
Towards Optimal and Practical
Asynchronous Byzantine Fault Tolerant

Protocols

Zhenliang Lu

Supervisor: Qiang Tang

A thesis submitted in fulfilment of

the requirements for the degree of

Doctor of Philosophy

School of Computer Science

Faculty of Engineering

The University of Sydney

Australia

August 2023

Copyright© 2023 by Zhenliang Lu

ALL RIGHTS RESERVED

ABSTRACT

With recent advancements in blockchain technology, people expect Byzantine fault tolerant

(BFT) protocols to be deployed more frequently in wide-area networks (WAN) as opposed

to conventional in-house settings. Asynchronous BFT protocols, which do not rely on

any form of timing assumption, are arguably robust in such a setting. Asynchronous

BFT protocols have been studied since the 1980s, but these asynchronous BFT works

mainly focus on understanding the theoretical limits and possibilities. Until the recent

asynchronous BFT protocol, HoneyBadgerBFT (HBBFT), was proposed, the field received

renewed attention.

Dumbo family, a series of our works on the asynchronous BFT protocols, significantly

pushed those protocols towards practice. First, all complexity metrics are pushed down to

asymptotically optimal, simultaneously. Second, we identify the bottleneck in the state of

the art and revisit the design methodology, identifying and utilizing the right components,

and optimizing the protocol structure in various ways. Last but not least, we also open

the box and optimize the critical components themselves. The resulting protocols are

indeed significantly more performant, the latest protocol can have 100K tps and a few

seconds of latency at a reasonable scale. This thesis focuses on the latest three members

of the Dumbo family. To begin, we solved an open problem by proposing an optimal

Multi-valued validated asynchronous Byzantine agreement protocol. Next, we present

Dumbo-NG to address the challenge of latency-throughput tension by redesigning the

methodology of asynchronous BFT protocols. Another benefit of the new methodology is

that it can conquer the censorship threat without extra cost. Furthermore, we consider a

realistic environment and present Bolt-Dumbo Transformer (BDT), a generic framework

for practical optimistic asynchronous BFT to achieve the ”best of both worlds” in terms of

the advantages of deterministic BFT and randomized (asynchronous) BFT.

i

List of Publications

Authorship is in alphabetical order

1. Yuan Lu, Zhenliang Lu, Qiang Tang. Bolt-Dumbo Transformer: Asynchronous

Consensus As Fast As the Pipelined BFT. 29th ACM Conference on Computer and
Communication Security, CCS 2022.

2. Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, Zhenfeng Zhang. Bolt-Dumbo

Transformer: Asynchronous Consensus As Fast As the Pipelined BFT. 29th ACM
Conference on Computer and Communication Security, CCS 2022.

3. Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, Zhenfeng Zhang.

Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice. The Network
and Distributed System Security Symposium 2022, NDSS 2022.

4. Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, Zhenfeng Zhang.

Efficient Asynchronous Byzantine Agreement without Private Setups. 42nd IEEE
International Conference on Distributed Computing Systems, ICDCS 2022.

5. Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, Zhenfeng Zhang. Dumbo:

Faster Asynchronous BFT Protocols. 27th ACM Conference on Computer and
Communication Security, CCS 2020.

6. Yuan Lu, Zhenliang Lu, Qiang Tang, Guiling Wang. Dumbo-MVBA: Optimal

Multi-Valued Validated Asynchronous Byzantine Agreement, Revisited. 39th ACM
Symposium on Principles of Distributed Computing, PODC 2020.

Patents:

1. Xinlei Zhai, Qiang Tang, Zhenliang Lu, Jing Xu, Zhenfeng Zhang, Bingyong Guo.

Systems and methods for establishing consensus in distributed communications.

(International publication number: WO 2021/226846 A1). PCT Patent

2. Xinlei Zhai, Qiang Tang, Zhenliang Lu, Jing Xu, Zhenfeng Zhang, Bingyong Guo.

Communication systems and methods for validation of a transaction via consensus

in a distributed network environment. (International publication number: WO
2021/226843 A1). PCT Patent

3. Hao Cheng, Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, Zhenfeng

Zhang. Permissioned asynchronous blockchian consensus with broadcasts running

off consensus. PCT Patent under review

ii

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own

work. This thesis has not been submitted for any degree or other purposes.

I certify that the intellectual content of this thesis is the product of my own work and that

all the assistance received in preparing this thesis and sources have been acknowledged.

Name: Zhenliang Lu

Signature:

Date:

iii

Authorship Attribution Statement

This thesis contains published material in the following publications, in which the

authorship is in alphabetical order and I am the lead author.

• Yuan Lu, Zhenliang Lu, Qiang Tang. Bolt-Dumbo Transformer: Asynchronous

Consensus As Fast As the Pipelined BFT. 29th ACM Conference on Computer and

Communication Security, CCS 2022.

• Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, Zhenfeng Zhang.

Bolt-Dumbo Transformer: Asynchronous Consensus As Fast As the Pipelined BFT.

29th ACM Conference on Computer and Communication Security, CCS 2022.

• Yuan Lu, Zhenliang Lu, Qiang Tang, Guiling Wang. Dumbo-MVBA: Optimal

Multi-Valued Validated Asynchronous Byzantine Agreement, Revisited. 39th ACM

Symposium on Principles of Distributed Computing, PODC 2020.

My particular contributions to this have been:

• Chapter 3 of this thesis is published as [88].

I designed the study, analyzed the security, and wrote the draft.

• Chapter 4 of this thesis is published as [63].

I designed the study, analyzed the security, and wrote the draft.

• Chapter 5 of this thesis is published as [87].

I designed the study, analyzed the security, and wrote the draft.

Name: Zhenliang Lu

Signature:

Date:

iv

Attesting Authorship Attribution Statement

As supervisor for the candidature upon which this thesis is based, I can confirm that the

authorship attribution statements above are correct.

Supervisor Name: Prof. Qiang Tang

Signature:

Date:

v

To my beloved family.

vi

ACKNOWLEDGMENT

The six years that I spent as a PhD student were an exciting journey for me. Specifically,

this journey starts in Newark, New Jersey, USA, and ends in Sydney, Australia. This is also

a real journey for me in the sense that it provides me with the opportunity to experience

a completely different life in two different foreign countries. I would like to take this

opportunity to express my sincere gratitude to everyone who accompanied and help me

on my journey. First of all, I would like to express my deepest gratitude to my supervisor

Prof. Qiang Tang, who offered me a great opportunity to pursue this path. The wisdom and

enthusiasm that Prof. Qiang Tang demonstrates have had a significant impact on me. My

interest in Blockchain research was sparked by him, and I am very grateful to him for both

his guidance and his help. Without his guidance and help, I would never be as confident in

my future as I am today.

I also would like to express my sincere thanks to the members of the committee, Prof.

Andrew Miller and Prof. Fan Zhang, as well as to Prof. Vincent Gramoli, who served as

the committee convenor, for their wonderful support and insightful comments.

I am especially grateful to New Jersey Institute of Technology and The University of

Sydney, which provided the great opportunities, necessary infrastructure and resources for

my research.

I would like to express my gratitude to the members of our group for the insightful

discussions they contributed to our study and for all of the helpful assistance they provided

to me throughout the course of my doctoral studies. I also would like to express my

gratitude to all of my co-authors for the numerous successful collaborations we have had,

as well as for sharing and discussing research ideas with me. Furthermore, I would like to

thank everyone I have met who has helped me in creating wonderful memories outside

vii

of work. An incomplete list includes Dr. Long Chen, Dr. Yuan Lu, Dr. Songlin He, Dr.

Hanwen Feng, Dr. Bo Pang, Ms. Yanan Li, Mr. Tian Qiu, Ms. Xinrui Zhang, Dr. Bingyong

Guo, Ms. Yingzi Gao, Mr. Pouriya Zarbafian, Dr. Ming Jin, and more. I had a great time

with all of you on this journey, and the wonderful time we had together will stay with me

forever.

Lastly, my deep gratitude goes to my family that encouraged me on this path. I would like

to thank my lovely family for their unconditional love and support.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Asynchronous BFT protocol . 1

1.2 Prior to the Dumbo family . 3

1.3 Evolving of the Dumbo family . 5

1.4 Recent Developments on DAG-based Asynchronous BFT 13

1.5 Structure of this Thesis . 15

2 PRELIMINARIES . 17

2.1 Notations . 17

2.2 Cryptographic Primitives and Protocols 18

3 DUMBO-MVBA AND ITS APPLICATION TO OPTIMAL ASYNCHRONOUS
ATOMIC BROADCAST . 29

3.1 Background . 29

3.1.1 Motivation . 29

3.1.2 Challenges . 30

3.2 Related work . 32

3.3 Problem Formulation . 35

3.3.1 System model . 35

3.3.2 Security goal . 37

3.4 APDB: Asynchronous Provable Dispersal Broadcast 38

ix

TABLE OF CONTENTS

(Continued)

Chapter Page

3.4.1 Overview of the APDB protocol 40

3.4.2 Details of the APDB protocol . 41

3.4.3 Analyses of the APDB protocol 45

3.5 Dumbo-MVBA: An Optimal MVBA Protocol 50

3.5.1 Overview of the Dumbo-MVBA protocol 50

3.5.2 Details of the Dumbo-MVBA protocol 51

3.5.3 Analyses of the Dumbo-MVBA protocol 54

3.6 Dumbo-MVBA�: A Generic Optimal MVBA Framework 62

3.6.1 Overview of the Dumbo-MVBA� protocol 62

3.6.2 Details of the Dumbo-MVBA� protocol 63

3.6.3 Analyses of the Dumbo-MVBA� protocol 64

3.7 Optimal Asynchronous Atomic Broadcast 69

3.7.1 Optimal ACS through Dumbo-MVBA 70

3.7.2 Analyses of the optimal ACS protocol 72

3.7.3 Efficient and adaptively secure ABC 74

3.8 Summary . 75

4 DUMBO-NG: FAST ASYNCHRONOUS BFT CONSENSUS WITH THROUGHPUT-
OBLIVIOUS LATENCY . 78

4.1 Background . 78

4.1.1 Motivation . 79

x

TABLE OF CONTENTS

(Continued)

Chapter Page

4.1.2 Challenges . 83

4.2 Related work . 86

4.3 Problem Formulation . 87

4.3.1 System model . 87

4.3.2 Security goal . 89

4.4 Dumbo-NG: Realizing Throughput-oblivious Latency 90

4.4.1 Overview of the Dumbo-NG protocol 90

4.4.2 Details of the Dumbo-NG protocol 92

4.4.3 Analyses of the Dumbo-NG protocol 97

4.5 Implementation and Evaluations . 102

4.5.1 Implementation setup . 102

4.5.2 Evaluations in the WAN setting 103

4.5.3 More evaluations in the controlled delay/bandwidth settings 105

4.6 Discussions . 109

4.6.1 From validity to censorship resilience. 111

4.6.2 Tips on production-level implementation 112

4.7 Summary . 114

5 BOLT-DUMBO TRANSFORMER: ASYNCHRONOUS CONSENSUS AS
FAST AS THE PIPELINED BFT . 117

5.1 Background . 117

xi

TABLE OF CONTENTS

(Continued)

Chapter Page

5.1.1 Motivation . 117

5.1.2 Challenges . 119

5.2 Related work . 123

5.3 Problem Formulation . 124

5.3.1 System model . 125

5.3.2 Security goal . 126

5.4 Fastlane Abstraction and Two-Consecutive-Value BA 127

5.4.1 Overview of the Bolt protocol . 128

5.4.2 Details of the Bolt protocol . 130

5.4.3 Analyses of the Bolt protocol . 131

5.4.4 Overview of the tcv-BA protocol 133

5.4.5 Details of the tcv-BA protocol . 133

5.4.6 Analyses of the tcv-BA protocol 134

5.5 Bolt-Dumbo Transformer framework . 136

5.5.1 Overview of the Bolt-Dumbo Transformer framework 136

5.5.2 Details of the Bolt-Dumbo Transformer framework 138

5.5.3 Analyses of the Bolt-Dumbo Transformer framework 142

5.6 Implementation and Evaluation . 150

5.6.1 Implementation setup . 150

xii

TABLE OF CONTENTS

(Continued)

Chapter Page

5.6.2 Evaluations in the WAN setting 151

5.6.3 More evaluations in the controlled dynamic network setting 158

5.7 Discussions . 160

5.7.1 Complexity and Numerical Analyses 160

5.7.2 Optimistic conditions . 165

5.8 Summary . 165

6 SUMMARY OF THE THESIS . 168

6.1 Conclusion . 168

6.2 Future work . 170

Bibliography . 172

xiii

LIST OF TABLES

Table Page

3.1 Asymptotic performance of MVBA protocols for �-bit inputs 69

3.2 Asymptotic performance of ACS protocols among n parties with |m|-bit input

and λ-bit security parameter. 74

3.3 Asymptotic performance of MVBA protocols among n parties with �-bit input

and λ-bit security parameter. 76

4.1 Validity (liveness) of asynchronous atomic broadcast if stressing on nearly

linear amortized communication . 115

5.1 Per-block performance of different Bolt instantiations (which is also per-block

cost of BDT in the good cases) . 161

5.2 Per-block performance of BDT in the worst cases 162

5.3 Complexities of BFT protocols in various settings 163

xiv

LIST OF FIGURES

Figure Page

1.1 The evolution of the Dumbo family. 7

3.1 The execution flow of Dumbo-MVBA. 50

3.2 The execution flow of Dumbo-MVBA�. 62

4.1 Execution flow of an epoch in HBBFT, Dumbo and their variants. The

protocols proceed by consecutive epochs. 79

4.2 Latency breakdown of Dumbo (on 16 Amazon EC2 c5.large instances across

different regions). |B| is batch size, i.e., the number of tx to broadcast by

each node (where each tx is 250-byte to approximate the size of Bitcoin’s

basic tx). TPKE is a technique from HBBFT for preventing censorship. . . 81

4.3 High-level of Dumbo-NG. Each node leads an ever-running multi-shot

broadcast to disseminate its input transactions. Aside from broadcasts,

a sequence of asynchronous multi-valued validated Byzantine agreements

(MVBAs) are executed to totally order all broadcasted transactions. 84

4.4 Ever-growing multi-shot broadcast. 90

4.5 Illustration on how to totally order the received broadcasts through executing

a sequence of MVBAs. 91

4.6 Performance of Dumbo-NG in comparison with the state-of-the-art asynchronous

protocols (in the WAN setting). 104

4.7 Throughput/latency of Dumbo-NG, sDumbo and Dumbo in varying batch

size for WAN setting (n = 16). 105

4.8 Latency of GLL+22-MVBA [73] with n=16 nodes in varying bandwidth for

(a) 50ms and (b) 200ms one-way network delay, respectively. 106

4.9 The dependency of throughput on varying batch size in controlled deployment

environment with 50 ms one-way delay and (a) 75Mbps and (b) 150Mbps

bandwidth. 107

xv

LIST OF FIGURES

(Continued)

Figure Page

4.10 Numerical analysis to show the throughput-latency trade-offs in Dumbo-NG
and HBBFT variants. 109

5.1 Execution flow of KS02 [80] and RC05 [113]. Both rely on cumbersome

asynchronous MVBA to do pace-sync. 121

5.2 Consequence of slow fallback in KS02/RC05 in fluctuating networks. The

length of each phase denotes latency. 122

5.3 Block and output log due to our terminology. 125

5.4 The overview of Bolt-Dumbo Transformer. 136

5.5 Notarizability of fastlane abstraction (nw-ABC). 137

5.6 The execution flow of Bolt-Dumbo Transformer 138

5.7 Basic latency in experiments over WAN for two-chain HotStuff, BDT-sCAST,

BDT-sRBC and Dumbo. 152

5.8 Peak throughput in experiments over WAN for two-chain HotStuff, BDT-

sCAST, BDT-sRBC and Dumbo. 153

5.9 Latency of Transformer for pace-sync in BDT-sCAST and BDT-sRBC (when

no fault and 1/3 crash, respectively). MVBA fallback in RC05 is also tested

as a reference point. 153

5.10 Latency v.s. throughput for experiments of BDT with idling fastlane (i.e.,

fastlane just timeouts after 2.5 sec). 154

5.11 Throughput v.s. latency for experiments over WAN when n = 64 and 100,

respectively (in case of periodically running pace-sync in BDT per only 50

fastlane blocks). 155

5.12 Latency v.s. batch size for experiments over wide-area network when n = 64

and n = 100, respectively. 155

5.13 Throughput v.s. batch size for experiments over wide-area network when

n = 64 and n = 100, respectively. 156

xvi

LIST OF FIGURES

(Continued)

Figure Page

5.14 Throughput v.s. latency for experiments over wide-area network when n = 64

and n = 100, respectively (in case of 1/3 crash fault). We fix the fallback

batch size of BDT instances to 106 transactions in all tests. 157

5.15 Sample executions of BDT, 2-chain HotStuff, Dumbo, and the composition

of HotStuff+Abstract+Dumbo for n=64, when facing a few 2-second bad

periods. The red region represents the 2-second period of bad network. . . 158

5.16 Sample executions of BDT, 2-chain HotStuff, Dumbo, and the composition

of HotStuff+Abstract+Dumbo for n=64, when suffering from 120-second

bad network. The red region represents the 120-second period of bad network.159

5.17 Numerical analysis to reflect the average latency of BDT and RC05 [113]

in fluctuating deployment environment. The analysis methodology is

similar to the formulas in Table 5.3 except that here consider more protocol

parameters such as batch size, epoch size, timeout, etc. 163

xvii

CHAPTER 1

INTRODUCTION

1.1 Asynchronous BFT protocol

This section will explain why we are researching asynchronous BFT protocols.

Byzantine fault-tolerant (BFT) protocols, as a fundamental research field in distributed

computing, were first proposed by Lamport et al. [82]. BFT protocols are also known as

Byzantine agreement or BFT consensus, informally. Such protocols enable a group of

untrusted nodes to reach a consensus, making it possible for a distributed system to deliver

the correct service in spite of network latency and the failure of nodes. They provide

both strong safety and liveness, thus having the potential to realize highly available web

services.

In particular, the recent success of blockchain promotes the development of the BFT

protocols, in order to serve as the basic infrastructure of mission-critical applications,

like transactional databases and other financial services. For realizing a critical global

infrastructure with high-security assurance and well-distributed trust, one might expect that

set of mutually distrusting and geologically distributed nodes to collectively maintain it.

Clearly, such decentralized infrastructure has to be implemented atop consensus protocols

that are both secure and efficient in a real-world Internet setting, thus resulting in an

unprecedented demand for studying practical BFT consensus in fluctuating and varying

network environments.

BFT protocols have been studied based on different timing (or network) assumptions. A

synchronous BFT protocol assumes that all values sent by honest nodes will be delivered to

the recipients within a predetermined time period. A partially synchronous BFT protocol,

on the other hand, relaxes this network requirement by allowing the time bound to exist but

be unknown. An asynchronous BFT protocol is the least reliant on network assumptions

1

because it does not require such time assumptions to exist, instead, it just needs to ensure

that all values will be delivered eventually.

Many existing efforts [5, 8, 26, 45, 59, 90] are aimed at making BFT protocols work well

in an in-house deployment environment. Such an environment usually has a relatively

“private” network with well-connected nodes that can ensure message delivery within a

certain period. Therefore, these BFT protocols are designed based on synchronous or

partially synchronous assumptions. Typically, Google Chubby [31] and Apache Kafka [13]

are deployed to enable a small number of nodes on a local-area network to tolerate crash

failures.

However, in wide-area network (WAN) environment, these (partially) synchronous BFT

protocols become unsuitable. They provide no guarantee when messages might be

arbitrarily delayed. Moreover, it is challenging to decide the time parameter when

deploying these BFT protocols in WAN, and the protocols could be of no progress and

would become stuck when the actual network delay is larger than the selected time

parameter. It was recently demonstrated [92] that classic partial synchronous Practical

Byzantine Fault Tolerance (PBFT) [41] cannot advance in “intermittently synchronous

network”, when the adversary only chooses to delay messages occasionally. Similar

results might be obtained by applying the “attack” on a group of synchronous and partially

synchronous BFT protocols [11, 16, 24, 48, 52, 122].

Blockchain technology, in general, broadens the application scenarios for BFT protocols.

Given that nodes in a Blockchain system are typically dispersed across the globe, and

that the open Internet (i.e., WAN) environment presents an adversarial setting where

network latency among nodes could vary over time, it is challenging to guarantee that

the network conditions are stable between any two nodes in the WAN environment. As a

result, an asynchronous blockchain system becomes a superior option for WAN since it

more accurately captures the real-world network environment without assuming bounded

network delay. Therefore, eliminating the synchronization assumption entirely becomes

increasingly desirable for both robustness and efficiency.

2

Besides asynchronous protocols can better reflect real-world network environments,

another important reason why asynchronous protocols are advantageous is their efficiency,

particularly a property known as “responsiveness”. When designing a synchronous BFT

protocol, the assumed upper bound of network latency is parameterized, which is normally

chosen to be large so that the actual network latency is always smaller to ensure the

synchrony assumption is met. Due to this, the efficiency of most synchronous BFT

protocols is related to the assumed network latency upper bound. While responsiveness

requires that performance be only related to actual network latency, the protocol does not

rely on any timing assumptions, and progress is made as soon as messages are delivered.

Furthermore, because no time-out mechanism is required, asynchronous protocols

significantly simplify the engineering efforts when actually building the distributed system.

In contrast, when designing a system that implements a synchronous or partial synchronous

protocol, all kinds of ad-hoc, error-prone time-out mechanisms should be considered, which

might cause the whole system more complicated.

1.2 Prior to the Dumbo family

In this section, we will elaborate on the related work of asynchronous BFT protocols and

discuss the practical obstacles of using them in the real world.

Since the 1980s when Lamport, Pease, and Shostak proposed the concept of Byzantine

agreement (BA) in their seminal paper, a lot of research has been done on the problem,

and many of them focused on the enticing asynchronous setting. One seminal work

on this topic is an impossible result proven by Fischer, Lynch and Paterson (which is

known as FLP ”impossibility”) [60]. The seminal FLP “impossibility” states that no

deterministic consensus protocol can be possible in asynchronous settings if one node

crashes. Many attempts [6, 9, 21–23, 34, 35, 37, 40, 80, 95–97, 107, 111, 113] have been

made to design randomized asynchronous protocols to circumvent the “impossibility”

for over four decades. The asynchronous atomic broadcast is a key component of fault-

tolerant distributed systems. In fact, any protocol developed to solve the atomic broadcast

can also be used to solve the Byzantine agreement, and vice versa [80, 113]. Atomic

3

broadcast allows a group of n nodes (in this thesis, the terms ”node” and ”party” are

used interchangeably) to agree on a set of values to deliver and also on their delivery

order, despite the failure of up to f (< n/3) nodes. In other words, the atomic broadcast

can be viewed as the continuous process of BA. Even though, most of those studies

on asynchronous atomic broadcast (ABC) protocols focused on theoretical feasibility,

unsurprisingly, they have prohibitively high costs and very few implementations have

inferior performance. Specifically, Ben-Or [21] presents an asynchronous protocol that

requires exponential time complexity. Later, Canetti and Rabin [40] propose a polynomial-

time asynchronous Byzantine agreement protocol, but the message complexity blows up

and becomes the bottleneck in their work.

In the 2000s, the work of Cachin et al. [35] considers computationally bound adversaries

and a trusted setup, which for the first time achieves a fairly practical polynomial-time

protocol for asynchronous Binary Byzantine agreement via public-key cryptographic

primitives. Based on [35], Cachin et al. [34] present a fairly practical protocol for

asynchronous atomic broadcast, but the (per message) communication complexity is

still up to O(n3) if there are n nodes. After that, two new asynchronous atomic broadcasts

are proposed [80, 113]. They consider when the actual network delay could be reasonable,

and at which point their protocol will work with the optimistic phase. Otherwise, it will

automatically shift the protocol into the pessimistic phase via a pace-synchronization

mechanism (analog to view-change with asynchronous securities). The optimistic cost

in [80] is O(n2) communication complexity, and afterward, the work of [113] reduces

the communication complexity from O(n2) to O(n) in the optimistic phase. Even

so, the pessimistic phase and pace-synchronization are still too heavy, which is due

to the cost of communication complexity still being up to O(n3). As a result, it is

fundamentally challenging to realize practical asynchronous BFT consensus, and none

of such protocols has been widely adopted due to serious efficiency concerns, e.g., these

BFTs [9, 23, 34, 37, 80, 113] have a high communication complexity, and the performance

of these protocols will drop sharply when the system scales up.

4

Although the majority of earlier studies on asynchronous BFT were theoretical in nature,

researchers continued to make great efforts and finally saw the light when the first practical

asynchronous atomic broadcast protocol, HBBFT, was proposed in [92]. In order to push

asynchronous BFT towards being practical, the elegant work of HBBFT observes that

asynchronous atomic broadcast could be very lightly built from a weaker variant called

asynchronous common subset (ACS) together with a threshold encryption scheme. The

ACS protocol from [23, 92] was made up of two sub-protocols: reliable broadcast (RBC)

and asynchronous binary agreement (ABA). An ACS protocol only requires nodes to agree

on a subset of all their inputs. More importantly, it was observed in [92] that the classic

ACS protocol from Ben-Or et al. [23] is much more likely to be efficient, both in terms of

asymptotic communication complexity and practically, if its building blocks are carefully

chosen. Even though there is a way to build ACS from MVBA [34], unfortunately, the

only construction [34] brings huge overhead in communication complexity, and the MVBA

primitive becomes a bottleneck in this way of construction.

Compared with the work of [34], although the communication complexity of HBBFT is

optimal in theoretical, the round complexity blows up to O(log n) from constant in [34].

Hence, reducing the round complexity of O(log n) to the constant could increase practical

performance.

1.3 Evolving of the Dumbo family

We will elaborate on the works of the Dumbo family in this section. These works also

reflect the evolution of the Dumbo family.

In our series of works on the Dumbo family [63,73,74,87,88] , our first work, Dumbo BFT

protocol [74], first identified the major bottleneck of HBBFT and reduced the number of

ABA instances by re-introducing MVBA into ACS, finally achieving the constant running

time that dramatically improved the performance.

Second, in Dumbo BFT, there are two reasons contributing to the inferior performance:

(1) The RBC protocols still incur substantial costs; (2) the MVBA protocol itself is quite

5

complicated and heavy. So focusing on these pain points, we present Speeding Dumbo

[73], a new member of the Dumbo family, that replaces the RBC instance with a cheaper

broadcast component. Moreover, it also proposed a new MVBA protocol, Speeding MVBA

(sMVBA), which is concretely more efficient than all existing MVBAs (at the time of

proposing it).

Third, our other Dumbo family member, Dumbo-MVBA [88], answers a nearly 20-year

open problem to asymptotically reduce the communication complexity from O(�n2 + λn2 +

n3) [34] to O(�n + λn2) (where n is the number of parties, � is the input length, and λ is the

security parameter), which helps MVBA for the first time achieve optimal communication

complexity when � > λn.

Fourth, with careful analysis of these many existing asynchronous protocols (e.g. HBBFT

and Dumbo [73, 74]), we can find that these protocols consist of two main phases—

the bandwidth-intensive transaction dissemination phase and the bandwidth-oblivious

agreement phase. The dissemination phase is bandwidth-intensive, however, the agreement

phase is bandwidth-oblivious and latency-critical. Hence, it is unprecedentedly urgent

to implement a robust BFT consensus that realizes high throughput while preserving low

latency. Our Dumbo family member, Dumbo-NG [63], is a novel asynchronous BFT

atomic broadcast designed to address these practical issues.

Fifth, the last member of the Dumbo family considered the practical issues when deploying

these asynchronous atomic broadcast protocols in WAN. We all know that the actual WAN

network is always changing. Because the Internet is so dynamic, it creates new fundamental

challenges for making BFT consensus protocols that are both secure and very efficient.

In fact, when network conditions are good, state-of-the-art randomized asynchronous

consensus still performs much worse than deterministic (partial) synchronous consensus,

especially when it comes to the critical latency metric. For this practical pain point, we

present our last member, Bolt-Dumbo Transformer (BDT) [87], a generic framework for

practical optimistic asynchronous atomic broadcast.

6

2001

2016

2020

2022

Eariler Result
•
•
•

Secure and Efficient ABC (Crypto’ 01)
• Cubic
•
•

Honey Badger BFT (CCS’ 16)
•
•
•
•

Dumbo BFT (CCS’ 20)
•
•
•

•

Dumbo-MVBA (PODC’ 20)
•

Speeding-Dumbo (NDSS’ 22)
•
•
•
•

Bolt-Dumbo-Transformer (CCS’ 22)
•
•

Dumbo-NG (CCS’ 22)
•
•
•

FLP
“impossibility”

Dumbo-NG
CCS’22

BDT
CCS’22

KS 02 (ICALP’ 02)
RC 05 (OPODIS’ 05)

(Partial)
Synchronous BFT
Atomic Broadcast

ACS

Cachin et al.
Crypto’ 01

Dumbo
CCS’ 20

Speeding Dumbo
NDSS’ 22

Asynchronous BFT
Atomic Broadcast

HBBFT
CCS’ 16

Dumbo-MVBA
PODC’ 20

Figure 1.1: The evolution of the Dumbo family.

As shown in Figure 1.1, the Dumbo family evolves step by step with the clear aim of

achieving a more practical asynchronous BFT consensus. We elaborate on the work of

each member as follows:

1. Dumbo BFT. As the first practical asynchronous atomic broadcast protocol, HBBFT

proposed by Miller et al. in [92], demonstrated impressive performance. The core of

HBBFT is to achieve batching consensus using ACS of Ben-Or et al., constituted

with n RBC to have each node propose its input, followed by n ABA to make a

decision for each proposed value. Due to the famous FLP impossibility [60], an

ABA must be a randomized protocol. This brings in the following drawback: though

the expected number of “rounds” of each ABA protocol is constant, the expected

number of rounds of running n concurrent ABA instances could be significant, i.e.,

at least O(log n) [22]. More seriously, those ABA instances do not really execute in a

fully concurrent fashion. When n gets larger, and the network is unstable, there will

likely be some ABA instances that terminate very slowly. The slowest ABA instance

dominates the running time of the ACS of HBBFT. The practical impact of ABA

7

protocols on the performance of HBBFT was shown in Figure 2 of [74], it is clear

that for HBBFT, the cost of ABA is dominating, and the pattern becomes even more

significant as the scale of the system grows. This simple observation inspires us to

reduce the number of ABA instances needed in the ACS protocol.

In Dumbo BFT, we propose two new atomic broadcast protocols (called Dumbo1,

Dumbo2) both of which have asymptotically and practically better efficiency. In

particular, the ACS of Dumbo1 only runs a small κ (independent of n) instances

of ABA, while that of Dumbo2 further reduces it to constant! At the core of our

techniques are two major observations: (1) reducing the number of ABA instances

significantly improves efficiency; and (2) using MVBA which was considered sub-

optimal for ACS in [92] in a more careful way could actually lead to a much more

efficient ACS.

2. Speeding Dumbo. Despite the work of the Dumbo BFT protocol, which redesigned

the HBBFT protocol backbone that used one MVBA to replace n concurrent ABA

protocols and dramatically improved the performance, asynchronous BFT protocols

remain slow, and in particular, the latency is still quite large. There are two reasons

contributing to the inferior performance: (1) The RBC protocols still incur substantial

costs; (2) the MVBA protocols are quite complicated and heavy, and all existing

constructions need dozens of rounds and take the majority of the overall latency.

We propose Speeding Dumbo (sDumbo) to continue pushing forward the perfor-

mance of asynchronous BFT consensus protocols: we first reduce the message

complexity to optimal via replacing the RBC instance with a cheaper broadcast

component; together with the recent major progresses [74, 92], we have an

asynchronous consensus protocol that is optimal for all major metrics, including

round complexity, communication complexity (when the batch size is moderate), and

message complexity. We then design a compact MVBA protocol (dubbed sMVBA,

that can be of independent interest and use), so that its round about complexity is

reduced from multiple dozens to a dozen or fewer. It requires only 6 rounds in

8

the best case and is expected to require 12 rounds in the worst case (by contrast,

several dozens of rounds were required in the MVBA from Cachin et al. [34] and the

Dumbo-MVBA [88], and around 20 rounds in the MVBA from Abraham et al. [9]).

3. Dumbo-MVBA. Typically, multi-valued asynchronous Byzantine agreement instances

with external validity are executed sequentially to instantiate asynchronous atomic

broadcast [34, 49]. MVBA, proposed in the elegant work of Cachin et al. [34], is

fundamental for critical fault-tolerant services such as ABC in the asynchronous

network. For example, MVBA was used as a core building block to implement

ABC [33,80,113]. In MVBA, each party takes a value as input and decides one of the

values as output, as long as the decided output satisfies the external validity condition.

It was left as an open problem to asymptotically reduce the O(�n2 + λn2 + n3)

communication in [34] (where n is the number of parties, � is the input length, and

λ is the security parameter). This is also the reason why the HBBFT uses the ACS

of Ben-Or et al. [23], which is composed of n RBC and n ABA, instead of using

ACS of Cachin et al. [34], which reduces ACS to MVBA. Even if the former ACS

has O(logn) time complexity, while the latter ACS is constant. Recently, Abraham

et al. [9] removed the n3 term to partially answer the question when input is small.

However, in other typical cases, e.g., building atomic broadcast through MVBA, the

input length � ≥ λn, and thus the communication is dominated by the �n2 term and

the problem raised by Cachin et al. remains open.

We present two MVBA protocols (Dumbo-MVBA and Dumbo-MVBA�) that reduce

the communication cost of prior art [9,34] by anO(n) factor. At the core of our design,

we propose asynchronous provable dispersal broadcast (APDB) in which each input

can be split and dispersed to every party and later recovered in an efficient way.

First, leveraging APDB and asynchronous binary agreement, we design an optimal

MVBA protocol, Dumbo-MVBA. Second, we also present a general self-bootstrap

framework Dumbo-MVBA� that can reduce the communication of any existing

MVBA protocols. The key idea is to invoke the underlying MVBA with taking as

input the small-size proofs of APDB. Though Dumbo-MVBA� is a “reduction” from

9

MVBA to MVBA itself, an advanced module instead of more basic building block

such as binary agreement, this self-bootstrap technique can better utilize MVBA to

achieve a simple modular design. These communication-efficient MVBA protocols

also attain other optimal properties, asymptotically. Our results complement the

recent breakthrough of Abraham et al. at PODC ’19 [9] and solve the remaining part

of the long-standing open problem from Cachin et al. at CRYPTO ’01 [34].

Finally, we show that our MVBA protocols can immediately be applied to construct

efficient asynchronous atomic broadcast with reduced communication blow-up as

previously suggested in [34]. Moreover, they can provide better building blocks

for the Dumbo BFT protocols [63, 73, 74], the recent constructions of practical

asynchronous atomic broadcast that rely on MVBA at their heart for efficiency.

4. Dumbo-NG. It is unprecedentedly urgent to implement a robust BFT consensus

that realizes high throughput while preserving low latency. In order to achieve

their maximum throughput, many state-of-the-art asynchronous protocols typically

sacrifice latency, which presents a serious practical challenge. To see the reason

behind the throughput-latency tension in the existing performant asynchronous BFT

protocols (with linear amortized communication complexity) such as HBBFT/Dumbo,

recall that these protocols consist of two main phases—the bandwidth-intensive

transaction dissemination phase and the bandwidth-oblivious agreement phase.

The dissemination phase is bandwidth-intensive as it exchanges a large volume

of transactions. However, the agreement phase is bandwidth-oblivious and

latency-critical, as it need to exchange many rounds of short messages to decide

which broadcasts shall be part of the output. Different from the dissemination phase

that contributes into throughput, the agreement phase just hinders throughput, as

it “wastes” available bandwidth in the sense of incurring large latency to block

successive epochs’ broadcasts. Thus, to sustain high throughput, each node has to

broadcast a huge batch of transactions to “contend” with the agreement phase to

seize most available bandwidth resources. However, larger batches unavoidably

10

cause inferior latency, although they can saturate the network capacity to obtain the

maximum throughput.

Besides the unpleasant throughput-latency tension, the asynchronous protocols

might also face serious censorship threat. This is because during the transaction

dissemination phase, the adversarial network can delay the broadcasts containing

its disliked transactions and prevent the certain transactions from being output.

To mitigate the censorship threat and ensure liveness, existing designs rely

on asymptotically larger communications, costly cryptographic operations, or

probably unbounded memory. As a result, existing asynchronous BFT atomic

broadcast protocols pose the next challenge, how to achieve the asynchronous BFT

consensus further to realize minimum latency, maximum throughput, and guaranteed

censorship-resilience, simultaneously?

We discuss the pain points of the current asynchronous BFT atomic broadcast,

and then presents Dumbo-NG. The core of Dumbo-NG is to separate the message

broadcast and consensus process, the consensus process works aside from the

broadcast process. Dumbo-NG is a novel asynchronous BFT atomic broadcast

protocol designed to address the remaining practical issues. Its technical core is

a non-trivial direct reduction from asynchronous atomic broadcast to MVBA with

quality property (which ensures the output of MVBA is from honest nodes with 1/2

probability). Dumbo-NG deconstructs the prior broadcast-then-consensus paradigm,

and makes the transaction broadcasts completely running off consensus. Most

interestingly, the new protocol structure empowers completely concurrent execution

of transaction dissemination and asynchronous agreement. This brings about two

benefits: (i) the throughput-latency tension is resolved to approach peak throughput

with minimal increase in latency; (ii) the transactions broadcasted by any honest

node can be agreed to output, thus conquering the censorship threat without extra

cost.

11

5. Bolt-Dumbo Transformer. The dynamic nature of Internet poses new fundamental

challenges for implementing secure yet still highly efficient BFT consensus

protocols. Traditionally, most practical BFT protocols were studied for the in-house

scenarios where participating parties are geographically close and well connected.

Unsurprisingly, their securities rely on some form of assumptions about the network

conditions. Unfortunately, these synchrony assumptions may not always hold

in the wide-area network, because of fluctuating bandwidth, unreliable links,

substantial delays, and even network attacks. In contrast to the deterministic

partially-synchronous or synchronous protocols, asynchronous BFT can ensure

liveness and responsiveness without any form of timing assumptions. The above

issues correspond to a fundamental “dilemma” lying in the design space of BFT

consensus protocols suitable for the open Internet: the deterministic synchronous

protocols can be simple and fast in good network conditions, but are subject to

denial-of-service (or even safety vulnerability) when synchrony assumption fails.

Asynchronous protocols, on the contrary, are robust against the adversarial network,

but are substantially more complicated and slower for the inherent use of randomness.

Unfortunately, existing works [80, 113] try to address this issue, but they directly

use a heavy tool of MVBA. When such fallback frequently occurs in the fluctuating

wide-area network setting, the benefits of adding fastlane can be eliminated.

We present Bolt-Dumbo Transformer (BDT), a generic framework for practical

optimistic asynchronous atomic broadcast. This design enables a highly efficient

pace-synchronization to handle fallback. Specifically, BDT features low latency

(same to the state-of-the-art pipelined consensus) when the network remains in

good conditions for most of the time, and it can closely track the performance of the

underlying fully asynchronous protocol when facing much worse network conditions.

The resulting design reduces a cumbersome MVBA to a variant of the conceptually

simplest binary agreement only. Besides, to our knowledge, this is the first optimistic

asynchronous atomic broadcast realizing such a level of applicability, because of a

12

highly efficient pace-synchronization subprotocol that is reduced to the conceptually

minimum binary agreement.

The goal of the Dumbo family is to design asymptotically optimal and practical

asynchronous Byzantine fault tolerant protocols. We would strive to provide asymptotic

improvements over existing asynchronous protocols, as well as practical optimizations

such that the end protocols can indeed be deployed in a real-world environment. We

believe that the Dumbo family could be a promising outcome toward this goal and might

be a major step forward in asynchronous BFT protocols.

1.4 Recent Developments on DAG-based Asynchronous BFT

Apart from the previously mentioned asynchronous BFT approach, there’s an alternative

method to achieve asynchronous BFT by utilizing a directed acyclic graph (DAG). For

ease of expression, we’ll call this type of asynchronous BFT as DAG-based asynchronous

BFT.

In DAG, each vertex represents a message sent by a node (sender), and each message

carries transactions and references. References indicate that the sender received vertices

in the last round. Those references form the edges of the DAG. The most significant

benefit of the DAG is its elegant data structure, which contains information that enables

nodes to totally order the DAG from their own perspective, all without needing to send

additional messages. In other words, after constructing the DAG, achieving consensus

on it doesn’t involve any additional communication cost. This effective data structure

has drawn the interest of numerous researchers who utilize DAG to design asynchronous

protocols [19, 53, 54, 69, 70, 77, 98, 103, 109, 116]. The earliest instance of employing the

DAG concept to devise asynchronous protocols can be traced back to 1999 [98]. Since

then, very few papers recognized the potential of using DAGs to construct asynchronous

BFT until the proposal of HashGraph in 2016 [19] and subsequently Aleph in 2019 [70].

However, their performance continues to be unsatisfactory. To be more specific, Hashgraph

was constructed using an unstructured DAG and a local coin approach to circumvent the

13

FLP impossibility [60]. Unfortunately, this approach could result in high communication

costs and exponential time complexity. Aleph achieves an expected constant latency. It

does this by utilizing a structured, round-based DAG and incorporating shared randomness

in each round. However, it’s worth noting that Aleph needs to rely on unbounded memory,

as explained in [54, 69].

Recent advancements in DAG-based asynchronous Byzantine atomic broadcast include

efforts like DAG-Rider [77], Tusk [54] and Bullshark [69]. DAG-Rider achieves three

significant objectives. First, it has optimal amortized communication complexity by

combining batching techniques with an efficient asynchronous verifiable information

dispersal protocol [38]. Second, it assures post-quantum safety by avoiding reliance on

cryptographic primitives that could be compromised by quantum computers. Finally,

DAG-Rider ensures eventual fairness, ensuring that all transactions proposed by honest

nodes are eventually delivered. Tusk decouples transaction diffusion and agreement

in an asynchronous setting, allowing consensus to concentrate on ordering small-size

references, such that the approach yields unexpected system throughput. However, due to

the fundamental technical aspect of Tusk involving a garbage collection mechanism, the

strict guarantee of eventual fairness is somewhat relaxed.

Despite achieving optimal complexity, both DAG-Rider and Tusk’s results still possess

several gaps that need to be resolved before practical deployment. Primarily, these protocols

perform notably worse than deterministic synchronous protocols like [5, 8, 45, 125]

during favorable network conditions, particularly in terms of latency. Additionally,

there is currently no existing DAG-based asynchronous BFT protocol that can ensure

eventual fairness while not requiring unbounded memory. The state-of-the-art DAG-based

asynchronous BFT protocol is Bullshark, and it effectively addresses all these challenges.

To begin with, it’s tailored for the usual synchronous scenarios, offering a low latency

fast-path. Furthermore, Bullshark maintains the desired properties introduced in protocols

like DAG-Rider while also demonstrating impressive practical performance.

14

In the previous section where we introduced asynchronous BFT, we referred to it as

BA-based asynchronous BFT. In contrast to BA-based asynchronous BFT, DAG-based

asynchronous BFT is a diverging paradigm, and all of them are pipelined BFT. DAG-based

asynchronous BFT protocols are concurrently developed alongside BA-based asynchronous

BFT, potentially enjoying better parallelism but also introducing other trade-offs. Thus, the

practical superiority of either approach remains uncertain and requires further investigation.

In this thesis, we only focus on BA-based asynchronous BFT.

1.5 Structure of this Thesis

The thesis gives a brief overview of the two early members, Dumbo BFT and Speeding

Dumbo, but doesn’t go into detail about them. The main body of this thesis is the three most

recent asynchronous protocols. In particular, this thesis is put together in the following

way:

Chapter 2 introduces all relevant notations that we utilized in the protocols. In addition,

it also introduces some needed cryptographic primitives and underlying asynchronous

consensus protocols that can be employed as building blocks.

Chapter 3 discusses Dumbo-MVBA and its application to optimal asynchronous atomic

broadcast. First, we propose asynchronous provable dispersal broadcast (APDB), and then

use it to design an optimal MVBA protocol. After that, we present a general framework

Dumbo-MVBA�. In the end, we elaborate how to obtain efficient asynchronous atomic

broadcast through improving Cachin et al.’s results in [34].

