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Deep neural networks can achieve remarkable performance when large
annotated training datasets are available. However, annotating a large
number of examples accurately is often expensive and sometimes infeasible
in real life. Some cheap datasets with poor annotation quality and con-
taining noisy labels are widely used to train deep learning models. Recent
results show that deep neural networks can easily memorize noisy labels
during training, which leads to poor generalization ability.

To improve the generalization ability of deep learning models when
learning with noisy labels, a noise transition matrix T (x) has been widely
employed by existing methods to reveal the transition relationship from
clean labels to noisy labels of instances. It acts as a central building block
in designing statistical-consistent methods for learning with noisy labels
(T -based methods). However, for real-world machine learning datasets, the
transition matrix is usually unknown and needs to be estimated. Accurately
estimating the transition matrix can be a challenging task. This motivates
recent work to design label-noise robust methods focusing on incorporating
heuristics instead of requiring estimating the transition matrix (heuristic-
based methods).

The heuristic-based method has demonstrated state-of-the-art (SOTA)
performance on many benchmark datasets. These methods seem to be more
practical than the methods employing the transition matrix. It raises the



question that is the transition matrix still important for learning with noisy
labels. In this thesis, we answer that the transition matrix still plays an im-
portant role in learning with noisy labels. We will show that the transition
matrix not only can be used to design statistical-consistent methods but
also can help boost the performance of heuristic-based methods. Specifi-
cally, by employing the transition matrix T (x), confident examples can be
accurately selected. Then the selected confident examples can be leveraged
in the training process of heuristic-based methods to boost their perfor-
mance. We will also show that given the transition matrix, the performance
of T -based methods will not be influenced by different data generative pro-
cesses. By contrast, the performance of SOTA heuristic-based methods can
be influenced by different data generative processes. It implies that the
transition matrix can be employed to improve the robustness of learning
models for a wide range of datasets.

Since the label-noise transition matrix is important but hard to esti-
mate, we will propose two new transition-matrix estimation methods that
reduce the estimation error of the transition matrix. The first method can
effectively estimate instance-independent transition matrix by exploiting
the divide-and-conquer paradigm. The second method focuses on estimat-
ing instance-dependent transition matrices by leveraging a structural causal
model.

To improve the generalization ability of deep learning models when
learning with noisy labels, noise transition matrix T(x) has been widely
employed by existing methods to reveal the transition relationship from
clean labels to noisy labels of instances. It acts as a major building block
in designing statistical-consistent methods for learning with noisy labels
(T-based methods). However, for real-world datasets, the transition ma-
trix is usually unknown and needs to be estimated. Accurately estimat-
ing the transition matrix can be a challenging task. This motivates recent
work to design label-noise robust methods focusing on incorporating heuris-
tics instead of requiring estimating the transition matrix (heuristic-based
methods). The heuristic-based method has demonstrated state-of-the-art
(SOTA) performance on many benchmark datasets. These methods seem
to be more practical than T-based methods. It raises the question that is



the transition matrix still important for learning with noisy labels. In this
thesis, we answer that the transition matrix still plays an important role
in learning with noisy labels. We will show that the transition matrix not
only can be used to design statistical-consistent methods but also can help
boost the performance of heuristic-based methods. We will also show that
given the transition matrix, the performance of T-based methods will not
be influenced by different data generative processes. By contrast, the per-
formance of SOTA heuristic-based methods can be influenced by different
data generative processes. Since the label-noise transition matrix is impor-
tant but hard to estimate, we will propose two new transition-matrix esti-
mation methods that reduce the estimation error of the transition matrix.
The first method can effectively estimate instance-independent transition
matrix by exploiting the divide-and-conquer paradigm. The second method
focuses on estimating instance-dependent transition matrices by leveraging
a structural causal model.
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Chapter 1

Introduction

While deep learning has achieved remarkable success in various tasks, it
often heavily relies on large-scale human-annotated data. Due to the ex-
pensiveness of accurately annotating large datasets, alternative and inex-
pensive annotating methods have been widely used, e.g., querying search
engines with a keyword [18, 75] and harvesting social media images [56],
etc. However, as a trade-off, these alternative methods have sacrificed the
accuracy of annotations for the scale of the dataset. As it has been shown
that deep neural networks can easily memorize noisy labels which leads
to degenerated classification performance [101], how to robustly learn with
noisy labels has attracted a lot of attention in recent years [61, 54, 52, 51].

To improve the generalization ability of deep learning models when
learning with noisy labels, noise transition matrix T has been widely em-
ployed by existing methods to reveal the transition relationship from clean
labels to noisy labels of instances. Specifically, Tij(x) = P (Ỹ = j|Y =

i,X = x), where P (A) denotes the probability of the event A, X denotes
the random variable of instances/features, Ỹ is the variable for the noisy
label, and Y is the variable for the clean label. The transition matrix T

acts as a central building block in designing statistical-consistent methods
for learning with noisy labels (T -based methods). The basic idea is that,
by employing T , the clean class posterior can be inferred by giving the
transition matrix and the noisy class posterior.

However, for real-world machine learning datasets, the transition ma-
trix is usually unknown. Given only noise data, generally, accurately es-
timating the transition matrix is a challenging task [46, 98, 97]. To avoid
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estimating the transition matrix, heuristic-based methods have been pro-
posed. These methods usually try to purify the noisy training dataset by
incorporating prior knowledge to select confident examples and correct in-
correct labels.

Heuristic-based methods seem more practical than the T -based meth-
ods because they have achieved state-of-the-art performance on different
datasets [46, 47], which does not rely on the transition matrix T (x). It
raises the question that whether the transition matrix is T (x) still impor-
tant for learning with noisy labels. In this thesis, to answer this question,
we analyze the usefulness of T (x) from different perspectives, which shows
that the role of T (x) can not be replaced in learning with noisy labels. For
instance, the transition matrix can be leveraged to boost the performance
of the heuristic-based methods. It can be also employed to improve the ro-
bustness of learning models for a wide range of datasets with different data
generative processes. Since the label-noise transition matrix is important
but hard to estimate, we will propose two new transition-matrix estima-
tion methods that can effectively estimate the transition matrix. The rest
major chapters in this thesis are summarized as follows:

Chapter 2. Preliminaries. In this chapter, we will formulate the prob-
lem settings of learning with noisy labels, define the label-noise transition
matrix and briefly introduce some T-based methods and heuristic-based
methods.

Chapter 3. Importance of the transition Matrix in Sample Se-
lection. In this chapter, we show that the transition matrix can be
leveraged to boost the performance of the heuristic-based methods. More
specifically, We have shown that the selected confident examples by existing
sample-selection methods could be class imbalanced. To improve the qual-
ity of confident examples, the transition matrix should be employed during
the sample selection. Motivated by this, we have proposed a new sample-
selection method based on T (x). The proposed method can be leveraged
to help train the heuristic-based method. Empirical results show that our
method boosts the heuristic-based method on benchmark datasets under
different types of label noise.
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Chapter 4. Importance of the Transition Matrix via Lens of
Causality. In this chapter, we show that T -based methods are more
general than popular heuristic-based methods in learning with noisy la-
bels. Specifically, from a casual perspective, we show that by exploiting
the transition matrix, the performance of T -based methods are not sensi-
tive to data generative processes, i.e., T -based methods work well for both
cases that the feature X causes the latent clean label Y and Y causes X. By
contrast, the SOTA heuristic-based methods that leverage semi-supervised
learning are sensitive to data generative processes. These methods gener-
ally are not useful when X causes the clean label Y . To detect whether a
specific noisy dataset follows the causal structure that whether X causes
Y or Y causes X, we have also proposed an intuitive method by exploiting
an asymmetric property of the two different causal structures regarding
estimating the transition matrix.

- The contributions in this Chapter are included in:

Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang
Deng, Gang Niu, and Masashi Sugiyama. "Which is Better for
Learning with Noisy Labels: The Semi-supervised Method or
Modeling Label Noise?" International Conference on Machine
Learning, 2023.

Chapter 5. Improving estimation of the Instance-Independent
Transition Matrix by Divide-and-Conquer. In this chapter, we
propose a new instance-independent transition matrix estimation method
by exploiting the divide-and-conquer paradigm, which is called dual-T es-
timator. Intuitively, instead of directly estimating the original transition
matrix proposed by previous methods, we found that the original transition
matrix can be factorized into the product of two easy-to-estimate transi-
tion matrices. Motivated by this, our estimator estimates the two matrices
separately, then multiplies them together to obtain the original transition
matrix. Both theoretical analyses and empirical results illustrate the effec-
tiveness of the dual-T estimator.

- The contributions in this Chapter are included in:
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Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang
Deng, Gang Niu, and Masashi Sugiyama. "Dual t: Reducing
estimation error for transition matrix in label-noise learning."
Advances in neural information processing systems, 2020.

Chapter 6. Encouraging Identifiability of the Instance-Dependent
Transition Matrix by Causality. In this chapter, by leveraging a struc-
tural causal model, we propose a novel generative approach for estimating
instance-dependent transition matrices. In particular, we show that prop-
erly modeling the instances will contribute to the identifiability of the label
noise transition matrix and thus lead to a better classifier. Empirically,
our method outperforms state-of-the-art methods on both synthetic and
real-world label-noise datasets.

Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu,
and Kun Zhang. "Instance-dependent label-noise learning un-
der a structural causal model." Advances in neural information
processing systems, 2021.

Chapter 7. Conclusion. In this chapter, we conclude the contributions
of this thesis.
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Chapter 2

Preliminaries

In this chapter, we will introduce the problem settings of learning with
noisy labels and define the transition matrix for label noise.

Problem setup. Let D be the distribution of a pair of random variables
(X, Y ) ∈ X ×{1, . . . , C}, where X denotes the variable of instances, Y the
variable of labels, X the feature space, {1, . . . , C} the label space, and C

the size of classes. In many real-world classification problems, examples
independently drawn from D are unavailable. Before being observed, their
clean labels are randomly flipped into noisy labels because of, e.g., contam-
ination [77]. Let D̃ be the distribution of the noisy pair (X, Ỹ ), where Ỹ

denotes the variable of noisy labels. In label-noise learning, we only have
a sample set S̃ = {(xi, ỹi)}ni=1 independently drawn from D̃. The aim is
to learn a robust classifier from the noisy sample S̃ that can assign clean
labels for test instances.

The noise transition matrix. To build statistically consistent classi-
fiers, which will converge to the optimal classifiers defined by using clean
data, the transition matrix T (x) ∈ RC×C plays an important role [59, 50,
71]. Specifically, the ij-th entry of the transition matrix, i.e., Tij(x) =

P (Ỹ = j|Y = i,X = x), represents the probability that the instance x

with the clean label Y = i will have a noisy label Ỹ = j. The transition
matrix has been widely studied to build statistically consistent classifiers,
because the clean class posterior P (Y |x) = [P (Y = 1|X = x), . . . , P (Y =

C|X = x)]⊤ can be inferred by using the transition matrix and the noisy
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class posterior P (Ỹ |x) = [P (Ỹ = 1|X = x), . . . , P (Ỹ = C|X = x)]⊤, i.e.,
we have P (Ỹ |x) = T (x)P (Y |x).

As the noisy class posterior can be estimated by exploiting the noisy
training data, the key step remains how to effectively estimate the transi-
tion matrix. Given only noisy data, the transition matrix is unidentifiable
without any knowledge of the clean label [92]. Specifically, the transition
matrix can be decomposed to a product of two new transition matrices, i.e.,
T (x) = T ′(x)A(x), and a different clean class posterior can be obtained by
composing P (Ỹ |x) with A(x), i.e., P ′(Y |x) = A(x)P (Y |x). Therefore,
P (Ỹ |x) = T (x)P (Y |x) = T ′(x)P ′(Y |x) are both valid decompositions.
The current state-of-the-art methods [25, 24, 64, 63, 59] then studied a
special case by assuming that the transition matrix is class-dependent and
instance-independent, i.e., T (x) = T . Note that there are specific settings
[16, 53, 6] where noise is independent of instances. A series of assumptions
[50, 76, 70] were further proposed to identify or efficiently estimate the
transition matrix by only exploiting noisy data.

T -based methods. Statistically consistent methods are primarily de-
veloped based on the Transition Matrix [50, 64, 106]. In this thesis, we call
these methods T -based methods. For example, Patrini et al. [64] leveraged
a two-stage training procedure of first estimating the noise transition ma-
trix and then using it to modify the loss to ensure risk consistency. These
works rely on anchor points or instances belonging to a specific class with
probability one or approximately one. When there are no anchor points, all
the aforementioned methods cannot guarantee statistical consistency. An-
other approach is to jointly learn the noise transition matrix and classifier.
For instance, on top of the softmax layer of the classification network [22],
a constrained linear layer or a nonlinear softmax layer is added to model
the noise transition matrix [86]. [105] propose an end-to-end method for es-
timating the transition matrix and learning a classifier. Specifically, a total
variation regularization term is used to prevent the overconfidence problem
of the neural network. [48] propose another end-to-end method based on
sufficiently scattered assumption, which is by far the mildest assumption
under which the transition matrix is identifiable.
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Heuristic-based methods. In learning with noisy labels, there are
some methods that do not require the transition matrix. These methods
focus on employing heuristics to reduce the side-effect of noisy labels. For
example, many methods use a specially designed strategy to select reliable
samples [99, 25, 57, 72, 36, 5] or correct labels [55, 40, 88, 71]. Although
those methods empirically work well, there is not any theoretical guaran-
tee on the consistency of the learned classifier. Recently, some methods
exploiting semi-supervised learning techniques have been proposed to solve
the label-noise learning problem like SELF [61] and DivideMix [46]. These
methods are aggregations of multiple techniques such as augmentations,
sample selection and multiple networks. Noise robustness is significantly
improved with these methods. Additionally, these methods are sensitive to
the choice of hyperparameters.
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Chapter 3

Importance of the Transition
Matrix in Sample Selection

In this chapter, we show that the transition matrix T (x) can be employed
to help sample selection and label correction. Specifically, we analyze the
property of the sample-selection methods based on the small loss of noisy
data from a theoretical point of view. By assuming that the transition
matrix is independent of instance, i.e., T (x) = P (Ỹ = i|Y = j,X = x) =

P (Ỹ = i|Y = j) = T , we show that the selected examples could be class
imbalanced and inaccurate. To solve it, the transition matrix should be
employed during the sample selection, which has been empirically validated
on different datasets. We have also illustrated that the selected confident
examples by employing the transition matrix can help train heuristic-based
methods to boost their performance on different types of label noise.

3.1 Motivations and Contributions

To make neural networks robust to label noise, heuristics-based methods
focus on designing heuristics for sample selection and label correction to
reduce the side-effect of noisy labels. Most of these heuristics are designed
based on the memorization effect of deep neural networks [4], i.e., they
would memorize easy instances first, and gradually adapt to hard instances
with the increasing amount of training. Inspired by this, many methods
use the classification loss on noisy data as the measure of the cleanliness of
examples [36, 25, 61, 46, 5], i.e., an example is likely to be clean if it has a
small loss on noisy data. While these methods have shown promising results
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Figure 3.1: Circles denote instances with clean positive labels, and trian-
gles denote instances with clean negative labels. Different signs represent
different noisy labels. Black lines denote decision boundaries. The example
which is far away from the black line is more confident. The confident ex-
amples are in the blue dashed box. (a) A binary training dataset contains
asymmetric label noise. (b) An illustration of confident examples selected
by current sample-selection methods based on the small loss of noisy data.
The instances (circles) in the class with a smaller noise rate are easier to
learn based on the memorization effect. As a result, those instances are
more confident and far away from the decision boundary. (c) An illustra-
tion of confident examples selected by our method, which are more robust
to label noise. By exploiting the transition matrix, the estimated clean
class posteriors can be employed to select and relabel confident examples.

when combined with different techniques such as warm-up [95], co-training
[25], and mixup [46], they are not guaranteed to be statistically consistent
and often need extensive hyperparameter tuning on clean data. Moreover,
to achieve high classification accuracy on clean data, some methods need
different regularization terms for different types of label noise [46, 61]. The
T -based methods aim to design classifier-consistent algorithms, where clas-
sifiers learned by exploiting noisy data will asymptotically converge to the
optimal classifiers defined on the clean domain [59, 50, 64]. However, they
are not able to achieve satisfactory classification performance compared
with the methods leveraging semi-supervised learning techniques [46, 61].

Currently, these two streams of methods are studied independently
according to different philosophies. Sample selection and label correction
methods exploited the memorization effect which is a property of the neural
network, while loss correction methods focused on the transition between
the noisy and clean class distributions. A natural question that arises here
is whether the transition matrix T can be leveraged to help to improve
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heuristic-based methods. The answer is Yes. Intuitively, the first stream
of methods employs the classification loss on noisy labels as a measure
of cleanliness. However, this measure is entangled with the label noise of
training data. For example, in Figure 3.1(a), we illustrate a training dataset
that contains asymmetric label noise which is the most general type of
instance-independent label noise [77]. Specifically, the noise rate is 0.2 for
the clean positive class (circle) and 0.4 for the clean negative class (triangle).
Under such circumstances, existing small loss-based methods could select
more instances in the class with a lower noise rate as confident examples.
Additionally, the labels of these examples may contain noise and can not
be fully trusted. These phenomenons are shown in Figure 3.1(b). These
issues could lead to the low generalization ability of a classifier trained with
these confident examples [35, 1].

To solve these issues, we show that the noise transition matrix can
be employed to help heuristics-based methods select accurate and class-
balanced confident examples. Specifically, we train a model with the loss
corrected by the transition matrix and use the confidence of the estimated
clean class posterior as the selection measure instead of the classification
loss with noisy labels. In such a way, the examples are selected solely
based on the confidence of the estimated clean class posteriors while the
noise is handled by the transition matrix. Therefore, with the help of the
transition matrix, the quality of selected examples can be improved, which
is illustrated in Figure 3.1(c).

3.2 Related Work

Let Pθ̂(Ỹ |X) denote the estimated noisy class posteriors parameterized by
θ̂ learned from noisy training data. Typically, the objective of existing
methods based on small-loss sample selection is formulated as follows [36,
25]:

L(θ̂) = 1

n

n∑
i=1

viℓ(Pθ̂(Ỹ |xi), ỹi) =
1

n

n∑
i=1

−vi log(Pθ̂(Ỹ = ỹi|xi)),
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where ℓ is the cross-entropy loss and vi ∈ [0, 1] is the per-instance weight.
The idea is that if the given label ỹi from a training data pair (xi, ỹi) is
likely to be clean, then vi should be equal or close to 1, so that it contributes
more than those data pairs whose labels are likely to be incorrect.

To find the weight vi for each instance, based on the memorization
effect, one popular criterion is using the classification loss on noisy data:

vi = 1(ℓi ≤ λ) = 1(ℓ(Pθ̂(Ỹ |xi), ỹi) ≤ λ), (3.1)

where 1 is the indicator function, ℓi is the loss for instance xi and λ is the
loss threshold. Specifically, if a data pair (xi, ỹi) has a loss smaller than
the threshold λ, then it is treated as a “clean” data, and will be selected
in training (v∗i = 1) as a confident example. Otherwise, it will not be se-
lected (v∗i = 0). For example, Jiang et al. [36] used a mentor network to
select confident examples. Han et al. [25] maintained two networks that se-
lect small-loss instances, where the loss threshold is continuously increased
during training so that more instances are dropped when the number of
epochs gets large. Except for selecting small-loss instances, some meth-
ods reweighted examples so that mislabeled samples contribute less to the
loss, e.g., Ren et al. [72] reweighted instances according to their gradi-
ent directions. Arazo et al. [3] and Li, Socher, and Hoi [46] calculated
per-instance weights by modeling the classification loss distribution with a
mixture model. Recently, some methods exploiting semi-supervised learn-
ing techniques have been proposed to solve the label-noise learning prob-
lem like SELF [61] and DivideMix [46]. These methods are aggregations of
multiple techniques such as augmentations, sample selection and multiple
networks. Noise robustness is significantly improved with these methods.
Additionally, these methods are sensitive to the choice of hyperparameters.
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3.3 Methodology

3.3.1 Importance of the Transition Matrix in Sample

Selection

The real-world label-noise datasets usually contain asymmetric noise which
means that different classes could have different noise rates. Intuitively, the
reason is that the examples from similar classes are usually much easier to
be incorrectly labeled compared with the examples from dissimilar classes.
For real-world applications, asymmetric noise is also general. For example,
the symmetric noise is a special case of the asymmetric noise when: 1). all
diagonal entries of its transition matrix have the same value; 2). all off-
diagonal entries also have the same value. This motivates us to investigate
the issues of existing confident examples methods on asymmetric noise.

