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Abstract

This thesis focuses on the ‘doubly nonlinear fractional diffusive equa-
tion’, a doubly nonlinear nonlocal parabolic initial boundary value prob-
lem driven by the fractional p-Laplacian equipped with homogeneous
Dirichlet boundary conditions on a domain Ω in Rd and composed with
a power-like function. The model problem of this thesis is the equation

∂u

∂t
+ (−∆p)

sum + f(x, u) = g(x, t) in Ω × (0, T ),

u = 0 in Rd \ Ω × (0, T ),

u(x, 0) = u0 on Ω.

We first generalize the nonlinear term um, replacing ·m by a continu-
ous, strictly increasing function ϕ. Here we establish well-posedness in
L1 in the sense of mild solutions and a comparison principle. For do-
mains with finite measure and with restricted initial data we obtain that
mild solutions of the inhomogeneous evolution problem are strong and
distributional.

We then consider the power-like case ϕ(r) = rm where we obtain fur-
ther regularity properties. In particular, we have an Lℓ − L∞ regular-
izing effect for mild solutions (and therefore also for strong solutions),
also known as ultracontractivity. We further obtain derivative and en-
ergy estimates for this problem. Using these, we extend the previous
strong regularity result to obtain strong distributional solutions on gen-
eral open domains with initial data in L1. Moreover, we prove local and
global Hölder continuity results in restricted cases as well as a compari-
son principle that yields extinction in finite time of mild solutions to the
homogeneous evolution equation.

We finally restrict to the doubly nonlinear fractional diffusive equa-
tion on Rd without forcing terms, where we investigate self-similarity
properties and, in particular, the asymptotic behaviour of solutions for
large times. The main result in this case is the existence of Barenblatt
solutions, however in finding these we also prove an Aleksandrov sym-
metry principle for solutions and estimate solutions by global bounding
functions which are integrable in space.
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Chapter 1

Introduction

1.1 Motivation

Nonlocal differential equations have gained increasing interest for math-
ematical modelling in a variety of contexts, particularly for investigating
singular, multiscale and long-range interactions of systems. These are
applied in a wide range of fields including, for example, physics [42, 58,
59, 88, 97], material sciences [25, 93, 113], statistical mechanics [77, 95,
128], population dynamics [45, 107, 109], finance and stochastic processes
[5, 24, 49], neural networks [70, 101] and image processing [35, 68, 130],
where we include only a sample of reference material. The analytical
complexity and potential intractability of nonlocal models has histori-
cally limited their adoption, however computational power and develop-
ment of the general theory have made such problems more approachable.
We refer to [36, 38, 55–57, 84, 96] and references therein for an overview
of this extensive topic.

The fractional Laplacian in particular occurs as a nonlocal diffusive
operator and as a fractional pseudo-differential operator. As such, it is
used to model nonlocal particle interactions such as crystal structures in
material science and anomalous diffusion in physical processes, including
surface diffusion, such as in the case of the quasi-geostrophic equation
[25, 36, 38, 42]. Moreover, the fractional Laplacian models Lévy pro-
cesses with jumps in stochastic and kinematic models [5, 24, 49, 76,
77, 88, 95, 97, 128] and has been applied in image processing [68]. As
a natural nonlocal analogue to the Laplacian, the fractional Laplacian
also provides a useful model for developing tools to analyse nonlocal and
anomalous diffusion more generally. The fractional Laplacian and re-
lated problems have been well-studied by many authors, we refer to [37,
39, 43, 105, 108] for an overview of this operator and some key related
problems. Nonlinear variations such as the fractional p-Laplacian have
also been considered, motivated by diffusion models and drift-based tug-
of-war games [26], while more general integro-differential and variational
settings have been applied in [49, 57, 58, 93, 113], for example.

A standard equation involving the fractional p-Laplacian is the asso-
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CHAPTER 1. INTRODUCTION 2

ciated evolution equation,

∂u

∂t
(x, t) + (−∆p)

su(x, t) = 0, (1.1.1)

for x in an appropriate spatial domain, usually a subset of Rd, and t in
an interval of time. The mathematical analysis of (1.1.1) has gained
significant interest in recent years, for example in [67, 94, 106, 116,
121, 123, 125, 126]. In particular, Mazón et al. [94] (see also, [125])
obtained existence and uniqueness of strong distributional solutions to
(1.1.1) equipped with either homogeneous Dirichlet or Neumann bound-
ary conditions. Giacomoni and Tiwari [67] obtained well-posedness in
L∞ of a certain form of strong distributional solutions to equation (1.1.1)
equipped with homogeneous Dirichlet boundary data and forcing terms
depending on x and the solution u.

Global Lℓ − L∞ regularity estimates, 1 ≤ ℓ < ∞, for solutions to the
parabolic equation (1.1.1) with homogeneous Dirichlet boundary condi-
tions and a forcing term which is Lipschitz continuous with respect to
u have been obtained by Coulhon and Hauer in the monograph [50].
Vázquez [121, 126] has applied symmetry properties of the fractional
p-Laplacian in order to obtain global bounds for solutions and the exis-
tence of Barenblatt solutions for p > 2d

d+s
, and investigated the associated

asymptotic behaviour. For the elliptic problem, Iannizzotto, Mosconi
and Squassina [73] have obtained global Hölder regularity for bounded
domains up to the boundary while Brasco, Lindgren and Schikorra [30]
considered local Hölder regularity for p ≥ 2.

As in the local case, a natural extension is to consider a porous medium
type nonlinearity within the diffusive term, that is, equations of the form

∂u

∂t
+ (−∆)um = 0 (1.1.2)

where the Laplacian may be replaced by a general diffusive operator such
as the fractional Laplacian or, in the case of this thesis, the fractional
p-Laplacian. Here we emphasize our notation for powers,

rq :=

{
|r|q−1r if r ̸= 0,

0 if r = 0,

for all r ∈ R with q ≥ 0. In particular, when q ≥ 1, we can write
rq = |r|q−1r. In this way we interpret rq as a signed function which is
crucial both for the fractional p-Laplacian and so that the nonlinearity rm

is an increasing function on R. In the case of the Laplacian, (1.1.2) is the
porous medium equation (equivalently, porous media equation) motivated
by the study of fluid flow through a porous medium. We refer to [7, 72,
124, 127] for an overview of the mathematical analysis of this problem.
When the Laplacian in (1.1.2) is replaced by the p-Laplacian, we refer
to the resulting equation as the doubly nonlinear diffusive equation (also
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known as the doubly nonlinear porous medium equation). This has been
studied in [3, 8–10, 110, 115, 119], with Saá as well as Stan and Vázquez
investigating the long-time behaviour and finding convergence to a profile
function in the degenerate case. Porzio [104] considered decay estimates
of a class of such evolution problems, finding Lℓ − L∞ estimates.

Similarly, we can consider the fractional Laplacian case which we call
the fractional porous medium equation. This and related problems have
also been studied by various authors, including [27–29, 62, 99, 100, 132,
133]. In particular, the authors in [100] develop existence and uniqueness

results for m > (d−2s)+

d
based on the L1-contraction semigroup setting.

Moreover, Hölder regularity and finite time of extinction is obtained by
Kim and Lee in [83] when d−2s

d+2s
< m < 1.

There are also a number of interesting generalizations to such prob-
lems involving the fractional Laplacian or fractional p-Laplacian which
we do not consider in this thesis, but for which the methods presented
here may be useful. For example, the kernel |x − y|d+sp in the frac-
tional p-Laplacian (see Section 2.3) may be replaced by a more general
K(x, y) which satisfies certain two-sided bounds (for example, [81]) so
that similar estimates (in particular the key Sobolev embeddings of this
setting) may still be obtained. Another important consideration is the
case of the fractional p-Laplacian with p = 1, the so-called fractional
1-Laplacian. This has been considered for the fractional p-Laplacian evo-
lution equation in [94], using accretivity properties to prove the existence
and uniqueness of strong solutions. In this case the term (u(x)−u(y))p−1

is replaced by an antisymmetric, bounded function η(x, y) which approx-
imates sign(u(x) − u(y)), in particular, satisfying ∥η∥L∞(Ω)×L∞(Ω) ≤ 1,
η(x, y) ∈ sign(u(x) − u(y)) and η(x, y) = −η(y, x) for a.e. x, y in the
domain. Due to these additional complications, in this text we restrict
to 1 < p <∞.

In this thesis we consider as our model problem a natural extension of
these nonlocal and nonlinear diffusion equations, the porous medium type
equation with diffusion governed by the fractional p-Laplacian. That is,

∂u

∂t
+ (−∆p)

sum = 0 (1.1.3)

for m > 0, which we call the doubly nonlinear fractional diffusive equa-
tion in light of comparable problems. This has also been referred to in
the literature more generally as a doubly nonlinear nonlocal evolution
equation or a fractional p-Laplacian parabolic problem. Such problems
have gained interest much more recently, being considered in [65, 66] in
the form

∂

∂t
uq + (−∆p)

su = 0. (1.1.4)

In particular, Giacomoni, Gouasmia and Mokrane [66] consider (1.1.4)
on bounded domains in Rd with forcing terms of the form f(x, u) and
h(x, t)uq−1 and find well-posedness of positive solutions in a certain strong
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distributional sense. They also prove regularity estimates and asymptotic
behaviour with convergence to a stationary solution. Gosh et. al. [65]
extend (1.1.4) based on the double phase equation and prove existence
of variational solutions.

The setting of (1.1.4) is motivated by the accretivity properties of the
operator (−∆p)

s while (1.1.3) is based on properties of the composed op-
erator (−∆p)

sφ and the standard setting for evolution equations. These
equations are of course equivalent, however each results in a different
focus when obtaining regularity results for solutions u.

We generalize (1.1.3) by replacing the nonlinearity um by a function
φ(u) and including forcing terms f and g. In particular, in this thesis we
investigate equations of the form

∂u

∂t
(x, t) + (−∆p)

sφ(u(x, t)) + f(x, u(x, t)) = g(x, t) (1.1.5)

for x ∈ Ω, an open subset of Rd, and t ∈ (0, T ) for T > 0. In our
case, φ is continuous, strictly increasing and satisfies φ(0) = 0 and f
is Lipschitz continuous with respect to u. Moreover, we consider the
Dirichlet problem on an open domain in Rd with further restrictions
detailed in each result. Here the operator (−∆p)

sφ models a (singular
or degenerated) nonlocal diffusion. Due to the structure of the fractional
p-Laplacian, the doubly nonlinear fractional diffusive equation fits into
the wider context of nonlocal and degenerate parabolic problems as well
as the theory of accretive operators which we apply.

In this thesis, we extend results relating to the fractional p-Laplacian
evolution equation, doubly nonlinear diffusive equation and the fractional
porous medium equation to equations (1.1.3) and (1.1.5), in particular
applying the setting of accretive operators to obtain well-posedness and
regularity results for (1.1.5) and further using the self-similar scaling
properties of (1.1.3) to investigate asymptotic behaviour.

1.2 Thesis outline

This thesis is comprised of two parts forming Chapters 2 and 3, based
on two papers submitted for publication. We first focus on obtaining,
under appropriate restrictions, the well-posedness of a Dirichlet problem
associated with (1.1.5) on an open domain Ω ⊆ Rd with a general non-
linearity φ which is continuous, strictly increasing and satisfies φ(0) = 0.
Moreover, we include forcing terms f and g, where f is Lipschitz in u
and g is integrable in space and time. In particular, we consider

∂u

∂t
+ (−∆p)

sφ(u) + f(x, u) = g(x, t) in Ω × (0, T ),

u = 0 in Rd \ Ω × (0, T ),

u(x, 0) = u0(x) on Ω,

(1.2.1)
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with initial data u0 ∈ L1(Ω). We refer to Chapter 2 for details on the
restrictions of φ, f and g. We consider solutions in L1(Ω) in the sense
of mild solutions and strong distributional solutions which are strong (in
time) and distributional (in space) (see Definition 2.2.4 and Definition
2.2.7). Moreover, we obtain regularity properties of solutions to this
equation. Restricting to the power-like case φ(r) = rm, r ∈ R, with
m > 0 we find further regularity properties and use these to improve the
well-posedness results in this setting. The main results of Chapter 2 are
presented explicitly in Section 2.1.

Well-posedness is a standard aim for such problems as the existence
and uniqueness of solutions may be used to justify the equation from
a modelling perspective, and also provides insight into the appropriate
analytical setting. Mild solutions, essentially limits of solutions to the
time-discretized problem, provide information about convergence of the
discretized problem but also provide prospective solutions which may be
regularized to obtain stronger solutions, as is the case in this thesis. Im-
portantly, solutions which are strong in time (see Definition 2.2.6) are
necessarily mild solutions (see [12]), so that our regularity and compari-
son results for mild solutions also apply to strong solutions. However, in
general this is not the case for solutions which are distributional in space
which are not also strong in time.

The existence of mild solutions is based on the general theory of m-
accretive operators which we introduce in Section 2.2 (see also [12] and
[50]). In the case of the fractional p-Laplacian evolution equation, since
(−∆p)

s is in fact m-completely accretive in L2(Ω), Mazón, Rossi and
Toledo [94] were able to prove the existence of mild solutions in L2(Ω) and
moreover, extend these to strong distributional solutions. In Section 2.3,
we introduce the setting for the fractional p-Laplacian as a subdifferential
in L2(Ω) and the doubly nonlinear operator (−∆p)

sφ as an operator on
L1(Ω). We then apply the accretivity results of [50] which provide m-
T -accretivity of the composed operator (−∆p)

sφ in L1(Ω). When φ is
sufficiently regular we obtain a density result that provides the existence
of mild solutions for all initial data in L1(Ω). We prove this in the more
general context of the subdifferential of a proper, lower semicontinuous,
convex functional composed with a continuous, strictly increasing φ. We
state the existence result for mild solutions to the fractional p-Laplacian
in Theorem 2.1.1.

We then apply the strong chain-rule regularity effect and existence
method of [22] which is proved for such degenerate parabolic equations
coming from the subdifferential of an energy functional. From this we
obtain the existence of strong distributional solutions when Ω has finite
Lebesgue measure and the initial data u0 is restricted to D̂((−∆p)

s
|L1∩∞φ),

essentially requiring that u0 ∈ L∞(Ω) and φ(u0) is in the closure of
(−∆p)

s in L1(Ω) × L1(Ω) (see Definition 2.0.1 and (2.1.4)). Strong so-
lutions are of natural interest in such a theory and so have been in-
vestigated for many related problems. For the fractional p-Laplacian
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evolution equation, these have been found in [94] and for the fractional
porous medium equation on Rd, in [100]. We will later improve on this
result when restricting the nonlinearity φ.

For the remainder of this chapter we restrict to the doubly nonlinear
fractional diffusive equation, taking φ(r) = rm, r ∈ R for m > 0. That
is,

∂u

∂t
+ (−∆p)

sum + f(x, u) = g(x, t) in Ω × (0, T ),

u = 0 in Rd \ Ω × (0, T ),

u(x, 0) = u0(x) on Ω.

(1.2.2)

This power-like φ provides significant regularity properties compared to
(1.2.1). These properties are due, in large part, to the homogeneity of
(−∆p)

s·m which provides self-similar scaling-type properties for (1.2.2)
and the power-like structure of r 7→ rm, allowing for conversion between
estimates of um and u in the Lq space setting.