Chapter 4 presents Dumbo-NG, a fast asynchronous BFT consensus with throughput-

oblivious latency. In this chapter, we point out that many recent efforts [73, 74, 92] insist

on the broadcast-then-consensus paradigm, which is why these asynchronous BFT atomic

broadcasts have suboptimal performance. Then, we break down the old broadcast-then-

consensus model and make the transaction broadcasts run completely concurrent with the

consensus process in a concise and efficient way. Finally, we evaluate our Dumbo-NG

15

and compare it to the state-of-the-art asynchronous BFT protocols Dumbo BFT and

Speeding-Dumbo.

Chapter 5 discusses how to make a BFT consensus achieving the best of both synchronous

and asynchronous paradigms, and proposes a generic framework Bolt-Dumbo Transformer

(BDT). The outcome of chapter 5 is also can be directly applied to the consensus protocol

of chapter 4. At the end of the chapter, we implement the related experiment to show the

superiority of our proposed approach.

In the final Chapter 6 of this thesis, we provide a brief overview of this thesis, summarizing

its main results, as well as discussing some potential studies that are promising and

meaningful for future work.

16

CHAPTER 2

PRELIMINARIES

In this chapter, we introduce relevant notations, formal cryptographic primitives, and

asynchronous consensus protocols that will be employed throughout this thesis.

2.1 Notations

We let [n] be short for {1, 2, . . . , n}. The cryptographic security parameter is denoted by

λ, capturing the bit-length of signatures and hashes. We let |B| denote the batch size

parameter, i.e., each node always chooses |B| transactions from its buffer to disseminate.

〈x, y〉 denotes a string concatenating two strings x and y. Throughout the paper, P.P.T. is

short for probabilistic polynomialtime.

Any message between two parties is in the form of MsgType(id, ·, ·, · · ·), where MsgType

specifies the message type and id is the identifier tagging the protocol instance. We might

omit the id field in messages for brevity if there is a clear context, and also let “A multicasts

Msg” denote that a party A sends a message Msg to all parties, and let “B aborts” denote

that a party B quits the protocol execution. The pseudocode of our protocol follows

the conventional way to describe asynchronous protocols [34, 88]: we let “wait for” to

represent that the protocol is blocking until a certain event; sometimes, we omit an implicit

“wait for” handler for the incoming messages and use “upon receiving” to describe how

to process an applicable message; “multicast” means to send a message to all parties;

“output” means to return some value without halt; “return W” means to output W and then

halt; Moreover, Π[id] refers to an instance of some protocol Π with an identifier id, and

y← Π[id](x) means to invoke Π[id] on input x and wait for its output y.

Performance metrics. We are particularly interested in constructing practical asynchronous

BFT protocols. So it becomes meaningful to consider the following key efficiency metrics:

17

• (Amortized) communication complexity. the expected number of bits exchanged

among honest nodes for each output transaction;

• Message complexity. This characterizes the number of messages exchanged among

honest parties to produce a block;

• Asynchronous round complexity. the expected asynchronous rounds needed to output

a transaction tx (after an honest node invokes the protocol to totally order tx). Here

asynchronous round is the “time” measurement in an asynchronous network, and

can be viewed as a “time” unit defined by the longest delay of messages sent among

honest nodes [40, 77].

2.2 Cryptographic Primitives and Protocols

Negligible function. We say that a function negl : N→ R is negligible if for every positive

integer c there exists an integer Nc such that for all x > Nc,

|negl(x)| < 1
xc .

Negligible probability and Overwhelming probability. If the probability of an event is a

negligible function (in λ), it is said that the event happens with negligible probability; If

the probability of an event happens except with negligible probability, the event is said

with overwhelming probability.

Hash function. Hash functionsH are functions that convert an input string of arbitrary

length to a string of fixed length. Formally, a collision resistant hash function H [110]

satisfying the following conditions:

1. The input string X can be of arbitrary length and the resultH(X) is a fixed length

string;

2. The hash function must be one-way in the sense that given a Y in the image ofH , it

is “hard” to find a string X such thatH(X) = Y , and given X andH(X), it is “hard”

to find a string X′ � X such thatH(X) = H(X′);

18

3. The hash function must be collision resistant: this means that it is “hard” to find two

distinct strings that hash to the same result.

Erasure code scheme. A (k, n)-erasure code scheme [25] consists of a tuple of two

deterministic algorithms Enc and Dec. The Enc algorithm maps any vector v = (v1, · · · , vk)

of k data fragments into an vector m = (m1, · · · ,mn) of n coded fragments, such that any k

elements in the code vector m is enough to reconstruct v due to the Dec algorithm. More

formally, a (k, n)-erasure code scheme has a tuple of two deterministic algorithms:

1. Enc(v)→ m. On input a vector v ∈ Bk, this deterministic encode algorithm outputs

a vector m ∈ Bn. Note that v contains k data fragments and m contains n coded

fragments, and B denotes the field of each fragment.

2. Dec({(i,mi)}i∈S) → v. On input a set {(i,mi)}i∈S where mi ∈ B, and S ⊂ [n] and

|S | = k, this deterministic decode algorithm outputs a vector of data fragments

v ∈ Bk.

We require (k, n)-erasure code scheme is maximum distance separable, namely, the original

data fragments v can be recovered from any k-size subset of the coded fragments m, which

can be formally defined as:

• Correctness of erasure code. For any v ∈ Bk and any S ⊂ [n] that |S | = k,

Pr[Dec({(i,mi)}i∈S) = v | m := (m1, · · · ,mn) ← Enc(v)] = 1. If a vector m ∈ Bn is

indeed the coded fragments of some v ∈ Bk, we say the m is well-formed; otherwise,

we say the m is ill-formed.

Instantiation. Through the paper, we consider a (f + 1, n)-erasure code scheme where

3 f + 1 = n. Besides, we emphasize the erasure code scheme would implicitly choose a

proper B according to the actual length of each element in v, such that the encoding causes

only constant blow-up in size, namely, the bits of m are different from the bits of v by

at most a constant factor. One well-known instantiation of such the primitive is due to

Rabin [112].

19

Position-binding vector commitment (VC). For an established position-binding n-vector

commitment (VC), there is a tuple of algorithms (VCom,Open,VerifyOpen). On input

a vector m of any n elements, the algorithm VCom produces a commitment vc for the

vector m. On input m and vc, the Open algorithm can reveal the element mi committed

in vc at the i-th position while producing a short proof πi, which later can be verified by

VerifyOpen.

Formally, a position-binding VC scheme (without hiding) is abstracted as:

1. VC.Setup(λ, n,M)→ pp. Given security parameter λ, the size n of the input vector,

and the message spaceM of each vector element, it outputs public parameters pp,

which are implicit inputs to all the following algorithms. We explicitly require

M = {0, 1}∗, such that one VC scheme can commit any n-sized vectors.

2. VCom(m)→ (vc; Aux). On input a vector m = (m1, ...,mn), it outputs a commitment

string vc and an auxiliary advice string Aux. We might omit Aux for presentation

simplicity. Note we do not require the hiding property, and then let VCom to be a

deterministic algorithm.

3. Open(vc,mi, i; Aux)→ πi. On input mi ∈ M, i ∈ [n], the commitment vc and advice

Aux, it produces an opening string π to prove that mi is the i-th committed element.

We might omit Aux for presentation simplicity.

4. VerifyOpen(vc,mi, i, πi)→ 0/1. On input mi ∈ M and i ∈ [n], the commitment vc,

and an opening proof π, the algorithm outputs 0 (accept) or 1 (reject).

An already established VC scheme shall satisfy correctness and position binding:

• Correctness. An established VC scheme with public parameter pp is correct, if for

all m ∈ Mn and i ∈ [n], Pr[VC.VerifyOpen(vc,mi, i,VC.Open(vc,mi, i,Aux)) = 1 |
(vc,Aux)← VC.VCom(m)] = 1.

• Position binding. An established VC scheme with public parameter pp is said

position binding, if for any P.P.T. adversary A, Pr[VC.VerifyOpen(vc,m, i, π) =

20

VC.VerifyOpen(vc,m′, i, π′) = 1 ∧ m � m′ | (vc, i,m,m′, π, π′) ← A(pp)] <

negl(λ), where negl(λ) is a negligible function in λ.

Instantiation. There are a few simple solutions to achieve the above VC notion. An

example is hash Merkle tree [91] where the commitment vc is O(λ)-bit and the openness

π is O(λ log n)-bit. Moreover, when given computational Diffie-Hellman assumption

and collision-resistant hash function, there is a position-binding vector commitment

scheme [43], s.t., all algorithms (except setup) are deterministic, and both commitment

and openness are O(λ) bits.

Relying on computational Diffie-Hellman (CDH) assumption and collision-resistant hash

function, there is a construction due to Catalano et al. [43] that realizes the position-binding

vector commitment as follows:

• VC.Setup(λ, n) → pp. LetH be a collision-resistant hash functionH : {0, 1}∗ →
Zp. Given λ, generate G and GT that are two bilinear groups of prime order p with

a bilinear map e : G × G → GT ; also choose g that is a random generator of G.

Randomly choose (z1, · · · , zn) from Zp, and for each i ∈ [n], compute hi ← gzi . For

each i, j ∈ [n] and i � j, compute hi, j = gziz j . Set pp = (g, {hi}i∈[n], {hi, j}i, j∈[n],i� j).

• VCom(m)→ (vc; Aux). Compute vc =
∏n

i=1 hH(mi)
i and Aux = (H(m1), · · · ,H(mn)).

The output Aux might be omitted in the paper for simplicity.

• Open(vc,mi, i; Aux) → πi. Compute πi =
∏n

j=1, j�i hH(mi)
i, j = (

∏n
j=1, j�i hH(mi)

j)zi . We

might omit the input Aux for presentation simplicity.

• VerifyOpen(vc,mi, i, πi)→ 0/1. It checks whether e(vc/hH(mi)
i , hi) = e(πi, g) or not.

Regarding the size of the commitment and the openness proof, it is clear that they contain

only a single group element in G, which corresponds to only O(λ) bits and is independent

to the length of each committed element. In addition, all algorithms run in polynomial

time, and they (except the setup) are deterministic.

21

Digtal signature is an authentication mechanism that enables the creator of a message to

attach a code that acts as a signature. Formally, a digital signature scheme is a triple of

probabilistic polynomial time algorithms (Ds.gen,DS.sign,DS.verify), satisfying:

1. Ds.gen(1λ)→ (pk, sk). On input λ, it randomized generates a public key (pk), and

a corresponding private key (sk), where λ is the security parameter;

2. DS.sign(sk,m) → σi. On input a message m and a secret key share ski, this

deterministic algorithm outputs a signature σ;

3. DS.verify(m, (pk, σ)) → 0/1. Given a message m, signature σ and pk, this

algorithms outputs 1 (accept) or 0 (reject).

We require an established digtal signature scheme to satisfy correctness and secure:

• Correctness. The correctness property requires that: for ∀ m,

Pr[DS.verify(m, pk,DS.sign(m, sk)|(pk, sk)→ Ds.gen(1λ))] = 1.

• Secure. Unless sk leaks, no P.P.T. adversary can produce valid signature except with

negligible probability in λ.

Threshold encryption (TPKE)) is a cryptographic primitive that allows any node to

encrypt a value, such that the network nodes must work together to decrypt it. We

consider only t correct decryption shares for a ciphertext, the plaintext can be recovered.

It guarantees that the adversary learns nothing about the plaintext unless at least t − f

correct node reveals its decryption share. More formally, an TPKE scheme consists of five

algorithms:

• TPKE.Setup(n, t, 1λ) → (PK,VK, SK): Takes as input the number of decryption

servers n, a threshold t, where 1 ≤ t ≤ n, and a security parameter λ. It generates

a public key PK, a verification key VK, and SK = (sk1, · · · , skn) is a vector of n

private key shares. Node Pi gets {PK,VK, ski};

• TPKE.Enc(PK,m)→ C: Takes as input a public key PK and a message m. It outputs

a ciphertext C;

22

• TPKE.DecShare(PK, i, ski,C)→ σi: Takes as input the public key PK, a ciphertext

C, and private key ski. It produces the i−th share of the decryption;

• TPKE.DecVerify(PK,VK,C, {i, σi}) → 0/1: Takes as input the public key PK and

verification key VK, a ciphertext C, and a decryption share σi. It outputs 1 (valid) or

0 (invalid);

• TPKE.Dec(PK,VK,C, {i, σi}i∈[t]) → m: Takes as input the public key PK and

verification key VK, a ciphertext C, and k decryption shares {i, σi}i∈[t]. It outputs

plaintext m (or ⊥).

We require an established TPKE scheme to satisfy two consistency properties:

• For any ciphertext C, if σi = TPKE.DecShare(PK, i, ski,C) where ski is the i − th

private key share in SK, then TPKE.DecVerify(PK,VK,C, {i, σi}) = 1.

• If C is the output of TPKE.Enc(PK,m) and S = {i, σi}i∈[t] is a set of decryption

shares σi = TPKE.DecShare(PK, i, ski,C) for t distinct private keys in SK, then we

require that TPKE.Dec(PK,VK,C, {i, σi}i∈[t]) = m.

Non-interactive threshold signature (TSIG). Given an established (t, n)-threshold

signature, each party Pi has a private function denoted by SignShare(t)(ski, ·) to produce

its “partial” signature, and there are also three public functions VerifyShare(t), Combine(t)

and VerifyThld(t), which can respectively validate the “partial” signature, combine “partial”

signatures into a “full” signature, and validate the “full” signature. Note the subscript

(t) denotes the threshold t through the paper. Formally, a non-interactive (t, n)-threshold

signature scheme TSIG is a tuple of hereunder algorithms/protocols among n parties

{Pi}i∈[n]:

1. TSIG.Setup(λ, t, n)→ (mpk, pk, sk). Given t, n and security parameter λ, generate

a special public key mpk, a vector of public keys pk = (pk1, · · · , pkn), and a vector

of secret keys sk = (sk1, · · · , skn) where Pi gets ski only.

23

2. SignShare(t)(ski,m) → σi. On input a message m and a secret key share ski, this

deterministic algorithm outputs a “partial” signature share σi. Note that the subscript

(t) denotes the threshold t.

3. VerifyShare(t)(m, (i, ρi))→ 0/1. Given a message m, a “partial” signature ρi and an

index i (along with implicit input mpk and pk), this deterministic algorithm outputs

1 (accept) or 0 (reject).

4. Combine(t)(m, {(i, ρi)}i∈S) → σ/⊥. Given a message m and t indexed partial-

signatures {(i, ρi)}i∈S (along with implicit input mpk and pk), this algorithm outputs

a “full” signature σ for message m (or ⊥).

5. VerifyThld(t)(m, σ)→ 0/1. Given a message m and an “aggregated” full signature σ

(along with the implicit input mpk), this algorithms outputs 1 (accept) or 0 (reject).

We require an established TSIG scheme to satisfy correctness, robustness and unforge-

ability:

• Correctness. The correctness property requires that: (i) for ∀ m and i ∈ [n],

Pr[VerifyShare(t)(m, (i, ρi)) = 1 | ρi ← SignShare(t)(ski,m)] = 1; (ii) for ∀ m and

S ⊂ [n] that |S | = t, Pr[VerifyThld(t)(m, σ) = 1 | ∀i ∈ S , ρi ← SignShare(t)(ski,m) ∧
σ← Combine(t)(m, {(i, ρi)}i∈S)] = 1.

• Robustness. No P.P.T. adversary can produce t valid “partial” signature shares, s.t.

running Combine over these “partial” signatures does not produce a valid “full”

signature, except with negligible probability in λ. Intuitively, robustness ensures any

t valid “partial” signatures for a message must induce a valid “full” signature [118].

• Unforgeability (against adaptive adversary). The unforgeability can be defined by a

threshold and adaptive version Existential UnForgeability under Chosen Message

Attack game [83]. Intuitively, the unforgeability ensures that no P.P.T. adversary

A that adaptively corrupts f parties (f < t) can produce a valid “full” signature

except with negligible probability in λ, unlessA receives some “partial” signatures

produced by t − f parties that are honest.

24

Instantiation. The above adaptively secure non-interactive threshold signature can be

realize due to the construction in [83], in which each “partial” signatures ρ and every “full”

signature σ are O(λ) bits in length.

Probabilistically uniformly bounded statistic. Here we showcase the definition of

uniformly-bounded statistic, which is a conventional notion [9, 34] to rigorously describe

the performance metrics of fault-tolerant protocols under the influence of arbitrary

adversary, such as the messages and communicated bits among honest parties.

Definition 1. Uniformly Bounded Statistic. Let X be a random variable representing a

protocol statistic (for example, the number of messages generated by the honest parties

during the protocol execution). We say that X is probabilistically uniformly bounded, if

there exists a fixed polynomial T (λ) and a fixed negligible function δ(k), such that for any

adversary A (of the protocol), there exists a negligible function ε(λ) for all λ ≥ 0 and

k ≥ 0,

Pr[X ≥ kT (λ)] ≤ δ(k) + ε(λ).

A probabilistically uniformly bounded statistic of a protocol performance metric X cannot

exceed the uniform bound except with negligible probability, independent of the adversary.

More precisely, this means, there exists a constant c, s.t. for any adversaryA, the expected

value of X must be bounded by cT (k) + ε′(λ), where ε′(λ) is a negligible function.

Threshold common coin (Coin). A (t, n)-Coin is a protocol among n parties, through

which any t honest parties can mint a common coin r uniformly sampled over {0, 1}κ. The

adversary corrupting up to f parties (where f < t) cannot predicate coin r, unless t − f

honest parties invoke the protocol. Formally, an established (t, n)-Coin scheme satisfies

the following properties except with negligible probability in λ:

• Termination. Once t honest parties activate Coin, each honest party that activates

Coin will output a common value r.

• Agreement. If two honest parties output r and r′ respectively, then r = r′.

25

• Unbiasedness. Under the influence of any P.P.T. adversary, the distribution of the

outputs of Coin is computationally indistinguishable from the uniform distribution

over {0, 1}κ.

• Unpredictability. A P.P.T. adversaryA who can adaptively corrupt up to f parties

(e.g. f < t) cannot predicate the output of Coin better than guessing, unless t − f

honest parties activate Coin.

Instantiation. (t, n)-Coin can be realized from non-interactive (t, n)-threshold signature

due to Cachin, Kursawe and Shoup [36] in the random oracle model. Moreover, it is

immediately to generalize the Coin protocol in [36] against adaptive adversary [9, 86], if

being given non-interactive threshold signature with adaptive security [83]. Throughout this

thesis, when we claim to defend against an adaptive adversary, then we assume all relevant

common coins are adaptively secure, and can be instantiated through the construction

in [86], which incur O(λn2) bits, O(n2) messages and constant O(1) running time, where λ

is the cryptographic security parameter.

Identity election. In our context, an identity Election protocol is a (2 f + 1, n)-Coin

protocol that returns a common value over {1, · · · , n}. Throughout the paper, this particular

Coin is under the descriptive alias Election, which is also a standard term due to Ben-Or

and El-Yaniv [22].

Reliable broadcast (RBC). In RBC, there has a designated sender who aims to send its

input to all parties, Formally, an RBC satisfies the next properties except with negligible

probability:

• Validity. If the sender is honest and inputs v, then all honest parties output v;

• Agreement. The outputs of any two honest parties are same;

• Totality. If an honest party outputs v, then all honest parties output v.

Asynchronous binary agreement (ABA). In an asynchronous binary agreement (ABA)

protocol among n parties, the honest parties input a single bit, and aim to output a common

26

bit b ∈ {0, 1} which shall be input of at least one honest party. Formally, an ABA protocol

satisfies the properties except with negligible probability:

• Termination. If all honest parties activate the protocol with taking a bit as input,

then all honest parties would output a bit in the protocol.

• Agreement. If any two honest parties output b and b′ receptively, then b = b′.

• Validity. If any honest party outputs a bit b ∈ {0, 1}, then at least one honest party

takes b as input.

Instantiation. Many optimally-resilient ABA protocols [34, 36, 99] can be tuned against

adaptive adversary, if the underlying common coin implementation is adaptively secure

[9, 86]. In particular, the ABA secure against adaptive adversary controlling up to � n−1
3
�

parties in [86], which attains expected O(1) running time, asymptomatic O(n2) messages

and O(λn2) bits, where λ is the cryptographic security parameter.

Multi-valued validated Byzantine agreement (MVBA). MVBA [9, 34, 88] is a variant of

Byzantine agreement with external validity, such that the participating nodes can agree on

a value satisfying a publicly known predicate Q. Each node in the MVBA protocol takes a

(probably different) value validated by a global predicate Q (whose description is known

by the public) as input, and decides a value satisfying Q as the output. The protocol shall

satisfy the next properties except with negligible probability:

• Termination. If all honest nodes input some values satisfying Q, then each honest node

would output;

• Agreement. If two honest nodes output v and v′, respectively, then v = v′.

• External-Validity. If an honest node outputs a value v, then v is valid w.r.t. Q, i.e.,

Q(v) = 1;

• Quality. If an honest node outputs v, the probability that v was input by the adversary

is at most 1/2.

27

Note that not all MVBA protocols have the last quality property. For example, a very recent

design mentioned in [66] might leave the adversary a chance to always propose the output

if without further careful adaption.

Asynchronous common subset (ACS) [23]. In ACS, each honest party inputs a value and

outputs a set of values, and there are n participating parties with up to f corrupted parties.

It satisfies the next properties except with negligible probability:

• Validity. The output set S of an honest party contains the inputs of at least n − 2 f

honest parties;

• Agreement. The outputs of any two honest parties are same;

• Termination. If all honest parties activate the protocol, then all honest parties would

output.

28

CHAPTER 3

DUMBO-MVBA AND ITS APPLICATION TO OPTIMAL ASYNCHRONOUS

ATOMIC BROADCAST

This chapter shows how to get the optimal Multi-Valued validated asynchronous Byzantine

agreement, and backs it up with solid proofs and analyses. In the end, we explain in detail

how to get the optimal atomic broadcast based on Dumbo-MVBA.

3.1 Background

The elegant work of Cachin et al. in 2001 [34] proposed external validity for multi-valued

Byzantine agreement (BA) and defined validated asynchronous BA, from which a simple

construction of ABC can be achieved. In this multi-valued validated asynchronous BA

(MVBA), each party takes a value as input and decides one of the values as output, as

long as the decided output satisfies the external validity condition. Later, MVBA was used

as a core building block to implement a broad array of fault-tolerant protocols beyond

ABC [33, 73, 74, 80, 113].

Recently, the renewed attention to multi-valued BA is gathered in the asynchronous

setting [9, 58, 74, 92], due to an unprecedented demand of deploying asynchronous atomic

broadcast (ABC) [39] that is usually instantiated by sequentially executing multi-valued

asynchronous BA instances with some fine-tuned validity [34, 49].

3.1.1 Motivation

The first MVBA construction was given in the same paper [34] against computationally-

bounded adversaries in the authenticated setting with the random oracle and setup

assumptions (e.g., PKI and established threshold cryptosystems). The solution tolerates

maximal Byzantine corruptions up to f < n/3 and attains expected O(1) running time and

O(n2) messages, but it incurs O(�n2 + λn2 + n3) communicated bits, which is large. Here, n

29

is the number of parties, � represents the bit-length of MVBA input, and λ is the security

parameter that captures the bit-length of digital signatures. As such, Cachin et al. raised

the open problem of reducing the communication of MVBA protocols (and thus improve

their ABC construction) [34], which is rephrased as: How to asymptotically improve the

communication cost of the MVBA protocol by an O(n) factor?

After nearly twenty years, in a recent breakthrough of Abraham et al. [9], the n3 term

in the communication complexity was removed, and they achieved optimal O(n2) word

communication, conditioned on each system word can encapsulate a constant number of

input values and some small-size strings such as digital signatures. Their result can be

directly translated to bit communication as a partial answer to the above question, when

the input length � is small (e.g., comparable to λ).

Nevertheless, both of the above MVBA constructions contain the �n2 term in their

communication complexities, which was reported in [34] as a major obstacle-ridden

factor in a few typical use-cases where the input length � is not that small. For instance,

Cachin et al. [34] noticed their ABC construction requires the underlying MVBA’s input

length � to be at least O(λn), as each MVBA input is a set of (n − f) digitally signed ABC

inputs. In this case, the �n2 term becomes the dominating factor. For this reason, it was

even considered in [58, 92] that existing MVBA is sub-optimal for constructing ABC due

to the large communication. It follows that, despite the recent breakthrough of [9], the

question from [34] remains open for the moderately large input size � ≥ O(λn).

3.1.2 Challenges

Let us begin with a very brief tour to revisit the existing MVBA constructions [9, 34]. In

the first phase of [34], each party broadcasts its input value to all others using a broadcast

protocol. Once receiving sufficient values, each party informs everyone else which values

it has received to form a O(n2) size “matrix”. Then a random party Pl is elected, and an

asynchronous binary agreement (ABA) is run by the parties to vote on whether to output vl

depending on if enough parties have already received vl. The ABA will be repeated until 1

30

is returned. The recent study [9], instead, expands the conventional design idea of ABA

and directly constructs MVBA in the following way: first, multiple rounds of broadcasts

are executed by every party to form commit proofs. A random party Pl is elected. If any

party already receives a commit proof for vl, it decides to output vl; and other undecided

parties use vl as input to enter a repetition of the whole procedure. We can see that [9] get

rid of the O(n3) communication as the phase that each party receives a O(n2) size matrix is

removed.

We observe that in the first phase of both [9,34], every party broadcasts its own input to all

parties for checking external validity, which already results in �n2 communicated bits. Note

that a MVBA protocol only outputs a single party’s input, it is thus unnecessary for every

party to send its input to all parties. Following the observation, we design Dumbo-MVBA,

a novel reduction from MVBA to ABA by using a dispersal-then-recast methodology to

reduce communication. Instead of letting each party directly send its input to everyone, we

let everyone to disperse the coded fragments of its input across the network. Later, after

the dispersal phase has been completed, the parties could (randomly) choose a dispersed

value to collectively recover it. Thanks to the external predicate, all parties can locally

check the validity of the recovered value, such that they can consistently decide to output

the value, or to repeat random election of another dispersed value to recover.

However, challenges remain due to our multiple efficiency requirements. For example,

the number of messages to disperse a value is at most linear, otherwise n dispersals

would cost more than quadratic messages and make MVBA not optimal regarding message

complexity. The requirement rules out a few related candidates such as asynchronous

verifiable information dispersal (AVID) [38, 75] that needs O(n2) messages to disperse a

value. In addition, the protocol must terminate in expected constant time, that means at

most a constant number of dispersed values will be recovered on average.

We therefore propose asynchronous provable dispersal broadcast (APDB) for the efficiency

purpose, which weakens the agreement of AVID when the sender is corrupted. In this way,

we realize a meaningful dispersal protocol with only O(n) messages. We also introduce

31

two succinct “proofs” in APDB as hinted by the nice work of Abraham et al. [9]. During

the dispersal of APDB, two proofs lock and done could be produced: (i) when any honest

party delivers a lock proof, enough parties have delivered the coded fragments of the

dispersed value, and thus the value can be collectively recovered by all honest parties, and

(ii) the done proof attests that enough parties deliver lock, so all honest parties can activate

ABA with input 1 and then decide 1 to jointly recover the dispersed value. To take the

most advantage of APDB, we leverage the design in [9] to let the parties exchange their

done proofs to collectively quit all dispersals, and then borrow the idea in [34] to randomly

elect a party and vote via ABA to decide whether to output the elected party’s input value

(if the value turns to be valid after being recovered). Intuitively, this idea reduces the

communication, since (i) each fragment has only O(�/n) bits, so n dispersals of �-bit input

incur only O(�n) bits, (ii) the parties can reconstruct a valid value after expected constant

number of ABA and recoveries. See detailed discussions in Section 3.4.

Finally, we present another extension MVBA protocol Dumbo-MVBA�, which is a general

self-bootstrap technique to reduce the communication of any existing MVBA. After

applying our APDB protocol, we can use small input (i.e., the “proofs” of APDB) to

invoke the underlying MVBA to pick the dispersed value to recast, thus reducing the

communication of the underlying MVBA. In addition, though Dumbo-MVBA� is centering

around the advanced building block of MVBA instead of the basic module of binary

agreement, it can better utilize MVBA to remove the rounds generating the done proof in

APDB, which further results in a much simpler modular design.

3.2 Related work

Validity conditions. The asynchronous BA problem [23, 30, 40] was studied in diverse

flavors, depending on validity conditions.

Strong validity [61, 102] requires that if an honest party outputs v, then v is input of some

honest party. This is arguably the strongest notion of validity for multi-valued BA. The

sequential execution of BA instances with strong validity gives us an ABC protocol, even in

32

the asynchronous setting. Unfortunately, implementing strong validity is not easy. In [61],

the authors even proved some disappointing bounds of strong validity in the asynchronous

setting, which include: (i) the maximal number of corruptions is up to f < n/(2� + 1), and

(ii) the optimal running time is O(2�) asynchronous rounds, where � is the input size in bit.

Weak validity [57, 81], only requires that if all honest parties input v, then every honest

party outputs v. This is one of most widely adopted validity notions for multi-valued

BA. However, it states nothing about output when the honest parties have different inputs.

Weak validity is strictly weaker than strong validity [61, 102], except that they coincide

in binary BA [36, 86, 99]. Abraham et al. [9] argued: it is not clear how to achieve a

simple reduction from ABC to asynchronous multi-valued BA with weak validity; in

particular, the sequential execution of multi-valued BA instances with weak validity fails

in the asynchronous setting, because non-default output is needed for the liveness [34] or

censorship resilience [92].

External validity was proposed by Cachin et al. [34] to circumvent the limits of above

validity notions, and it requires the decided output of honest parties to satisfy a globally

known predicate. This delicately tuned notion brings a few definitional advantages: (i)

compared to strong validity, it is easier to be instantiated, (ii) in contrast with weak validity,

ABC is simply reducible to it. For example, Cachin et al. [34] showcased a simple reduction

from ABC to MVBA (with using a notion called asynchronous common subset, i.e., ACS,

as a bridge). This succinct construction sequentially executes the ACS instances, each of

which allows every party to propose an input value and then solicits n − f input values

(from distinct parties) to output. The work also instantiates ACS due to a reduction to

MVBA by centering around a specific external validity condition, namely, input/output

must be a set containing 2 f + 1 valid message-signature pairs generated by distinct parties,

where each signed message is an ABC input. Although their reduction from ABC to MVBA

is arguably simple, the communication cost (per delivered bit) in their ABC was cubic

(and is still amortizedly quadratic even if using the recent technique of batching in [92]),

mainly because (i) the reduction to ABC requires each MVBA input consisting of O(n)

33

ABC inputs and O(n) digital signatures, and (ii) the communication cost of the underlying

MVBA module contains a quadratic term factored by the MVBA’s input length.

BA extension protocols. In the asynchronous setting, there exist a few nice extension

protocols that can invoke Byzantine agreement with using short input to accommodate large

multi-valued input [62, 101, 106]. To the best of our knowledge, all the existing extension

protocols focus on weak validity, and their techniques cannot be directly borrowed to

handle external validity. The challenge in our extension MVBA protocol Dumbo-MVBA�

stems from that the externally valid output can come from one corrupt party. More

specifically, in the extension protocols for weak validity, it has to decides an output only

when all honest parties share the same input value, which can be ensured through a simple

dispersal-recast technique [101] since sufficient honest parties already share the same

input; while in our case of MVBA for external validity, when the decided output is from a

malicious party, there are no sufficient honest parties share the same value as input to assist

the recovery, so we have to ensure the value is indeed correctly dispersed and becomes

recoverable (which is realized via the recastability in our APDB) by forcing each of them

to attach an extra short proof.

Roadmap to asynchronous atomic broadcast. To make ABC practical, most existing

protocols [34, 49, 58, 74, 92] are instantiated via the component of ACS [23]. ACS

allows every party to take a value as input, and decides a common subset as output

to include sufficient input values from distinct parties. ABC can be instantiated by simply

executing ACS instances sequentially [34, 37], or by some more involved techniques

batching threshold encryption [92].

There are two main methods to construct ACS protocols: one is initiated by Cachin et

al. [34] to reduce ACS to MVBA. The other method, initiated by Ben-Or et al. [23] and

recently improved by Miller et al. in HoneyBadgerBFT (HBBFT) [92], builds ACS using

n asynchronous binary agreements (ABAs) directly. During the past years, the former

approach (i.e., building ACS from MVBA) was considered as sub-optimal to instantiate

34

ABC in literature [58, 92], because of the large communication complexity of existing

MVBA protocols.

In a very recent work, Dumbo BFT [74], proposes a novel reduction from ACS to MVBA,

which results in an ACS protocol that attains only constant running time compared to that

in [58,92] depending on the number of parties n while remaining the same communication

and message complexities remain. More importantly, this is achieved despite invoking

existing MVBA protocols with seemingly large communication complexity, e.g., the first

MVBA proposed by Cachin et al. two decades ago. In this paper, we directly reduce the

communication complexity of MVBA protocols for a factor of n, which corresponds to

another evidence that the earlier belief [58, 92] that MVBA is sub-optimal could be too

pessimistic to be true. These two results together show that MVBA is still be the right way

to construct efficient ACS as the bridge to practical ABC!

For sake of completeness, we also present how to build practical ABC around the

communication-optimal MVBA protocols. The approach uses our MVBA protocols as the

underlying building blocks to improve Cachin et al.’s ACS construction, so an O(n)-factor

improvement of communication complexity in ABC can be immediately obtained; then,

the batching technique recently invented by Miller et al. in [92] is borrowed to further

optimize the communication usage, so in some extreme scenarios (e.g., each party’s

network bandwidth is sufficient for batching), the communication cost can be further

reduced by another O(n)-factor.

3.3 Problem Formulation

3.3.1 System model

We use the standard notion [9, 34] to model the system consisting of n parties and an

adversary in the authenticated setting.

Established identities & trusted setup. There are n designated parties denoted by {Pi}i∈[n],

where [n] is short for {1, . . . , n} through the paper. Moreover, we consider the trusted setup

of threshold cryptosystems, namely, before the start of the protocol, each party has gotten

35

its own secret key share and the public keys as internal states. For presentation simplicity,

we consider this trusted setup for granted, while in practice it can be done via a trusted

dealer or distributed key generation protocols [29, 76, 83].

Adaptive Byzantine corruption. The adversary A can adaptively corrupt any party

at any time during the course of protocol execution, until A already controls f parties

(e.g., 3 f + 1 = n). If a party Pi was not corrupted by A at some stage of the protocol,

it followed the protocol and kept all internal states secret against A, and we say it is

so-far-uncorrupted. Once a party Pi is corrupted by A, it leaks all internal states to A
and remains fully controlled byA to arbitrarily misbehave. By convention, the corrupted

party is also called Byzantine fault. If and only if a party is not corrupted through the entire

execution, we say it is honest.

Computation model. Following standard cryptographic practices [34, 36], we let the

n parties and the adversary A to be probabilistic polynomial-time interactive Turing

machines (ITMs). A party Pi is an ITM defined by the protocol: it is activated upon

receiving an incoming message to carry out some computations, update its states, possibly

generate some outgoing messages, and wait for the next activation. A is a probabilistic

ITM that runs in polynomial time (in the number of message bits generated by honest

parties). Moreover, we explicitly require the message bits generated by honest parties to be

probabilistic uniformly bounded by a polynomial in the security parameter λ, which was

formulated as efficiency in [9, 34] to rule out infinite protocol executions and thus restrict

the run time of the adversary through the entire protocol. Same to [34] and [9], all system

parameters (e.g., n) are bounded by polynomials in λ.

Asynchronous network. Any two parties are connected via an asynchronous reliable

authenticated point-to-point channel. When a party Pi attempts to send a message to

another party P j, the adversary A is firstly notified about the message; then, A fully

determines when P j receives the message, but cannot drop or modify this message if both

Pi and P j are honest. The network model also allows the adaptive adversaryA to perform

36

“after-the-fact removal”, that is, when A is notified about some messages sent from a

so-far-uncorrupted party Pi, it can delay these messages until it corrupts Pi to drop them.

3.3.2 Security goal

We review hereunder the definition of (multi-valued) validated asynchronous Byzantine

agreement (MVBA) due to [9, 34].

Definition 2. In an MVBA protocol with an external Predicate : {0, 1}� → {true, f alse},
the parties take values satisfying Predicate as inputs and aim to output a common value

satisfying Predicate. The MVBA protocol guarantees the following properties, except with

negligible probability, for any identification id, in the asynchronous authenticated model:

1. Termination. If every honest party Pi is activated on identification id, with taking

as input a value vi s.t. Predicate(vi) = true, then every honest party outputs a value

v for id.

2. External-Validity. If an honest party outputs a value v for id, then Predicate(v) =

true.

3. Agreement. If any two honest parties output v and v′ for id respectively, then v = v′.

4. Quality. If an honest party outputs v for id, the probability that v was proposed by

the adversary is at most 1/2.

We make the following remarks about the above definition:

1. Input length. We focus on the general case that the input length � can be a function in

n. We emphasize that it captures many realistic scenarios. One remarkable example

is to build ABC around MVBA as in [34] where the length of each MVBA input is at

least O(λn).

2. External-validity is a fine-grained validity requirement of BA. In particular, it

requires the common output of the honest parties to satisfy a pre-specified global

predicate function.

37

3. Quality was proposed by Abraham et al. in [9], which not only rules out trivial

solutions w.r.t. some trivial predicates (e.g., output a known valid value) but also

captures “fairness” to prevent the adversary from fully controlling the output.

3.4 APDB: Asynchronous Provable Dispersal Broadcast

The dominating O(�n2) term in the communication complexity of existing MVBA protocols

[9, 34] is because every party broadcasts its own input all other parties. This turns out

to be unnecessary, as in the MVBA protocol, only one single party’s input is decided as

output. To remedy the needless communication overhead in MVBA, we introduce a new

dispersal-then-recast methodology, through which each party Pi only has to spread the

coded fragments of its input vi to every other party instead of its entire input.

This section introduces the core building block, namely, the asynchronous provable

dispersal broadcast (APDB), to instantiate the dispersal-then-recast idea. The notion

is carefully tailored to be efficiently implementable. Especially, in contrast to related AVID

protocols [38,75], APDB can disperse a value at a cost of linear messages instead of O(n2),

as a reflection of following trade-offs:

• The APDB notion weakens AVID, so upon that a party outputs a coded fragment in

the dispersal instance of APDB, there is no guarantee that other parties will output

the consistent fragments. Thus, it could be not enough to recover the dispersed value

by only f + 1 honest parties, as these parties might receive (probably inconsistent)

fragments.

• To compensate the above weakenings, we let the sender to spread the coded fragments

of its input along with a succinct vector commitment of all these fragments, and then

produce two succinct “proofs” lock and done. The “proofs” facilitate: (i) the lock

proof ensures that 2 f + 1 parties receive some fragments that are committed in the

same vector commitment, so the honest parties can either recover the same value, or

output ⊥ (that means the committed fragments are inconsistent); (ii) the done proof

ensures that 2 f + 1 parties deliver valid locks, thus allowing the parties to reach a

38

common decision, e.g., via a (biased) binary BA [34], to all agree to jointly recover

the dispersed value, which makes the value deemed to be recoverable.

In this way, the overall communication of dispersing a value can be brought down to

minimum as the size of each fragment is only O(�/n) where � is the length of input v.

Moreover, this well-tuned notion can be easily implemented in light of [9] and costs only

linear messages. These efficiencies are needed to achieve the optimal communication and

message complexities for MVBA.

Defining asynchronous provable dispersal broadcast. Formally, the syntax and

properties of a APDB protocol are defined as follows.

Definition 3. An APDB protocol with a designated sender Ps is equipped with a pair of

predicates (ValidateLock,ValidateDone) and consists of a provable dispersal subprotocol

(PD) and a recast subprotocol (RC) as follows:

• PD subprotocol. In the PD subprotocol (with identifier ID) among n parties, a

designated sender Ps inputs a value v ∈ {0, 1}�, and aims to split v into n encoded

fragments and disperses each fragment to the corresponding party. During the

PD subprotocol with identifier ID, each party is allowed to invoke an abandon(ID)

function. After PD terminates, each party shall output two strings store and lock,

and the sender shall output an additional string done.

Note that the lock and done strings are said to be valid for the identifier ID, if and

only if ValidateLock(ID, lock) = 1 and ValidateDone(ID, done) = 1, respectively.

• RC subprotocol. In the RC subprotocol (with identifier ID), all honest parties take

the output of the PD subprotocol (with the same ID) as input, and aim to output the

value v that was dispersed in the RC subprotocol. Once RC is completed, the parties

output a common value in {0, 1}� ∪ ⊥.

An APDB protocol (PD, RC) with identifier ID satisfies the following properties in the

asynchronous authenticated setting (c.f. Section 3.3), except with negligible probability:

39

• Termination. If the sender Ps is honest and all honest parties activate PD[ID]

without invoking abandon(ID), then each honest party would output store and valid

lock for ID; additionally, the sender Ps outputs valid done for ID.

• Recast-ability. If all honest parties invoke RC[ID] with inputting the output of

PD[ID] and at least one honest party inputs a valid lock, then: (i) all honest parties

recover a common value; (ii) if the sender dispersed v in PD[ID] and has not been

corrupted before at least one party delivers valid lock, then all honest parties recover

v in RC[ID].

Intuitively, the recast-ability captures that the valid lock is a “proof” attesting that

the input value dispersed via PD[ID] can be consistently recovered by all parties

through collectively running the corresponding RC[ID] instance.

• Provability. If the sender of PD[ID] produces valid done, then at least f + 1 honest

parties output valid lock.

Intuitively, the provability indicates that done is a “completeness proof” attesting

that at least f + 1 honest parties output valid locks, such that the parties can

exchange locks and then vote via ABA to reach an agreement that the dispersed

value is deemed recoverable.

• Abandon-ability. If every party (and the adversary) cannot produce valid lock for

ID and f + 1 honest parties invoke abandon(ID), no party would deliver valid lock

for ID.

3.4.1 Overview of the APDB protocol

For the PD subprotocol with identifier ID, it has a simple structure of four one-to-all or all-

to-one rounds: sender
Store−−−→ parties

Stored−−−→ sender
Lock−−→ parties

Locked−−−→ sender. Through a Store

message, every party Pi receives store := 〈vc,mi, i, πi〉, where mi is an encoded fragment

of the sender’s input, vc is a (deterministic) commitment of the vector of all fragments,

and πi attests mi’s inclusion in vc at the i-th position; then, through Stored messages, the

40

parties would give the sender “partial” signatures for the string 〈Stored, ID, vc〉; next, the

sender combines 2 f + 1 valid “partial” signatures, and sends every party the combined

“full” signature σ1 for the string 〈Stored, ID, vc〉 via Locked messages, so each party

can deliver lock := 〈vc, σ1〉; finally, each party sends a “partial” signature for the string

〈Locked, ID, vc〉, such that the sender can again combine the “partial” signatures to produce

a valid “full” signature σ2 for the string 〈Locked, ID, vc〉, which allows the sender to deliver

done := 〈vc, σ2〉.

For the RC subprotocol, it has only one-round structure, as each party only has to take

some output of PD subprotocol as input (i.e., lock and store), and multicasts these inputs

to all parties. As long as an honest party inputs a valid lock, there are at least f + 1 honest

parties deliver valid stores that are bound to the vector commitment vc included in lock,

so all parties can eventually reconstruct the dispersed value that was committed in the

commitment vc.

Algorithm 1 Validation func of APDB protocol, with identifier ID

� ValidateStore verifies store commits a fragment mi in vc at i-th position
function ValidateStore(i′, store):

1: parse store as 〈vc, i,mi, πi〉
2: return VerifyOpen(vc,mi, i, πi) ∧ i = i′

� ValidateLock validates lock contains a vc signed by 2 f + 1 parties
function ValidateLock(ID, lock):

3: parse lock as 〈vc, σ1〉
4: return VerifyThld(2 f+1)(〈Stored, ID, vc〉, σ1)

� ValidateDone validates done to attest 2 f + 1 parties receive valid lock
function ValidateDone(ID, done):

5: parse done as 〈vc, σ2〉
6: return VerifyThld(2 f+1)(〈Locked, ID, vc〉, σ2)

3.4.2 Details of the APDB protocol

As illustrated in Algorithm 1, the APDB protocol is designed with a few functions

called as ValidateStore, ValidateLock and ValidateDone to validate done, lock and store,

respectively. ValidateStore is to check the store received by the party Pi includes a

fragment mi that is committed in a vector commitment vc at the i-th position, ValidateLock

41

validates lock to verify that 2 f + 1 parties (i.e., at least f + 1 honest parties) receive

the fragments that are correctly committed in the same vector commitment vc, and

ValidateDone validates done to verify that 2 f + 1 parties (i.e., at least f + 1 honest

parties) have delivered valid locks (that contain the same vc).