Existing methods based on the small loss mainly rely on the memoriza-
tion effect of the deep neural network to select samples. We show that, in
general, confident examples selected with the small loss on noisy data can
be class imbalanced and inaccurate while the noise is asymmetric. This is
because, based on the memorization effect, empirically, the instances from
a class with a small noise rate tend to be learned “faster” and have smaller
losses than examples from a class with a relatively large noise rate. Thus,
instances from the class with a small noise rate or low complexity will be
too frequently selected and examples from the class with a relatively large
noise rate will not be learned well.

We further show that, theoretically, even an optimal hypothesis f ∗

which perfectly learns the noisy class posterior distribution can be obtained,
the small-loss selection criteria still have the bias issue mentioned above.
Let loss function ℓ be the widely used cross-entropy loss. Intuitively, the ex-
amples with smaller losses are those which have higher confidence in noisy
class posteriors [58]. Furthermore, the examples from a class with a lower
noise rate are expected to have higher confidence than examples from other
classes. Therefore, the examples in the class with a lower noise rate are
more likely to be selected as confident examples than other classes, i.e., the
selected examples could be class-imbalanced. Moreover, the selected con-
fident examples should not be treated as “clean” data, because the noisy
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labels can be different from Bayes labels1 on the clean class-posterior distri-
bution. As a result, the classification accuracy can degenerate if a model is
directly trained with those selected examples. We analyze these problems
in Theorem 3.3.1 and Theorem 3.3.2. We leave all proofs in Appendix A.

Theorem 3.3.1. Let x1, x2 be two instances such that argmaxi∈{0,1} P (Y =

i|x1) = argmaxj∈{0,1} P (Ỹ = j|x1) = 1, argmaxi∈{0,1} P (Y = i|x2) =

argmaxj∈{0,1} P (Ỹ = j|x2) = 0, and P (Y = 0|x2) = P (Y = 1|x1). If
P (Ỹ = 1|Y = 0) − P (Ỹ = 0|Y = 1) > 0, then mini∈{0,1} ℓ(f

∗(x2), i) >

mini∈{0,1} ℓ(f
∗(x1), i).

Intuitively, the above theorem shows that, under asymmetric noise,
the instances with the same confidence on underlying clean class posteriors
do not have the same loss defined on noisy class posteriors. The instance
x1 from the class with a lower noise rate P (Ỹ = 0|Y = 1) could have a
smaller loss than the instance x2 from the other class with higher noise rate
P (Ỹ = 1|Y = 0).

Because the instances in the class with a lower noise rate are more
likely to be selected as confident examples. This generally will cause a
class-imbalanced issue. The reason is that the existence of the class im-
balance issue depends on the clean class prior, noise ratio, and sparsity of
class-conditional densities. When the noise type is asymmetric, the clean
class prior and sparsity of class-conditional densities have to cancel the con-
tribution of the asymmetric noise to the class-imbalance issue. Empirically,
we show that the class imbalance issue exists in the state-of-the-art method
in Appendix B.

Theorem 3.3.2. When P (Ỹ = 1|Y = 0) − P (Ỹ = 0|Y = 1) > 0, if an
instance x1 such that 0.5 < P (Y = 0|x1) < (1−2P (Ỹ=0|Y=1))

(1−2P (Ỹ=1|Y=0))
P (Y = 1|x1),

then P (Ỹ = 1|x1) > 0.5.

Theorem 3.3.2 shows that the largest clean and noisy class posteriors
of an instance may not be identical if the noise is asymmetric. Under such
circumstances, the training examples could have different Bayes labels on

1The Bayes label is the label with the largest class posterior. For example, the
Bayes label on the clean class-posterior distribution Y ∗ of an instance x is defined as
Y ∗ = argmaxi∈{0,1} P (Y = i|x) [58].
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the clean and noisy class posteriors, respectively. As a result, the confident
examples selected by using the small-loss criterion could be inaccurate,
because the examples have been treated as “clean” data directly [36, 25].

It is worth mentioning that the results in Theorem 3.3.1 and Theo-
rem 3.3.2 can also be extended to a multi-class classification problem (which
can be reduced to a set of binary classification problems). For example,
to formulate a multi-class classification problem with binary classification
problems, the one-versus-one decomposition strategy [2] can be employed.
Specifically, the one-versus-one strategy builds a binary classifier for each
pair of classes. To predict the label of a test example, we first put all
available classes into a candidate label set. Then, let each classifier gives a
predicted label of this example, and the other label will be removed from
the candidate label set. This process is repeated until only one class is left
in the label set, and it will be the final predicted label. It is worth mention-
ing that if the multi-class dataset contains asymmetric noise, then the set
of binary datasets by the one-versus-one decomposition strategy can also
contain asymmetric noise. As a result, classifiers learned on these binary
datasets will be problematic.

3.3.2 Sample selection and Label Correction with the

Transition Matrix

Loss correction. Our method selects confident examples based on the
estimated clean class posterior which can be obtained by exploiting the
noisy posterior and the transition matrix. Let Pθ(Ỹ |X) be the noisy class
posterior parameterized by θ, and Pϕ(Y |X) be the clean class posterior pa-
rameterized by ϕ. We first learn ϕ with the loss corrected by the transition
matrix T :

L(ϕ) = 1

n

n∑
i=1

ℓ(TPϕ(Y |X = xi), ỹi). (3.2)

where ℓ is the cross-entropy loss and the transition matrix T can be es-
timated beforehand [64, 92, 98] or jointly learned with the network [22,
48].
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Sample selection and label correction. After training, the estimated
clean class posterior of an instance xi can be calculated by Pϕ̂(Y |X =

xi). Then, instead of using the classification loss ℓ(Pθ̂(Ỹ |X = xi), ỹi)

by exploiting noisy data to select instances, we use H(Pϕ̂(Y |X = xi))

as the selection measure where H(·) denote a function for measuring the
confidence on the clean class posterior, i.e., we select an instance if we
are confident that the estimated clean class posterior of the instance is
correct. The problem remains how to design an appropriate measure of
confidence. For classification problems, it is obvious that easy examples
are ones whose correct labels can be predicted easily (they lie far from the
decision boundary or they are close to anchor points). To this end, we use
the entropy of the estimated clean class posterior as the confidence measure
and our selection criterion can be formulated as follows:

vi = 1(H(Pϕ̂(Y |X = xi)) ≤ β),∀i ∈ [1, n]. (3.3)

where H(·) is the entropy function and β is the selection threshold.
Intuitively, an instance whose estimated clean class posterior has entropy
smaller than the threshold β will be selected (vi = 1). Otherwise, it will
not be selected (vi = 0).

With the proposed criterion, we divide the training data into a labeled
set and an unlabeled set. However, since the network is trained with the
corrected loss, confident prediction of an instance does not necessarily mean
that the label of the instance is clean. Thus, we re-label those selected
instances as follows:

ŷi = argmax
c

Pϕ̂(Y = c|X = xi). (3.4)

3.3.3 Implementation

Empirically, the clean class-posterior distribution Pϕ(Y |X) can be modeled
by a mapping (e.g., neural network) gϕ : X → ∆C−1, where ∆C−1 denotes
a probability simplex. Given the transition matrix, the model parameter ϕ
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can be directly estimated from noisy data as follows:

ϕ̂ = argmin
ϕ

1

n

n∑
i=1

ℓ(T gϕ(xi), ỹi). (3.5)

However, the transition matrix T can be unknown and needed to be esti-
mated. In experiments, we assume the transition matrix T is not given,
and the state-of-the-art method VolMinNet [48] is used to estimate T . The
reasons we use this method are that 1) it is general and can identify the
transition matrix under the mildest assumption by far; 2) it is a computa-
tionally efficient method that allows us to learn the transition matrix and
the noisy class posterior simultaneously. After having the estimated transi-
tion matrix T̂ and model parameter ϕ̂, we could re-label the training data
to get a confident labeled set Sl as follows:

Sl = {(xi, ŷi)|H(gϕ̂(xi)) ≤ β ,xi ∈ S}. (3.6)

In Section 3.4, we show that our method significantly improves the quality
of selected examples, and therefore, the classification accuracy of existing
label-noise learning methods based on sample selection can also be im-
proved by employing our method.

3.4 Experiments

In this section, we demonstrate the performance of the proposed method
on multiple bench-mark datasets under various types of noise.

Datasets. We verify the effectiveness of our approach on the man-
ually corrupted version of two datasets, i.e., CIFAR10, CIFAR100 [41],
and one real-world noisy dataset, i.e., Clothing1M [94]. CIFAR10 contains
50,000 training images and 10,000 test images. CIFAR10 and CIFAR100
both contain 50,000 training images and 10,000 test images but the former
has 10 classes of images, and the latter has 10 classes of images. The two
datasets contain clean data, and different types of instance-independent
label noise are manually added to the training sets. Clothing1M has 1M
images with real-world noisy labels and 10k images with clean labels for
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CIFAR-10 CIFAR-100
Sym-20% Sym-50% Sym-20% Sym-50%

Decoupling 77.32± 0.35 54.07± 0.46 41.92± 0.49 22.63± 0.44
MentorNet 81.35± 0.23 73.47± 0.15 42.88± 0.41 32.66± 0.40
Co-teaching 82.27± 0.07 75.55± 0.07 48.48± 0.66 36.77± 0.52

Forward 85.20± 0.80 74.82± 0.78 54.90± 0.74 41.85± 0.71
T-Revision 87.95± 0.36 80.01± 0.62 62.72± 0.69 49.12± 0.22

DMI 87.54± 0.20 82.68± 0.21 62.65± 0.39 52.42± 0.64
VolMinNet 89.58±±0.26 83.37± 0.25 64.94± 0.40 53.89± 1.26
DivideMix 95.13± 0.081 94.59± 0.33 74.72± 0.25 70.74± 0.36

T-SSLC-DM 95.51± 0.11 94.97± 0.29 75.46± 0.31 72.92± 0.42

CIFAR-10 CIFAR-100
Pair-20% Pair-45% Pair-20% Pair-45%

Decoupling 77.12± 0.30 53.71± 0.99 40.12± 0.26 27.97± 0.12
MentorNet 77.42± 0.00 61.03± 0.20 39.22± 0.47 26.48± 0.37
Co-teaching 80.65± 0.20 73.02± 0.23 42.79± 0.79 27.97± 0.20

Forward 88.21± 0.48 77.44± 6.89 56.12± 0.54 36.88± 2.32
T-Revision 90.33± 0.52 78.94± 2.58 64.33± 0.49 41.55± 0.95

DMI 89.89± 0.45 73.15± 7.31 59.56± 0.73 38.17± 2.02
VolMinNet 90.37± 0.30 88.54± 0.21 68.45± 0.69 58.90± 0.89
DivideMix 95.72± 0.04 87.02± 0.41 75.54± 0.43 45.20± 0.16

T-SSLC-DM 95.80± 0.05 95.01± 0.01 76.68± 0.25 63.50± 0.19

Table 3.1: Classification accuracy (percentage) on CIFAR-10 and CIFAR-
100.

testing. It also has an additional 50k clean training data and 14k clean val-
idation data. Note that we only exploit the 1M data for the training and
validate our model on the 14k clean validation data. For all the synthetic
noisy datasets, the experiments are repeated 5 times.

Noise Types. Following prior works [61, 48], we conduct experi-
ments with two commonly used types of noise: (1) symmetry flipping [64]
which randomly replaces a percentage of labels in the training data with all
possible labels. (2) pair flipping [25] which is a specific type of asymmetric
noise, where labels are only replaced by similar classes. It is worth mention-
ing that the noise rate is calculated differently compared with the original
paper of DivideMix [46] because the noise generative process is different.
We use the same noise generative process proposed by [25]. As a result, for
example, pair flipping with 45% noise (pair-45%) in our paper is equivalent
to asymmetric noise 50% (Asym-50%) in the paper of DivideMix [46]. We
have also designed a new type of asymmetric noise that only constrains the



3.4. Experiments 19

CIFAR-10 CIFAR-100
Asym-50% Asym-70% Asym-50% Asym-70%

DivideMix 95.13± 0.23 68.12± 1.57 64.37± 2.63 35.47± 3.53
T-SSLC-DM 95.51± 0.31 72.12± 1.95 75.46± 3.06 49.36± 3.41

Table 3.2: Classification accuracy (percentage) on CIFAR-10 and CIFAR-
100.

Decoupling MentorNet Co-teaching Forward Joint-Optim
54.53 56.79 60.15 71.79 72.16
DMI VolMinNet DivideMix T-SSLC-DM
72.46 72.62 74.48 74.92

Table 3.3: Classification accuracy on Clothing1M.

transition matrix to be diagonally dominant. Generating such a transition
matrix is complicated. Because each column of the transition matrix has
to be a probability simplex with bounded elements. Sampling such a col-
umn is an over-constrained problem and needs to be re-sampled until the
constraints are satisfied.

Here, we illustrate the new type of asymmetric noise that is used in
our experiments. This asymmetric noise is general, We only require the
transition matrix to be diagonally dominant. Generating such a transition
matrix is complicated. Because each column of the transition matrix has to
be a probability simplex with bounded elements. Sampling such a column
is an over-constrained problem and needs to be re-sampled until the con-
straints are satisfied. In Algorithm 1, we illustrate our generation method
which can efficiently generate such type of noise.

Network structure and optimization. For a fair comparison, we im-
plement all methods with default parameters by PyTorch on Nvidia Geforce
RTX 3090 GPUs. We use a PreResNet-18 network and PreResNet-32 net-
work for CIFAR10 and CIFAR100, respectively. We use SGD to train the
classification network with batch size 128, momentum 0.9, weight decay
10−3 and an initial learning rate 10−2, the learning rate is divided by 10
after 40 epochs. The algorithm is run for 80 epochs for the sample selec-
tion and relabeling. For clothing1M, we use a ResNet-50 pre-trained on
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Algorithm 1 Generating Asymmetric Transition Matrix
1: Input: Noise Rate σ, Dimension C
2: Initialize T ∈ [0, 1]C×C

3: valid← False
4: While not valid:
5: For j ← 1 to C
6: Tj,j ∼ U(0, 1)
7: Sum← ΣC

j=1Tj,j

8: For j ← 1 to C
9: Tj,j ← Ti,i

Sum
σ

10: For j ← 1 to C
11: For i← 1 to C
12: If i ̸= j
13: Ti,j ∼ U(0, 1)
14: Sumj ← ΣC

i=1,i ̸=jTi,j

15: For i← 1 to C
16: If i ̸= j
17: Ti,j ← Ti,j

Sumj
(1− Tj,j)

18: valid ← True
19: For j ← 1 to C
20: For i← 1 to C
21: If i ̸= j and Tj,j ≤ Ti,j

22: valid ← False

ImageNet. For each epoch, we also ensure the noisy labels for each class
are balanced with undersampling.

Baselines. We compare our method with the following baselines: (i)
Decoupling [57], which trains two networks on samples whose predictions
from the two networks are different. (ii) MentorNet [36], Co-teaching [25],
which mainly handles noisy labels by training on instances with small loss
values. (iii) Forward [64], Reweight [50], and T-Revision [92]. These ap-
proaches utilize a class-dependent transition matrix T to correct the loss
function. (iv) DivideMix [46] which aggregates multiple techniques such as
augmentations, multiple networks, and example selection. For all baselines,
we follow the settings from their original papers.
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CIFAR-100
percentile 20% 30% 40% 50% 60%
sym-50% 89.25± 0.12 87.94± 0.09 86.10± 0.12 85.79± 0.14 79.23± 0.52
pair-45% 91.14± 0.20 90.63± 0.23 88.72± 0.36 88.40± 0.40 80.21± 0.64

Table 3.4: Experiments of the hyper-parameter selection on synthetic-
noise dataset CIFAR-100.

3.4.1 Classification Accuracy Evaluation

Classification accuracy on synthetic noisy datasets. To inves-
tigate how the sample selection of T-SSLC will affect the classification
accuracy in label-noise learning, we embed our sample-selection method
T-SSLC into the state-of-the-art DividMix [46] called T-SSLC-DM. We re-
port average accuracy over the last ten epochs of each model on the test
set. Higher classification accuracy means that the algorithm is more robust
to the label noise. In Table 3.1, we compare classification accuracies of T-
SSLC-DM with DivideMix and other baseline methods on synthetic noisy
datasets. T-SSLC-DM outperforms baseline methods in almost all settings
of noise. This result is natural after we have shown that T-SSLC leads to
a high clean ratio of selected examples. These results show the advantage
of using the proposed T-SSLC.

In Table 3.2, we compare the classification accuracies of T-SSLC-DM
with the state-of-the-art method DivideMix. The asymmetric noise is em-
ployed, i.e., labels can be randomly flipped to all other classes with differ-
ent probabilities but noise rates for each class are the same. We report the
average accuracy over the last ten epochs of each model on the test set.
The results show that T-SSLC-DM outperforms DivideMix on asymmetric
noise.

Classification accuracy on Clothing1M. We show the results on
Clothing1M in Table 3.3 which should contain instance-dependent label
noise. T-SSLC-DM outperforms previous transition-matrix based meth-
ods and heuristic methods on the Clothing1M dataset. The performance
on Clothing1M dataset shows that the proposed method also has certain
robustness against instance-dependent label noise.



22 Chapter 3. Importance of the Transition Matrix in Sample Selection

0 10 20 30 40 50 60 70 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ra

tio
CIFAR10, Sym-0.2

Corrected Loss
Small Loss

(a)

0 10 20 30 40 50 60 70 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ra

tio

CIFAR10, Pair-0.2

(b)

0 10 20 30 40 50 60 70 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ra

tio

CIFAR10, Sym-0.5

(c)

0 10 20 30 40 50 60 70 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ra

tio

CIFAR10, Pair-0.45

(d)

0 10 20 30 40 50 60 70 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ra

tio

CIFAR100, Sym-0.2

(e)

0 10 20 30 40 50 60 70 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Cl

ea
n 

Ra
tio

CIFAR100, Pair-0.2

(f)

0 10 20 30 40 50 60 70 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ra

tio

CIFAR100, Sym-0.5

(g)

0 10 20 30 40 50 60 70 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ra

tio

CIFAR100, Pair-0.45

(h)

Figure 3.2: Sample selection on CIFAR-10 and CIFAR-100 with different
settings of label noise. When the noise rate is small (sym-0.2 and pair-0.2)
or symmetric (sym-0.2 and sym-0.5), both methods can effectively select
clean labels. With the help of the transition matrix, the proposed method
(blue) shows better robustness against asymmetric label noise and a high
noise rate (pair-0.45 and sym-0.5) compared with the existing small-loss
sample-selection method (orange).

3.4.2 Hyperparameter Selection

To select a suitable value of the hyper-parameter β, we carry out experi-
ments on dataset CIFAR-100. Different types of noise are injected into the
dataset. Table 3.4 illustrates the clean ratios of selected confident examples
by varying β to be 20%, 30%, 40%, 50% and 60%-percentile in place of the
training examples’ entropy list (ordered from low values to high values).
The results show that from 50%-percentile to 60%-percentile, clean ratios
drop dramatically for both symmetric flipping 50% and pairwise flipping
45%. From 20%-percentile to 40%-percentile, clean ratios do not drop too
much. Therefore, in other experiments, we let β be the entropy value of
50%-percentile in place of the training examples’ entropy list.