First restricting to the case m ≥ 1 and requiring either that Ω is
bounded or that sp < d, we obtain Lℓ−L∞ regularizing decay estimates.
That is, for mild solutions u(t) to (1.2.1) with u0 ∈ Lℓ(Ω), we have the
immediate regularizing effect that u(t) ∈ L∞(Ω) for all t ∈ (0, T ). In the
case

m(p− 1) > 1 − sp

d
, (1.2.3)

we have L1−L∞ estimates. This type of estimate has been well-explored
in the local setting, known as decay estimates or ultracontractive esti-
mates. We refer to [52, 104] and the references therein. In the nonlocal
case, this has been considered particularly for problems associated with
the fractional Laplacian such as [40]. Also in [48] where Dirichlet prob-
lems with operators arising from bilinear, symmetric forms such as the
fractional Laplacian are considered. For these estimates we are able to
retain both the Lipschitz perturbation f and the forcing term g, where
the integrability of g in space and time must be sufficiently regular.

Noting that the doubly nonlinear operator (−∆p)
s·m is homogeneous

of order m(p− 1), we apply the regularizing effect of homogeneous oper-
ators [20] to obtain Lipschitz continuity, derivative estimates and energy
estimates for (1.2.2). We also apply the previous Lℓ−L∞ regularity effect
to extend these results.

We then apply these a priori estimates to the previous strong solutions
of equation (1.2.2) on bounded domains to approximate domains with
possibly infinite measure, including the full space Rd. Hence we obtain
existence and uniqueness of strong distributional solutions for initial data
in L∞ and, when applying the L1 − L∞ estimates, for all initial data in
L1. This result is stated in Theorem 2.1.8.

Finally, we apply the elliptic results of [30] and [73] to obtain local
Hölder regularity when m > s and p ≥ 2 and global Hölder regularity
when restricting to the case m = 1.
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In Chapter 3, we continue to focus on the doubly nonlinear fractional
diffusive equation, but now only on the full space Rd and without forcing
or perturbation terms, that is f ≡ 0 and g ≡ 0. In particular, we consider

∂u

∂t
+ (−∆p)

sum = 0 in Rd × (0, T ),

u(x, 0) = u0(x) on Rd.
(1.2.4)

With no forcing terms and the full-space setting, (1.2.4) satisfies key self-
similarity properties which allow us to examine the asymptotic behaviour
of solutions. In particular, the aim of this chapter is to prove the exis-
tence and uniqueness of Barenblatt solutions to (1.2.4). The methods
here are based on two papers by Vázquez in the case of the fractional
p-Laplacian evolution equation, [123] and [126] corresponding to the two
decay regimes of solutions to (1.2.4) as |x| → ∞. Here we see the impor-
tance of the homogeneity condition (1.2.3) more clearly as it plays a key
role in the self-similar scaling transformations of (1.2.4). The importance
of Barenblatt solutions is clear in the case of linear parabolic equations
due to their role as fundamental solutions, however in nonlinear setting
they provide important information about the asymptotic behaviour of
solutions. We refer to [15, 47, 54, 120] and further discussion in Chap-
ter 3.

To prove the existence of Barenblatt solutions we first obtain two key
results. First an Aleksandrov symmetry principle [2, 46], which states
that if the initial data of (1.2.4) can be compared around a reflection
mapping Π : Rd → Rd, i.e. u0(x) ≤ u0(Π(x)) for all x on one half of the
hyperplane being reflected around, then the mild solution u satisfies the
same comparison for all 0 < t < T . This symmetry principle has found
great use in both the linear and nonlinear setting. For example in the
porous medium equation [127] and the fractional p-Laplacian evolution
equation [126].

Second, we obtain global barriers for solutions to (1.2.4) with bounded
initial data having compact support, again applying methods from the
case m = 1 given in [123, 126]. That is, we find functions H(x, t) which
are bounded and integrable in space for t > 0 such that for u a mild
solution to (1.2.4) with bounded initial data having compact support,
|u(x, t)| ≤ H(x, t) almost everywhere in Rd × [0, T ]. We note that H
depends on the constants of (1.2.4), the size of ∥u0∥∞ and the support
of u0. As in [123, 126], we find different decay regimes as |x| → ∞ in H
depending on the homogeneity m(p− 1) with the critical case when

m(p− 1) =
d

d+ sp
.

The self-similar scaling properties of (1.2.4) are crucial here and we again
see the importance of the homogeneity restriction (1.2.3).



Chapter 2

Well-posedness in L1

Throughout this chapter, we let Ω be an open set in Rd, d ≥ 1, 0 <
T < ∞, 1 < p < ∞ and 0 < s < 1. We focus on the following initial
boundary value problem

∂u

∂t
+ (−∆p)

sφ(u) + f(x, u) = g(x, t) in Ω × (0, T ),

u = 0 in Rd \ Ω × (0, T ),

u(x, 0) = u0(x) on Ω,

(1.2.1)

for given u0 ∈ L1 and g ∈ L1(0, T ;L1), where we abbreviate the Lebesgue
space Lq(Ω) by Lq for 1 ≤ q ≤ ∞, and impose the following conditions
on φ and f :

φ ∈ C(R) is a strictly increasing function satisfying φ(0) = 0, (2.0.1)

and f : Ω × R → R admits the following properties:

f is a Lipschitz-continuous Carathéodory function; that is, (2.0.3a)
for every u ∈ R, x 7→ f(x, u) is measurable on Ω, and there is
an ω > 0 such that

|f(x, u1) − f(x, u2)| ≤ ω|u1 − u2| for all u1, u2 ∈ R,
uniformly for a.e. x ∈ Ω,

and f(x, 0) = 0 for a.e. x ∈ Ω. (2.0.3b)

The conditions on f here are natural in the accretive setting as we
will consider the Nemytskii operator associated to f , which we denote
by F : L1 → L1. Then F will also be Lipschitz continuous with respect
to u and the relevant accretivity properties of (−∆p)

sφ transfer to quasi-
accretive properties for the operator (−∆p)

sφ + F (see Section 2.2 and
also [12]).

We introduce the function space and operator setting for (1.2.1) in
detail in Section 2.2 and Section 2.3. Here we briefly describe the key
notions which inform the main results of this chapter, presented in Sec-
tion 2.1.

8
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The doubly nonlinear nonlocal operator (−∆p)
sφ in the evolution

problem (1.2.1) is the composition of the (variational) Dirichlet frac-
tional p-Laplacian (see Section 2.3.4) given by

⟨(−∆p)
su, v⟩ :=

∫
R2d

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x− y|d+ps
dy dx

(2.0.3)

for every u, v ∈ W
s,(2,p)
0 where we write W

s,(2,p)
0 for the mixed fractional

Sobolev space W
s,(2,p)
0 (Ω) (see Section 2.3.1 for the details) and a function

φ satisfying (2.0.1). In this setting, the fractional p-Laplacian may be
viewed as the subdifferential in L2 of the energy functional,

E(u) =

{
1
2p

[u]ps,p if u ∈ W
s,(2,p)
0 ,

∞ if u ∈ L2 \W s,(2,p)
0 ,

(2.0.4)

where [·]s,p is the Gagliardo seminorm on Rd given by

[u]s,p =

(∫
Rd

∫
Rd

|u(x) − u(y)|p

|x− y|d+sp
dy dx

)1/p

(2.0.5)

(see Proposition 2.3.1). The choice of the mixed Sobolev space W
s,(2,p)
0 ,

rather than the more common space W s,p
0 , is important for ensuring lower

semicontinuity of (2.0.4) in L2 and hence the density and accretivity
properties of the composition of the subdifferential with φ.

In order to consider equation (1.2.1) in L1, we realize the doubly non-
linear operator (−∆p)

sφ as an operator in L1. For this we restrict
(−∆p)

s as a graph to L1∩∞ × L1∩∞ where we denote the intersection
space L1∩∞ := L1 ∩ L∞. Then we identify (−∆p)

sφ with the closure of
this composition in L1 ×L1 with the following definition as a graph. We
refer to Section 2.3.4 for more details.

Definition 2.0.1. Let (−∆p)
s be the fractional p-Laplacian in L2 and

(−∆p)
s
|L1∩∞ be the part of (−∆p)

s in L1∩∞ × L1∩∞ given by

(−∆p)
s
|L1∩∞ :=

{
(u, v) ∈ L1∩∞ × L1∩∞

∣∣∣ v = (−∆p)
su
}
.

Suppose φ : R → R. Then, we call the operator (−∆p)s|L1∩∞φ
L1

given by(u, v) ∈ L1 × L1

∣∣∣∣∣
there exists ((uk, vk))k≥1 such that
vk = (−∆p)

s
|L1∩∞φ(uk) for all k ≥ 1,

lim
k→∞

uk = u in L1 and lim
k→∞

vk = v in L1


the nonlocal doubly nonlinear operator in L1, since it provides a realiza-
tion of the operator (−∆p)

sφ in L1.

Notation 2.0.2. For convenience, we use the notation (−∆p)
sφ for

(−∆p)s|L1∩∞φ
L1
.
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Importantly, with Definition 2.0.1, solutions to (1.2.1) do not immedi-

ately satisfy the regularity property φ(u(t)) ∈ D((−∆p)
s) ⊂ W

s,(2,p)
0 . In

particular, this will be the case for mild solutions. However, in the case
of strong distributional solutions, for a.e. t ∈ (0, T ), u is differentiable

at t, φ(u(t)) ∈ W
s,(2,p)
0 and (−∆p)

sφ(u(t)) = g(·, t) − f(·, u(t)) − ut(t)
in L1 by definition. We similarly have this regularity for distributional
solutions (see Definition 2.2.7). We now state the main results of this
chapter.

2.1 Main results

We begin by stating our well-posedness results in the sense of mild solu-
tions in L1 and a comparison principle. Here we use the notation [u]+ to
denote max{u, 0}, the positive part of u, and [u]1 = u. We also use the
notation of q-brackets defined by Notation 2.2.2.

Theorem 2.1.1 (Well-posedness & comparison principle in L1). Let Ω
be an open domain in Rd, d ≥ 1 and T > 0. Let 1 < p < ∞, 0 < s < 1,
and suppose that φ, f satisfy (2.0.1) and (2.0.3a)-(2.0.3b), respectively.
Then the following statements hold.

(1) If φ ∈ W 1,q
loc (R) for q ∈ ( 1

1−s ,∞], then one has that

D((−∆p)s|L1∩∞φ)L
1

= L1. (2.1.1)

(2) For every initial value u0 ∈ D((−∆p)s|L1∩∞φ)L
1
and g ∈ L1(0, T ;L1),

there is a unique mild solution u ∈ C([0, T ];L1) of the initial bound-
ary value problem (1.2.1). Moreover, for all 1 ≤ q ≤ ∞, one has
that

∥u(t)∥q ≤ eωt∥u0∥q +

∫ t

0

eω(t−r)∥g(r)∥q dr (2.1.2)

for every u0 ∈ D((−∆p)s|L1∩∞φ)L
1 ∩ Lq and g ∈ L1(0, T ;L1 ∩ Lq).

(3) For every y1, y2 ∈ L1, g1, g2 ∈ L1(0, T ;L1), and corresponding mild
solutions u1, u2 of (1.2.1) with initial data y1, y2 respectively, one
has

∥[u1(t) − u2(t)]
ν∥1 ≤ eωt∥[y1 − y2]

ν∥1

+

∫ t

0

eω(t−r)[u1(r) − u2(r), g1(r) − g2(r)]ν dr

(2.1.3)

for all 0 ≤ t ≤ T , and ν ∈ {+, 1}.

The statements of Theorem 2.1.1 follow as an application of the exis-
tence theory developed by [22], in the monograph [50] by Coulhon and



CHAPTER 2. WELL-POSEDNESS IN L1 11

Hauer, and by classical nonlinear semigroup theory (cf. [12, 21]). Since
[21] may not be readily available, we give corresponding references, par-
ticularly to [12], where relevant. We give the details of the proof in Sec-
tion 2.4. In the case φ(r) = rm for all r ∈ R, the restriction φ ∈ W 1,q

loc (R)
for q ∈ ( 1

1−s ,∞], which we use for the density result (2.1.1), is satisfied
for m > s. Importantly, this means that our approximation results and
results with initial data in L1 also rely on this condition.

By restricting Ω and the domain of the initial data u0, we improve the
regularity of these solutions in the next result. Introducing the restriction
on the domain of u0, for 1 < p <∞ and 0 < s < 1, we set

D̃((−∆p)
s
|L1∩∞) =

u ∈ L1∩∞

∣∣∣∣∣∣∣
∃ (un, hn)n≥1 ⊆ (−∆p)

s
|L1∩∞s.t.

un → u in L1 and

(un, hn)n≥1 is bounded in L∞ × L1.


and for every continuous φ, we let

D̂((−∆p)
s
|L1∩∞φ) =

{
u ∈ L1

∣∣∣φ(u) ∈ D̃((−∆p)
s
|L1∩∞)

}
. (2.1.4)

Then, by taking advantage of [22, Theorem 4.1], we show that for every
u0 ∈ D̂((−∆p)

s
|L1∩∞φ), the corresponding mild solutions u of the initial

boundary value problem (1.2.1) is strong and distributional. In this the-
orem, the term [ · ]s,p denotes the Gagliardo semi-norm (2.0.5). We prove
this result in Section 2.5.

Theorem 2.1.2 (Mild solutions are strong and distributional). Let Ω
be an open domain in Rd, d ≥ 1, of finite Lebesgue measure and T >
0. Let 1 < p < ∞, 0 < s < 1, φ ∈ C(R) be a strictly increasing
function such that φ−1 ∈ ACloc(R). Suppose f(·, u) satisfies (2.0.3a)-
(2.0.3b) and let F be the Nemystkii operator of f . Further suppose that
g ∈ BV (0, T ;L1) ∩ L1(0, T ;L∞). Then for every u0 ∈ D̂((−∆p)

s
|L1∩∞φ),

the mild solution u of (1.2.1) is a strong distributional solution in L1

having the regularity

u ∈ W 1,∞((0, T );L1) ∩ L∞([0, T ];L∞) ∩ C([0, T ];Lq)

for every 1 ≤ q <∞. Moreover, φ(u) has a weak derivative given by

d

dt
φ(u(t)) = φ′(u(t))

du

dt
in L2 for a.e. t ∈ (0, T ) (2.1.5)

and the function t 7→ E(φ(u(t))) = 1
2p

[φ(u(t))]ps,p has derivative given by

d

dt
E(φ(u(t))) = −∥

√
φ′(u(t))

du

dt
(t)∥22

− ⟨F (u(t)) − g(t),
du

dt
(t)φ′(u(t))⟩

(2.1.6)

for a.e. t ∈ (0, T ).
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This well-posedness result complements and generalizes the recent re-
sult by Giacomoni et al. [66] by allowing general, strictly increasing func-
tions φ, by considering sign-changing solutions and considering domains
with finite measure rather than bounded domains. We note that the
restriction on u0 for [66] is a similar subset of L∞. The notion of well-
posedness in [66] is a combination of strong and distributional notions
which differ to those presented here. In particular, this is due to their
setting with the nonlinearity in the time derivative. Comparing Theo-
rem 2.1.2 with [66] in the case φ(r) = rm for all r ∈ R, we note that a
different regime is studied with 1

2p−1
≤ m < 1 for non-negative solutions

compared to m > 0.
Theorem 2.1.1 also provides well-posedness for general open domains

and for all initial data u0 in L1 when m > s but in the much weaker
sense of mild solutions. However, in the case φ(r) = rm with m > s,
by approximating solutions given by Theorem 2.1.1 by solutions from
Theorem 2.1.2 on bounded domains, we will extend such a strong distri-
butional result to general open domains (see Theorem 2.1.8). For this,
we first obtain regularity properties for solutions of equation (1.2.2).

