit 𝑡thres described in Section 4.4, the limit used here can be considered as not 

exceeding 1 s. The transmission period of 1 s can also be viewed either literally as each 

UAV identity communicated once a second, or perhaps more realistically, that each 

UAV identity communicated numerous times a second but only one of those got 

sampled. 
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In terms of the transmission power, the assumption was that all UAV nodes are 

supposed to be operating at a power level that is not too high, in order to preserve 

their limited onboard battery energy. At the same time, the transmit power needs to 

be high enough to achieve reliable radio transmission in various environments and 

distances. Therefore, all genuine UAV nodes were defined to transmit at a power level 

of 100 mW, which is also assumed to be the maximum transmit power level. 

Conversely, Sybil nodes had the ability to adjust their transmission power down to a 

smaller level in an attempt to fool more traditional Sybil attack detectors.  

The training data was generated for two scenarios: 1) where each Sybil node operates 

at a fixed transmit power level of 100 mW; and 2) where each Sybil node operates at 

a fixed transmit power level of 100 mW for Identity A but at a range of power levels 

from 100 mW down to as low as 0.001 mW for Identity B. More specifically, power 

levels assigned to different Identity B UAV nodes are 100 mW, 75 mW, 50 mW, 25 

mW, 10 mW, 0.1 mW and 0.001 mW. The training data simulation for each scenario 

was carried out for a duration of 50 simulated seconds using “seed-set” value of “0”. 

Such a timing duration was chosen to achieve a balance of having sufficient training 

data samples while minimising actual simulation execution time.  

For the generation of test cases, two main different transmit power scenarios were 

used, similar to what were used for the training data. Likewise, an execution duration 

of 50 simulated seconds was also used. Nevertheless, more diverse test cases were 

generated; for instance, the tests include some power levels presented in the training 

data as well as some power levels not presented in the training data but still within 

the 0.001 mW to 100 mW range. For each test case, the evaluation was done on more 

diverse “seed-set” values, being from “1” through to “5”. Furthermore, 

supplementary test cases were generated for a new UAV network composition 

consisting of 98 genuine nodes and 2 Sybil nodes, also using various power levels 

within the same range and “seed-set” values of “1” through to “5”. Note that the 

designation “Gx80Sx20” will be used to refer to the network composition comprising 
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80 genuine nodes and 20 Sybil nodes. Similarly, the designation “Gx98Sx2” will be 

used to refer to the network composition comprising 98 genuine nodes and 2 Sybil 

nodes. 

4.5.2. Stage 2: Data Pre-Processing Prior to Machine Learning 

Classification 

In this stage, for both the training and test data, a Python script was written to extract 

all relevant data from the output log file generated by OMNeT++ and arrange the data 

into an “ARFF” dataset format readable by Weka. Each dataset had three attributes: 

1) TDoA𝑥: TDoA𝑦  ratio; 2) RSSD𝑥: RSSD𝑦 ratio; and 3) class label of either Sybil or 

Genuine. The generation of these attributes using Algorithm 4.2 is described in detail 

in Section 4.4.  

Because the simulated UAV networks consisted of a substantially higher number of 

genuine nodes than Sybil nodes, the generated datasets contained substantially more 

entries of the Genuine class. This means that the machine learning classifier would 

learn more characteristics of Genuine class data than Sybil class data, and thus would 

be more susceptible to overfitting the data to the characteristics of the Genuine class 

nodes. To mitigate this issue, a decision was made to also create a trimmed down 

version of the training data which randomly skips some entries of the Genuine class 

so that there are roughly equal entries for the Genuine and Sybil classes overall. Some 

quick experiments were performed and confirmed that using the untrimmed version 

for training resulted in the classifier having a much poorer performance in detecting 

Sybil class entries. As an example, Table 4.2 illustrates the OneR classification results 

when using the trimmed and untrimmed training datasets for Scenario 2 described in 

Section 4.5.1 evaluated against the trimmed and untrimmed versions of one of the 

Gx80Sx20 test datasets. Note that the details of how this table was populated can be 

referred to in Section 4.5.3. Unsurprisingly, the use of untrimmed training data led to 
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very high true positive detection rates of Genuine class entries but very low true 

positive detection rates of Sybil class entries. Although such use led to a very high 

average overall accuracy percentage when evaluated with the untrimmed test 

dataset, this was only so because there were significantly more instances of Genuine 

class data. As can be seen, when using such untrimmed training data evaluated with 

the trimmed test dataset, the average overall accuracy percentage was very low. 

Similar results were also obtained with the use of different test datasets and 

classifiers. Consequently, a decision was made to use the trimmed version of the data 

for training. For testing, although it may be more realistic to use the untrimmed data, 

a decision was made to also experiment with the trimmed data for the Gx80Sx20 

composition in order to observe the machine learning classification performance 

more thoroughly. 

Table 4.2: OneR Classification Results – Training Dataset Evaluated With a Gx80Sx20 
Test Dataset – Trimmed vs. Untrimmed  

Training 
Dataset 

Overall 
Correct 

Classification 
Percentage  

True 
Positive 

Sybil 
Instances 

False 
Negative 

Sybil 
Instances 

True 
Positive 
Genuine 
Instances 

False 
Negative 
Genuine 
Instances 

True 
Positive 

Sybil 
Percentage  

True 
Positive 
Genuine 

Percentage  

 Evaluated with untrimmed version of test dataset: 

Trimmed  91.07% 1837 83 622412 61108 95.68% 91.06% 

Untrimmed 99.71% 66 1854 683380 140 3.44% 99.98% 

 Evaluated with trimmed version of test dataset: 

Trimmed  94.16% 1837 83 1775 141 95.68% 92.64% 

Untrimmed 51.67% 66 1854 1916 0 3.44% 100% 

 

4.5.3. Stage 3: Machine Learning Classification 

In this stage, evaluation is carried out on the training and test data in Weka. The Weka 

platform comes included with a collection of classifiers of different algorithm types. 

Furthermore, additional classifiers are also available as optional downloadable 
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packages. In this study, preliminary experiments were carried out with most, if not all, 

of the classifiers that support the problem scenario, in an attempt to shortlist a few 

high-performing ones. This process then narrowed down to the four chosen 

algorithms, namely, J48, Classification via Regression, OneR, and JRip. Note that these 

well-researched algorithms are of three different types, more details of which can be 

found in Section 4.5.4 for interested readers. These diverse algorithms were then used 

in carrying out the full experiments to observe the robustness of the scheme. 