PD subprotocol. The details of the PD subprotocol are shown in Algorithm 2. In brief, a

PD instance with identifier ID (i.e., PD[ID]) allows a designated sender Ps to disperse a

value v as follows:

1. Store-then-Stored (line 1-6, 13-15, 19-23). When the sender Ps receives an

input value v to disperse, it encodes v to generate a vector of coded fragments

m = (m1, . . . ,mn) by an (f + 1, n)-erasure code; then, Ps commits m in a vector

commitment vc. Then Ps sends store including the commitment vc, the i-th coded

fragment mi and the commitment opening πi to each party Pi by Store messages.

Upon receiving (Store, ID, store) from the sender, Pi verifies whether store is valid.

If that is the case, Pi delivers store and sends a (2 f + 1, n)-partial signature ρ1,i for

〈Stored, ID, vc〉 back to the sender through a Stored message.

2. Lock-then-Locked (line 7-9, 16-18, 24-28). Upon receiving 2 f + 1 valid Stored

messages from distinct parties, the sender Ps produces a full signature σ1 for the

string 〈Stored, ID, vc〉. Then, Ps sends lock including vc and σ1 to all parties

through Lock messages. Upon receiving Lock message, Pi verifies whether σ1 is

deemed as a valid full signature. If that is the case, Pi delivers lock = 〈vc, σ1〉, and

sends a (2 f + 1, n)-partial signature ρ2,i for the string 〈Locked, ID, vc〉 back to the

sender through a Locked message.

3. Done (line 10-12). Once the sender Ps receives 2 f + 1 valid Locked messages from

distinct parties, it produces a full signature σ2 for 〈Locked, ID, vc〉. Then Ps outputs

the completeness proof done = 〈vc, σ2〉 and terminates the dispersal.

4. Abandon (line 29). A party can invoke abandon(ID) to explicitly stop its participation

in this dispersal instance with identification ID. In particular, if f + 1 honest parties

42

Algorithm 2 PD subprotocol, with identifier ID and sender Ps

let S 1 ← { }, S 2 ← { }, stop← 0

/* Protocol for the sender Ps */

1: upon receiving an input value v do
2: m← Enc(v), where v is parsed as a f + 1 vector and m is a n vector

3: vc← VCom(m)

4: for each j ∈ [n] do
5: π j ← Open(vc,m j, j)
6: let store := 〈vc,m j, j, π j〉
7: send (Store, ID, store) to P j � send store

8: wait until |S 1| = 2 f + 1

9: σ1 ← Combine(2 f+1)(〈Stored, ID, vc〉, S 1)

10: let lock := 〈vc, σ1〉
11: multicast (Lock, ID, lock) to all parties � multicast lock proof

12: wait until |S 2| = 2 f + 1

13: σ2 ← Combine(2 f+1)(〈Locked, ID, vc〉, S 2)

14: let done := 〈vc, σ2〉 and deliver done � produce done proof

15: upon receiving (Stored, ID, ρ1, j) from P j for the first time do
16: if VerifyShare(2 f+1)(〈Stored, ID, vc〉, (j, ρ1, j)) = 1 and stop = 0 then
17: S 1 ← S 1 ∪ (j, ρ1, j)

18: upon receiving (Locked, ID, ρ2, j) from P j for the first time do
19: if VerifyShare(2 f+1)(〈Locked, ID, vc〉, (j, ρ2, j)) =1 and stop = 0 then
20: S 2 ← S 2 ∪ (j, ρ2, j)

/* Protocol for each party Pi */

21: upon receiving (Store, ID, store) from sender Ps for the first time do
22: if ValidateStore(i, store) = 1 and stop = 0 then � receive store
23: deliver store and parse it as 〈vc, i,mi, πi〉
24: ρ1,i ← SignShare(2 f+1)(ski, 〈Stored, ID, vc〉)
25: send (Stored, ID, ρ1,i) to Ps

26: upon receiving (Lock, ID, lock) from sender Ps for the first time do
27: if ValidateLock(ID, lock) = 1 and stop = 0 then

� receive lock
28: deliver lock and parse it as 〈vc, σ1〉
29: ρ2,i ← SignShare(2 f+1)(ski, 〈Locked, ID, vc〉)
30: send (Locked, ID, ρ2,i) to Ps

procedure abandon(ID):

31: stop← 1

43

Algorithm 3 RC subprotocol with identifier ID, for each party Pi

let C ← []

1: upon receiving input (store, lock) do � multicast lock and/or store
2: if lock � ∅ then
3: multicast (RcLock, ID, lock) to all

4: if store � ∅ then
5: multicast (RcStore, ID, store) to all

6: upon receiving (RcLock, ID, lock) do
� assert: only one valid lock for each ID (c.f. Lemma 3)

7: if ValidateLock(ID, lock) = 1 then
8: multicast (RcLock, ID, lock) to all, if was not sent before

9: parse lock as 〈vc, σ1〉
10: wait until |C[vc]| = f + 1

11: v← Dec(C[vc])

12: if VCom(Enc(v)) = vc then � deliver the dispersed value

13: return v
14: else return ⊥
15: upon receiving (RcStore, ID, store) from P j for the first time do
16: if ValidateStore(j, store) = 1 then
17: parse store as 〈vc,m j, j, π j〉

� record fragments committed to each vc
18: C[vc]← C[vc] ∪ (j,m j)

19: else discard the invalid message

invoke abandon(ID), the adversary can no longer corrupt the sender of PD[ID] to

disperse anything across the network.

RC subprotocol. The construction of the RC subprotocol is shown in Algorithm 3. The

input of RC subprotocol consists of lock and store, which were probably delivered during

the PD subprotocol. In brief, the execution of a RC instance with identification ID is as:

1. Recast (line 1-5). If the party Pi inputs lock and/or store, it multicasts them to all

parties.

2. Deliver (line 6-18). If the party Pi receives a valid lock message, it waits for f + 1

valid stores bound to this lock, such that Pi can reconstruct a value v (or a special

symbol ⊥).

44

3.4.3 Analyses of the APDB protocol

Here we present the detailed proofs along with the complexity analyses for APDB protocol.

Security intuition. The tuple of protocols in Algorithm 2 and 3 realize APDB among

n parties against the adaptive adversary controlling up to f ≤ � n−1
3
� parties, given (i)

(f + 1, n)-erasure code, (ii) deterministic n-vector commitment with the position-binding

property, and (iii) established (2 f + 1, n)-threshold signature with adaptive security. The

high-level intuition is: (i) if any honest party outputs valid lock, then at least f + 1 honest

parties receives the code fragments committed in the same vector commitment, and the

position-binding property ensures that the honest parties can collectively recover a common

value (or the common ⊥) from these committed fragments; (ii) whenever any party can

produce a valid done, it attests that 2 f + 1 (namely, at least f + 1 honest) parties have

indeed received valid locks.

The proofs of APDB. Now we prove the Algorithm 2 and 3 would satisfy the properties

of APDB as defined in Definition 3 with all but negligible probability.

Corollary 3.4.1. Considering a n-vector commitment scheme (VCom,Open,VerifyOpen)

and a (k, n)-erasure coding scheme (Enc,Dec), we have the following observations:

Correctness. For any S ⊂ [n] that |S | = k, Pr[Dec({(i,mi)} j∈S) = v ∧ VCom(Enc(v)) =

vc | (m1, · · · ,mn)← Enc(v) ∧ vc← VCom((m1, · · · ,mn))] = 1. The property reveals: if

a vector of the coded fragments of a value v are committed to a vector commitment vc, then

any k-subset of the fragments can recover the original value v, whose encoded fragments

can be used to produce the same commitment vc. This is true, because of the correctness

of erasure coding and the determinism of VCom.

Security. For any S 1 ⊂ [n] and S 2 ⊂ [n] that |S 1| = |S 2| = k and S 1 � S 2, it is

computationally infeasible for any P.P.T. adversary (on input the security parameter λ and

all other public system parameters) to produce vc, {(i,mi, πi)}i∈S 1
and {(j,mj, π j)} j∈S 2

where

∀i ∈ S 1,VerifyOpen(vc,mi, i, πi) = 1 and ∀ j ∈ S 2,VerifyOpen(vc,mj, j, π j) = 1, such

that: (i) VCom(Enc(Dec({(i,mi)}i∈S 1
))) = vc ∧ VCom(Enc(Dec({(j,mj)} j∈S 2

))) = vc

45

∧ Dec({(i,mi)}i∈S 1
) � Dec({(j,mj)} j∈S 2

), or (ii) VCom(Enc(Dec({(i,mi)}i∈S 1
))) = vc ∧

VCom(Enc(Dec({(j,mj)} j∈S 2
))) � vc. The property indicates whenever the (probably

malicious generated) coded fragments are committed to vc, any two k-subsets of these

committed fragments must: either consistently recover a common value that can re-produce

the same commitment vc, or recover some values that simultaneously re-produce some

commitments different from vc.

Lemma 1. Termination. If the sender Ps is honest and all honest parties activate PD[ID]

without invoking abandon(ID), then each honest party would output store and valid lock

for ID s.t. ValidateLock(ID, lock) = 1; additionally, the sender Ps outputs valid done for

ID.

Proof. In case all honest parties activate PD[ID] without abandoning, all honest parties

will follow the PD protocol specified by the pseudocode shown in Algorithm 2. In addition,

since the sender Ps is honest, it also follows the protocol.

Due to the PD protocol, the honest sender firstly sends (Store, ID, store) to Pi, where

the Store message satisfies ValidateStore(i, store) = 1; after receiving the valid Store

message, all honest parties will send Stored messages back to the sender. When Ps

receiving 2 f +1 (the number of honest parties at least is 2 f +1) valid Stored messages, Ps

will combine these messages to generate valid signature σ1 by Combine(2 f+1) algorithm

and then obtain a valid lock. After that, Ps will send (Lock, ID, lock) to all, where the Lock

message satisfies ValidateLock(ID, lock) = 1.

Next, after receiving the valid Lock message, all honest parties will send Locked message

back to the sender. When receiving 2 f + 1 valid Locked message, the sender can generate

valid signature σ2 by Combine(2 f+1) algorithm. Hence, the honest sender Ps can outputs a

completeness proof done = 〈vc, σ2〉, s.t. ValidateDone(ID, done) = 1. �

Lemma 2. Provability. If the sender of PD[ID] can produce done s.t. ValidateDone(ID,

done) = 1, then at least f + 1 honest parties output lock s.t. ValidateLock(ID, lock) = 1.

46

Proof. ValidateDone(ID, done) = 1 is equivalent to that VerifyThld(2 f+1)(〈Locked, ID, vc〉,
σ2) = 1 due to Algorithm 1, which means that without overwhelming probability, the

sender does receive at least 2 f + 1 Locked message from distinct P j to generate σ2

(otherwise the threshold signature can be forged). With all but negligible probability, at

least f + 1 honest parties send Locked messages to the sender with attaching their “partial”

signatures for 〈Locked, ID, vc〉. From Algorithm 2, we know the honest parties sends their

“partial” signatures for 〈Locked, ID, vc〉 to the sender, iff they deliver valid lock which

satisfies ValidateLock(ID, lock) = 1. So this lemma holds with overwhelming probability,

otherwise it would break the unforgeability of the underlying threshold signature. �

Lemma 3. If two parties Pi and P j deliver lock and lock′ in RC[ID] and ValidateLock(ID,

lock) = 1 ∧ ValidateLock(ID, lock′) = 1, then lock = lock′.

Proof. When ValidateLock(ID, lock) = 1, we can assert that VerifyThld(2 f+1)(〈Stored, ID,
vc〉, σ1) = 1 due to Algorithm 1. According to the Algorithm 2, σ1 was generated by

combining 2 f + 1 distinct parties’ partial signatures for 〈Stored, ID, vc〉. Therefore, there

have at least f + 1 honest parties produced a share signature for (Stored, ID, vc).

However, if ValidateLock(ID, lock′) = 1, VerifyThld(2 f+1)(〈Stored, ID, vc′〉, σ′1) = 1 also

holds, which means that there are at least f + 1 honest parties that also produce a share

signature for (Stored, ID, vc′). Hence, at least one honest party produce two different

Storedmessage if lock � lock′. However, every honest parties compute the share signature

for Stored message at most once for a given identifier ID. Hence, we have lock = lock′

with overwhelming probability; otherwise, the unforgeability of the underlying threshold

signature would be broken. �

Lemma 4. Recast-ability. If all honest parties invoke RC[ID] with inputting the output of

PD[ID] and at least one honest party inputs a valid lock, then: (i) all honest parties recover

a common value; (ii) if the sender dispersed v in PD[ID] and has not been corrupted before

at least one party delivers valid lock, then all honest parties recover v in RC[ID].

47

Proof. To prove the conclusion (i) of the Lemma, we would prove the following two

statements: first, all honest parties can output a value; second, the output of any two honest

parties would be same.

Part 1: Since at least one honest party delivers lock satisfying ValidateLock(ID, lock) = 1,

according to the Algorithm 3, it will multicast (RcLock, ID, lock) to all. Hence, all honest

parties can receive the valid lock.

Note whenever a valid lock := 〈vc, σ1〉 can be produced, there is a valid threshold signature

σ1 was generated by combining 2 f +1 distinct parties’ partial signatures for (Store, ID, vc),

due to Algorithm 2. Also notice that an honest party partially signs (Store, ID, vc), iff it

delivers valid store that is bound to the commitment vc. So there are at least f + 1 honest

parties deliver the valid store that are committed to the same commitment string vc.

Thus there have at least f + 1 honest parties Pi will multicast valid (RcStore, ID, store)

message to all, due to Algorithm 3. For each honest party, they can eventually receive a

valid valid RcLock message and f + 1 valid RcStore messages, that are corresponding to

the same vc. So all parties will always attempt the decode the received fragments in the

RcStore messages to eventually recover some value.

Part 2: From the Lemma 3, all honest parties would receive valid RcLock messages with

the same lock := 〈vc, σ1〉. Therefore, each honest party can receive f + 1 valid RcStore

messages, which contain f +1 fragments that are committed to the same vector commitment

vc. Due to Corollary 3.4.1, either every honest party Pi have VCom(Enc(Dec(C[vc]))) =

vc or every honest party Pi have VCom(Enc(Dec(C[vc]))) � vc. Therefore, either all

honest parties return a common value Dec(C[vc]) in {0, 1}�, or they return a special symbol

⊥.

The conclusion (i) of the Lemma holds immediately by following Part 1 and Part 2.

For the conclusion (ii) of the Lemma, if the sender Ps has not been corrupted (so-far-

uncorrupted) before at least one party delivers valid lock and passed the value v into

PD[ID] as input, the sender would at least follow the protocol to send Store messages for

48

dispersing v. Moreover, when the so-far-uncorrupted Ps delivers valid lock, at least f + 1

honest parties already receive the Store messages for dispersing v, so the adversary can no

longer corrupts Ps to disperse a value v′ different from v, as it cannot produce valid lock or

valid done for v′. From the proving of conclusion (i), we know all parties would recover

the value Dec(C[vc]), which must be v due to the properties of erasure code and vector

commitment. �

Lemma 5. Abandon-ability. If every party (and the adversary) cannot produce valid lock

for ID and f + 1 honest parties invoke abandon(ID), no party would deliver valid lock for

ID.

Proof. From Algorithm 2, we know it needs 2 f + 1 valid Stored messages to produce a

valid lock := 〈vc, σ1〉. Since any parties (including the adversary) has not yet produced

a valid lock and f + 1 honest parties invoke abandon(ID), there are at most 2 f parties

are participating in the PD[ID] instance. So there are at most 2 f valid Stored messages,

which are computationally infeasible for any party to produce a valid lock; otherwise, the

unforgeability of underlying threshold signature would not hold. �

Theorem 1. The tuple of protocols described by Algorithms 2 and 3 solves asynchronous

provable dispersal broadcast (APDB) among n parties against an adaptive adversary

controlling f < n/3 parties, given (i) (f + 1, n)-erasure code, (ii) n-vector commitment

scheme, and (iii) established non-interactive (2 f + 1, n)-threshold signature with adaptive

security.

Proof. Lemma 1, 2, 4 and 5 complete the proof. �

The complexity analysis of APDB. Through this paper, we consider � is the input length

and λ is cryptographic security parameter (the length of signature, vector commitment,

and openness proof for commitment), then:

• PD complexities: According to the process of Algorithm 2, the PD subprotocol has 4

one-to-all (or all-to-one) rounds. Hence, the total number of messages sent by honest

49

parties is at most 4n, which attains O(n) messages complexity and O(1) running

time. Besides, the maximal size of messages is O(�/n + λ), so the communication

complexity of PD is O(� + nλ).

• RC complexities: According to the process of Algorithm 3, the message exchanges

appear in two places. First, all parties multicast the RcLock messages to all, so the

first parts’ messages complexity is O(n2); second, all parties multicast the RcStore

messages to all, thus the second parts incurring O(n2) messages. Hence, the RC

incurs O(n2) messages complexity and constant running time. Besides, each RcLock

message is sized to O(λ)-bit, and the size of each RcStore message is O(�/n+λ)-bit,

so the communication complexity of RC is O(n2λ) + O(n� + n2λ)=O(n� + n2λ).

3.5 Dumbo-MVBA: An Optimal MVBA Protocol

We now apply our dispersal-then-recast methodology to design the optimal MVBA

protocol Dumbo-MVBA, using APDB and ABA. It is secure against adaptively corrupted

� n−1
3
� parties, it costs O(�n + λn2) bits, which is asymptotically better than all previous

results [9, 34] and optimal for sufficiently large input. Also it attains optimal running time

and message complexity.

Figure 3.1: The execution flow of Dumbo-MVBA.

3.5.1 Overview of the Dumbo-MVBA protocol

As illustrated in Figure 4.8, the basic ideas of our Dumbo-MVBA protocol are: (i) the

parties disperse their own input values through n concurrent PD instances, until they

50

consistently realize that enough dones proofs for the PD instances (i.e., 2n/3) have been

produced, so they can make sure that enough honest input values (i.e., n/3) have been

firmly locked across the network; (ii) eventually, the parties can exchange dones proofs

to explicitly stop all PD instances; (iii) then, the parties can invoke a common coin

protocol Election to randomly elect a PD instance; (iv) later, the parties exchange their

lock proofs of the elected PD instance and then leverage ABA to vote on whether to invoke

the corresponding RC instance to recast the elected dispersal; (v) when ABA returns 1, all

parties would activate the RC instance and might probably recast a common value that is

externally valid; otherwise (i.e., either ABA returns 0 or RC recasts invalid value), they

repeat Election, until an externally valid value is elected and collectively reconstructed.

3.5.2 Details of the Dumbo-MVBA protocol

Our Dumbo-MVBA protocol invokes the following modules: (i) asynchronous provable

dispersal broadcast APDB := (PD,RC); (ii) asynchronous binary agreement ABA against

adaptive adversary; (iii) (f + 1, n) threshold signature with adaptive security; and (iv)

adaptively secure (2 f + 1, n)-Coin scheme (in the alias Election) that returns random

numbers over [n].

Each instance of the underlying modules can be tagged by a unique extended identifier

ID. These explicit IDs extend id and are used to distinguish multiple activated instances

of every underlying module. For instance, (PD[ID],RC[ID) represents a pair of (PD, RC)

instance with identifier ID, where ID := 〈id, i〉 extends the identification id to represent a

specific APDB instance with a designated sender Pi. Similarly, ABA[ID] represents an

ABA instance with identifier ID, where ID := 〈id, k〉 and k ∈ {1, 2, . . . }.

Protocol execution. Hereunder we are ready to present the detailed protocol description

(as illustrated in Algorithm 4). Specifically, an Dumbo-MVBA instance with identifier

id proceeds as: Dispersal phase (line 1-2, 13-18). The n parties activate n concurrent

instances of the provable dispersal PD subprotocol. Each party Pi is the designated sender

51

Algorithm 4 Dumbo-MVBA protocol with identifier id and external Predicate, for each party Pi:

main process, cf. Alg. 5 for message handlers (a process that handles incoming messages and

changes variables in Alg. 4 to take responses)

let provens← 0, RDY ← { }
for each j ∈ [n] do

let store[j]← ∅, lock[j]← ∅, rc-ballot[j]← 0

initialize a provable dispersal instance PD[〈id, j〉]
1: upon receiving input vi s.t. Predicate(vi) = true do � dispersal phase

2: pass vi into PD[〈id, i〉] as input � finish phase

3: wait for receiving any valid Finish message
4: for each k ∈ {1, 2, 3, . . . } do
5: l← Election[〈id, k〉] � elect-id phase

6: if lock[l] � ∅ then
7: multicast (RcBallotPrepare, id, l, lock) � recast-vote phase

8: else multicast (RcBallotPrepare, id, l,⊥)
9: wait for receiving 2 f + 1 (RcBallotPrepare, id, l, ·) messages from distinct parties or

rc-ballot[l] = 1

10: b← ABA[〈id, l〉](rc-ballot[l])
11: if b = 1 then � recast phase

12: vl ← RC[〈id, l〉](store[l], lock[l])
13: if Predicate(vl) = true then output vl

of a particular PD instance PD[〈id, i〉], through which Pi can disperse the coded fragments

of its input vi across the network.

Finish phase (line 3, 19-35). This has a three-round structure to allow all parties consistently

quit PD instances. It begins when a sender produces the done proof for its PD instance

and multicasts done to all parties through a Done message, and finishes when all parties

receive a Finish message attesting that at least 2 f + 1 PD instances has been “done”. In

addition, once receiving valid Finish, a party invokes abandon() to explicitly quit from all

PD instances.

Elect-ID phase (line 5). Then all parties invoke the coin scheme Election, such that they

obtain a common pseudo-random number l over [n]. The common coin l represents the

identifier of a pair of (PD[〈id, l〉],RC[〈id, l〉]) instances.

Recast-vote phase (line 6-9, 36-39). Upon obtaining the coin l, the parties attempt to

agree on whether to invoke the RC[〈id, l〉] instance or not. This phase has to cope

with a major limit of RC subprotocol, that the RC[〈id, l〉] instance requires all parties

52

Algorithm 5 Dumbo-MVBA protocol with identifier id and external Predicate, for each party Pi:

the protocol message handlers, cf. Alg. 4 for the main protocol process that might take responses if

certain messages are received by this algorithm

1: upon PD[〈id, j〉] delivers store do � record store[j] for each PD[〈id, j〉]
2: store[j]← store

3: upon PD[〈id, j〉] delivers lock do � record lock[j] for each PD[〈id, j〉]
4: lock[j]← lock

5: upon PD[〈id, i〉] delivers done do � multicast proof done for PD[〈id, i〉]
6: multicast (Done, id, done)

7: upon receiving (Done, id, done) from party P j for the first time do
8: if ValidateDone(〈id, j〉, done) =1 then
9: provens← provens + 1

10: if provens = n − f then � n − f Done⇒ f + 1 honest Done

11: ρrdy,i ← SignShare(f+1)(ski, 〈Ready, id〉)
12: multicast (Ready, id, ρrdy,i) � one honest Ready⇒ n − f Done

13: upon receiving (Ready, id, ρrdy, j) from party P j for the first time do
14: if VerifyShare(f+1)(〈Ready, id〉, (j, ρrdy, j)) =1 then
15: RDY ← RDY ∪ (j, ρrdy, j)

16: if |RDY | = f + 1 then � f + 1 Ready⇒ one honest Ready

17: σrdy ← Combine(f+1)(〈Ready, id〉,RDY)

18: multicast (Finish, id, σrdy) to all, if was not sent before

19: upon receiving (Finish, id, σrdy) from party P j for the first time do
20: if VerifyThld(f+1)(〈Ready, id〉, σrdy) = 1 then � valid Finish⇒ f + 1 Ready

21: abandon(〈id, j〉) for each j ∈ [n]

22: multicast (Finish, id, σrdy) to all, if was not sent before

23: else discard this invalid message

24: upon receiving (RcBallotPrepare, id, l, lock) from P j do
25: if ValidateLock(〈id, l〉, lock) = 1 then
26: lock[l]← lock

� rc-ballot[l] = 1⇒ lock[l] is valid⇒ PD[〈id, j〉] is recoverable

27: rc-ballot[l]← 1

53

to invoke it to reconstruct a common value. To this end, the recast-vote phase is made

of a two-step structure. First, each party multicasts its locally recorded lock[l] through

RcBallotPrepare message, if the PD[〈id, l〉] instance actually delivers lock[l]; otherwise,

it multicasts ⊥ through RcBallotPrepare message. Then, each party waits for up to

2 f + 1 RcBallotPrepare from distinct parties, if it sees valid lock[l] in these messages,

it immediately activates ABA[〈id, l〉] with input 1, otherwise, it invokes ABA[〈id, l〉] with

input 0. The above design follows the idea of biased validated binary agreement presented

by Cachin et al. in [34], and ABA[〈id, l〉] must return 1 to each party, when f + 1 honest

parties enter the phase with valid lock[l].

Recast phase (line 10-12). When ABA[〈id, l〉] returns 1, all honest parties would enter this

phase and there is always at least one honest party has delivered the valid lock regarding

RC[〈id, l〉]. As such, the parties can always invoke the corresponding RC[〈id, l〉] instance

to reconstruct a common value vl. In case the recast value vl does not satisfy the external

predicate, the parties can consistently go back to elect-ID phase, which is trivial because

all parties have the same external predicate; otherwise, they output vl.

3.5.3 Analyses of the Dumbo-MVBA protocol

Here we present the detailed proofs along with the complexity analyses for our

Dumbo-MVBA construction.

Security intuition. The Dumbo-MVBA protocol described by Algorithm 4 solves

asynchronous validate byzantine agreement among n parties against adaptive adversary

controlling f ≤ �n−1
3
� parties, given (i) adaptively secure f -resilient APDB protocol, (ii)

adaptively secure f -resilient ABA protocol, (iii) adaptively secure (f + 1, n)-Coin protocol

(in the random oracle model), and (iv) adaptively secure (f + 1, n) threshold signatures.

We highlight here the key intuitions as follows:

• Termination and safety of finish phase. If any honest party leaves the finish phase

and enters the elect-ID phase, then: (i) all honest parties will leave the finish phase,

and (ii) at least 2 f + 1 parties have produced done proofs for their dispersals.

54

• Termination and safety of elect-ID phase. Since the threshold of Election is 2 f +

1, A cannot learn which dispersals are elected to recover before f + 1 honest

parties explicitly abandon all dispersals, which prevents the adaptive adversary

from “tampering” the values dispersed by uncorrupted parties. Moreover, Election

terminates in constant time.

• Termination and safety of recast-vote and recast. The honest parties would

consistently obtain either 0 or 1 from recast-vote. If recast-vote returns 1, all

parties invoke a RC instance to recast the elected dispersal, which will recast a

common value to all parties. Those cost expected constant time.

• Quality of recast-vote and recast. The probability that recast-vote returns 1 is at

least 2/3. Moreover, conditioned on recast-vote returns 1, the probability that the

recast phase returns an externally valid value is at least 1/2.

The proofs of Dumbo-MVBA. Now we prove our Algorithm 4 satisfies all properties of

MVBA with all but negligible probability.

Lemma 6. Suppose a partyPl multicasts (Done, id, done), where ValidateDone(〈id, l〉, done)

=1. If all honest parties participate in the ABA[〈id, l〉] instance, then the ABA[〈id, l〉]
returns 1 to all.

Proof. If a party Pl did multicast a valid (Done, id, done), we know at least f + 1 honest

parties delivers valid lock[l] s.t. ValidateLock(ID, lock[l]) = 1, due to the Provability

properties of APDB. Then according to the pseudocode of Algorithm 4, at least f + 1

honest parties will multicast valid (RcBallotPrepare, id, l, lock) to all. In this case, since

all honest parties need to wait for 2 f + 1 RcBallotPrepare messages from distinct parties,

then all honest parties must see a valid (RcBallotPrepare, id, l, lock) message. Therefore,

all honest parties would input 1 to ABA[〈id, l〉] instance. From the validity properties of

the ABA protocol, we know that the ABA[〈id, l〉] returns 1 to all. �

55

Lemma 7. Suppose all honest parties participate the ABA[〈id, l〉] instance and ABA[〈id, l〉]
return 1 to all. If all honest parties invoke RC[〈id, l〉], then the RC[〈id, l〉] will return a

same value to all honest parties. Besides, if Pl (sender) is an honest party, then the

RC[〈id, l〉] will return an externally validated value.

Proof. Since the ABA[〈id, l〉] returns 1, we know at least one honest party inputs 1 to ABA,

due to the validity properties of ABA. It also means that at least one honest partyPi receives

a message (RcBallotPrepare, id, l, lock) which satisfies ValidateLock(〈id, l〉, lock) = 1.

According to the Recast-ability properties of APDB, all honest parties will terminate

in RC[〈id, l〉], and recover a common value, conditioned on all honest parties invoke

RC[〈id, l〉].

In addition, if Pl is an honest party, Pl always inputs an externally valid value to PD[〈id, l〉],
due to the Recast-ability properties of APDB, the RC[〈id, l〉] will return the exactly same

valid value to all parties. �

Lemma 8. If an honest party invokes Election[〈id, k〉], then at least 2 f + 1 distinct PD

instances have completed, and all honest parties also invoked Election[〈id, k〉].

Proof. Suppose an honest party Pi invokes Election[〈id, k〉], then it means that Pi receives

a valid Finish message. It also means that at least f + 1 parties multicast valid Ready

message, it implies that at least one honest party received 2 f +1 valid Donemessages from

distinct parties. Since each Done message can verify the PD instance is indeed completed,

at least 2 f + 1 distinct PD instances have been completed.

In addition, for k = 1, before an honest party invokes Election[〈id, 1〉], it must multicast

the valid Finish message, if it was not sent before. For the other honest parties, they will

also invoke the Election[〈id, 1〉], upon receiving a valid Finish message. For k > 1, without

loss of generality, suppose an honest party Pi halts after invoking Election[〈id, k〉], and

another honest party P j halts after invoking Election[〈id, k′〉], where k′ > k. However,

according the agreement of ABA, all honest parties will output the same bit 0 (not recast)

or 1 (to recast); in addition, according to the recast-ability properties of APDB, all honest

56

parties will recover the same value if ABA returns 1. So, if Pi halts after invoking

Election[〈id, k〉], P j shall also halt after invoking Election[〈id, k〉]. Hence, the honest party

P j would not enter Election[〈id, k′〉], when another honest party Pi would not invoke

Election[〈id, k′〉]. �

Lemma 9. Termination. If every honest party Pi activates the protocol on identification

id with proposing an input value vi such that Predicate(vi) = true, then every honest party

outputs a value v for id in constant time.

Proof. According to Algorithm 4, the Dumbo-MVBA protocol first executes n concurrent

PD instances. Since all honest parties start with externally valid values and all massages

sent among honest parties have been delivered, from the termination of APDB, if no honest

party abandons the PD, any honest parties can know at least n − f PD instances have

completed; if any honest party abandons the PD instances, it means that this party has seen

a valid Finish messages, which attests at least n − f PD instances have completed.

When an honest party learns at least n − f PD instances have completed, it will invoke

Election[〈id, k〉] to elect a random number l. From Lemma 8, we know all other honest

parties also will invoke Election[〈id, k〉]. In addition, all honest parties will input a value

to ABA[〈id, l〉], from the termination and agreement properties of ABA, the ABA[〈id, l〉]
will return a same value to all. Next, let us consider three following cases:

• Case 1: ABA[〈id, l〉] returns 1 to all. According to the recast-ability properties of

APDB, the RC[〈id, l〉] instance will terminate and recover a same value to all. The

recast value can be valid and satisfy the global Predicate, then this value will be

decided as output by all parties.

• Case 2: ABA[〈id, l〉] returns 1 to all. Due to the recast-ability of APDB, the

RC[〈id, l〉] instance will terminate and recover a same value to all. The value

can be invalid due to the global external Predicate, the honest parties will repeat

Election, until Case 1 occasionally happens.

57

• Case 3: If ABA[〈id, l〉] returns 0 to all, then the honest parties will repeat Election,

until Case 1 occasionally happens.

Now, we prove that the protocol terminates, after sequentially repeating ABA (and

RC). Recall all honest parties start with dispersing externally valid values, so after

Election[〈id, k〉] returns l for every k ≥ 1, the probability that Pl is honest and completes

PD[〈id, l〉] is at least p = 1/3. Due to the unbiasedness of Election, the coin � returned by

Election is uniform over [n].

As such, let the event Ek represent that the protocol does not terminate when Election[〈id, k〉]
has been invoked, so the probability of the event Ek, Pr[Ek] ≤ (1 − p)k. It is clear to see

Pr[Ek] ≤ (1 − p)k → 0 when k → ∞, so the protocol eventually halts. Moreover,

let K to be the random variable that the protocol just terminates when k = K, so

E[K] ≤ ∑∞K=1 K(1 − p)K−1 p = 1/p = 3, indicating the protocol terminates in expected

constant time. �

Lemma 10. External-Validity. If an honest party outputs a value v for id, then

Predicate(v) = true.

Proof. According to Algorithm 4, when an honest party outputs a value v, there is always

Predicate(v) = true. Therefore, the external-validity trivially holds. �

Lemma 11. Agreement. If any two honest parties output v and v′ for id respectively, then

v = v′.

Proof. From lemma 8, we know if an honest party invokes Election[〈id, k〉], then all

honest parties also invoke Election[〈id, k〉]. From the agreement properties of Election, all

honest parties get the same coin l. Hence, all honest parties will participate in the same

ABA[〈id, l〉] instance. Besides, due to the agreement of ABA, all honest parties will get a

same bit b. Hence, upon ABA[〈id, l〉] = 1, then all honest parties will participate in the

same RC[〈id, l〉] instance. According to the recast-ability property of APDB, all honest

parties must output the same value. �

58

Lemma 12. Quality. If an honest party outputs v for id, the probability that v was

proposed by the adversary is at most 1/2.

Proof. Due to Lemma 8, as long as an honest party activates Election, at least 2 f+1 distinct

PD instances have completed, which means these PD instances’ senders can produce valid

completeness done proofs. Moreover, if any honest party invokes Election[〈id, k〉], all

honest parties will eventually invoke Election[〈id, k〉] as well. Suppose Election[〈id, k〉]
returns l, then all honest parties will participate in the ABA[〈id, l〉] instance. If the sender

Pl has completed the PD protocol, due to Lemma 6, the ABA[〈id, l〉] will return 1 to all.

Then, if ABA[〈id, l〉] returns 0, all parties will go to the next iteration to enter

Election[〈id, k + 1〉]; otherwise, ABA[〈id, l〉] returns 1, all honest parties will participate

in the RC[〈id, l〉] instance, and the RC[〈id, l〉] instance will return a common value to all

parties, due to Lemma 7.

Let Pa to denote the set of the parties that are already corrupted by the adversary, when

the adversary can tell the output of Election with non-negligible probability. Due to the

unpredictability property of Election, upon the adversary can realize the output of Election,

at least f + 1 honest parties have already activated Election and therefore have abandoned

all PD instances. This further implies that, once the adversary realizes the output of

Election, the adversary can no longer disperse adversarial values by adaptively corrupting

any so-far-uncorrupted senders outside Pa.

Moreover, when the adversary is able to predicate the output of Election, at least 2 f + 1

PD instances have been completed, out of which at most |Pa| instances are dispersed by

the adversary. Therefore, we consider the worst case that: (i) only f + 1 honest parties

have completed their PD instances, and (ii) |Pa| = f and these f PD instances sent by

the adversary have completed. In addition, due to the unbiasedness property of Election,

the adversary cannot bias the distribution of the output of Election. So Election[〈id, k〉]
returns a coin l that is uniformly sampled over [n], which yields the next three cases for

any k ∈ {1, 2, . . . }:

59

• Case 1: If the sender Pl has not completed the PD instance yet, and the ABA[〈id, l〉]
returns 0, then repeats Election, the probability of this case at most is 1/3; in such

the case, the protocol would go to Election to repeat;

• Case 2: If the sender Pl has completed the PD protocol and the sender’ input was

determined by the adversary (which might or might not be valid regarding the global

predicate), the probability of this case at most is 1/3;

• Case 3: If the sender Pl has completed the PD protocol and the sender’ input was

not determined by the adversary, the probability of this case at least is 1/3;

Hence, the probability of deciding an output value v proposed by the adversary is at most
∑∞

k=1(1/3)k = 1/2. �

Theorem 2. In random oracle model, the protocol described by Algorithm 4 (Dumbo-MVBA)

realizes asynchronous validate byzantine agreement among n parties against adaptive

adversary controlling f < n/3 parties, given (i) f -resilient APDB protocol against adaptive

adversary, (ii) f -resilient ABA protocol against adaptive adversary, and (iii) adaptively

secure non-interactive (2 f + 1, n) and (f + 1, n) threshold signatures.

Proof. Lemma 9, 10, 11 and 12 complete the proof. �

The complexity analysis of Dumbo-MVBA. The Dumbo-MVBA achieves: (i) asymp-

totically optimal round and message complexities, and (ii) asymptotically optimal

communicated bits O(�n + λn2) for any input � ≥ λn.

According to the pseudocode of algorithm 4, the breakdown of its cost can be briefly

summarized in the next five phases: (i) the dispersal phase that consists of the n concurrent

PD instances; (ii) the finish phase which is made of three all-to-all multicasts of Done,

Ready and Finish messages; (iii) the elect-ID phase where is an invocation of Election; (iv)

the recast-vote phase that has one all-to-all multicast of RcBallotPrepare messages and

an invocation of ABA instance; (v) the recast phase where is to executes an RC instance.

60

Due to the complexity analysis of APDB in section 3.4.3, we know the PD’s message

complexity is O(n) and its communication complexity is O(� + nλ); the RC’s message

complexity is O(n2) and its communication complexity is O(n�+ n2λ). So the complexities

of Dumbo-MVBA protocol can be summarized as:

• Running time: The protocol terminates in expected constant running time due to

Lemma 9.

• Message complexity: In the dispersal phase, there are n PD instances, each of

which incurs O(n) messages. In the finish phase, there are three all-to-all multicasts,

which costs O(n2) messages. In the elect phase, there is one common coin, that

incurs O(n2) messages. In the rc-vote phase, there is one all-to-all multicast and one

ABA instance, which incurs O(n2) messages. In recast phase, there is only one RC

instance, thus yielding O(n2) messages. Moreover, the elect phase, the rc-vote-phase,

and the recast phase would be repeated for expected 3 times. To sum up, the overall

message complexity of the Dumbo-MVBA protocol is O(n2).

• Communication complexity: In the dispersal phase, there are n PD instances,

each of which incurs O(� + nλ) bits. In the finish phase, there are three all-to-all

multicasts, which corresponds to O(n2) λ-bit messages. In the elect-ID phase, there

is one common coin, that incurs O(n2λ) bits. In the recast-vote phase, there is one

all-to-all multicast and one ABA instance, thus incurring O(n2) messages, each of

which contains at most λ bits. In the recast phase, there is only one RC instance, thus

yielding O(n2) messages, each of which contains at most O(� + nλ) bits. Moreover,

the elect phase and the rc-vote phase would be repeated for expected 3 times, and

the recast phase would be repeated for expected 2 times. Hence, the communication

complexity of the Dumbo-MVBA protocol is O(n� + n2λ).

Note if considering � ≥ O(nλ), the Dumbo-MVBA protocol realizes optimal communi-

cation complexity O(n�).

61

3.6 Dumbo-MVBA�: A Generic Optimal MVBA Framework

The dispersal-then-recast methodology can also be applied to bootstrap any existing

MVBA to realize optimal communication for sufficiently large input. We call this extension

protocol Dumbo-MVBA�. The key idea is to invoke the underlying MVBA with taking

as input the small-size proofs of APDB. Though Dumbo-MVBA� is a “reduction” from

MVBA to MVBA itself, an advanced module instead of more basic building block such

as binary agreement, this self-bootstrap technique can better utilize MVBA to achieve a

simple modular design as explained in Figure 3.2, and we note it does not require the full

power of APDB (and thus can potentially remove the rounds of communication generating

the done proof).

Figure 3.2: The execution flow of Dumbo-MVBA�.

3.6.1 Overview of the Dumbo-MVBA� protocol

As shown in Figure 3.2, the generic framework still follows the idea of dispersal-then-

recast: (i) each party disperses its own input value and obtains a lock proof attesting the

recast-ability of its own dispersal; (ii) then, the parties can invoke any existing MVBA as a

black-box to “elect” a valid lock proof, and then recover the already-dispersed value, until

all parties recast and decide an externally valid value.

This generic Dumbo-MVBA� framework presents a simple modular design that can

enhance any existing MVBA protocol to achieve optimal communication for sufficiently

large input, without scarifying the message complexity and running time of underlying

MVBA. In particular, when instantiating the framework with using the MVBA protocol

62

due to Abraham et al. [9], we can obtain an optimal MVBA protocol that outperforms the

state-of-the-art, since it achieves only O(n� + n2λ) communicated bits, without giving up

the optimal running time and message complexity.

Algorithm 6 The Dumbo-MVBA� protocol with identification id and external Predicate(), for

each party Pi

let MVBAunder[〈id, k〉] to be an MVBA instance which takes as input string lockproo f and is

parameterized by the next external predicate:

PredicateElection(lockproo f) ≡ (lockproo f can be parsed as 〈i, locki〉) ∧
(ValidateLock(〈id, i〉, locki) ∧ i ∈ [n])

for each j ∈ [n] do
let store[j]← ∅ and initialize an instance PD[〈id, j〉]

1: upon receiving input vi s.t. Predicate(vi) = 1 do
� provable dispersal phase

2: pass vi into PD[〈id, i〉] as input

3: wait for PD[〈id, i〉] delivers locki

4: for each k ∈ {1, 2, 3, . . . } do
� elect a finished dispersal to recast

5: 〈l, lockl〉 ← MVBAunder[〈id, k〉](〈i, locki〉)
6: vl ← RC[〈id, l〉](store[l], lockl)

7: if Predicate(vl) = true then output vl

8: upon PD[〈id, j〉] delivers store do � record store[j] for each PD[〈id, j〉]
9: store[j]← store

3.6.2 Details of the Dumbo-MVBA� protocol

Here is our generic Dumbo-MVBA� framework. Informally, a Dumbo-MVBA� instance

with identification id (as illustrated in Algorithm 6) proceeds as:

1. Dispersal phase (line 1-3, 8-9). n concurrent PD instances are activated. Each party

Pi is the designated sender of the instance PD[〈id, i〉], through which Pi disperses

its input’s fragments across the network.

2. Elect-ID phase (line 4-5). As soon as the party Pi delivers locki during its dispersal

instance PD[〈id, i〉], it takes the proof locki as input to invoke a concrete MVBA

instance with identifier 〈id, k〉, where k ∈ {1, 2, . . . }. The external validity of

63

underlying MVBA instance is specified to output a valid lockl for any PD instance

PD[〈id, l〉].

3. Recast phase (line 6-7). Eventually, the MVBA[〈id, k〉] instance returns to all parties

a common lockl proof for the PD[〈id, l〉] instance, namely, MVBA elects a party Pl to

recover its dispersal. Then, all honest parties invoke RC[〈id, l〉] to recover a common

value vl. If the recast vl is not valid, every party Pi can realize locally due to the

same global Predicate, so each Pi can consistently go back the elect-ID phase to

repeat the election by running another MVBA[〈id, k + 1〉] instance with still passing

locki as input, until a valid vl can be recovered by an elected RC[〈id, l〉] instance.

3.6.3 Analyses of the Dumbo-MVBA� protocol

Here we present the detailed proofs along with the complexity analyses for our

Dumbo-MVBA� construction.

Security intuition. The Dumbo-MVBA� protocol described by Algorithm 6 realizes

(optimal) MVBA among n parties against adaptive adversary controlling f ≤ �n−1
3
� parties,

given (i) f -resilient APDB protocol against adaptive adversary (with all properties but

abandon-ability and provability), (ii) adaptively secure f -resilient MVBA protocol. The

key intuitions of Dumbo-MVBA� as follows:

• The repetition of the phase (2) and the phase (3) can terminate in expected constant

time, as the quality of every underlying MVBA instance ensures that there is at least

1/2 probability of electing a PD instance whose sender was not corrupted before

invoking MVBA.

• As such, the probability of not recovering any externally valid value to halt

exponentially decreases with the repetition of elect-ID and recast. Hence only

few (i.e., two) underlying MVBA instances and RC instances will be executed on

average.