Hence for the remainder of this chapter we consider the case φ(r) = rm

for all r ∈ R with m > 0. That is,
∂u

∂t
+ (−∆p)

sum + f(x, u) = g(x, t) in Ω × (0, T ),

u = 0 in Rd \ Ω × (0, T ),

u(x, 0) = u0(x) on Ω.

(1.2.2)

Our next result is concerned with global Lℓ−L∞ regularity estimates,
1 ≤ ℓ < ∞, for mild solutions u of the initial boundary value problem
(1.2.2), implying an immediate smoothing effect. For these regularity
estimates, the Sobolev embedding (see, for instance, [53, 90])

W s,p ↪→ Lps with ps =


(

1
p
− s

d

)−1

if p < d
s
,

p̃ if p = d
s
,

∞ if p > d
s
,

(2.1.7)

and p̃ ∈ [p,∞), is crucial, where we write W s,p for W s,p(Ω). Theo-
rem 2.1.3 is a special case of Theorem 2.7.1 in Section 2.7 as illustrated
in Section 2.7.1. Theorem 2.7.1 applies to abstract operators A act-
ing on Lq and satisfying an abstract Sobolev inequality (as introduced
in [50]). In particular we apply a De Georgi iteration (cf. [40]) to ob-
tain an Lm+1 − L∞ estimate which is then extrapolated to Lℓ − L∞ for
1 ≤ ℓ < m + 1. Here we refine the methods in [40] by Caffarelli and
Vasseur, [104] by Porzio and [50] by Coulhon and Hauer.

Theorem 2.1.3 (Global Lℓ − L∞ estimates). Let Ω be an open domain
in Rd, d ≥ 1 and T > 0. Let p > 1, 0 < s < 1, m ≥ 1 and 1 ≤ ℓ < m+ 1
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such that

m(p− 1) > 1 − ℓsp

d
. (2.1.8)

Suppose that sp < d or Ω is bounded. Further, let φ(r) = rm for r ∈ R,
and f(·, u) satisfy (2.0.3a)-(2.0.3b). Suppose ρ ≥ m+ 1 and take qs = ps

if p ̸= d
s
and qs > max

{
p, 1 + 1

m
, pℓ
m(p−1)+ℓ−1

, pρ
m(p−1)+ρ−1

}
if p = d

s
. For

ψ > 1 satisfying
1
ρ
<
(

1 − 1
ψ

)
p
(

1
p
− 1

qs

)
if m(p− 1) ≥ 1,

1
ρ
≤
(

1 − 1
ψ

)
p
(

m
m+1

− 1
qs

)
if m(p− 1) < 1,

(2.1.9)

let g ∈ Lψ(0, T ;Lρ) ∩ L1(0, T ;L1 ∩ L1+m+δ) for some δ > 0. Then for
every u0 ∈ Lℓ ∩ L1 and all ε ≥ 0, the mild solution u of (1.2.1) in L1

satisfies

∥u(t)∥∞ ≤ C max
{
eωβ1t

(
1
t

+ ω
)α
, eωβ2t∥g∥η

Lψ(0,t;Lρ)

} 1
θ

(1 +N(t)γ)

×
(
eωt∥u0∥ℓ +

∫ t

0

eω(t−τ)∥g(τ)∥ℓ dτ + ε

) ℓγ
(m+1)θ

(2.1.10)

for all t ∈ (0, T ], where we set

N(t) = sup
s∈(0,t]

M( s
2
)∥g∥L1( s2 ,s;L

m+1)+e
ωβ2s
2γ ∥g∥

η
γ

Lψ(0, s2 ;Lρ)

M(s)
1
θ (eωs∥u0∥ℓ+

∫ s
0 e

ω(s−τ)∥g(τ)∥ℓ dτ+ε)
ℓ

(m+1)θ

,

M(t) = max
{
eωβ1t

(
1
t

+ ω
)α
, eωβ2t ∥g∥η

Lψ(0,t;Lρ)

} 1
γ
,

(2.1.11)

for the constants given by

α =
1

(m+ 1)p
(

m
m+1

− 1
qs

) , γ =

1
p
− 1

qs
m
m+1

− 1
qs

,

θ = 1 − γ

(
1 − ℓ

m+ 1

)
,

η =
1

1 − m+1
ρ

+mp
(

1 − 1
ψ

)(
1 − m+1

mqs

) ,
β1 =


1
mp

− 1
m+1

1
m+1

− 1
mqs

if m(p− 1) < 1,

0 if m(p− 1) ≥ 1,

β2 =

{
η(1 −m(p− 1))

(
1 − 1

ψ

)
if m(p− 1) < 1,

0 if m(p− 1) ≥ 1,

(2.1.12)

and where C > 0 depends on m, p, s, d, qs, ℓ, ρ and ψ (and |Ω| when
sp ≥ d).
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Note that the right-hand side of (2.1.10) is possibly infinite when ε = 0
and ∥u0∥ℓ = 0 due to N(t).

Remark 2.1.4. We note three key restrictions for this result.

(1) The condition (2.1.8) on p, m, ℓ, s, and d is needed in order to
get the De Georgi iteration started in the proof of Theorem 2.1.3.
In the case ℓ = 1, this corresponds to the restriction for Barenblatt
solutions.

(2) Our proof of Theorem 2.1.3 given in Lemma 2.7.7 (see Section 2.7.1)
requires the condition m ≥ 1. We note that the local case avoids this
restriction via the available chain rule (see [104]). Thus, Lℓ − L∞

regularity estimates 2.1.10 satisfied by mild solutions u of (1.2.1)
for the case 0 < m < 1 remains at the moment an open problem.

(3) The restriction sp < d in the unbounded case comes from the embed-
ding ∥u∥ps ≤ C[u]s,p, whereas in other cases we rely on a Poincaré
inequality together with the embedding (2.1.7).

In the case of no forcing term, g ≡ 0, this simplifies to the following
Lℓ − L∞ regularity estimate.

Corollary 2.1.5. Let Ω be an open domain in Rd, d ≥ 1 and T > 0.
Let p > 1, 0 < s < 1, m ≥ 1 and 1 ≤ ℓ < m + 1 such that (2.1.8)
holds. Suppose that sp < d or Ω is bounded. Let qs = ps if p ̸= d

s
and

qs > max
{
p, 1 + 1

m
, pℓ
m(p−1)+ℓ−1

}
if p = d

s
. Further, suppose that f(·, u)

satisfies (2.0.3a)-(2.0.3b) and g ≡ 0. Then for every u0 ∈ Lℓ ∩ L1 the
mild solution u of (1.2.2) in L1 satisfies

∥u(t)∥∞ ≤ Ceωβtt−α∥u0∥γℓ (2.1.13)

for all t ∈ (0, T ], where

α =
1

m(p− 1) − 1 + ℓ(1 − p
qs

)
, γ =

ℓ(1 − p
qs

)

m(p− 1) − 1 + ℓ(1 − p
qs

)
,

β =


1
p
− m
m+1

m
m+1

− 1
p
+ ℓ
m+1( 1

p
− 1
qs

)
if m(p− 1) < 1,

0 if m(p− 1) ≥ 1,

and C > 0 depends on m, p, s, d, qs and ℓ (and |Ω| when sp ≥ d).

Such regularity and decay estimates are common for these diffusion
problems, see for example [104] and the references therein. In particular,
with f ≡ 0, g ≡ 0 we have Corollary 2.1.5 with ω = 0 and hence a
decay in time. Similar estimates have been found for related problems,
including for a class of local doubly nonlinear problems [104] related to
a doubly nonlinear p-Laplacian evolution equation. In [40], an L1 − L∞
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estimate is found corresponding to the fractional Laplacian with s = 1
2

and in [99] for the fractional porous medium equation with s = 1
2
. In the

case of the fractional porous medium equation on Rd (d ≥ 1), the same
authors in [100] find such an Lℓ − L∞ regularizing effect for all ℓ ≥ 1.
We can also compare this to the Barenblatt solutions found for related
evolution problems in [47, 121, 126], noting the convergence in L1(Rd) as
t → ∞. We emphasise that in all cases the exponents given by (2.1.12)
in Corollary 2.1.5 agree with those found in these papers; in the case
of [104], by taking s = 1. We note that compared to [66], we restrict
to m ≥ 1 rather than 0 < m < 1 due to the limitation of Lemma 2.7.7.
Such regularizing effects require separate consideration in this case.

For φ(r) = rm, r ∈ R, the operator (−∆p)
sφ is homogeneous and

we have the following Lipschitz estimate via the regularising effect of
homogeneous operators in [20]. We also obtain derivative and energy
estimates for strong distributional solutions. Here we define, for g ∈
L1
loc(0, T ;L1) and 0 ≤ t ≤ T ≤ ∞,

Ṽ (g, t) = lim sup
ξ→0+

∫ t/(1+ξ)

0

∥g(τ(1 + ξ)) − g(τ)∥1
ξ

dτ. (2.1.14)

Note that Ṽ (g, T ) < ∞ is equivalent to τ → τg(τ) having (essentially)
finite variation on [0, T ]. Also, in the following theorem and corollary,
E is the energy functional given by (2.0.4). These results are proved in
Section 2.8.

Theorem 2.1.6 (Derivative estimates for φ(u) = um). Let Ω be an open
domain in Rd, d ≥ 1 and T > 0. Let p > 1, 0 < s < 1, m > 0 and
f(·, u) satisfy (2.0.3a)-(2.0.3b). Then we have the following regularity
estimates.

(1) Suppose m(p − 1) ̸= 1, g ∈ L1(0, T ;L1) and Ṽ (g, T ) < ∞. Then
every mild solution u of (1.2.2) with u0 ∈ L1 is Lipschitz continuous
on each compact subset of (0, T ], satisfying

lim sup
h→0+

∥u(t+ h) − u(t)∥1
h

≤ Ce2ωt

t

(
∥u0∥1 +

∫ t

0

∥g(τ)∥1 dτ

)
+
eωt

t
Ṽ (g, t)

(2.1.15)

where C = m(p−1)+2
|m(p−1)−1| . In particular, if m > s then we have such a

unique mild solution for all u0 ∈ L1.

(2) Let g ∈ BV (0, T ;L1)∩L1(0, T ;L1∩∞). Further suppose that m ≥ 1
satisfies m(p− 1) ̸= 1 and

m (p− 1) > 1 − sp

d
. (1.2.3)
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For ρ ≥ m+ 1, take qs > max
{
p, 1 + 1

m
, p
m(p−1)

, pρ
m(p−1)+ρ−1

}
if p =

d
s
and qs = ps if p ̸= d

s
. Suppose sp < d or Ω is bounded. If ψ > 1

satisfies (2.1.9) and g also belongs to Lψ(0, T ;Lρ)∩Lm+1(0, T ;L∞),
then for every u0 ∈ L1 and all ε ≥ 0, the mild solution u to (1.2.2)
is a strong distributional solution in L1 and satisfies∫ t

0

τ α̃
∫
Ω

∣∣∣∣ d

dτ
u
m+1

2 (τ)

∣∣∣∣2 dµ dτ + tα̃[um(t)]ps,p

≤ Ct (1 + ωt)2 max
{

(1 + ωt)αeωβ1t, tαeωβ2t∥g∥η
Lψ(0,t;Lρ)

}m
θ

×
(
eωt∥u0∥1 +

∫ t

0

eω(t−τ)∥g(τ)∥1 dτ + ε

) γm
θ(m+1)

+1

× (1 +N(t)γm)

+ C

∫ t

0

τ α̃+m−1∥g(τ)∥m+1
m+1 dτ

(2.1.16)

for all t ∈ (0, T ] with α̃ = αm
θ

+ 2, N(t) given by (2.1.11) with
ℓ = 1, constants given by (2.1.12) and where C > 0 depends on m,
p, s, d, qs, ψ, ρ (and |Ω| when sp ≥ d).

In the case of no forcing term, g ≡ 0, this simplifies to the following
derivative estimate.

Corollary 2.1.7. Let Ω be an open domain in Rd, d ≥ 1 and T > 0.
Let p > 1, 0 < s < 1, f(·, u) satisfy (2.0.3a)-(2.0.3b) and g ≡ 0. Suppose
that sp < d or Ω is bounded. Let m ≥ 1 such that m(p− 1) ̸= 1 and

m (p− 1) > 1 − sp

d
. (1.2.3)

Take qs = ps if p ̸= d
s
and qs > max

{
p, 1 + 1

m
, p
m(p−1)

}
if p = d

s
. Then

for every u0 ∈ L1, the mild solution u to (1.2.2) is a strong distributional
solution in L1 and satisfies∫ t

0

τ α̃
∫
Ω

∣∣∣∣ d

dτ
u
m+1

2 (τ)

∣∣∣∣2 dµ dτ + tα̃E(um(t))

≤ Ct(1 + ωt)α̃eωβt∥u0∥
γm

θ(m+1)
+1

1

(2.1.17)

for all t ∈ (0, T ] with

α̃ =
αm

θ
+ 2, β =

mβ1
θ

+
γm

θ(m+ 1)
+ 1,

constants given by (2.1.12) and where C > 0 depends on m, p, s, d and
qs (and |Ω| when sp ≥ d).
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Applying the previous derivative estimates and the strong distribu-
tional solutions obtained on finite domains in Theorem 2.1.2, we obtain
strong distributional solutions for all initial data in L1∩∞ or, when the
L1 − L∞ regularizing effect is available, for all initial data in L1.

Theorem 2.1.8 (Strong distributional solutions). Let Ω be an open do-
main in Rd, d ≥ 1 and T > 0. Let 1 < p < ∞, 0 < s < 1 and
m > s. Suppose f(·, u) satisfy (2.0.3a)-(2.0.3b) and g ∈ BV (0, T ;L1) ∩
L1(0, T ;L1∩∞). Further, suppose that either m(p− 1) ̸= 1 or there exists
(v0,n)n≥1 ⊂ D((−∆p)

s
1∩∞) such that v0,n → um0 in L1 as n → ∞ and

∥(−∆p)
s
1∩∞v0,n∥1 is uniformly bounded. If either

(1) u0 ∈ L1∩∞, or

(2) u0 ∈ L1, m ≥ 1 and p, s and m satisfy (1.2.3). Moreover, g ∈
Lψ(0, T ;Lρ) where ρ and ψ are restricted as in Theorem 2.1.3 with
ℓ = 1,

then every mild solution in L1 of (1.2.2) is a strong distributional solution
in L1.

In comparison with previous results in this direction [65, 66], here we
consider open domains rather than bounded domains. We also obtain
these solutions for all initial data in L1 rather than restricting to L∞ and
Sobolev-type spaces.

When the domain is bounded, we obtain local Hölder regularity for
mild solutions u to (1.2.2) with initial data in L1. Here Ṽ (g, T ) is defined
as in (2.1.14).

Theorem 2.1.9 (Local Hölder continuity). Let Ω be a bounded domain
in Rd, d ≥ 1 and T > 0. Assume 2 ≤ p <∞, 0 < s < 1 such that sp ≥ d
and m > s satisfying m(p− 1) ̸= 1. Suppose f satisfies (2.0.3a)-(2.0.3b)
and g ∈ BV (0, T ;L1) ∩L1(0, T ;L∞) such that Ṽ (g, T ) <∞. Let u(t) be
a mild solution to (1.2.1) with u0 ∈ L1 ∩ L∞. Then um(t) ∈ Cδ

loc(Ω) for

every 0 < δ < min
{
sp−d
p−1

, 1
}
and a.e. t ∈ (0, T ). In particular, form ≥ 1,

u(t) ∈ Cδ
loc(Ω) for every 0 < δ < min

{
sp−d
p−1

, 1
}

and a.e. t ∈ (0, T ).