The following output results were captured for evaluation: 1) the accuracy of correctly 

classified instances overall; 2) the number of Sybil class entries correctly identified as 

Sybil class (i.e., “true positive Sybil” or equivalently “true negative Genuine”); 3) the 

number of Sybil class entries incorrectly identified as Genuine class (i.e., “false 

negative Sybil” or equivalently “false positive Genuine”); 4) the number of Genuine 

class entries correctly identified as Genuine class (i.e., “true positive Genuine” or 

equivalently “true negative Sybil”); and 5) the number of Genuine class entries 

incorrectly identified as Sybil class (i.e., “false negative Genuine” or equivalently “false 

positive Sybil”).  

Note that the second and third outputs can be used to calculate the percentage of 

true positive Sybil entries detection. Similarly, the fourth and fifth outputs can be used 

to calculate the percentage of true positive Genuine entries detection. Another point 

to note is that the second and fourth outputs can be added together to obtain the 

overall correct classification instances. Likewise, the third and fifth outputs can be 

added together to obtain the overall incorrect classification instances.  

4.5.4. Weka Workbench Platform 

The Weka workbench platform is a popular open-source software for machine 

learning [151] [152]. Weka comes with a collection of classifiers, where this study 

focuses on the following four: 1) J48; 2) Classification via Regression; 3) OneR; and 4) 
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JRip. These four classifiers are based on three different algorithm types: 1) decision 

tree; 2) metalearning; and 3) rules. These different classifiers are briefly described 

below. 

The J48 classifier is a decision tree type algorithm. Decision trees define the sequences 

of decisions to be made together with the resulting recommendation. Each node in a 

decision tree evaluates a specific attribute until a leaf node is reached, which is where 

the classification decision is made. The J48 classifier is a derivation of a straightforward 

divide-and-conquer algorithm called “C4.5” [153] which needed to be extended in 

order to cater for real-world problems [154].  

The Classification via Regression classifier is a metalearning type algorithm. 

Metalearning algorithms take classifiers and make them into more powerful learners 

or change them for other applications [154]. In the case of the Classification via 

Regression classifier, it performs classification on discrete classes using regression 

methods which would otherwise only be suitable for continuous classes. Note that the 

M5P decision tree classifier [155], which is the default option, was used in the 

experiments carried out in this study. 

The OneR and JRip classifiers are rules type algorithms. Rules-based classifiers are 

popular alternatives to decision trees. Rules can be much more consolidated than 

decision trees, especially when it is possible to have a default rule covering cases not 

defined by other rules. Another reason for rules popularity is that new rules can be 

added to existing ones without disrupting the other rules already in place [154].  

The OneR classifier, which is also called “1R” or “1-rule”, is Weka’s implementation of 

Holte [156]. It works based on a set of rules applied to just one attribute by creating a 

different set of rules for each attribute and choosing the best one based on the 

resulting error rates. It is described as a simple and efficient method that can still 

produce effective rules that can often achieve surprisingly high accuracy. An 

explanation for such a phenomenon is that often the pattern underlying any real-
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world data is quite fundamental that even only just one attribute of the data is 

adequate for performing accurate predictions [154].  

The JRip classifier is Weka’s implementation of the Repeated Incremental Pruning to 

Produce Error Reduction (RIPPER) rule learner [157]. It is based on the idea of using 

incremental reduced-error pruning by Fürnkranz and Widmer [158] for quick and 

effective rule inference [154]. 

4.6. Simulation Results and Evaluation 

This section looks at machine learning classification results obtained from the 

simulation exercises described in Section 4.5, where the results for all test datasets 

were obtained from five simulation runs using the five different “seed-set” values. To 

summarise, a high correct classification accuracy of above 91% on average was 

achieved across all four selected machine learning algorithms, even in scenarios with 

smart malicious nodes operating at power levels not directly trained. Such a high 

performance reflects the suitability of the design choices made for the proposed 

architecture, especially the selection of the two machine learning attributes, namely, 

the RSSD and TDoA ratios of two different signals. Additionally, the results also reflect 

the robustness of the proposed architecture in upholding high performance when 

different machine learning classifiers are used. 

The following two subsections discuss the results in more detail. Note that this study 

uses three criteria for the evaluation metrics (refer Section 4.5.3): 1) the accuracy of 

correctly classified instances overall (“correct classification accuracy”); 2) the 

percentage of true positive Sybil entries detection (“true positive Sybil rate”); and 3) 

the percentage of true positive Genuine entries detection (“true positive Genuine 

rate”). 
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4.6.1. Sybil Nodes With Fixed Transmit Power Level 

This subsection examines the performance of Scenario 1, the results of which are 

shown in Figure 4.4. This is a simpler scenario in which Sybil nodes can only transmit 

at a fixed power level of 100 mW. It can be seen that the correct classification 

accuracies exceed 96% for all classifiers except for OneR which performs slightly worse 

in this scenario but still exceeds 91%. Similar results can also be observed when 

looking more specifically at true positive Sybil and true positive Genuine rates. 

Another observation about OneR is that it also performs worst in terms of its 

equitability in distinguishing Sybil and Genuine class entries, with the gaps between 

the true positive Sybil and true positive Genuine detection rates being the largest 

among the three classifiers. 
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Figure 4.4: ML Classification Results – Sybil Nodes With Fixed Transmit Power Level 
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4.6.2. Sybil Nodes With Variable Transmit Power Level 

This subsection considers Scenario 2, which represents the more complex cases where 

Sybil nodes can vary their transmit power level. For these cases, a training dataset 

containing Sybil nodes with seven different transmit power levels was used to train 

the classifiers. Testing was conducted using diverse datasets with various transmit 

power levels, some of which were included in the training dataset and some of which 

were not.  

4.6.2.1. Average Results 

To characterise the results more generally, the average results obtained from the use 

of all test datasets for each of the two different node compositions, as shown in Figure 

4.5, are examined. When compared with the fixed power results shown in Figure 4.4, 

it can be seen that the correct classification accuracies of the four classifiers decrease 

by a few percent, but all still exceed 91%. Likewise, the true positive Sybil and true 

positive Genuine rates also decrease slightly, with the results for true positive Sybil 

appearing to be slightly higher than that of true positive Genuine for all classifiers; 

however, the gaps are smallest for the JRip classifier, indicating that it is the most 

equitable one in distinguishing Sybil and Genuine class entries. Interestingly, unlike 

the results for the fixed power scenario, the performance of the OneR classifier is now 

more similar to that of the other three classifiers. This is perhaps not too surprising 

because as outlined in Section 4.5.4, OneR only uses one attribute to create rules, and 

so the performance in some situations would be worse than the other classifiers that 

use all attributes available.  
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Figure 4.5: ML Classification Results – Average Results for Sybil Nodes With Variable Transmit Power Level 
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4.6.2.2. More Detailed Samples of Results 

This subsection looks more closely at the performance differences between some 

sample test cases where the transmit power levels of Sybil nodes were included in the 

training dataset versus those that were not.  