64

The proofs of Dumbo-MVBA�. Now we prove that Algorithm 6 satisfies all properties of

MVBA except with negligible probability.

Lemma 13. Suppose a party Pi delivers 〈l, lockl〉 in any MVBAunder[〈id, k〉] that k ∈
[n], then all honest parties would invoke RC[〈id, l〉] and recover a common value from

RC[〈id, l〉]. Besides, if Pl (i.e., the sender of PD[〈id, l〉]) was not corrupted before lockl

was delivered, then the RC[〈id, l〉] returns a validated value.

Proof. If any honest party delivers 〈l, lockl〉 in any MVBAunder instance, all honest parties

deliver the same 〈l, lockl〉 in this MVBAunder instance, so all honest parties would invoke

RC[〈id, l〉]. Moreover, due to the specification of PredicateElection shown in Algorithm 6,

all honest parties deliver 〈l, lockl〉, s.t. ValidateLock(〈id, l〉, lockl) = 1. According to the

recast-ability property of APDB, all honest parties (that invoke RC[〈id, l〉]) will terminate

and output the same value (or the same ⊥). In addition, the recast-ability property also

states: conditioned on that Pl was not corrupted before delivering lockl and it took as input

a valid value vl to disperse in PD[〈id, l〉], the RC[〈id, l〉] will return to all parties the valid

value vl. �

Lemma 14. Termination. If every honest party Pi activates the protocol on identification

id with proposing an input value vi such that Predicate(vi) = true, then every honest

party outputs a value v for id. Moreover, if the expected running time of the underlying

MVBAunder is O(polyrt(n)), Dumbo-MVBA� is expected to run in O(polyrt(n)) time.

Proof. According to Algorithm 6, Dumbo-MVBA� firstly executes n concurrent PD

instance. From the termination of APDB: if a sender Ps is honest and all honest parties

activate PD[〈id, s〉] without abandoning, then the honest sender Ps can deliver locks for

identification 〈id, s〉 s.t. ValidateLock(〈id, s〉, locks) = 1.

In case every honest partyPi passes an input to its PD instance, all honest parties can deliver

a lock proof lock from PD, which satisfies the PredicateElection of MVBAunder[〈id, k〉].
Hence, each honest party Pi will pass a valid 〈i, locki〉 as input into MVBAunder[〈id, k〉]

65

for each iteration k ∈ [n]. Following the agreement and termination of MVBA, all honest

parties can get the same output 〈l, lockl〉 from each MVBAunder[〈id, k〉] instance.

Due to the external-validity of the underlying MVBA, the output 〈l, lockl〉 of each

MVBAunder[〈id, k〉] shall satisfy PredicateElection(id, l, lockl) = 1. After MVBAunder[〈id, k〉]
returns 〈l, lockl〉, the RC[〈id, l〉] will be invoked and return a same value vl to all in constant

time due to Lemma 13. Let us consider two cases for any k ∈ {1, 2, . . . } as follows:

• Case 1: If the value vl returned by RC[〈id, l〉] is valid, then output the value.

• Case 2: If the value vl returned by RC[〈id, l〉] is not valid, the parties will go back

to the elect-ID phase to execute MVBAunder[〈id, k + 1〉], until a valid value will be

decided.

Now, we prove that the honest parties would terminate in expected constant time, except

with negligible probability. Due to the quality properties of the MVBA, the probability that

〈l, lockl〉 was proposed by the adversary is at most 1/2 for each MVBAunder instance with

different identification 〈id, k〉. In addition, due to the recast-ability of APDB, whenever

MVBAunder[〈id, k〉]’s output 〈l, lockl〉 was not proposed by the adversary, a valid value can

be collectively recovered by all honest parties due to RC[〈id, l〉]. So the probability that

an externally valid vl is recover after invoking each MVBAunder[〈id, k〉] is at least p = 1/2.

Let the event Ek represent that the protocol does not terminate when MVBAunder[〈id, k〉]
has been invoked for k times, so the probability of the event Ek, Pr[Ek] ≤ (1 − p)k. It

is clear to see Pr[Ek] ≤ (1 − p)k → 0 when k → ∞, so the protocol eventually halts.

Moreover, let K to be the random variable that the protocol just terminates when k = K, so

E[K] ≤ ∑∞K=1 K(1 − p)K−1 p = 1/p = 2, indicating the protocol is expected to terminate

after sequentially invoking MVBAunder[〈id, k〉] twice. �

Lemma 15. External-Validity. If an honest party outputs a value v for id, then

Predicate(v) = true.

Proof. According to Algorithm 6, when an honest party outputs a value, Predicate(v) =

true. Therefore, the external-validity trivially follows. �

66

Lemma 16. Agreement. If any two honest parties output v and v′ for id respectively, then

v = v′.

Proof. From the agreement property of MVBA, all honest parties get the same output

〈l, lockl〉. Hence, all honest parties will participate in the common RC[〈id, l〉] instance.

Moreover, due to the recast-ability property of APDB, all honest parties will recover the

same value from each invoked RC[〈id, l〉]. In addition, all honest parties have the same

a-priori known predicate, and they output only when the recast value from RC[〈id, l〉]
satisfying this global predicate. Thus the decided output of any two honest parties must be

the same. �

Lemma 17. Quality. If an honest party outputs v for id, the probability that v was

proposed by the adversary is at most 1/2.

Proof. Due to the external-validity and agreement properties of the underlying MVBAunder,

every honest party can get the same output 〈l, lockl〉 from MVBAunder[〈id, k〉] which satisfies

the external PredicateElection, namely, locki is the valid lock proof for the sender Pl’s

dispersal instance due to ValidateLock(〈id, l〉, lockl) = true.

Then, all honest parties will participate in the same RC[〈id, l〉] instance, according to

Algorithm 6. From Lemma 13, we know the RC[〈id, l〉] will terminate and output a

common value vl to all. Because of the quality properties of the MVBA, the probability

that 〈l, lockl〉 was proposed by the adversary is at most 1/2. So RC[〈id, l〉] returns a value

vl that might correspond the next two cases:

• Case 1: The sender Pl was corrupted byA (before delivering lockl);

• Case 2: The sender Pl was not corrupted by A (before delivering lockl), and

executing RC[〈id, l〉] must output the valid value proposed by this sender (when it

was not corrupted), due to the recast-ability of APDB;

67

Due to the fairness of underlying MVBAunder, the probability of Case 1 is at most 1/2,

while the probability of Case 2 is at least 1/2, so the probability of deciding a value vl was

proposed by the adversary is at most 1/2. �

Theorem 3. The protocol described by Algorithm 6 (Dumbo-MVBA�) realizes asynchronous

validate Byzantine agreement among n parties against adaptive adversary controlling

f < n/3 parties, given (i) f -resilient APDB protocol against adaptive adversary, and (ii)

f -resilient MVBA protocol against adaptive adversary.

Proof. Lemma 14, 15, 16, and 17 complete the proof. �

The complexity analysis of Dumbo-MVBA�. According to the pseudocode of Algorithm

6, the cost of Dumbo-MVBA� is incurred in the next three phase: (i) the dispersal phase

consisting of n concurrent PD instances; (ii) the elect-ID phase consisting of few expected

constant number (i.e., two) of underlying MVBA instances; (iii) the recast phase consisting

of few expected constant number (i.e., two) of RC instances.

Recall the complexities of PD and RC protocols: PD costs O(n) messages, O(� + nλ) bits,

and O(1) running time; RC costs O(n2) messages, O(n� + n2λ) bits, and O(1) running time.

Suppose the underlying MVBA module incurs expectedO(polyrt(n)) running time, expected

O(polymc(n)) messages, and expected O(polycc(�, λ, n)) bits, where O(polymc(n)) ≥ O(n2)

and O(polycc(�, λ, n)) ≥ O(�n + n2) due to the lower bounds of adaptively secure MVBA.

Thus, the complexities of Dumbo-MVBA� can be summarized as:

• Running time: Since PD and RC are deterministic protocols with constant running

timing, the running time of Dumbo-MVBA� is dominated by the underlying MVBA

module, namely, O(polyrt(n)).

• Message complexity: The message complexity of n PD instances (or a RC instance)

is O(n2). The message complexity of the underlying MVBA is O(polymc(n)), where

O(polymc(n)) ≥ O(n2). As such, the messages complexity of Dumbo-MVBA� is

dominated by the underlying MVBA protocol, namely, O(polymc(n)).

68

• Communication complexity: The communication of n concurrent PD instances (or

a RC instance) isO(n�+n2λ). The underlying MVBA module incursO(polycc(λ, λ, n))

bits. So the overall communication complexity of Dumbo-MVBA� is O(�n + λn2 +

polycc(λ, λ, n)).

As shown in Table 3.1, Dumbo-MVBA� reduces the communication of the underlying

MVBA fromO(polycc(�, λ, n)) toO(�n+λn2+polycc(λ, λ, n)), which removes all superlinear

terms factored by � in the communication complexity. In particular, for sufficiently large

input whose length � ≥ max(λn, polycc(λ, λ, n)/n), Dumbo-MVBA� coincides with the

asymptotically optimal O(n�) communication.

Table 3.1: Asymptotic performance of MVBA protocols for �-bit inputs

Protocols Running time Message Comp. Comm. Comp. (bits)

underlying MVBA O(polyrt(n)) O(polymc(n)) O(polycc(�, λ, n))

Dumbo-MVBA� O(polyrt(n)) O(polymc(n)) O(�n + λn2 + polycc(λ, λ, n))

Concrete instantiation. Dumbo-MVBA� can be instantiated by extending the MVBA

protocol of Abraham et al. [9]. Moreover, the MVBA protocol of Abraham et al. achieved

expected O(1) running time, O(n2) messages and O(n2� + n2λ) bits, it’s clear that our

Dumbo-MVBA� framework can extend their result to attain O(n� + n2λ) bits without

scarifying the optimal running time and message complexity. Note if considering O(�) ≥
O(nλ), the above instantiation of Dumbo-MVBA� realizes optimal O(n�) communication

complexity.

3.7 Optimal Asynchronous Atomic Broadcast

Based on Dumbo-MVBA protocols, it is straightforward to construct efficient asynchronous

atomic broadcast (ABC) through improving Cachin et al.’s results in [34]. This Section

would elaborate how to obtain these improvements.

69

3.7.1 Optimal ACS through Dumbo-MVBA

As discussed in Introduction, ACS is usually the intermediate “layer” to realize practical

ABC [34, 92]. To construct ACS, some nice reductions MVBA were studied [34, 74] and

have demonstrated real-world practicality. Hinted by those relevant studies, it becomes

enticing to improve some MVBA-based ACS protocols (e.g., CKPS-ACS in [34]) by using

Dumbo-MVBA to replace earlier burdensome MVBA building blocks, which might also

cause improvements in ABC. Let us briefly review the syntax and properties of ACS.

Definition 4. A protocol among n parties with maximal tolerance up to f adaptive

corruption is said to be an asynchronous common subset (ACS) protocol, if it allows

each parties to take as input a value and then collectively output a common subset of all the

parties’ input values. In addition, it satisfies the following properties, in the asynchronous

authenticated message-passing model (c.f. Section 3.3), with all but except negligible

probability:

• Agreement. If any two honest parties output, then their output sets must be same;

• Validity. If an honest party outputs a set S , then |S | ≥ n − f and S contains the

input values from at least n − 2 f honest parties;

• Totality. If n − f honest parties invoke the protocol with taking an input, then all

honest parties can output.

Recall the ACS construction due to Cachin et al. [34] (CKPS-ACS), which is a simple

reduction from ACS to MVBA. Let Sign and Verify algorithms from EUF-CMA2 secure

digital signature scheme. Assuming public key infrastructure, the public key pki of

the corresponding party Pi is known by everyone in the system. CKPS-ACS takes the

advantage of MVBA’s external validity to output a set of n − f message-signature pairs

from distinct parties. As illustrated in Algorithm 7, the protocol can has two logical phases

that proceed as follows:

70

• Message diffuse (line 1-6). Once a party receives an input value, it signs the value

and broadcasts the value-signature pair to all parties; each party would wait for

2 f + 1 such value-signature pairs sent from distinct parties;

• Decide output (line 7-9). Each party proposes the set Q of value-signature pairs

to an adaptively secure MVBA instance with a properly defined external predicate

(e.g., denoted by MVBAacs), and waits this MVBA instance to return a set Q′ of n− f

value-signature pairs from distinct parties; then it can output S , namely, the values

in Q′.

Algorithm 7 CKPS-ACS with identifier ID (for each party Pi), excerpted from Fig 3 in [34]

let Q = ∅
let MVBAacs[ID] to be an MVBA instance which takes as input Q and is parameterized by the

next external predicate:

Predicate(Q) ≡ (Q can be parsed as {(j, v j, σ j)}) ∧ (|Q| = n − f) ∧ (∀ (j, v j, σ j) ∈ Q,
Verify(pk j, σ j, 〈ID, v j〉)) ∧ (∀ two (j1, v j1σ j1) and (j2, v j2 , σ j2) ∈ Q, j1 � j2).

1: upon receiving input vi do
2: σi ← Sign(ski, 〈ID, vi〉)
3: multicast (Diffuse, ID, vi, σi) to all parties

4: upon receive (Diffuse, ID, v j, σ j) message from P j for the first time do
5: if Verify(pk j, σ j, 〈ID, v j〉)=1 then
6: Q = Q ∪ (j, v j, σ j)

7: upon |Q| = n − f do
8: Q′ ← MVBAacs[ID](Q) � Here MVBAacs is instantiated by Dumbo-MVBA protocol

9: output S = {v j | (·, v j, ·) ∈ Q′}

The concrete performance of CKPS-ACS heavily depends on the actual instantiation of

underlying MVBAacs. Prior to this study, existing MVBA protocols [9, 34] have a �n2-term

in communication cost (� is the input size of MVBA), thus resulting in burdensome

cubic communicated bits during CKPS-ACS’s execution. Nevertheless, thanks to the

improvements achieved by our Dumbo-MVBA protocols, we can use Dumbo-MVBA

directly to instantiate the underlying MVBAacs to realize an Dumbo-MVBA improved

ACS protocol (e.g., denoted by CKPS-ACSDumbo-MVBA for short through the paper),

thus improving the communication cost of this ACS construction by an O(n) factor,

so only expected quadratic bits would be sent (among honest parties). Besides, the

Dumbo-MVBA improved CKPS-ACS protocol also remains optimal expected quadratic

71

message complexity, optimal expected constant running time, and the maximal tolerance

against up to n/3 adaptive Byzantine corruption.

3.7.2 Analyses of the optimal ACS protocol

Here we present detailed complexity analyses for CKPS-ACS when using Dumbo-MVBA

as the underlying MVBAacs building block (denoted by CKPS-ACSDumbo-MVBA for short).

In addition, since [34] did not abstract the functionality of Algorithm 7 as ACS and

did not prove the algorithm satisfies Definition 4, we also give such proofs for sake of

completeness.

Lemma 18. Agreement and totality. Algorithm 7 satisfies the agreement and totality

properties of ACS except with negligible probability.

Proof. We prove agreement through proof by contradiction: due to lines 8 and 9, if

Algorithm 7 does not satisfy agreement, the agreement of underlying MVBAacs is also

broken, which leads to a contradiction since MVBAacs satisfies Definition 2.

There are at least n − f parties that are honest through the course of the protocol.

Conditioned on all honest parties start ACS, every honest party must receive a set of

value-signature pairs satisfying MVBAacs’s external validity condition. Hence, all honest

parties would invoke MVBAacs with passing externally valid input. Assuming Algorithm 7

might not satisfy totality, it would break the termination property of underlying MVBAacs,

leading to contradiction. �

Lemma 19. Validity. If an honest party outputs a set S , then |S | ≥ n − f and S contains

inputs from at least n − 2 f honest parties.

Proof. Proof by contradiction: according to the external validity condition of MVBAacs

and the pseudocode of lines 8 and 9, if Algorithm 7 does not satisfy the validity property of

ACS, then either the external validity of MVBAacs or the unforgeability of digital signature

is broken. �

72

Theorem 4. In the authenticated setting, the protocol described by Algorithm 7 solves

asynchronous common subset (ACS) among n parties against adaptive adversary

controlling f < n/3 parties, given f -resilient MVBA protocol against adaptive adversary.

Proof. Lemmas 18 and 19 complete the proof. �

The complexity analysis. The cost of Algorithm 7 is incurred in the next two phases: (i)

everyone multicasts its digitally signed ACS input to all parties; (ii) all parties collectively

execute a specific MVBAacs instance with taking a set of n − f message-signature pairs as

input. We let MVBAacs to be instantiated by our Dumbo-MVBA protocols. Considering the

input length of ACS to be |m|, the complexities of CKPS-ACSDumbo-MVBA can be analyzed

as follows:

• Running time: Since the multicasts are deterministic process with constant running

timing, the running time of Algorithm 7 is dominated by underlying MVBAacs. Recall

we instantiate MVBAacs by Dumbo-MVBA protocols, which enjoys asymptotically

optimal constant running time. As such, CKPS-ACSDumbo-MVBA can terminate in

expected constant time.

• Message complexity: The diffuse phase needs O(n2) messages, and MVBAacs

costs expected O(n2) if being instantiated by Dumbo-MVBA protocols. Hence, the

messages complexity of CKPS-ACSDumbo-MVBA is O(n2).

• Communication complexity: The communication cost of the diffuse phase is

O(n2λ + n2|m|). The input length � of MVBAacs is O(nλ + n|m|), so the underlying

MVBAacs incursO(n2λ+n2|m|) bits, since our optimal MVBA constructions incur only

O(n2λ + n�) bits. The overall communication complexity of CKPS-ACSDumbo-MVBA

is, therefore, O(n2λ + n2|m|).

As shown in Table 3.2, CKPS-ACSDumbo-MVBA is asymptotically better than all other existing

ACS protocols. We remark that all protocols listed in the table are adaptively secure against

73

maximal n/3 corruption (or can be trivially tuned against adaptive adversary by properly

choosing adaptively secure cryptographic primitives).

Table 3.2: Asymptotic performance of ACS protocols among n parties with |m|-bit input and λ-bit

security parameter.

Protocols Running Time Comm. Comp. Message Comp.

ACS [92] O(log n) O(|m|n2 + λn3log n) O(n3)

ACS [74] † O(1) O(|m|n2 + λn3log n) O(n3)

CKPS-ACS [34] O(1) O(|m|n3 + λn3) O(n2)

CKPS-ACSAMS-MVBA ‡ O(1) O(|m|n3 + λn3) O(n2)

CKPS-ACSDumbo-MVBA O(1) O(|m|n2 + λn2) O(n2)

† ACS in [74] also has an MVBA building block, but specifying this building block out of [34], [9]

and this work would not make any asymptotic differences.

‡ CKPS-ACS [34] with AMS-MVBA [9] as the underlying MVBAacs building block, called

CKPS-ACSAMS-MVBA.

3.7.3 Efficient and adaptively secure ABC

Now we are approaching to our end goal of efficient ABC with adaptive security as

by-product1. Recall the syntax and needed properties of ABC as follows.

Definition 5. In an asynchronous atomic broadcast protocol among n parties that

can tolerate up to f adaptive corruptions, each party can keep on receiving a

polynomial-bounded number of payload messages (from the adversary) as input and

outputs some payload messages (which can be chronologically ordered as a sequence,

c.f. [34]). Moreover, the following properties shall be satisfied, in the asynchronous

authenticated setting (c.f. Section 3.3), except with negligible probability:

• Agreement. If an honest party outputs a message v, then all honest parties output v;

• Total order. If two parties output two sequences of payload messages (v0, v1, . . . , vT)

and (v′0, v
′
1, . . . , v

′
T ′), respectively, then vt = v′t for any t ≤ min(T, T ′);

1Note that in reality, it could be acceptable to choose more lightweight cryptographic primitives that

are not adaptively secure to implement our approach for performance, see [58] for some relevant

guidance.

74

• Censorship resilience. If a payload message m is input to n − f honest parties, then

it is eventually output by all honest parties.

ABC through Dumbo-MVBA improved ACS. There are two typical reductions from ABC

to ACS. One was firstly described in [34], which sequentially executes ACS instances

with taking payload messages as ACS input in a first-come-first-serve manner. The other

one was recently invented in [92], which is more involved by using threshold encryption to

allow each party to encrypt a random batch of payload messages and use the ciphertext

as ACS input, thus improving communication efficiency without harming censorship

resilience.

When using CKPS-ACSDumbo-MVBA to replace ACS instantiations in [34] and [92], the

obtained ABC protocols still satisfy Definition 7, and we omit such proofs as they can be

found in [34] and [92]. Moreover, given adaptively secure ACS (and other adaptive secure

cryptographic primitives), ABC constructions in [34] and [92] are both adaptively secure,

so plugging CKPS-ACSDumbo-MVBA also preserves the adaptive security.

The asymptotically improvement is clear: compared to using CKPS-ACS to build ABC, our

result can save an order of O(n) in communications; in contract to ACS in HoneyBadger

BFT, this work reduces an O(n) factor in messages and a O(log n) factor in running time;

compared to ACS in Dumbo BFT, it saves an order of O(n) in messages. All above

asymptotic improvements can be obtained, disregarding the choice of the reduction from

ABC to ACS.

3.8 Summary

In this chapter, we present the first MVBA protocols with expected O(�n + λn2)

communicated bits. Our results complement the recent breakthrough of Abraham et

al. at PODC ’19 [9] and solve the remaining part of the long-standing open problem from

Cachin et al. at CRYPTO ’01 [34]. More precisely, we showcase:

Theorem 5. There exist protocols in the authenticated setting with setup assumptions and

random oracle, such that it solves the MVBA problem [9, 34] among n parties against

75

an adaptive adversary controlling up to f ≤ �n−1
3
� parties, with expected O(�n + λn2)

communicated bits and expected constant running time, where � is the input length and λ

is a cryptographic security parameter.

Table 3.3: Asymptotic performance of MVBA protocols among n parties with �-bit input and λ-bit

security parameter.

Protocols Communication (Bits) Word† Time Message

Cachin et al. [34]‡ O(�n2 + λn2 + n3) O(n3) O(1) O(n2)

Abraham et al. [9] O(�n2 + λn2) O(n2) O(1) O(n2)

Our Dumbo-MVBA O(�n + λn2) O(n2) O(1) O(n2)

Our Dumbo-MVBA� O(�n + λn2) O(n2) O(1) O(n2)

† [9] defines a word to contain a constant number of signatures/inputs. The word communication

measures the expected total number of words sent by honest parties.
‡ [34] realizes that their construction can be generalized against adaptive adversary, when given

threshold cryptosystems with adaptive security.

Our result not only improves communication complexity upon [9,34] as illustrated in Table

3.3, but also is optimal in the asynchronous setting regarding the following performance

metrics:

1. The execution incurs O(�n + λn2) bits on average, which coincides with the optimal

communication O(�n) when � ≥ O(λn). This optimality can be seen trivially,

since each honest party has to receive the �-bit output, indicating a minimum

communication of Ω(�n) bits.

2. As [9], it can tolerate an adaptive adversary controlling up to �n−1
3
� Byzantine parties,

which achieves the optimal resilience in the asynchronous network according to the

upper bound of resilience presented by Bracha [30].

3. Same to [9, 34], it terminates in expected constant asynchronous rounds with

overwhelming probability, which is essentially asymptotically optimal for asynchronous

BA [21, 60].

4. As [9, 34], it attains asymptotically optimal O(n2) messages, which meets the lower

bound of the messages of optimally-resilient asynchronous BA against adaptive

adversary [4, 9].

76

Furthermore, our MVBA protocols can immediately be applied to construct efficient

asynchronous atomic broadcast with reduced communication blow-up as previously

suggested in [34]. Moreover, they can provide better building blocks for these asynchronous

BFT protocols [73, 74, 87], the recent constructions of practical asynchronous atomic

broadcast that use MVBA at their core in order to achieve high levels of efficiency.

77

CHAPTER 4

DUMBO-NG: FAST ASYNCHRONOUS BFT CONSENSUS WITH

THROUGHPUT-OBLIVIOUS LATENCY

This chapter presents Dumbo-NG, which can approach the maximum throughput without

trading latency, i.e., realize throughput-oblivious latency. As a result, it achieves high

throughput, low latency and guaranteed censorship resilience simultaneously.

4.1 Background

The huge success of Bitcoin [100] and blockchain [32, 39] leads to an increasing tendency

to lay down the infrastructure of distributed ledger for mission-critical applications. Such

decentralized business is envisioned as critical global infrastructure maintained by a set of

mutually distrustful and geologically distributed nodes [20], and thus calls for consensus

protocols that are both secure and efficient for deployment over the Internet.

Asynchronous BFT for indispensable robustness. The consensus of decentralized

infrastructure has to thrive in a highly adversarial environment. In particular, when the

applications atop it are critical financial and banking services, some nodes can be well

motivated to collude and launch malicious attacks. Even worse, the unstable Internet might

become part of the attack surface due to network fluctuations, misconfigurations and even

network attacks. To cope with the adversarial deployment environment, asynchronous

Byzantine-fault tolerant (BFT) consensuses [9, 34, 58, 74, 88, 92] are arguably the most

suitable candidates. They can realize high security-assurance to ensure liveness (as well

as safety) despite an asynchronous adversary that can arbitrarily delay messages. In

contrast, many (partial) synchronous consensus protocols [11,12,16,24,44,71,72,105,122]

such as PBFT [41] and HotStuff [125] might sustain the inherent loss of liveness (i.e.,

generate unbounded communications without making any progress) [60,92] when unluckily

encountering an asynchronous network adversary.

78

4.1.1 Motivation

Unfortunately, it is fundamentally challenging to realize practical asynchronous BFT

consensus, and none of such protocols was widely adopted due to serious efficiency

concerns. The seminal FLP “impossibility” [60] proves that no deterministic consensus

exists in the asynchronous network. Since the 1980s, many attempts [6, 21, 22, 35, 40,

107, 111] aimed at to circumventing the “impossibility” by randomized protocols, but

most of them focused on theoretical feasibility, and unsurprisingly, several attempts of

implementations [37, 97] had inferior performance.

Until recently, the work of HoneyBadger BFT (HBBFT) demonstrated the first asynchronous

BFT consensuses that is performant in the wide-area network [92]. As shown in Figure

4.1, HBBFT was instantiated by adapting the classic asynchronous common subset (ACS)

protocol of Ben-Or et al. [23]. It firstly starts n parallel reliable broadcasts (RBCs) with

distinct senders. Here n is the total number of nodes, and RBC [30] emulates a broadcast

channel via point-to-point links to allow a designated sender to disseminate a batch of

input transactions. However, we cannot ensure that every honest node completes a certain

RBC after a certain time due to asynchrony. So an agreement phase is invoked to select

n − f completed and common RBCs (where f is the number of allowed faulty nodes).

In HBBFT, the agreement phase consists of n concurrent asynchronous binary Byzantine

agreement (ABA). Each ABA corresponds to a RBC, and would output 1 (resp. 0) to solicit

(resp. omit) the corresponding RBC in the final ACS output.

Broadcast Primitive

Broadcast Primitive

Broadcast Primitive

Broadcast Primitive

TPKE.Enc

TPKE.Enc

TPKE.Enc

TPKE.Enc

Agreement

 ABBAs
(HBBFT)

-- or --

one MVBA
(Dumbo)

TPKE.Dec

TPKE.Dec

TPKE.Dec

TPKE.Dec

Asynchronous Common Subset (ACS)

TX Dissemination

bandwidth-intensive bandwidth-oblivious

Figure 4.1: Execution flow of an epoch in HBBFT, Dumbo and their variants. The protocols

proceed by consecutive epochs.

The above ACS design separates the protocol into bandwidth-intensive broadcast phase

and bandwidth-oblivious agreement phase. Here the broadcast is bandwidth-intensive (i.e.,

79

latency heavily relies on available bandwidth), because of disseminating a large volume of

transactions; and the agreement is bandwidth-oblivious (i.e., latency depends on network

prorogation delay more than bandwidth), as it only exchanges a few rounds of short

messages. HBBFT then focused on optimizing the bandwidth-intensive part—transaction

broadcasts. It adapted the techniques of using erasure code and Merkle tree from verifiable

information dispersal [38] to reduce the communication cost of Bracha’s RBC [30], and

realized amortized O(n) communication complexity for sufficiently large input batch. As

such, HBBFT can significantly increase throughput via batching more transactions, but

its n concurrent ABAs incurred suboptimal expected O(log n) rounds. A recent work

Dumbo [74] concentrated on the latency-critical part consisting of n ABAs, and used a

single asynchronous multi-valued validated Byzantine agreement (MVBA) to replace the

slow n ABAs. Here MVBA is another variant of asynchronous BA whose output satisfies

a certain global predicate, and can be constructed from 2-3 ABAs (e.g., CKPS01 [34])

or from more compact structures (e.g., AMS19 [9] and GLL+22 [73]). Thanks to more

efficient agreement phase based on MVBA, Dumbo reduced the execution rounds from

expectedO(log n) toO(1), and achieved an order-of-magnitude of improvement on practical

performance.

Actually, since HBBFT [92], a lot of renewed interests in addition to Dumbo are quickly

gathered to seriously explore whether asynchronous protocols can ever be practical

[9, 58, 69, 70, 77, 124]. Notwithstanding, few existing “performant” asynchronous BFT

consensuses can realize high security assurance, low latency, and high throughput,

simultaneously. Here down below we briefly reason two main practical obstacles in

the cutting-edge designs.

Throughput that is severely hurting latency. A serious practicality hurdle of many

existing asynchronous protocols (e.g. HBBFT and Dumbo) is that their maximum

throughput is only achievable when their latency is sacrificed. As early as 2016, HBBFT

[92] even explicitly argued that latency is dispensable for throughput and robustness, if

aiming at the decentralized version of payment networks like VISA/SWIFT. The argument

might be correct at the time of 2016, but after all these years, diverse decentralized

80

applications have been proposed from quick inter-continental transactions [46] to instant

retail payments [20]. Hence it becomes unprecedentedly urgent to implement robust BFT

consensus realizing high throughput while preserving low latency.

However, the existing performant asynchronous BFT protocols such as HBBFT and Dumbo

consist of two main phases: the dissemination phase and the agreement phase. Each node

broadcasts transactions in the dissemination phase that contribute to throughput; however,

due to the agreement phase being an asynchronous protocol that needs multiple rounds to

decide which transactions can be output, there is no contribution to throughput in this phase.

Thus, in order to achieve maximum throughput, each node has to broadcast a huge batch of

transactions during the agreement phase. Clearly, inferior latency is a natural consequence

of larger batches. For example, Figure 4.2 clarifies: (i) when each node broadcasts a small

batch of 1k tx in Dumbo (n=16), the latency is not that bad (2.39 sec), but the throughput

is only 4,594 tx/sec, as the transaction dissemination only takes 16.5% of all running time;

(ii) when the batch size increases to 30k tx, the broadcast of transactions possesses more

than 50% of the running time, and the throughput becomes 37,620 tx/sec for better utilized

bandwidth, but the latency dramatically grows to nearly 9 sec.

67.1%

16.5%

16.3%

MVBA (CKPS01)
RBC
TPKE

Dumbo (N=16, B=1000)
2.39 sec; 4594 tx/sec

50.4%

27.4%

22.2%

RBC
MVBA (CKPS01)
TPKE

Dumbo (N=16, B=30000)
8.77 sec; 37620 tx/sec

Larger batch Higher throughout but increased latency

Figure 4.2: Latency breakdown of Dumbo (on 16 Amazon EC2 c5.large instances across different

regions). |B| is batch size, i.e., the number of tx to broadcast by each node (where each tx is

250-byte to approximate the size of Bitcoin’s basic tx). TPKE is a technique from HBBFT for

preventing censorship.

81

Liveness1 relies on heavy cryptography or degraded efficiency. During the dissem-

ination phase, an adversary might delay broadcasts containing transactions it dislikes.

Hence, it may never output the f slowest broadcasts in an asynchronous environment.

Faced with the potential of censorship, current solutions rely on asymptotically larger

communications, expensive cryptographic operations, or possibly limitless memory.

Specifically,

• One somewhat trivial “solution” to censorship-resilience is to diffuse transactions across

all nodes and let every node work redundantly. Therefore, even if the adversary can

slow down up to f honest nodes’ broadcasts, it cannot censor a certain transaction tx,

because other n−2 f honest nodes still process tx. This is the exact idea in Cachin et al.’s

asynchronous atomic broadcast protocol [34], but clearly incurs another O(n) factor in

the communication complexity. Recently, Tusk [54] leveraged de-duplication technique

to let a small number of k nodes process each transaction according to transaction

hash [121] or due to the choice of clients. Here k is expected a small security parameter

to luckily draw a fast and honest node. Nevertheless, an asynchronous adversary

(even without actual faults) can prevent up to f honest nodes from eventually output

in Tusk, and therefore the transactions duplicated to k nodes can still be censored

unless k ≥ f + 1, i.e., O(n) redundant communication still occurs in the worst case.

That means, though de-duplication techniques are enticing, we still need underlying

consensus stronger (e.g., any honest node’s input must eventually output) to reduce

redundant communication by these techniques without hurting liveness.

• As an alternative, HBBFT introduces threshold public key encryption (TPKE) to

encrypt the broadcast input.2 Now, transactions are confidential against the adversary

1Remark that liveness in the asynchronous setting cannot be guaranteed by merely ensuring

protocols to progress without stuck. It needs to consider the liveness notion (e.g. validity from [34])

to ensure that any tx input by sufficient number of honest nodes must eventually output, which was

widely adopted in [58, 70, 73, 74, 77, 92, 124].
2Remark that one also can use asynchronous verifiable secret sharing (AVSS) to replace TPKE,

since both can implement a stronger consensus variant called casual broadcast [34], i.e., it first

outputs transactions in a confidential manner, and then reveals. We do not realize any practical

censorship-resilience implementation based on AVSS.

82

before they are solicited into the final output, so that the adversary cannot learn which

broadcasts are necessary to delay for censoring a certain transaction. But TPKE

decryption could be costly. Figure 4.2 shows that in some very small scales n = 16,

TPKE decryption already takes about 20% of the overall latency in Dumbo (using the

TPKE instantiation [17] same to HBBFT). For larger scales, the situation can be worse,

because each node computes overall O(n2) operations for TPKE decryptions.

• Recently, DAG-Rider [77] presented a (potentially unimplementable) defense against

censorship: the honest nodes do not kill the instances of the slowest f broadcasts but

forever listen to their delivery. So if the slow broadcasts indeed have honest senders,

the honest nodes can eventually receive them and then attempt to put them into the

final consensus output. This intuitively can ensure all delayed broadcasts to finally

output, but also incurs probably unbounded memory because of listening an unbounded

number of broadcast instances that might never output due to corrupted senders (as

pointed out by [54]).3

Given the state-of-the-art of existing “performant” asynchronous BFT consensuses, the

following fundamental challenge remains:

Can we push asynchronous BFT consensus further to realize minimum latency,

maximum throughput, and guaranteed censorship-resilience, simultaneously?

4.1.2 Challenges

Here we take a brief tour to our solution, with explaining the main technical challenges

and how we overcome the barriers.

In Dumbo-NG, we aim to make broadcast and agreement to execute completely

concurrently. As Figure 4.3 illustrates, we let each node act as a sender in an ever-running

3In DAG-Rider [77], every node has to keep on listening unfinished broadcasts. So if there are

some nodes get crashed or delayed for a long time, the honest nodes need to listen more and more

unfinished broadcasts with the protocol execution. The trivial idea of killing unfinished broadcasts

after some timeout would re-introduce censorship threat, because this might kill some unfinished

broadcasts of slow but honest nodes.

83

multi-shot broadcast to disseminate its input transactions, and concurrently, run the

agreement phase to pack the broadcasted transactions into the final consensus output.

Now, the bandwidth-intensive transaction dissemination is continuously running to closely

track the network capacity over all running time, and no longer needs to use large batch

sizes to contend with the bandwidth-oblivious agreement modules for seizing network

resources (as prior art does). As such, it becomes promising to obtain the peak throughput

without hurting latency.

However, the seemingly simple idea of running broadcasts concurrent to Byzantine

agreement (BA) is facing fundamental challenges in the asynchronous setting. Here

we briefly overview the barriers and shed a light on our solution to tackle them.

TX Dissemination: multi-shot broadcasts
Broadcast

Broadcast

Broadcast

Broadcast

......

...... Agreement
(MVBA)

Agreement
(MVBA)

Agreement
(MVBA)

......

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast Broadcast

......

......

......

......

......

......

......

Agreement: repeated MVBAs

Figure 4.3: High-level of Dumbo-NG. Each node leads an ever-running multi-shot broadcast to

disseminate its input transactions. Aside from broadcasts, a sequence of asynchronous multi-valued

validated Byzantine agreements (MVBAs) are executed to totally order all broadcasted transactions.

Challenge I: allow BA to pack broadcasts, concurrently & validly. In an asynchronous

network, the adversary can arbitrarily delay broadcasts, and thus some multi-shot broadcast

might progress very fast while some might move forward much slower. So the concurrent

Byzantine agreement modules have to agree on the “valid” progress of each multi-shot

broadcast instance, where “valid” progress means the broadcast has indeed progressed up

to here. The above task, intuitively, is much more challenging than the agreement problem

in HBBFT/Dumbo (which only decides 1/0 for each single-shot broadcast to mark whether

the broadcast is completed or not). At first glance, we seemingly need asynchronous

BA with strong validity, because the agreed broadcast progress needs to be from some

84

honest node to ensure it was indeed completed (otherwise, the adversary can manipulate

the agreement result to let honest nodes agree on some broadcast progresses that were

not completed). But, unfortunately, strong validity is unimplementable for multi-valued

agreement in the asynchronous setting, as it needs huge communication cost exponential

in input length [61].

To circumvent the challenge, we carefully add quorum certificates to the multi-shot

broadcasts by threshold signature, such that the adversary cannot forge a certificate for some

uncompleted broadcast progress. In particular, our multi-shot broadcast can be thought of

a compact variant of running a sequence of verifiable consistent broadcasts [113], in which

a quorum certificate can prove that the honest nodes either have delivered (or can retrieve)

the same sequence of all broadcasted transactions [34, 54]. This allows us to design

the needed agreement module by (implementable) asynchronous MVBA with fine-tuned

external validity. We let MVBA’s input/output to be a vector of n broadcasts’ certificates,

and the external validity checks: (i) all n certificates are valid, (ii) at least n − f certificates

attest that their corresponding n − f broadcasts have progressed. As such, we can run a

sequence of MVBAs completely concurrent to the n ever-running broadcasts, and each

MVBA can pack n − f progressed broadcasts to form a final consensus output.

Challenge II: output all completed broadcasts to prevent censorship. Nevertheless, external

validity of MVBA is not enough to ensure liveness, as it cannot guarantee that all progressed

broadcasts can be solicited by some MVBA to output, and the censorship threat is still

a valid concern. The reason behind the problem is: the conventional MVBA notion [34]

allows the adversary to fully decide the agreed result (as long as satisfying the external

validity condition), so in our context, the adversary can exclude up to f honest nodes’

broadcasts from the final consensus output.

To overcome this subtle issue, we realize that some recent MVBA protocols [9, 73, 88]

actually have an additional quality property (at no extra cost). Here quality means that

with at least 1/2 probability (or other constant probability), the MVBA’s output is proposed

by some honest node. Hence, if we carefully choose an MVBA protocol with quality,

85

liveness (aka censorship-resilience) can be guaranteed because: once a broadcast’s quorum

certificate is received by all honest nodes, it will be decided to output after expected 2

MVBAs.

4.2 Related work

Recently, Tusk [54] adapted Prism’s [18] core idea to separate transaction diffuse and

agreement into the asynchronous setting, and presented how to diffuse transactions

concurrently to a compact DAG-based asynchronous consensus: each node multicasts

transaction batches to the whole network and waits n − f naive receipt acknowledgements,

such that the digests of transaction batches (instead of the actual transactions) can be agreed

inside Tusk’s DAG. Nevertheless, the above transaction diffuse does not generate quorum

certificates for transaction retrievability by itself, but relies on consistent broadcasts inside

Tusk’s DAG to generate such certificates. That means, diffused transactions of f honest

nodes might have no quorum certificates generated for retrievability in Tusk because their

corresponding consistent broadcasts are never completed (and they will finally be garbage

collected). In contrast, we require every node (even the slowest) can generate certificates

for retrievability of its own input transactions through a multi-shot broadcast instance.

This is critical for preventing censorship, because any honest node, no matter how slow it

is, can generate these certificates and use them to convince the whole network to solicit

its disseminated input into the final consensus output. This corresponds to the reason

why Tusk’s transaction diffuse cannot directly replace our transaction dissemination path

without hurting censorship resilience.

Another recent work DispersedLedger [124] recognized that the agreement phase in

HBBFT does not well utilize much bandwidth. It separates the bandwidth-intensive

transaction dissemination phase into two parts: dispersal and retrieval. However,

DispersedLedger still cannot achieve throughput-oblivious latency and effective censorship-

resilience [63]. Besides closely related studies [54, 73, 74, 77, 92, 124] discussed in

Introduction, there also exist a few works [80,113] including some very recent ones [66,87]

that consider adding an optimistic “fastlane” to the slow asynchronous atomic broadcast.

86

The fastlane could simply be a fast leader-based deterministic protocol. This line of work

is certainly interesting, however in the adversarial settings, the “fastlane” never succeeds,

and the overall performance would be even worse than running the asynchronous atomic

broadcast itself. This paper, on the contrary, aims to directly improve asynchronous BFT

atomic broadcast, and can be used together with the optimistic technique to provide a better

underlying pessimistic path. In addition, BEAT [58] cherry-picked constructions for each

component in HBBFT (e.g., coin flipping and TPKE without pairing) to demonstrate better

performance in various settings, and many of its findings can benefit us to choose concrete

instantiations for the future production-level implementation. There are also interesting

works on asynchronous distributed key generation [7,55,64,79], which could be helpful to

remove the private setup phase in all recent asynchronous BFT protocols.

In addition to fully asynchronous protocols, a seemingly feasible solution to robust

BFT consensus is choosing a conservative upper bound of network delay in (partially)

synchronous protocols. But this might bring serious performance degradation in latency,

e.g., the exaggeratedly slow Bitcoin. Following the issue, a large number of “robust”

(partially) synchronous protocols such as Prime [11], Spinning [122], RBFT [16] and many

others [47,48] are also subject to this robustness-latency trade-off. Let alone, none of them

can have guaranteed liveness in a pure asynchronous network, inherently [60]. In addition,

a few recent results [8, 105, 119] make synchronous protocols to attain fast (responsive)

confirmation in certain good cases, but still suffer from slow confirmation in more general

cases.

4.3 Problem Formulation

4.3.1 System model

We aim to design practical BFT consensus (atomic broadcast) protocols in the asynchronous

setting. In short, we adopt a widely-adopted asynchronous message-passing model [9, 14,

34, 35, 58, 74, 88, 92] with setup assumptions. In greater detail, we consider:

87

Known identities & setup for threshold signature. There are n designated nodes in the

system, each of which has a unique identity. W.o.l.g, their identities are denoted from P1 to

Pn. In addition, non-interactive threshold signature (TSIG) is properly set up, so all nodes

can get and only get their own secret keys in addition to the public keys. The setup can be

done through distributed key generation [7, 55, 56, 64, 68, 76, 79, 108] or a trusted dealer.

n/3 Byzantine corruptions. We consider that up to f = �(n − 1)/3� nodes might be

fully controlled by the adversary. Remark that our implementation might choose statically

secure threshold signature as a building block for efficiency as same as other practical

asynchronous protocols [58, 74, 92], noticing that a recent adaptively secure attempt [85]

has dramatically degraded throughput less than half of its static counterpart for moderate

scales ∼50 nodes. Nevertheless, same to [9, 34, 88], our protocol can be adaptively secure

to defend against an adversary that might corrupt nodes during the course of protocol

execution, if given adaptively secure threshold signature [83,84] and MVBA [9,88]. Besides

adaptively secure building blocks, the other cost of adaptive security is just an O(n)-factor

communication blow-up in some extreme cases.

Asynchronous fully-meshed point-to-point network. We consider an asynchronous

message-passing network made of fully meshed authenticated point-to-point (p2p) channels

[14]. The adversary can arbitrarily delay and reorder messages, but any message sent

between honest nodes will eventually be delivered to the destination without tampering,

i.e., the adversary cannot drop or modify the messages sent between the honest nodes.

As [92] explained, the eventual delivery of messages can be realized by letting the sender

repeat transmission until receiving an acknowledge from the receiver. However, when

some receiver is faulty, this might cause an increasing buffer of outgoing messages, so we

can let the sender only repeat transmissions of a limited number of outgoing messages.