Local Hölder regularity has been established for the fractional porous
medium equation in [83] for n−2s

n+2s
< m < 1 via an oscillation lemma and

in [100] for the fractional porous medium equation on Rd for m ≥ 1.
We apply the elliptic local Hölder regularity result of [30] to prove The-
orem 2.1.9. Hereby we extend the work in [31], which considers Hölder
regularity in space and time for a weak formulation of the fractional
p-Laplacian evolution problem.

Furthermore, for φ given by the identity, we have continuity in time
and global Hölder continuity in space for a bounded domain. Here C0(Ω)
denotes the set of continuous functions u : Ω → R vanishing on the
boundary ∂Ω. Both Hölder regularity results are proved in Section 2.10.



CHAPTER 2. WELL-POSEDNESS IN L1 18

Theorem 2.1.10 (Global Hölder regularity for φ(r) = r). Let Ω be a
bounded domain in Rd, d ≥ 2, with a boundary ∂Ω of the class C1,1

and T > 0. Let 1 < p < ∞, 0 < s < 1 − 1
p
, and suppose f satis-

fies (2.0.3a)-(2.0.3b) with F the Nemytskii operator of f on C0(Ω). Then
−((−∆p)

s
|C0

+F ) generates a strongly continuous semigroup of quasi con-

tractions on C0(Ω). In particular, for φ(r) = r, r ∈ R, u0 ∈ C0(Ω) and
g ∈ L∞(0, T ;L∞)∩BV (0, T ;L∞), let u be the unique mild solution of the
initial boundary value problem (1.2.1). Then u ∈ C lip([δ, T ];C0(Ω)) for
every 0 < δ < T and for some α ∈ (0, s], u(t) ∈ Cα(Ω) for all t ∈ (0, T ).

This result extends [67], wherein Giacomoni and Tiwari obtain con-
tinuity up to the boundary in space, uniform in time. Here we refine
the estimate, proving that the resolvent is m-accretive in C0. We use
the global Hölder regularity of the elliptic problem given by [73] with
semigroup theory for the operator restricted to the space of continuous
functions. Hölder regularity has been considered for the elliptic problem,
for example, in [30].

We now introduce some general theory for accretive operators and
associated evolution problems which we will use throughout this thesis.

2.2 Accretive operators

We begin by reviewing some basic definitions and important results in
nonlinear semigroup theory from the standard literature [12, 34] and the
monograph [50]. In particular, we introduce the relevant definitions and
accretivity theory which will apply to the composed operator (−∆p)

sφ.
We will see in Corollary 2.4.4 that when φ ∈ C(R) is strictly increas-
ing with φ(0) = 0, the operator (−∆p)

sφ is m-T -accretive in L1 with
complete resolvent.

2.2.1 The general framework

Let (Σ, µ) be a measure space with a positive σ-finite measure µ, and
M(Σ, µ) be the set of µ-a.e. equivalence classes of measurable functions
u : Σ → R. For 1 ≤ q ≤ ∞, we denote by Lqµ the classical Lebesgue space
equipped with the standard Lq-norm

∥u∥q :=


(∫

Σ

|u|q dµ

)1/q

if q <∞,

inf
{
k ∈ [0,∞]

∣∣∣µ({|u| > k}) = 0
}

if q = ∞.

If Ω is an open subset of Rd, d ≥ 1, and µ is the classical d-dimensional
Lebesgue measure restricted to the trace-σ-algebra B(Rd) ∩ Ω then we
write Lq instead of Lqµ. We may also write Lq(Ω) if the domain is not
clear from the setting.
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Let X ⊆M(Σ, µ) be a Banach space with norm ∥·∥X . The main object
in this section is the abstract Cauchy problem (in X){

du
dt

(t) + Au(t) ∋ g(t) for a.e. t ∈ (0, T ),

u(0) = u0,
(2.2.1)

for given initial value u0 ∈ D(A)
X

and forcing term g ∈ L1(0, T ;X).
In (2.2.1), A denotes a (possibly) multi-valued operator A : D(A) → 2X

on X with effective domain D(A) := {u ∈ X |Au ̸= ∅}, the closure of
D(A) in X denoted by D(A)

X
, and range Rg(A) :=

⋃
u∈D(A)Au. In this

setting, it is standard to view an operator A as a subset of X × X, or
relation on X, and to identify A with its graph

A :=
{

(u, v) ∈ X ×X
∣∣∣ v ∈ Au

}
.

Then we have the following key definition.

Definition 2.2.1. An operator A on X is called accretive (in X) if

∥u− û∥X ≤ ∥u− û+ λ(v − v̂)∥X (2.2.2)

for every (u, v), (û, v̂) ∈ A and every λ > 0. Further, an operator A
on X is called quasi accretive if there is an ω ∈ R such that A + ωI is
accretive in X.

Clearly, if A + ωI is accretive in X for some ω ∈ R then A + ω̃I is
accretive for every ω̃ ≥ ω. Thus, there is no loss of generality in assuming
that if A is quasi accretive then there is an ω ≥ 0 such that A + ωI is
accretive in X.

Equivalently, A is accretive in X if and only if, for every λ > 0, the
resolvent operator of A, defined by Jλ := (I + λA)−1, is a single-valued
mapping from Rg(I+λA) to D(A) which is contractive (also called non-
expansive) with respect to the norm of X. That is,

∥Jλu− Jλû∥X ≤ ∥u− û∥X
for all u, û ∈ Rg(I + λA) and λ > 0.

The following notation was introduced by Coulhon and Hauer [50] to
simplify the verification of accretivity for a given operator A. Further,
it may be used to introduce functional inequalities such as Gagliardo-
Nirenberg or Sobolev inequalities.

Notation 2.2.2. For 1 ≤ q < ∞, we define the q-bracket on Lqµ to be
the mapping [·, ·]q : Lqµ × Lqµ → R defined by

[u, v]q := lim
λ→0+

1
q
∥u+ λv∥qq − 1

q
∥u∥qq

λ

for u, v ∈ Lqµ. We further define the bracket

[u, v]+ := lim
λ→0+

∥[u+ λv]+∥1 − ∥[u]+∥1
λ

for u, v ∈ L1
µ.
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Then (cf. [50, pg. 13] and [12, pg. 103]) for 1 ≤ q <∞, an operator A
on Lqµ is accretive in Lqµ if and only if

[u− û, v − v̂]q ≥ 0 for all (u, v), (û, v̂) ∈ A.

Furthermore, the q-bracket [·, ·]q is upper semicontinuous (respectively,
continuous if 1 < q <∞) and if 1 < q <∞,

[u, v]q =

∫
Σ

|u|q−2u v dµ (2.2.3)

for every u, v ∈ Lqµ. While for q = 1, [·, ·]1 reduces to the classical
brackets [·, ·] on L1

µ given by

[u, v]1 =

∫
{u̸=0}

sign0(u) v dµ+

∫
{u=0}

|v| dµ (2.2.4)

for u, v ∈ L1
µ, where the restricted signum sign0 is defined by

sign0(s) =


1 if s > 0,

0 if s = 0,

−1 if s < 0,

for s ∈ R (cf. [21, Section 2.2 and Example 2.8] or applying [12, Propo-
sition 3.7]). When q = +, we can write [·, ·]+ as

[u, v]+ =

∫
{u̸=0}

sign+
0 (u)v dµ+

∫
{u=0}

[v]+ dµ (2.2.5)

where sign+
0 is the sign-plus or Heaviside function,

sign+
0 (s) =

{
1 if s > 0

0 if s ≤ 0.

When applying this to functions u defined on Σ, we may also write the
composition as 1u>0 := sign+

0 (u).

Operators with m-accretivity

Next, we introduce the following class of operators focused on ensuring
existence at each step of the discretized problem of Definition 2.2.4.

Definition 2.2.3. An operator A on X is called m-accretive in X if A
is accretive in X and satisfies the so-called range condition

Rg(I + λA) = X for some (or equivalently all) λ > 0, (2.2.6)

and an operator A on X is called quasi m-accretive in X if there is an
ω ≥ 0 such that A+ ωI is m-accretive in X.
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By the classical theory of nonlinear evolution problems (cf. [21], or
alternatively, [12, Corollary 4.1]), the condition ‘A is quasi m-accretive in
X’ ensures that for given u0 ∈ D(A)

X
and g ∈ L1(0, T ;X), the Cauchy

problem (2.2.1) admits a unique mild solution, which is continuously
dependent on u0 and g.

Definition 2.2.4. For given g ∈ L1(0, T ;X), T > 0 and u0 ∈ X, a mild
solution u in X of Cauchy problem (2.2.1) is a function u ∈ C([0, T ];X)
such that for every ε > 0 there is a partition σε : 0 = t0 < · · · < tN = T
of the interval [0, T ] and a finite sequence (gi)

N
i=1 ⊂ X with the following

properties: T − tN < ε, ti − ti−1 < ε for every i = 1, . . . , N ,

N∑
i=1

∫ ti

ti−1

∥g(τ) − gi∥X dτ < ε,

there exists a step function uε,σ : [0, T ] → X of the form

uε,σ(t) = u0 1{t0=0}(t) +
N∑
i=1

ui 1(ti−1,ti](t), (2.2.7)

where the coefficients ui recursively solve the finite difference equation

ui + (ti − ti−1)Aui ∋ (ti − ti−1)gi + ui−1 (2.2.8)

for every i = 1, . . . , N , and

sup
t∈[0,T ]

∥u(t) − uε,σ(t)∥X ≤ ε.

Remark 2.2.5. To demonstrate the notion of mild solutions in the spe-
cific case of (1.2.1), we consider an open domain Ω ⊆ Rd, choose X = L1

and the operator A to be (−∆p)
sφ+F where F is the Nemytskii operator

of f . Then the recursion relation (2.2.8) becomes

ui + (ti − ti−1) ((−∆p)
sφ(ui) + F (ui)) ∋ (ti − ti−1)gi + ui−1.

Applying Definition 2.0.1 (see also Section 2.3.4), there exists a sequence

(νk)k≥1 with φ(νk) ∈ D((−∆p)
s) ⊂ W

s,(2,p)
0 for k ≥ 1 such that νk → ui

in L1. Moreover, uε,σ converges to the mild solution u in L1 uniformly
in time. So pointwise for t ∈ [0, T ] we have a diagonal sequence of such
νk converging to u(t) in L1. It is in this limit sense that mild solutions
to satisfy the boundary condition of (1.2.1). In particular, since, even in
the case Ω ⊂ Rd, the definition of (−∆p)

s depends on the data outside Ω
to be zero (see also Section 2.3).

In the homogeneous case g ≡ 0, if A is quasi m-accretive in X, then
the Crandall-Liggett theorem [51, Theorem I] (see also [12, Section 4])
states that for every element u0 ∈ D(A)

X
, there is a unique mild solution
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u of (2.2.1) in X for every T > 0 and this solution u can be given by the
exponential formula

u(t) = lim
n→∞

(
I + t

n
A
)−n

u0 (2.2.9)

uniformly in t on compact intervals. For every u0 ∈ D(A)
X

, setting

Ttu0 := u(t), for every t ≥ 0, (2.2.10)

defines a (nonlinear) strongly continuous semigroup {Tt}t≥0 of (ω-)quasi

contractions Tt : D(A)
X → D(A)

X
with ω ∈ R. More precisely, the

family {Tt}t≥0 satisfies the following three properties:

• semigroup property

Ts+t = Tt ◦ Ts for every s, t ≥ 0,

• strong continuity

lim
t→0+

∥Ttu− u∥X = 0 for every u ∈ D(A)
X

,

• exponential growth property in X or (ω-)quasi contractivity in X

∥Ttu− Ttv∥X ≤ eω t∥u− v∥X for all u, v ∈ D(A)
X

, t ≥ 0.

For the family {Tt}t≥0 on D(A)
X

, the operator

A◦ :=

{
(u, v) ∈ X ×X

∣∣∣∣∣ lim
h→0+

Thu− u

h
= v in X

}
is a well-defined mapping A◦ : D(A◦) → X with domain

D(A◦) :=
{
u ∈ X

∣∣∣ lim
h→0+

Thu− u

h
exists in X

}
called the infinitesimal generator of {Tt}t≥0. If {Tt}t≥0 is ω-quasi con-
tractive in X, then −A◦ is ω-quasi accretive in X.

Since mild solutions of Cauchy problem (2.2.1) are merely the locally
uniform (in time) limit of step functions (2.2.7) with values in X, it is
important to know whether they are actually strong solutions of (2.2.1)
in X.

Definition 2.2.6. Given u0 ∈ X and g ∈ L1(0, T ;X) for some T > 0,
a function u ∈ C([0, T ];X) is called a strong (in time) solution in X of
Cauchy problem (2.2.1) if u(0) = u0, u belongs to W 1,1

loc ((0, T );X) and
for a.e. 0 < t < T , one has that u(t) ∈ D(A) and g(t) − du

dt
(t) ∈ Au(t).

Since we consider the closure of (−∆p)
s
|L1∩∞φ in L1 × L1 for (1.2.1),

we also want to consider solutions with further regularity on φ(u), in
particular with φ(u) ∈ D((−∆p)

s). Hence we consider distributional (in
space) solutions as introduced in the following definition.
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Definition 2.2.7. For given T > 0, f : Ω × R → R satisfying (2.0.3a)-
(2.0.3b) and g ∈ L1

loc((0, T );L1
loc) for some T > 0, a function u ∈

C([0, T ];L1) is called a distributional (in space) solution in L1 of initial
boundary-value problem (1.2.1) if φ(u) ∈ Lploc((0, T );W s,(2,p)), u(0) = u0
in L1, and for every test function ξ ∈ C∞

c ([0, T ] × Rd), one has that

−
∫
Rd
u ξ dx

∣∣∣∣∣
t2

t1

−
∫ t2

t1

∫
Rd
u ξt dx dt+

∫ t2

t1

∫
Rd

(f(x, u) − g)ξ dx dt

+

∫ t2

t1

∫
R2d

(φ(u)(t, x) − φ(u)(t, y))p−1(ξ(t, x) − ξ(t, y))

|x− y|d+sp
d(x, y) dt = 0

for all 0 < t1 < t2 < T .
Furthermore, if u is also differentiable with ut(t) ∈ L1 for a.e. t ∈

(0, T ), then we call this a strong distributional solution in L1.

If, for example, X = Lqµ for 1 < q < ∞ and g ≡ 0, then X is a
uniformly convex Banach space and so the classical regularity theory of
nonlinear semigroups (cf. [12, Theorem 4.6]) applies: let A be a quasi
m-accretive operator on Lqµ, then for every u0 ∈ D(A) the mild solution
u of Cauchy problem (2.2.1) is a strong solution of (2.2.1) and t 7→ Ttu0
given by (2.2.10) satisfies

d
dt+

Ttu0 = −A◦Ttu0 for every t > 0, (2.2.11)

where A◦ denotes the minimal selection of A given by the operator

A◦ :=
{

(x, y) ∈ A
∣∣∣ ∥y∥ = min

ŷ∈Ax
∥ŷ∥
}
.