Firstly, consider an example situation where the Sybil nodes can only transmit at a 

fixed power level that is already included in the training dataset. Figure 4.6 illustrates 

the classification execution results of one such example situation, where each Sybil 

node transmits at a power level of 50 mW for its Identity B. When comparing this with 

the average results shown in Figure 4.5, it can be seen that the results are fairly 

consistent with one another. The correct classification accuracies of all four classifiers 

exceed 91%. Similarly, the true positive Sybil rates are only slightly higher than the 

true positive Genuine rates for all classifiers.  

Next, consider a situation where the transmit power level of each Sybil node’s Identity 

B has not been included in the training dataset. An example situation is illustrated in 

Figure 4.7, which captures the results of a diversified test case where there are five 

different transmit power levels of Identity B used among the Sybil nodes, namely, 40 

mW, 3 mW, 0.6 mW, 0.03 mW and 0.007 mW. Note that such a situation was only 

created for the Gx80Sx20 node composition, and not for the Gx98Sx2 node 

composition, because the small number of Sybil nodes in the latter case would not be 

effective in demonstrating the intended diversification. In terms of the classification 

results comparison, it can be seen that the results are also in line with the average 

results captured in Figure 4.5, where the correct classification accuracies for all 

classifiers exceed 91%.  
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Figure 4.6: ML Classification Results – Sybil Nodes With Trained Identity B Transmit Power Level (50 mW) 
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Figure 4.7: ML Classification Results – Sybil Nodes With Untrained Identity B Transmit Power Levels (Mixture of 40 mW, 3 mW, 
0.6 mW, 0.03 mW and 0.007 mW) 
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4.6.3. Future Works 

The experimental results in this study were obtained from simulations carried out 

based on several assumptions which may not necessarily hold true in all situations. 

Therefore, more considerations are required prior to the actual deployment of the 

proposed scheme and may necessitate further experiments and adaptations, as 

appropriate. In addition, the proposed scheme may also be extendable to provide 

improvements and additional functionalities.  

4.6.3.1. Additional Considerations Prior to Deployment  

Examples of issues that may require additional consideration prior to deployment are 

as follows. Firstly, this study was carried out based on the assumption that the free 

space path loss propagation model holds true and that signals from other systems in 

the surrounding area are coordinated in such a way that results in negligible 

interference effects on the functionality of the system, such as through the use of 

orthogonal frequency-division multiplexing. Consequently, further assessments 

would need to be done on the effects of interference and structural blockages 

applicable at the physical location the system is planned to be deployed in.  

This study also uses a specific UAV mobility model taken from an INET framework’s 

showcase, which defines how different UAVs move around in a range of random 

speeds and directions. Simulations were also performed on specific flying space 

dimensions and node density levels. Furthermore, the simulations carried out used 

only one near real-time threshold value which is 𝑡thres = 1 s. In practice, depending 

on the application, it is possible that nodes may be required to fly in a higher density 

environment. They may also be required to use different mobility patterns or signal 
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emission rates. Therefore, further studies are needed on these aspects prior to 

deployment, as appropriate.  

The UAVs transmit power levels used in this study range from the maximum value of 

100 mW down to the minimum value of 0.001 mW. Although these values led to great 

simulation results, further investigations would need to be done to confirm the 

performance based on the expected minimum and maximum UAVs transmit power 

levels applicable to the deployment scenario.  

4.6.3.2. Use of Alternative Machine Learning Attributes 

The RSSD and TDoA ratios of two different radio signals were selected as the attributes 

used for machine learning in this study following the hypothesis that they capture 

significant location information regarding any given UAV node at a particular point in 

time when used together. From the simulation results, the use of these two attributes 

was found to be quite effective in detecting Sybil attacks. Nevertheless, more studies 

can be carried out in the future to investigate whether the performance of the scheme 

can be improved even further if additional and/or different attributes are used, 

including those derived from other physical layer features, especially if such other 

features are easily obtainable in the intended deployment scenario. 

4.6.3.3. Extension to Support Unsupervised Machine Learning and 

Other Attack Types 

In reality, there may be situations in which datasets for machine learning training are 

not easily obtainable. In such situations, the use of supervised machine learning may 

not be ideal. As a potential solution, unsupervised machine learning, which uses input 

datasets without class labels to independently extract useful information and patterns 

[142], may need to be considered as an extension of the scheme. Likewise, 
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considerations should be given to extending the scheme to cater for other attack types 

in FANETs, a good starting point of which might be those that also involve location 

verification. 

4.6.3.4. Adaptation to Support Other Application Scenarios 

Notwithstanding the fact that the proposed scheme was designed for and 

experimented in the FANETs environment, the approach may also function well in 

other application scenarios, either as is or with some modifications. As an example, in 

the case of VANETs, the mobility patterns where vehicles of certain height travel on 

known roads can be considered two-dimensional, which is more restrictive than the 

three-dimensional mobility in FANETs. However, there are similarities that may enable 

the mechanisms underlying the proposed scheme to also function well in such an 

environment. Additionally, research on VANETs is also more mature and thus trusted 

infrastructures exist, such as roadside units (RSUs), which may be advantageous for 

the adaptation of the proposed scheme (e.g., the RSUs can potentially be used as 

ground monitoring nodes).  

4.7. Conclusion 

This chapter proposes a supervised machine learning approach to intelligently detect 

Sybil attacks for FANETs-based IoFT. Simulation results revealed that the proposed 

scheme can achieve a high correct classification accuracy of above 91% on average, 

even for smart malicious nodes with power control capability operating at power 

levels not directly trained. Correspondingly, this means that the proposed scheme has 

a low false classification rate of less than 9% on average. Additionally, because of the 

use of only intrinsically generated physical layer data, the proposed scheme is also less 

susceptible to various attacks commonly carried out on the upper layers, such as data 
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spoofing. Furthermore, no additional communications overheads of the UAV nodes 

are required for the functionality of this scheme. For future works, it may be possible 

to extend this scheme beyond Sybil attack detection applications, for example, to 

address other problems in FANETs that involve location verification. In addition, 

extensions and adaptations to support unsupervised machine learning and other 

application scenarios can also be investigated. 
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Chapter 5 Inter-Pulse Interval for Frequency 

Hopping Sequence Determination 

Human body interface and control systems (HBICS) refer to the information exchange 

between devices inside, on, and within the proximity of a human body. Research in 

HBICS security is a very significant area because many types of HBICS devices are 

considered to be safety critical, especially those used for medical applications. Denial-

of-service (DoS) through the launch of wireless communications link jamming is 

known to be a major attack type in HBICS. The use of inter-pulse interval (IPI) 

biometrics to address various HBICS authentication and encryption security challenges 

is known to be quite well-researched; however, existing approaches cannot be 

adopted for use in frequency hopping applications due to the fundamental difference 

in how frequency hopping operates. This gap triggers the exploration of a new 

approach in this chapter, to potentially enable IPI to be used to add another layer of 

protection to the traditional pseudorandom frequency hopping system. 