To preserve liveness in the handicapped network where each link only eventually delivers

some messages (not all messages), we let each message carry a quorum certificate allowing

its receiver sync up the latest progress.

88

4.3.2 Security goal

We aim at a secure asynchronous BFT consensus satisfying the following atomic broadcast

(ABC) abstraction:

Definition 6. In an atomic broadcast protocol among n nodes against f Byzantine

corruptions, each node has an implicit input transaction buf, continuously selects

some transactions from buf as actual input, and outputs a sequence of totally ordered

transactions. In particular, it satisfies the following properties with all but negligible

probability:

• Agreement. If one honest node outputs a tx, then every honest node outputs tx;

• Total-order. If any two honest nodes output sequences of transactions 〈tx0, tx1, . . . , tx j〉
and 〈tx′0, tx′1, . . . , tx′j′ 〉, respectively, then txi = tx′i for i ≤ min(j, j′);

• Liveness (strong validity [34] or censorship resilience). If a transaction tx is input by

any honest node, it will eventually output.

In [34], Cachin et al. called the above liveness “strong validity”, which recently was

realized in DAG-rider [77] and DispersedLedger [124]. Strong validity is particularly

useful for implementing state-machine replication API because it prevents censorship

even if applying de-duplication techniques. Nevertheless, there are some weaker validity

notions [34] ensuring a transaction to output only if all honest nodes (or f + 1 honest

nodes) input it.

Note that there are also other complementary liveness notions orthogonal to validity, for

example, [34] proposed “fairness” that means the relative confirmation latency of any two

transactions is bounded (at least f + 1 honest nodes input them), and Kelkar et al. [78]

and Zhang et al. [127] recently introduced “order-fairness”. Nevertheless, following most

studies about practical asynchronous BFT consensus, we only consider liveness in form of

strong validity without fairness throughout the paper.

89

4.4 Dumbo-NG: Realizing Throughput-oblivious Latency

This section will elaborate our superior solution Dumbo-NG. We aim to support concurrent

processes for bandwidth-intensive transaction dissemination and bandwidth-oblivious BA

modules, so we can use much smaller batches to seize most bandwidth for realizing peak

throughput. Here we elaborate our solution Dumbo-NG that implements the promising

idea.

4.4.1 Overview of the Dumbo-NG protocol

At a very high level, Dumbo-NG consists of (i) n ever-running broadcasts and (ii) a

sequence of BAs.

Sender interface:
 broadcast TXs sequentially

...TX TX TX
cert :
1,digest ,...

Receiver interface:
 record TXs and certificates

ever-running multi-shot broadcast

cert :
2,digest ,

Figure 4.4: Ever-growing multi-shot broadcast.

Each node uses an ever-running multi-shot broadcast to continuously disseminate its

input transactions to the whole network. As Figure 4.4 illustrates, the broadcast is never

blocked to wait for any agreement modules or other nodes’ broadcasts, and just proceeds by

consecutive slots at its own speed. In each slot, the broadcast delivers a batch of transactions

along with a quorum certificate (containing a threshold signature or concatenating enough

digital signatures from distinct nodes). A valid certificate delivered in some slot can prove:

at least f + 1 honest nodes have received the same transactions in all previous slots of the

broadcast. The multi-shot broadcast is implementable, since each node only maintains

several local variables (related to the current slot and immediate previous slot), and all

earlier delivered transactions can be thrown into persistent storage to wait for the final

output.

90

Because we carefully add certificates to the ever-running broadcasts, it becomes possible

to concurrently execute MVBA with fine-tuned external validity condition to totally order

the disseminated transactions. In particular, a node invokes an MVBA protocol, if n − f

distinct broadcasts deliver new transactions to it (so also deliver n − f new certificates),

and the node can take the n − f certificates as MVBA input. The MVBA’s external validity

is specified to first check all certificates’ validity and then check that these n − f indeed

correspond to some newly delivered transactions that were not agreed to output before.

Once MVBA returns, all honest nodes receive a list of n − f valid certificates, and pack the

transactions certified by these certificates as a block of consensus output.

One might wonder that MVBA’s external validity alone cannot ensures all broadcasted

transactions are eventually output, because the adversary can let MVBA always return her

input of n − f certificates, which can always exclude the certificates of f honest nodes’

broadcasts. As such, the adversary censors these f honest nodes. Nevertheless, the quality

property of some recent MVBA protocols [9, 73, 88] can fortunately resolve the issue

without incurring extra cost. Recall that quality ensures that with at least 1/2 probability,

the output of MVBA is from some honest node. So the probability of censorship decreases

exponentially with the protocol execution.

TX
From P

From P

From P

From P

TX

TX

TX

Block Block

...

...

Block

MVBA[1] MVBA[2])
Specify
External
Predicate

decide
Block

decide
Block

Bandwidth-Oblivious Process: run MVBAs to order received TXs

certificates
at epoch 2

MVBA[3]

ordered

certificates
at epoch 1

Specify
External
Predicate

ordered

Specify
External
Predicate

ordered

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

TX

...

...

certificates
at epoch 3

6 6 65

Bandwidth-Intensive Process: receive broadcasted TXs (with certificates) from each node

...

decide
Block

Figure 4.5: Illustration on how to totally order the received broadcasts through executing a sequence

of MVBAs.

91

4.4.2 Details of the Dumbo-NG protocol

Here we present the formal description of Dumbo-NG. Algorithm 8 describes the main

protocol of Dumbo-NG including two subprotocols for broadcasting transactions and

ordering payloads. Algorithm 9 is about a daemon process Help and the function to call

it. To better explain the algorithms, we list the local variables and give a brief description

below.

• buf: A FIFO queue to buffer input transactions.

• P j: A designated node indexed by j.

• s: The slot number in a broadcast instance.

• e: The epoch tag of an MVBA instance.

• TXs j,s: The transaction batch received at the s-th slot of sender P j’s broadcast.

• blocks j,s: This is TXs j,s thrown into persistent storage. It can be read and written by the

broadcast process and/or the CallHelp process. MVBA process can also read it.

• blocke: The final consensus output decided at epoch e.

• ordered-indices: A vector to track how many slots were already placed into the final

consensus output for each broadcast instance.

• σ j,s: A partial threshold signature on TXs j,s.

• ordered j: The largest slot number for P j’s broadcast that has been ordered by consensus.

• current j: The current slot number of P j’s broadcast. This variable can be updated by the

broadcast processes and is readable by the MVBA process.

• digest j: A hash digest of transaction batch received from the sender P j at slot current j. This

is also readable by the MVBA process.

• Σ j: The threshold signature for the transaction batch received from the sender P j at slot

current j, also readable by the MVBA process. We also call (digest j,Σ j) the broadcast

quorum certificate.

92

• current-cert: A vector to store (current j, digest j,Σ j) for each j ∈ [n].

As Figure 4.5 illustrates, Dumbo-NG is composed of two concurrent components, n

ever-running multi-shot broadcasts and a sequence of MVBAs, which separately proceed

as follows in a concurrent manner:

Broadcasts: There are n concurrent broadcasts with distinct senders. The sender part and

receiver part of each broadcast proceed by slot s as follows, respectively:

• Sender Part. At the sender Pi’s side, once it enters a slot s, it selects a |B|-sized batch

TXsi,s of transactions from buf, then multicasts it with the current slot index s (and

probably a threshold signature Σs−1 if s > 1) via proposal message, where Σs−1 can be

thought as a quorum certificate for the transaction batch TXsi,s−1 that was broadcasted

in the preceding slot s− 1. After that, the node Pi waits for 2 f + 1 valid Vote messages

from distinct nodes. Since each Vote message carries a threshold signature share for

TXs j,s, Pi can compute a threshold signature Σs for TXs j,s. Then, move into slot s + 1

and repeat.

• Receiver Part. At the receivers’ side of a sender P j’s broadcast, if a receiving node Pi

stays in slot s, it waits for a valid proposal message that carries (s,TXs j,s,Σ j,s−1) from

the designated sender P j. Then, Pi records TXs j,s, and also marks the transaction batch

TXs j,s−1 received in the preceding slot s−1 as the “fixed” (denoted by blocks j[s−1] and

can be thrown into persistent storage). This is because Σ j,s−1 attests that TXs j,s−1 was

received and signed by enough honest nodes, so it can be fixed (as no other honest node

can fix a different TXs′j,s−1). Meanwhile, Pi updates its local current-cert vector, by

replacing the j-th element by (s − 1, digest j,s−1,Σ j,s−1), because Pi realizes the growth

of P j’s broadcast. Next, Pi computes a partial signature σs on received proposal

TXs j,s, and sends a Vote message carrying σs to P j. Then Pi moves into the next slot

s + 1 and repeats the above. In case P j (staying at slot s) receives a proposal message

(s′,TXs j,s′ ,Σ j,s′−1) with some s′ > s, it shall first retrieve missing transaction batches till

slot s′ − 1 and then proceed in slot s′ as above to vote on the latest received transaction

93

Algorithm 8 The Dumbo-NG protocol (for each node Pi runs the protocol consisting of the following processes:)

let buf to be a FIFO queue of input transactions, B to be the batch size parameter

Initializes current-cert := [(current1, digest1,Σ1), . . . , (currentn, digestn,Σn)] as [(0,⊥,⊥), . . . , (0,⊥,⊥)];

for every j ∈ [n]: blocks j ← {} (which shall be implemented by persistent storage)

/* Broadcast-Sender */

(one process that takes buf as input)
. .

1: for each slot s ∈ {1, 2, 3, . . . } do
2: TXsi,s ← buf[: B] to select a proposal, compute digesti,s ← H(TXsi,s),

3: if s > 1: multicast proposal(s,TXsi,s, digesti,s−1,Σi,s−1), else: multicast proposal(s,TXsi,s,⊥,⊥)

4: wait2 f + 1 Vote(s, σ j,s) messages from 2 f + 1 distinct nodes {P j} s.t. VrfyShare j(i||s||digesti,s, σ j,s) = true
5: compute the threshed signature Σs on i||s||digesti,s by combining 2 f + 1 received signature shares {σ j,s} j∈{P j}

/* Broadcast-Receiver */

(n processes that input and update current-cert and blocks j)
. .

6: for each j ∈ [n]: start a process to handle P j’s proposal messages as follows do
7: for each slot s ∈ {1, 2, 3, . . . } do
8: upon receiving proposal(s,TXs j,s, digest j,s−1,Σ j,s−1) message from P j for the first time do
9: if s = 1 then
10: σs ← SignSharei(j||1||H(TXs j,1) to compute a partial sig on TXs j,1

11: record TXs j,1, send Vote(1, σ1) to P j

12: if s > 1 and digest j,s−1 = H(TXs j,s−1) and Vrfy(j||s − 1||digest j,s−1,Σ j,s−1) = true then
13: blocks j[s − 1]← TXs j,s−1 to record the transaction proposal received in the precedent slot into persistent storage

14: (current j, digest j,Σ j)← (s − 1, digest j,s−1,Σ j,s−1) to update the j-th element in the current-cert vector

15: σs ← SignSharei(j||s||H(TXs j,s) to compute partial sig on TXs j,s

16: record TXs j,s in memory and delete TXs j,s−1 from memory, then send Vote(s, σs) to P j

17: upon receiving proposal(s′,TXs j,s′ , digest j,s′−1,Σ j,s′−1) s.t. s′ > s from P j for the first time do
18: if Vrfy(j||s′ − 1||digest j,s′−1,Σ j,s′−1) = true then
19: send Pull(j, s′ − 1, digest j,s′−1,Σ j,s′−1) to its own CallHelp daemon (cf. Alg. 9)

20: wait for blocks j[s − 1], ..., blocks j[s′ − 1] are all retrieved by the CallHelp daemon

21: (current j, digest j,Σ j)← (s′ − 1, digest j,s′−1,Σ j,s′−1) to update the j-th element in the current-cert vector

22: σs′ ← SignSharei(j||s′||H(TXs j,s′)) to compute the partial signature on TXs j,s′
23: record TXs j,s′ in memory and delete TXs j,s−1 from memory

24: send Vote(s′, σs′) to P j, then move into slot s← s′ + 1
. .

. .

/* Consensus for Ordering Payloads */

(one process that inputs current-cert and blocks j and outputs linearized blocks)
. .

25: initial ordered-indices := [ordered1, . . . , orderedn] as [0, . . . , 0]

26: for each epoch e ∈ {1, 2, 3, . . . } do
27: initial MVBA[e] with global predicate Qe (to pick a valid current-cert′ with n − f current j increased w.r.t. ordered j)

Precisely, the predicate Qe is defined as: Qe(current-cert′) ≡ (for each element (current′j, digest′j,Σ
′
j) of input vector current-cert′,

Vrfy(j||current′j ||digest′j,Σ
′
j) = true or current′j = 0) ∧ (∃ at least n− f distinct j ∈ [n], such that current′j > ordered j) ∧ (∀ j ∈ [n],

current′j ≥ ordered j)

28: wait ∃ n − f distinct j ∈ [n] s.t. current j > ordered j � This can be triggered by updates of current-cert
29: input current-cert to MVBA[e]

30: wait MVBA[e]’s output current-cert′ := [(current′
1
, digest′1,Σ

′
1
), . . . , (current′n, digest′n,Σ′n)]

31: blocke ← sort(
⋃

j∈[n]{blocks j[ordered j + 1], . . . , blocks j[current′j]}), i.e. sort blocke canonically (e.g., lexicographically)

If some blocks j[k] to output was not recorded, send Pull(j, current′j, digest j,current′j ,Σ j,current′j) to its own CallHelp daemon to fetch

the missing blocks from other nodes (because at least f + 1 honest nodes must record them), cf. Algorithm 9 for exemplary

implementation of this function

32: buf← buf \ blocke and output blocke, then for each j ∈ [n]: ordered j ← current′j

94

TXs j,s′ and then move to slot s′ + 1. The details about how to pull transactions from

other nodes will be soon explained in a later subsection. 4

Agreements: Aside the transaction broadcasts, a separate asynchronous agreement module

is concurrently executing and totally order the broadcasted transaction batches. The

agreement module is a sequence of MVBAs and proceeds as follows by epoch e.

Each node initializes a vector (denoted by ordered-indices) as [0, . . . , 0] when e = 1. The j-

th element in ordered-indices is denoted by ordered j and represents how many transaction

batches from the sender P j have been totally ordered as output. Also, every node locally

maintains a n-size vector denoted by current-cert to track the current progresses of all

broadcasts. In particular, the j-th element (current j, digest j,Σ j) in current-cert tracks the

progress of P j’s broadcast, and current j, digest j and Σ j presents the slot index, the hash

digest, and the threshold signature associated to the last transaction batch received from

the sender P j, respectively.

Then, a node waits for that at least n − f broadcasts deliver new transactions (along

with new certificates), i.e., current j > ordered j for at least n − f distinct j. Then, it

invokes an MVBA[e] instance associated to the current epoch e with taking current-cert as

input. The global predicate Qe of MVBA[e] is fine-tuned to return a vector current-cert′ =

[(current′1, digest′1,Σ
′
1), . . . , (current′n, digest′n,Σ

′
n)], such that: (i) all Σ′j is a valid threshold

signature for the current′j-th slot of P j’s broadcast, and (ii) current′j > ordered j for at least

n − f different j ∈ [n]. Finally, all nodes decide this epoch’s output due to current-cert′.

Specifically, they firstly check if TXs j,current′j was received and blocks j[current′j] was not

recorded, if that is the case and digest′j = H(TXs j,current′j), they mark TXs j,current′j as fixed

and record it as blocks j[current′j]. Then, the honest nodes pack the output of the epoch: for

4There is a subtle reason to first retrieve the missing transactions and then increase the local slot

number in each broadcast instance, if a node is allowed to jump into a much higher slot without

completing the pull of missing transactions, the asynchronous adversary might cause less than

f + 1 honest nodes have the broadcasted transactions in its persistent storage. Our design ensures

that a quorum certificate can certainly prove that f + 1 honest nodes indeed have thrown all

previously broadcasted transactions (except the latest slot’s) into their persistent storage (otherwise

they wouldn’t vote).

95

each j ∈ [n], find the fixed transaction batches blocks j[ordered j+1], blocks j[ordered j+2],

· · · , blocks j[current′j], and put these batches into the epoch’s output. After output in the

epoch e, each node updates ordered-indices by the latest indices in current-cert′, and

enters the epoch e + 1.

Algorithm 9 CallHelp daemon and Help daemon (for each node Pi)

/* CallHelp daemon */
. .

get access to the variables [(current1, digest1,Σ1), . . . , (currentn, digestn,Σn)] (which are

initialized in Alg. 8)

This allows CallHelp pull missing transactions to sync up till the latest progress of each

broadcast instance

1: initialize max-missing j ← 0, max-missing-cert j ←⊥ for each j ∈ [n]

2: upon receiving Pull(j, s∗, digest j,s∗ ,Σ j,s∗) do � In case a few Pull messages are received,

3: if s∗ >max-missing j and s∗ > current j and Vrfy(j||s∗||digest j,s∗ ,Σ j,s∗) = true then
4: max-missing j ← s∗, max-missing-digest j ← digest j,s∗ , max-missing-cert j ← Σ j,s∗

5: missing j ← current j + 1

6: for k ∈ {missing j,missing j + 1,missing j + 2, ..., max-missing j} do
If the CallHelp daemon receives more Pull messages for j-th broadcast while the loop is

running, other Pull messages wouldn’t trigger the loop but just probably update the break

condition via max-missing j.

7: if k < max-missing j then multicast message CallHelp(j, k);

8: else CallHelp(j, k,max-missing-cert j)

9: wait receiving n − 2 f valid Help(j, k, h,ms, bs) messages from distinct nodes

where “valid” means: for Help messages from the node Ps, bs is the valid s-th Merkle branch

for Merkle root h and the Merkle tree leaf ms

10: interpolate n − 2 f received leaves {ms} to reconstruct and store blocks j[k]

/* Help daemon */
. .

get access to read the persistently stored broadcasted tx blocks j and the latest received tx TXs j,s

in Alg. 8 for each j ∈ [n]

11: upon receiving CallHelp(j, k) or CallHelp(j, k,Σ j,k) from node Ps for k for the first time do
12: if TXs j,k is the latest tx received and Vrfy(j||k||H(TXs j,k),Σ j,k) = true then
13: record blocks j[k]← TXs j,k

14: if blocks j[k] is recorded then
15: let {mk}k∈[n] be fragments of (n − 2 f , n)-erasure code applied to blocks j[k], and h be

Merkle tree root computed over {mk}k∈[n]

16: send Help(j, k, h,mi, bi) to Ps, where mi is the i-th erasure-code fragment of blocks j[k]

and bi is the i-th Merkle tree branch

Handle missing transaction batches: Note that is possible that some node might not store

blocks j[k], when (i) it has to put blocks j[k] into its output after some MVBA returns

96

in epoch e or (ii) has to sync up to the k-th slot in the sender P j’s broadcast instance

because of receiving a proposal message containing a slot number higher than its local

slot. In both cases, each node can notify a CallHelp process to ask the missing transaction

batches from other nodes, because at least f + 1 honest nodes must record or receive

it because of the simple property of quorum certificate (otherwise they would not vote

to form such certificates). We can adopt the techniques of erasure-code and Merkle

tree used in verifiable information dispersal [38, 92] to prevent communication blow-up

while pulling transactions. In particular, the CallHelp function is invoked to broadcast

a CallHelp message to announce that blocks j[k] is needed. Once a node receives the

CallHelp message, a daemon process Help (also cf. Algorithm 9) would be activated to

proceed as: if the asked transaction batch blocks j[k] was stored, then encode blocks j[k]

using an erasure code scheme, compute a Merkle tree committing the code fragments and

i-th Merkle branch from the root to each i-th fragment. Along the way, the Help daemon

sends the Merkle root, the i-th fragment, and the i-th Merkle branch to who is requesting

blocks j[k]. Every honest node requesting blocks j[k] can receive f + 1 valid responses

from honest nodes with the same Merkle root, so it can recover the correct blocks j[k]. As

such, each Help daemon only has to return a code fragment of the missing transactions

under request, and the fragment’s size is only O(1/n) of the transactions, thus not blowing

up the overall communication complexity.

4.4.3 Analyses of the Dumbo-NG protocol

Dumbo-NG realizes all requirements of ABC. The security intuitions are:

Safety intuitively stems from the following observations:

• Safety of broadcasts. For any sender P j’s broadcast, if a valid quorum certificate

Σ j,s can be produced, at least f + 1 honest nodes have received the same sequence

of transaction batches TXs j,s, TXs j,s−1, · · · TXs j,1. In addition, if two honest nodes

locally store blocks j[s] and blocks′j[s] after seeing Σ j,s and Σ′j,s, respectively, then

blocks j[s] = blocks′j[s]. The above properties stem from the simple fact that quorum

97

certificates are 2 f + 1 threshold signatures on the hash digest of received transaction

batches, so the violation of this property would either break the security of threshold

signatures or the collision-resistance of cryptographic hash function.

• External validity and agreement of MVBA. The global predicate of every MVBA

instance is set to check the validity of all broadcast certificates (i.e., verify threshold

signatures). So MVBA must return a vector current-cert′ = [(current′1, digest′1,Σ
′
1),

. . . , (current′n, digest′n,Σ
′
n)], such that each (current′j, digest′j, Σ

′
j) ∈ current-cert′ is

valid broadcast certificate. In addition, any two honest nodes would receive the same

current-cert′ from every MVBA instance, so any two honest nodes would output the

same transactions in every epoch, because each epoch’s output is simply packing some

fixed transaction batches according to current-cert′ returned from MVBA.

Liveness (censorship-resilience) is induced as the following facts:

• Optimistic liveness of broadcasts. If a broadcast’s sender is honest, it can broadcast all

input transactions to the whole network, such that all nodes can receive an ever-growing

sequence of the sender’s transactions with corresponding quorum certificates.

• Quality of MVBA. Considering that an honest sender broadcasts a transaction batch

TXs j,s at slot s, all nodes must receive some quorum certificate containing an index

equal or higher than s eventually after a constant number of asynchronous rounds. After

some moment, all honest nodes would input such certificate to some MVBA instance.

Recall the quality of MVBA, which states that with 1/2 probability, some honest node’s

input must become MVBA’s output. So after expected 2 epochs, some honest node’s

input to MVBA would be returned, indicating that the broadcast’s certificate with index

s (or some larger index) would be used to pack TXs j,s into the final output.

• Termination of MVBA. Moreover, MVBA can terminate in expected constant

asynchronous rounds. So every epoch only costs expected constant running time.

Now we formally prove the safety and liveness of Dumbo-NG in the presence of an

asynchronous adversary that can corrupt f < n/3 nodes and control the network delivery.

98

Lemma 20. If one honest node Pi records blocksk[s] and another honest node P j records

blocksk[s]′, then blocksk[s] = blocksk[s]′.

Proof: When Pi records blocksk[s], according to the Algorithm 8, the node Pi has received

a valid proposal(s,TXsk,s+1, Σk,s) message from Pk for the first time, where Vrfy(k||s||H
(TXsk,s),Σk,s) = true and the Σk,s is a threshold signature with threshold 2 f + 1. Due to the

fact that each honest node only sends one Vote message which carries a cryptographic

threshold signature share for each slot s of Pk, it is impossible to forge a threshold

signature Σ′k,s satisfying Vrfy(k||s||H(TXs′k,s),Σ
′
k,s) = true s.t. H(TXsk,s) � hash(TXs′k,s).

Hence,H(TXsk,s) = H(TXs′k,s), and following the collision-resistance of hash function, so

if any two honest Pi and P j records blocksk[s] and blocksk[s]′ respectively, blocksk[s] =

blocksk[s]′. �

Lemma 21. Suppose at least f + 1 honest nodes record blocksk[s], if node Pi does not

record it and tries to fetch it via function CallHelp(k, s), then CallHelp(k, s) will return

blocksk[s].

Proof: Since at least f + 1 honest nodes have recorded blocksk[s], these honest nodes will

do erasure coding in blocksk[s] to generate {ml
j} j∈[n], then compute the Merkle tree root h

and the branch. Following the Lemma 20, any honest node who records blocksk[s] has

the same value, so it is impossible for Pi to receive f + 1 distinct valid leaves corresponds

to another Merkle tree root h′ � h. Hence, Pi can receive at least f + 1 distinct valid

leaves which corresponds to root h. So after interpolating the f + 1 valid leaves, Pi can

reconstruct blocksk[s]. �

Lemma 22. If MVBA[e] outputs current-cert′ = [(current′1, digest′1,Σ
′
1), . . . , (current′n,

digest′n,Σ
′
n)], then all honest nodes output the same blocke =

⋃
j∈[n]{blocks j[ordered j + 1],

. . . , blocks j[current′j]}.

Proof: According to the algorithm, all honest nodes initialize ordered-indices :=

[ordered1, . . . , orderedn] as [0, . . . , 0]. Then the ordered-indices will be updated by the

output of MVBA, so following the agreement of MVBA, all honest nodes have the same

ordered-indices vector when they participate in MVBA[e] instance. Again, following the

99

agreement of MVBA, all honest nodes have the same output from MVBA[e], so all of them

will try to output blocke =
⋃

j∈[n]{blocks j[ordered j + 1], . . . , blocks j[current′j]}.

For each current′j, if (current′j, digest′j,Σ
′
j) is a valid triple, i.e., Vrfy(j||current′j||digest′j,Σ j)

= true, then at least f + 1 honest nodes have received the TXs j,current′j which satisfied

digest′j = H(TXs j,current′j). It also implies that at least f + 1 honest nodes can record

blocks j[current′j]. By the code of algorithm, it is easy to see that at least f +1 honest nodes

have {blocks j[ordered j + 1], . . . , blocks j[current′j]}. From Lemma 20, we know these

honest nodes have same blocks. From Lemma 21, we know if some honest nodes who

did not record some blocks wants to fetch it via CallHelp function, they also can get the

same blocks. Hence, all honest nodes output same blocke =
⋃

j∈[n]{blocks j[ordered j + 1],

. . . , blocks j[current′j]}. �

Theorem 6. The algorithm 8 satisfies total-order, agreement and liveness properties except

with negligible probability.

Proof: Here we prove the three properties one by one:

For agreement: Suppose that one honest node Pi outputs a blocke =
⋃

j∈[n]{blocks j

[ordered j + 1], . . . , blocks j [current′j]}, then according to the algorithm, the output of

MVBA is current-cert′ := [(current′1, digest′1,Σ
′
1), . . . , (current′n, digest′n,Σ

′
n)].

Following Lemma 22, all honest nodes output the same blocke =
⋃

j∈[n]{blocks j[ordered j+

1], . . . , blocks j[current′j]}. So the agreement is hold.

For Total-order: According to the algorithm, all honest nodes sequential participate in

MVBA epoch by epoch, and in each MVBA, all honest nodes output the same block, so the

total-order is trivially hold.

For Liveness: One honest node Pi can start a new broadcast and multicast his proposal

message if it can receive 2 f + 1 valid Vote messages from distinct nodes to generate

a certificate. Note that the number of honest nodes is at least n − f so sufficient Vote

messages can always be collected and Pi can start new multicast continuously. It also

means that Pi would not get stuck.It also implies at least n− f parallel broadcasts can grow

100

continuously since all honest nodes try to multicast their own proposal messages. Hence,

each honest node can have a valid input of MVBA[e] which satisfies the predicate Qe.

In this case, we can immediately follow the termination of MVBA[e], then the MVBA[e]

returns an output to all honest nodes.

According to the quality of MVBA, the input of honest nodes can be outputted with a

probability no less than 1/2, so even in the worst case, once the MVBA[e] decides to output

the input of an honest node Pi, the input of Pi will be outputted by all honest nodes. It also

implies that the adversary can not censorship the input payloads from Pi. Moreover, the

probability of MVBA[e] outputting the input of node Pi is at most O(1/n), so any honest

input can be outputted in at most O(n) asynchronous rounds in expected. �

Complexity and performance analysis. The round and communication complexities of

Dumbo-NG can be analyzed as follows:

• The round complexity is expected constant. After a transaction is broadcasted by

an honest node, every honest node would receive a valid quorum certificate on this

transaction after 3 asynchronous rounds. Then, the transaction would output after

expected two MVBA instances (due to the quality of MVBA). In case of facing faults

and/or adversarial network, there could be more concrete rounds, for example, some

nodes might need two rounds to retrieve missing transaction batches and MVBA could

also become slower by a factor of 3/2.

• The amortized communication complexity is linear for sufficiently large batch size

parameter. Due to our broadcast construction, it costs O(|B|n + λn) bits to broadcast a

batch of |B| transactions to all nodes. The expected communication complexity of an

MVBA instance is O(λn3). Recall that every MVBA causes to output a block containing

at least O(n|B|) transactions, and probably O(n|B|) transactions need to bother Help

and CallHelp subroutines, costing at most O(n2|B| + λn3 log n) bits. In sum, each

epoch would output O(n|B|) transactions with expected O(n2|B|+λn3 log n) bits despite

the adversary, which corresponds to linear amortized communication complexity if

|B| ≥ λn log n.

101

4.5 Implementation and Evaluations

We implement Dumbo-NG and deploy it over 16 different AWS regions across the globe.

A series of experiments is conducted in the WAN settings with different system scales and

input batch sizes. The experimental results demonstrate the superiority of Dumbo-NG

over the existing performant asynchronous BFT consensus protocol Speeding-Dumbo

(sDumbo) [73]. In particular, Dumbo-NG can preserve low latency (only several seconds)

while realizing high throughput (100k tx/sec) at all system scales (from 4 to 64 nodes).

4.5.1 Implementation setup

Implementations details. We implement Dumbo-NG, sDumbo and Dumbo in Python3.5

The same cryptographic libraries and security parameters are used throughout all

implementations. The Dumbo-NG us implemented as two-process Python programs.

Specifically, Dumbo-NG uses one process for broadcasting transactions and uses the other

to execute MVBA. We use gevent library for concurrent tasks in one process. Coin flipping

is implemented with using Boldyreva’s pairing-based threshold signature [29]. Regarding

quorum certificates, we implement them by concatenating ECDSA signatures. Same

to HBBFT [92], Dumbo [74] and BEAT [58], our experiments focus on evaluating the

performance of stand-alone asynchronous consensus, and all results are measured in a fair

way without actual clients.

Implementation of asynchronous network. To realize reliable fully meshed asynchronous

point-to-point channels, we implement a (persistent) unauthenticated TCP connection

between every two nodes. The network layer runs on two separate processes: one handles

message receiving, and the other handles message sending. If a TCP connection is dropped

(and fails to deliver messages), our implementation would attempt to re-connect.

5Proof-of-concept implementation is available at https://github.com/fascy/Dumbo NG. Though our

proof-of-concept implementation didn’t implement the processes for pulling missing transactions

in Dumbo-NG, it cautiously counts the number of such retrievals and found that there were less

than 1% missing transaction batches to retrieve in all WAN evaluations.

102

Setup on Amazon EC2. We run Dumbo-NG, Dumbo and Speeding-Dumbo (sDumbo)

among EC2 c5.large instances which are equipped with 2 vCPUs and 4 GB main memory.

Their performances are evaluated with varying scales at n = 4, 16, and 64 nodes. Each

transaction is 250-byte to approximate the size of a typical Bitcoin transaction with one

input and two outputs. For n = 16 and 64, all instances are evenly distributed in 16

regions across five continents: Virginia, Ohio, California, Oregon, Canada, Mumbai, Seoul,

Singapore, Sydney, Tokyo, Frankfurt, London, Ireland, Paris, Stockholm and São Paulo;

for n = 4, we use the regions in Virginia, Sydney, Tokyo and Ireland.

4.5.2 Evaluations in the WAN setting

Dumbo-NG v.s. prior art. To demonstrate the superior performance of Dumbo-NG, we

first comprehensively compare it to sDumbo and Dumbo. Specifically,

• Peak throughput. For each asynchronous consensus, we measure its throughput, i.e., the

number of transactions output per second. The peaks of the throughputs of Dumbo-NG,

sDumbo and Dumbo (in varying scales) are presented in Figure 4.6(a). This reflects

how well each protocol can handle the application scenarios favoring throughput.

Overall, the peak throughput of Dumbo-NG has a several-times improvement than any

other protocol. Specifically, the peak throughput of Dumbo-NG is more than 7x of

Dumbo when n = 4, about 4x of Dumbo when n = 16, and roughly 3x of Dumbo

when n = 64. As for sDumbo, it is around 4x of sDumbo when n = 4, over 2x of

sDumbo when n = 16, and almost 3x of sDumbo when n = 64.

• Latency-throughput trade-off. Figure 4.6(b), 4.6(c) and 4.6(d) illustrate the latency-

throughput trade-off of Dumbo-NG, sDumbo and Dumbo when n = 4, 16 and 64,

respectively. Here latency is the time elapsed between the moment when a transaction

appears in the front of a node’s input buffer and the moment when it outputs, so it means

the “consensus latency” excluding the time of queuing in mempool. The trade-off

between latency and throughput determines whether a BFT protocol can simultaneously

handle throughput-critical and latency-critical applications. To measure Dumbo-NG’s

103

(average) latency, we attach timestamp to every broadcasted transaction batch, so all

nodes can track the broadcasting time of all transactions to calculate latency. The

experimental results show: although Dumbo-NG uses a Byzantine agreement module

same to that in sDumbo (i.e., the GLL+22-MVBA), its trade-off surpasses sDumbo in

all cases. The more significant result is that at all system scales, Dumbo-NG preserves a

low and relatively stable latency (only a few seconds), while realizing high throughput

at the magnitude of 100k tx/sec. In contrast, other protocols suffer from dramatic

latency increment while approaching their peak throughput. This demonstrates that

Dumbo-NG enjoys a much broader array of application scenarios than the prior art,

disregarding throughput-favoring or latency-favoring.

(a) Peak throughput (b) Latency-throughput trade-off (n = 4)

(c) Latency-throughput trade-off (n = 16) (d) Latency-throughput trade-off (n = 64)

Figure 4.6: Performance of Dumbo-NG in comparison with the state-of-the-art asynchronous

protocols (in the WAN setting).

Latency/throughput while varying batch sizes. The tested asynchronous protocols do

have a parameter of batch size to specify that each node can broadcast up to how many

transactions each time. As aforementioned, the latency-throughput tension in many earlier

104

0

5

10

15

1k 2k 3k 4k 5k 6k
0

50
k

10
0k

15
0k

20
0k

0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k

DumbosDumbo

La
te

nc
y

(s
ec

)

Dumbo-NG

Th
ro

ug
hp

ut
(tx

/s
ec

)

Batch Size (tx) Batch Size (tx) Batch Size (tx)

Figure 4.7: Throughput/latency of Dumbo-NG, sDumbo and Dumbo in varying batch size for

WAN setting (n = 16).

practical asynchronous BFT consensuses like HBBFT and Dumbo is actually related to the

choice of batch size: their batch size parameter has to be tuned up for higher throughput,

while this might cause a dramatic increment in latency.

Here, we gradually increase the batch size and record the latency and throughput to see

how batch size takes effect in the tested protocols. Figure 4.7 plots a sample when n = 16

for Dumbo-NG, sDumbo and Dumbo. It is observed that with the increment of batch size,

the throughput of all protocols starts to grow rapidly but soon tends to grow slowly. The

latency of Dumbo and sDumbo grows at a steady rate as the batch size increases. However,

the latency of Dumbo-NG remains constantly small. When the batch size increases from

1k to 5k, Dumbo-NG reaches its peak throughput (about 160k tx/sec), and its latency

only increases by less than 0.5 sec; in contrast, sDumbo and Dumbo have to trade a few

seconds in their latency for reaching peak throughput. Clearly, Dumbo-NG needs a much

smaller batch size (only about 1/10 of others) to realize the highest throughput, which

allows it to maintain a pretty low latency under high throughput.

4.5.3 More evaluations in the controlled delay/bandwidth settings

The above experiments in the WAN setting raises an interesting question about Dumbo-NG:

why it preserves a nearly constant latency despite throughput? We infer the following two

conjectures based on the earlier WAN setting results:

105

1. The MVBA protocols are actually insensitive to the amount of available bandwidth,

so no matter how much bandwidth is seized by transaction broadcasts, their latency

would not change as only rely on round-trip time of network.

2. The nodes in Dumbo-NG only need to broadcast a small batch of transactions (e.g., a

few thousands that is 1/10 of Dumbo) to closely track bandwidth.

Clearly, if the above conjectures are true, the latency of Dumbo-NG would just be 1-2x

of MVBA’s running time. Hence, we further conduct extensive experiments in a LAN

setting (consisting of servers in a single AWS region) with manually controlled network

propagation delay and bandwidth to verify the two conjectures, respectively.

Figure 4.8: Latency of GLL+22-MVBA [73] with n=16 nodes in varying bandwidth for (a) 50ms

and (b) 200ms one-way network delay, respectively.

Evaluate MVBA with controlled network bandwidth/delay. We measure MVBA, in

particular, its latency, in the controlled experiment environment (for n=16 nodes). Here

the input-size of MVBA is set to capture the length of n quorum certificates. Figure 4.8

(a) and (b) show the results in the setting of 50 and 100 ms network propagation delays,

respectively, with varying the bandwidth of each peer-to-peer tcp link (5, 10, 20, 50, 75, or

100 Mbps). Clearly, our first conjecture is true, as MVBA is definitely bandwidth-oblivious,

as its latency relies on propagation delay other than available bandwidth.

Test Dumbo-NG with controlled network bandwidth/delay. Then we verify whether

Dumbo-NG can closely track available bandwidth resources with only small batch sizes.

We examine how Dumbo-NG gradually saturates bandwidth resources whiling batch size

106

Figure 4.9: The dependency of throughput on varying batch size in controlled deployment

environment with 50 ms one-way delay and (a) 75Mbps and (b) 150Mbps bandwidth.

increases, in a controlled environment (for n=16 nodes). The one-way network delay is

set to 50ms, and per-node’s bandwidth is set for (a) 75Mbps (5Mbps per tcp socket) or

(b) 150Mbps (10Mbps per tcp socket). The controlled network parameters well reflect an

inter-continental communication network. Clearly, the results verify our second conjecture

that Dumbo-NG can fully utilize bandwidth while using small batch sizes (less than 1MB).

Behind the throughput-oblivious latency. Given the extensive experiment results, we

now can understand why the latency of Dumbo-NG is almost independent to its throughput:

(i) some small batch sizes can already fully utilize network bandwidth, and therefore the

latency of broadcasting a batch transactions is much smaller than that of MVBA; (ii)

when the broadcast instances seize most bandwidth, the latency of MVBA would not

be impacted as its latency is bandwidth-insensitive. So if a broadcast makes a progress

when the MVBA of epoch e is running, this progress would be solicited to output by the

MVBA of next epoch e + 1 (if no fault), and even if there are n/3 faulty nodes, it is still

expected to output by the MVBA of epoch e + 2 (due to MVBA’s quality), which results

in throughput-oblivious latency. For sake of completeness, we also interpret the above

intuition into an analytic formula and perform numerical analysis to translate it into a

quantitative study as follows: Assume that all nodes have the equal bandwidth w and all

p2p links have the same round-trip delay τ, and we might ignore some constant coefficients

in formulas.

107

For Dumbo-NG, its throughput/latency can be roughly written:

tps of Dumbo-NG =
nB

nB/w + τ
, latency of Dumbo-NG = nB/w + τ + 1.5 · TBA

where (nB/w+τ) reflects the duration of each broadcast slot, and nB represents the number

of transactions disseminated by all n nodes in a slot. Recall that our experiments in

Section 4.5 demonstrate that the agreement modules are bandwidth-oblivious and cost little

bandwidth, so we ignore the bandwidth used by the agreement modules in Dumbo-NG.

Hence, the term nB/w reflects the time to disseminate B transactions to all nodes while

fully utilizing w bandwidth, and τ is for the round-trip delay waiting for n − f signatures

to move in the next slot. The term TBA represents the latency of MVBA module, and the

factor 1.5 captures that a broadcast slot might finish in the middle of an MVBA execution

and on average would wait 0.5 MVBA to be solicited by the next MVBA’s input.

For Dumbo/HBBFT, the rough throughput/latency formulas are:

tps of HBBFT variants =
nB

nB/w + τ + TBA + TT PKE
<

nB
nB/w + TBA

latency of HBBFT variants =
nB
w
+ τ + TBA + TT PKE > nB/w + TBA

where nB/w + TBA represents the duration of each ACS, and nB reflects the number of

transactions that are output by every ACS (here we ignore some constant communication

blow-up factor, so would we do in the following analysis). The term nB/w captures the

time to disseminate B transactions, TBA denotes the latency of running the Byzantine

agreement phase (e.g., one MVBA in Dumbo or n ABAs in HBBFT), TT PKE represents

the delay of threshold decryption/encryption for preventing censorship, and τ reflects the

network propagation delay involved in the phase of transaction dissemination. To simplify

the formulas, we might omit τ and TT PKE , which still allows us to estimate the upper bound

of Dumbo/HBBFT’s throughput and the lower bound of their latency.

108

Noticeably, both throughput formulas have a limit close to network bandwidth w, but their

major difference is whether the TBA term appears at the denominator of throughput or not

(representing whether the Byzantine agreement module blocks transaction dissemination

or not). We specify parameters to numerically analyze this impact on throughput-latency

trade-off. In particular, for n=16, we set the per-node bandwidth w as 150 Mbps, round-trip

delay τ as 100 ms, the latency of Byzantine agreement TBA as 1 second, and transaction

size as 250 bytes. The throughput-latency trade-offs induced from the above formulas

are plotted in Figure 4.10 (where the throughput varies from 20% of to 90% of network

capacity).

1 2 3 4 5 6 7
Throughput (tx/sec) 104

2

4

6

8

10

12

La
te

nc
y

(s
ec

on
d)

HBBFT variants
Dumbo-NG

Figure 4.10: Numerical analysis to show the throughput-latency trade-offs in Dumbo-NG and

HBBFT variants.

Clearly, despite their same throughput limitation, the two types of protocols present quite

different throughput-latency trade-offs. In particular, when their throughputs increase from

the minimum to 90% of network capacity, the latency increment of the Dumbo-NG is

only 0.85 sec (only ∼50% increment), while Dumbo suffers from 9.60 second increment

(∼630% increment). This reflects that Dumbo-NG can seize most network bandwidth

resources with only small batch sizes, because its transaction dissemination is not blocked

by the slow Byzantine agreement modules.

4.6 Discussions

Flooding launched by malicious nodes. In the HBBFT and DAG type of protocols

[54, 58, 73, 74, 77, 92], the malicious nodes cannot broadcast transactions too much faster

109

than the honest nodes, because all nodes explicitly block themselves to wait for the

completeness of n − f broadcasts to move forward. While one might wonder that in

Dumbo-NG, the malicious nodes probably can broadcast a huge amount of transactions

in a short term, which might exhaust the resources of the honest nodes and prevent them

from processing other transactions.

Nevertheless, this is actually a general flooding attack in many distributed systems, and it is

not a particularly serious worry in Dumbo-NG, because a multitude of techniques already

exist to deter it. For example, the nodes can allocate an limited amount of resources to

handle each sender’s broadcast, so they always have sufficient resources to process the

transactions from the other honest senders, or an alternative mitigation can also be charging

fees for transactions as in Avalanche [114].

Input tx buffer assumptions related to censorship-resilience. Censorship-resilience

(liveness) in many work [58, 73, 74, 92] explicitly admits an assumption about input buffer

(a.k.a. backlog or transaction pool): a transaction is guaranteed to eventually output, only

if it has been placed in all honest nodes’ input buffer. Our censorship resilience allows

us to adopt a different and weaker assumption about the input buffer (that is same to

DispersedLedger [124], Aleph [70] and DAG-rider [77]): if a transaction appears in any

honest node’s input buffer (resp. k random nodes’ input buffers), the transaction would

output eventually (resp. output with all but negligible probability in k).

Our input buffer assumption is appropriate or even arguably quintessential in practice. First,

in many consortium blockchain settings, a user might be allowed to contact only several

consensus nodes. For example, a Chase bank user likely cannot submit her transactions to

a consensus node of Citi bank. Moreover, even if in a more open setting where a client is

allowed to contact all nodes, it still prefers to fully leverage the strength of our censorship

resilience property to let only k consensus nodes (instead of all) to process each transaction

for saving communication cost.