3.4.3 Clean Ratio Comparison

To illustrate that our proposed method is more effective in selecting clean
examples, we compare the clean ratio of the selected examples with the
small-loss criteria. Specifically, we train a neural network for 200 epochs
on CIFAR10 and CIFAR100 with different settings of label noise, at each
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CIFAR10
asym-20% asym-30% asym-50%

DivideMix 0.012 0.043 0.052
T-SSLC-DM 0.009 0.031 0.029

Table 3.5: The degree of class imbalance of a state-of-the-art DivideMix
and our method on CIFAR10 with asymmetric noise.

epoch, we use our proposed method and Co-teaching [25] using small-loss
criteria to select 50% examples in the training dataset as confident examples
and compare their clean ratio, i.e., the number of selected clean labels
divided by the size of the set.

The results in Fig. 3.2 validate that our method is disentangled from
the label errors. Specifically, for different noise rates and types of noise, our
method has similar performance, i.e., clean ratios of the selected examples
by using our method do not change a lot. However, clean ratios of the se-
lected examples by the small loss-based method Co-teaching dramatically
decrease with the increase of label noise. It is worth mentioning that be-
cause of the memorization effect, clean ratios of obtained by Co-teaching
method is some times high at the beginning. Specifically, previous work
shows that the neural network tends to learn the easy examples at the early
stage and gradually fit the hard examples. When the noise rate is small,
most examples are clean and easy to learn. These examples will be learned
first at the early learning stage and the incorrect examples will be ignored,
as a result, the small-loss sample selection is effective in the early stage
under small noise rates.

3.4.4 Class Imbalance Ratio Comparison

In Table 3.5, we have measured the degree of imbalance due to sample
selection with the KL divergence between the class distribution of confi-
dent example and the class-prior distribution (uniform) on CIFAR10 with
asymmetric noise. The smaller value of KL divergence implies a smaller
degree of class imbalance. The result shows that the sampled confident
examples by employing our method are more balanced than the small loss-
based method DivideMix, and the transition matrix can help the existing
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small loss-based method on sample selection.

3.5 Summary

We have shown that the confident examples selected with the small classi-
fication loss on noisy data could be class-imbalanced and inaccurate. We
show that the transition matrix can be applied to help confident exam-
ples selection. Specifically, we use the transition matrix to estimate the
clean class-posterior distribution, then the estimated clean class posterior
for each instance is used for sample selection and label correction. Empir-
ical results on both synthetic and real-world noisy datasets show that our
method significantly improves the quality of selected confident examples
and the performance of downstream classification tasks.
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Chapter 4

Importance of the Transition
Matrix via Lens of Causality

In this chapter, we illustrate the advantage of methods based on the transi-
tion matrix T (x) from a causal perspective. We show that the performance
improvement of SOTA heuristic-based methods depends heavily on the data
generative process while the method based on the noise transition matrix is
independent of the generative process. This further explains the important
role of the transition Matrix in learning with noisy labels. Considering that
in many real-world applications, we do not know the causal structure of the
data generative process. To detect that on a specific noisy dataset, we have
also proposed an intuitive method by exploiting an asymmetric property of
the two different causal structures (X causes Y vs Y causes X) regarding
estimating the transition matrix.

4.1 Motivations and Contributions

Although T -based methods have statistical guarantees, recent heuristic
methods that leverage semi-supervised learning (SSL) have achieved SOTA
performance on different datasets, which seem more practical than T -based
methods. It raises the question that is heuristic-based methods more pow-
erful than T -based methods and can always help learn clean labels? This
question is crucial for the label-noise learning problem. If the answer is
affirmative, heuristic-based methods can be more useful, which can help
learn Y on any noisy dataset. Then future research should mainly focus
on designing heuristic-based methods rather than T -based methods. By
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contrast, if the answer is negative, it is important to illustrate when the
heuristic-based methods will not work, and how to detect the failure case
in practice.

In this chapter, we seek answers to the aforementioned question by
investigating the properties of both streams of methods from a causal per-
spective. We show that the performance of the SOTA method (heuristic
SSL-based methods) depends on the underlying data generative process,
but the performance of T -based methods is not influenced by the genera-
tive process. The reason is that heuristic SSL-based methods exploit the
distribution of instances P (X) by SSL to learn noise-robust representa-
tions, which sometimes is not feasible. Intuitively, to learn noise-robust
representations from P (X), it requires that the distribution P (X) has to
contain information about P (Y |X). However, from a causal perspective,
the amount of information of P (Y |X) contained in P (X) depends on the
data generative process. More specifically, when the latent clean label Y is
a cause of X, the distributions of P (X) and P (Y |X) are entangled [73, 104],
then P (X) will generally contain some information about P (Y |X). Then
exploiting label-dependent information contained in P (X) encourages the
identifiability of P (Y |X). When the X is a cause of Y , the distributions
of P (X) and P (Y |X) are disentangled, which means that label-dependent
information contained in P (X) is limited. Therefore, P (X) can not help
learn P (Y |X), thus the benefits provided by SOTA heuristic-based meth-
ods exploiting the distribution of instances P (X) are limited.

In many real-world applications, we do not know the causal structure
of the data generative process. To detect that on a specific noisy dataset,
we proposed an intuitive method by exploiting an asymmetric property of
the two different causal structures (X causes Y vs Y causes X) regarding
estimating the transition matrix.

4.2 Related Work

Heuristic methods based on semi-supervised learning. To help
identify incorrect labels, SOTA heuristic methods aim to learn noise-robust
representations by exploiting the data distribution P (X) [46, 47, 90, 96,
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Figure 4.1: Different data generative processes of noisy data.

87, 12, 20, 96, 107]. The semi-supervised learning (SSL) techniques are
usually employed by these methods. For example, the consistency regu-
larization [42] is employed by [17]; FixMatch [82] is employed by [46]; the
co-Regularization is employed by [90]; contrastive learning is employed by
[87, 12, 47, 20, 96, 107]. Empirically, these methods have demonstrated
great success on different datasets.

Causal generative process of noisy data. We introduce some back-
ground knowledge about causality and describe the data generative process
by the causal graph and the structural causal model (SCM) [84]. Specifi-
cally, in Fig. 4.1(a), we illustrate a possible data generative process when
data contains instance-dependent label noise by using the causal graph
which represents a flow of information and reveals causal relationships
among all the variables [21]. For example, Fig. 4.1(a) shows that the latent
clean label Y is a cause of the instance X, and both X and Y are causes
of Ỹ . The generative process can also be described by a structural causal
model (SCM). Specifically,

Y ∼ PY , UX ∼ PUX
, X = f(Y, UX), UỸ ∼ PUỸ

, Ỹ = g(X, Y, UỸ ),

where UX and UỸ are mutually independent exogenous random variables
that are also independent of Y . The occurrence of the exogenous variables
models the random sampling process of X and Ỹ . f and g can be linear
or non-linear functions. Each equation species a distribution of a variable
conditioned on its parents (could be an empty set). Similarly, the SCM
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corresponding to the causal graph in Fig. 4.1(b) can be written as:

X ∼ PX , UY ∼ PUY
, UỸ ∼ PUỸ

, Y = f ′(X,UY ), Ỹ = g(X, Y, UỸ ).

Causal factorization and modularity . By the conditional indepen-
dence relations proposed by the Markov property [65], the joint distribution
P (X, Y, Ỹ ) when Y causes X can be factorized by following the causal di-
rection as follows.

P (X, Y, Ỹ ) = P (Y )P (X|Y )P (Ỹ |X, Y ).

The above decomposition is called a causal decomposition. According to the
modularity property of causal mechanisms [73, 69], the conditional distri-
bution of each variable given its causes (which could be an empty set) does
not inform or influence the other conditional distributions, which implies
that all the distributions P (Y ), P (X|Y ) and P (Ỹ |X, Y ) are disentangled.
Similarly, when X causes Y , the causal decomposition of P (X, Y, Ỹ ) is as
follows:

P (X, Y, Ỹ ) = P (X)P (Y |X)P (Ỹ |X, Y ).

Causal discovery methods. In order to build a graph that captures
these conditional independencies, the majority of constraint-based tech-
niques look for conditional independencies in the empirical joint distribu-
tion. Since numerous graphs frequently satisfy a given set of conditional
dependencies, as was discussed above, constraint-based methods frequently
produce a graph that represents some Markov equivalence classes. Unfortu-
nately, large sample sizes are necessary for conditional independence tests
to be reliable, and Shah and Peters [79] highlight further difficulties to
control the Type I error.

Score-based approaches test the validity of a candidate graph G ac-
cording to some scoring function S. The goal is therefore stated as [67]:

Ĝ = argmaxG over XS(D,G) (4.1)
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where the empirical data for the variables X is represented by D. Com-
mon scoring functions include the Bayesian Information Criterion (BIC)
[19], the Minimum Description Length (as an approximation of Kolmogorov
Complexity) [34, 23, 38], the Bayesian Gaussian equivalent (BGe) score [19],
the Bayesian Dirichlet equivalence (BDe) score [27], the Bayesian Dirichlet
equivalence uniform (BDeu) score [27], and others [30, 29, 28].

Methods based on causal function provide an alternate strategy for
estimating causal effects. Assumptions about the data generative process
are used in these causal function-based techniques. The causal function-
based approach fits the causal function model among variables and then
infers causal directions using causal assumptions, such as a non-Gaussian
assumption of the noise [80, 81] the independence assumption between
cause variables and noise [103, 68, 66] and the independence assumption
between the distribution of cause variables and the causal function [33].
Most LiNGAM-based approaches for the linear case Shimizu et al. [80]
assume non-Gaussian noise and linear causal relations between variables.
This model seeks to determine a causal order among the random observed
variables.

To deal with linear latent confounders, an estimation method utiliz-
ing overcomplete ICA [45] is suggested. However, overcomplete ICA algo-
rithms usually suffer from local optimum and cannot be employed when
the number of variables is large. By evaluating the independence between
the estimated exogenous variables and the residual, Tashiro et al. [89] iden-
tify latent confounders. They discover that variables from subsets that are
not impacted by latent confounders are included, and they estimate causal
orders one at a time. Chen and Chan [10] investigate linear non-Gaussian
acyclic models in the presence of latent Gaussian confounders (LiNGAM-
GC), which assumes that the latent confounders are Gaussian distributed
independently.

To the best of our knowledge, none of the existing methods discover
the causal structure between clean labels and features by only using noisy
data.
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Figure 4.2: The change of P (X) with the change of P (Y ) under different
data generative processes.

4.3 Learning with noisy labels from a causal

perspective

In this section, we show that the T -based method is independent of different
generative processes while the semi-supervised methods depend on different
generative processes. We also proposed an intuitive method to detect the
causal structure by exploiting an asymmetric property regarding estimating
the transition matrix.

4.3.1 The influence of noisy data generative processes

to different methods

The T -based method is independent of different generative processes. The
reason is that these methods mainly rely on estimating the transition ma-
trix T (x), which can be estimated by exploiting the noisy class posterior
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P (Ỹ |X) learned on the noisy data [91, 48]. It is clear that the data gener-
ative process does not influence learning P (Ỹ |X) and T (x).

By contrast, heuristic SSL-based methods are influenced by data gen-
erative processes because they exploit the unlabeled data to help learn the
classifier. The helpfulness of unlabeled data depends on whether P (X)

contains labeling information or not. According to the causal modularity
property, when X causes Y , P (X) does not contain labeling information,
because P (Y |X) and P (X) are disentangled with each other. However,
when Y causes X, P (X) should contain labeling information, because P (X)

and P (Y |X) are entangled with each other.

To clearly illustrate the entanglement, we will derive that, when Y

causes X, P (Y |X) and P (X) will change simultaneously to P ′(Y |X) and
P ′(X) if we intervene on Y , i.e., change P (Y ) to a different distribution
P ′(Y ).

Specifically, when P (Y ) is changed to P ′(Y ), P (X|Y ) will not be in-
fluenced because of the modularity property [65]. Since P (Y ) is changed
to P ′(Y ), and P (X|Y ) remains fixed, after the intervention, the joint dis-
tribution P (X, Y ) = P (Y )P (X|Y ) will be changed to a new joint distribu-
tion P ′(X, Y ) = P ′(Y )P (X|Y ). Then P (X) will be changed to P ′(X) =∫
y
P ′(Y )P (X|Y )dy. By applying Bayes’ rule, P (Y |X) = P (Y )P (X|Y )/P (X)

will change to a different distribution P ′(Y |X) = P ′(Y )P (X|Y )/P ′(X)

unless P ′(Y )/P ′(X) = P (Y )/P (X) which is a special case. Therefore,
P (Y |X) and P (X) generally are entangled when Y causes X.

To provide more intuition, we illustrate a toy example in Fig. 4.2. For
example, as illustrated in Fig. 4.2(a), when P (Y = 0) = P (Y = 1) =

0.5, P (Y = 2) = P (Y = 3) = 0 , the data is drawn from either P (X|Y =

0) or P (X|Y = 1), then P (X) = 0.5P (X|Y = 0) + 0.5P (X|Y = 1).
However, if the class prior is changed to P ′(Y = 0) = P ′(Y = 1) =

0, P ′(Y = 2) = P ′(Y = 3) = 0.5, as illustrated in Fig. 4.2(b), instead of
drawing data belonging to Y = 0 and Y = 1, the data belonging to Y = 2

and Y = 3 will be drawn, and the data distribution becomes P ′(X) =

0.5P (X|Y = 2) + 0.5P (X|Y = 3). Meanwhile, the change in P (Y ) also
leads to a change in P (Y |X). The changes of P (X) and P (Y |X) both
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come from changes of P (Y ), indicating that P (X) contains information
about P (Y |X). Therefore heuristic SSL-based methods can be useful in
this case.

When feature X is a cause of Y , intervention on P (Y ) will change
the function f ′ or the distribution of UY but leave P (X) unchanged. For
example, from Fig. 4.2(c) to Fig. 4.2(d), the function f ′ will be changed
to output Y = 0 or Y = 1 instead of Y = 2 or Y = 3 to account for
the label distribution change. The change of the selected label sets will
only change the classification rules (tasks). It is clear that relabeling the
sampled data points with different labels according to the new rules will
not influence the distribution of the sampled data points P (X), and P (X)

is disentangled with the different label sets. Then P (X) generally does not
contain information to learn clean label Y . Therefore heuristic SSL-based
methods may not work well in this case.

4.3.2 An intuitive method for the causal structure de-

tection

In many real-world applications, the causal structure of the noisy data gen-
erative process is unknown. To discover the causal structure, we provide an
intuitive casual structure detection method for learning with noisy labels
(i.e., CDLN estimator). Our method relies on an asymmetric property of
estimating flip rates under different generalization processes. Specifically,
when X causes Y , the flip rate P (Ỹ |Y ′) estimated by an unsupervised clas-
sification method usually has a large estimation error, where Y ′ is pseudo
labels estimated by the unsupervised method. However, when Y causes X,
the estimation error is small.

Let Y ∗ = argmaxi P (Y = i|x) be the Bayes label on the clean class-
posterior distribution. To obtain the estimation error, we calculate the
average difference between the noise rate estimated by the method based on
modeling label noise and the noise rate estimated by a clustering algorithm,
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i.e.,

d(P (Ỹ |Y ∗), P (Ỹ |Y ′)) =
L∑
i

L∑
j

|P (Ỹ = j|Y ∗ = i)− P (Ỹ = j|Y ′ = i)|
L2

.

(4.2)
The intuition is that given a noisy dataset, suppose that Bayes labels and
pseudo labels of all instances are known and fixed, then the P (Ỹ |Y ∗) and
P (Ỹ |Y ′) are different in general unless Y ∗ and Y ′ are identical to each
other.

To be more specific, the flip rate P (Ỹ |Y ′) can be obtained by letting
a clustering method estimate pseudo labels Y ′ on all training instances.
Given pseudo labels and noise labels, P (Ỹ |Y ′) then can also be estimated.
On the causal dataset (X causes Y ), P (X) does not contain labeling infor-
mation, then Y ′ should be very different from clean label Y . Therefore, the
estimation error of P (Ỹ |Y ′) is large. On the anticausal dataset (Y causes
X), P (X) contains labeling information, the Y ′ should be “close” to clean
label Y . Therefore the estimation error of P (Ỹ |Y ′) is small. We formally
show this in the theorem below.

Theorem 4.3.1. Let P (Ỹ |Y ∗) be the transition relationship from the clean
Bayes label Y ∗ to the noisy label Ỹ ; let P (Ỹ |Y ′) be the transition relation-
ship from the pseudo label Y ′ to the noisy label Ỹ . Then the estimation
error is

d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) =
1

L2

L∑
i

L∑
j

1

P (Y ∗ = j)∣∣∣∣EP (X)

[
1{f̃(X)=i}

(
P (Y ′ = j|X)

P (Y ∗ = j)

P (Y ′ = j)
− P (Y ∗ = j|X)

)]∣∣∣∣ .
From Theorem 4.3.1, we can find out that when the class posterior

of pseudo label P (Y ′|X) and the class posterior P (Y ∗|X) of Bayes label
are similar, the estimation error is small. Specifically, when P (Y ′|X) and
P (Y ∗|X) are similar, P (Y ) and P (Y ′) are also similar, because P (Y ′) =

EP (X)[P (Y ′|X)] and P (Y ∗) = EP (X)[P (Y ∗|X)]. Then, P (Y ′ = j|X =

x)P (Y ∗=j)
P (Y ′=j)

− P (Y ∗ = j|X = x) = 0 is small, and the estimation er-
ror d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) is small. When Y causes X, P (X) can inform
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Algorithm 2 CDLN Estimator
Input: a noisy training sample Str; a noisy validation sample Sval; a
cluster algorithm z; a classification model h; a trainable stochastic matrix
A

1: Optimize h and A via Eq. (4.5) to obtain Â∗ = P̂ (Ỹ |Y ∗) by employing
the training set Str and the validation set Sval;

2: Employ the clustering algorithm z to estimate the cluster IDs of all
instances in training set Str;

3: Obtain Ŷ ′ of all instances from cluster IDs;
4: Calculate P̂ (Ỹ |Y ) by Eq (4.4).
Output: The estimation d(P̂ (Ỹ |Y ∗), P̂ (Ỹ |Y ′)) via Eq. (4.2).

P (Y ∗|X), then P (Y ′|X) learned by exploiting P (X) is close to P (Y ∗|X).
Therefore, the estimation error is usually small. When X causes Y , P (X)

can not inform P (Y ∗|X), then P (Y ′|X) and P (Y ∗|X) should have a large
difference. Therefore, the estimation error is usually large.

Theorem 4.3.1 also shows that when P (Y ′|X) and P (Y ∗|X) are iden-
tical, the estimation error d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) is 0. This is because in
this case, P (Y ) also identical to P (Y ′). Then, P (Y ′ = j|X = x)P (Y ∗=j)

P (Y ′=j)
−

P (Y ∗ = j|X = x) = 0 for all x, and the estimation error is 0.

It is worth mentioning that the performance of the proposed CDLN
estimator relies on the backbone unsupervised classification method. When
Y causes X, the backbone method is expected to have reasonable classifi-
cation accuracy on training instances. Thanks to the great success of the
unsupervised learning methods [49, 62, 20, 108], some of these methods can
even have compatible performance with the supervised learning on some
benchmark datasets such as STL10 [13] and CIFAR10 [41].

Estimation of P (Ỹ |Y ′). To estimate the flip rate P (Ỹ |Y ′), a clustering
method is employed first to learn the clusters C. Then the clusters C can be
converted into the pseudo label Y ′ by exploiting the estimated Bayes label
Ŷ ∗, and the average noise rate P (Ỹ |Y ′) obtained by a clustering method
can be directly calculated. Be more specific, let C = i denote the cluster
label i, and let SCi

= {xj}
NCi
j=0 denote the instance with cluster label i.