5.1. Introduction 

The communications among human body interface and control systems (HBICS), also 

known as wireless body area networks (WBAN), refers to the information exchange 

between devices inside, on, and within the proximity of a human body. In other words, 

a substantial focus of this is on human wearable and implantable devices. Applications 

of HBICS can range from medical to non-medical. Examples of medical applications 

include the monitoring and control of health conditions, such as fatigue, asthma, 

diabetes, cardiovascular diseases, cancer detection, and so on. Examples of non-
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medical applications include entertainment, non-medical emergency management, 

and security management [20]. 

Security is one of the aspects of HBICS that often gets discussed in the literature. This 

is not surprising for such devices that are used for medical, emergency and security 

applications. One well-known case that also highlights such concern is the fact that 

the US Vice President Dick Cheney disabled the wireless functionality of his heart 

implant pacemaker due to fear of assassination through the device being hacked [26] 

[54] [55].  

The use of biometrics in HBICS has been widely discussed in the literature as being 

potentially suitable for various security applications. Common types of physiological 

features that come into play for such applications include electrocardiogram (ECG), 

photoplethysmogram (PPG), fingerprint and iris [24] [26] [28] [54] [59] [61] [62]. The 

timing between heartbeats, also known as the inter-pulse interval (IPI), is an ECG-

based mechanism, and is perhaps one of the most prominently discussed physiological 

biometrics. IPI has a clear benefit, in that it can be measured anywhere on the body 

of a person. Furthermore, another advantage of using IPI as a physiological entropy 

source is the fact that it has a high level of randomness [55].  

Confidentiality, integrity and availability are some of the most often cited attributes 

in HBICS security discussions [20] [21] [26] [55] [56] [57] [58]. The use of IPI-based 

physiological parameters has quite extensively been proposed for authentication and 

encryption operations, which mitigate threats to confidentiality and integrity. 

However, discussions on the use of IPI-based physiological parameters to mitigate 

threats to availability have so far been quite limited.  

The jamming of communication links to cause denial-of-service (DoS) is one type of 

attacks to availability. Frequency hopping can be used to counteract such an attack 

[24] [60]; however, if the parameters that determine the hopping pattern become 

compromised and somehow made known to the attacker, the attacker would be able 
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to easily carry out jamming attacks. This chapter proposes the use of IPI biometrics to 

add another layer of protection to the traditional pseudorandom frequency hopping 

system, which would be suitable for use in scenarios involving communications among 

HBICS devices implanted inside and/or worn on a human body. As part of the study, 

experiments were carried out based on four different algorithms, as detailed in further 

sections. 

The remainder of this chapter is organised as follows. Section 5.2 outlines existing 

related works on the use of IPI for security applications and on the use of frequency 

hopping for anti-jamming. Section 5.3 outlines the motivations and contributions of 

the proposed scheme. The operational scenario of concern and the proposed 

algorithms are then described in Section 5.4. In Section 5.5, the simulation 

environment used for the experiments is discussed. This follows by Section 5.6 which 

discusses the simulation results, performance evaluation and security analysis. Finally, 

the chapter concludes in Section 5.7. 

5.2. Related Works 

5.2.1. Inter-Pulse Interval (IPI) for Security Applications 

The idea of using IPI biometrics for HBICS security was first introduced by Poon et al. 

[65] in 2006 [54] [55] [62]. Its functionality is enabled through usage in conjunction 

with the fuzzy commitment scheme [63], which allows for errors in what is equivalent 

to a decryption key, to be tolerable to a certain degree [65]. 

The fuzzy commitment scheme [63] is known to be suitable for biometric applications 

owing to its support for small variabilities in physiological signals. It is also commonly 

adopted in other biometric authentication applications, such as the use of fingerprints 

as cryptographic keys [159].  
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Figure 5.1 illustrates a high-level conceptual overview of how biometrics are typically 

used in conjunction with the fuzzy commitment scheme for authentication and 

encryption purposes. 

 

Figure 5.1: Biometrics for Authentication and Encryption – A High-Level Overview 

5.2.2. Frequency Hopping for Anti-Jamming 

Frequency hopping is known to be the most frequently used method to counteract 

frequency jamming attacks [160]. Traditionally, as illustrated in Figure 5.2, the 

frequency hopping pattern is determined in a pseudorandom fashion through the use 

of frequencies set and hop sequence commonly known to the participating time-

synchronised devices [24] [60]. Consequently, this means that if the pseudorandom 

seed is compromised and known to the attacker, who presumably already has 

knowledge of other details of the system, the attacker would be able to determine 

which frequency devices communicate on at any given point in time. As a result, this 

knowledge would enable the attacker to easily carry out jamming attacks on the 

devices operating frequencies. 
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Figure 5.2: Traditional Frequency Hopping System 
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type of solution, which would have worked fine with authentication and encryption 

applications, cannot be adopted for use in frequency hopping applications due to the 

fundamental difference in how frequency hopping operates. For frequency hopping 

applications, there is no opportunity for the frequency determinants of each of the 

communicating devices to be compared against each other. The frequency 

determinants need to be derived separately for each device with the intent to match 

each other with minimal errors, to ensure that the devices communicate on a 

matching frequency at any given point in time. This gap in suitable solutions motivates 

the development of a new approach which can relate IPI biometrics to frequency 

hopping patterns, as proposed in this chapter. 

5.4. System Architecture 

5.4.1. Operation Scenario 

Figure 5.3 demonstrates the operation scenario of concern. In this scenario, a HBICS 

devices user has two or more wearable and/or implantable devices with direct body 

contacts. The devices need to communicate with each other for various critical tasks. 

As an example, these tasks may be for critical healthcare monitoring and control. An 

attacker with malicious intent may wish to disable the functionality of one or more 

implantable devices to cause deteriorating health to the user. If the devices of interest 

communicate on a known frequency, the attacker can achieve this by transmitting on 

the same channel with high enough transmit power to jam the communication link 

being used, causing service deterioration. As already introduced in previous sections, 

frequency hopping can be used to counteract such an attempt. However, in a 

traditional frequency hopping system, the hop pattern is determined in a 

pseudorandom manner. Therefore, if the attacker can somehow manage to get hold 
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of the relevant pseudorandom determinant parameters, jamming attacks can still be 

easily carried out. To mitigate such concern, the ongoing IPI signals intrinsically 

generated by the user, which are available to the HBICS devices through direct body 

contacts, can be used to contribute to the determination of frequency hopping 

sequence.  