Under additional geometric conditions on the Banach space X, one has
that −A◦ ⊆ A◦. Ignoring these details on X, we nevertheless say that a
strongly continuous semigroup {Tt}t≥0 of quasi contractions on D(A)

X
is

generated by −A if A is quasi m-accretive in X and {Tt}t≥0 is the family
induced by (2.2.10).

2.2.2 T -accretive operators and complete resolvent

Here we introduce two stronger notions of accretivity, completely accre-
tive operators and T -accretive operators, requiring further contractivity-
type properties of the resolvent. We further extend these with the com-
plete resolvent property.

Completely accretive operators

The notion of completely accretive operators was introduced in [18] by
Crandall and Bénilan and further developed in [50]. Following the same
these two references, we introduce the following notation.
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Notation 2.2.8. The set J0 is comprised of all convex, lower semicon-
tinuous functions j : R → [0,+∞] satisfying j(0) = 0.

Definition 2.2.9. A mapping S : D(S) →M(Σ, µ) with domain D(S) ⊆
M(Σ, µ) is called a complete contraction if∫

Σ

j(Su− Sû) dµ ≤
∫
Σ

j(u− û) dµ (2.2.12)

for all j ∈ J0 and every u, û ∈ D(S). An operator A on M(Σ, µ) is
called completely accretive if for every λ > 0, the resolvent operator Jλ
of A is a complete contraction.

As mentioned in the introduction, it is well-known (see, e.g., [50, 94])
that the fractional p-Laplacian (−∆p)

s equipped with Dirichlet boundary
conditions is m-completely accretive in L2. While this property doesn’t
translate in full to the doubly nonlinear case, we may still obtain a weaker
version of (2.2.12) in the following sense.

T -accretive operators

A more general class of operators is that of T -accretive operators. In
particular, choosing j(·) = |[ · ]+|q ∈ J0 if 1 ≤ q < ∞ and j(·) = [[ · ]+ −
k]+ ∈ J0 for k ≥ 0 large enough if q = ∞ shows that a complete
contraction S satisfies the following T -contractivity property in Lqµ for
every 1 ≤ q ≤ ∞. Hence a completely accretive operator is T -accretive
in Lqµ for all 1 ≤ q ≤ ∞.

Definition 2.2.10. A mapping S : D(S) → Lqµ with domain D(S) ⊆ Lqµ,
1 ≤ q ≤ ∞, is called a T -contraction if

∥[Su− Sû]+∥q ≤ ∥[u− û]+∥q

for every u, û ∈ D(S). We say that an operator A on Lqµ is T -accretive
if, for every λ > 0, the resolvent Jλ of A defines a T -contraction with
domain D(Jλ) = Rg(I + λA).

A T -accretive operator in Lqµ, 1 ≤ q ≤ ∞, is accretive in Lqµ and the
resolvent is order-preserving in Lqµ. That is, denoting the usual order
relation on Lqµ by ≤, if S is T -contractive in Lqµ, 1 ≤ q ≤ ∞, then u ≤ û
implies that Su ≤ Sû for u, û ∈ Lq (see [41] and [21, Section 19.4] for
further properties).

We note in particular the following useful comparison property when
A is an ω-quasi T -accretive operator with ω > 0. We have∫

Ω

[w1 − w2]
+ dx ≤ 1

1 − λω

∫
Ω

[h1 − h2]
+ dx (2.2.13)

for all 0 < λ < 1/ω and every h1, h2 ∈ L1, where w1 = JAλ h1 and
w2 = JAλ h2. This signed estimate will be of great use for the proof of
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global barrier functions in Section 3.3 and the finite time of extinction
in Section 3.4 as it allows a direct comparison between solutions (as well
as super-solutions).

We can naturally extend these definitions to quasi m-completely ac-
cretive operators (and similarly for quasi m-T -accretive operators).

Definition 2.2.11. An operator A onM(Σ, µ) is called quasi completely
accretive if there is an ω > 0 such that for every λ > 0, the resolvent
operator Jλ of A+ ωI is a complete contraction. Moreover, for 1 ≤ q <
∞, an operator A on Lqµ is said to be quasi m-completely accretive on
Lqµ if there is an ω > 0 such that A+ ωI is completely accretive and the
range condition (2.2.6) holds with X = Lqµ.

Accretive operators in L1 with complete resolvent

The class of operators which are merely T -accretive in L1
µ but have a so-

called complete resolvent was introduced in [19] and further elaborated
in [50]. Importantly for our problem, for a given completely accretive
operator A in L1, the composed operator Aφ becomes T -accretive in L1

with complete resolvent so long as φ is a strictly increasing, continuous
function on R (see [50]). Typical examples of this class of operators
include the doubly-nonlinear operators −∆pφ and (−∆p)

sφ. Hence we
now introduce the notion of complete mappings.

Definition 2.2.12. Let D(S) be a subset of M(Σ, µ). A mapping
S : D(S) →M(Σ, µ) is called complete if∫

Σ

j(Su) dµ ≤
∫
Σ

j(u) dµ (2.2.14)

for every j ∈ J0 and u ∈ D(S).

We now introduce the class of accretive operators in L1
µ with complete

resolvent (similarly for T -accretive operators with complete resolvent).

Definition 2.2.13. An operator A on L1
µ is called (m-)accretive in L1

µ

with complete resolvent if A is (m-)accretive in L1
µ and for every λ > 0,

the resolvent operator Jλ : Rg(I + λA) → D(A) of A is a complete map-
ping. For ω ∈ R, we call an operator A on L1

µ ω-quasi (m-)accretive
in L1

µ with complete resolvent (or simply quasi (m-)accretive in L1
µ with

complete resolvent) if A+ωI is (m-)accretive in L1
µ with complete resol-

vent.

The condition (2.2.14) on the resolvent provides a growth estimate on
u(t), allowing us to estimate u(t) in Lpµ by the norms of u0 and g in Lpµ.
In particular, we prove such an estimate in Lemma 2.7.3, extending [19,
Proposition 2.4].
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2.2.3 Subdifferential operators

If X is a Hilbert space H with inner product (·, ·)H , then an important
class of m-accretive operators in H is given by the subdifferential operator

∂E :=
{

(u, v) ∈ H ×H
∣∣∣ (v, ξ − u)H ≤ E(ξ) − E(u) for all ξ ∈ H

}
of a proper, convex, lower semicontinuous functional E : H → (−∞,+∞].
In Hilbert spaces, accretivity is equivalent to monotonicity ; that is, an
operator A is monotone if

(u− û, v − v̂)H ≥ 0 for all (u, v), (û, v̂) ∈ A

(cf. [34], and see also [6, 44]). For this class of operators A = ∂E , the
Cauchy problem (2.2.1) has the smoothing effect that every mild solution
u of (2.2.1) is strong. This result is due to Brezis [32] (see also [6]).

It is well known that the fractional p-Laplacian (−∆p)
s defined in

(2.0.3) equipped with homogeneous Dirichlet boundary conditions on an
open set Ω can be realized as such a subdifferential operator ∂E in L2 (see
[94] Proposition 2.3.1). We will introduce this operator in more detail in
Section 2.3.

The subdifferential operator in X

We rely on the m-accretivity of (−∆p)
s in L1 to obtain mild and strong

solutions to (1.2.1). We also find that it is sufficient to work with the
part in L1∩∞ to establish existence of such solutions. Hence we consider
operators restricted to L1∩∞ and introduce a definition of subdifferential
operators from [18] which we will apply in the case X = L1. We will also
use this to apply the results of [22] and in particular to obtain strong
solutions. We include functionals on a (possibly distinct) subspace Y for
completeness.

Definition 2.2.14. Let X, Y and Z be linear subspaces of M(Σ, µ).
Then for an energy functional E : Y → (−∞,∞] with effective domain
D(E) := {u ∈ Y | E(u) <∞}, we define the part of E in X by

E|X (u) =

{
E(u) for u ∈ D(E) ∩X,
∞ otherwise.

Further, we define the operator ∂XE in X by the graph{
(u, v) ∈ X ×X

∣∣∣∣∣ u ∈ D(E) and

∫
Σ

v(w − u) dµ ≤ E(w) − E(u)

for all w ∈ X with v(w − u) ∈ L1
µ

}

and the part of ∂XE in Z by

(∂XE)|Z :=
{

(u, h) ∈ Z × Z
∣∣∣(u, h) ∈ ∂XE

}
.
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In the case X = L2
µ and Y a linear subspace of M(Σ, µ), this coincides

with the previous definition of the subdifferential ∂E in L2
µ. One sees

that for a functional E : Y → (−∞,∞], we have ∂L2
µ
E = ∂(E|

L2
µ
).

Remark 2.2.15. In the case X = L1
µ, Y = L2

µ (the relevant case for
this thesis), we have the inclusion (∂E)|

L1∩∞
µ

⊆ (∂L1
µ
E)|

L1∩∞
µ

. However,

since we are primarily interested in m-accretivity, they will be largely
interchangeable due to the m-accretivity properties of (∂E)|

L1∩∞
µ

proved

in Theorem 2.4.1.

For the class of operators ∂XE , Bénilan and Crandall [18] found the
following sufficient conditions implying that the closure ∂XEX of ∂XE in
X is m-completely accretive. We note that if E is lower semicontinuous
then ∂L2

µ
EL2

µ = ∂L2
µ
E .

Theorem 2.2.16 ([18, Lemma 7.1 & Theorem 7.4]). Let X be either Lrµ,
1 ≤ r ≤ ∞, or L1∩∞

µ . Then the following statements hold.

(1) If a functional E : X → (−∞,∞] satisfies
E(u+ q(û− u)) + E(û+ q(û− u)) ≤ E(u) + E(û)

for all u, û ∈ X and q ∈ C∞(R) such that q(0) = 0,

q′ has compact support and 0 ≤ q′ ≤ 1 on R
(2.2.15)

then the operator ∂XE is completely accretive in X.

(2) If E : X → [0,∞] satisfies (2.2.15), (0, 0) ∈ ∂XE, and if E is lower
semicontinuous for the topology of X + L2

µ, then the closure ∂XEX

of ∂XE in X is m-completely accretive in X.

Note that if E(0) = 0 and E(u) ≥ 0 for all u ∈ X with ∂XE completely
accretive, then the condition (0, 0) ∈ ∂E of Theorem 2.2.16 is satisfied.

2.3 The fractional p-Laplacian

We now introduce the primary operator of interest, the fractional p-
Laplacian (−∆p)

s, the doubly nonlinear operator (−∆p)
sφ, as well as

the relevant function space settings.

2.3.1 Gagliardo-Sobolev-Slobodeckĭı spaces

We first provide a short summary of Gagliardo-Sobolev-Slobodeckĭı spaces,
which are necessary to study the initial boundary value problem (1.2.1)
with functional analytical tools. For a deeper understanding of this the-
ory, we refer the interested reader to [1, 90] or [129].

For 1 < p <∞, 0 < s < 1, and an open subset Ω of Rd, we denote by

W s,p(Ω) =
{
u ∈ Lp(Ω)

∣∣∣[u]W s,p(Ω) <∞
}
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the s-Gagliardo-Sobolev-Slobodeckĭı space, also known as the s-fractional
Sobolev space, where

[u]W s,p(Ω) :=

(∫
Ω

∫
Ω

|u(x) − u(y)|p

|x− y|d+sp
dy dx

)1/p

(2.3.1)

denotes the s-Gagliardo semi-norm. The space W s,p(Ω) defines a Banach
space if it is equipped with the norm

∥u∥W s,p(Ω) :=
(
∥u∥pLp(Ω) + [u]pW s,p(Ω)

)1/p
or, equivalently, ∥u∥Lp + [u]W s,p(Ω).

We can similarly introduce the mixed Sobolev space, for 1 ≤ q ≤ ∞,

W s,(q,p)(Ω) = {u ∈ Lq(Ω) | [u]W s,p(Ω) <∞}

with norm ∥u∥W s,(q,p)(Ω) := ∥u∥Lq(Ω) + [u]W s,p(Ω). Importantly, this mixed
setting will allow us to ensure lower semicontinuity of the subdifferential
and thereby the necessary accretivity properties and related existence
results such as Theorem 2.4.1.

For convenience we will use the notation W s,p := W s,p(Rd) and [u]s,p :=
[u]W s,p(Rd) for the Gagliardo seminorm on Rd (and similarly for the mixed
Sobolev spaces).

In this thesis we incorporate boundary conditions by considering the
seminorm [u]W s,p(Rd) and instead restricting the domain in the following
way. We let W s,p

0 (Ω), denoted by W s,p
0 , be the closure in W s,p of the set

C∞
c (Ω) of test functions with norm ∥u∥W s,p

0
:= ∥u∥Lp + [u]s,p. Note that

we must extend u to Rd by zero to interpret [u]s,p. By [1, Theorem 10.1.1],
the space W s,p

0 admits, for 1 < p <∞, the characterization

W s,p
0 (Ω) =

{
u ∈ W s,p(Rd)

∣∣∣∣ ∃ u : Rd → R s.t. u = u a.e. on Rd

and u = 0 quasi-everywhere on Rd \ Ω

}
,

where u denotes a (quasi-continuous) representative of u. Therefore, the
space W s,p

0 incorporates homogeneous Dirichlet boundary conditions in a
weak sense.

We similarly define the corresponding mixed Sobolev space for 1 <
p < ∞, 0 < s < 1 and 1 ≤ q ≤ ∞ as the closure of C∞

c (Ω) in the mixed

norm ∥u∥
W
s,(q,p)
0

:= ∥u∥Lq + [u]s,p. We similarly use W
s,(q,p)
0 to denote

W
s,(q,p)
0 (Ω). Note that when q = p, we regain the standard fractional

Sobolev space. The space W
s,(q,p)
0 is a Banach space, which is reflexive

if 1 < p < ∞, 0 < s < 1 and 1 ≤ q < ∞. Moreover, it contains the
function space {u ∈ C1

c (Rd) | supp(u) ⊆ Ω}.
The fractional p-Laplacian is a natural extension to the fractional

Laplacian and p-Laplacian operators. We now introduce this operator,
as well as its linear counterpart, the fractional Laplacian.
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2.3.2 The fractional Laplacian

In the case of the fractional Laplacian, many equivalent definitions are
available (see [86] where equivalence is shown for ten such definitions).
We illustrate this and the connection to the local case with a few equiv-
alent definitions on Rd.

We have a direct comparison with the Laplacian via the following
Fourier multiplier definition. Let 0 < s < 1, u ∈ Lq(Rd) for q ∈ [1, 2] and
F be the Fourier transform. If there exists v ∈ Lq(Rd) such that

F(v)(ξ) = −|ξ|2sFu(ξ) (2.3.2)

then we define (−∆)su = v. Some authors equivalently consider |ξ|α
and α ∈ (0, 2), however (2.3.2) is more natural when generalizing to the
fractional p-Laplacian as the fractional Laplacian then corresponds to
the case p = 2 and the parameter s denoting the fractional derivative is
in the natural range (0, 1).

For u in an appropriate vector space such as V = Lq(Rd), q ∈ [1,∞)
and sufficiently regular, we have the following singular integral definition,
taking the Cauchy principal value

(−∆)su = lim
r→0+

cd,s

∫
Rd\Br(x)

u(x) − u(y)

|x− y|d+2s
dy

where

cd,s :=
4sΓ

(
d+2s
2

)
πd/2|Γ (−s) |

and Γ is the standard gamma function. To roughly see the connection
to the Laplacian in this definition, we can rearrange to have

(−∆)su = −cd,s
∫
Rd\Br(0)

1

|z|s

(
u(x+ z) − u(x)

|z|s
− u(x) − u(x− z)

|z|s

)
dz

|z|d
.