Similarly let SŶ ∗
j
= {xk}

NŶ ∗
j

k=0 denote the instance with estimated Bayes label
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Ŷ ∗ = j. Note that the estimated Bayes label Ŷ ∗, is determined by the class
i that maximizes the estimated clean class posterior P̂ (Y = i|x), where
the posterior is estimated using existing label-noise learning methods [64].
We assign the pseudo labels Ŷ ′ of all instances in set SCi

be the dominated
estimated Bayes label Ŷ ∗, i.e.,

Ŷ ′ = argmax
j∈L

∑
xk∈SŶ ∗

j

1{xk∈SCi
}

NCi

. (4.3)

Empirically, the assignment is implemented by applying Hungarian algo-
rithm [37]. After the assignment, the pseudo labels of all training examples
can be obtained. Then P (Ỹ |Y ′) can be estimated via counting on training
examples, i.e.,

P̂ (Ỹ = j|Y ′ = i) =

∑
(x,ỹ,ŷ′) 1{Ŷ ′=i∧ỹ=j}∑

(x,ỹ,ŷ′) 1{Ŷ ′=i}
, (4.4)

where 1{.} is an indicator function, (x, ỹ, ŷ′) is a training example with the
estimated pseudo label, and ∧ represents the AND operation.

Estimation of P (Ỹ |Y ∗). We directly estimate the average flip rate
P (Ỹ |Y ∗) in an end-to-end manner. Specifically, let f be a deep classification
model that outputs the estimated Bayes label in a one-hot fashion. [32].
The distribution P (Ỹ |Y ∗) is modeled by a trainable diagonally dominant
column stochastic matrix A. Similar to the state-of-the-art method [48],
the matrix A and the classifier f are optimized in an end-to-end manner.
They are estimated by minimizing a constrained cross-entropy loss on noisy
data, i.e.,

{Â∗, f̂} = argmin
A,f

1

N

∑
x,ỹ

ℓce(ỹ, Ah(x)),

s.t.max
i

hi(x) = 1. (4.5)

The constraint that maxi hi(x) = 1 is to let the model output the Bayes
label (in a one-hot fashion). Empirically, it can be achieved by employing
Gumbel-Softmax [32] which is differentiable.

It is worth mentioning that P (Ỹ |Y ∗) can be estimated by employing
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existing methods that learn the noise transition matrix P (Ỹ |Y,X). Specif-
ically, to estimate P (Ỹ |Y ∗) with existing methods, P (Ỹ |X) and P (Ỹ |Y,X)

have to be learned first. Then both the estimated clean label Y and the
Bayes label Y ∗ can be revealed [92]. After that, P (Ỹ |Y ∗) can be estimated
by using the same technique as in Eq. (4.4). However, P (Ỹ |Y,X) usually is
hard to estimate [91], which leads to the learned classifier and Bayes labels
being poorly estimated. As a result, P̂ (Ỹ |Y ∗) will contain a large estima-
tion error. Therefore, we propose to avoid learning P (Ỹ |Y,X) and directly
estimate the average flip rate P (Ỹ |Y ∗) in an end-to-end manner. This is
achieved by letting h directly estimate Bayes labels but not P̂ (Y |X). By re-
ducing the output complexity of h from a continuous distribution P̂ (Y |X)

to a discrete distribution, the learning difficulty of P (Ỹ |Y ∗) can be re-
duced. In Section 4.4.1, we have also shown that the estimation error of
P (Ỹ |Y ∗) by employing our method above is much smaller than employing
the state-of-the-art method VolMinNet [48] for both instance-dependent
and instance-independent label noise.

4.4 Experiments

In this section, we demonstrate the performance of the proposed estimator
and different methods under different data generative processes with the
existence of label noise.

Datasets and noise types. To validate the correctness of our esti-
mator, we have employed 2 synthetic datasets which are xyGuassian and
yxGuassian. We have also demonstrated the performance of our methods
on 6 real-world datasets which are KrKp, Balancescale, Splice, waveform,
MNIST, and CIFAR10. The causal datasets generated from X to Y are
KrKp, Balancescale and Splice. The rest are anticausal datasets generated
from Y to X. We manually inject label noise into all the datasets, and 20%
of the data is left as the validation set. Three types of noise in our experi-
ments are employed in our experiments. (1) symmetry flipping (Sym) [64]
which randomly replaces a percentage of labels in the training data with all
possible labels. (2) pair flipping (Pair) [25] where labels are only replaced
by similar classes. (3) instance-dependent Label Noise (IDN) [91] where
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different instances have different transition matrices depending on different
parts of instances.

Network structure and optimization. For a fair comparison, we
implement all methods by PyTorch. All the methods are trained on Nvidia
Geforce RTX 2080 GPUs. For non-image datasets, a 2-hidden-layer net-
work with batch normalization [31] and dropout (0.25) [85] is employed
as the backbone method for all baselines. We employ LeNet-5 for MNIST
[43] dataset and ResNet-18 [26] for CIFAR10 [41]. To estimate P (Ỹ |Y ∗),
we use SGD to train the classification network with batch size 128, mo-
mentum 0.9, weight decay 10−4. The initial learning rate is 10−2, and
it decays at 30th and 60th epochs at the rate of 0.1, respectively. To
get P (Ŷ |Y ′), for xyGuassian, yxGuassain, KrKp, Balancescale, Splice and
waveform which have low-dimensional features and small sample size, K-
means clustering method [49] is employed; for MNIST, minibatch K-Means
clustering method [78] is employed; for CIFAR10, the SPICE∗ [62] cluster-
ing method is employed.

Baselines. We compare the performance of heuristic SSL-based meth-
ods with T -based methods. The T -based methods employed are: (i) For-
ward [64] which estimates the transition matrix and embeds it to the neu-
ral network; (ii) Reweighting [50] which gives training examples different
weights according to the transition matrix by importance reweighting; (iii)
T-Revision [92] which refines the learned transition matrix to improve the
classification accuracy. The heuristic SSL-based methods employed are
(iv) JoCoR [90] which aims to reduce the diversity of two networks dur-
ing training; (v) MoPro [47] which is a contrastive learning method that
achieves online label noise correction (vi) Dividemix [46] which leverages
the techniques FixMatch [82] and Mixup [102]; (viii) Mixup [102] which
trains a neural network on convex combinations of pairs of examples and
their labels. For all baseline methods, we follow their hyper-parameters
settings as mentioned in their original paper. It is worth noting that, to let
MoPro [47] work on non-image datasets, we have to modify its strong data
augmentation for images to small Gaussian Noise, which may influence its
performance.
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Figure 4.3: Estimation error of P (Ỹ |Y ∗) on synthetic datasets with
instance-independent and instance-dependent label noise. Our estimator
outperforms the state-of-the-art method by a large margin.

4.4.1 Experiments on synthetic datasets

To validate the correctness of our method, we have generated a causal
dataset (from X to Y ) and an anticausal dataset (from Y to X). For both
datasets, P (X) is a multivariate Gaussian mixture of N (0, I) and N (1, I)

with dimension 5. For casual dataset xyGuassian, the causal association f

and f ′ between X and Y are set to be linear. The parameter of the linear
function is randomly drawn from the N (0, I). For yxGuassian, we let the
label be the mean value of the multivariate Gaussian distribution. For both
datasets, we have balanced the positive and negative class priors to 0.5.

Estimation Error of P (Ỹ |Y ∗)

Note that, to let VolMinNet estimate P (Ỹ |Y ∗), we first train VolMinNet
with a noisy training set and select the best model by using the validation
set, then the estimated clean-class posterior distribution P̂ (Ỹ |X). is ob-
tained. The Bayes label Y ∗ can be directly obtained by using P̂ (Ỹ |X), and
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Sym Instance
20% (0.196) 30% (0.142) 40% (0.081) 20% (0.180) 30 (0.127) 40% (0.071)

Forward 98.9±0.21 98.35±0.19 96.98±0.37 98.85±0.17 98.29±0.24 96.72±0.63
Reweighting 98.61±0.10 99.01±0.12 96.42±1.2 99.54±0.23 99.25±0.28 98.37±0.61
T-Revision 99.44±0.12 98.11±0.12 97.08±1.48 99.54±0.23 99.26±0.22 98.36±0.59
JoCoR 98.05±0.03 97.63±0.16 97.11±0.19 98.0±0.11 97.65±0.21 97.26±0.09
MoPro 96.75±0.67 95.5±1.3 79.76±4.95 95.85±0.87 95.26±1.78 78.24±6.1
Dividemix 97.58±0.4 96.13±0.95 93.31±2.17 96.61±1.05 95.98±1.56 94.14±2.28
Mixup 96.86±0.59 96.06±0.63 92.55±1.54 97.0±0.46 96.44±0.51 93.57±0.71

Table 4.1: Comparing test accuracies (%) of different methods on xyGuas-
sian (anticausal) datasets with different levels and types of label noise. Es-
timations of CDLN estimator are shown in parentheses.

Sym Instance
20% (0.021) 30% (0.008) 40% (0.005) 20% (0.023) 30 (0.013) 40% (0.005)

Forward 86.28±0.19 86.04±0.14 85.24±0.41 86.22±0.12 85.98±0.23 85.64±0.43
Reweighting 86.23±0.14 85.19±0.25 85.13±0.68 86.39±0.11 86.04±0.26 85.54±0.39
T-Revision 86.43±0.13 85.2±0.12 85.23±0.32 86.4±0.27 86.03±0.25 85.54±0.39
JoCoR 86.14±0.08 85.88±0.22 85.23±0.53 86.04±0.09 85.86±0.28 85.1±0.26
MoPro 85.17±0.71 83.73±1.32 81.11±2.35 85.17±0.49 84.4±0.54 82.2±1.06
Dividemix 85.03±1.07 85.9±0.28 85.09±1.34 85.8±0.85 85.74±0.54 85.8±0.36
Mixup 85.92±0.48 84.3±2.34 82.62±2.78 86.2±0.22 85.62±0.55 82.08±4.57

Table 4.2: Comparing test accuracies (%) of different methods on yxu-
assian (anticausal) datasets with different levels and types of label noise.
Estimations of CDLN estimator are shown in parentheses.

P (Ỹ |Y ∗) can be estimated by using the same technique as in Eq. (4.4). As
illustrated in Fig. 4.3 the shows that the estimation error of our method is
close to 0 not only on instance-independent label noise but also on instance-
dependent label noise, which is much smaller than the estimated error ob-
tained by employing VolMinNet. This clearly illustrates the advantage of
our new P (Ỹ |Y ∗) estimation method which does not require learning the
transition matrix and clean label for each instance, but only requires esti-
mating the average level of noise rates (Section 4.3.2).

Estimations of CDLN Estimator vs Classification Accuracies

In Tab. 4.2 and Tab. 4.1, we illustrate the estimations of CDLN estima-
tor and the test accuracies of T -based methods and heuristic SSL-based
methods for learning with label noise. The estimations of CDLN estimator
are shown in parentheses, and each estimation is averaged over 5 repeated
experiments. The matrix Â∗ = P̂ (Ŷ |Y ∗) estimated by our method is em-
bedded into T -based methods.
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Sym Instance
20% (0.297) 30% (0.196) 40% (0.070) 20% (0.262) 30% (0.166) 40% (0.072)

Forward 93.31±1.0 89.31±1.96 77.78±7.4 94.0±0.8 87.25±3.1 80.75±2.31
Reweighting 93.88±1.43 91.16±1.09 77.31±5.26 93.5±2.63 89.25±1.53 78.22±6.61
T-Revision 94.72±0.62 91.81±1.93 77.97±5.0 94.5±1.63 90.78±2.35 79.06±4.89

JoCoR 93.69±0.23 89.53±0.84 67.81±2.07 93.44±0.71 87.44±2.95 67.75±6.51
MoPro 89.47±1.13 79.47±7.03 65.94±2.06 89.31±3.82 79.59±6.2 62.62±4.78

Dividemix 93.75±0.32 88.31±0.65 74.31±1.44 93.47±0.15 93.34±0.72 63.94±1.45
Mixup 93.31±1.1 88.81±1.03 73.84±1.18 93.19±1.31 87.25±1.49 74.31±3.42

Table 4.3: Comparing test accuracies (%) of different methods on KrKp
(causal) datasets with different levels and types of label noise. Estimations
of CDLN estimator are shown in parentheses.

Sym Pair Instance
20% (0.099) 40% (0.071) 20% (0.113) 40% (0.109) 20% (0.110) 40% (0.090)

Forward 74.24±8.74 78.8±10.53 83.36±2.23 72.48±9.12 75.36±5.53 69.6±9.71
Reweighting 89.76±3.37 89.28±1.87 94.08±2.41 79.36±15.02 90.72±2.8 86.24±1.38
T-Revision 92.64±0.93 89.76±3.14 92.32±3.97 81.12±13.91 89.12±3.45 85.28±2.06

JoCoR 76.96±3.87 58.08±13.43 72.32±10.43 60.16±12.88 73.28±4.34 51.2±6.13
MoPro 84.29±2.38 84.13±1.81 84.73±3.16 80.79±7.93 86.19±2.59 78.1±7.28

Dividemix 88.16±0.32 86.56±0.93 81.12±0.39 62.96±1.47 87.52±0.64 79.04±1.18
Mixup 86.08±2.51 83.68±3.49 86.72±1.3 67.68±17.1 84.96±2.17 75.36±5.46

Table 4.4: Comparing test accuracies (%) of different methods on Bal-
ancescale (causal) datasets with different levels and types of label noise.
Estimations of CDLN estimator are shown in parentheses.

It shows that the estimations on the anticausal dataset yxGuassian
are much smaller than the causal dataset xyGuassian, which illustrates
the effectiveness of our estimator. Specifically, when X is a cause of Y

(anticausal), P (X) does not contain information of P (Y |X), then we expect
that the difference d(.) obtained by employing our estimator is large; when
Y is a cause of X, P (X) contain information of P (Y |X), the difference
d(.) obtained by employing our estimator should be large. Additionally, on
each of these datasets, for the same types of noise, the estimations of our
estimator decrease with the increase in noise rates. It is mainly because
that the labels of these two datasets are binary, and P (Ỹ |Y ∗ = 1) only has
one degree of freedom, i.e., P (Ỹ = 1|Y ∗ = 1) = 1 − P (Ỹ = 0|Y ∗ = 1).
Therefore, if the difference between P̂ (Ỹ = 1|Y ∗ = 1) and P̂ (Ỹ = 1|Y ′ = 1)

is small, the difference between P̂ (Ỹ = 0|Y ∗ = 1) and P̂ (Ỹ = 0|Y ′ = 1)

will also be small.

The results show that on the causal dataset xyGuassian, T -based meth-
ods perform better than heuristic SSL-based methods. It is because that
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Sym Pair Instance
20% (0.136) 40% (0.146) 20% (0.140) 40% (0.148) 20% (0.151) 40% (0.153)

Forward 71.25±3.07 66.18±3.61 73.73±1.03 65.8±3.67 65.8±4.08 61.6±5.67
Reweighting 76.96±1.69 71.91±2.68 75.55±1.88 66.68±1.54 75.64±1.95 63.54±7.21
T-Revision 76.99±1.73 71.94±2.68 75.49±2.05 66.61±1.5 75.67±1.89 63.45±7.17

JoCoR 69.81±4.61 63.2±1.89 59.37±1.44 57.71±3.7 59.66±2.44 55.3±5.87
MoPro 53.6±0.19 53.51±0.0 53.51±0.0 53.25±0.43 53.79±0.38 52.17±3.27

Dividemix 75.11±1.66 53.45±0.0 53.45±0.0 56.14±2.1 59.97±0.55 51.41±1.79
Mixup 67.43±3.2 62.16±2.52 68.15±2.63 63.67±6.63 65.52±2.22 49.03±9.86

Table 4.5: Comparing test accuracies (%) of different methods on Splice
(causal) datasets with different levels and types of label noise. Estimations
of CDLN estimator are shown in parentheses.

Sym Pair Instance
20% (0.138) 40% (0.257) 20% (0.257) 40% (0.12) 20% (0.099) 40% (0.089)

Forward 74.66±7.68 74.76±3.3 70.02±10.79 66.46±3.84 59.78±12.14 56.62±12.87
Reweighting 84.58±1.89 83.92±1.38 83.30±2.28 73.22±4.51 85.02±0.93 83.3±3.02
T-Revision 84.24±1.3 85.70±0.66 82.72±6.03 68.86±8.56 84.04±2.38 83.5±1.87

JoCoR 83.44±0.83 60.28±1.46 80.64±1.29 57.14±4.17 63.84±8.8 54.56±4.44
MoPro 76.62±7.16 76.37±7.0 79.55±2.32 58.44±7.11 77.36±4.04 65.14±5.61

Dividemix 83.36±0.63 82.06±1.25 69.74±1.9 58.48±0.98 73.00±2.30 66.86±1.26
Mixup 81.38±1.67 79.48±1.05 80.54±2.51 72.34±4.58 78.88±1.05 71.26±5.44

Table 4.6: Comparing test accuracies (%) of different methods on Wave-
form (anticausal) datasets with different levels and types of label noise.
Estimations of CDLN estimator are shown in parentheses.

P (X) does not contain information of P (Y |X), then the state-of-the-art
heuristic SSL-based methods relying on semi-supervised techniques may
not be helpful. On the anticausal dataset xyGuassian, heuristic SSL-based
methods are effective and have a similar performance to T -based methods.
When the complexity of anticausal datasets is high, with a limited sample
size, the heuristic SSL-based method should have better performance than
T -based methods (See Tab. 4.7 and Tab. 4.8).

4.4.2 Experiments on Real-World Datasets

We illustrate the estimations of CDLN estimator and the test accuracies
of T -based methods and heuristic SSL-based methods for learning with
label noise on 6 real-world datasets. It illustrates similar results as on
synthetic datasets. When the estimation of CDLN estimator is lower than
0.005, the heuristic SSL-based methods demonstrate their effectiveness.
When the estimation of CDLN estimator is high, T -based methods are
more helpful to improve the robustness of learning models. It is also worth
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Sym Pair Instance
20% (0.034) 40% (0.038) 20% (0.041) 40% (0.20) 20% (0.025) 40% (0.026)

Forward 98.75±0.08 97.86±0.22 98.84±0.10 94.92±0.89 96.87±0.15 90.30±0.61
Reweighting 98.71±0.11 98.13±0.19 98.54±.63 91.50±1.27 97.99±0.13 90.30±0.61
T-Revision 98.91±0.04 98.34±0.21 98.89±0.08 91.83±1.08 98.39±0.09 96.50±0.31

JoCoR 98.06±0.13 96.64±0.19 98.01±0.19 96.85±0.43 98.62±0.06 96.07±0.31
MoPro 98.51±0.92 95.14±1.23 96.79±1.04 94.96±1.32 98.53±0.52 96.45±1.20

Dividemix 99.24±0.03 99.21±0.05 99.25±0.03 98.50±0.08 99.31±0.02 97.75±0.1
Mixup 97.45±0.21 95.75±0.43 97.57±1.08 92.46±1.43 96.54±1.20 90.38±1.30

Table 4.7: Comparing test accuracies (%) of different methods on MNIST
(anticausal) datasets with different levels and types of label noise. Estima-
tions of CDLN estimator are shown in parentheses.

Sym Pair Instance
20% (0.010) 40% (0.009) 20% (0.010) 40% (0.026) 20% (0.037) 40% (0.042)

Forward 88.21±0.48 78.44±0.89 88.21±0.48 77.44±6.89 85.29±0.38 74.72±3.24
Reweighting 86.77±0.40 83.16±0.46 89.60±1.01 77.06±6.47 88.72±0.41 84.52±2.65
T-Revision 90.33±0.52 84.94±2.58 89.75±0.41 80.94±2.58 90.46±0.13 85.37±3.36

JoCoR 85.96±0.25 79.65±0.43 80.33±0.20 71.62±1.05 89.80±0.28 73.78±1.39
MoPro 78.15±0.15 67.70±0.56 77.92±0.81 69.89±1.02 78.75±0.15 67.61±0.24

Dividemix 95.6±0.10 94.8±1.10 95.72±0.04 87.02 ±0.41 95.5±1.17 94.5±0.23
Mixup 93.2±0.31 86.2±0.3 92.23±0.71 82.43±1.02 93.32±0.25 87.61±0.56

Table 4.8: Comparing test accuracies (%) of different methods on CIFAR-
10 (anticausal) datasets with different levels and types of label noise. Esti-
mations of CDLN estimator are shown in parentheses.

mentioning that for waveform, although it is an anticasual dataset, T -based
methods have better performance than heuristic SSL-based methods, and
the estimation of CDLN estimator is large. The reason could be that 1).
P (X) may not always contain information about P (Y |X) even if the data
generative process is from X to Y , or 2). P (X) may contain information
about P (Y |X), but the information can be hard to be exploited by existing
methods.