110

4.6.1 From validity to censorship resilience.

The validity of asynchronous atomic broadcast captures that a certain input transaction

would eventually output. It has a few fine-grained flavors [34]:

• Strong validity (called censorship resilience throughout the paper): tx can eventually

output, if any honest node takes it as input;

• Validity: if f + 1 honest nodes input tx, it can eventually output;

• Weak validity: if all honest nodes input tx, it eventually outputs.

The following examples illustrate why strong validity can easily prevent censorship of

transactions when constructing SMR from atomic broadcast, whereas weaker flavors of

validity cannot:

• In permissioned settings: Strong validity has practical meaning in real-world

consortium blockchain systems, because a client might not be allowed to contact

all consensus nodes, and can only rely on several designated nodes to process its

transactions [124]. In this setting, strong validity is critical because only it ensures

that every client can have the input transactions to eventually output as long as the

client has permission to contact an honest consensus node.

• Enable de-duplication: In more open settings where a client has the permission to

contact all nodes to duplicate its transactions, strong validity is still important as it

empowers de-duplication techniques [54, 121] to reduce redundant communication.

For example, each transaction can be sent to only k nodes (where k is a security

parameter), because the k random nodes would contain at least one honest node with

a probability exponentially large in k (in case of static corruptions); in contrast, a

client has to contact f + 1 honest nodes (resp. 2 f + 1 honest nodes) if there is only

validity (resp. weak validity).

One might wonder whether quality [65] alone can prevent censorship in the asynchronous

setting. Recall that in many asynchronous protocols with quality but without strong

validity (e.g., asynchronous common subset [23] and Tusk [54]), the adversary can indeed

111

drop f honest nodes. Thus, quality only implies liveness conditioned on that all honest

nodes input the same transactions redundantly. In other words, if aiming at liveness from

quality directly, it needs to diffuse transactions over all honest nodes. This “approach”,

unfortunately, might incur O(n) communication blow-up as discussed in Section 1.

Alternatively, quality together with threshold encryption can prevent censorship [92]

but is computationally costly.

4.6.2 Tips on production-level implementation

Challenges and tips to production-level implementation. For production-level implemen-

tation of Dumbo-NG with bounded memory, a few attentions (some of which are even

subtle) need to be paid. First, the MVBA instantiation shall allow nodes to halt after they

decide output (without hurting other nodes’ termination), such that a node can quit old

MVBA instances and then completely clean them from memory. Also, similar to Tusk [54],

messages shall carry latest quorum certificates to attest that f + 1 honest nodes have stored

data in their persistent storage, such that when a slow node receives some “future” messages,

it does not have to buffer the future messages and can directly notify a daemon process

to pull the missing outputs accordingly. In addition, Dumbo-NG has a few concurrent

tasks (e.g., broadcasts and MVBAs) that rely on shared global variables. This is not an

issue when implementing these tasks by multiple threads in one process. Nevertheless,

when separating these tasks into multiple processes, inter-process communication (IPC)

implementation has to correctly clean IPC buffers to avoid their memory leak due to long

network delay. Last but not least, if a node constantly fails to send a message to some

slow/crashed node, it might keeps on re-sending, and thus its out-going message buffer

might dramatically increase because more and more out-going messages are queued to

wait for sending. It can adopt the practical alternative introduced by Tusk, namely, stop

(re-)sending too old out-going messages and clean them from memory, because messages

in Dumbo-NG can also embed latest quorum certificates (to help slow nodes sync up

without waiting for all protocol messages).

Here we extend the discussions to give more detailed suggestions for practitioners.

112

1. Halt in asynchronous BA without hurting termination. In many asynchronous BA

protocols [9, 35], the honest nodes cannot simultaneously decide their output in the

same iteration. So even if a node has decided its output, it might need to continue the

execution to help other nodes also output (otherwise, there might exist a few nodes

fail to output). Fortunately, a few studies [26,74,89,99] demonstrated how to securely

halt in asynchronous BAs without hurting termination. Our MVBA instantiation [73]

also has the feature of immediate halt after output, as the honest nodes would always

multicast a quorum certificate proving the decided output and then quit.

2. Share variables across concurrent processes. Some global variables are shared

among the concurrent tasks in Dumbo-NG, for example, the task of MVBAs n

shall have access to read the latest broadcast certificates generated in the tasks

of n running broadcasts. When practitioners implement these tasks with different

processes, inter-process communication (IPC) for sharing these global variables

shall be cautiously handled. For example, if IPC socket is used to pass the latest

broadcast certificates to the MVBAs’ process, it is important to implement a thread

that executes concurrent to MVBAs to continuously take certificates out of the IPC

sockets and only track the latest certificates (otherwise, a huge number of certificates

could be accumulated in the receiving buffer of IPC socket if a single MVBA is

delayed).

3. Use quorum certificates for retrievability to help slow nodes. Up to f slow honest

nodes might receive a burst of “future” messages in an asynchronous network. There

are three such cases: (i) a broadcast sender receives Vote messages higher than its

local slot; (ii) a broadcast receiver gets proposal messages higher than its local slot;

or (iii) any nodes receivers some MVBA messages with epoch number higher than

its local epoch. For case (i), it is trivial that the broadcast sender can just omit such

“future” Vote messages, because these messages must be sent by corrupted nodes.

For case (ii), we have elaborated the solution in Section 4.4: when a slow node

staying at slot s receives a proposal message with valid quorum certificate but slot

s′ > s, it needs to first pull the missing transactions till slot s′ − 1 and then increase

113

its local slot number to continue voting in slot s′ and later slots. For case (iii), it

can also be trivially solved by letting the e-th epoch’s MVBA messages carry the

unforgeable quorum certificate for MVBA[e − 1]’s output, such that upon a slow

node receives some MVBA message belong to a “future” epoch e′ larger than its

local epoch e, it can pull all missing MVBA outputs till epoch e′ − 1 (similar to pull

broadcasted transactions) and then move into epoch e′.

4. Avoid infinite buffer of out-going messages. To correctly implement asynchronous

communication channels, a message sending node might continuously re-send each

protocol message until the message receiving node returns an acknowledgment

receipt (e.g., through TCP connection). As such, the message sending node might

have more and more out-going messages accumulated while stucking in re-sending

some very old messages. At first glance, it seemingly requires infinite memory to

buffer these out-going messages. However, recall that Tusk [54] can stop re-sending

old out-going messages and then securely clean them. The implementation of

Dumbo-NG can also adapt the idea to bound the size of out-going buffer by cleaning

the “old” out-going messages belong to slot/epoch smaller than the current local

slot/epoch, as long as practitioners follow the guidance in (3) to embed previous

slot/epoch’s quorum certificate in the current slot/epoch’s out-going messages to

help slow nodes to pull missing outputs by a quorum certificate (instead of actually

receiving all sent protocol messages).

4.7 Summary

In this chapter, we present Dumbo-NG—a direct, concise and efficient reduction from

asynchronous BFT atomic broadcast to multi-valued validated Byzantine agreement

(MVBA). In greater detail, the core contributions of Dumbo-NG can be summarized

as follows:

• Resolve the latency-throughput tension. Dumbo-NG resolves the severe tension

between throughput and latency in HBBFT/Dumbo. Recall the issue stems from:

114

for higher throughput, the broadcasts in HBBFT/Dumbo have to sacrifice latency to

disseminate a huge batch of transactions, and this is needed to “contend” with the

agreement modules to seize more bandwidth resources.

Dumbo-NG solves the issue and can approach the maximum throughput without

trading latency, i.e., realize throughput-oblivious latency. This is because it supports

to run the bandwidth-intensive transaction broadcasts completely concurrently to

the bandwidth-oblivious agreement modules. Remark that the concurrent execution

of broadcasts and agreement is non-trivial in the asynchronous setting, as we need

carefully propose and implement a few properties of broadcast and agreement to

bound communication complexity and ensure censorship resilience.

Table 4.1: Validity (liveness) of asynchronous atomic broadcast if stressing on nearly linear
amortized communication

Strong validity
(Definition 4.1)?

Memory-bounded
implementation?

DAG-Rider [77],
DispersedLedger [124],
and Aleph [70]

�∗ ©†

Tusk [54]
�suboptimal comm.;

or after GST‡ �

HBBFT [92],
Dumbo [74],
and variants [58, 73]

�diffuse TX+TPKE
for de-duplication �

Dumbo-NG (this paper) �∗ �

∗ Here we assume de-duplicated input buffers in DAG-Rider, DispersedLedger and Dumbo-NG,

which can be realized (i) in a permissioned setting where a client only has permission to contact

several nodes or (ii) by de-duplication techniques [51, 54, 121].

† The memory-bounded implementation of [70, 77, 124] is unclear.

‡ Though Tusk employs transaction de-duplication techniques to send transactions to only k nodes,

it doesn’t realize strong validity, so still needs k = f + 1 to ensure all transactions to output in the

worst-case asynchronous network; and a recent improvement of Tusk— Bullshark [69] presents an

implementation that explicitly stresses on strong validity only after global stabilization time (GST).

• Prevent censorship with minimal cost. As shown in Table 4.1, similar to DAG-Rider

[77] and DispersedLedger [124], Dumbo-NG ensures that any transaction input

by an honest node can eventually output (a.k.a. strong validity in [34]), and thus

when building a state-machine replication (SMR) service [117] from such atomic

115

broadcasts, one can expect to overcome potential censorship with minimized extra

cost (e.g., by directly using de-duplication techniques [54, 121]). So we call strong

validity and censorship resilience interchangeably, and can safely assume the honest

parties have de-duplicated input buffers containing mostly different transactions

throughout the paper. Such resilience of censorship is born with our new protocol

structure, because no matter how slow a broadcast can be, the concurrently running

agreement modules can eventually pick it into the final output through a quorum

certificate pointing to it. As such, Dumbo-NG does not rely on additional heavy

cryptographic operations (e.g, [58,73,74]) or sub-optimal redundant communication

(e.g., the worst case of Tusk [54]) to realize guaranteed resistance against an

asynchronous censorship adversary. This further demonstrates the strength of our

result w.r.t its security aspect in addition to its practicality.

• Implementation and extensive experiments over the Internet. We also implement

Dumbo-NG and extensively test it among n = 4, 16 or 64 nodes over the global

Internet, with making detailed comparison to the state-of-the-art asynchronous

protocols including Dumbo and sDumbo [73]. At all system scales, the peak

throughput of Dumbo-NG is multiple times better than any of the other tested

asynchronous BFT protocols, e.g., 4-8x over Dumbo and 2-4x over sDumbo. More

importantly, the latency of Dumbo-NG is significantly less than others (e.g., 4-7x

faster than Dumbo when both protocols realizes the maximum throughput). Actually,

the latency of Dumbo-NG is nearly independent to its throughput, indicating how

effective it is to resolve the throughput-latency tension lying in the prior designs.

116

CHAPTER 5

BOLT-DUMBO TRANSFORMER: ASYNCHRONOUS CONSENSUS AS FAST AS

THE PIPELINED BFT

This chapter presents Bolt-Dumbo Transformer, the first generic and practical framework

for optimistic asynchronous atomic broadcast, whose performance is proportional to

network conditions. Specifically, it achieves the same performance as the deterministic BFT

consensus on the normal Internet and also keeps the same performance as the asynchronous

BFT consensus when the network changes to be asynchronous.

5.1 Background

The explosive popularity of decentralization [32, 100] creates an unprecedented demand of

deploying robust Byzantine fault tolerant (BFT) consensus on the global Internet. These

consensus protocols were conventionally abstracted as BFT atomic broadcast (ABC) to

replicate an ever-growing linearized log of transactions among n parties [39]. Informally,

ABC ensures safety and liveness despite that an adversary controls the communication

network (e.g., delay messages) and corrupt some participating parties (e.g., n/3). Safety

ensures all honest parties to eventually output the same log of transactions, and liveness

guarantees that any transaction inputted by some honest party eventually appears in the

output of honest parties.

5.1.1 Motivation

A robust BFT is desirable in the absence of synchrony. Most practical BFT protocols

were studied under well-connected network conditions. For example, classic synchrony

assumption needs all messages to deliver within a known delay, and its weaker variant

called partial synchrony [59] (a.k.a. eventual synchrony) assumes that after an unknown

global stabilization time (GST), all messages can be delivered synchronously. In the

117

wide-area network, these assumptions about synchrony may not always hold. What’s

worse, in an asynchronous network [14], such (partially) synchronous protocols [11,12,15,

16, 24, 41, 44, 71, 72, 105, 122] will grind to a halt (i.e., suffers from the inherent loss of

liveness [60, 92]), and Bitcoin might even have a safety issue of potential double-spending

[115] when the adversary can arbitrarily schedule message deliveries. That said, when the

network is adversarial, relying on synchrony could lead to fatal vulnerabilities.

It becomes a sine qua non to consider robust BFT consensus that can thrive in the unstable

or even adversarial Internet for mission-critical applications (e.g., financial services or

cyber-physical systems). Noticeably, the class of fully asynchronous protocols [34, 58,

74, 92, 124] can ensure safety and liveness simultaneously without any form of network

synchrony, and thus become the arguably most robust candidates for implementing mission-

critical applications.

Fully asynchronous BFT? Robustness with a high price! Nevertheless, the higher security

assurance of asynchronous BFT consensus does not come for free: the seminal FLP

“impossibility” [60] states that no deterministic protocol can ensure both safety and liveness

in an asynchronous network. So asynchronous ABC must run randomized subroutines

to circumvent the “impossibility”, which already hints its complexity. Indeed, few

asynchronous protocols have been deployed in practice during the past decades due to large

complexities, until the recent HoneyBadgerBFT [92] and Dumbo-BFT [74] (and their

latest improved variants [73, 124]) provide novel paths to practical asynchronous ABC in

terms of realizing optimal linear amortized communication cost per output transaction.

Despite those recent progresses, the actual performance of state-of-the-art randomized

asynchronous consensus is still far worse than the deterministic (partial) synchronous

ones (e.g., HotStuff [125]1), especially regarding the critical latency metric. For example,

in the same WAN deployment environments consisting of n=64 or 100 Amazon EC2

instances across the globe, HotStuff is dozens of times faster than Dumbo [74]. Even

1Remark that [125] gave a 3-chain HotStuff protocol along with a 2-chain variant. Throughout the

paper, we let HotStuff refer to the 2-chain version (with minor difference to fix the view-change

issue) for the lower latency of the 2-chain version.

118

worse, the inferior latency performance of asynchronous protocols stems from the fact

that all parties generate some common randomness (e.g., “common coin” [35, 40]), and

multiple repetitions are necessary to ensure the parties to coincidentally output with an

overwhelming probability. Even if in one of the fastest existing asynchronous protocols

such as Speeding Dumbo [73], it still costs about a dozen of rounds on average. While

for their (partially) synchronous counterparts, only a very small number of rounds are

required in the optimistic cases when the underlying communication network is luckily

synchronous [10], e.g., 5 in the two-chain HotStuff and 3 in PBFT.

Hence, BFT consensus protocols for the open Internet face a basic design “dilemma”:

the cutting-edge (partially) synchronous deterministic protocols can optimistically work

very fast, but lack liveness guarantee in adversarial networks; on the contrary, the fully

asynchronous randomized protocols are robust even in malicious networks, but suffer from

poor latency performance in the normal case. Facing that, a natural question arises:

Can we design a BFT consensus achieving the best of both synchronous and asynchronous

paradigms, such that it (i) is “as fast as” the state-of-the-art deterministic BFT consensus

on the normal Internet with fluctuations, and (ii) performs nearly same to the existing

performant asynchronous BFT consensus even if in a worst-case asynchronous network?

5.1.2 Challenges

Efficiency obstacles in prior art. As briefly mentioned, pioneering works of Kursawe-Shoup

[80] (KS02) and a following improvement of Ramasamy-Cachin [113] (RC05) initiated the

study of optimistic asynchronous atomic broadcast by adding a deterministic fastlane to

fully asynchronous atomic broadcast, and they adopted multi-valued validated Byzantine

agreement (MVBA) to facilitate fallback once the fastlane fails to progress.

Nevertheless, these prior studies are theoretical in asynchronous networks, as they rely on

heavy MVBA or even heavier full-fledged state-machine replication for fallback. Serious

efficiency hurdle remains in such cumbersome fallback, thus failing to harvest the best of

both paths in practice. Let us first overview the remaining hurdles and design challenges.

119

Challenge and effiency bottleneck lying in pace-synchronization. As Fig. 5.1 illustrates,

the fastlane of KS02 and RC05 directly employs a sequence of some broadcast primitives

(the output of which is also called a block for brevity). If a party does not receive a block

within a period (defined by a timeout parameter), then it requests fallback by informing

other parties about the index of the block that it just received. When the honest parties

receive a sufficient number of fallback requests (e.g., 2 f + 1 in the presence of f faulty

parties), they execute the pace-synchronization mechanism to decide where to continue the

pessimistic path.

Since different honest parties may have different progress in the fastlane when they decide

to fall back, e.g., some are now at block 5, some at block 10, thus pace-synchronization

needs to ensure: (i) all honest parties can eventually enter the pessimistic path from the

same block; and (ii) all the “mess-ups” (e.g., missing blocks) left by the fastlane can be

properly handled. Both requirements should be satisfied in an asynchronous network!

These requirements hint that all the parties may need to agree on a block index that is

proposed by some honest party, otherwise they might decide to sync up to some blocks that

were never delivered. Unfortunately, directly implementing such a functionality requires

one-shot asynchronous (multi-valued) Byzantine agreement with strong validity (that

means the output must be from some honest party), which is infeasible because of inherent

exponential communication [61].

As depicted in Fig. 5.1, both KS02 and RC05 smartly implement pace-synchronization

through asynchronous multi-valued validated Byzantine agreement (MVBA) to get around

the infeasible strong validity. An MVBA is a weaker and implementable form of

asynchronous multi-valued Byzantine agreement, the output of which is allowed to

be from a malicious party but has to satisfy a predefined predicate. Still, MVBA is a

cumbersome building block (and can even construct full-fledged asynchronous atomic

broadcast directly [34]). What’s worse, KS02 and RC05 invoke this heavy primitive for

both pace-synchronization and pessimistic path, causing at least O(n3)-bit communication

and dozens of rounds. Although we may reduce the O(n3) communication to O(n2) by

some very recent results (e.g., Dumbo-MVBA [88]), however, they remain costly in practice

120

If timeout: fallback

...BroadCast

multicast Complain

If enough
valid Complants

Optimistic Fastlane

Pessimistic Path
Use some Async Consensus
(e.g., MVBA) to ensure honest
nodes' inputs eventually output

Restart
fastlane

Several cumbersome async. MVBAs

Delivered Broadcasts

Pace Synchronization
(Use MVBAs to decide from where to fallback)

Ensure liveness by
async consensus

Coin-Toss

BroadCastBroadCast
Init

KS02 and RC05
Deterministic, fast, but no liveness assurance

BroadCast

Figure 5.1: Execution flow of KS02 [80] and RC05 [113]. Both rely on cumbersome asynchronous

MVBA to do pace-sync.

due to a large number of extra execution rounds and additional computing costs (e.g.,

erasure encoding/decoding).

Slow pace-sync remains in a more general framework [15]. Later, Aublin et al. [15]

studied a more general framework that is flexible to assemble optimistic fastlanes and

full-fledged BFT protocols, as long as the underlying modules all satisfy a defined

Abstract functionality. To facilitate fallback when the fastlane fails due to network

asynchrony or corruptions, [15] used a stronger version of Abstract variant with guaranteed

liveness (called Backup). Backup can guarantee all parties to output exact k common

transactions [15], so it can handle fallback by first finishing pace-sync, then deciding some

output transactions (i.e., running as the pessimistic path), and finally restarting the fastlane.

Aublin et al. [15] also pointed out that Backup (with guaranteed progress) can be obtained

from full-fledged BFT protocols. For example, [15] gave exemplary Backup instantiations

based on PBFT [42] and Aardvark [48] in the partially synchronous setting. This indicated

another feasible way to implement asynchronous fallback, i.e., implement Backup by

full-fledged asynchronous BFT protocols.

121

Unfortunately, when Backup is implemented via full-fledged asynchronous BFT, it would

be as heavy as MVBA (or even heavier), since most existing performant asynchronous BFT

protocols are either constructed from MVBA [73, 74] or have implicit MVBA [66]. That

said, though the framework presented in [15] is more general than KS02 and RC05, it is

not better than KS02 and RC05 with respect to the efficiency of pace-sync (and thus has

the same efficiency bottleneck lying in pace-sync).

In contrast, we identify an extra simple property (not covered by Abstract [15]), so the

new fastlane abstraction (1) enables us to utilize a much simpler asynchronous pace-

synchronization, and (2) still can be easily obtained with highly efficient instantiations.

Consequences of slow pace-synchronization. The inefficient pace-sync severely harms the

practical effectiveness of adding fastlane. In particular, when the network may fluctuate as

in the real-world Internet, the pace-sync phase might be triggered frequently, and its high

cost might eliminate the benefits of adding fastlane.

....

sync period sync period sync periodasync periodasync period

Fastlane Pace-sync Pessimistic path Pace-sync Pessimistic path

async period

Pace-sync Pessimistic path Pace-syncPace-sync Pessimistic path

(a) Usual Unstable Network

(b) Worst Async. Network

Figure 5.2: Consequence of slow fallback in KS02/RC05 in fluctuating networks. The length of

each phase denotes latency.

To see the issue, consider the heavy pace-sync of existing work that is as slow as the

asynchronous pessimistic path and dozens of times slower than the fastlane.2 As Fig. 5.2

(a) exemplifies, although the network stays in good conditions for the majority of time,

the overall average latency of the protocol is still way larger than its fastlane. One slow

fallback could “waste” the gain of dozens of optimistic blocks, and it essentially renders

the optimistic fastlane ineffective. In the extreme case shown in Fig. 5.2 (b), the fallback is

2Actual situation might be much worse in RC02 [80] because several more MVBA invocations

with much larger inputs are executed in the pace-sync.

122

always triggered because the fastlane leaders are facing adaptive denial-of-service attack,

it even doubles the cost of simply running the pessimistic asynchronous protocol alone.

It follows that in the wide-area Internet, inefficient pace synchronization in previous

theoretical protocols likely eliminates the potential benefits of optimistic fastlane, and thus

their applicability is limited. So a fundamental practical challenge remains to minimize

the overhead of pace-sync, such that we can harvest the best of both paths in optimistic

asynchronous atomic broadcast.

5.2 Related work

In the past decades, asynchronous BFT protocols are mostly theoretical results [6, 21–23,

30, 40, 49, 106, 107, 111], until several recent progresses such as HoneyBadgerBFT [92],

BEAT [58], Dumbo-BFT protocols [73, 74, 88], VABA [9], DAG-based asynchronous

protocols [54,77], and DispersedLedger [124]. Nevertheless, they still have a latency much

larger than that of good-case partially synchronous protocols. Besides the earlier discussed

optimistic asynchronous consensus [80,113] and more general framework [15], Spiegelman

recently [120] used VABA [9] to instantiate pace-sync in optimistic asynchronous atomic

broadcast. However, it is still inefficient, especially when fallbacks frequently occur.

BDT framework presents a generic and efficient solution to add a deterministic fastlane

to most existing asynchronous consensus protocols (except the DAG-based protocols).

For example, it is compatible with two very recent results of DispersedLedger [124]

and Speeding-Dumbo [73], and can directly employ them to instantiate more efficient

pessimistic path.

It is well known that partially synchronous protocols [41,125] can be responsive after GST

in the absence of failures. Nonetheless, if some parties are slow or even act maliciously,

they might suffer from a worst-case latency related to the upper bound of network delay.

Some recent studies [8, 10, 72, 93, 105, 119] also consider synchronous protocols with

optimistic responsiveness, such that when some special conditions were satisfied, they can

confirm transactions very quickly (with preserving optimal n/2 tolerance). Our protocol is

123

responsive all the time, because it does not wait for timeout that is set as large as the upper

bound of network delay in all cases.

Besides, some literature [26–28, 86, 94] studied how to combine synchronous and

asynchronous protocols for stronger and/or flexible security guarantees in varying network

environment. We instead aim to harvest efficiency from the deterministic protocols.

A concurrent work [67] considers adding an asynchronous view-change to a variant of

HotStuff. Very recently its extended version [66] was presented with implementations.

They focus on a specific construction of asynchronous fallback tailored for HotStuff by

opening up a recent MVBA protocol [9], thus can have different efficiency trade-offs. On

the other hand, they cannot inherit the recent progress of asynchronous BFT protocols

to preserve the linear per transaction communication (as we do) in the pessimistic path,

or future improvements (since BDT is generic). Moreover, [66] essentially still uses an

MVBA to handle pace-sync, while we reduce the task to conceptual minimum—a binary

agreement, which itself could have more efficient constructions.

5.3 Problem Formulation

Transaction. Without loss of generality, we let a transaction denoted by tx to represent a

string of |m| bits.

Block structure. A block is a tuple in form of block := 〈epoch, slot,TXs,Proof〉, where

epoch and slot are natural numbers, TXs is a sequence of transactions also known as the

payload. Throughout the paper, we assume |TXs| = B, where B be the batch size parameter.

The batch size can be chosen to saturate the network’s available bandwidth in practice.

Proof is a quorum proof attesting that at least f + 1 honest parties indeed vote the block by

signing it.

Blocks as output log. Throughout the paper, a log (or interchangeably called as blocks)

refers to an indexed sequence of blocks. For log with length L := |log|, we might use

hereunder notations. (1) log[i] denotes the i-th block in log. For example, log[1] is the

124

epoch slot=1

tx tx tx...TXs
Proof

......

block
epoch slot=2

tx tx tx...TXs
Proof

block
epoch slot=3

tx tx tx...TXs
Proof

block

Consecutive log
log[1] log[2] log[3] log[L]

epoch slot=L

tx tx tx...TXs
Proof

block

Figure 5.3: Block and output log due to our terminology.

first block of log, log[−1] is the alias of the last block in log, and log[−2] represents

the second-to-last block in log, and so forth. (2) log.append(·) can append some block

to log. For example, when log.append(·) takes a block � ∅ as input, |log| increases

by one and log[−1] becomes this newly appended block; when log.append(·) takes a

sequence of non-empty blocks [blockx+1, . . . , blockx+k] as input, |log| would increase by

k, and log[−1] = blockx+k, log[−2] = blockx+k−1 and so on after the operation; when

log.append(·) takes an empty block ∅ as input, the append operation does nothing.

Consecutive output log. An output log consisting of L blocks is said to be consecutive if

it satisfies: for any two successive blocks log[i] and log[i+ 1] included by log, either of the

following two cases is satisfied: (i) log[i].epoch = log[i + 1].epoch and log[i].slot + 1 =

log[i + 1].slot; or (ii) log[i].epoch + 1 = log[i + 1].epoch and log[i + 1].slot = 1. Without

loss of generality, we let all logs to be consecutive throughout the paper for presentation

simplicity.

5.3.1 System model

We consider the standard asynchronous message-passing system with trusted setup, which

can be detailed as follows.

Known identities and trusted setup. There are n designated parties, each of which has

a unique identity (i.e., P1 through Pn) known by everyone else. All involved threshold

cryptosystems are properly set up, so all parties can get and only get their own secret keys

in addition to relevant public keys. The setup can be done by a trusted dealer or distributed

125

key generation [68,76,108], and the latter can be feasibly implemented in an asynchronous

network as well [7, 55, 56, 64, 79].

Byzantine corruptions. The adversary can choose up to f parties to fully control before

the protocol starts. Our instantiations focus on static corruptions, which is same to all

recent practical asynchronous atomic broadcast [58,73,74,92,124]. Also, no asynchronous

BFT can tolerate more than f = �(n − 1)/3� Byzantine corruptions. Through the paper, we

stick with this optimal resilience.

Fully-meshed reliable asynchronous network. There exists a reliable asynchronous

peer-to-peer channel between any two parties. The adversary can arbitrarily delay or

reorder messages, but cannot drop or modify messages sent among honest parties.

Computationally-bounded adversary. We consider computationally bounded adversary

that can perform some probabilistic computing steps bounded by polynomials in the

number of message bits generated by honest parties, which is standard cryptographic

practice in the asynchronous network.

Adversary-controlling local “time”. It is impossible to implement global time in the

asynchronous model. Nevertheless, we do not require any global wall-clock for securities.

Same to [33, 80], it is still feasible to let each party keep an adversary-controlling local

“clock” that elapses at the speed of the actual network delay δ: each party sends a “tick”

message to itself via the adversary-controlling network, then whenever receiving a “tick”,

it increases its local “time” by one and resends a new “tick” to itself via the adversary.

Using the adversary-controlling “clock”, each party can maintain a timeout mechanism,

for example, let timer(τ).start() to denote that a local timer is initialized and will “expire”

after τ clock ticks, and let timer(τ).restart() denote to reset the timer.

5.3.2 Security goal

Our primary goal is to develop an asynchronous atomic broadcast protocol defined as

follows to attain high robustness against unstable or even hostile network environment.

126

Definition 7. In atomic broadcast, each party is with an implicit queue of input transactions

(i.e., the input backlog) and outputs a log of blocks. Besides the syntax, the ABC protocol

shall satisfy the following properties with all but negligible probability:

• Total-order. If an honest party outputs a log, and another honest party outputs another

log′, then log[i] = log′[i] for every i that 1 ≤ i ≤ min{|log|, |log′|}.

• Agreement. If an honest party adds a block to its log, all honest parties would eventually

add the block to their logs.

• Liveness (adapted from [34]). If all honest parties input a transaction tx, tx would output

within some asynchronous rounds (bounded by polynomials in security parameters).

Remarks on the definition of ABC. Throughout the paper, we let safety refer to the union of

total-order and agreement. Besides, we insist on the liveness notion from [34] to ensure that

each input transaction can output reasonably quickly instead of eventually. This reasonable

aim can separate some studies that have exponentially large confirmation latency [21].

Moreover, the protocol must terminate in polynomial number of rounds to restrict the

computing steps of adversary in the computationally-secure model [9, 34, 104], otherwise

cryptographic primitives are potentially insecure.

5.4 Fastlane Abstraction and Two-Consecutive-Value BA

The simple and efficient pace-synchronization is the crux of making BDT practical, and this

becomes possible for two critical ingredients, i.e., a novel fastlane abstraction (nw-ABC)

and a new variant of binary Byzantine agreement (tcv-BA). Specifically,

• nw-ABC ensures that all parties’ fastlane outputs are somewhat weakly consistent,

namely, if the (s)-th block is the latest block with valid quorum proof, then at least

f + 1 honest parties must already output the (s − 1)-th block with the valid quorum

proof (cf. Fig. 5.5).

• Considering the above property of nw-ABC fastlane, we can conclude that: after

exchanging timeout requests, all honest parties either know s or s − 1. We thus lift the

127

conventional binary agreement to a special variant (tcv-BA) for deciding a common

value out of {s − 1, s}, despite that the adversary might input arbitrarily, say s − 2 or

s + 1.

5.4.1 Overview of the Bolt protocol

We first put forth notarizable weak atomic broadcast (nw-ABC) to better prepare the

fastlane for more efficient pace-sync.

Definition 8. Notarizable weak atomic broadcast (nw-ABC, nicknamed by Bolt). In

the protocol with an identification id, each party takes a transaction buffer as input and

outputs a log of blocks, where each block log[j] is in form of 〈id, j,TXs j,Proof j〉. There

also exists two external functions Bolt.verify and Bolt.extract taking id, slot j and Proof j

as input (whose outputs and functionalities would soon be explained below). We require

that Bolt satisfies the following properties except with negligible probability:

• Total-order. Same to atomic broadcast.

• Notarizability. If any (probably malicious) party outputs log[j] := 〈id, j,TXs j,Proof j〉
s.t. Bolt.verify(id, j,Proof j) = 1, then: there exist at least f + 1 honest parties, each

of which either already outputs log[j], or already outputs log[j − 1] and can invoke

Bolt.extract function with valid Proof j to extract log[j] from received protocol scripts.

• Abandonability. An honest party will not output any block in Bolt[id] after invoking

abandon(id). In addition, if f + 1 honest parties invoke abandon(id) before output

log[j], then no party can output valid log[j + 1].

• Optimistic liveness. There exist a non-empty collection of optimistic conditions to

specify the honesty of certain parties, s.t. once an honest party outputs log[j], it will

output log[j + 1] in κ asynchronous rounds, where κ is a constant.

Comparing to ABC, nw-ABC does not have the exact agreement and liveness properties:

(i) notarizability compensates the lack of agreement, as it ensures that whenever a party

outputs a block log[j] at position j, at least f + 1 honest parties already output at the

128

position j − 1, and in addition, f + 1 honest parties already receive the protocol scripts

carrying the payload of log[j], so they can extract the block log[j] once seeing valid Proof j;

(ii) liveness is in an optimistic form, which enables simple deterministic implementations

of nw-ABC in the asynchronous setting.

Careful readers might notice that the above fastlane abstraction, in particular the

notarizability property, share similarities with the popular lock-commit paradigm widely

used in (partially) synchronous byzantine/crash fault tolerant protocols [12, 41, 59, 72, 125].

For example, when any honest party outputs some value (i.e. “commit”), then at least f + 1

honest parties shall receive and already vote this output (i.e. “lock”). In such a sense, the

fastlane can be easily instantiated in many ways through the lens of (partially) synchronous

protocols. Unsurprisingly, one candidate is the fastlane used in KS05 [113]. Here we

present two more exemplary Bolt constructions.

Comparing with the Abstract component in [15]. As aforementioned, [15] defined Abstract

as a basic component to compose full-fledged BFT consensus with optimistic fastlane.

Abstract was defined to capture a very broad array of optimistic conditions including very

optimistic cases such as no fault at all, such that a fastlane satisfying Abstract definition

could be designed as simple as possible (with the price that no guarantee of progress

among honest parties in the presence of faults, as nw-ABC can, before triggering fallback).

For example, [15] presented Quorum, an implementation of Abstract that only involves

one round trip with an optimistic condition allowing no fault, but Quorum cannot meet the

critical notarizability property of nw-ABC. Taking Quorum as example, the weakening of

Abstract prevents us from using binary agreement to handle the failed Abstract fastlanes,

because the parties cannot reduce the failed position of the fastlane to two consecutive

numbers. This corresponds to the necessity of our stronger nw-ABC definition in the

context of facilitating a simplest possible pace-sync in the asynchronous setting.

129

Algorithm 10 Bolt from sequential multicasts (Bolt-sCAST) for each party Pi. The external

functions are presented in Alg. 12

Let id be the session identification of Bolt[id], buf be a FIFO queue of input, B be the batch

parameter, and P� be the leader (where � = (id mod n) + 1)

Initializes s = 1, σ0 = ⊥ and runs the protocol in consecutive slot number s as:

1: if Pi is the leader P� then � Broadcast

2: if s > 1 then
3: wait for 2 f + 1 Vote(id, s − 1, σs−1,i) from distinct parties Pi, where σs−1,i is the valid

partial signature signed by Pi for 〈id, s − 1,H(TXss−1)〉
4: compute σs−1, the full-signature for 〈id, s − 1,H(TXss−1)〉, by aggregating the 2 f + 1

received valid partial signatures

5: multicast proposal(id, s,TXss, σs−1), where TXss ← buf[: B]

6: upon receiving proposal(id, s,TXss, σs−1) from P� do � Commit and Vote

7: if s > 1 then
8: proceed only if σs−1 is valid full signature that aggregates 2 f + 1 partial signatures for

〈id, s − 1,H(TXss−1)〉, otherwise abort

9: output block:=(id, s − 1,TXss−1,Proofs−1), where Proofs−1 := 〈H(TXss−1), σs−1〉
10: send Vote(id, s, σs,i) to the leader P�, where σs,i is the partial signature for 〈id, s,H(TXss)〉
11: let s← s + 1

12: upon abandon(id) is invoked do � Abandon

13: abort the above execution

5.4.2 Details of the Bolt protocol

Bolt from sequential multicasts. As shown in Alg. 10, Bolt can be easily constructed from

pipelined multicasts with using threshold signature, and we call it Bolt-sCAST. The idea

is as simple as: the leader proposes a batch of transactions via multicast, then all parties

send back their signatures on the proposed batch as their votes, once the leader collects

enough votes from distinct parties (i.e., 2 f + 1), it uses the votes to form a quorum proof

for its precedent proposal, and then repeats to multicast a new proposal of transactions

(along with the proof). Upon receiving the new proposal and the precedent proof, the

parties output the precedent proposal and the proof (as a block), and then vote on the new

proposal. Such execution is repeated until the abandon interface is invoked.

Bolt from sequential reliable broadcast. As shown in Alg. 11, we can also use sequential

RBC instances to implement Bolt. In the implementation, a designated fastlane leader can

reliably broadcast its proposed transaction batches one by one. For each party receives a

batch from some RBC, it signs the batch and RBC’s identifier, and multicasts the signature

130

Algorithm 11 Bolt from sequential RBCs (Bolt-sRBC) for each party Pi. The external functions

are presented in Alg. 12

Let id be the session identification of Bolt[id], buf be a FIFO queue of input, B be the batch

parameter, and P� be the leader (where � = (id mod n) + 1)

Initializes s = 1, σ0 = ⊥ and runs the protocol in consecutive slot number s as:

1: if Pi is the leader P� then � Broadcast

2: activates RBC[〈id, s〉] with input TXss ← buf[: B];

3: else
4: activates RBC[〈id, s〉] as non-leader party

5: upon RBC[〈id, s〉] returns TXss do � Vote

6: send Vote(id, s, σs,i) to all, where σs,i is the partial signature for 〈id, s,H(TXss)〉
7: upon receiving 2 f + 1 Vote(id, s, σs,i) from distinct parties Pi do � Commit

8: if σs,i is the valid partial-signature signed by Pi for 〈id, s,H(TXss)〉 then
9: let σs is the full signature that aggregates the 2 f + 1 partial signatures {σs,i}

10: let Proofs := 〈H(TXss), σs〉
11: output block:=(id, s,TXss,Proofs), and s← s + 1

12: upon abandon(id) is invoked do � Abandon

13: abort the above execution

as vote, then wait for 2 f + 1 valid votes to form a quorum proof, such that the batch and

the proof assemble an output block, and the party proceeds into the next RBC. Note that a

RBC implementation [92] can use the technique of verifiable information dispersal [38]

for communication efficiency as well as balancing network workload, such that the leader’s

bandwidth usage is at the same order of other parties’. In contrast, Bolt-sCAST might cause

the leader’s bandwidth usage n times more than the other parties’, unless an additional

mempool layer is implemented to further decouple the dissemination of transactions from

Bolt.

5.4.3 Analyses of the Bolt protocol

. The security analyses of Bolt-sCAST and Bolt-sRBC are simple by nature, and their

complexities can be easily counted as well. The detailed analysis is as follows:

Lemma 23. The algorithm 10 satisfies the total-order, notarizability, abandonability and

optimistic liveness properties of Bolt except with negligible probability.

Proof: Here we prove the four properties one by one:

131

Algorithm 12 Invocable external functions for Bolt instantiations

� Check whether at least f + 1 honest parties output the s-th block or can extract it
external function Bolt.verify(id, s,Proofs):

1: parse Proofs as 〈hs, σs〉
2: return TSIG.Vrfy2 f+1(〈id, s, hs〉, σs)

� Leverage the valid Proofs to extract the s-th block from some received protocol messages
external function Bolt.extract(id, s,Proofs):

3: if Bolt.verify(id, s,Proofs) = 1 then
4: parse Proofs as 〈hs, σs〉
5: if TXss was received during executing Bolt s.t. hs = H(TXss) then
6: return block:=(id, s,TXss,Proofs), where Proofs := 〈hs, σs〉
7: else return block:=(id, s,⊥,⊥)

For total-order: First, we prove at same position, for any two honest parties Pi and P j

return blocki and block j, respectively, then blocki = block j. It is clear that if the honest

party Pi outputs blocki, then at least f + 1 honest parties did vote for blocki because

TSIG.Vrfy2 f+1 passes verification. So did f + 1 honest parties vote for block j. That means

at least one honest party votes for both blocks, so blocki = block j.

For notarizability: Suppose a party Pi outputs blocks[j] := 〈id, j, TXs j,Proof j〉, it means

at least f + 1 honest parties vote for block[j], according to the pseudocode, at least those

same f + 1 honest parties already output blocks[j − 1] and received the TXs j, hence,

those honest parties can further use the valid Proof j to extract blocks[j] from the receivied

protocol messages.

For abandonability: it is immediate to see from the pseudocode of the abandon interface.

For optimistic liveness: suppose that the optimistic condition is that the leader is honest,

then any honest party would output block[1] in three asynchronous rounds after entering

the protocol and would output log[j + 1] within two asynchronous rounds after outputting

log[j] (for all j ≥ 1). �

Lemma 24. The algorithm 11 satisfies the total-order, notarizability, abandonability and

optimistic liveness properties of Bolt except with negligible probability.

Proof: It is clear that the total-order, notarizability and abandonability follow immediately

from the properties of RBC and the pseudocode of Bolt-sRBC, since the agreement of

132

RBC guarantees that the output TXs by any parties is the same and a valid proof along

with the sequentially executing nature of all RBC instances would ensure total-order and

notarizability. For optimistic liveness, the optimistic condition remains to be that the leader

is honest, and κ is 4 due to the RBC construction in [92] and an extra vote step. �

5.4.4 Overview of the tcv-BA protocol

Another critical ingredient is a variant of binary agreement that can help the honest parties

to choose one common integer out of two unknown but consecutive numbers. Essentially,

tcv-BA extends the conventional binary agreement and can be formalized as follows.

Definition 9. Two-consecutive-value Byzantine agreement (tcv-BA) satisfies termi-

nation, agreement and validity (same to those of asynchronous binary agreement) with

overwhelming probability, if all honest parties input a value in {v, v + 1} where v ∈ N.

Algorithm 13 tcv-BA protocol for each party Pi. Lines different to Alg. 7 in [74] are in orange

texts.

For each party Pi, make the following modifications to the ABA code in Alg. 7 of [74]

(originally from [99] but with some adaptions to use Ethan MacBrough’s suggestion [1] to fix

the potential liveness issues of [99]):

Replace line 13-23 of Algorithm 7 in [74] with the next instructions:

1: upon c← Coinr.GetCoin() do
2: if S r = {v} then
3: if v%2 = c%2 then
4: if decided = false then output v; decided = true

5: else (i.e, decided = true) then halt

6: estr+1 ← v
7: if S r = {v1, v2} then
8: if v1%2 = c%2 then estr+1 ← v1

9: else (i.e, v2%2 = c%2) then estr+1 ← v2

5.4.5 Details of the tcv-BA protocol

To squeeze extreme performance of pace synchronization, we give a non-black-box

construction tcv-BA that only has to revise three lines of code of the practical ABA

construction adapted from [99]. This non-black-box construction basically reuses the

133

Algorithm 14 tcv-BA protocol built from any ABA “black-box” for each party Pi

Let ABA be any asynchronous binary agreement

1: upon receiving input R do
2: multicast Value(id,R)

3: upon receiving Value(id,R′) from f + 1 parties containing the same R′ do
4: if Value(id,R′) has not been sent before then
5: multicast Value(id,R′)
6: upon receiving 2 f + 1 Value(id, v) messages from distinct parties carrying the same v do
7: activate ABA[id] with v%2 as input

8: wait ABA[id] returns b
9: if v%2 = b then return v

10: else wait for receiving f + 1 Value(id, v′) messages from distinct parties containing the

same v′ such that v′%2 = b, then return v′

protocol pseudocode except several if-else checking (see Alg. 13) and hence has the same

performance of this widely adopted ABA protocol.

In addition, tcv-BA can be constructed from any ABA with only 1-2 more “multicast”

rounds, cf. Alg 14. This black-box construction provides us a convenient way to inherit

any potential improvements of the underlying ABA primitive [3, 50, 56, 126].

5.4.6 Analyses of the tcv-BA protocol

The security analyses of the above two tcv-BA constructions are as follows:

Lemma 25. The algorithm 13 satisfies the termination, validity and agreement properties

of tcv-BA except with negligible probability.

Proof: For validity, from [99] we know: for any v ∈ S r, then v was the input of at least one

honest party, then in next round r + 1, every honest party’s input estr+1 will always from at

least one honest party’s input of round r by the code. Again, according to the pseudocode,

the output is some element in S . Hence, validity is satisfied.

For agreement, suppose that some honest party Pi is the first party that outputs in some

round r and its output is v, for any other honest party, it either outputs the same v in the

same round, or has S r = {v, v + 1} or S r = {v, v − 1}. Hence, all honest parties will have

the same input estr+1 = v (s.t. v%2 = cr%2) in next round r + 1, then S r+1 = {v}, and thus

134

estr+2 = v for round r + 2. Once in some round r′, the v%2 = cr′%2, all honest parties

would output the same v. So the agreement is met.