Then we can view
u(x+ z) − u(x)

|z|s
(2.3.3)

as approximating a fractional derivative (of power s) in the direction z.
Here we can again see the connection to the standard Laplacian when
s → 1 as this fractional derivative (2.3.3) becomes an approximation of
the standard derivative at x in the direction z. We note that the nonlocal
second (fractional) derivative is weighted by the term |z|−d. This ensures
integrability in an appropriate setting and provides a chain rule for linear
transformations expected of such a (fractional) differential operator.

We can also view this operator as the subdifferential of a convex, lower
semi-continuous functional. Define the energy functional E : L2(Rd) →
(−∞,∞] by

E(u) =

{
cd,s
4

[u]2s,2 if [u]s,2 <∞,

∞ otherwise,
(2.3.4)



CHAPTER 2. WELL-POSEDNESS IN L1 30

Then we can consider the subdifferential of E in L2(Rd), and define

(−∆)su = ∂L2E(u)

for u ∈ D(∂L2E). These three definitions are equivalent on appropriate
functions spaces (L2 in particular). We note that the singular integral
formulation in particular provides a very convenient form for direct cal-
culations. In the case of an open domain Ω ⊂ Rd, in order to interpret
Dirichlet boundary conditions, for example in the singular integral defi-
nition, we still integrate over all of Rd. However, we restrict the domain
of the operator to functions which are zero outside Ω and only use this
formula for points in the domain. The alternative, integrating only over
Ω, is also possible and is known as the regional fractional Laplacian (see
e.g. [64, 69]).

One other definition which may be considered is the fractional power
obtained via a spectral decomposition. This is distinct from the previous
definitions (see [111]) and not considered in this thesis, both due to the
nonlinear setting and as it is less commonly used as a fractional version
of the Laplacian.

The fractional p-Laplacian

In the case of the fractional p-Laplacian we do not have the Fourier
transform approach. However, the singular integral and subdifferential
definitions have natural extensions. Since the constant cd,s does not im-
pact the mathematical analysis, it is common to ignore it here as we
will do in this thesis. In particular, on an open domain Ω ⊆ Rd, for
1 < p <∞ and 0 < s < 1 we define the energy functional

E(u) =

{
1
2p

[u]ps,p if u ∈ W
s,(2,p)
0 ,

∞ if u ∈ L2 \W s,(2,p)
0 ,

(2.0.4)

where [·]s,p is the Gagliardo seminorm on Rd given by

[u]s,p =

(∫
Rd

∫
Rd

|u(x) − u(y)|p

|x− y|d+sp
dy dx

)1/p

. (2.0.5)

Note that if u is defined on Ω ⊂ Rd, we extend u by zero to be defined
on Rd in order to evaluate (2.0.5).

Then we can define the fractional p-Laplacian as an operator on L2 by

(−∆p)
su := ∂E(u).

Similarly, we can consider the associated singular integral via the Cauchy
principal value,

(−∆p)
su(x) = lim

r→0+

∫
Rd\Br(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x− y|d+sp
dy (2.3.5)

for all x ∈ Rd. Importantly, we have the following characterization of the
subdifferential via a variational definition.
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Proposition 2.3.1 (Characterization of (−∆p)
s). For 1 < p < ∞ and

0 < s < 1, let E be given by (2.0.4). Then for every u ∈ W
s,(2,p)
0 ,

∂E(u) =

h ∈ L2

∣∣∣∣∣
∫
Ω

h(x)v(x) dx =

∫
Rd

∫
Rd

(u(x) − u(y))p−1(v(x) − v(y))

|x− y|d+sp

for all v ∈ W
s,(2,p)
0

 .

The subdifferential condition can be written equivalently with the fol-
lowing variational formulation. In particular, v ∈ (−∆p)

su in the varia-
tional formulation will satisfy∫

Ω

vξ dx :=
1

2

∫
R2d

|u(x) − u(y)|p−2(u(x) − u(y))(ξ(x) − ξ(y))

|x− y|d+sp
d(x, y)

(2.3.6)

for all ξ ∈ W
s,(2,p)
0 (Ω).

From Proposition 2.3.1 it is clear that if u ∈ W
s,(2,p)
0 and the singular

integral (2.3.5) exists and is also in L2 then u ∈ D(∂E) and the defini-
tions coincide. However the reverse implication is less clear. A key result
in this direction is [85] which provides an equivalence between weak solu-
tions of the elliptic problem, (s, p)-harmonic functions and (s, p)-viscosity
solutions. Moreover, they obtain sufficient conditions for the singular
integral to exist. In particular, they are able to estimate the integral
around the blowup uniformly for x ∈ Ω, but only away from points of
zero gradient and in a restricted range of p and s (see [85, Lemma 3.7] in
particular). Hence, to avoid the restrictive regularity requirements when
obtaining solutions, we use the subdifferential (equivalently, variational)
definitions. Nevertheless, the singular integral is still a very useful tool
for calculation both when the estimates of [85] may be applied and when
taking a limit within the variational double integral.

There are number of natural extensions and generalizations to the
fractional p-Laplacian. First, we note that the case p = 1 can be char-
acterized similarly with a formulation presented in [94], although we do
not consider p = 1 in this work. Many authors have also considered
such problems with |x−y|d+sp replaced by a kernel K which satisfies two
sided estimates of a form similar to |x − y|d+sp. The case with variable
exponents, called the fractional p(x)-Laplacian in which p in (2.3.5) is
replaced by p(x) has also been introduced in the fractional setting [82].

Alternative definitions for the fractional p-Laplacian have also been
proposed, for example in [118]. It is also possible to interpret the restric-
tion to a domain Ω ⊂ Rd in the sense of a regional fractional p-Laplacian
[4].

2.3.3 Key properties

The energy functional (2.0.4) for the fractional p-Laplacian satisfies the
following key properties which we include as a lemma for completeness
(cf. [94], [50]). Importantly, these properties provide m-accretivity of the
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subdifferential which is key for obtaining existence results as we will see
in Section 2.4.

Lemma 2.3.2. Let Ω be an open domain in Rd, d ≥ 1. Suppose 1 <
p < ∞ and 0 < s < 1. Then the energy functional E given by (2.0.4) is
convex, lower semicontinuous and proper with effective domain D(E) =

W
s,(2,p)
0 .

Proof. It is clear that E is proper with 0 ∈ W
s,(2,p)
0 and convex due to

the convexity of the power function | · |p for p > 1. To see that E is lower
semicontinuous on L2, we note that E is lower semicontinuous if and only
if, for all α ≥ 0,

Eα := {u ∈ L2 | E(u) ≤ α }

is closed in L2. Moreover, E is convex if and only if Eα is convex and
so by [33, Theorem 3.7], lower semicontinuity is equivalent to requiring
that Eα be weakly closed in L2.

Let α ≥ 0 and (un)n∈N ⊆ Eα such that un → u in L2. We note that un
must be bounded in L2 for convergence. Since u ∈ Eα, u ∈ D(E) and un
is bounded in [·]s,p. Hence un is bounded in W

s,(2,p)
0 and so there exists

a subsequence (ukn)n∈N converging weakly to some ũ ∈ W
s,(2,p)
0 . This

implies that ukn ⇀ ũ in L2 as n→ ∞, hence ũ = u (using [33, Theorem
3.10]). Defining T : u 7→ ∇x,yu where ∇x,yu = u(x) − u(y), we have that

∇x,yukn ⇀ ∇x,yu in Lp(R2d; d(x,y)
|x−y|d+sp ) as n → ∞. Then using the weak

convergence in Lp(R2d; d(x,y)
|x−y|d+sp ),

[u]s,p ≤ lim inf
n→∞

[ukn ]s,p = lim inf
n→∞

E(ukn) ≤ α

(see [33, Proposition 3.5]). Hence Eα is closed in L2 and so we have lower
semicontinuity.

Translation and rotation invariance

We now mention some key properties of the fractional p-Laplacian. First,
we note that the fractional p-Laplacian on Rd is translation and rotation
invariant. This can be seen by a simple change of variable, the main point
being that the Jacobian of this transformation is one and the distance
function |x− y| remains unchanged when this transformation is applied
to both x and y. Then the transformation may be transferred to the test
function ξ in (2.3.6). Suppose u ∈ D((−∆p)

s) and let w(x) := u(Rx+z)
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where R is a rotation on Rd and z ∈ Rd. Then for ξ ∈ W s,(2,p),

1

2

∫
R2d

(w(x) − w(y))p−1 (ξ(x) − ξ(y))

|x− y|d+sp
d(x, y)

=
1

2

∫
R2d

(u(x) − u(y))p−1 (ξ(x− z) − ξ(y − z))

|R−1(x− z) −R−1(y − z)|d+sp
d(x, y)

=

∫
Rd

(−∆p)
su ξ(R−1(x− z)) dx

=

∫
Rd

((−∆p)
su))(Rx+ z) ξ(x) dx,

so that by Proposition 2.3.1, ((−∆p)
sw)(x) = ((−∆p)

su)(Rx+ z).

Scaling and homogeneity

We also have the following homogeneity and scaling property for linear
maps which may be viewed as a simple chain rule in this setting resulting
from the difference-based fractional derivative approximation and the
weighting |x − y|−d. For a ∈ R and k ∈ R, let w(x) := au(kx) for all
x ∈ Rd. Then for all ξ ∈ W s,(2,p),

1

2

∫
R2d

(w(x) − w(y))p−1 (ξ(x) − ξ(y))

|x− y|d+sp
d(x, y)

=
ap−1

2|k|2d

∫
R2d

(u(x) − u(y))p−1 (ξ(x/k) − ξ(y/k))

|x/k − y/k|d+sp
d(x, y)

= ap−1|k|sp−d
∫
Rd

(−∆p)
su(x) ξ(x/k) dx

= ap−1|k|sp
∫
Rd

((−∆p)
su)(kx) ξ(x) dx

so that ((−∆p)
sw)(x) = ap−1|k|sp((−∆p)

su)(kx) for all x ∈ Rd.

2.3.4 The doubly nonlinear operator (−∆p)
sφ

For Ω ⊆ Rd we restrict the variational formulation with the following
subset of (−∆p)

s

(−∆p)
s
|L1∩∞ :=

(u, v) ∈ L1∩∞ × L1∩∞

∣∣∣∣∣
u ∈ W

s,(2,p)
0 and (u, v)

satisfy (2.3.6) for all

ξ ∈ W
s,(2,p)
0

 .

(2.3.7)
Throughout this thesis we focus on the composition of (−∆p)

s
|L1∩∞ and

φ. Hence, we introduce the composition operator on L1 of the form Aφ
for A an operator on L1

µ and φ a function on R.
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Definition 2.3.3. For A an operator on L1
µ and φ a function on R, we

define the composed operator Aφ in L1
µ as a graph by

Aφ = {(u, v) ∈ L1
µ × L1

µ | (φ(u), v) ∈ A},

and interchangeably as a (possibly multi-valued) operator on L1
µ. We also

define the closure in L1 of Aφ by

AφL
1

:=

{
(u, v) ∈ L1

µ×L1
µ

∣∣∣∣∣
there exists ((uk, vk))k≥1 such that
vk ∈ Aφ(uk) ∀ k ≥ 1,
lim
k→∞

uk = u in L1 and lim
k→∞

vk = v in L1

}
.

Notation 2.3.4. In the case A = (−∆p)
s, for convenience we define

(−∆p)
sφ to be the closure (−∆p)sL1∩∞φ

L1
.

When we want to make the dependence on the domain explicit, partic-
ularly for the approximation argument in Section 2.9, we write (−∆p)

s
Ωn

,
(−∆p)

s
Ωn,1∩∞ and An instead (see also these definitions in Section 2.9).

Remark 2.3.5. As in the case of the fractional p-Laplacian, we have that
the composed operator (−∆p)

sφ on Rd is translation and rotation invari-
ant. We also have similar scaling homogeneity properties. In particular,
for k ∈ R and w(x) := u(kx), we have

((−∆p)
sφ(w))(x) = |k|sp((−∆p)

sφ(u))(kx)

for all x ∈ Rd. Moreover, when φ(r) = rm, r ∈ R with m > 0, for a ∈ R,
we have (−∆p)

s(au)m = am(p−1)(−∆p)
sum.

Existence results for the composed operator Aφ

We may also extend the domain of an operator defined on L1∩∞
µ in the

following manner introduced by [22].

Definition 2.3.6. For an operator A defined on L1∩∞
µ ×L1

µ we can extend
the domain to

D̃(A) =

u ∈ L1∩∞

∣∣∣∣∣∣∣
∃ (un, hn)n≥1 ⊆ A such that

un → u in L1 and

(un, hn)n≥1 is bounded in L∞ × L1

 .

Note that D(A) ⊆ D̃(A) ⊆ L1
µ. Then for φ(u0) ∈ D̃((∂L1E)|L1∩∞

) we

have the following theorem for existence of strong solutions from [22].
Note that here β corresponds to φ−1 in our setting and v to φ(u). The
statement in [22] also uses a slightly different implementation of the sub-
differential, closer to ∂L∞E (giving potentially a larger operator), however
this does not affect the proof. A similar result for the homogeneous evo-
lution problem can be found in [50].
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Theorem 2.3.7 ([22, Theorem 4.1], Existence of strong solutions). Let
Ω be an open domain in Rd, d ≥ 1, with finite measure and T > 0.
Suppose E : L2 → [0,∞] is a lower semicontinuous function with E(0) =
0 satisfying (2.2.15) for X = L2, β ∈ ACloc(R) is nondecreasing with
β(R) = R. For every v0 ∈ D̃((∂L1E)|L1∩∞

) and f ∈ BV ((0, T );L1) ∩
L1(0, T ;L1) ∩ L1(0, T ;L∞), there exists v ∈ L∞((0, T ) × Ω) such that
u = β(v) ∈ W 1,∞(0, T ;L1) is the unique strong solution to{

u′(t) + (∂L1E)|L1∩∞
v(t) ∈ f(t) for a.e. t ∈ (0, T ),

u(0) = β(v0).
(2.3.8)

We also have the following regularity result from [22] for strong solu-
tions to subgradient problems with such a nonlinear composition φ.

Theorem 2.3.8 ([22, Theorem 1.1]). Let (Σ, µ) be a measure space.
If w ∈ W 1,1((0, T );L1

µ), v ∈ L1
loc(R) and

u =

∫ w

0

v(r) dr ∈ BV (0, T ;L1
µ) ∩ L1((0, T );L1

µ)

then u ∈ W 1,1((0, T );L1
µ) and for a.e. t ∈ (0, T )

du

dt
(t) = v(w(t))

dw

dt
(t)

for µ-a.e. x ∈ Σ.

2.4 Existence and uniqueness of mild solu-

tions

We now prove accretivity and density results for composed operators
arising from the subdifferential of a convex, lower semicontinuous func-
tional. We then apply these results using the nonlinear semigroup theory
summarized in Section 2.2 to the doubly nonlinear operator (−∆p)

sφ to
prove Theorem 2.1.1.

In comparison with Theorem 2.3.7, the domain of initial data is not
restricted to the domain of the subdifferential or the extension given
in Definition 2.3.6, but rather the closure of this domain in L1 (see, in
particular, [12, Section 4]).