 

Figure 5.3: Operation Scenario of Concern 

 

Implantable 
Device

Implantable 
Device

Wearable 
Device

Wearable 
Device

Attacker

Jamming Signals

Wireless Communication 
Signals



CHAPTER 5 INTER-PULSE INTERVAL FOR FREQUENCY HOPPING SEQUENCE DETERMINATION 

126 
 

5.4.2. Proposed Algorithms 

Four alternative algorithms, from Algorithm 5.1 through to Algorithm 5.4, are hereby 

proposed for use with IPI biometrics to add another layer of protection to the 

pseudorandomly determined frequency hopping pattern, as shown in Figure 5.4.  

 

Figure 5.4: Proposed Integration of IPI and Frequency Hopping System  
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four algorithms output a binary value 𝑏, given the following inputs: consecutive IPIs 

set 𝑃 for 𝑛 pulses, comparison set size 𝑠, and pseudorandom determinant parameter 

𝑘. The objective of the algorithms is to output the value 𝑏 that is tolerant to 

noise/errors caused through IPI measurements being taken at different parts of the 

body, which is one of the biggest barriers in allowing IPI biometrics to become 

functional in security applications. The value 𝑏, which gets independently calculated 

by each device, is to be used for determining the radio frequency to communicate on 

at any point in time.  

Algorithm 5.1 and Algorithm 5.2 are based on the comparison of consecutively 

accumulated IPIs at two different points in time. Algorithm 5.3 and Algorithm 5.4 are 

also based on the comparison of two accumulated IPI sets, but with the element 

compositions pseudorandomly determined, and thus, in most cases, would not be 

consecutive to each other. Algorithm 5.1 and Algorithm 5.3 use summation as the 

basis for comparison, while Algorithm 5.2 and Algorithm 5.4 use the gradient value of 

the linear line of best fit.  

Note that the output 𝑏 obtained from one of the four alternative algorithms can be 

buffered and concatenated to form a larger number, subjecting to the number of 

frequency choices available to hop on. The periodicity of how often a new value of 𝑏 

is to be generated depends on the required frequency hopping speed. 
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Algorithm 5.1: Compare Two Subsets of Consecutively Accumulated IPIs of Size 𝑠 
Using Summation 

Input: Set 𝑃 made up of consecutive IPIs for 𝑛 pulses, 

 Comparison set size 𝑠, where 2 ≤ 𝑠 ≪ 𝑛, 

 Comparison points determinant parameter 𝑘  

1 begin 

2  Use 𝑘 and the device’s synchronised time source to 

pseudorandomly derive two indices for set 𝑃, namely 𝑖 

and 𝑗, where {𝑖, 𝑗} ⊆ {𝑠, … , 𝑛} and 𝑖 ≠ 𝑗 

3  Calculate 𝑥 =  sum of all elements of the subset 

{𝑝𝑖−𝑠+1, … , 𝑝𝑖} ⊆ 𝑃 

4  Calculate 𝑦 =  sum of all elements of the subset 

{𝑝𝑗−𝑠+1, … , 𝑝𝑗} ⊆ 𝑃 

5  if 𝑥 ≥  𝑦 do 

6   return 𝑏 = 1 

7  else do 

8   return 𝑏 = 0 

9  end if 

10 end 

 

Algorithm 5.2: Compare Two Subsets of Consecutively Accumulated IPIs of Size 𝑠 
Using Trendline’s Gradient 

Input: Set 𝑃 made up of consecutive IPIs for 𝑛 pulses, 

 Comparison set size 𝑠, where 2 ≤ 𝑠 ≪ 𝑛, 

 Comparison points determinant parameter 𝑘  

1 begin 

2  Use 𝑘 and the device’s synchronised time source to 

pseudorandomly derive two indices for set 𝑃, namely 𝑖 

and 𝑗, where {𝑖, 𝑗} ⊆ {𝑠, … , 𝑛} and 𝑖 ≠ 𝑗 

3  Calculate 𝑥 =  gradient of the linear line of best fit for 

elements in the subset {𝑝𝑖−𝑠+1, … , 𝑝𝑖} ⊆ 𝑃 

4  Calculate 𝑦 =  gradient of the linear line of best fit for 

elements in the subset {𝑝𝑗−𝑠+1, … , 𝑝𝑗} ⊆ 𝑃 

5  if 𝑥 ≥  𝑦 do 

6   return 𝑏 = 1 

7  else do 

8   return 𝑏 = 0 

9  end if 

10 end 
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Algorithm 5.3: Compare Two Pseudorandomly Determined Subsets of Accumulated 
IPIs of Size 𝑠 Using Summation 

Input: Set 𝑃 made up of consecutive IPIs for 𝑛 pulses, 

 Comparison set size 𝑠, where 2 ≤ 𝑠 ≪ 𝑛, 

 Accumulation points determinant parameter 𝑘  

1 begin 

2  Use 𝑘 and the device’s synchronised time source to 

pseudorandomly derive 𝐼 = {𝑖1, … , 𝑖𝑠} and 𝐽 = {𝑗1, … , 𝑗𝑠} 

which are two sets of indices for 𝑃 of size 𝑠  

3  Calculate 𝑥 =  sum of all 𝐼 indexed subset {𝑝𝑖1
, … , 𝑝𝑖𝑠

} ⊆

𝑃 

4  Calculate 𝑦 =  sum of all 𝐽 indexed subset 

{𝑝𝑗1
, … , 𝑝𝑗𝑠

} ⊆ 𝑃 

5  if 𝑥 ≥  𝑦 do 

6   return 𝑏 = 1 

7  else do 

8   return 𝑏 = 0 

9  end if 

10 end 

 

Algorithm 5.4: Compare Two Pseudorandomly Determined Subsets of Accumulated 
IPIs of Size 𝑠 Using Trendline’s Gradient 

Input: Set 𝑃 made up of consecutive IPIs for 𝑛 pulses, 

 Comparison set size 𝑠, where 2 ≤ 𝑠 ≪ 𝑛, 

 Accumulation points determinant parameter 𝑘  

1 begin 

2  Use 𝑘 and the device’s synchronised time source to 

pseudorandomly derive 𝐼 = {𝑖1, … , 𝑖𝑠} and 𝐽 = {𝑗1, … , 𝑗𝑠} 

which are two sets of indices for 𝑃 of size 𝑠  

3  Calculate 𝑥 =  gradient of the linear line of best fit for 

elements in the 𝐼 indexed subset {𝑝𝑖1
, … , 𝑝𝑖𝑠

} ⊆ 𝑃  

4  Calculate 𝑦 =  gradient of the linear line of best fit for 

elements in the 𝐽 indexed subset {𝑝𝑗1
, … , 𝑝𝑗𝑠

} ⊆ 𝑃 

5  if 𝑥 ≥  𝑦 do 

6   return 𝑏 = 1 

7  else do 

8   return 𝑏 = 0 

9  end if 

10 end 



CHAPTER 5 INTER-PULSE INTERVAL FOR FREQUENCY HOPPING SEQUENCE DETERMINATION 

130 
 

5.5. Simulation Environment 

5.5.1. Algorithms Simulation 

The proposed algorithms were simulated using MATLAB R2021a. The ECG signals used 

were obtained from the MIMIC-III database [161] through PhysioNet [162]. Note that 

the MIMIC-III database contains, among other information, various vital sign data of 

deidentified adult patients admitted to critical care units.  