4.5 Summary

In this Chapter, We show that T -based methods are disentangled with the
data generative process. By contrast, SOTA heuristic methods require that
P (X) contains information about P (Y |X) to improve the robustness. In
this case, Y should be a cause of X. This further explains the importance of
the transition matrix in learning with noisy labels. In many real-world ap-
plications, the causal structure of the data generative process is not given.



4.5. Summary 43

Then we proposed an intuitive method by exploiting the asymmetric prop-
erty of estimating the flip rate under different generalization processes.
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Chapter 5

Improving Transition-Matrix
Estimation by
Divide-and-Conquer

In this chapter, we propose a new transition matrix estimation method by
exploiting the divide-and-conquer paradigm. Specifically, we introduce an
intermediate class to avoid directly estimating the noisy class posterior. By
this intermediate class, the original transition matrix can then be factor-
ized into the product of two easy-to-estimate transition matrices. We term
the proposed method the dual-T estimator. Both theoretical analyses and
empirical results illustrate the effectiveness of the dual-T estimator for es-
timating transition matrices, leading to better classification performances.

5.1 Motivations and Contributions

The transition matrix T (x) = P (Ỹ = j|Y = i,X = x) plays an essential
role in designing statistically consistent classifiers. The basic idea is that
the clean class posterior can be inferred by using the transition matrix
and noisy class posterior (which can be estimated by using noisy data).
In general, the transition matrix T (x) is unidentifiable and thus hard to
learn [92]. Current state-of-the-art methods [25, 24, 64, 63, 59] assume
that the transition matrix is class-dependent and instance-independent, i.e.,
P (Ỹ = j|Y = i,X = x) = P (Ỹ = j|Y = i). Given anchor points, i.e., the
data points that belong to a specific class almost surely, the class-dependent
and instance-independent transition matrix is identifiable [50, 76], and it
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could be estimated by exploiting the noisy class posterior of anchor points
[50, 64, 100] (more details can be found in Chapter 5.2). In this paper,
we will focus on learning the class-dependent and instance-independent
transition matrix which can be used to improve the classification accuracy
of the current methods if the matrix is learned more accurately.
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Figure 5.1: Estimation errors for
clean class posteriors and noisy class
posteriors on synthetic data. The
estimation errors are calculated as
the average absolute value between
the ground truth and estimated class
posteriors on 1, 000 randomly sam-
pled test data points. The other de-
tails are the same as those of the syn-
thetic experiments in Chapter 5.4

.

The estimation error for the
noisy class posterior is usually much
larger than that of the clean class
posterior, especially when the sam-
ple size is limited. An illustrative ex-
ample is in Fig. 5.1. The rationale is
that label noise is randomly gener-
ated according to a class-dependent
transition matrix. Specifically, to
learn the noisy class posterior, we
need to fit the mapping from in-
stances to clean (latent) labels, as
well as the mapping from clean labels
to noisy labels. Since the latter map-
ping is random and independent of
instances, the learned mapping that
fits label noise is prone to overfitting
and thus will lead to a large estima-
tion error for the noisy class poste-
rior. The error will also lead to a large estimation error for the transition
matrix. As estimating the transition matrix is a bottleneck for designing
consistent classifiers, the large estimation error will significantly degenerate
the classification performance [92].

Motivated by this problem, in this paper, to reduce the estimation
error of the transition matrix, we propose the dual transition estimator
(dual-T estimator) to effectively estimate transition matrices. At a high
level, by properly introducing an intermediate class, the dual-T estimator
avoids directly estimating the noisy class posterior via factorizing the orig-
inal transition matrix into two new transition matrices, which we denote
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as T κ and T ξ. T κ represents the transition from the clean labels to the
intermediate class labels and T ξ the transition from the clean and interme-
diate class labels to the noisy labels. Note that although we are going to
estimate two transition matrices rather than one, we are not reducing the
original problem to a harder one. In philosophy, our idea belongs to the
divide and conquer paradigm, i.e., decomposing a hard problem into simple
sub-problems and composing the solutions of the sub-problems to solve the
original problem. The two new transition matrices are easier to estimate
than the original transition matrix because we will show that (1) there is
no estimation error for the transition matrix T κ, (2) the estimation error
for the transition matrix T ξ relies on predicting noisy class labels, which is
much easier than learning a class posterior as the labels are discrete while
the posteriors are continuous, and (3) the estimators for the two new tran-
sition matrices are easy to implement in practice. We will also theoretically
analyze that the two new transition matrices are easier to predict than the
original transition matrix. Empirical results on several datasets and label
noise settings consistently justify the effectiveness of the dual-T estimator
in reducing the estimation error of transition matrices and boosting the
classification performance.

5.2 Related Work

Estimating transition matrix by exploiting the noisy class posterior of an-
chor points has been widely used [50, 64, 92] in label-noise learning and
we term it the transition estimator (T estimator). Specifically, an instance
xi ∈ X is an anchor point of the i-th clean class if P (Y = i|xi) = 1 [50,
92]. Suppose we can assess the noisy class posterior and anchor points, the
transition matrix can be obtained via P (Ỹ = j|xi) =

∑C
k=1 P (Ỹ = j|Y =

k,xi)P (Y = k|xi) = P (Ỹ = j|Y = i,x) = Tij, where the second equation
holds because P (Y = k|xi) = 1 when k = i and P (Y = k|xi) = 0 other-
wise. The last equation holds because the transition matrix is independent
of the instance. According to the equation, to estimate the transition ma-
trix, we need to find anchor points and estimate the noisy class posterior,
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then the transition matrix can be estimated as follows,

P̂ (Ỹ = j|xi) =
C∑

k=1

P̂ (Ỹ = j|Y = k,xi)P (Y = k|xi) = P̂ (Ỹ = j|Y = i,x).

(5.1)

As the example illustrated in Fig. 5.1, with the same number of train-
ing examples, the estimation error of the noisy class posterior is signifi-
cantly larger than that of the clean class posterior, which leads to a large
estimation error of T estimator. This motivates us to seek an alternative
estimator that avoids directly using the estimated noisy class posterior to
approximate the transition matrix.

5.3 Methodology

To avoid directly using the estimated noisy class posterior to approximate
the transition matrix, we propose a new estimator in this section.

5.3.1 dual-T estimator

By introducing an intermediate class, the transition matrix T can be fac-
torized in the following way:

Tij = P (Ỹ = j|Y = i) =
∑

l∈{1,...,C}

P (Ỹ = j|Y ′ = l, Y = i)P (Y ′ = l|Y = i)

≜
∑

l∈{1,...,C}

T ξ
lj(Y = i)T κ

il , (5.2)

where Y ′ represent the random variable for the introduced intermediate
class, T ξ

lj(Y = i) = P (Ỹ = j|Y ′ = l, Y = i), and T κ
il = P (Y ′ = l|Y = i).

Note that T ξ and T κ are two transition matrices representing the transition
from the clean and intermediate class labels to the noisy class labels and the
transition from the clean labels to the intermediate class labels, respectively.

By looking at Eq. (5.2), it seems we have changed an easy problem into
a hard one. However, this is not true. Actually, we break down a problem
into simple sub-problems. Combining the solutions to the sub-problems
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gives a solution to the original problem. Thus, in philosophy, our idea
belongs to the divide-and-conquer paradigm. In the rest of this subsection,
we will explain why it is easy to estimate the transition matrices T ξ and
T κ. Moreover, in the next subsection, we will theoretically compare the
estimation error of the dual-T estimator with that of the T estimator.

It can be found that T κ
ij = P (Y ′ = j|Y = i) has a similar form

to Tij = P (Ỹ = j|Y = i). We can employ the same method that is
developed for T , i.e., the T estimator, to estimate T κ. However, there seem
to have two challenges: (1) it looks as if difficult to access P (Y ′|x); (2)
we may also have an error for estimating P (Y ′|x). Fortunately, these two
challenges can be well addressed by properly introducing the intermediate
class. Specifically, we design the intermediate class Y ′ in such a way that
P (Y ′|x) ≜ P̂ (Ỹ |x), where P̂ (Ỹ |x) represents an estimated noisy class
posterior. Note that P̂ (Ỹ |x) can be obtained by exploiting the noisy data
at hand. As we have discussed, due to the randomness of label noise,
estimating T directly will have a large estimation error especially when
the noisy training sample size is limited. However, as we have access to
P (Y ′|x) directly, according to Eq. (5.1), the estimation error for T κ is
zero if anchor points are given1.

Although the transition matrix T ξ contains three variables, i.e., the
clean class, intermediate class, and noisy class, we have class labels available
for two of them, i.e., the intermediate class and noisy class. Note that the
intermediate class labels can be assigned by using P (Y ′|x). Usually, clean
class labels are not available. This motivates us to find a way to eliminate
the dependence on clean class for T ξ. From an information-theoretic point
of view [14], if the clean class Y is less informative for the noisy class Ỹ

than the intermediate class Y ′, in other words, given Ỹ , Y ′ contains no
more information for predicting Ỹ , then Y is independent of Ỹ conditioned
on Y ′, i.e.,

T ξ
lj(Y = i) = P (Ỹ = j|Y ′ = l, Y = i) = P (Ỹ = j|Y ′ = l). (5.3)

1If the anchor points are to learn, the estimation error remains unchanged for the T
estimator and dual-T estimator by employing xi = argmaxx P̂ (Ỹ = i|x).
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A sufficient condition for holding the above equalities is to let the
intermediate class labels be identical to noisy labels. Note that it is hard
to find an intermediate class whose labels are identical to noisy labels. The
mismatch will be the main factor that contributes to the estimation error for
T ξ. Additionally, since we have labels for the noisy class and intermediate
class, P (Ỹ = j|Y ′ = l) in Eq. (5.3) is easy to estimate by just counting the
discrete labels, and it will have a small estimation error which converges to
zero exponentially fast [9].

Based on the above discussion, by factorizing the transition matrix T

into T ξ and T κ, we can change the problem of estimating the noisy class
posterior into the problem of fitting the noisy labels. Note that the noisy
class posterior is in the range of [0, 1] while the noisy class labels are in the
set {1, . . . , C}. Intuitively, learning the class labels are much easier than
learning the class posteriors. In Chapter 5.4, our empirical experiments on
synthetic and real-world datasets further justify this by showing a signifi-
cant error gap between the estimation error of the T estimator and dual-T
estimator.

Implementation of the dual-T estimator. The dual-T estimator
is described in Algorithm 1. Specifically, the transition matrix T κ can be
easily estimated by letting P (Y ′ = i|x) ≜ P̂ (Ỹ = i|x) and then employing
the T estimator (see Chapter 5.2). By generating intermediate class labels,
e.g., letting argmaxi∈{1,...,C} P (Y ′ = i|x) be the label for the instance x,
the transition matrix T ξ can be estimating via counting, i.e.,

T̂ ξ
lj = P̂ (Ỹ = j|Y ′ = l) =

∑
i 1{(argmaxk P (Y ′=k|xi)=l)∧ỹi=j}∑

i 1{argmaxk P (Y ′=k|xi)=l}
, (5.4)

where 1{A} is an indicator function which equals one when A holds true
and zero otherwise, (xi, ỹi) are examples from the training sample Str, and
∧ represents the AND operation.

Many statistically consistent algorithms [22, 64, 100, 92] consist of a
two-step training procedure. The first step estimates the transition matrix
and the second step builds statistically consistent algorithms, for exam-
ple, via modifying loss functions. Our proposed dual-T estimator can be
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Algorithm 3 dual-T estimator
Input: Noisy training sample Str; Noisy validation sample Sval.

1: Obtain the learned noisy class posterior, i.e., P̂ (Ỹ |x), by exploiting
training and validation sets;

2: Let P (Y ′|x) ≜ P̂ (Ỹ |x) and employ T estimator to estimate T̂ κ ac-
cording to Eq. (5.1);

3: Use Eq. (5.4) to estimate T̂ ξ;
4: T̂ = T̂ ξT̂ κ;
Output: The estimated transition matrix T̂ .

seamlessly embedded into their frameworks. More details can be found in
Chapter 5.4.

5.3.2 Theoretical Analysis

In this subsection, we will justify that the estimation error could be greatly
reduced if we estimate T ξ and T κ rather than estimating T directly.

As we have discussed before, the estimation error of the T estimator
is caused by estimating the noisy class posterior; the estimation error of
the dual-T estimator comes from the estimation error of T ξ, i.e., fitting
the noisy class labels and estimating P (Ỹ |Y ′) by counting discrete labels.
Note that to eliminate the dependence on the clean label for T ξ, we need
to achieve P (Y ′ = Ỹ |x) = 1. Let the estimation error for the noisy class
posterior be ∆1, i.e.,

∣∣∣P (Ỹ = j|x)− P̂ (Ỹ = j|x)
∣∣∣ = ∆1. Let the estimation

error for P (Ỹ = j|Y ′ = l) by counting discrete labels is ∆2, i.e., |P (Ỹ =

j|Y ′ = l) − P̂ (Ỹ = j|Y ′ = l)| = ∆2. Let the estimation error for fitting
the noisy class labels is ∆3, i.e., P (Y ′ = Ỹ |x) = 1 − ∆3. We will show
that under the following assumption, the estimation error of the dual-T
estimator is smaller than the estimation error of the T estimator.

Assumption 5.3.1. For all x ∈ S̃, ∆1 ≥ ∆2 +∆3.

Assumption 5.3.1 is easy to hold. Theoretically, the error ∆2 involves
no predefined hypothesis space, and the probability that ∆2 is larger than
any positive number will converge to zero exponentially fast [9]. Thus, ∆2

is usually much smaller than ∆1 and ∆3. We therefore focus on comparing
∆1 with ∆3 by ignoring ∆2. Intuitively, the error ∆3 is smaller than ∆1
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Figure 5.2: Estimation error of transition matrix on the synthetic dataset.

because it is easy to obtain a small estimation error for fitting noisy class
labels than that for estimating noisy class posteriors. We note that the
noisy class posterior is in the continuous range of [0, 1] while the noisy
class labels are in the discrete set {1, . . . , C}. For example, suppose we
have an instance (x, ỹ), then, as long as the empirical posterior probability
P̂ (Ỹ = ỹ|x) is greater than 1/C, the noisy label will be accurately learned.
However, the estimated error of the noisy class posterior probability can be
up to 1− 1/C. We also empirically verify the relation among these errors
in Appendix 2.

Theorem 5.3.1. Under Assumption 5.3.1, the estimation error of the dual-
T estimator is smaller than the estimation error of the T estimator.

5.4 Experiments

We compare the transition matrix estimator error produced by the proposed
dual-T estimator and the T estimator on both synthetic and real-world
datasets. We also compare the classification accuracy of state-of-the-art
label-noise learning algorithms [50, 64, 36, 25, 92, 102, 57] obtained by
using the T estimator and the dual-T estimator, respectively. The MNIST
[44], Fashion-MINIST (or F-MINIST) [93], CIFAR10, CIFAR100 [41], and
Clothing1M [94] are used in the experiments. Note that as there is no
estimation error for T κ, we do not need to do an ablation study to show
how the two new transition matrices contribute to the estimation error for
transition matrix estimation.
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5.4.1 Transition Matrix Estimation

We compare the estimation error between our estimator and the T estima-
tor on both synthetic and real-world datasets with different sample sizes
and different noise types. The synthetic dataset is created by sampling
from 2 different 10-dimensional Gaussian distributions. One of the distri-
butions has unit variance and zero mean among all dimensions. Another
one has variance=1 and mean=2 among all dimensions. The real-world
image datasets used to evaluate transition matrices estimation error are
MNIST [44], F-MINIST [93], CIFAR10, and CIFAR100 [41].

We conduct experiments on the commonly used noise types [25, 92].
Specifically, two representative structures of the transition matrix T will
be investigated: Symmetry flipping (Sym-ϵ) [64]; (2) Pair flipping (Pair-ϵ)
[25]. To generate noisy datasets, we corrupt the training and validation set
of each dataset according to the transition matrix T .

Neural network classifiers are used to estimate transition matrices. For
fair comparisons, the same network structure is used for both estimators.
Specifically, on the synthetic dataset, a two-hidden-layer network is used,
and the hidden unit size is 25; on the real-world datasets, we follow the
network structures used by the state-of-the-art method [64], i.e., using a
LeNet network with dropout rate 0.5 for MNIST, a ResNet-18 network
for F-MINIST and CIFAR10, a ResNet-34 network for CIFAR100, and a
ResNet-50 pre-trained on ImageNet for Clothing1M. The network is trained
for 100 epochs, and stochastic gradient descent (SGD) optimizer is used.
The initial learning rate is 0.01, and it is decayed by a factor of 10 after 50-
th epoch. We use 20% training examples for validation, and the model with
the best validation accuracy is selected for estimating the transition matrix.
The estimation error is calculated by measuring the ℓ1-distance between
the estimated transition matrix and the ground truth T . The average
estimation error and the standard deviation over 5 repeated experiments
for both estimators are illustrated in Fig. 5.2, Fig. 5.3 and Fig. 5.4.

Fig. 5.2 illustrates the estimation error of the T estimator and the
dual T estimation on the synthetic dataset. For two different noise types
and sample sizes, the estimation error of both estimation methods tends to
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Figure 5.3: Transition matrix estimation error on MNIST and F-MNIST.
The error bar for standard deviation in each figure has been shaded. The
lower the better.

decrease with the increase in training sample sizes. However, the estimation
error of the dual-T estimator is continuously smaller than that of the T

estimator. Moreover, the estimation error of the dual-T estimator is less
sensitive to different noise types compared to the T estimator. Specifically,
even T estimator is trained with all the training examples, its estimation
error on Pair-45% noise is approximately doubled than that on Sym-20
noise, which is observed by looking at the right-hand side of the estimation
error curves. In contrast, when training the dual T estimator with all the
training examples, its estimation error on the different noise types does
not significantly differ, which is all less than 0.1. Similar to the results
on the synthetic dataset, the experiments on the real-world image datasets
illustrated in Fig. 5.3 and Fig. 5.4 also show that the estimation error of
the dual-T estimator is continuously smaller than that of the T estimator
except for CIFAR100, which illustrates the effectiveness of the proposed
DT -estimator. On CIFAR100, both estimators have a larger estimation
error compared to the results on MNIST, F-MINIST, and CIFAR10. The
dual-T estimator outperforms the T estimator with a large sample size.
However, when the training sample size is small, the estimation error of the
dual-T estimator can be larger than that of the T estimator, it is because
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Figure 5.4: Transition matrix estimation error on CIFAR10 and CI-
FAR100. The error bar for standard deviation in each figure has been
shaded. The lower the better.

the number of images per class is too small to estimate the transition matrix
T̂ ξ ∈ R100×100 which can be very sparse and lead to a large estimation error.