2.4.1 Accretivity and density results for (∂E)|L1∩∞φ

We first prove the following key result for subdifferential operators of the
form (∂E)|L1∩∞φ

L1
+ F . In particular, we obtain m-T -accretivity with

complete resolvent when F is a Lipschitz perturbation. This follows
from [50, Proposition 2.17 and Proposition 2.19]. A comparable result
can also be found for operators defined on finite measure spaces (Σ, µ)
in [22, pg. 22].
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Theorem 2.4.1. Suppose (Σ, µ) is a σ-finite measure space, E : L2
µ →

[0,∞] is convex, lower semicontinuous with E(0) = 0 and satisfying
(2.2.15). Let φ ∈ C(R) be strictly increasing with φ(0) = 0 and sat-
isfying

[βλ(u), (∂E)|L1∩∞u]1 ≥ 0 (2.4.1)

and
[βλ(u), (∂E)|L1∩∞u]2 ≥ 0 (2.4.2)

for every λ > 0 and u ∈ D((∂E)|L1∩∞ ), where β = φ−1 and βλ := λ−1(I−
(I + λβ)−1) is the Yosida approximation of β. Suppose F : L1

µ → L1
µ

satisfies the Lipschitz property

|F (u) − F (û)| ≤ ω|u− û| on Σ (2.4.3)

for all u, û ∈ L1
µ with constant ω ≥ 0 and satisfies F (0) = 0. Then

(∂E)|L1∩∞φ
L1

+F is ω-quasi m-T -accretive in L1
µ with complete resolvent.

Proof. Since E is convex and attains its global minumum at 0, we have
that (0, 0) ∈ ∂E . Then by the complete accretivity property, ∂E has com-
plete resolvent. Hence ∂E is m-completely accretive in L2 with complete
resolvent so that (∂E)|L1∩∞ is also completely accretive. Since φ is injec-
tive, we have by [50, Proposition 2.17] that (∂E)|L1∩∞φ is T -accretive
in L1

µ with complete resolvent. Then we can apply [50, Proposition
2.19] to obtain the range condition for the closure and hence that the
operator A := (∂E)|

L1∩∞
µ

φL
1
µ + F is ω-quasi m-accretive in L1

µ with com-

plete resolvent. To see that this is T -accretive in L1
µ, it is sufficient

to prove that for all (u, v), (û, v̂) ∈ A there is a w ∈ L∞
µ such that

w(x) ∈ sign+(u(x) − û(x)) for a.e. x ∈ Σ and∫
Σ

w(v − v̂) dµ ≥ 0. (2.4.4)

We refer to [50, pg. 14] and [17]. Since ∂E is completely accretive,
applying [18, Proposition 2.2] we have that for all (u, v), (û, v̂) ∈ ∂E ,∫

Σ

T (u− û)(v − v̂) dµ ≥ 0

whenever T ∈ C∞(R) satisfies 0 ≤ T ′ ≤ 1, T ′ has compact support and
T (0) = 0. Applying this to φ(u) and φ(û),∫

Σ

T (φ(u) − φ(û))
(

(∂E))|
L1∩∞
µ

φ(u) − (∂E))|
L1∩∞
µ

φ(û)
)

dµ ≥ 0.

Approximating sign+ by such T , applying dominated convergence and
noting that φ is strictly increasing, we have∫

u>û

sign+(u− û)
(

(∂E))|
L1∩∞
µ

φ(u) − (∂E))|
L1∩∞
µ

φ(û)
)

dµ ≥ 0.

By the Lipschitz condition on F , the perturbed operator A satisfies
(2.4.4) and so is T -accretive in L1.
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As mentioned in Section 2.2.1, m-accretivity in L1 provides existence
of mild solutions to the associated Cauchy problem (2.2.1) for all initial
data u0 ∈ D(A)L

1
, where in this case A = (∂E)|L1∩∞φ

L1
+ F . Hence, in

order to apply our regularity results to all initial data in L1, we use the
following density result for the composition operator (∂E)|L1∩∞φ. This
generalizes the classic density result for subdifferential operators (cf. [34]
or [12, Proposition 1.6]) and in particular generalizes an idea from [12,
p.48]. Note that we define u+ := max{u, 0} and u− := min{u, 0}.

Theorem 2.4.2 (Density of D((∂E)|
L1∩∞
µ

φ) in L1
µ). Let (Σ, µ) be a σ-

finite measure space, E : L2
µ → (−∞,∞] a proper, lower semicontinuous,

convex functional, and φ ∈ C(R) be a strictly increasing and surjective
function satisfying φ(0) = 0. Suppose that (0, 0) ∈ (∂E)|

L1∩∞
µ

, (∂E)|
L1∩∞
µ

is completely accretive and the Yosida approximation of φ satisfies (2.4.1)
and (2.4.2). Finally, we require that for every u ∈ D(Eφ), one has that
u+ and u− ∈ D(Eφ). Then the domain D((∂E)|L1∩∞φ) is a dense subset
of D(Eφ) in L1.

In particular, if the set D(E|L1∩∞
µ

φ) is dense in L1
µ, then D((∂E)|

L1∩∞
µ

φ)

is also dense in L1
µ. We note that the condition (0, 0) ∈ (∂E)|

L1∩∞
µ

will

hold if E(0) = 0. In specific cases of A and φ, the density of D(Aφ) in
L1 has been proved: for example, Evans [60, Sect. 2, Proposition 1] for
A = −∆ in L1 and φ : R → R increasing and φ−1 Lipschitz continuous,
or Igbida [74, Proposition 2.1] for A = − div(|∇·|p−2∇·) in L1∩∞ and
φ(r) = |r|m−1r for r ∈ R and m ≥ 1.

Proof of Theorem 2.4.2. Applying [50, Lemma A.3.1] to ∂E|
L1∩∞
µ

, we ob-

tain that for every λ > 0, every ε > 0 sufficiently small, and every
u ∈ D(E|L1∩∞

µ
◦ φ), there is a unique uλ ∈ D(∂E|

L1∩∞
µ

◦ φ) satisfying

uλ + λ
(
εφ(uλ) + ∂E|

L1∩∞
µ

φ(uλ)
)
∋ u,

or equivalently, there exists vλ ∈ ∂E|
L1∩∞
µ

φ(uλ) such that

uλ + λ (εφ(uλ) + vλ) = u. (2.4.5)

Multiplying (2.4.5) by φ(uλ) − φ(u) gives(
uλ − u, φ(uλ) − φ(u)

)
L2
µ

= − λε
(
φ(uλ), φ(uλ) − φ(u)

)
L2
µ

− λ
(
vλ, φ(uλ) − φ(u)

)
L2
µ
.

The first term on the right-hand side can be estimated by

−
(
φ(uλ), φ(uλ) − φ(u)

)
L2
µ

= −
(
φ(uλ) − φ(u), φ(uλ) − φ(u)

)
L2
µ

−
(
φ(u), φ(uλ) − φ(u)

)
L2
µ

≤ ∥φ(u)∥22 + ∥φ(uλ)∥∞∥φ(u)∥1
≤ ∥φ(u)∥22 + sup

[−∥u∥∞,∥u∥∞]

∥φ∥∞∥φ(u)∥1,
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and since vλ ∈ ∂E|
L1∩∞
µ

φ(uλ) and noting that E(φ(uλ)) ≥ 0, it follows

that

−
(
vλ, φ(uλ) − φ(u)

)
L2
µ

= −
(
(∂E)φ(uλ), φ(uλ) − φ(u)

)
L2
µ

≤ − (E(φ(uλ)) − E(φ(u)))

≤ E(φ(u))

for all λ > 0. Thus, and since φ is increasing, we have shown that

0 ≤ (uλ − u, φ(uλ) − φ(u))L2
µ
≤ λ E(φ(u)) + λε∥φ(u)∥22

+ λε sup
[−∥u∥∞,∥u∥∞]

∥φ∥∞∥φ(u)∥1

for all λ > 0, from where we can conclude that

lim
λ→0+

∫
Σ

(uλ − u)(φ(uλ) − φ(u)) dµ = 0.

Since

fλ(x) := (uλ(x) − u(x))(φ(uλ(x) − φ(u(x))) ≥ 0 µ-a.e. on Σ,

the latter limit means that fλ → 0 in L1
µ. After possibly passing to a

subsequence, which we denote by (λn)n∈N, we know that

lim
n→∞

fλn(x) = 0 for µ-a.e. x ∈ Σ,

which due to the strict monotonicity of φ implies that

lim
n→∞

uλn(x) = u(x) for µ-a.e. x ∈ Σ. (2.4.6)

It remains to find a dominating function for a subsequence of (uλn)n∈N
in L1

µ so that we would have convergence in L1
µ and thereby density. For

this we estimate uλ pointwise above and below by replacing u with u+

and u− in (2.4.5).
We recall from [50, Lemma 2.2.1] that if uλ ≥ 0 for all λ > 0, then the

µ-pointwise limit (2.4.6) together with the fact that uλ satisfies

∥uλ∥1 ≤ ∥u∥1 for all λ > 0, (2.4.7)

implies that uλ → u in L1
µ.

We now denote A := ∂E|
L1∩∞
µ

. Let u+,λ := Jεφ1+Aφ
λ (u+), where u+ =

u∨0 is the positive part of u. Since εφ1+Aφ is T -accretive in L1
µ (cf. [50,

Proposition 2.3.6]), one has that u+,λ ≥ 0 for all λ > 0. Moreover, by the
above argument, u+,λ satisfies (2.4.6) and (2.4.7). Therefore one has that
u+,λ → u+ in L1

µ. Next, let u− = (−u) ∨ 0 be the negative part of u and

set u−,λ := Jεφ1+Aφ
λ (−u−). Then, one also has that u−,λ satisfies (2.4.6)

and so, in particular, −u−,λ satisfies (2.4.6). Since −u−,λ is positive
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and satisfies (2.4.7), it follows that −u−,λ → −u− in L1
µ. Moreover, for

uλ := Jεφ1+Aφ
λ u, one has that

−u−,λ ≤ uλ ≤ u+,λ for every λ > 0.

From this sandwich inequality and since u+,λ → u+ in L1
µ and −u−,λ →

−u− in L1
µ, one can extract from every zero sequence (λn)n≥0 a subse-

quence (λkn)n≥1 and finds a positive function g ∈ L1
µ such that |uλkn | ≤ g

µ-a.e. on Σ for all n ≥ 1. Thus, by Lebesgue’s dominated convergence
theorem, it follows that uλkn → u in L1

µ as n → ∞ and, thereby we
have shown that the domain D(∂E|

L1∩∞
µ

◦ φ) lies dense in the closure

D(E|L1∩∞
µ

◦ φ)L
1
µ of D(E|L1∩∞

µ
◦ φ) with respect to the L1

µ-norm topol-
ogy.

We check conditions (2.2.15), (2.4.1) and (2.4.2) in the case of the
fractional p-Laplacian, where E is given by (2.0.4) in order to apply
Theorem 2.4.1 and Theorem 2.4.2.

Lemma 2.4.3. Let Ω be an open domain in Rd, d ≥ 1, 0 < s < 1 and
p > 1. Then the energy functional E given by (2.0.4) satisfies (2.2.15).
Moreover, for φ : R → R such that φ is bijective, increasing and sat-
isfies φ(0) = 0, E satisfies (2.4.1) and (2.4.2) for every λ > 0 and
u ∈ D((−∆p)

s
|L1∩∞).

Proof. It is sufficient to show that E satisfies (2.2.15) for every v and
v̂ ∈ D(E). For given x, y ∈ Rd, set a = v(x) − v(y) and b = v̂(x) − v̂(y),
and let q ∈ C∞(R) satisfying q(0) = 0 and 0 ≤ q′ ≤ 1. Since 0 ≤ q′ ≤ 1,
there is a k ∈ [0, 1] such that q(b−a) = k(b−a). Then, by the convexity
of | · |p, one has that

|ka+ (1 − k)b|p + |(1 − k)a+ kb|p ≤ |a|p + |b|p

holds, and so we have

|b− q(b− a))|p + |a+ q(b− a)|p ≤ |a|p + |b|p.

Therefore (2.2.15) follows by integrating over R2d with respect to |x −
y|−d−sp dx dy.

Since φ is increasing, φ−1 is also increasing and so for λ ≥ 0,

|a− b| ≤ |a− b+ λ(φ−1(a) − φ−1(b))|

for all a, b ∈ R. Further, φ(0) = 0 implies βλ(0) = 0 and so βλ is
Lipschitz continuous. Hence u ∈ D((−∆p)

s
|L1∩∞) implies that βλ(u) ∈

W s,p
0 ∩ L2. It then follows from the characterization of (−∆p)

s given in
Proposition 2.3.1 that the part (−∆p)

s
|L1∩∞ of (−∆p)

s in L1∩∞ × L1∩∞

satisfies (2.4.2).
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For (2.4.1) we approximate sign0 in the following way as done in [50]
for the p-Laplacian. We define the sequence (γε)ε>0 ⊂ C(R) by

γε(r) =


1 if r > ε,
r
ε

if −ε ≤ r ≤ ε,

−1 if r < −ε,

for r ∈ R. Then for all ε > 0 and λ > 0, γε(βλ) is bounded and
locally Lipschitz continuous so that γε(βλ(u)) ∈ W s,p

0 ∩L2 and using the
characterization of (−∆p)

s,∫
Ω

(
(−∆p)

s
|L1∩∞u

)
γε(βλ(u)) dx ≥ 0 (2.4.8)

for all u ∈ D((−∆p)
s
|L1∩∞). Moreover we have the bound γε(βλ(·)) ≤ 1

on R,

lim
ε→0+

γε(βλ(u(x))) = sign0(βλ(u(x))) for a.e. x ∈ Ω,

and (−∆p)
s
|L1∩∞u ∈ L1, so we can apply dominated convergence to (2.4.8)

to obtain (2.4.1) when taking ε→ 0+.

Hence we may apply Theorem 2.4.1 to the doubly nonlinear operator
(−∆p)

sφ to obtain the following corollary.

Corollary 2.4.4. Let Ω be an open domain in Rd, d ≥ 1. Suppose
F : L1 → L1 satisfies the Lipschitz property (2.4.3) for all u, û ∈ L1

with constant ω ≥ 0 and satisfies F (0) = 0. Suppose φ ∈ C(R) such
that φ is bijective, increasing and satisfies φ(0) = 0. Then the operator
(−∆p)

sφ+ F is ω-quasi m-T -accretive in L1 with complete resolvent.

We can now apply this accretivity result for (−∆p)
sφ and the previous

density result to obtain existence of unique mild solutions.