In the experiments, data samples of approximately three to three and a half minutes 

duration each were taken from three MIMIC-III records which have at least two 

simultaneous ECG signal data available. The IPI values were then calculated from these 

ECG signals in MATLAB using the “findpeaks” function. The datasets used are shown 

in Table 5.1. Additionally, the first five seconds of these ECG datasets are plotted in 

Figure 5.5, Figure 5.6 and Figure 5.7. 

In all simulations, ECG signals II and V were used to simulate separate IPI readings 

from two separate HBICS devices connected to the same body of a person. For 

Algorithm 5.1 and Algorithm 5.2, lookup tables were created to capture all possible 

comparison combinations corresponding to the value of comparison set size 𝑠 being 

evaluated. The error rate can then be calculated from the total mismatched values of 

output 𝑏. However, for Algorithm 5.3 and Algorithm 5.4, the total number of possible 

comparison combinations is significantly larger; thus, full lookup tables are deemed 

impractical to achieve. So, instead, these algorithms were executed repeatedly until 

5000 comparison instances were achieved for each value of 𝑠 being evaluated, which 

is a good balance between the statistical results achievable and the simulation time 

required. The common seed value “123456” was used for MATLAB’s random number 

generator to simulate the pseudorandom determinant parameter 𝑘 for these two 

algorithms.  
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Table 5.1: Datasets From MIMIC-III Records Used in Simulations 

 Record Signals From Time To Time 
Duration 
(minutes) 

Pulses 

A 3100140_0011 II and V 10:03:49.407 10:06:52.999 03:03.592 250 

B 3225133_0005 II and V 10:08:42.007 10:11:59.999 03:17.992 287 

C 3108324_0010 II and V 06:39:18.952 06:42:36.944 03:18.944 176 

 

 

Figure 5.5: First Five Seconds of Dataset A 
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Figure 5.6: First Five Seconds of Dataset B 

 

 

Figure 5.7: First Five Seconds of Dataset C 
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5.5.2. Frequency Hopping Simulation 

In the frequency hopping simulation, output 𝑏 was buffered and concatenated to form 

a 5-bit number, which was then used to determine which of the thirty-two frequency 

choices would be hopped on at any point in time. This simulation was done in 

Simulink, which is a component of MATLAB. The setup is shown in Figure 5.8, and is 

partially based on the Simulink frequency hopping framework presented by Fan and 

Tan [163]; however, unlike their framework which uses 2FSK modulation, the setup 

used here is based on BPSK. The simulation parameters used are listed in Table 5.2. 

The frequency hopping simulation was executed based on the outputs of Algorithm 

5.1 discussed in Section 5.5.1. At any given point in time, the transmitter uses the 

value of 𝑏 obtained from ECG signal II to determine the frequency to transmit on. In 

contrast, the receiver uses the value of 𝑏 obtained from ECG signal V to determine the 

frequency to receive on.   
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Figure 5.8: Simulink Frequency Hopping Simulation Model 
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Table 5.2: Simulink Frequency Hopping Simulation Parameters 

Block Parameter Value 

Random Integer 
Generator Tx/Rx 

Set size Total number of entries of the 
lookup table generated minus 1 

Initial seed 456654 
Sample time 0.004 
Samples per frame 1 

MATLAB Function Tx/Rx Input 𝑢 and output 𝑦 𝑦 = value corresponding to index 𝑢 in 
the lookup table generated 

Buffer / Bit to Integer 
Converter 

Size 5 bits / 5 bits per integer 

Sine/Cosine Wave Tx/Rx Output amplitude 1 V 
Quiescent frequency 200 Hz 
Input sensitivity 50 Hz 
Initial phase 0 rad for Sine,  

pi/2 rad for Cosine 
Sample time 1/4000 s 

Tx Data Generator Probability of zero 0.5 
Initial seed 61 
Sample time 0.002 
Sample per frame  1 

AWGN Channel Mode Signal to noise ratio (SNR) 
SNR 20 dB 

5.6. Simulation Results and Evaluation 

5.6.1. Algorithms Simulation Results 

Figure 5.9 shows the simulation results, in terms of output value 𝑏 comparison 

mismatched percentage. The use of Algorithm 5.1 resulted in the lowest error 

percentage in general. This follows by Algorithm 5.2, where the error percentage 

reduces quite significantly for a relatively higher value of 𝑠. The use of Algorithm 5.3 

and Algorithm 5.4 resulted in a significantly higher error percentage than Algorithm 

5.2 in most cases, especially for datasets A and B. 
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Another potential issue with the proposed algorithms is the fact that the comparison 

𝑥 ≥  𝑦 would cause 𝑏 = 1, rather than 𝑏 = 0, to be returned when 𝑥 is equal to 𝑦. 

This indicates that the output value may be slightly skewed towards 𝑏 = 1. Such 

situations of imbalanced output values could impact security in terms of the increase 

in predictability. Consequently, attention needs to be paid to such potential problems 

in the simulation results. Figure 5.10 illustrates the percentage of instances where the 

output value is 𝑏 = 1, as averaged across II and V signals. Ideally, it would be 

preferable to have this as close to 50% as possible. From the results, it can be seen 

that all data fit within the range of between 49% and slightly above 55% for a relatively 

lower value of 𝑠, with the range decreasing to between 49% and slightly above 51% 

for a relatively higher value of 𝑠. 