5.4.2 Classification accuracy Evaluation

We investigate how the estimation of the T estimator and the dual-T esti-
mator will affect the classification accuracy in label-noise learning. The ex-
periments are conducted on MNIST, F-MINIST, CIFAR10, CIFAR100, and
Clothing1M. The classification accuracy are reported in Table 5.1 and Ta-
ble 5.2. Eight popular baselines are selected for comparison, i.e., Coteaching
[25], and MentorNet [36] which use diagonal entries of the transition matrix
to help select reliable examples used for training; Forward [64], and Revision
[92], which use the transition matrix to correct hypotheses; Reweighting
[50], which uses the transition matrix to build risk-consistent algorithms.
There are three baselines without requiring any knowledge of the transition
matrix, i.e., CE, which trains a network on the noisy sample directly by
using cross-entropy loss; Decoupling [57], which trains two networks and
updates the parameters only using the examples which have a different pre-
diction from two classifiers; Mixup [102] which reduces the memorization
of corrupt labels by using linear interpolation to feature-target pairs. The
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MNIST F-MNIST
Sym-20% Sym-50% Pair-45% Sym-20% Sym-50% Pair-45%

CE 95.77± 0.11 93.99± 0.21 90.11± 0.96 89.70± 0.14 87.22± 0.29 73.94± 1.44
Mixup 91.14± 0.28 77.18± 2.89 80.14± 1.74 91.82± 0.09 89.83± 0.11 86.98± 0.85

Decoupling 98.34± 0.12 63.70± 0.52 56.66± 0.25 92.03± 0.37 86.96± 0.86 70.87± 2.00
T -MentorNet 91.51± 0.31 81.59± 3.25 62.10± 4.11 87.18± 0.31 79.32± 2.08 49.65± 3.18
DT -MentorNet 96.73± 0.07 78.99± 0.4 85.27± 1.19 92.93± 0.07 75.67± 0.31 81.84± 1.34
T -Coteaching 93.41± 0.15 84.13± 2.77 63.60± 3.10 88.10± 0.29 83.43± 0.41 58.18± 7.00
DT -Coteaching 97.52∗ ± 0.07 83.20± 0.43 86.78± 0.76 93.90∗ ± 0.06 77.45± 0.59 87.37± 1.13

T -Forward 96.85± 0.07 95.22± 0.13 94.92± 0.89 90.99± 0.16 88.58± 0.30 82.50± 3.45
DT -Forward 97.24± 0.07 95.89± 0.14 97.24∗ ± 0.10 91.37± 0.09 89.52± 0.27 91.91∗ ± 0.24
T -Reweighting 96.80± 0.05 95.25± 0.23 91.50± 1.27 90.94± 0.29 88.82± 0.52 80.94± 3.38
DT -Reweighting 97.34± 0.04 96.19± 0.13 96.62± 0.21 91.68± 0.21 90.17± 0.12 88.31± 1.76

T -Revision 96.79± 0.04 95.26± 0.21 91.83± 1.08 91.20± 0.12 88.77± 0.36 85.26± 5.29
DT -Revision 97.40± 0.04 96.21∗ ± 0.13 96.71± 0.12 91.78± 0.16 90.18∗ ± 0.10 90.70± 0.37

CIFAR10 CIAR100
Sym-20% Sym-50% Pair-45% Sym-20% Sym-50% Pair-45%

CE 69.37± 0.47 55.92± 0.44 46.47± 1.81 33.16± 0.56 22.65± 0.37 21.62± 0.58
Mixup 80.33± 0.59 61.10± 0.26 58.37± 2.66 47.79± 0.91 30.17± 0.74 30.34± 0.72

Decoupling 81.63± 0.34 57.63± 0.47 52.30± 0.16 48.51± 0.61 26.01± 0.40 33.13± 0.49
T -MentorNet 79.00± 0.20 31.09± 3.99 26.19± 2.24 50.09± 0.28 36.66± 9.13 20.14± 0.77
DT -MentorNet 88.07± 0.54 69.34± 0.61 69.31± 1.90 59.7± 0.41 37.23± 5.69 30.88± 0.58
T -Coteaching 79.47± 0.20 39.71± 3.52 33.96± 3.24 50.87± 0.77 38.09± 8.63 24.58± 0.70
DT -Coteaching 90.37∗ ± 0.12 71.49± 0.65 76.51± 4.97 60.63∗ ± 0.36 38.21∗ ± 5.91 35.46∗ ± 0.33

T -Forward 75.36± 0.39 65.32± 0.57 54.70± 3.07 37.45± 0.54 27.91± 1.48 25.10± 0.77
DT -Forward 78.36± 0.34 69.94± 0.66 55.75± 1.53 41.76± 0.97 32.69± 0.73 26.08± 0.93
T -Reweighting 73.28± 0.44 64.20± 0.38 50.19± 1.10 38.07± 0.34 27.26± 0.50 25.86± 0.55
DT -Reweighting 79.09± 0.21 73.29± 0.23 52.65± 2.25 41.04± 0.72 34.56± 1.39 25.84± 0.42

T -Revision 75.71± 0.93 65.66± 0.44 75.14± 2.43 38.25± 0.27 27.70± 0.64 25.74± 0.44
DT -Revision 80.45± 0.39 73.76∗ ± 0.22 77.72∗ ± 1.80 42.11± 0.76 35.09± 1.44 26.10± 0.43

Table 5.1: Classification accuracy (percentage) on MNIST, F-MNIST,
CIFAR10, and CIFAR100.

CE Mixup Decoupling T (DT )-MentorNet

69.03 71.29 54.63 57.63 (60.25)
T (DT )-Coteaching T (DT )-Forward T (DT )-Reweighting T (DT )-Revision

60.37 (64.54) 69.93 (70.17) 70.38 (70.86) 71.01 (71.49∗)

Table 5.2: Classification accuracy (percentage) on Clothing1M.

estimation of the T estimator and the dual-T estimator are both applied
to the baselines which rely on the transition matrix. The baselines using
the estimation of T estimator are called T -Coteaching, T -MentorNet, T -
Forward, T -Revision, and T -Reweighting. The baselines using estimation of
dual-T estimator are called DT -Coteaching, DT -MentorNet, DT -Forward,
DT -Revision, and DT -Reweighting.

The settings of our experiments may be different from the original
paper, thus the reported accuracy can be different. For instance, in the
original paper of Coteaching [25], the noise rate is given, and all data are
used for training. In contrast, we assume the noise rate is unknown and
needed to be estimated. We only use 80% data for training, since 20% data
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are left out as the validation set for transition matrix estimation. In the
original paper of T -revision [92], the experiments on Clothing1M use clean
data for validation. In contrast, we only use noisy data for validation.

In Table 5.1 and Table 5.2, we bold the better classification accuracy
produced by the baseline methods integrated with the T estimator or the
dual-T estimator. The best classification accuracy among all the methods
in each column is highlighted with ∗. The tables show the classification
accuracy of all the methods by using our estimation is better than using
that of the T estimator for most of the experiments. It is because the
dual-T estimator leads to a smaller estimation error than the T estima-
tor when training with a large sample size, which can be observed at the
right-hand side of the estimation error curves in Fig. 5.3 and Fig. 5.4. The
baselines with the most significant improvement by using our estimation
are Coteaching and MentorNet. DT -Coteaching outperforms all the other
methods under Sym-20% noise. On Clothing1M dataset, DT -revision has
the best classification accuracy. The experiments on the real-world datasets
not only show the effectiveness of the dual-T estimator for improving the
classification accuracy of the current noisy learning algorithms but also re-
flect the importance of transition matrix estimation in label-noise learning.

5.4.3 Empirical Validation of Assumption 5.3.1

We empirically verify the relations among the three different errors in As-
sumption 5.3.1. Note that ∆1 is the estimation error for the noisy class
posterior, i.e., ∆1 =

∣∣∣P (Ỹ = j|x)− P̂ (Ỹ = j|x)
∣∣∣; ∆2 is the estimation er-

ror for counting discrete labels, i.e., |P (Ỹ = j|Y ′ = l) − P̂ (Ỹ = j|Y ′ =

l)| = ∆2; ∆3 is the estimation error for fitting the noisy class labels, i.e.,
P (Y ′ = Ỹ |x) = 1−∆3.

The experiments are conducted on the synthetic dataset, and the set-
ting is the same as those of the synthetic experiments in Chapter 4. The
three errors are calculated on the training set since both the T estimator
and the dual-T estimator estimate the transition matrix on the training
set.
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Figure 5.5: The relations among ∆1, ∆2 and ∆3

Figure 5.5 shows that the error ∆2 is very small and can be ignored.
∆3 is continuously smaller than ∆1 when the sample size is small. The
recent work [15] shows that the sample complexity of the network is lin-
ear in the number of parameters, which means that, usually, we may not
have enough training examples to learn the noisy class posterior well (e.g.,
CIFAR10, CIFAR100, and Fashion-MNIST), and Assumption 5.3.1 can be
easily satisfied. It is worth mentioning that, even Assumption 5.3.1 does
not hold, the estimation error of the dual-T estimator may also be smaller
than the T estimator. Specifically, the error ϵDT of the proposed estimator
is upper bounded by C2(∆2 + ∆3). Generally, the increase of the upper
bound C2(∆2 +∆3) does not imply the increase of the error ϵDT .

5.5 Summary

The transition matrix T plays an important role in label-noise learning.
In this paper, to avoid the large estimation error of the noisy class poste-
rior leading to the poorly estimated transition matrix, we have proposed
a new transition matrix estimator named dual-T estimator. The new esti-
mator estimates the transition matrix by exploiting the divide-and-conquer
paradigm, i.e., factorizes the original transition matrix into the product of
two easy-to-estimate transition matrices by introducing an intermediate
class state. Both theoretical analysis and experiments on both synthetic
and real-world label noise data show that our estimator reduces the esti-
mation error of the transition matrix, which leads to a better classification
accuracy for the current label-noise learning algorithms.
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Chapter 6

Learning Instance-Independent
Transition Matrices via Causality

In this chapter, by leveraging a structural causal model, we propose a novel
generative approach for instance-dependent transition-matrix learning. In
particular, we show that properly modeling the instances will contribute
to the identifiability of the label noise transition matrix and thus lead to a
better classifier. Empirically, our method outperforms all state-of-the-art
methods on both synthetic and real-world label-noise datasets.

6.1 Motivations and Contributions

Inspired by causal learning [65, 69, 74], we provide a new causal perspective
of label-noise learning by exploiting the causal information to further con-
tribute to the identifiability of the transition matrix P (Ỹ |Y,X) other than
making assumptions directly on the transition relationship. Specifically, we
assume that the data containing instance-dependent label noise is gener-
ated according to the causal graph in Fig. 6.1. In real-world applications,
many datasets are generated according to the proposed generative process.
For example, for the Street View House Numbers (SVHN) dataset [60], X
represents the image containing the digit; Y represents the clean label of
the digit shown on the plate; Z represents the latent variable that captures
the information affecting the generation of the images, e.g., orientation,
lighting, and font style. Here Y is clearly a cause of X because the causal
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XZ

Ỹ

Y

Figure 6.1: A graphical causal
model reveals a generative pro-
cess of the data that contains
instance-dependent label noise,
where the shaded variables are
observable and the unshaded vari-
ables are latent.

generative process can be described in
the following way. First, the house
plate is generated according to the
street number and attached to the front
door. Then, the house plate is cap-
tured by a camera (installed in a Google
street view car) to form X, taking into
account other factors such as illumina-
tion and viewpoint. Finally, the images
containing house numbers are collected
and relabeled to form the dataset. Let
us denote the annotated label by the
noisy label Ỹ as the annotator may not be always reliable, especially when
the dataset is very large but the budget is limited. During the annotation
process, the noisy labels were generated according to both the images and
the range of predefined digit numbers. Hence, both X and Y are causes of
Ỹ . Note that most existing image datasets are collected with the causal re-
lationship that Y causes X. For example, the widely used FashionMNIST
and CIFAR. When we synthesize instance-dependent label noise based on
them, we will have the causal graph illustrated in Fig. 6.1. Note also that
some datasets are generated with the causal relationship that X causes Y .
Other than using domain knowledge, the different causal relationships can
be verified by employing causal discovery [83, 84, 69].

When the latent clean label Y is a cause of X, P (X) will contain some
information about P (Y |X). This is because, under such a generative pro-
cess, the distributions of P (X) and P (Y |X) are entangled [73]. To help
estimate P (Y |X) with P (X), we make use of the causal generative pro-
cess to estimate P (X|Y ), which directly benefits from P (X) by generative
modeling. The modeling of P (X|Y ) in turn encourages the identifiability
of the transition relationship and benefits the learning P (Y |X). For ex-
ample, in Fig. 6.2(a), we have added instance-dependent label-noise with
rate 45% (i.e., IDLN-45%) to the MOON dataset and employed different
methods [25, 102] to solve the label-noise learning problem. As illustrated
in Fig. 6.2(b) and Fig. 6.2(c), previous methods fail to infer clean labels.
In contrast, by constraining the conditional distribution of the instances,
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(a) (b)

(c) (d)

Figure 6.2: (a) An illustration of the MOON training dataset which con-
tains 45% of instance-dependent label noise. (b)-(d) The illustration of the
classification performance of co-teaching, mixup and our method, respec-
tively.

i.e., restricting the data of each class to be on a manifold by setting the
dimension of the latent variable Z to be 1-dimensional, the label transition,
as well as the clean labels, can be successfully recovered (by the proposed
method), which is showed in Fig. 6.2(d).

Specifically, to make use of the causal graph to contribute to the iden-
tifiability of the transition matrix, we propose a causally inspired deep gen-
erative method, which models the causal structure with all the observable
and latent variables, i.e., the instance X, noisy label Ỹ , latent feature Z,
and the latent clean label Y . The proposed generative model captures the
variables’ relationship indicated by the causal graph. Furthermore, built on
the variational autoencoder (VAE) framework [39], we build an inference
network which could efficiently infer the latent variables Z and Y when
maximizing the marginal likelihood p(X, Ỹ ) on the given noisy data. In
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the decoder phase, the data will be reconstructed by exploiting the condi-
tional distribution of instances P (X|Y, Z) and the transition relationship
P (Ỹ |Y,X), i.e.,

pθ(X, Ỹ ) =

∫
z,y

P (Z = z)P (Y = y)pθ1(X|Y = y, Z = z)pθ2(Ỹ |Y = y,X)dzdy

will be exploited, where θ := (θ1, θ2) are the parameters of the causal gen-
erative model (more details can be found in Section 6.3). At a high level,
according to the equation, given the noisy data and the distributions of Z
and Y , constraining pθ1(X|Y, Z) will also greatly reduce the uncertainty of
pθ2(Ỹ |Y,X) and thus contribute to the identifiability of the transition ma-
trix. Note that adding a constraint on pθ1(X|Y, Z) is natural, for example,
images often have a low-dimensional manifold [7]. We can restrict P (Z)

to fulfill the constraint on pθ1(X|Y, Z). By exploiting the causal structure
and the constraint on instances to better model label noise, the proposed
method significantly outperforms the baselines. When the label noise rate
is large, the superiority is evidenced by a large gain in the classification
performance.

6.2 Related Work

Here we briefly introduce some background knowledge of causality [65] used
in this paper. A structural causal model (SCM) consists of a set of variables
connected by a set of functions. It represents a flow of information and
reveals the causal relationship among all the variables, providing a fine-
grained description of the data generation process. The causal structure
encoded by SCMs can be represented as a graphical causal model as shown
in Fig. 6.1, where each node is a variable and each edge is a function. The
SCM corresponding to the graph in Fig. 6.1 can be written as

Z = ϵZ , Y = ϵY , X = f(Z, Y, ϵX), Ỹ = f(X, Y, ϵỸ ), (6.1)

where ϵ· are independent exogenous variables following some distributions.
The occurrence of the exogenous variables makes the generation of X and
Ỹ a stochastic process. Each equation specifies a distribution of a variable
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conditioned on its parents (could be an empty set).

By observing the SCM, the helpfulness of the instances to learning the
classifier can be clearly explained. Specifically, the instance X is a function
of its label Y and latent feature Z which means that the instance X is
generated according to Y and Z. Therefore X must contain information
about its clean label Y and latent feature Z. That is the reason that P (X)

can help identify P (Y |X) and also P (Z|X). However, since we do not
have clean labels, it is hard to fully identify P (Y |X) from P (X) in the
unsupervised setting. For example, on the MOON dataset shown in Fig.
6.2, it is possible to discover the two clusters by enforcing the manifold
constraint, but it is impossible to determine which class each cluster belongs
to. We discuss in the following that we can make use of the property of
P (X|Y ) to help model label noise, i.e., encourage the identifiability of the
transition relationship, thereby learning a better classifier.

Specifically, under the Markov condition [65], which intuitively means
the independence of exogenous variables, the joint distribution P (Ỹ , X, Y, Z)

specified by the SCM can be factorized into the following

P (X, Ỹ , Y, Z) = P (Y )P (Z)P (X|Y, Z)P (Ỹ |Y,X). (6.2)

This motivates us to extend VAE [39] to perform inference in our causal
model to fit the noisy data in the next section. In the decoder phase, given
the noisy data and the distributions of Z and Y , adding a constraint on
P (X|Y, Z) will reduce the uncertainty of the distribution P (Ỹ |Y,X). In
other words, modeling P (X|Y, Z) will encourage the identifiability of the
transition relationship and thus better model label noise. Since P (Ỹ |Y,X)

functions as a bridge to connect the noisy labels to clean labels, we therefore
can better learn P (Y |X) or the classifier by only using the noisy data.

There are normally two ways to add constraints on the instances, i.e.,
assuming a specific parametric generative model or introducing prior knowl-
edge of the instances. In this paper, since we mainly study the image clas-
sification problem with noisy labels, we focus on the manifold property of
images and add the low-dimensional manifold constraint to the instances.
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Figure 6.3: A working flow of our method.

6.3 Causality Captured Instance-dependent

Label-Noise Learning

In this section, we propose a structural generative method that captures
the causal relationship and utilizes P (X) to help identify the label-noise
transition matrix, therefore, our method leads to a better classifier that
assigns more accurate labels.

6.3.1 Variational Inference under the Structural

Causal Model

To model the generation process of noisy data and to approximate the dis-
tribution of the noisy data, our method is designed to follow the causal fac-
torization (see Eq. (6.2)). Specifically, our model contains two decoder net-
works that jointly model a distribution pθ(X, Ỹ |Y, Z) and two encoders (in-
ference) networks that jointly model the posterior distribution qϕ(Z, Y |X).
Here we discuss each component of our model in detail.

Let the two decoder networks model the distributions pθ1(X|Y, Z) and
pθ2(Ỹ |Y,X), respectively. Let θ1 and θ2 be learnable parameters of the
distributions. Without loss of generality, we set p(Z) to be a standard
normal distribution and p(Y ) to be a uniform distribution. Then, modeling
the joint distribution in Eq. (6.2) boils down to modeling the distribution
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pθ(X, Ỹ |Y, Z), which is decomposed as follows:

pθ(X, Ỹ |Y, Z) = pθ1(X|Y, Z)pθ2(Ỹ |Y,X). (6.3)

To infer latent variables Z and Y with only observable variables X and
Ỹ , we could design an inference network that models the variational dis-
tribution qϕ(Z, Y |Ỹ , X). Specifically, let qϕ2(Z|Y,X) and qϕ1(Y |Ỹ , X) be
the distributions parameterized by learnable parameters ϕ1 and ϕ2, the
posterior distribution can be decomposed as follows:

qϕ(Z, Y |Ỹ , X) = qϕ2(Z|Y,X)qϕ1(Y |Ỹ , X), (6.4)

where we do not include Ỹ as a conditioning variable in qϕ2(Z|Y,X) because
the causal graph implies Z ⊥⊥ Ỹ |X, Y . One problem with this posterior
form is that we cannot directly employ qϕ1(Y |Ỹ , X) to predict labels on
the test data, on which Ỹ is absent.