For termination, the analysis is similar to that in [1, 99]. �

Lemma 26. The algorithm 14 satisfies the termination, validity and agreement properties

of tcv-BA except with negligible probability.

Proof: For termination: Recall that all honest parties input a value in {v, v+ 1} where v ∈ N.

Without loss of generality, suppose value v was input by at least f + 1 honest parties. Then,

by the code of algorithm, every honest parties can receive 2 f + 1 Value(id, v) messages

from distinct parties carrying the same v. Hence, all honest parties can activate ABA with

some input v′%2. Then, the ABA guarantees that all honest parties return b. Since the

validity of ABA guarantees the output of ABA is at least one honest party’s input, according

to the code, if one honest party input b into ABA, then the party has received at least 2 f + 1

Value(id, v′) messages from distinct parties carrying the same v′ and v′%2 = b, hence,

all honest parties can receive f + 1 Value(id, v′) messages from distinct honest parties

containing the same v′ such that v′%2 = b.

For validity: Since the validity of ABA guarantees the output b of ABA is at least one

honest party’s input, then according to the code, the party has received at least 2 f + 1

Value(id, v′) messages from distinct parties carrying the same v′, where v′%2 = b, hence,

at least one honest party with taking v′ as input and multicast Value(id, v′).

For agreement: Since the agreement of ABA guarantees all honest parties have the same

output b. Hence, all honest parties will output value v′, where v′%2 = b. Without loss of

generality, suppose honest party Pi output v and honest party P j output v + 2k (k � 0),

then following the validity proof, both v and v + 2k are honest party’s input, then it is a

contradiction with the tcv-BA input assumption. �

135

5.5 Bolt-Dumbo Transformer framework

5.5.1 Overview of the Bolt-Dumbo Transformer framework

At a very high-level, the overview of Bolt-Dumbo Transformer as shown in Fig. 5.4. Let

us first briefly walk through how it can overcome kinds of challenges and reduce the

complex pace-sync problem to only a variant of asynchronous binary agreement.

Bolt (Fastlane):
 general and very fast but
 vunerable w.r.t. liveness attacks

Dumbo (Pessimistic Path):
 secure against arbitrary network
 delay but suffer from slow execution

Transformer (Pace-Sync):
 use Binary BA only to decide how
 many TXs were output via fastlane

Level-1 fallback if:
 1. timeout (i.e., fastlane halts)
 2. or TXs might be censored

Level-2 fallback if:
 the fastlane did output nothing,
 i.e., completely failed

Init

Restart
fastlane

1) New fastlane abstraction:
 general for implementing
 and simplifies pace-sync

2) Optimal pace-sync:
 from heavy multi-value BA
 to much simpler binary BA

3) Two fallback levels:
 reduce the runs of async
 protocols in benign network

BDT (Our Optimist. Async. Atomic Broadcast Framework)

Figure 5.4: The overview of Bolt-Dumbo Transformer.

First ingredient: a new abstraction of the fastlane. In the optimistic case, Bolt (nw-ABC)

performs as a full-fledged atomic broadcast protocol and can output a block per τ clock

ticks. But if the synchrony assumption fails to hold, it won’t have liveness nor exact

agreement, only a notarizability property can be ensured: whenever any party outputs a

block at position j with a valid quorum proof, at least f + 1 honest parties already output at

the position j−1, cf. Fig. 5.5. To see how notarizability simplifies pace-sync, let us examine

the pattern of the honest parties’ fastlane outputs before entering pace-sync. Suppose all

honest parties have quit the fastlane, exchanged their fallback requests (containing their

latest block index and the corresponding quorum proof), received such 2 f + 1 fallback

requests, and thus entered the pace synchronization. At the time, let s to be the largest

index of all fastlane blocks with valid proofs.

We can make two easy claims: (i) no honest party can see a valid fallback request with

an index equal or larger than s + 1; (ii) all honest parties must see some fallback request

136

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

Proof
Block

A snapshot of all parties' local views of nw-ABC

Party
 1's

Party
 2's

Party
 3's

Party
 4's

 Block w/ valid proof⟹ f+1 honest parties receive:
 1) all blocks through Block to Block w/ valid proofs
 2) Block , though it might not be notarized by a proof

Block

possible
no proof

NotarizabilityProof
Block

possible
no proof

Figure 5.5: Notarizability of fastlane abstraction (nw-ABC).

with an index equal or larger than s − 1. If (i) does not hold, following notarizability, at

least one party can produce a proof for block s + 1, which contradicts the definition of s.

While for (ii), since block s is with a valid proof, at least f + 1 honest parties received

block s − 1 with valid proof. So for any party waits for 2 f + 1 fallback requests, it must

see at least one fallback sent from some of these f + 1 honest parties, thus seeing s − 1;

otherwise, there would be 3 f + 2 parties. The above two claims narrow the range of the

honest parties’ fallback positions to {s − 1, s}, i.e., two unknown consecutive integers.

Second ingredient: async. agreement for consecutive values. Pace-sync now is reduced to

pick one value of two unknown consecutive integers {s − 1, s}. We can handle the problem

with the help of tcv-BA, which can be easily implemented from any asynchronous binary

Byzantine agreement.

Final piece of the puzzle: adding “safe-buffer” to the fastlane. When tcv-BA outputs u,

all honest parties can sync up to block u accordingly. Because no matter u is s or s − 1, the

u-th fastlane block is with a valid quorum proof, so it can be retrieved due to notarizability.

Now we present Bolt-Dumbo Transformer (BDT) in details, as Fig. 5.6 outlines, the

fastlane of BDT is a Bolt instance wrapped by a timer. If honest parties can receive a new

Bolt block in time, they would restart the timer to wait for the next Bolt block. Otherwise,

137

the timer expires, and the honest parties multicast a fallback request containing the latest

Bolt block’s quorum proof that they can see.

Block
s-1

Proof
s-1

...

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

tcv-BA ACS
MVBA
 etc.

Optimistic Fastlane Pace-Sync Pessimistic Path
(s, Proof)

s

If: s=0
max({s})

If: Bolt still works (s>0)

Pending

Block
s

Proof
s

If: Bolt completely fails (s=0)

Timeout

Finalized

s

Bolt Transformer Dumbo

Figure 5.6: The execution flow of Bolt-Dumbo Transformer

After timeout, each party waits for n − f fallback requests with valid Bolt block proofs,

and enters pace-sync. They invoke tcv-BA with using the maximum block index (slot) in

the received fallback requests as input. Eventually, the honest parties enter the tcv-BA and

decide to either retry the fastlane or start the pessimistic path. As we briefly mentioned

before, the reason we can use such a simple version of binary agreement is that via a

careful analysis, we can find that nw-ABC prepares all honest parties will enter tcv-BA

with taking a number out of two neighboring indices as input.

The remaining non-triviality is that tcv-BA cannot ensure its output to always be the larger

number out of the two possible inputs, that means the globally latest Bolt block can be

revoked after pace-sync. Hence, the latest fastlane block is marked as “pending”, and a

“pending” block is finally output until the fastlane returns another new block. This pending

fastlane block ensures safety in BDT.

5.5.2 Details of the Bolt-Dumbo Transformer framework

BDT is formally illustrated in Alg. 15. It employs a reduction to nw-ABC, tcv-BA, and

some asynchronous consensus (e.g., ACS). Informally, it proceeds as follows by successive

epochs:

138

Algorithm 15 The Bolt-Dumbo Transformer (BDT) protocol for each party Pi in consecutive epoch numbered e (initialized as 1)

/* Optimistic Path (also the BDT protocol’s main entry) */
. .

1: Initializes pe ← 0, Proofe ← ⊥, Pacese ← {}, pendinge ← ∅
2: activate Bolt[e] instance, and start a timer that expires if not being restarted after τ clock “ticks” (i.e., invoke timer(τ).start())
3: upon Bolt[e] delivers a block do
4: parse block:=〈e, p,TXsp,Proofp〉, where p is the “slot” number

� finalized the elder pending block, pending the newly fastlane block

5: log.append(pendinge), buf← buf \ {TXs in pendinge}, pendinge ← block
6: pe ← p, Proofe ← Proofp, timer(τ).restart � Bolt[e] makes progress in time, so restart the “heartbeat” timer

7: upon timer(τ) expires or the front tx in the backlog buf was buffered T clock “ticks” ago do
8: invoke Bolt[e].abandon() and multicast PaceSync(e, pe,Proofe) � the fastlane is stucking or censoring certain txs

9: upon receiving message PaceSync(e, p j
e,Proof j

e) from P j for the first time do
10: if Bolt.verify(e, p j

e,Proof j
e) = 1 then Pacese ← Pacese ∪ p j

e

� enough parties have already quitted the fastlane

11: if |Pacese | = n − f then
12: invoke Transformer(e) and wait for its return to continue � enter into the pace-synchronization phase

13: proceed to the next epoch e← e + 1 � restart the fastlane of next epoch

/* Pace Synchronization */
. .

internal function Transformer(e): � internal function shares all internal states of the BDT protocol

14: let maxPacee ← max(Pacese) and then syncPacee ← tcv-BA[e](maxPacee)

15: if syncPacee > 0 then
16: send PaceSync(e, syncPacee,Proof) to all if syncPacee ∈ Pacese, where Bolt.verify(e, syncPacee,Proof) = 1

17: if syncPacee = pe: log.append(pendinge) and buf = buf \ {TXs in pendinge}
18: if syncPacee = pe + 1 then

� try to extract the missing block

19: wait for a valid PaceSync(e, syncPacee,Proof), then block′ ← Bolt.extract(e, syncPacee,Proof)
� failed to extract, have to rely on other parties to fetch, cf. Alg. 16

20: if block′ is in form of (e, syncPacee,⊥,⊥), then: block′ ← CallHelp(e, pe, 1)

21: log.append(pendinge).append(block′) and buf = buf \ {TXs in pendinge and block′}
� contact other parties to fetch missing fastlane blocks, cf. Fig. 16

22: if syncPacee > pe + 1: blocks← CallHelp(e, pe, syncPacee − pe) then
23: log.append(pendinge).append(blocks) and buf = buf \ {TXs in pendinge and blocks}
24: continue Optimistic Path with e← e + 1

25: if syncPacee = 0 then
26: invoke Pessimistic(e) and wait for its return, then continue Optimistic Path with e← e + 1

/* Pessimistic Path */
. .

internal function Pessimistic(e): � function shares all internal states of the BDT protocol

27: txsi ← randomly select �B/n�-sized transactions from the first B-sized transactions at the top of buf
28: xi ← TPKE.Enc(epk, txsi), namely, encrypt txsi to obtain xi
29: {x j} j∈S ← ACS[e](xi), where S ⊂ [n] and |S | ≥ n − f
30: For each j ∈ S , jointly decrypt the ciphertext x j to obtain txs j, so the payload TXs =

⋃
j∈S txs j ← {TPKE.Dec(epk, x j)} j∈S

31: let block := 〈e, 1,TXs,⊥〉, then log.append(block) and buf = buf \ {TXs in block}

This pessimistic path might be replaced by many asynchronous consensus protocols, e.g., ACS and MVBA. Throughout the paper,

the pessimistic path is instantiated by Dumbo, i.e., using a reduction to ACS (Honeybadger [92]) and an ACS implementation from

Dumbo [74]. Essentially, the underlying ACS [74] can be replaced by any improved implementation.

139

1. Bolt phase. When an honest party enters an epoch e, it activates a Bolt[e] instance, and

locally starts an adversary-controlling “timer” that expires after τ clock “ticks” and

resets once hearing the “heartbeat” of Bolt[e] (e.g., Bolt[e] returns a new block). If one

party receives a new Bolt[e] block in time without “timeout”, it temporarily records

the block as pending, finalizes the previous (non-empty) pending block as BDT’s

output, and sets its “pace” pe to the new block’s slot number. Otherwise, the “timeout”

mechanism interrupts, and the party abandons Bolt[e]. Beside the above “timeout”

mechanism to ensure Bolt progress in time, we also consider that some transactions

are probably censored: if the oldest transaction (at the top of the input backlog) is not

output for a duration T , an interruption is also raised to abandon Bolt[e]. Once a party

abandons Bolt[e] for any above reason, it immediately multicasts latest “pace” pe with

the corresponding block’s proof via a PaceSync message.

2. Transformer phase. If an honest party receives (n − f) valid PaceSync messages from

distinct parties w.r.t. Bolt[e], it enters Transformer. In the phase, the party chooses the

maximum “pace” maxPace out of the n − f “paces” sent from distinct parties, and it

would use this maxPace as input to invoke the tcv-BA[e] instance. When tcv-BA[e]

returns a value syncPace, all parties agree to continue from the syncPace-th block

in tcv-BA[e]. In some worse case that a party did not yet receive all blocks up to

syncPace, it can fetch the missing blocks from other parties by calling the CallHelp

function (cf. Alg. 16).

3. Pessimistic phase. This phase may not be executed unless the optimistic fastlane of

the current epoch e makes no progress at all, i.e, syncPace = 0. In the worst case,

Pessimistic is invoked to guarantee that some blocks (e.g., one) can be generated

despite an adversarial network or corrupt leaders, which becomes the last line of

defense to ensure the critical liveness.

Help and CallHelp. Besides the above main protocol procedures, a party might invoke the

CallHelp function to broadcast a CallHelp message, when it realizes that some fastlane

blocks are missing. As Alg. 16 illustrates, CallHelp messages specify which blocks to

140

Algorithm 16 Help and CallHelp. Help is a daemon process having access to the output log, and

CallHelp is a function to call Help

/* The Help daemon process */
. .

Help: It is a daemon process that can read the finalized output log of Bolt-Dumbo Transformer,
and it listens to the down below event:

1: upon receiving message CallHelp(e, tip, gap) from party P j for the first time do
2: assert 1 ≤ gap ≤ Esize
3: wait for log containing the block := 〈e, tip + gap, ∗, ∗〉
4: upon retrieving all blocks from block := 〈e, tip + 1, ∗, ∗〉 to block := 〈e, tip + gap, ∗, ∗〉 do
5: let M ← all these blocks

6: let {mk}k∈[n] be the fragements of a (n − 2 f , n)-erasure code applied to M
7: let h be a Merkle tree root computed over {mk}k∈[n]

8: send Help(e, tip, gap, h,mi, bi) to P j, where bi is the i-th Merkle tree branch

/* The CallHelp function */
. .

external function CallHelp(e, tip, gap):

9: let F ← [] to be a dictionary structure, and F[h] can store all leaves committed to root h
10: multicast message CallHelp(e, tip, gap)

11: upon receiving the message Help(e, tip, gap, h,m j, b j) from party P j for the first time do
12: if b j is a valid Merkle branch for root h and leaf m j then F[h]← F[h] ∪ (j,m j);

13: else discard the message

14: if |F[h]| = n − 2 f then
15: interpolate the n − 2 f leaves stored in F[h] to reconstruct M
16: parse M as a sequence of blocks and return blocks

retrieve, and every party also runs a Help daemon to handle CallHelp messages. Actually,

any honest party that invokes CallHelp can eventually retrieve the missing blocks, because

at least f + 1 honest parties indeed output the blocks under request. The Help daemon

can also use the techniques of erasure-code and Merkle commitment tree in verifiable

information dispersal [38, 92], such that it only responds with a coded fragment of the

requested blocks, thus saving the overall communication cost by an O(n) order.

Alternative pessimistic path. The exemplary Pessimistic path invokes Dumbo to output

one single block. Nonetheless, this is not the only design choice. First, BDT is a generic

framework, and thus it is compatible with many recent asynchronous BFT protocols such

as DispersedLedger [124] and not restricted to Dumbo-BFT. Second, there could be some

global heuristics to estimate how many blocks needed to generate during the pessimistic

path according to some public information (e.g., how many times the fastlane completely

141

fails in a stream). Designing such heuristics to better fit real-world Internet environments

could be an interesting engineering question to explore in the future but does not impact

any security analysis.

5.5.3 Analyses of the Bolt-Dumbo Transformer framework

First, we brief the security intuitions of BDT in the following, and then we provide deailed

proofs.

Safety. The core ideas of proving agreement and total-order are:

• Transformer returns a common index. All honest parties must obtain the same block

index from Transformer, so they always agree the same fastlane block to continue the

pessimistic path (or retry the fastlane). This is ensured by tcv-BA’s agreement.

• Transformer returns an index not “too large”. For the index returned from

Transformer, at least f + 1 honest parties did receive all blocks (with valid proofs) up

to this index. As such, if any party misses some blocks, it can easily fetch the correct

blocks from these f + 1 parties. This is because the notarizability of Bolt prevents

the adversary from forging a proof for a fastlane block with an index higher than the

actually delivered block. So no honest party would input some index of an irretrievable

block to tcv-BA, and then the validity of tcv-BA simply guarantees the claim.

• Transformer returns an index not “too small”. No honest party would revoke any

fastlane block that was already committed as a finalized output. Since each honest party

waits for 2 f + 1 PaceSync messages from distinct parties, then due to the notarizability

of Bolt, there is at least one PaceSync message contains s − 1, where s is the latest

fastlane block (among all parties). So every honest party at least inputs tcv-BA with

s − 1. The validity of tcv-BA then ensures the output at least to be s − 1 as well. Recall

that there is a “safe buffer” to hold the latest fastlane block as a pending one, the claim

is then correct.

142

• Pessimistic path and fastlane are safe. Pessimistic path is trivially safe due to its

agreement and total order. Fastlane has total-order by definition, and its weaker

agreement (notarizability) is complemented by Transformer as argued above.

We first prove the total-order and agreement, assuming the underlying Bolt, tcv-BA and

ACS are secure.

Claim 1. If an honest party activates tcv-BA[e], then at least n − 2 f honest parties

have already invoked abandon(e), and from now on: suppose these same parties invoke

abandon(e) before they output block:=〈e,R, ·, ·〉, then any party (including the faulty ones)

cannot receive (or forge) a valid block:=〈e,R+1, ·, ·〉, and all honest parties would activate

tcv-BA[e].

Proof: When an honest party Pi activates tcv-BA[e], it must have received n − f valid

PaceSync messages from distinct parties, so there would be at least n − 2 f honest parties

multicast PaceSync messages. By the pseudocode, it also means that at least n − 2 f honest

parties have invoked abandon(e). Note that n − 2 f ≥ f + 1 and these same parties invoke

abandon(e) before they output block:=〈e,R, ·, ·〉, so no party would deliver any valid

block:=〈e,R + 1, ·, ·〉 in this epoch’s Bolt phase due to the abandonability property of Bolt.

It is also implies that any parties cannot from the Bolt receive valid block:=〈e,R + 1, ·, ·〉 ,

then all honest parties will eventually be interrupted by the “timeout” mechanism after τ

asynchronous rounds and then multicast PaceSync messages. This ensures that all honest

parties finally receive n − f valid PaceSync messages from distinct parties, causing all

honest parties to activate tcv-BA[e]. �

Claim 2. Suppose that some party receives a valid block:=〈e,R, ·, ·〉 from Bolt[e] when an

honest party invokes tcv-BA[e] s.t. this block is the one with largest slot number among

all parties’ valid pending blocks (which means the union of the honest parties’ actual

pending blocks and the malicious parties’ arbitrary valid Bolt[e] block), then all honest

parties’ maxPacee must be either R or R − 1.

Proof: Following Claim 1, once an honest party invokes tcv-BA[e], the Bolt[e] block

with the largest slot number Rmax would not change anymore. Let us call this already

143

fixed Bolt[e] block with highest slot number as blockmax. Since there is someone that

receives blockmax:=〈e,R, ·, ·〉, at least f + 1 honest parties (e.g., denoted by Q) have already

received the block 〈e,R − 1, ·, ·〉, which is because of the notarizability property of Bolt.

So these honest parties would broadcast a valid PaceSync(e,R − 1, ·) message or a valid

PaceSync(e,R, ·) message. According to the pseudocode in Algorithm 15, maxPacee

is the maximum number in the set of Pacese, where Pacese contains the slot numbers

encapsulated by n − f valid PaceSync messages. Therefore, Pacese must contain one

PaceSync message’s slot number from at least n − 2 f ≥ f + 1 honest parties (e.g., denoted

by Q̄). All honest parties’ local Pacese set must contain R − 1 and/or R, because Q̄ and Q

contain at least one common honest party. Moreover, there is no valid PaceSync message

containing any slot larger than R since the proof for that is unforgeable, which means R is

the largest possible value in all honest parties’ Pacese. So any honest party’s maxPacee

must be R or R − 1. �

Claim 3. No honest party would get a syncPacee smaller than the slot number of it latest

finalized block log[−1] (i.e., no block finalized in some honest party’s log can be revoked).

Proof: Suppose an honest party invokes tcv-BA[e] and a valid Bolt[e] block 〈e,R, ·, ·〉 is

the one with largest slot number among the union of the honest parties’ actual pending

blocks and the malicious parties’ arbitrary valid Bolt[e] block. Because of Claim 2, all

honest parties will activate tcv-BA[e] with taking either R or R − 1 as input. According to

the strong validity of tcv-BA, the output syncPacee of tcv-BA[e] must be either R or R− 1.

Then we consider the next two cases:

1. Only malicious parties have this 〈e,R, ·, ·〉 block;

2. Some honest party Pi also has the 〈e,R, ·, ·〉 block.

For Case 1) Due to the notarizability property of Bolt and this case’s baseline, there exist

f +1 honest parties (denoted by a set Q) have the block 〈e,R−1, ·, ·〉 as their local pending.

Note that remaining honest parties (denoted by a set Q̄) would have local pending block

not higher than R − 1. According to the Algorithm 15, we can state that: (i) if the output is

R, then all honest parties will sync their log up to the block 〈e,R, ·, ·〉 (which include all

144

honest parties’ local pending); (ii) similarly, if the output is R − 1, all honest parties will

sync up till 〈e,R − 1, ·, ·〉 (which also include all honest parties’ local pending). So in this

case, all honest parties (i.e., Q̄ ∪ Q) will not discard their pending block, let alone discard

some Bolt that are already finalized to output into log.

For Case 2) Let Q denote the set of honest parties that have the block 〈e,R, ·, ·〉 as their

local pending. Note the remaining honest parties Q̄ would have the pending block not

higher than R. In this case, following the Algorithm 15, we can see that: (i) if the output is

R, then all honest parties will sync their log up to the block 〈e,R, ·, ·〉 (which include all

honest parties’ local pending); (ii) similarly, if the output is R − 1, all honest parties will

sync up to 〈e,R − 1, ·, ·〉 (which include Q̄ parties’ local pending and Q parties’ finalized

output log). So in this case, all honest parties (i.e., Q̄ ∪ Q) will not discard any block in

their finalized log. �

Claim 4. If tcv-BA[e] returns syncPacee, then at least f + 1 honest parties can append

blocks with slot numbers from 1 to syncPacee that all received from Bolt[e] into the log

without invoking CallHelp function.

Proof: Suppose tcv-BA[e] returns syncPacee, then from the strong validity of tcv-BA,

at least one honest party inputs the number syncPacee. The same honest party must

receive a valid message PaceSync(e, syncPacee,Proof), which means there must exists

a valid Bolt block 〈e, syncPacee, ·,Proof〉. By the code, the honest party will multicst

PaceSync(e, syncPacee,Proof) if tcv-BA[e] returns syncPacee, then all honest parties can

get the Proof. Following the notarizability and total-order properties of Bolt, at least f + 1

honest parties can append blocks from 〈e, 1, ·, ·〉 to 〈e, syncPacee, ·, ·〉 into the log without

invoking CallHelp function. �

Claim 5. If an honest party invokes CallHelp function to retrieve a block log[i], it eventually

can get it; if another honest party retrieves a block log[i]′ at the same log position i from

the CallHelp function, then log[i] = log[i]′.

Proof: Due to Claim 4 and total-order properties of Bolt, any block log[i] that an honest

party is retrieving through CallHelp function shall have been in the output log of at least

145

f + 1 honest parties, so it eventually can get f + 1 correct Help messages with the same

Merkle tree root h from distinct parties, then it can interpolate the f +1 leaves to reconstruct

log[i] which is same to other honest parties’ local log[i]. We can argue the agreement by

contradiction, in case the interpolation of honest party fails or it recovers a block log′[i]

different from the the honest party’s local log[i], that means the Merkle tree with root h

commits some leaves that are not coded fragments of log[i]; nevertheless, there is at least

one honest party encode log[i] and commits the block’s erasure code to have a Merkle tree

root h; so the adversary indeed breaks the collision resistance of Merkle tree, implying

the break of the collision-resistance of hash function, which is computationally infeasible.

So all honest parties that attempt to retrieve a missing block log[i] must fetch the block

consistent to other honest parties’. �

Lemma 27. If all honest parties enter the Bolt phase with the same log, then they will

always finish the Transformer phase with still having the same log′.

Proof: If all honest parties enter the epoch with the same log, it is easy to see that they

all will eventually interrupt to abandon the Bolt phase. Due to Claim 1, all honest parties

would activate tcv-BA[e]. Following the agreement and termination of tcv-BA[e], all

parties would finish tcv-BA[e] to get a common syncPacee, and then by the pseudocode,

all honest parties will sync up to the same log, and the last block of log with slot number

syncPacee (due to total-order properties of Bolt, Claim 4 and Claim 5), hence, all parties

will finish the Transformer phase with the same output log. �

Lemma 28. For any two honest parties before finishing the Transformer phase, then there

exists one party, such that its log is a prefix of (or equal to) the other’s.

Proof: The blocks outputted before the completion of the Transformer phase were originally

generated from the Bolt phase, then the Lemma holds immediately by following the

total-order property of Bolt and Claim 3. �

Lemma 29. If any honest party enters the Pessimistic phase, then all honest parties will

enters the phase and always leave the phase with having the same log.

146

Proof: If any honest party enter the Pessimistic phase, all honest parties would enter this

phase, which is due to Claim 1, the agreement and termination property of tcv-BA and

syncPacee = 0. Let us assume that all honest parties enter the Pessimistic phase with

the same log, it would be trivial too see the statement for the agreement and termination

properties of ACS and the correct and robustness properties of threshold public key

encryption. Then considering Lemma 27 and the simple fact that all honest parties activate

with the common empty log, we can inductively reason that all honest parties must enter

any Pessimistic phase with the same log. So the Lemma holds. �

Lemma 30. For any two honest parties in the same epoch, there exists one party, such

that its log is a prefix of (or equal to) the other’s.

Proof: If two honest parties do not enter the Pessimistic phase during the epoch, both

of them only participate in Bolt or Transformer, so this Lemma holds immediately by

following Lemma 28. For two honest parties that one enters the Pessimistic phase and

one does not, this Lemma holds because the latter one’s log is either a prefix of the former

one’s or equal to the former one’s due to Lemma 27 and 28. For the remaining case that

both honest parties enter the Pessimistic phase, they must initially have exactly same log

(due to Lemma 27). Moreover, in the phase, all honest parties would execute the ACS

instances in a sequential manner (e.g., there is only one ACS instance in our exemplary

pseudocode), so every honest party would output in one ACS instance only if it has already

outputted in all earlier ACS instances. Besides, any two honest party would output the

same transaction batch in every ACS instance for the agreement property of ACS. So this

Lemma also holds for any two honest parties that are staying in the same epoch. �

Theorem 7. The Dumbo-MVBA protocol satisfies the agreement and total order properties.

Proof: The total order be induced by Lemma 30 along with the fact the protocol is executed

epoch by epoch. The agreement follows immediately from Lemma 27 and 29 along with

the fact that all honest parties initialize with the same empty log to enter the first epoch’s

Bolt phase. �

147

Liveness. This stems from the liveness of all three phases. The liveness of fastlane is

guaranteed by the “timeout” parameter τ. That means, all honest parties can leave the

fastlanes without “getting stuck”. After that, all parties would invoke tcv-BA and obtain

syncPace as the tcv-BA output due to the termination of tcv-BA; moreover, if any honest

party realizes that it misses some fastlane blocks after obtaining syncPace, it can sync up

to syncPace within only two asynchronous rounds, because at least f + 1 honest parties

can help it to fetch the missing blocks. So no honest party would “stuck” during the

Transformer phase. Finally, the honest parties would enter the Pessimistic phase if the

fastlanes completely fail to output nothing. After that, the protocol must output expected

O(B)-sized transactions, and ensures that any transactions (at the B-top of all honest parties’

backlogs) can output with a constant probability, thus ensuring liveness even if in the worst

case.

Then we prove the liveness property of BDT.

Lemma 31. If all honest parties enter the Bolt phase, once the liveness failed, then they

will leave the phase in at most polynomial number of asynchronous rounds and also all

enter the Transformer phase.

Proof: The liveness failed in the Bolt phase, it could be either (1). no progress within τ

time or (2). some oldest transactions is not output within T time. For (1), at worst case,

all honest parties’ timeout will interrupt, causing them to abandon the Bolt phase in at

most O(τ) asynchronous rounds. For (2), it will take at most O(T) asynchronous rounds

to leave the Bolt phase if there is a suspiciously censored tx in all honest parties’ buffers

due to some timeout parameter T . Hence, once the liveness failed, all honest parties will

leave the phase in at most O(τ + T) asynchronous rounds. After that, the broadcast of

PaceSync message will take one more asynchronous round. After that, all honest parties

would receive enough PaceSync messages to enter the Transformer phase, which costs at

most O(τ + T + 1) asynchronous rounds. �

148

Lemma 32. If all honest parties enter the Transformer phase, they all leave the phase in

expected constant asynchronous rounds and then either enter the Pessimistic phase or

enter the next epoch’s Bolt phase.

Proof: If all honest parties enter the Transformer phase, it is trivial to see the Lemma

since the underlying tcv-BA terminates in on-average constant asynchronous rounds. If

the output of tcv-BA equal 0, then enter the Pessimistic phase, otherwise, enter the next

epoch’s Bolt phase. �

Lemma 33. If all honest parties enter the Pessimistic phase, all honest parties will leave

this Pessimistic phase in on-average constant asynchronous rounds with outputting some

blocks containing on-average O(B)-sized transactions.

Proof: Similar to [92]’s analysis, Pessimistic phase at least outputs O(B)-sized transactions

(without worrying that the adversary can learn any bit about the transactions to be outputted

before they are actually finalized as output) for each execution. Here we remark that

the original analysis in [92] only requires IND-CPA security of threshold public key

encryption might be not enough, since we need to simulate that the adversary can query

decryption oracle by inserting her ciphertext into the ACS output. Moreover, the underlying

Dumbo ACS construction [74] ensures all parties to leave the phase in on-average constant

asynchronous rounds. �

Theorem 8. The Dumbo-MVBA protocol satisfies the liveness property.

Proof: Due to Lemma 31 and 32, the adversary would not be able to stuck the honest parties

during the Bolt and Transformer phases. Even if in the worst cases, the two phases do not

deliver any useful output and the adversary intends to prevent the parties from running

the Pessimistic phase (thus not eliminating any transactions from the honest parties’ input

buffer), we still have a timeout mechanism against censorship, which can ensure to execute

the Pessimistic phase for every O(T) asynchronous rounds if there is a suspiciously

censored tx in all honest parties’ buffers due to some timeout parameter T . Recall Lemma

33, for each tx in all honest parties’ buffers, it would take O(XT/B) asynchronous rounds

at worst (i.e., we always rely on the timeout T to invoke the Pessimistic phase) to make tx

149

be one of the top B transactions in all parties’ buffers, where X is the bound of buffer size

(e.g., an unfixed polynomial in λ). After that, any luckily finalized optimistic phase block

would output tx (in few more δ), or still relying on the timeout to invoke the Pessimistic

phase, causing the worst case latency O((X/B + λ)δT), which is a function in the actual

network delay δ factored by some (unfixed) polynomial of security parameters. �

5.6 Implementation and Evaluation

To demonstrate the practical performance of BDT, we implement the framework using

Dumbo-BFT [74] as the exemplary pessimistic path. We compare two typical BDT

implementations to Dumbo-BFT and HotStuff, and conduct extensive experiments in

real-world/simulated environments.

5.6.1 Implementation setup

We program the proof-of-concept implementations of BDT, Dumbo and 2-chained

HotStuff in the same language (i.e. Python 3), with using the same libraries and security

parameters for all cryptographic implementations. The BFT protocols are implemented

by single-process code. Besides, a common network layer is programmed by using

unauthenticated TCP sockets. The network layer is implemented as a separate Python

process to provide non-blocking communication interface.

For common coin, it is realized by hashing Boldyreva’s pairing-based unique threshold

signature [29] (implemented over MNT224 curve). For quorum proofs, we concatenate

ECDSA signatures (implemented over secp256k1 curve). For threshold public key

encryption, the hybrid encryption approach implemented in HoneyBadger BFT is used [92].

For erasure coding, the Reed-Solomon implementation in the zfec library is adopted.

For timeout mechanism, we use the clock in each EC2 instance to implement the local

time in lieu of the adversary-controlling “clock” in our formal security model. Our

proof-of-concept codebase is available at https://github.com/yylluu/BDT.

150

For notations, BDT-sCAST denotes BDT using Bolt-sCAST as fastlane, while BDT-sRBC

denotes the other instantiation using Bolt-sRBC. In addition, BDT-Timeout denotes to use

an idle fastlane that just waits for timeout, which can be used as benchmark to “mimic”

the worst case that the fastlanes always output nothing due to constant denial-of-service

attacks.

Setup on Amazon EC2. To demonstrate the practicability of BDT in realistic wide-area

network (WAN), we evaluate it among Amazon EC2 c5.large instances (2 vCPUs and

4 GB RAM) for n=64 and 100 parties, and also test Dumbo and HotStuff in the same

setting as reference points. All EC2 instances are evenly distributed in 16 AWS regions,

i.e., Virginia, Ohio, California, Oregon, Central Canada, São Paulo, Frankfurt, Ireland,

London, Paris, Stockholm, Mubai, Seoul, Singapore, Tokyo and Sydney. All evaluation

results in the WAN setting are measured back-to-back and averaged over two executions

(each run for 5-10 minutes).

In the WAN setting tests, we might fix some parameters of BDT to intentionally amplify

the fallback cost. For example, let each fastlane interrupt after output only 50 blocks, so

Transformer is frequently invoked. We also set the fastlane’s timeout parameter τ as large

as 2.5 sec (nearly twenty times of the one-way network latency in our test environment),

so all fallbacks triggered by timeout would incur a 2.5-second overhead in addition to the

Transformer’s latency.

5.6.2 Evaluations in the WAN setting

Basic latency. We firstly measure the basic latency to reflect how fast the protocols are

(in the good cases without faults or timeouts), if all blocks have nearly zero payload (cf.

Fig. 5.7). This provides us the baseline understanding about how fast BDT, HotStuff and

Dumbo can be to handle the scenarios favoring low-latency.

When n = 100, BDT-sCAST is 36x faster than Dumbo, and BDT-sRBC is 23x faster than

Dumbo; when n = 64, BDT-sCAST is 18x faster than Dumbo, and BDT-sRBC is 10x

faster than Dumbo; moreover, the execution speed of both BDT-sCAST and BDT-sRBC

151

0.39563
0.42569

0.40309
0.43176

0.67563
0.69808

7.74402

16.36

0.39563
0.42569

0.40309
0.43176

0.67563
0.69808

7.74402

16.36

64 100
0

2

4

6

8

10

12

14

16

18

Ba
sic

la
te

nc
y

(s
ec

on
d)

Scale (# of parties)

HotStuff-no-fault
BDT-sCAST-no-fault
BDT-sRBC-no-fault
Dumbo-no-fault

Figure 5.7: Basic latency in experiments over WAN for two-chain HotStuff, BDT-sCAST, BDT-

sRBC and Dumbo.

are at the same magnitude of HotStuff. In particular, the basic latency of BDT-sCAST is

almost as same as that of 2-chain Hotstuff, which is because the fastlane of BDT-sCAST

can be thought of a stable-leader 2-chain Hotstuff and its optimistic latency has five rounds

3, i.e., same to that of 2-chain Hotstuff.

Peak throughput. We then measure throughput in unit of transactions per second

(where each transaction is a 250 bytes string to approximate the size of a typical Bitcoin

transaction). The peak throughput is depicted in Fig. 5.8, and gives us an insight how well

BDT, HotStuff and Dumbo can handle transaction burst. 4

BDT-sCAST realizes a peak throughput about 85% of HotStuff’s when either n is 100 or

64, BDT-sRBC achieves a peak throughput that is as high as around 90% of Dumbo’s for

n = 64 case and about 85% of Dumbo’s for n = 100 case. All these throughput numbers

are achieved despite frequent Transformer occurrence, as we intend to let each fastlane to

fallback after output mere 50 blocks.

3The five-round latency of BDT-sCAST in the best cases can be counted as follows: one round

for the leader to multicast the proposed batch of transactions, one round for the parties to vote

(by signing), one round for the leader to multicast the quorum proof (and thus all parties can get

a pending block), and finally two more rounds for every parties to receive one more block and

therefore output the earlier pending block. The concrete of rounds of BDT-sRBC in the best cases

can be counted similarly.
4Note that we didn’t implement an additional layer of mempool as in [63] and [54], and we can

expect much higher throughout if we adopt their mempool techniques.

152

14383

1080511832

9253

24276

18234

26772

21242

14383

1080511832

9253

24276

18234

26772

21242

64 100
0

10k

20k

30k

40k

M
ax

im
um

th
ro

ug
hp

ut
(tp

s)

Scale (# of parties)

HotStuff-no-fault
BDT-sCAST-no-fault
BDT-sRBC-no-fault
Dumbo-no-fault

Figure 5.8: Peak throughput in experiments over WAN for two-chain HotStuff, BDT-sCAST,

BDT-sRBC and Dumbo.

Overhead of Transformer. It is critical for us to understand the practical cost of

Transformer. We estimate such overhead from two different perspectives as shown in Fig.

5.9 and 5.10.

64 100
0

2

4

6

8

10

12

14

16

18

HotStuff'sHotStuff's

Dumbo's basic latency (no-fault, n=64)

La
te

nc
y

of
Tr

an
sf

or
m

er
(s

ec
on

d)

Scale (# of parties)

BDT-sCAST-no-fault
BDT-sRBC-no-fault
MVBA-fallback-no-fault (KS02,RC05)
BDT-sCAST-1/3-crash
BDT-sRBC-1/3-crash
MVBA-fallback-1/3-crash (KS02,RC05)

Dumbo's basic latency (no-fault, n=100)

Figure 5.9: Latency of Transformer for pace-sync in BDT-sCAST and BDT-sRBC (when no fault

and 1/3 crash, respectively). MVBA fallback in RC05 is also tested as a reference point.

As shown in Fig. 5.9, we measure the execution time of Transformer in various settings

by taking combinations of the following setups: (i) BDT-sCAST or BDT-sRBC; (ii) 1/3

crashes on or off; (iii) 64 EC2 instances or 100 EC2 instances. Moreover, in order to

comprehensively compare Transformer with the prior art [15, 80, 113], we also measure

the latency of MVBA pace-sync (which instantiates the Backup/Abstract primitive in [15]

to combine the fastlane and Dumbo 5) as a basic reference point, cf. Section 2 for the

5Following [15] that used full-fledged SMR to instantiate Backup for fallback, one can combine

stable-leader 2-chain HotStuff (the fastlane of BDT-sCAST) and Dumbo by a single block of

asynchronous SMR. This intuitive idea can be realized from MVBA [34, 113] as follows after the

fastlane times out: each party signs and multicasts the highest quorum proof received from HotStuff,
then waits for n− f such signed proofs from distinct parties, and takes them as MVBA input; MVBA

153

idea of using Backup/Abstract for asynchronous fallback [15]. The comparison indicates

that Transformer is much cheaper in contrast to the high cost of MVBA pace-sync. For

example, Transformer always costs less than 1 second in BDT-sRBC, despite n and on/off

of crashes, while MVBA pace-sync is about 10 times slower.

0 5000 10000 15000 20000 25000
0

20

40

60

80

100

La
te

nc
y

(s
ec

on
d)

Throughput (tps)

BDT-Timeout-64-no-fault (fastlane always fails)
Dumbo-64-no-fault

BDT-Timeout-100-no-fault (fastlane always fails)
Dumbo-100-no-fault

Figure 5.10: Latency v.s. throughput for experiments of BDT with idling fastlane (i.e., fastlane just

timeouts after 2.5 sec).

As illustrated in Fig. 5.10, we measure the latency-throughput tradeoffs for BDT-Timeout,

namely, to see how BDT worse than Dumbo when BDT’s fastlane is under denial-of-

service. This is arguably the worst-case test vector for BDT, since relative to Dumbo, it

always costs extra 2.5 seconds to timeout and then executes the Transformer subprotocol.

Nevertheless, the performance of BDT is still close to Dumbo. In particular, to realize the

same throughput, BDT spends only a few additional seconds (which is mostly caused by

our conservation 2.5-second timeout parameter).

Latency-throughput trade-off. Figure 5.11 plots latency-throughput trade-offs of BDT-

sCAST, BDT-sRBC, HotStuff and Dumbo in the WAN setting for n= 64 and 100 parties.

This illustrates that BDT has low latency close to that of HotStuff under varying system

load.

Either BDT-sCAST or BDT-sRBC is much faster than Dumbo by several orders of

magnitude in all cases, while the two BDT instantiations have different favors towards

distinct scenarios. BDT-sCAST has a latency-throughput trade-off similar to that of 2-chain

HotStuff, and their small variance in latency is because we intentionally trigger timeouts

thus would output n − f valid HotStuff quorum proofs (signed by n − f parties), and the highest

quorum proof in the MVBA output can represent the HotStuff block to continue Dumbo.

154

1 10
0

10k

20k

30k

40k
HotStuff-100-no-fault
BDT-sCAST-100-no-fault
BDT-sRBC-100-no-fault
Dumbo-100-no-fault

Th
ro

ug
hp

ut
(tp

s)

Latency (second)

HotStuff-64-no-fault
BDT-sCAST-64-no-fault
BDT-sRBC-64-no-fault
Dumbo-64-no-fault

Figure 5.11: Throughput v.s. latency for experiments over WAN when n = 64 and 100, respectively

(in case of periodically running pace-sync in BDT per only 50 fastlane blocks).

in BDT-sCAST after each 50 fastlane blocks. BDT-sRBC has a latency-throughput trend

quite different from HotStuff and BDT-sCAST. Namely, when fixing larger throughput,

BDT-sRBC has a latency less than BDT-sCAST’s; when fixing small throughput,

BDT-sRBC could be slower. This separates them clearly in terms of application scenarios,

since BDT-sRBC is a better choice for large throughput-favoring cases and BDT-sCAST

is more suitable for latency-sensitive scenarios.

For sake of completeness, we also measure (i) latency and throughput on varying batch

sizes and (ii) the latency-throughput trade-off (with n/3 faults) in the WAN experiment

setting, and plot the results as follows.

Varying batch sizes. For understanding to what an extent the batch size matters, we

report how throughput and latency depend on varying batch sizes in Figure 5.12 and 5.13,

respectively.

100 1000 10000 100000 1000000

1

10

100

La
te

nc
y

(s
ec

on
d)

Batch Size (tx)

HotStuff-64-no-fault
BDT-sCAST-64-no-fault
BDT-sRBC-64-no-fault
Dumbo-64-no-fault
HotStuff-100-no-fault
BDT-sCAST-100-no-fault
BDT-sRBC-100-no-fault
Dumbo-100-no-fault

Figure 5.12: Latency v.s. batch size for experiments over wide-area network when n = 64 and

n = 100, respectively.

155

Figure 5.12 illustrates how latency increases with larger batch size in BDT-sCAST, BDT-

sRBC, HotStuff and Dumbo when n = 64 and n = 100, respectively. It clearly states that:

Dumbo always takes a latency much larger than BDT-sCAST, BDT-sRBC and HotStuff;

for BDT-sRBC, its latency increases much slower than BDT-sCAST and HotStuff, in

particular when B = 10000, the latency of BDT-sRBC is around one second only, while

these of BDT-sCAST and HotStuff have been more than 2 seconds. The slow increasing

of BDT-sRBC’s latency is mainly because its better balanced network load pattern.

100 1000 10000 100000 1000000

0

1x10 4

2x10 4

3x10 4

Th
ro

ug
hp

ut
(tp

s)

Batch Size (tx)

HotStuff-64-no-fault
BDT-sCAST-64-no-fault
BDT-sRBC-64-no-fault
Dumbo-64-no-fault
HotStuff-100-no-fault
BDT-sCAST-100-no-fault
BDT-sRBC-100-no-fault
Dumbo-100-no-fault

Figure 5.13: Throughput v.s. batch size for experiments over wide-area network when n = 64 and

n = 100, respectively.