CHAPTER 5 INTER-PULSE INTERVAL FOR FREQUENCY HOPPING SEQUENCE DETERMINATION 

137 
 

 

 

 

 

Figure 5.9: Algorithms Simulation Results – Mismatched Output 
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Figure 5.10: Algorithms Simulation Results – Percentage of 𝑏 = 1 Output (Averaged Across II and V Signals) 
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5.6.2. Frequency Hopping Simulation Results 

The results of frequency hopping simulation executed based on outputs of Algorithm 

5.1 are shown in Figure 5.11. Note that the errors between the transmitter and the 

receiver were measured at three different points: 1) when 𝑏 is in its original binary 

form; 2) after 𝑏 is concatenated into a new 5-bit number; and 3) after the randomly 

generated data has gone through the frequency hopping system and received by the 

receiver. 
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Figure 5.11: Frequency Hopping Simulation Results Based on Outputs of Algorithm 5.1 
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5.6.3. Performance Evaluation and Security Analysis 

From the simulation results, Algorithm 5.1 achieves the best performance out of the 

four proposed algorithms and for all three datasets. Algorithm 5.2 performs quite 

poorly for datasets A and B at a relatively lower value of the comparison set size 𝑠, but 

improves significantly for a higher value of 𝑠. Algorithm 5.3 and Algorithm 5.4 perform 

worse than the other two in general and appear to be quite sensitive to dataset 

changes, with dataset C performing significantly better than the other two datasets 

for all values of 𝑠.  

From the security perspective, let us consider two scenarios relating to an attacker’s 

ability to predict the value of output 𝑏. The first is when the attacker can visually or 

otherwise observe physical activities carried out by the devices wearer/implantee. 

Such observations may assist in predicting the output of the algorithms, especially 

those that use consecutively accumulated IPIs like Algorithm 5.1 and Algorithm 5.2. 

The value of set size 𝑠 used may also affect the likelihood of such predictions being 

successfully performed. The second scenario is when the attacker wildly guesses the 

potentially skewed output, as discussed in Section 5.6.1. There are ways to mitigate 

this and make sure the overall chance of 𝑏 = 0 and 𝑏 = 1 is approximately equal (i.e., 

50%); for example, lines 6 and 8 of Algorithm 5.1 could be made the reverse of each 

other depending on an additional condition check on if 𝑖 > 𝑗. Doing so would assist in 

reducing the probability of guessing the output in cases where the attacker does not 

know the pseudorandom determinant parameter 𝑘. However, if the attacker knows 

both the algorithm and the parameter 𝑘, they would still be able to gain an advantage 

by brute forcing the slightly more likely output that would be returned when 𝑥 ≥  𝑦, 

especially for cases where a relatively lower value of comparison set size 𝑠 is used. 

In terms of other potential improvements, all the datasets used from the MIMIC-III 

database have a sampling rate of only 125 samples per second. If higher resolution 
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and more accurate data are available, there would be a potential that the output 

mismatch rate between two devices would decrease further for all algorithms. There 

would also likely be fewer instances of 𝑥 equal to 𝑦 in the comparisons which would 

mitigate the slightly skewed output towards 𝑏 = 1 issue discussed in Section 5.6.1. 

5.7. Conclusion 

Four alternative algorithms are proposed, simulated and analysed in this chapter. The 

algorithms can be used with IPI biometrics to add another layer of protection to a 

traditional pseudorandomly determined frequency hopping pattern. In general, it was 

found that Algorithm 5.1 achieves the best performance out of the four and has the 

potential in being used to assist in mitigating jamming attacks. The value of 

comparison set size 𝑠 should also be carefully selected to achieve the best balance of 

performance and output predictability. The availability of datasets with higher 

sampling rates would potentially improve the performance further, and might bring 

Algorithm 5.3 and Algorithm 5.4 back into consideration for their potential in offering 

better security in mitigating output predictability for cases where an attacker can 

visually or otherwise observe physical activities of the devices wearer/implantee.  
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Chapter 6 Conclusion and Future Works 

Three studies have been comprehensively presented in Chapter 3, Chapter 4 and 

Chapter 5 of this thesis, where novel security solutions have been developed to 

improve security for the Internet of Things (IoT) in three different domains, namely, 

connected and autonomous vehicles (CAVs), Internet of Flying Things (IoFT), and 

human body interface and control systems (HBICS). This chapter summarises the 

works carried out, as well as the contributions made to the literature. Additionally, 

the remaining challenges identified within the studies, and the future research 

directions, are also discussed. 

6.1. Research Summary 

With the technological advancement in communications and computational systems, 

comes the consequences, one of which is the ever-increasing number of 

interconnected IoT devices which are becoming an integral part of human lives. 

Although this phenomenon brings about tremendous benefits to humanity, it also has 

associated challenges, one interesting area of which is security. The research works 

carried out in this thesis focus on improving security in three different IoT domains, 

namely, connected and autonomous vehicles (CAVs), Internet of Flying Things (IoFT), 

and human body interface and control systems (HBICS). These studies are 

comprehensively presented in Chapter 3, Chapter 4 and Chapter 5 of this thesis, and 

are summarised below. 

In the area of CAVs, a novel scheme is proposed to facilitate secure and conditional 

privacy-preserving vehicular pseudonym issuance and management in a multi-

jurisdictional road network. The architecture leverages the increasingly mature 
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permissioned consortium blockchain technology, the predicted wide availability of 

RSUs, and the highly viable, flexible, and well-established PKI technology. A small-scale 

simulation of the proposed architecture was successfully carried out using the Veins 

platform for integrated traffic and network simulation services, the Hyperledger 

Fabric platform for blockchain services, and the OpenSSL platform for PKI services. 

Simulation results indicate the feasibility of practical deployment of the scheme. 

In the area of IoFT, a state-of-the-art intelligent Sybil attack detection scheme is 

proposed. The scheme uses supervised machine learning carried out on two physical 

layer features of the radio signals emitted from UAV nodes, namely, the received 

signal strength difference (RSSD) and the time difference of arrival (TDoA). Since the 

scheme functions using intrinsically generated physical layer data, it is less susceptible 

to various attacks commonly carried out on the upper layers, such as data spoofing. 

Moreover, no additional communications overheads of the UAV nodes are required 

for the functionality of this scheme. Simulations carried out using the OMNeT++/INET 

simulator and the Weka machine learning workbench platform revealed a high correct 

classification accuracy of above 91% on average, even for smart malicious nodes with 

power control capability operating at power levels not directly trained.  

In the area of HBICS, a new frequency hopping approach is proposed, which uses IPI 

biometrics to add another layer of protection to the traditional pseudorandom 

frequency hopping system. MATLAB/Simulink simulations were carried out on the 

four different proposed alternative algorithms. Simulation results reveal the feasibility 

for some of the algorithms to be used. Potential improvements include the use of 

datasets with higher sampling rates. 