To allow our method efficiently and accurately infer clean labels, we ap-
proximate qϕ1(Y |Ỹ , X) by assuming that given the instance X, the clean la-
bel Y is conditionally independent of the noisy label Ỹ , i.e., qϕ1(Y |Ỹ , X) =

qϕ1(Y |X). This approximation does not have a very large approximation
error because the images contain sufficient information to predict the clean
labels. Thus, we could simplify Eq. (6.4) as follows

qϕ(Z, Y |X) = qϕ2(Z|Y,X)qϕ1(Y |X), (6.5)

such that our encoder networks model qϕ2(Z|Y,X) and qϕ1(Y |X), respec-
tively. In such a way, qϕ1(Y |X) can be used to infer clean labels efficiently.
We also found that the encoder network modeling qϕ1(Y |X) acts as a reg-
ularizer which helps to identify pθ2(Ỹ |Y,X). Moreover, be benefited from
this, our method can be a general framework which can easily integrate
with the current discriminative label-noise methods [92, 57, 25], and we
will showcase it by collaborating co-teaching [25] with our method.

Optimization of Parameters Because the marginal distribution
pθ(X, Ỹ ) is usually intractable, to learn the set of parameters {θ1, θ2, ϕ1, ϕ2}
given only noisy data, we follow the variational inference framework [8] to
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minimize the negative evidence lower-bound −ELBO(x, ỹ) of the marginal
likelihood of each datapoint (x, ỹ) instead of maximizing the marginal likeli-
hood itself. By ensembling our decoder and encoder networks, −ELBO(x, ỹ)

is derived as follows:

−ELBO(x, ỹ) = −E(z,y)∼qϕ(Z,Y |x) [log pθ1(x|y, z)]− Ey∼qϕ1 (Y |x) [log pθ2(ỹ|y, x)]

+ kl(qϕ1(Y |x)∥p(Y )) + Ey∼qϕ1 (Y |x) [kl(qϕ2(Z|y, x)∥p(Z))] ,
(6.6)

where kl(·) is the Kullback–Leibler divergence between two distributions.
The derivation details are left out in Appendix A. Our model learns the
class-conditional distribution P (X|Y ) by maximizing the first expectation
in ELBO, which is equivalent to minimizing the reconstruction loss [39].
By learning P (X), the inference network qϕ1(Y |X) has to select a suitable
parameter ϕ∗ which samples the y and z to minimize the reconstruction
loss E(z,y)∼qϕ(Z,Y |x) [log pθ1(x|y, z)]. When the dimension of Z is chosen to
be much smaller than the dimension of X, to obtain a smaller reconstruction
error, the decoder has to utilize the information provided by Y , and force
the value of Y to be useful for prediction. Furthermore, we constrain the Y

to be a one-hot vector, then Y could be a cluster id to which the manifold
of the X belongs.

So far, the latent variable Y can be inferred as a cluster id instead
of a clean class id. To further link the clusters to clean labels, a naive
approach is to select some reliable examples and keep the cluster numbers
to be consistent with the noisy labels on these examples. In such a way,
the latent representation Z and clean label Y can be effectively inferred,
and therefore, it encourages the identifiability of the transition relationship
pθ2(Ỹ |Y,X). To achieve this, instead of explicitly selecting the reliable ex-
ample in advance, our method is trained in an end-to-end favor, i.e., the
reliable examples are selected dynamically during the update of parame-
ters of our model by using the co-teaching technique [25]. The advantage of
this approach is that the selection bias of the reliable example [11] can be
greatly reduced. Intuitively, the accurately selected reliable examples can
encourage the identifiability of pθ2(Ỹ |Y,X) and pθ1(X|Y, Z), and the accu-
rately estimated pθ2(Ỹ |Y,X) and pθ1(X|Y, Z) will encourage the network
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Algorithm 4 CausalNL
Input: A noisy sample S, Average noise rate ρ, Total epoch Tmax, Batch
size N .

1: For T = 1, . . . , Tmax:
2: For mini-batch S̄ = {xi}Ni=0, L̃ = {ỹi}Ni=0 in S:
3: Feed S̄ to encoders q̂ϕ1

1
and q̂ϕ2

1
to get clean label sets L1 and L2,

respectively;
4: Feed (S̄, L1) to encoder q̂ϕ1

2
to get a representation set H1, feed

(S̄, L2) to q̂ϕ2
2

to get H2;
5: Update q̂ϕ1

2
and q̂ϕ2

2
with co-teaching loss;

6: Feed (L1, H1) to decoder p̂θ11 to get reconstructed dataset S̄1, feed
(L2, H2) to p̂θ21 to get S̄2;

7: Feed (S̄1, L1) to decoder p̂θ12 to get predicted noisy labels L̃1, feed
(S̄2, L2) to p̂θ22 to get L̃2;

8: Update networks q̂ϕ1
1
, q̂ϕ1

2
, p̂θ11 and p̂θ12 by calculating ELBO on

(S̄, S̄1, L̃, L̃1), update networks q̂ϕ2
1
, q̂ϕ2

2
, p̂θ21 and p̂θ22 by calculating

ELBO on (S̄, S̄2, L̃, L̃2);
Output: The inference network q̂ϕ1

1
.

to select more reliable examples.

6.3.2 Practical Implementation

Our method is summarized in Algorithm 4 and illustrated in Fig. 6.3, Here
we introduce the structure of our model and loss functions.

Model Structure Because we incorporate co-teaching in our model
training, we need to add a copy of the decoders and encoders in our method.
As the two branches share the same architectures, we first present the
details of the first branch and then briefly introduce the second branch.

For the first branch, we need a set of encoders and decoders to model
the distributions in Eq. (6.3) and Eq. (6.5). Specifically, we have two en-
coder networks

Y1 = q̂ϕ1
1
(X), Z1 ∼ q̂ϕ1

2
(X, Y1)
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for Eq. (6.5) and two decoder networks

X1 = p̂θ11(Y1, Z1), Ỹ1 = p̂θ12(X1, Y1)

for Eq. (6.3). The first encoder q̂ϕ1
1
(X) takes an instance X as input q̂ϕ1

1
(X)

and output a predicted clean label Y1. The second encoder q̂ϕ1
2
(X, Y1) takes

both the instance X and the generated label Y1 as input and outputs a
latent feature Z1. Then the generated Y1 and Z1 are passed to the decoder
p̂θ11(Y1, Z1) which will generate a reconstructed image X1. Finally, the gen-
erated X1 and Y1 will be the input for another decoder p̂θ12(X1, Y1) which
returns predicted noisy labels Ỹ1. It is worth mentioning that the reparam-
eterization trick [39] is used for sampling, which allows backpropagation in
q̂ϕ1

2
(X, Y1).

Similarly, the encoder and decoder networks in the second branch are
defined as follows

Y2 = q̂ϕ2
1
(X), Z2 ∼ q̂ϕ2

2
(X, Y2), X2 = p̂θ21(Y2, Z2), Ỹ2 = p̂θ22(X2, Y2).

During training, we let two encoders q̂ϕ1
1
(X) and q̂ϕ2

1
(X) teach each other

given every mini-batch.

Loss Functions We divide the loss functions into two parts. The
first part is the negative ELBO in Eq. (D.4), and the second part is a
co-teaching loss. The detailed formulation will be left in Appendix D.

For the negative ELBO, the first term −E(z,y)∼qϕ(Z,Y |x) [log pθ1(x|y, z)]
is a reconstruction loss, and we use the ℓ1 loss for reconstruction. The
second term is −Ey∼qϕ1 (Y |x) [log pθ2(ỹ|y, x)], which aims to learn noisy labels
given inference y and x, this can be simply replaced by using cross-entropy
loss on outputs of both decoders p̂θ12(X1, Y1) and p̂θ22(X2, Y2) with the noisy
labels contained in the training data. The additional two terms are two
regularizers. To calculate kl(qϕ1(Y |x)∥p(Y )), we assume that the prior
P (Y ) is a uniform distribution. Then minimizing kl(qϕ1(Y |x)∥p(Y )) is
equivalent to maximizing the entropy of qϕ1(Y |x) for each instance x, i.e.,
−
∑

y qϕ1(y|x) log qϕ1(y|x). The benefit of having this term is that it could
reduce the overfitting problem of the inference network.
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For Ey∼qϕ1 (Y |x) [kl(qϕ2(Z|y, x)∥p(Z))], we let p(Z) to be a standard
multivariate Gaussian distribution. Since, empirically, qϕ2(Z|y, x) is the
encoders q̂ϕ1

1
(X) and q̂ϕ2

1
(X), and the two encoders are designed to be de-

terministic mappings. Therefore, the expectation can be removed, and only
the kl term kl(qϕ2(Z|y, x)∥p(Z)) is left. When p(Z) is a Gaussian distribu-
tion, the kl term could have a closed form solution [39], i.e., −1

2

∑J
j=1(1 +

log((σj)
2) − (µj)

2 − (σj)
2), where J is the dimension of a latent represen-

tation z, σj and µj are the encoder outputs.

For the co-teaching loss, we follow the work of Han et al. [25]. Intu-
itively, two encoders q̂ϕ1

1
(X) and q̂ϕ2

1
(X) feed forward all data and select

some data of possibly clean labels. Then, two networks communicate with
each other to select possible clean data in this mini-batch and use them for
training. Finally, each encoder backpropagates over the data selected by
its peer network and updates itself by cross-entropy loss.

6.4 Experiments

In this section, we compare the classification accuracy of the proposed
method with the popular label-noise learning algorithms [50, 64, 36, 25,
92, 102, 57] on both synthetic and real-world datasets.

6.4.1 Experimental Setup

Datasets We verify the efficacy of our approach on the manually cor-
rupted version of four datasets, i.e., FashionMNIST [93], SVHN [60], CI-
FAR10, CIFAR100 [41], and one real-world noisy dataset, i.e., Clothing1M
[94]. FashionMNIST contains 60,000 training images and 10,000 test im-
ages with 10 classes; SVHN contains 73,257 training images and 26,032
test images with 10 classes. CIFAR10 contains 50,000 training images and
10,000 test images. CIFAR10 and CIFAR100 both contain 50,000 training
images and 10,000 test images but the former has 10 classes of images, and
the latter has 10 classes of images. The four datasets contain clean data.
We add instance-dependent label noise to the training sets manually ac-
cording to Xia et al. [91]. Clothing1M has 1M images with real-world noisy
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labels and 10k images with clean labels for testing. For all the synthetic
noisy datasets, the experiments have been repeated 5 times.

Network structure and optimization For a fair comparison, all
experiments are conducted on NVIDIA Tesla V100, and all methods are
implemented by PyTorch. Dimension of the latent representation Z is set to
25 for all synthetic noisy datasets. For encoder networks q̂ϕ1

1
(X) and q̂ϕ2

1
(X),

we use the same network structures with baseline method. Specially, we use
a ResNet-18 network for FashionMNIST, a ResNet-34 network for SVHN
and CIFAR10. a ResNet-50 network for CIFAR100 without pretraining.
We use the same number of hidden layers and feature maps. Specifically, 1).
we model qϕ2(Z|Y,X) and pθ2(Ỹ |Y,X) by two 4-hidden-layer convolutional
networks, and the corresponding feature maps are 32, 64, 128 and 256;
2). we model pθ1(X|Y, Z) by a 4-hidden-layer transposed-convolutional
network, and the corresponding feature maps are 256, 128, 64 and 32. We
ran 150 epochs for each experiment on these datasets. For Clothing1M, we
use ResNet-50 networks pre-trained on ImageNet. We use random crop and
horizontal flips for data augmentation. For Clothing1M, we use a ResNet-
50 network pre-trained on ImageNet, and the clean training data is not
used. Dimension of the latent representation Z is set to 100. We model
qϕ2(Z|Y,X) and pθ2(Ỹ |Y,X) by two 5-hidden-layer convolutional networks,
and the corresponding feature maps are 32, 64, 128, 256, 512. We model
pθ1(X|Y, Z) by a 5-hidden-layer transposed-convolutional network, and the
corresponding feature maps are 512, 256, 128, 64 and 32. We ran 40 epochs
on Clothing1M.

Baselines and measurements We compare the proposed method
with the following state-of-the-art approaches: (i). CE, which trains the
standard deep network with the cross entropy loss on noisy datasets. (ii).
Decoupling [57], which trains two networks on samples whose predictions
from the two networks are different. (iii). MentorNet [36], Co-teaching
[25], which mainly handles noisy labels by training on instances with small
loss values. (iv). Forward [64], Reweight [50], and T-Revision [92]. These
approaches utilize a class-dependent transition matrix T to correct the loss
function. We report average test accuracy on over the last ten epochs of
each model on the clean test set. Higher classification accuracy means that
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IDN-20% IDN-30% IDN-40% IDN-45% IDN-50%

CE 88.54±0.32 88.38±0.42 84.22±0.35 69.72±0.72 52.32±0.68
Co-teaching 91.21±0.31 90.30±0.42 89.10±0.29 86.78±0.90 63.22±1.56
Decoupling 90.70±0.28 90.34±0.36 88.78±0.44 87.54±0.53 68.32±1.77
MentorNet 91.57±0.29 90.52±0.41 88.14±0.76 85.12±0.76 61.62±1.42

Mixup 88.68±0.37 88.02±0.37 85.47±0.55 79.57±0.75 66.02±2.58
Forward 90.05±0.43 88.65±0.43 86.27±0.48 73.35±1.03 58.23±3.14
Reweight 90.27±0.27 89.58±0.37 87.04±0.32 80.69±0.89 64.13±1.23

T-Revision 91.58±0.31 90.11±0.61 89.46±0.42 84.01±1.14 68.99±1.04

CausalNL 90.84±0.31 90.68±0.37 90.01±0.45 88.75±0.81 78.19±1.01

Table 6.1: Means and standard deviations (percentage) of classification
accuracy on FashionMNIST with different label noise levels.

IDN-20% IDN-30% IDN-40% IDN-45% IDN-50%

CE 91.51±0.45 91.21±0.43 87.87±1.12 67.15±1.65 51.01±3.62
Co-teaching 93.93±0.31 92.06±0.31 91.93±0.81 89.33±0.71 67.62±1.99
Decoupling 90.02±0.25 91.59±0.25 88.27±0.42 84.57±0.89 65.14±2.79
MentorNet 94.08±0.12 92.73±0.37 90.41±0.49 87.45±0.75 61.23±2.82

Mixup 89.73±0.37 90.02±0.35 85.47±0.55 82.41±0.62 68.95±2.58
Forward 91.89±0.31 91.59±0.23 89.33±0.53 80.15±1.91 62.53±3.35
Reweight 92.44±0.34 92.32±0.51 91.31±0.67 85.93±0.84 64.13±3.75

T-Revision 93.14±0.53 93.51±0.74 92.65±0.76 88.54±1.58 64.51±3.42

CausalNL 94.06±0.23 93.86±0.37 93.82±0.45 93.19±0.81 85.41±2.95

Table 6.2: Means and standard deviations (percentage) of classification
accuracy on CIFAR10 with different label noise levels.

IDN-20% IDN-30% IDN-40% IDN-45% IDN-50%

CE 75.81±0.26 69.15±0.65 62.45±0.86 51.72±1.34 39.42±2.52
Co-teaching 80.96±0.31 78.56±0.61 73.41±0.78 71.60±0.79 45.92±2.21
Decoupling 78.71±0.15 75.17±0.58 61.73±0.34 58.61±1.73 50.43±2.19
MentorNet 81.03±0.12 77.22±0.47 71.83±0.49 66.18±0.64 47.89±2.03

Mixup 73.17±0.37 70.02±0.31 61.56±0.71 56.45±0.62 48.95±2.58
Forward 74.64±0.32 69.75±0.56 60.21±0.75 48.81±2.59 46.27±1.30
Reweight 76.23±0.25 70.12±0.72 62.58±0.46 51.54±0.92 45.46±2.56

T-Revision 76.15±0.37 70.36±0.61 64.09±0.37 52.42±1.01 49.02±2.13

CausalNL 81.47±0.32 80.38±0.37 77.53±0.45 78.60±0.93 77.39±1.24

Table 6.3: Means and standard deviations (percentage) of classification
accuracy on CIFAR100 with different label noise levels.

the algorithm is more robust to the label noise.
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IDN-20% IDN-30% IDN-40% IDN-45% IDN-50%

CE 30.42±0.44 24.15±0.78 21.45±0.70 15.23±1.32 14.42±2.21
Co-teaching 37.96±0.53 33.43±0.74 28.04±1.43 25.60±0.93 23.97±1.91
Decoupling 36.53±0.49 30.93±0.88 27.85±0.91 23.81±1.31 19.59±2.12
MentorNet 38.91±0.54 34.23±0.73 31.89±1.19 27.53±1.23 24.15±2.31

Mixup 32.92±0.76 29.76±0.87 25.92±1.26 23.13±2.15 21.31±1.32
Forward 36.38±0.92 33.17±0.73 26.75±0.93 21.93±1.29 19.27±2.11
Reweight 36.73±0.72 31.91±0.91 28.39±1.46 24.12±1.41 20.23±1.23

T-Revision 37.24±0.85 36.54±0.79 27.23±1.13 25.53±1.94 22.54±1.95

CausalNL 41.47±0.32 40.98±0.62 34.02±0.95 33.34±1.13 32.129±2.23

Table 6.4: Means and standard deviations (percentage) of classification
accuracy on CIFAR100 with different label noise levels.

CE Decoupling MentorNet Co-teaching

68.88 54.53 56.79 60.15
Forward Reweight T-Revision caualNL

69.91 70.40 70.97 72.24

Table 6.5: Classification accuracy on Clothing1M. In the experiments,
only noisy samples are exploited to train and validate the deep model.

6.4.2 Classification accuracy Evaluation

Results on synthetic noisy datasets Tables 6.1, 6.2, 6.3, and 6.4 report
the classification accuracy on the datasets of F-MNIST, SVHN, CIFAR-10,
and CIFAR100, respectively. The synthetic experiments reveal that our
method is powerful in handling instance-dependent label noise, particu-
larly in situations with high noise rates. For all datasets, the classification
accuracy does not drop too much compared with all baselines, and the ad-
vantages of our proposed method increase with the increase of the noise
rate. Additionally, it shows that for all these datasets Y should be a cause
of X, and therefore, the classification accuracy by using our method can
be improved.

For noisy F-MNIST, SVHN and CIFAR-10, in the easy case IDN-20%,
almost all methods work well. When the noise rate is 30%, the advantages
of causalNL begin to show. We surpassed all methods. When the noise rate
raises, all the baselines are gradually defeated. Finally, in the hardest case,
i.e., IDN-50%, the superiority of causalNL widens the gap of performance.
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The classification accuracy of causalNL is at least 10% higher than the best
baseline method. For noisy CIFAR-100, all the methods do not work well.
However, causalNL still overtakes the other methods with clear gaps for all
different levels of noise rate.

Results on the real-world noisy dataset On the real-world noisy
dataset Clothing1M, our method causalNL outperforms all the baselines
as shown in Table 6.5. The experimental results also show that the noise
type in Clothing1M is more likely to be instance-dependent label noise,
and making the instance-independent assumption on the transition matrix
sometimes can be strong.

6.5 Summary

In this chapter, we have investigated how to use P (X) to help learn instance-
dependent label noise. Specifically, the previous assumptions are made on
the transition matrix, and the assumptions are hard to be verified and
might be violated on real-world datasets. Inspired by a causal perspective,
when Y is a cause of X, then P (X) should contain useful information to
infer the clean label Y . We propose a novel generative approach called
causalNL for instance-dependent label-noise learning. Our model makes
use of the causal graph to contribute to the identifiability of the transi-
tion matrix, and therefore help learn clean labels. In order to learn P (X),
compared to the previous methods, our method contains more parame-
ters. But the experiments on both synthetic and real-world noisy datasets
show that a little bit of sacrifice on computational efficiency is worth it,
i.e., the classification accuracy of casualNL significantly outperforms all
the state-of-the-art methods. Additionally, the results also tell us that in
classification problems, Y can usually be considered as a cause of X, and
suggest that the understanding and modeling of the data generative process
can help leverage additional information that is useful in solving advanced
machine learning problems concerning the relationship between different
modules of the data joint distribution. In our future work, we will study
the theoretical properties of our method and establish the identifiability
result under certain assumptions on the data-generative process.
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Chapter 7

Conclusion

In this thesis, we have theoretically and empirically shown that the transi-
tion matrix plays a crucial role in learning with noisy labels. We have found
that the transition matrix not only helps design statistical-consistent meth-
ods but also can be leveraged to further improve the performance of SOTA
heuristic-based methods. We have also found that the transition matrix can
be employed to improve the robustness of learning models on a wide range
of datasets that have different data generative processes. As the transition
matrix is usually unknown and hard to estimate, we have also proposed two
new transition-matrix estimation methods that can actually estimate the
instance-independent transition matrix and the instance-dependent transi-
tion matrix, respectively. We have also conducted extensive experiments on
both synthetic and real-world datasets which demonstrate the effectiveness
of our transition-matrix estimation methods.
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Appendix A

Poofs in Chapter 3

In this section, we show all the proofs in Chapter 3.