Figure 5.13 illustrates how throughput increases with larger batch size in BDT-sCAST,

BDT-sRBC, HotStuff and Dumbo when n = 64 and n = 100, respectively. Dumbo really

needs very large batch size to have acceptable throughput; BDT-sCAST and HotStuff have

a similar trend that the throughput would stop to increase soon after the batch sizes become

larger (e.g., 10000 transactions per block); in contrast, the throughput of BDT-sRBC is

increasing faster than those of BDT-sCAST and HotStuff, because larger batch sizes in

BDT-sRBC would not place much worse bandwidth load on the leader, and thus can raise

more significant increment in the throughput.

Latency-throughput trade-off (1/3 crashes). We also report the latency-throughput

trade-off in the presence of 1/3 crashes. The crashes not only lag the execution of all

protocols, but also mimic that a portion of Bolt instances are under denial-of-services.

We might fix the batch size of the pessimistic path in BDT-sCAST and BDT-sRBC

as 106 transactions in these tests, because this batch size parameter brings reasonable

throughput-latency trade-off in Dumbo. Shown in Figure 5.14, both BDT-sCAST and

156

New design space

Figure 5.14: Throughput v.s. latency for experiments over wide-area network when n = 64 and

n = 100, respectively (in case of 1/3 crash fault). We fix the fallback batch size of BDT instances to

106 transactions in all tests.

BDT-sRBC have some design spaces that show a latency better than Dumbo’s and presents

a throughput always better than HotStuff’s, despite that on average 1/3 instances of Bolt

are unluckily stuck to wait for 2.5 sec to timeout without returning any optimistic output.

That means our practical BDT framework does create new design space to harvest the

best of both paths, resulting in that we can achieve reasonable throughput and latency

simultaneously in fluctuating deployment environments. 6

Summary of evaluations in the WAN setting. The above results clearly demonstrate

the efficiency of our pace-synchronization—Transformer. And thanks to that, BDT in the

WAN setting is:

1. As fast as 2-chain HotStuff in the best case (i.e., synchronous network without faulty

parties); 7

2. As robust as the underlying asynchronous pessimistic path in the worst case (i.e., the

fastlane always completely fails).

6We would like to note that here we did a very pessimistic evaluation for BDT while optimistic

evaluation for HotStuff in the sense that we manually trigger Transformer by manually muting a

leader for 2.5s once in 50 blocks, while for HotStuff we did a stable leader version (with honest

leader). In reality, the performance curves for BDT might be a bit more to the left, while HotStuff

will surely be more to the right/bottom.
7As discussed in Footnote 4, BDT-sCAST’s fastlane has a 5-round latency, which is same to that of

2-chain HotStuff. The tiny difference between their evaluated latency is because we periodically

trigger Transformer in the experiments of BDT-sCAST.

157

5.6.3 More evaluations in the controlled dynamic network setting

Setup on the simulated fluctuating network. We also deploy our Python-written

protocols for n=64 parties in a high-performance server having 4 28-core Xeon Platinum

8280 CPUs and 1TB RAM. The code is same to the earlier WAN experiments, except that

we implement all TCP sockets with controllable bandwidth and delay. This allows us to

simulate a dynamic communication network.

In particular, we interleave “good” network (i.e., 50ms delay and 200Mbps bitrate) and

“bad” network (i.e., 300ms delay and 50Mbps bitrate) in the following experiments to reflect

network fluctuation. Through the subsection, BDT refers to BDT-sCAST, the approach of

using Abstract primitive [15] to combine stable-leader 2-chain HotStuff (BDT-sCAST’s

fastlane) and Dumbo is denoted by HS+Abstract+Dumbo (where Backup/Abstract is

instantiated by MVBA as explained in Footnote 5). For experiment parameters, the

fastlane’s timeout is set as 1 second, the fastlane block and pessimistic block contain

104 and 106 transactions respectively, and we would report the number of confirmed

transactions over time in random sample executions.

0.0

2.0M

4.0M

6.0M

8.0M

10.0M

12.0M

14.0M

#
of

C
on

fir
m

ed
TX

s

BDT

Execution Time (sec)
0 60 120 180 240 300 360

Dumbo
HotStuff

Figure 5.15: Sample executions of BDT, 2-chain HotStuff, Dumbo, and the composition of

HotStuff+Abstract+Dumbo for n=64, when facing a few 2-second bad periods. The red region

represents the 2-second period of bad network.

Good network with very short fluctuations. We first examine in a network that mostly

stays at good condition except interleaving some short-term bad network condition that

lasts only 2 seconds (which just triggers fastlane timeout). The sample executions in the

setting are plotted in Fig. 5.15. The result indicates that the performance of BDT does

not degrade due to the several short-term network fluctuation, and it remains as fast as

158

2-chain HotStuff. This feature is because BDT adopts a two-level fallback mechanism,

such that it can just execute the light pace-sync and then immediately retry another fastlane.

In contrast, using Backup/Abstract primitive (instantiated by MVBA) as pace-sync would

encounter rather long latency (∼25 sec) to run the heavy pace-sync and pessimistic path

after the short-term network fluctuations.

0.0

2.0M

4.0M

6.0M

8.0M

10.0M

#
of

C
on

fir
m

ed
TX

s

BDT

Execution Time (sec)
0 60 120 180 240 300 360

Dumbo
HotStuff

Figure 5.16: Sample executions of BDT, 2-chain HotStuff, Dumbo, and the composition of

HotStuff+Abstract+Dumbo for n=64, when suffering from 120-second bad network. The red

region represents the 120-second period of bad network.

Intermittent network with long bad time. We then evaluate the effect of long-lasting

bad network condition. We visualize such sample executions in Fig. 5.16. Clearly,

BDT can closely track the performance of its underlying pessimistic path during the long

periods of bad network condition. Again, this feature is a result of efficient pace-sync, as

it adds minimal overhead to the fallback. In contrast, using Backup/Abstract primitive

(instantiated by MVBA) to compose stable-leader HotStuff and Dumbo would incur a

latency ∼10 seconds larger than BDT during the bad network due to its cumbersome

pace-sync.

Summary of evaluations in fluctuating network. As expected by our efficient pace-sync

subprotocol, BDT also performs well in the fluctuating network environment. Specifically,

• When encountering short-term network fluctuations, BDT can quickly finish pace-sync

and restart a new fastlane, thus progressing at a speed same to 2-chain HotStuff.

• When the network becomes slow for longer periods (and even HotStuff grinds to a halt),

BDT still is robust to progress nearly as fast as the underlying asynchronous protocol.

159

5.7 Discussions

5.7.1 Complexity and Numerical Analyses

This section discusses the critical complexity metrics of the BDT framework and those

of its major modules. The complexities can be analyzed by counting these of each

underlying module. Overall, BDT would cost (expected) O(n) communicated bits

per output transaction, and the latency of each output block is of expected constant

rounds. These complexities hold in all cases (no matter the network is synchronous or

asynchronous). Besides, we then assign each module a running time cost according to our

real-world experimental data, thus enabling more precise numerical analysis to estimate

the expected latency of BDT in various “simulated” unstable deployment environments.

Complexity analysis. Here we analyze BDT regarding its complexities. Recall that we

assume the batch size B sufficiently large, e.g., Ω(λn2 log n), throughout the paper.

Complexities of the fastlane (also of the optismtic cases). For the optimistic fastlane, we

have two instantiations, namely Bolt-sCAST and Bolt-sRBC. As shown in Table 5.1,

Bolt-sCAST is with linear O(n) per-block message complexity, and the leader’s per-block

bandwidth usage O(nB) is also linear in n; Bolt-sRBC is with quadratic per-block message

complexity as O(n2), while the per-block bandwidth usage of every party is not larger than

the batch size O(B). We can also consider their latency in term of “rounds” to generate a

block, i.e., the time elapsed between when a block’s transaction is first multicasted and

when the honest parties output this block with valid proof. The latency of generating

two successive blocks can also be considered to reflect the confirmation latency of BDT’s

fastlane. Though both “fastlane” instantiations will cost O(1) rounds to generate fastlane

blocks, Bolt-sCAST has slightly less concrete rounds: Bolt-sCAST can use at most 3

rounds to generate one (pending) block and can use 5 rounds to output two successive

blocks (thus the former block can be finalized in BDT framework); Bolt-sRBC would cost

4 rounds to generate one (pending) block and use 8 rounds to output two successive blocks.

160

Note that in the optimistic case when (i) the fastlane leaders are always honest and (ii) the

network condition is benign such that the fastlanes never timeout, the Pessimistic phase

is not executed, so the fastlane cost shown in Table 5.1 would also reflect the amortized

complexities of the overall BDT protocol (in case that the epoch size Esize is large enough,

e.g., n).

Table 5.1: Per-block performance of different Bolt instantiations (which is also per-block cost of

BDT in the good cases)

Msg. Comm. Per-block latency Two blocks latency
Bandwidth Cost

Leader Others

Bolt-sCAST O(n) O(nB) 3 rounds 5 rounds O(nB) O(B)

Bolt-sRBC O(n2) O(nB) 4 rounds 8 rounds O(B) O(B)

Worst-case complexities disregarding the adversary. In the optimistic fastlane, there is a

worst-case overhead of using O(τ) asynchronous rounds to leave the tentatively optimistic

execution without outputting any valid blocks. After the stop of fastlane, all parties enter

the Transformer phase, and would participate in tcv-BA, in which the expected message

complexity is O(n2), the expected communication complexity is O(λn2), and the expected

bandwidth cost of each parties is O(λn). Besides, if the output value of tcv-BA is large than

zero, then the CallHelp subroutine could probably be invoked, this process will incur O(n2)

overall message complexity and O(nB) per-block communication complexity and causes

each party to spend O(B) bandwidth to fetch each block on average. In the worst case,

Dumbo is executed after Transformer, which on average costs overall O(n3) messages,8

overall O(nB) communicated bits, and O(B) bandwidth per party for each block if batch

size B is sufficiently large. The latency of generating a block in the pessimistic path is of

O(1) rounds on average.

To summarize these, we can have the worst-case performance illustrated in Table 5.2. Note

that the latency of generating a block shall consider the following possible worst case: the

fastlane times out to run pace-sync, but pace-sync finalizes no fastlane block, and all parties

8Note that if instantiating the pessimistic path by more recent asynchronous BFT consensus

protocols (e.g., Speeding Dumbo) instead of Dumbo-BFT, the O(n3) per-block messages can be

reduced to O(n2).

161

Table 5.2: Per-block performance of BDT in the worst cases

Msg. Comm. Block latency (rounds)
Bandwidth Cost

Leader Others

BDT-sCAST O(n3) O(nB) 3+1+Ttcv-BA+TDumbo O(nB) O(B)

BDT-sRBC O(n3) O(nB) 4+1+Ttcv-BA+TDumbo O(B) O(B)

∗ Note that the worst-case block latency reflects the case of turning off the level-1 fallback.

have to start the pessimistic path to generate a block. Thus, to count the worst-case latency,

we need to include: (i) the timeout parameter τ; (ii) the latency of fallback (including 1

round for multicast PaceSync message and the expected latency Ttcv-BA of tcv-BA), and (iii)

the expected pessimistic path latency TDumbo. Here the timeout parameter τ in our system

is not necessarily close to the network delay upper bound Δ, and it can represent some

adversary-controlling “clock ticks” to approximate the number of asynchronous rounds

spent to generate each fastlane block, i.e., O(τ) = O(1). For example, in BDT-sCAST, τ

can approximate 3 rounds because in Bolt-sCAST, the first fastlane block (i.e., the first

“heartbeat”) needs 3 rounds to deliver and the interval of two successive fastlane blocks

(i.e., the interval of two “heartbeats”) is 2 rounds; similarly, τ can approximate 4 rounds in

BDT-sRBC.

Complexities in comparision to other BFT consensuses. Here we also summarize the

communication complexities of BDT and some known BFT protocols in the optimistic

case and the worst case, respectively. To quantify the latency of those protocols in unstable

network environment, Table 5.3 also lists each protocol’s average latency (in “unit” of

fastlane’s good-case latency).

This metric considers that the fastlane has a probability α ∈ [0, 1] to output blocks in

time, and also has a chance of β = 1 − α that falls back and then executes the pessimistic

asynchronous protocol. Let C be the latency of using earlier asynchronous protocols

[34,92] directly as the pessimistic path and c be that of the state-of-the-art Dumbo BFT [74]

and that of using MVBA for synchronization during fallback. Both C and c are represented

in the unit of fastlane latency. According to the experimental data [74, 92], C is normally

at hundreds and the latter c is typically dozens ([92] runs n instances of ABA, thus rounds

162

Table 5.3: Complexities of BFT protocols in various settings

(where B is sufficiently large s.t. all λ terms are omitted, and α + β = 1)

Protocol
Per-block Com. Compl. Normalized average latency

Optim. Worst considering fastlane latency as “unit”

PBFT [41] O(nB) ∞ 1/α

HotStuff [125] O(nB) ∞ 1/α

HBBFT [92] O(nB) O(nB) C

Dumbo [74] O(nB) O(nB) c

KS02 [80] O(n2B) O(n3B) (α +
β

C+kc)−1�

RC05 [113] O(nB) O(n3B) (α +
β

C+c)−1

BDT (ours) O(nB) O(nB) (α +
β

c+1
)−1

� There is an integer parameter k in [80] to specify the degree of parallelism for the fastlane, thus
probably incurring extra cost of fallback.

depend on number of parties, while [74] reduces it to constant). Our fallback is almost as

fast as the fastlane, so its magnitude around one. As such, we can do a simple calculation

as shown in Table 5.3 to roughly estimate the latency of all those protocols deployed in the

realistic fluctuating network.

Numerical analysis on latency in unstable network. To understand the applicability level

of BDT framework, we further conduct more precise numerical estimations to visualize

the average latency of BDT and prior art (e.g. RC05) in the unstable Internet deployment

environment, in particular for some typical scenarios between the best and the worst cases.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Latency of Fastlane

Latency of Dumbo

Av
er

ag
e

La
te

nc
y

(s
ec

on
d)

Percent of Failing-in-the-Begin Fastlanes (%)

BDT with failed fastlanes
RC05 with failed fastlanes

(a) When some fastlanes fail in the begin

(a) When some fastlanes fail in the begin

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Latency of Fastlane

Latency of Dumbo

(b) When some fastlanes fail in the middle

Av
er

ag
e

La
te

nc
y

(s
ec

on
d)

Percent of Failing-in-the-Middle Fastlanes (%)

BDT with failed fastlanes
RC05 with failed fastlanes

(b) When some fastlanes fail in the middle

Figure 5.17: Numerical analysis to reflect the average latency of BDT and RC05 [113] in fluctuating

deployment environment. The analysis methodology is similar to the formulas in Table 5.3 except

that here consider more protocol parameters such as batch size, epoch size, timeout, etc.

The real-world experiment data shown in Section 5.6 is considered to specify the cost of

each protocol module in the estimations. In particular, we use our experimental results

163

over the globe when n = 100 to specify the parameters used in the numerical estimations

regarding both RC05 and BDT: we set the latency of fastlane as 1 second (to reflect the

actual latency of Bolt) and set the latency of pessimistic path as 20 seconds (according

to the measured latency of Dumbo); the fastlane block and the pessimistic block are set

to contain 104 and 106 transactions, respectively; the MVBA fallback in RC05 is set to

use 10 seconds and our Transformer is set to cost 1 second (cf. Figure 5.10); for fair

comparison, we let RC05 to use the state-of-the-art Dumbo protocol as its pessimistic

path; other protocols parameters (e.g., epoch size and timeout) are also taken into the

consideration and are set as same as those in the experiments. Note that a “second” in the

simulations is a measurement of virtual time (normalized by the fastlane latency) rather

than a second in the real world.

We consider two simulated scenarios. One is illustrated in Figure 5.17 (a), in which

there are some portion of fastlane instances that completely fail and output nothing but

just timeout and fallback after idling for 2.5 seconds, while the else fastlane instances

successfully output all optimistic blocks. In the case, BDT can save up to almost 10 seconds

on average latency relative to RC05. This is a result of the much more efficient fallback

mechanism; more importantly, the efficient fallback brings much robuster performance

against unstable network environment, for example, RC05 starts to perform worse than

Dumbo once more than 45% fastlane instances completely fail in the beginning of their

executions, while BDT can be faster than Dumbo until more than 75% fastlane instances

completely fail. The other case is shown in Figure 5.17 (b), where some fastlane instances

stop to progress in the middle of their executions (e.g., stop to progress after 25 optimistic

blocks are finalized) and then wait for 2.5 seconds to timeout and fallback. In the case,

BDT performs almost as fast as its underlying fastlane (i.e., the average delay is really

close to 1 second) despite the overheads of timeout and Transformer in this fluctuating

network condition; in contrast, RC05 can be an order of magnitude slower than BDT, and

it would be even slower than Dumbo if more than 55% fastlane instances fail to progress

in the middle of their optimistic executions.

164

5.7.2 Optimistic conditions

BDT has a simple and efficient deterministic fastlane that might keep on progressing under

certain optimistic conditions, which intuitively are: (i) the actual network delay is smaller

than some guessed timing parameter and (ii) the leader of fastlane is honest. We believe

these optimistic conditions can ensure the progress of fastlanes.

The main reason is that the fastlane can successfully execute without invoking pace-

synchronization, if the following two optimistic conditions hold: (i) the network stays in

synchrony, such that the guessed timeout parameter is larger than the “heartbeat” period of

the underlying fastlane; (ii) the optimistic liveness condition of fastlane is satisfied, e.g.

the leader is honest.

First, it is clear to see: if all honest parties have already enter the same epoch’s fastlane

at the same time, then the fastlane must successfully progress in the presence of above

optimistic conditions. Actually, the above argument still holds, even if the honest parties

enter the fastlane with minor difference in time, because one can slightly tune up the

guessed timing parameter.

Then, let us briefly argue that when the network is synchronous, BDT can ensure all honest

parties to enter the same fastlane within a bounded period. This actually reduces to the next

question: when some honest party first outputs and halts in the asynchronous pessimistic

path, would all honest parties output soon (if the network is synchronous)? Fortunately,

the answer is yes if we check the detailed construction of asynchronous protocols (such as

Dumbo). This indicates that the asynchronous pessimistic path itself can work as a clock

synchronizer to ensure that all honest parties restart the fastlane nearly at the same time

(when network synchrony holds).

5.8 Summary

We propose the first generic and practical framework for optimistic asynchronous atomic

broadcast BDT, in which we abstract a new and simple deterministic fastlane that enables

us to reduce the asynchronous pace-synchronization to the conceptually minimum binary

165

agreement. Different from pioneering studies [15, 71, 80, 113] that only demonstrated

theoretic feasibility and had questionable practicability because of complex and slow

asynchronous pace-synchronization, BDT makes several technical contributions to harvest

the best of both paths in practice. In greater detail,

• A new fastlane abstraction better prepared for failures. To simplify the compli-

cated pace-sync, we propose a new fastlane abstraction of notarizable weak atomic

broadcast (nw-ABC for short) to prepare honest parties in a graceful condition when

facing potential fastlane failures. Notably, nw-ABC realizes ABC in the optimistic

case, and only ensures “notarizability” otherwise: any output block is with a quorum

proof to attest that sufficient honest parties have received a previous block (along with

valid proof). Such an nw-ABC can be easily constructed to be very fast, e.g., from a

sequence of simple (provable) multicasts; and more importantly, the notarizability

(as we will carefully analyze) guarantees that any two honest parties will be at

neighboring blocks when entering pace-sync,so we can leverage simpler binary

agreement to replace the cumbersome full-fledged asynchronous atomic broadcast

or multi-value agreement used in prior art [15, 71, 80, 113].

• Cheapest possible pace-synchronization. More importantly, with the preparation of

nw-ABC, Transformer reduces pace-sync to a problem that we call two-consecutive-

valued Byzantine agreement (tcv-BA), which is essentially an asynchronous binary

Byzantine agreement (ABA). In contrast, prior art [80, 113] leveraged cumbersome

multi-valued agreement (MVBA) for pace-sync. Transformer thus improves the

communication complexity of pace-sync by an O(n) factor, and is essentially

optimal for pace-sync, because the pace-sync problem can be viewed as a version of

asynchronous consensus, and ABA is the arguably simplest asynchronous consensus.

In practice, Transformer attains a minimal overhead similar to the fastlane latency.

Further care is needed for invoking nw-ABC to ensure the safety (see next section).

• Avoiding pessimistic path whenever we can. To further exploit the benefits brought

by fast Transformer, we add a simple check after pace-sync to create two-level

166

fallbacks: if pace-sync reveals that the fastlane still made some output, it immediately

restarts another fastlane without running the actual pessimistic path. This is in

contrast with previous works [80, 113] where the slow pessimistic path will always

run after each pace-sync, which is often unnecessarily costly if there are only

short-term network fluctuations. Remark that the earlier studies cannot effectively

adopt our two-level fallback tactic, because their heavy pace-sync might bring extra

cost and it may even nullify the advantages of the fastlane in case of frequent

fallbacks.

• Generic framework enabling flexible instantiations. BDT is generic, as it enables

flexible choices of the underlying building blocks for all three phases. For

example, we present two exemplary fastlane instantiations, resulting in two BDT

implementations that favor latency and throughput, respectively, so one can

instantiate BDT according to the actual application scenarios. Also, Transformer can

be constructed around any asynchronous binary agreement, thus having the potential

of using any more efficient ABA to further reduce the fallback overhead (e.g., the

recent designs from Crain [50], Das et al. [56], Zhang et al. [126] and Abraham et

al. [3]). Similarly, though currently we use Dumbo-BFT as the pessimistic path, this

can be replaced by more efficient recent designs [73, 124].

167

CHAPTER 6

SUMMARY OF THE THESIS

6.1 Conclusion

In the WAN setting, asynchronous Byzantine fault tolerant protocols are arguably the most

suitable choices for constructing permissioned blockchains with intrusion tolerance and

high security assurance. In particular, with the current trend towards a blockchain-based

decentralization paradigm, an unprecedented demand calling for practical asynchronous

BFT protocols is increasing. Despite the fact that this topic was extensively explored in

many earlier studies, most asynchronous attempts concentrated on theoretical feasibility,

which is why several attempts performed were only just passable. Aside from that, it

is difficult for (partial) synchronous efforts to fulfill the current demand because these

protocols are not well suited for the WAN environment. For example, though a recent

breakthrough work [92] presented the first practical asynchronous BFT atomic broadcast

protocol HBBFT, it still suffers from substantial performance obstacles that restrict its

broader application. Actually, designing more performant asynchronous BFT protocols

is an interesting and open research problem, and is also one of the hotspots of consensus

research.

We presented the novel Dumbo family protocols to resolve many remaining challenges

of achieving high-performant asynchronous BFT protocols. We identified the major

bottleneck of HBBFT, and then presented the Dumbo protocol to address this pain point

via the innovative use of MVBA, which made Dumbo outperform HBBFT. After that, in

order to continue improving the efficiency of the Dumbo protocol, we designed a new

MVBA protocol Speeding MVBA that achieves fewer concrete rounds, and proposed

Speeding Dumbo, a new asynchronous BFT atomic broadcast centering around Speeding

MVBA and a cheaper broadcast component.

168

Besides the brief recall of Dumbo and Speeding Dumbo, this thesis then focuses on the

other three recent members of the Dumbo family. First, we discussed MVBA and answered

a nearly 20 years open problem affirmatively by presenting Dumbo-MVBA, which has

optimal communication complexity when the input size is moderately large. As a result

of the high communication complexity of existing MVBA protocols, it was previously

thought that employing the MVBA as a building block to instantiate ABC was suboptimal

in HBBFT [92]. With the Dumbo-MVBA at hand, we can also demonstrate that MVBA is

still the right way to build an ABC with higher asymptotic performance, which completely

mitigates the communication blow-up problems in [92].

Second, we discovered that the agreement phase hinders throughput and “wastes” available

bandwidth by incurring high latency. Additionally, in order to defend against serious

censorship threats, it must also rely on some heavy cryptographic primitives or suffer from

reduced efficiency. Focusing on these issues, we presented Dumbo-NG, which resolves

the severe tension between throughput and latency and prevents transaction censorship

with no extra cost.

Third, we concentrated on real-world network scenarios. In spite of the fact that

asynchronous BFT protocols are thought to be robust even when employed in malicious

networks, if we always utilize asynchronous BFT protocols in WAN, then the performance

will be poor compared with deterministic protocols in the normal case. Because it is

possible that the WAN will not always be in adversarial networks, and the deterministic

protocols can work very quickly when the network condition is friendly. Therefore,

we design a BFT atomic broadcast protocol (BDT) that combines the advantages of

the synchronous and asynchronous paradigms, such that it is “as fast as” the current

state-of-the-art deterministic BFT consensus on the normal Internet with fluctuations and

nearly as fast as the existing performant asynchronous BFT consensus in the worst-case

asynchronous network.

All these results from the Dumbo family increase the potential for establishing an actual

asynchronous BFT protocol that can eventually be deployed in the real world. Furthermore,

169

because these works are most frameworks, we can cherry-pick the best instantiations of

the related components once these underlying building blocks make progress.

6.2 Future work

Although this thesis presents some of the most recent results on asynchronous BFT

protocols, and these results are promising work toward optimal and practical asynchronous

BFT protocols, there are still many related difficulties that pose challenges to the

performance of asynchronous BFT in practice. The following suggestions are made

for potential lines of future research.

The Dumbo family introduced a few different frameworks of asynchronous BFT protocols,

and each of them is superior in specific application situations. However, there are still

unexplored aspects at the application level. For instance, when there’s a requirement to

deploy a protocol where MVBA functions as a component, then we need to know in which

situations we should instantiate MVBA with the underlying MVBA of Dumbo-MVBA�

rather than Dumbo-MVBA�. In fact, when dealing with a relatively small input size, such

as being on the order of O(λ), it’s possible for the performance of Abraham et al.’s MVBA

and Speeding MVBA to outperform that of Dumbo-MVBA�, where Dumbo-MVBA�

serves as an extension of these MVBA protocols. It would be fascinating to see how

different scales, input sizes, and underlying cryptography primitives affect the performance

of Dumbo-MVBA� and its underlying MVBA. What’s more, it’s possible to implement a

more efficient asynchronous BFT, one that uses BDT in place of Dumbo-NG’s agreement

phase. Also, we can select an appropriate MVBA in BDT for certain application scenarios

if we have clearly investigated in which situations the underlying MVBA has superior

practical performance than Dumbo-MVBA�. This work serves as an immediate follow-up

study that will be more effective when instantiating the asynchronous BFT protocol to

achieve the best performance when dealing with different situations.

Another fascinating research area involves studying how computation complexity

influences protocol latency. In this thesis, we only pay attention to message, communication

170

and time complexity; the computation complexity is completely ignored. As an important

metric, computation complexity has a significant effect on latency. For instance, if

we employ (threshold) signatures to lower communication complexity, the trade-off

is an increase in computational complexity. This prompts us to evaluate, in practical

implementations, whether we can enhance overall performance by (partially) reducing

computational expenses.

The purpose of this thesis is to establish optimal and practical asynchronous BFT protocols.

The asynchronous BFT community has made fast progress. Except for the methodology

introduced in this thesis, another concurrent path to achieve asynchronous BFT atomic

broadcast is via the DAG way [19, 53, 54, 69, 70, 77, 98, 103, 109, 116]. However, these

works still have some gaps for practical asynchronous BFT. One important reason for this

is that the existing asynchronous BFT protocols are not supported for use on a large scale;

for instance, the performance drops noticeably when the number of nodes exceeds a few

hundred. In reality, the successful applications (such as Bitcoin [100], Ethereum [123],

and Aptos [2]) have implemented BFT on a large scale at the Internet level. Due to the

fact that the WAN is an asynchronous environment [115], these cryptocurrencies raise

security concerns (loss of liveness or loss of safety). To simplify, we can view these

successful cryptocurrencies as modern BFT blockchains, and BA-based and DAG-based

atomic broadcasts as traditional BFT blockchains. One of the next things that deserve to

be explored is the development of a new asynchronous BFT protocol that combines the

advantages of the traditional BFT blockchain and the modern BFT blockchain, such that

the new protocol with best-of-both-worlds properties in terms of robustness and efficiency.

171

BIBLIOGRAPHY

[1] Bug in aba protocol’s use of common coin #59.
https://github.com/amiller/HoneyBadgerBFT/issues/59.

[2] The aptos blockchain: Safe, scalable, and upgradeable web3 infrastructure. Aptos white
paper, 2022.

[3] Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure
asynchronous binary agreement via binding crusader agreement. In Proceedings of
the 2022 ACM Symposium on Principles of Distributed Computing, pages 381–391,
2022.

[4] Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren,
and Elaine Shi. Communication complexity of byzantine agreement, revisited. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
pages 317–326, 2019.

[5] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
byzantine agreement with expected o(1) rounds, expected o(n2) communication,
and optimal resilience. In International Conference on Financial Cryptography
and Data Security, pages 320–334. Springer, 2019.

[6] Ittai Abraham, Danny Dolev, and Joseph Y Halpern. An almost-surely terminating
polynomial protocol for asynchronous byzantine agreement with optimal resilience.
In Proceedings of the twenty-seventh ACM symposium on principles of distributed
computing, pages 405–414, 2008.

[7] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 363–373, 2021.

[8] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 106–118. IEEE, 2020.

[9] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal
validated asynchronous byzantine agreement. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, pages 337–346, 2019.

[10] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of
byzantine broadcast: A complete categorization. In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, pages 331–341, 2021.

[11] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. Prime: Byzantine replication
under attack. IEEE transactions on dependable and secure computing, 8(4):564–
577, 2010.

[12] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. Correctness of tendermint-core blockchains. In 22nd
International Conference on Principles of Distributed Systems (OPODIS 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

172

[13] Apache Kafka. http://kafka.apache.org.

[14] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and
advanced topics, volume 19. John Wiley & Sons, 2004.

[15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko
Vukolić. The next 700 bft protocols. ACM Transactions on Computer Systems
(TOCS), 32(4):1–45, 2015.

[16] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. Rbft: Redundant byzantine
fault tolerance. In 2013 IEEE 33rd International Conference on Distributed
Computing Systems, pages 297–306, 2013.

[17] Joonsang Baek and Yuliang Zheng. Simple and efficient threshold cryptosystem from the
gap diffie-hellman group. In GLOBECOM’03. IEEE Global Telecommunications
Conference (IEEE Cat. No. 03CH37489), volume 3, pages 1491–1495. IEEE, 2003.

[18] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, pages
585–602, 2019.

[19] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault
tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, 2016.

[20] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot, Zekun
Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State
machine replication in the libra blockchain. The Libra Assn., Tech. Rep, 7, 2019.

[21] Michael Ben-Or. Another advantage of free choice (extended abstract) completely
asynchronous agreement protocols. In Proceedings of the second annual ACM
symposium on Principles of distributed computing, pages 27–30, 1983.

[22] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant
time. Distributed Computing, 16(4):249–262, 2003.

[23] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with
optimal resilience. In Proceedings of the thirteenth annual ACM symposium on
Principles of distributed computing, pages 183–192, 1994.

[24] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for the
masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[25] Richard E Blahut. Theory and practice of error control codes, volume 126. Addison-Wesley
Reading, 1983.

[26] Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal
asynchronous fallback guarantees. In Theory of Cryptography Conference, pages
131–150, 2019.

[27] Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic broadcast protocol
for arbitrary network conditions. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 547–572. Springer,
2021.

173

[28] Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. Always have a backup plan: fully
secure synchronous mpc with asynchronous fallback. In Annual International
Cryptology Conference, pages 707–731. Springer, 2020.

[29] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In International Workshop on
Public Key Cryptography, pages 31–46. Springer, 2003.

[30] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and
Computation, 75(2):130–143, 1987.

[31] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th symposium on Operating systems design and implementation,
pages 335–350. USENIX Association, 2006.

[32] Vitalik Buterin. A next-generation smart contract and decentralized application platform.
white paper, 3(37), 2014.

[33] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In Proceedings of the 2002
ACM SIGSAC Conference on Computer and Communications Security, pages
88–97, 2002.

[34] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Advances in Cryptology—CRYPTO 2001:
21st Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19–23, 2001 Proceedings, pages 524–541. Springer, 2001.

[35] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantipole:
practical asynchronous byzantine agreement using cryptography. In Proceedings
of the nineteenth annual ACM symposium on Principles of distributed computing,
pages 123–132, 2000.

[36] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. Journal of
Cryptology, 18(3):219–246, 2005.

[37] Christian Cachin and Jonathan A Poritz. Secure intrusion-tolerant replication on the
internet. In Proceedings International Conference on Dependable Systems and
Networks, pages 167–176. IEEE, 2002.

[38] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In
24th IEEE Symposium on Reliable Distributed Systems (SRDS’05), pages 191–201.
IEEE, 2005.

[39] Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild (keynote
talk). In 31st International Symposium on Distributed Computing (DISC 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[40] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing,
pages 42–51, 1993.

[41] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings
of the Third Symposium on Operating Systems Design and Implementation, page
173–186, 1999.

174

[42] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[43] Dario Catalano and Dario Fiore. Vector commitments and their applications. In
International Workshop on Public Key Cryptography, pages 55–72. Springer, 2013.

[44] Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In
Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pages 1–11, 2020.

[45] T-H Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous
blockchain. IACR Cryptology ePrint Archive, 2018.

[46] Brad Chase and Ethan MacBrough. Analysis of the xrp ledger consensus protocol. arXiv
preprint arXiv:1802.07242, 2018.

[47] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike Dahlin,
and Taylor Riche. Upright cluster services. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages 277–290, 2009.

[48] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco Marchetti.
Making byzantine fault tolerant systems tolerate byzantine faults. In NSDI,
volume 9, pages 153–168, 2009.

[49] Miguel Correia, Nuno Ferreira Neves, and Paulo Verı́ssimo. From consensus to atomic
broadcast: Time-free byzantine-resistant protocols without signatures. The
Computer Journal, 49(1):82–96, 2006.

[50] Tyler Crain. Two more algorithms for randomized signature-free asynchronous binary
byzantine consensus with t < n/3 and o(n2) messages and o(1) round expected
termination. arXiv preprint arXiv:2002.08765, 2020.

[51] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red belly: a secure, fair and scalable
open blockchain. In 2021 IEEE Symposium on Security and Privacy (SP), pages
466–483. IEEE, 2021.

[52] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic broadcast: From
simple message diffusion to Byzantine agreement, volume 118. Elsevier, 1995.

[53] George Danezis and David Hrycyszyn. Blockmania: from block dags to consensus. arXiv
preprint arXiv:1809.01620, 2018.

[54] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman.
Narwhal and tusk: a dag-based mempool and efficient bft consensus. In
Proceedings of the Seventeenth European Conference on Computer Systems, pages
34–50, 2022.

[55] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its
applications. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 2705–2721, 2021.

[56] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias,
and Ling Ren. Practical asynchronous distributed key generation. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 2518–2534. IEEE, 2022.

[57] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

175

[58] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat: Asynchronous bft made
practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2028–2041. ACM, 2018.

[59] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[60] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382,
1985.

[61] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols for strong and
differential consensus. In Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 211–220, 2003.

[62] Chaya Ganesh and Arpita Patra. Optimal extension protocols for byzantine broadcast and
agreement. Distributed Computing, 34(1):59–77, 2021.

[63] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
Dumbo-ng: Fast asynchronous bft consensus with throughput-oblivious latency.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 1187–1201, 2022.

[64] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Efficient
asynchronous byzantine agreement without private setups. In 2022 IEEE 42nd
International Conference on Distributed Computing Systems, 2022.

[65] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology-EUROCRYPT 2015: 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 281–
310. Springer, 2015.

[66] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and
Zhuolun Xiang. Jolteon and ditto: Network-adaptive efficient consensus with
asynchronous fallback. In Financial Cryptography and Data Security: 26th
International Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected
Papers, pages 296–315. Springer, 2022.

[67] Rati Gelashvili, Lefteris Kokoris-Kogias, Alexander Spiegelman, and Zhuolun Xiang. Be
prepared when network goes bad: An asynchronous view-change protocol. arXiv
preprint arXiv:2103.03181, 2021.

[68] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed
key generation for discrete-log based cryptosystems. In International Conference
on the Theory and Applications of Cryptographic Techniques, pages 295–310.
Springer, 1999.

[69] Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman.
Bullshark: Dag bft protocols made practical. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022.

[70] Adam Gkagol, Damian Leśniak, Damian Straszak, and Michał Świketek. Aleph: Efficient
atomic broadcast in asynchronous networks with byzantine nodes. In Proceedings
of the 1st ACM Conference on Advances in Financial Technologies, pages 214–228,
2019.

176

[71] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700 bft
protocols. In Proceedings of the 5th European conference on Computer systems,
pages 363–376, 2010.

[72] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael
Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: a scalable
and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP international
conference on dependable systems and networks (DSN), pages 568–580. IEEE,
2019.

[73] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
Speeding dumbo: Pushing asynchronous bft closer to practice. In The 29th Network
and Distributed System Security Symposium (NDSS), 2022.

[74] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Dumbo: Faster
asynchronous bft protocols. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 803–818, 2020.

[75] James Hendricks, Gregory R Ganger, and Michael K Reiter. Verifying distributed
erasure-coded data. In Proceedings of the twenty-sixth annual ACM symposium on
Principles of distributed computing, pages 139–146, 2007.

[76] Aniket Kate and Ian Goldberg. Distributed key generation for the internet. In 2009 29th
IEEE International Conference on Distributed Computing Systems, pages 119–128.
IEEE, 2009.

[77] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All
you need is dag. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, pages 165–175, 2021.

[78] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Annual International Cryptology Conference, pages 451–480.
Springer, 2020.

[79] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous
distributed key generation for computationally-secure randomness, consensus, and
threshold signatures. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1751–1767, 2020.

[80] Klaus Kursawe and Victor Shoup. Optimistic asynchronous atomic broadcast. In
International Colloquium on Automata, Languages, and Programming, pages
204–215. Springer, 2005.

[81] Leslie Lamport. The weak byzantine generals problem. Journal of the ACM (JACM),
30(3):668–676, 1983.

[82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–
401, 1982.

[83] Benoı̂t Libert, Marc Joye, and Moti Yung. Born and raised distributively: Fully
distributed non-interactive adaptively-secure threshold signatures with short shares.
Theoretical Computer Science, 645:1–24, 2016.

[84] Benoı̂t Libert and Moti Yung. Adaptively secure non-interactive threshold cryptosystems.
In International Colloquium on Automata, Languages, and Programming, pages
588–600. Springer, 2011.

177

[85] Chao Liu, Sisi Duan, and Haibin Zhang. Epic: efficient asynchronous bft with adaptive
security. In 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 437–451. IEEE, 2020.

[86] Julian Loss and Tal Moran. Combining asynchronous and synchronous byzantine
agreement: The best of both worlds. IACR Cryptology ePrint Archive, 2018:235,
2018.

[87] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo transformer: Asynchronous
consensus as fast as the pipelined bft. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security.

[88] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-mvba: Optimal multi-
valued validated asynchronous byzantine agreement, revisited. In Proceedings
of the 39th Symposium on Principles of Distributed Computing, pages 129–138,
2020.

[89] Ethan MacBrough. Cobalt: Bft governance in open networks. arXiv preprint
arXiv:1802.07240, 2018.

[90] Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In
Proceedings of the 2019 ACM SIGSAC conference on computer and communica-
tions security, pages 1041–1053, 2019.

[91] Ralph C Merkle. A digital signature based on a conventional encryption function. In
Conference on the theory and application of cryptographic techniques, pages
369–378. Springer, 1987.

[92] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of
bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 31–42, 2016.

[93] Atsuki Momose, Jason Paul Cruz, and Yuichi Kaji. Hybrid-bft: Optimistically responsive
synchronous consensus with optimal latency or resilience. Cryptology ePrint
Archive, 2020.

[94] Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pages 1686–1699, 2021.

[95] Henrique Moniz, Nuno F Neves, and Miguel Correia. Byzantine fault-tolerant consensus in
wireless ad hoc networks. IEEE Transactions on Mobile Computing, 12(12):2441–
2454, 2012.

[96] Henrique Moniz, Nuno Ferreira Neves, Miguel Correia, and Paulo Verı́ssimo.
Randomization can be a healer: Consensus with dynamic omission failures. In
Distributed Computing: 23rd International Symposium, DISC 2009, Elche, Spain,
September 23-25, 2009. Proceedings 23, pages 63–77. Springer, 2009.

[97] Henrique Moniz, Nuno Ferreria Neves, Miguel Correia, and Paulo Verissimo. Ritas:
Services for randomized intrusion tolerance. IEEE transactions on dependable and
secure computing, 8(1):122–136, 2008.

[98] Louise E Moser and Peter M Melliar-Smith. Byzantine-resistant total ordering algorithms.
Information and Computation, 150(1):75–111, 1999.

178

[99] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
byzantine consensus with t < n/3 and o(n2) messages. In Proceedings of the 2014
ACM symposium on Principles of distributed computing, pages 2–9, 2014.

[100] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

[101] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved
extension protocols for byzantine broadcast and agreement. In 34th International
Symposium on Distributed Computing, 2020.

[102] Gil Neiger. Distributed consensus revisited. Information processing letters, 49(4):195–201,
1994.

[103] Quan Nguyen, Andre Cronje, Michael Kong, Egor Lysenko, and Alex Guzev. Lachesis:
Scalable asynchronous bft on dag streams. arXiv preprint arXiv:2108.01900, 2021.

[104] Rafael Pass and Elaine Shi. The sleepy model of consensus. In International Conference
on the Theory and Application of Cryptology and Information Security, pages
380–409. Springer, 2017.

[105] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confir-
mation. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 3–33. Springer, 2018.

[106] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal
communication complexity. In International Conference On Principles of
Distributed Systems, pages 34–49. Springer, 2011.

[107] Arpita Patra, Ashish Choudhary, and Chandrasekharan Pandu Rangan. Simple and efficient
asynchronous byzantine agreement with optimal resilience. In Proceedings of the
28th ACM symposium on Principles of distributed computing, pages 92–101, 2009.

[108] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In Workshop
on the Theory and Application of of Cryptographic Techniques, pages 522–526.
Springer, 1991.

[109] Serguei Popov. The tangle. White paper, 1(3):30, 2018.

[110] Bart Preneel, René Govaerts, and Joos Vandewalle. Cryptographic hash functions: an
overview. In Proceedings of the 6th international computer security and virus
conference (ICSVC 1993), volume 19, 1993.

[111] Michael O Rabin. Randomized byzantine generals. In 24th Annual Symposium on
Foundations of Computer Science, pages 403–409. IEEE, 1983.

[112] Michael O Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. Journal of the ACM (JACM), 36(2):335–348, 1989.

[113] HariGovind V Ramasamy and Christian Cachin. Parsimonious asynchronous byzantine-
fault-tolerant atomic broadcast. In International Conference On Principles Of
Distributed Systems, pages 88–102. Springer, 2005.

[114] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer.
Scalable and probabilistic leaderless bft consensus through metastability. arXiv
preprint arXiv:1906.08936, 2019.

[115] Muhammad Saad, Afsah Anwar, Srivatsan Ravi, and David Mohaisen. Revisiting nakamoto
consensus in asynchronous networks: A comprehensive analysis of bitcoin safety

179

and chainquality. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 988–1005, 2021.

[116] Maria A Schett and George Danezis. Embedding a deterministic bft protocol in a block
dag. arXiv preprint arXiv:2102.09594, 2021.

[117] Fred B Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[118] Victor Shoup. Practical threshold signatures. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 207–220. Springer, 2000.

[119] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. On the optimality of
optimistic responsiveness. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 839–857, 2020.

[120] Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. In
35th International Symposium on Distributed Computing (DISC 2021), 2021.

[121] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić. Mir-
bft: High-throughput robust bft for decentralized networks. arXiv preprint
arXiv:1906.05552, 2019.

[122] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung.
Spin one’s wheels? byzantine fault tolerance with a spinning primary. In 2009 28th
IEEE International Symposium on Reliable Distributed Systems, pages 135–144.
IEEE, 2009.

[123] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 2014.

[124] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse.
DispersedLedger: High-Throughput byzantine consensus on variable bandwidth
networks. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), 2022.

[125] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, pages 347–356,
2019.

[126] Haibin Zhang and Sisi Duan. Pace: Fully parallelizable bft from reproposable byzantine
agreement. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 3151–3164, 2022.

[127] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine
ordered consensus without byzantine oligarchy. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 633–649, 2020.

180