Although the research works captured in this thesis fill knowledge gaps in the 

literature in several different areas, there are still open issues that should be 

addressed as future works, as listed in Section 6.3. As indicated in various places 

throughout this thesis, IoT is a broad area of study, consisting of numerous different 
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domains. Consequently, there are also many other IoT security-related open problems 

and challenges out there still waiting for new solutions to be invented to address 

them. 

6.2. Contributions 

The main contributions of this thesis can be summarised by chapter as follows: 

• Chapter 3: A permissioned consortium blockchain-based conditional privacy-

preserving vehicular pseudonym issuance and management system is 

proposed to be paired with the traditional PKI-based cryptography system. The 

proposed system is the first to focus on integrated secured access and 

management support for vehicular pseudonym issuance and management in 

a multi-jurisdictional road network. In terms of the consensus mechanism, the 

architecture is also flexible, allowing for efficient protocols to be used, such as 

the CFT protocol used in the simulation. The scheme also addresses the 

identified shortfalls of existing works from the perspective of achieving a 

better balance between connectivity and storage requirements. 

- Results: The simulations carried out demonstrate the feasibility of 

practical deployment of the scheme.  

• Chapter 4: An intelligent Sybil attack detection scheme is proposed for FANETs-

based IoFT environment. The scheme is the first of its kind, where detection is 

done using supervised machine learning carried out on two physical layer 

features of the radio signals, namely, the received signal strength difference 

(RSSD) and the time difference of arrival (TDoA). This scheme uses only two 

ground nodes to monitor radio signals emitted from the UAVs, which is less 

than what traditional position localisation methods would have required. 

Because of the use of only intrinsically generated physical layer data, there are 
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no additional costs in terms of communications overheads. Similarly, it is also 

less susceptible to various attacks commonly carried out on the upper layers, 

such as data spoofing. Furthermore, the scheme has been designed to be 

smart and flexible, in that it can function in situations where classic malicious 

nodes with fixed power are used, as well as in situations where smart malicious 

nodes with power control capability are used to manipulate signal strength. 

- Results: The simulation results reveal that the proposed scheme can 

achieve a high correct classification accuracy of above 91% on average, 

even for smart malicious nodes with power control capability operating 

at power levels not directly trained.  

• Chapter 5: A frequency hopping approach in HBICS is proposed, which uses 

inter-pulse interval (IPI) biometrics to add another layer of protection to the 

traditional pseudorandom frequency hopping system. This is the first time IPI 

biometrics is proposed to be used to add another layer of protection to the 

traditional pseudorandom frequency hopping system, which is fundamentally 

different to the existing IPI biometrics solutions used for authentication and 

encryption applications. Four alternative algorithms are proposed to 

determine the frequency to operate on at any point in time, given that the 

HBICS devices are time synchronised and share a mutually known 

pseudorandom determinant parameter.  

- Results: Simulation results reveal that Algorithm 5.1 achieves the best 

performance out of the four and has the potential in being used to 

assist in mitigating jamming attacks. This is followed by Algorithm 5.2, 

and less preferably, Algorithm 5.3 and Algorithm 5.4 which resulted in 

significantly higher error percentages. 
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6.3. Remaining Challenges and Future Research Directions 

6.3.1. Matters Identified in Chapter 3 

Several matters identified in Chapter 3 as to be considered prior to system 

deployment are summarised as follows. Firstly, the variability in demand for 

pseudonym issuance, especially their peaks, needs to be further characterised. 

Secondly, the blockchain transactions processing throughput limitation should be 

studied further to discover how the system would behave if such a limit is reached. 

Thirdly, further assessments need to be made on the potential requirement for 

parallel execution of RSU’s tasks by different processes. Finally, other potential risks 

associated with the selected permissioned consortium blockchain platform should be 

thoroughly identified and appropriately mitigated.  

6.3.2. Matters Identified in Chapter 4 

Matters identified in Chapter 4 as to be considered prior to system deployment are 

summarised as follows. Firstly, the study assumes that the free space path loss 

propagation model holds true and that signals from other systems in the surrounding 

area are coordinated in such a way that results in negligible interference effects on 

the functionality of the system, such as through the use of orthogonal frequency-

division multiplexing. Therefore, further assessments would need to be carried out on 

the effects of interference and structural blockages applicable at the physical location 

the system is planned to be deployed. Additionally, prior to system deployment, 

further studies need to also be carried out on the actual expected mobility patterns, 

node density levels, flying space dimensions, signal emission rates and transmit power 

range.  



CHAPTER 6 CONCLUSION AND FUTURE WORKS 

148 
 

The study also identified several improvement opportunities that can be done as 

future works. Firstly, the study identified that it should be investigated if the 

performance of the scheme can be improved even further if additional and/or 

different attributes, apart from RSSD and TDoA ratios, are used. It was also identified 

that unsupervised machine learning may need to be considered as an extension to the 

scheme, to cater for situations where datasets for machine learning training are not 

easily obtainable. Similarly, the possibility of extending the scheme to cater for other 

attack types in FANETs should also be considered. Finally, it was identified that 

adaptation of the proposed scheme for other application scenarios, such as in VANETs 

environment, should be investigated. 

6.3.3. Matters Identified in Chapter 5 

In Chapter 5, it was identified that the ECG datasets from the MIMIC-III database used 

in the study have a sampling rate of only 125 samples per second. The availability of 

datasets with higher sampling rates would potentially improve the performance of all 

four proposed algorithms. Additionally, this might also bring the poorly performed 

Algorithm 5.3 and Algorithm 5.4 back into consideration for their potential in offering 

better security in mitigating output predictability. 

6.3.4. The Future of Internet of Things Security 

As can be seen throughout this thesis, security has been and is still a challenging aspect 

of IoT. Although this thesis proposes solutions to address some significant security 

problems, numerous other challenges still remain. It is also important to remember 

that IoT is a broad field of study, covering so many different application areas. There 

is a possibility that the solutions proposed in this thesis may also be applicable to 
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similar issues being faced in other IoT domains; however, some adaptation efforts 

would likely be required. 

Due to IoT being a very active research field, technological advancement is happening 

very rapidly. It is important that developers consider potential security issues as an 

integral part of any system design process. Nevertheless, there will likely still be 

technologies that get developed with security issues being neglected. Additionally, 

progressions associated with certain technologies may also cause existing security 

mechanisms to become ineffective. Thus, new solutions would need to be developed 

in such situations, one prominent example of which is the quantum field. 

As outlined in Section 2.4, quantum technology will fundamentally change 

communications systems and networks security in the near future. It will provide an 

enabling platform for strong security and high-performance computation, which 

would also potentially assist ML/DL applications. On the contrary, it will also render 

many currently used cryptographical security systems ineffective. Unsurprisingly, this 

significant field of study opens up enormous research opportunities in the area of IoT 

security. 
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