A.1 Proof of Theorem 3.3.1

Proof.

P (Ỹ = 0|x2)− P (Ỹ = 1|x1)

=P (Ỹ = 0|Y = 0)P (Y = 0|x2) + P (Ỹ = 0|Y = 1)P (Y = 1|x2)

− [P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Ỹ = 1|Y = 1)P (Y = 1|x1)]

=(1− P (Ỹ = 1|Y = 0))P (Y = 0|x2) + P (Ỹ = 0|Y = 1)P (Y = 1|x2)

− [P (Ỹ = 1|Y = 0)P (Y = 0|x1) + (1− P (Ỹ = 0|Y = 1))P (Y = 1|x1)]

=(1− P (Ỹ = 1|Y = 0))P (Y = 0|x2) + P (Ỹ = 0|Y = 1)P (Y = 1|x2)

− [P (Ỹ = 1|Y = 0)P (Y = 0|x1) + (1− P (Ỹ = 0|Y = 1))P (Y = 1|x1)]

=P (Y = 0|x2)− P (Ỹ = 1|Y = 0)P (Y = 0|x2) + P (Ỹ = 0|Y = 1)P (Y = 1|x2)

− [P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Y = 1|x1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)]

=P (Y = 1|x1)− P (Ỹ = 1|Y = 0)P (Y = 1|x1) + P (Ỹ = 0|Y = 1)(1− P (Y = 1|x1))

− [P (Ỹ = 1|Y = 0)(1− P (Y = 1|x1)) + P (Y = 1|x1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)]

=P (Y = 1|x1)− P (Ỹ = 1|Y = 0)P (Y = 1|x1)

+ P (Ỹ = 0|Y = 1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)

− [P (Ỹ = 1|Y = 0)− P (Ỹ = 1|Y = 0)P (Y = 1|x1)

+ P (Y = 1|x1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)]

=P (Ỹ = 0|Y = 1)− P (Ỹ = 1|Y = 0) < 0. (A.1)
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Note that f ∗ is an optimal hypothesis which perfectly learns the noisy
class posterior distribution. By employing the cross-entropy loss on f ∗, we
have

ℓ(f ∗(X), Ỹ ) = −Ỹ log(f ∗(X))− (1− Ỹ ) log(1− f ∗(X)) = − log(P (Ỹ |X)),

(A.2)

which is a non-increasing function. Therefore, the largest noisy class pos-
terior has the minimum loss. Because argmaxj∈{0,1} P (Ỹ = j|x2) = 0,
argmaxi∈{0,1} P (Ỹ = i|x1) = 1, and P (Ỹ = 0|x2) > P (Ỹ = 1|x1) by
Eq. (A.1), then

max(P (Ỹ = 0|x2), P (Ỹ = 1|x2), P (Ỹ = 0|x1), P (Ỹ = 1|x1)) = P (Ỹ = 1|x1),

which implies that the minimum loss among those four noisy class posteriors
is ℓ(f ∗(X = x1), Ỹ = 1). Therefore mini∈{0,1} ℓ(f

∗(x2), i) > mini∈{0,1} ℓ(f
∗(x1), i)

holds, which completes the proof.

A.2 Proof of Theorem 3.3.2

Proof.

P (Ỹ = 0|x1)− P (Ỹ = 1|x1)

=P (Ỹ = 0|Y = 0)P (Y = 0|x1) + P (Ỹ = 0|Y = 1)P (Y = 1|x1)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Ỹ = 1|Y = 1)P (Y = 1|x1)]

=(1− P (Ỹ = 1|Y = 0))P (Y = 0|x1) + P (Ỹ = 0|Y = 1)P (Y = 1|x1)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + (1− P (Ỹ = 0|Y = 1))P (Y = 1|x1)]

=P (Y = 0|x1)− P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Ỹ = 0|Y = 1)P (Y = 1|x1)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Y = 1|x1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)]

=(1− 2P (Ỹ = 1|Y = 0))P (Y = 0|x1) + (2P (Ỹ = 0|Y = 1)− 1)P (Y = 1|x1).

(A.3)
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Let P (Y = 0|x1) < (1−2P (Ỹ=0|Y=1))

(1−2P (Ỹ=1|Y=0))
P (Y = 1|x1), by combining with

Eq. (A.3), we have

P (Ỹ = 0|x1)− P (Ỹ = 1|x1)

<(1− 2P (Ỹ = 1|Y = 0))
(1− 2P (Ỹ = 0|Y = 1))

(1− 2P (Ỹ = 1|Y = 0))
P (Y = 1|x1)

+ (2P (Ỹ = 0|Y = 1)− 1)P (Y = 1|x1)

<(1− 2P (Ỹ = 0|Y = 1))P (Y = 1|x1) + (2P (Ỹ = 0|Y = 1)− 1)P (Y = 1|x1) < 0,

(A.4)

which implies that P (Ỹ = 1|x1) > 0.5. Let the Bayes label on the
clean class-posterior distribution of x1 be 01, then 0.5 < P (Y = 0|x1) <
(1−2P (Ỹ=0|Y=1))

(1−2P (Ỹ=1|Y=0))
P (Y = 1|x1), which completes the proof.

1The Bayes label is the label with the largest class posterior. For example, the
Bayes label on the clean class-posterior distribution Y ∗ of an instance x is defined as
Y ∗ = argmaxi∈{0,1} P (Y = i|x)[58]
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Appendix B

Poofs in Chapter 4

Appendix A

In this section, we show all the proofs in Chapter 4.

B.0.1 Poof of Theorem 4.3.1

Proof. Let f̃(x) = argmaxi P (Ỹ = i|X = x) output the noisy label of
every instance x.

P (Ỹ = i|Y ∗ = j) = EP (X|Y ∗=j)[1{f̃(X)=i}]

=

∫
x

1{f̃(x)=i}P (X = x|Y ∗ = j)dx

=

∫
x

1{f̃(x)=i}
P (Y ∗ = j|X = x)P (X = x)

P (Y ∗ = j)
dx

= EP (X)

[
1{f̃(X)=i}

P (Y ∗ = j|X)

P (Y ∗ = j)

]
. (B.1)

Then similarly,

P (Ỹ = i|Y ′ = j) = EP (X|Y ′=j)

[
1{f̃(X)=i}

]
=

∫
x

1{f̃(x)=i}P (X = x|Y ′ = j)dx

=

∫
x

1{f̃(x)=i}
P (Y ′ = j|X = x)P (X = x)

P (Y ′ = j)
dx

= EP (X)

[
1{f̃(X)=i}

P (Y ′ = j|X)

P (Y ′ = j)

]
. (B.2)
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The last equality is obtained by using the reweighting technique [50], which
requires that P (X|Y ∗ = j) and P (X|Y ′ = j) have the same support. Then
we calculate the difference P (Ỹ = i|Y ′ = j)− P (Ỹ = i|Y ∗ = j) as follows.

P (Ỹ = i|Y ′ = j)− P (Ỹ = i|Y ∗ = j)

=EP (X)

[
1{f̃(X)=i}

P (Y ′ = j|X)

P (Y ′ = j)

]
− EP (X)

[
1{f̃(X)=i}

P (Y ∗ = j|X)

P (Y ∗ = j)

]
=EP (X)

[
1{f̃(X)=i}

(
P (Y ′ = j|X)

P (Y ′ = j)
− P (Y ∗ = j|X)

P (Y ∗ = j)

)]
=EP (X)

[
1{f̃(X)=i}

P (Y ′ = j|X)P (Y ∗ = j)− P (Y ∗ = j|X)P (Y ′ = j)

P (Y ′ = j)P (Y ∗ = j)

]
=

1

P (Y ∗ = j)
EP (X)

[
1{f̃(X)=i}

P (Y ′ = j|X)P (Y ∗ = j)− P (Y ∗ = j|X)P (Y ′ = j)

P (Y ′ = j)

]
=

1

P (Y ∗ = j)
EP (X)

[
1{f̃(X)=i}

(
P (Y ′ = j|X)

P (Y ∗ = j)

P (Y ′ = j)
− P (Y ∗ = j|X)

)]
(B.3)

By using the above equation, the estimation error d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) is
as follows.

d(P (Ỹ |Y ′), P (Ỹ |Y ∗))

=
L∑
i

L∑
j

|P (Ỹ = i|Y ′ = j)− P (Ỹ = i|Y ∗ = j)|
L2

=
1

L2

L∑
i

L∑
j

∣∣∣∣ 1

P (Y ∗ = j)
EP (X)

[
1{f̃(X)=i}

(
P (Y ′ = j|X)

P (Y ∗ = j)

P (Y ′ = j)
− P (Y ∗ = j|X)

)]∣∣∣∣

which completes the proof.
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Appendix C

Poofs in Chapter 5

C.1 Proof of Theorem 5.3.1

Proof. According to Eq. (1) in the main paper, the estimation error for the
T -estimator is

ϵT =
∑
i,j

∣∣∣Tij − T̂ij

∣∣∣ = ∑
i,j

∣∣∣P (Ȳ = j|X = xi)− P̂ (Ȳ = j|X = xi)
∣∣∣ . (C.1)

As we have assumed, for all instance x ∈ X , for all j ∈ {1, . . . , C},∣∣∣P (Ȳ = j|X = x)− P̂ (Ȳ = j|X = x)
∣∣∣ = ∆1. (C.2)

Then, we have

ϵT = C2∆1. (C.3)

The estimation error for the i, j-the entry of the dual T -estimator is∣∣∣∣∣∑
l

P (Ȳ = j|Y ′ = l, Y = i)P (Y ′ = l|Y = i)

−
∑
l

P̂ (Ȳ = j|Y ′ = l)P (Y ′ = l|Y = i)

∣∣∣∣∣ (C.4)

=
∑
l

∣∣∣P (Ȳ = j|Y ′ = l, Y = i)− P̂ (Ȳ = j|Y ′ = l)
∣∣∣P (Y ′ = l|Y = i),
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where the first equation holds because there is no estimation error for the
transition matrix denoting the transition from the clean class to the inter-
mediate class (as we have discussed in Section 3.1). The estimation error
for the dual T -estimator comes from the estimation error for fitting the
noisy class labels (to eliminate the dependence on the clean label) and the
estimation error for P (Ȳ = j|Y ′ = l) by counting discrete labels.

We have assumed that the estimation error for P (Ȳ = j|Y ′ = l) is ∆2,
i.e., |P (Ȳ = j|Y ′ = l) − P̂ (Ȳ = j|Y ′ = l)| = ∆2 and that the estimation
error for fitting the noisy class labels is ∆3, i.e., ∀x ∈ X , P (Y ′ = Ȳ |x) =
1−∆3. Note that, to eliminate the dependence on the clean label for T♠,
we need to achieve P (Y ′ = Ȳ |x) = 1 for all x ∈ X . The error ∆3 will be
introduced if there is an error in fitting the noisy class labels. We have that
P (Y ′ ̸= Ȳ |x) = ∆3.

We have∣∣∣P (Ȳ = j|Y ′ = l, Y = i)− P̂ (Ȳ = j|Y ′ = l)
∣∣∣

=
∣∣∣P (Ȳ = j|Y ′ = l, Y = i,x)− P̂ (Ȳ = j|Y ′ = l,x)

∣∣∣
=
∣∣P (Ȳ = j|Y ′ = l, Y = i,x)P (Y ′ = Ȳ |x) + P (Ȳ = j|Y ′ = l, Y = i,x)P (Y ′ ̸= Ȳ |x)

−P̂ (Ȳ = j|Y ′ = l,x)P (Y ′ = Ȳ |x)− P̂ (Ȳ = j|Y ′ = l,x)P (Y ′ ̸= Ȳ |x)
∣∣∣

=
∣∣P (Ȳ = j|Y ′ = l,x)P (Y ′ = Ȳ |x) + P (Ȳ = j|Y ′ = l, Y = i,x)P (Y ′ ̸= Ȳ |x)

−P̂ (Ȳ = j|Y ′ = l,x)P (Y ′ = Ȳ |x)− P̂ (Ȳ = j|Y ′ = l,x)P (Y ′ ̸= Ȳ |x)
∣∣∣

(C.5)

≤
∣∣∣P (Ȳ = j|Y ′ = l)− P̂ (Ȳ = j|Y ′ = l)

∣∣∣P (Y ′ = Ȳ |x)

+
∣∣∣P (Ȳ = j|Y ′ = l, Y = i)− P̂ (Ȳ = j|Y ′ = l)

∣∣∣P (Y ′ ̸= Ȳ |x)

≤∆2(1−∆3) + ∆3 < ∆2 +∆3,
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where the second equation holds because the transition matrices are inde-
pendent of instances. Hence, the estimation error of T♠ is

ϵDT =
∑
i,j,l

∣∣∣P (Ȳ = j|Y ′ = l, Y = i)− P̂ (Ȳ = j|Y ′ = l)
∣∣∣P (Y ′ = l|Y = i)

<
∑
i,j

∑
l

(∆2 +∆3)P (Y ′ = l|Y = i)

=
∑
i,j

(∆2 +∆3) = C2(∆2 +∆3). (C.6)

Therefore, under Assumption 5.3.1 in the main paper, the estimation
error ϵDT of the dual T -estimator is smaller than the estimation error ϵT

the T -estimator.
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Appendix D

Poofs in Chapter 6

D.1 Derivation Details of evidence lower-bound

(ELBO)

In this section, we show the derivation details of ELBO(x, ỹ).
Recall that the causal decomposition of the instance-dependent label noise
is

P (X, Ỹ , Y, Z) = P (Y )P (Z)P (X|Y, Z)P (Ỹ |Y,X). (D.1)

Our encoders model following distributions

qϕ(Z, Y |X) = qϕ2(Z|Y,X)qϕ1(Y |X), (D.2)

and decoders model the following distributions

pθ(X, Ỹ |Y, Z) = pθ1(X|Y, Z)pθ2(Ỹ |Y,X). (D.3)
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Now, we start with maximizing the log-likelihood pθ(x, ỹ) of each datapoint
(x, ỹ).

log pθ(x, ỹ) = log

∫
z

∫
y

pθ(x, ỹ, z, y)dydz

= log

∫
z

∫
y

pθ(x, ỹ, z, y)
qϕ(z, y|x)
qϕ(z, y|x)

dydz

= log E(z,y)∼qϕ(Z,Y |x)

[
pθ(x, ỹ, z, y)

qϕ(z, y|x)

]
≥ E(z,y)∼qϕ(Z,Y |x)

[
log

pθ(x, ỹ, z, y)

qϕ(z, y|x)

]
:= ELBO(x, ỹ)

= E(z,y)∼qϕ(Z,Y |x)

[
log

p(z)p(y)pθ1(x|y, z)pθ2(ỹ|y, x))
qϕ(z, y|x)

]
= E(z,y)∼qϕ(Z,Y |x)[log (pθ1(x|y, z))] + E(z,y)∼qϕ(Z,Y |x)[log (pθ2(ỹ|y, x))]

+ E(z,y)∼qϕ(Z,Y |x)

[
log

(
p(z)p(y)

qϕ2(z|y, x)qϕ1(y|x)

)]
(D.4)

The ELBO(x, ỹ) above can be further simplified. Specifically,

E(z,y)∼qϕ(Z,Y |x)[log (pθ2(ỹ|y, x))] = Ey∼qϕ1 (Y |x)Ez∼qϕ2 (Z|y,x)[log (pθ2(ỹ|y, x))]

=Ey∼qϕ1 (Y |x)[log (pθ2(ỹ|y, x))], (D.5)

and similarly,

E(z,y)∼qϕ(Z,Y |x)

[
log

(
p(z)p(y)

qϕ2(z|y, x)qϕ1(y|x)

)]
=Ey∼qϕ1 (Y |x)Ez∼qϕ2 (Z|y,x)

[
log

(
p(z)p(y)

qϕ2(z|y, x)qϕ1(y|x)

)]
=Ey∼qϕ1 (Y |x)Ez∼qϕ2 (Z|y,x)

[
log

(
p(y)

qϕ1(y|x)

)]
+ Ey∼qϕ1 (Y |x)Ez∼qϕ2 (Z|y,x)

[
log

(
p(z)

qϕ2(z|y, x)

)]
=Ey∼qϕ1 (Y |x)

[
log

(
p(y)

qϕ1(y|x)

)]
+ Ey∼qϕ1 (Y |x)Ez∼qϕ2 (Z|y,x)

[
log

(
p(z)

qϕ2(z|y, x)

)]
=− kl(qϕ1(Y |x)∥p(Y ))− Ey∼qϕ1 (Y |x) [kl(qϕ2(Z|y, x)∥p(Z))] , (D.6)
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By combing Eq. (D.4), Eq. (D.5) and Eq. (D.6), we get

ELBO(x, ỹ) = E(z,y)∼qϕ(Z,Y |x) [log pθ1(x|y, z)] + Ey∼qϕ1 (Y |x) [log pθ2(ỹ|y, x)]

− kl(qϕ1(Y |x)∥p(Y ))− Ey∼qϕ1 (Y |x) [kl(qϕ2(Z|y, x)∥p(Z))] ,
(D.7)

which is the ELBO in our main paper.

D.2 Loss Functions

In this section, we provide the empirical solution of the ELBO and co-
teaching loss. Remind that our encoder networks and decoder networks in
the first branch are defined as follows

Y1 = q̂ϕ1
1
(X), Z1 ∼ q̂ϕ1

2
(X, Y1), X1 = p̂θ11(Y1, Z1), Ỹ1 = p̂θ12(X1, Y1),

Let S be the noisy training set, and d2 be the dimension of an instance
x. Let y1 and z1 be the estimated clean label and latent representation for
the instance x, respectively, by the first branch. As mentioned in our main
paper (see Section 3.2), the negative ELBO loss is used to minimize 1).
a reconstruction loss between each instance x and p̂θ11(x, y1); 2). a cross-
entropy loss between noisy labels p̂θ12(x1, x1) and ỹ; 3). a cross-entropy
loss between q̂ϕ1

2
(x, y1) and uniform distribution P (Y ); 4). a cross-entropy

loss between q̂ϕ1
2
(x, y1) and Gaussian distribution P (Z). Specifically, the

empirical version of the ELBO for the first branch is as follows.

∑
(x,ỹ)∈S

ˆELBO
1
(x, ỹ) =

∑
(x,ỹ)∈S

[
β0

1

d2
∥x− p̂θ11(y1, z1)∥1 − β1ỹ log p̂θ12(x1, y1)

+β2q̂ϕ1
1
(x) log q̂ϕ1

1
(x) +β3

J∑
j=1

(1 + log((σj)
2)− (µj)

2 − (σj)
2)

]
. (D.8)

The hyper-parameter β0 and β1 are set to 0.1, and β2 is set to 1e−5 because
encouraging the distribution to be uniform on a small min-batch (i.e., 128)
could have a large estimation error. The hyper-parameter β3 is set to 0.01.
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The empirical version of the ELBO for the second branch shares the same
settings as the first branch.

For co-teaching loss, we directly follow Han et al. [25]. Intuitively, in
each mini-batch, both encoders q̂ϕ1

1
(X) and q̂ϕ2

1
(X) trust small-loss exam-

ples, and exchange the examples to each other by a cross-entropy loss. The
number of the small-loss instances used for training decays with respect to
the training epoch. The experimental settings for co-teaching loss are the
same as the settings in the original paper [25].
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