Proof of Theorem 2.1.1. Let E be given by (2.0.4) and φ, f satisfy (2.0.1)
and (2.0.3a)-(2.0.3b), respectively. Then, it follows from Corollary 2.4.4
that (−∆p)

s is m-completely accretive and (−∆p)
s
|L1∩∞ satisfies (2.4.1)

and (2.4.2) with respect to the Yosida approximation βλ of φ−1. Further,
under the hypothesis φ ∈ W 1,∞

loc (R), one has that

[φ(ξ)]s,p ≤ ∥φ′∥L∞(−∥ξ∥∞,∥ξ∥∞) [ξ]s,p

for every ξ ∈ C∞
c (Ω), and if φ ∈ W 1,q

loc (R) for q > 1/(1−s), then Hölder’s
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inequality yields that∫
Rd

∫
Rd

|φ(ξ(x)) − φ(ξ(y))|p

|x− y|d+sp
dy dx

=

∫
Rd

∫
Rd

|
∫ ξ(x)
ξ(y)

φ′(r) dr|p

|x− y|d+sp
dy dx

≤
∫
Rd

∫
Rd

∣∣∣∣(∫ ξ(x)ξ(y)
|φ′(r)|q dr

) p
q

∣∣∣∣ |ξ(x) − ξ(y)|
p
q′

|x− y|d+sp
dy dx

≤ ∥φ′∥pLq(−∥ξ∥∞,∥ξ∥∞)

∫
Rd

∫
Rd

|ξ(x) − ξ(y)|
p
q′

|x− y|d+sp
dy dx

= ∥φ′∥pLq(−∥ξ∥∞,∥ξ∥∞) [ξ]sq′, p
q′

for every ξ ∈ C∞
c (Ω). In the last estimate, we note that q > 1/(1 − s) is

equivalent to 0 < sq′ < 1 and hence the seminorm, [ξ]sq′, p
q′

is finite. Thus,

under either condition φ ∈ W 1,∞
loc (R) or φ ∈ W 1,q

loc (R) for q > 1/(1 − s),
one has that the set C∞

c (Ω) is contained in D(E|L1∩∞φ) and dense in
L1. Thus Theorem 2.4.2 implies that under those conditions on φ, the
domain D((−∆p)

s
|L1∩∞φ) is dense in L1.

Since by Corollary 2.4.4, the operator (−∆p)
sφ + F is m-T accretive

in L1 with complete resolvent, it follows from standard semigroup theory
(e.g. [12, Corollary 4.2]) that for every u0 ∈ D(E|L1∩∞ ◦ φ)L

1
, there exists

a unique mild solution u to problem (1.2.1). Moreover this mild solution
satisfies growth estimate (2.1.2) (see also Lemma 2.7.3) and (2.1.3) for
ν = 1 (e.g. [12, Theorem 4.1]). The case ν = + follows in the same way,
applying the T -contractivity condition of the resolvent. This completes
the proof of this theorem.

2.5 Strong solutions on domains with finite

volume

We now consider strong solutions on domains with finite Lebesgue mea-
sure, applying Theorem 2.3.7 to show that for φ strictly increasing with
φ(0) = 0 and φ−1 ∈ ACloc(R), mild solutions to (1.2.1) are in fact strong
distributional solutions. Moreover, we obtain general derivative and en-
ergy estimates for such φ when Ω is a general open domain in Rd. We
later refine these in the case φ(r) = rm to obtain the estimates of Theo-
rem 2.1.6.

We first introduce a Lipschitz continuity result for mild solutions of
(1.2.1) with initial data u0 ∈ L1 satisfying φ(u0) ∈ D((−∆p)

s
|L1∩∞). For

this, we define

V (g, t+) := lim sup
h→0+

∫ t−h

0

∥g(τ + h) − g(τ)∥1
h

dτ
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and for t ∈ [0, T ), g(t+) is the essential limit of g from the right.
This result is presented in [21, Lemma 7.8] in the setting of T -accretive

operators. However, considering the potential availability of [21], we
include the short proof for completeness.

Lemma 2.5.1 ([21, Lemma 7.8]). Let Ω be an open domain in Rd, d ≥ 1
and T > 0. Let 1 < p < ∞, 0 < s < 1, φ ∈ C(R) satisfy (2.0.1) and
φ−1 ∈ ACloc(R). Suppose f(·, u) satisfies (2.0.3a)-(2.0.3b) and let F be
the Nemystkii operator of f . Further suppose that g ∈ BV (0, T ;L1) ∩
L1(0, T ;L1∩∞), u0 ∈ L1 and φ(u0) ∈ D((−∆p)

s
|L1∩∞). Then the mild

solution u of (1.2.1) is Lipschitz continuous in L1 for all t ∈ (0, T ) with
Lipschitz constant

L := eωT∥g(0+) − (−∆p)
sφ(u0)∥1 + V (g, T+)

+ ω

∫ T

0

eω(T−τ)V (g, τ+) dτ.
(2.5.1)

Proof. Let h ∈ (0, T ) and t ∈ [0, T − h]. From the growth estimate
(2.1.3), we obtain

∥u(t+ h) − u(t)∥1 ≤ eωt∥u(h) − u0∥1

+

∫ t

0

eω(t−τ)∥g(τ + h) − g(τ)∥1 dτ
(2.5.2)

noting the definition of [·, ·]1 given by (2.2.4) for the term involving g.
Using (2.1.3) again, now with the constant solution obtained by setting
g2(t) = u0 for t ∈ [0, h],

∥u(h) − u0∥1 ≤
∫ h

0

eω(h−τ)∥g(τ) − (−∆p)
sφ(u0)∥1 dτ.

Dividing (2.5.2) by h and taking the limit supremum as h→ 0+, we then
have the Lipschitz estimate (2.5.1).

We now prove the existence of strong distributional solutions.

Proof of Theorem 2.1.2. By Theorem 2.1.1, for every u0 ∈ L1, there
is a unique mild solution to Cauchy problem (1.2.1). Now, let u0 ∈
D̂((−∆p)

s
|L1∩∞φ). Then by the definition of D̂ given in (2.1.4), there ex-

ists a sequence (vn, wn) ∈ (−∆p)
s
|L1∩∞ for n ∈ N such that vn → φ(u0) in

L1 as n→ ∞ and (wn)n∈N is bounded in L1. Since (vn)n∈N is bounded in
L∞ and Ω has finite measure, φ−1(vn) ∈ L1∩∞ uniformly for n ∈ N. Let
(un)n∈N be the mild solutions with initial data φ−1(vn). By Lemma 2.5.1,
each un is Lipschitz continuous on [0, T ]. Hence estimating the Lipschitz
continuity of u,

∥u(t+ h) − u(t)∥1 ≤ ∥un(t+ h) − un(t)∥1 + (1 + eωh)∥u(t) − un(t)∥1
≤ Lnh+ 2eω(t+h)∥u0 − un(0)∥1
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for all n ∈ N. We note that since wn is bounded in L1, Ln is bounded uni-
formly for all n ∈ N. Since vn converges to φ(u0) in L1, we have pointwise
convergence of un(0) to u0 almost everywhere in Ω. Hence, using the uni-
form bound for vn in L∞, we can take the limit supremum as n→ ∞ and
apply Fatou’s lemma to obtain Lipschitz continuity for u. Then by the
Lipschitz continuity of F we have that F (u) ∈ BV ((0, T );L1). Moreover
by the standard growth estimate (2.1.2), since D̃((−∆p)

s
|L1∩∞) ⊂ L∞,

u ∈ L∞([0, T ];L∞) and so F (u) ∈ L1(0, T ;L∞). Applying Theorem
2.3.7 with forcing term g̃ = −F (u) + g we have that u ∈ W 1,∞(0, T ;L1)
is a strong distributional solution to (1.2.1).

The chain rule (2.1.5) follows from the proof of [22, Theorem 4.1] and
we have u ∈ C([0, T ];Lq) for 1 ≤ q < ∞ due to the regularity of mild
solutions in L1. Multiply the doubly nonlinear problem (1.2.1) by d

dt
φ(u)

to obtain

φ′(u)

∣∣∣∣dudt
∣∣∣∣2 +

d

dt
E(φ(u(t))) + (F (u(t)) − g(t))

du

dt
(t)φ′(u(t)) = 0

giving (2.1.6).

We now introduce a lemma to obtain similar derivative and energy
estimates to Theorem 2.1.6 for a more general class of subdifferential
operators and nonlinearities φ. In particular, we consider the problem

∂u

∂t
+ AφL

1
u+ f(x, u) = g(x, t) in Ω × (0, T ),

u = 0 in Rd \ Ω × (0, T ),

u(x, 0) = u0(x) on Ω,

(2.5.3)

where A is the subdifferential in L1 of a proper, lower semicontinuous
convex functional E : L2 → (−∞,∞]. Here we use the notation Φ(r) :=∫ r
0
φ(s) ds for r ∈ R and φ ∈ C(R).
We first prove an intermediate result which we will further estimate

differently depending on the regularity of φ to obtain estimates with
differing dependence on the forcing term g.

Lemma 2.5.2. Let Ω be an open domain in Rd, d ≥ 1 and T > 0. Let
A := (∂L1E)|L1∩∞ where E : L2 → (−∞,∞] is a proper, lower semi-
continuous, convex functional satisfying (2.2.15) and E(0) = 0. Let
φ ∈ C(R) be a strictly increasing function such that φ−1 ∈ ACloc(R)
and φ(0) = 0. Suppose that f(·, u) satisfies (2.0.3a)-(2.0.3b) and g ∈
L1(0, T ;L1∩∞). Then every strong distributional solution u of (2.5.3) in
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L1 satisfies

1

2

∫ t

0

sk+2

∫
Ω

φ′(u)

∣∣∣∣duds
∣∣∣∣2 dx ds+ tk+2E(φ(u(t)))

≤ (k + 2)

∫ t

0

(k + 1 + ωs)sk∥uφ(u)∥1 ds

+

∫ t

0

(
(k + 2)2 + ω2s2

)
sk∥u2φ′(u)∥1 ds

+ (k + 2)

∫ t

0

sk+1

∫
Ω

gφ(u) dx ds

+

∫ t

0

sk+2

∫
Ω

gφ′(u)
du

ds
dx ds

(2.5.4)

for all t ∈ (0, T ] and k > −1.

Proof. We write v := φ(u). Multiplying (2.5.3) by sk+2 dv
dt

for k > −1,

we can estimate u in W 1,2
loc ((0, T ];L2), as in [22], by∫ t

0

sk+2

∫
Ω

φ′(u(s))

∣∣∣∣duds
∣∣∣∣2 dx ds+ tk+2E(φ(u(t)))

= (k + 2)

∫ t

0

sk+1E(φ(u(s))) ds

+

∫ t

0

sk+2

∫
Ω

(g(s) − F (u(s)))
dv

ds
(s) dx ds.

(2.5.5)

Estimating
∫ t
0
sk+1E(v(s)) ds, we note that A is the subdifferential of E ,

so
⟨A(v(s)) − A(0), 0 − v(s)⟩ ≤ E(0) − E(v(s))

for all 0 < s ≤ T . Then we estimate E(v(s)) by

E(v) ≤ −
∫
Ω

du

ds
v dx−

∫
Ω

F (u)v dx+

∫
Ω

gv dx (2.5.6)

for 0 < s ≤ T . Since φ is increasing,

Φ(r) ≤ φ(r)r for all r ∈ R.

We multiply (2.5.6) by sk+1 and integrate over (0, t) to obtain∫ t

0

sk+1E(v(s)) ds+ tk+1

∫
Ω

Φ(u(t)) dx

≤ (k + 1)

∫ t

0

sk
∫
Ω

Φ(u(s)) dx ds

+

∫ t

0

sk+1

∫
Ω

u(s)
dv

ds
(s) ds

+

∫ t

0

sk+1

∫
Ω

(g(s) − F (u(s))) v dx ds.

(2.5.7)
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Since φ(0) = 0 and φ is non-decreasing, Φ(r) ≥ 0 for all r ∈ R and ε > 0.
Hence ∫

Ω

Φ(u(t)) dx ≥ 0

for all 0 < t ≤ T . Then returning to (2.5.5) we can estimate
∫ t
0
sk+1E(v(s)) ds,

giving∫ t

0

sk+2

∫
Ω

φ′(u)

∣∣∣∣duds
∣∣∣∣2 dx ds+ tk+2E(φ(u(t)))

= (k + 2)(k + 1)

∫ t

0

sk
∫
Ω

Φ(u(s)) dx ds+ (k + 2)

∫ t

0

sk+1

∫
Ω

u
dv

ds
ds

+ (k + 2)

∫ t

0

sk+1

∫
Ω

(g(s) − F (u)) v dx ds

+

∫ t

0

sk+2

∫
Ω

(g(s) − F (u))
dv

ds
dx ds,

where we leave the dependence u = u(s) implicit in these integrals. Fur-
ther, estimating Φ(u) and applying the Lipschitz property of F ,∫ t

0

sk+2

∫
Ω

φ′(u)

∣∣∣∣duds
∣∣∣∣2 dx ds+ tk+2E(φ(u(t)))

≤ (k + 2)

∫ t

0

(k + 1 + ωs)sk∥uφ(u)∥1 ds

+

∫ t

0

(k + 2 + ωs) sk+1

∫
Ω

|u|φ′(u)

∣∣∣∣duds
∣∣∣∣ dx ds

+ (k + 2)

∫ t

0

sk+1

∫
Ω

gφ(u) dx ds

+

∫ t

0

sk+2

∫
Ω

g
dv

ds
dx ds.

(2.5.8)

Applying Young’s inequality, we combine
∣∣du
ds

∣∣ terms to obtain (2.5.4).

We now extend (2.5.4) when g has bounded variation in L1.

Lemma 2.5.3. Suppose Ω is an open domain in Rd, d ≥ 1 and T > 0.
Let A := (∂L1E)|L1∩∞ where E : L2 → (−∞,∞] is a proper, lower semi-
continuous, convex functional satisfying (2.2.15) and E(0) = 0. Let φ sat-
isfy (2.0.1) and φ−1 ∈ ACloc(R). Suppose that f(·, u) satisfies (2.0.3a)-
(2.0.3b) and g ∈ BV (0, T ;L1) ∩ L1(0, T ;L1∩∞). Then every strong dis-
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tributional solution u of (2.5.3) in L1 with u0 ∈ L∞ satisfies

1

2

∫ t

0

sk+2

∫
Ω

φ′(u(s))

∣∣∣∣duds
∣∣∣∣2 dx ds+ tk+2E(φ(u(t)))

≤ (k + 2)

∫ t

0

(k + 1 + ωs)sk∥uφ(u)∥1 ds

+

∫ t

0

(
(k + 2)2 + ω2s2

)
sk∥u2φ′(u)∥1 ds

+ lim
h→0+

1

h

∫ t−h

0

sk+2∥g(s+ h) − g(s)∥1 ds ∥φ(u)∥L∞(0,t;L∞)

+ 2(k + 2)

∫ t

0

sk+1∥g(s)∥1 ds ∥φ(u)∥L∞(0,t;L∞)

(2.5.9)

for all t ∈ (0, T ] and k > −1.

Proof. We integrate the last term of (2.5.4) by parts, giving∫ t

0

sk+2

∫
Ω

g
dv

ds
dx ds

≤ lim
h→0+

1

h

∫ t−h

0

∥(s+ h)k+2g(t+ s) − sk+2g(s)∥1 ds ∥v∥L∞(0,t;L∞)

≤ lim
h→0+

1

h

∫ t−h

0

sk+2∥g(s+ h) − g(s)∥1 ds ∥φ(u)∥L∞(0,t;L∞)

+ (k + 2)

∫ t

0

sk+1∥g(s)∥1 ds ∥φ(u)∥L∞(0,t;L∞).

Before extending the estimates of this section further in the case φ(r) =
rm, r ∈ R with m > 0, we introduce the following refined version of the
dissipative estimate for T -accretive operators and an L1−L∞ regularizing
effect.

2.6 Refined dissipation in L1

Due to the L1 setting that we have introduced for (−∆p)
sφ and, in

particular, the T -accretivity properties, we find dissipation of differences
(u1 − u2)

+ in L1 for solutions to (1.2.1). This follows the case of the
evolution fractional p-Laplacian given by [121]. We note that this is
a refinement of (2.1.3), the difference being that here we keep the full
(−∆p)

sφ(u) terms when estimating rather than applying T -accretivity
to estimate these by zero. Due to this we cannot use the T -accretivity
directly.

We note that in the case f ≡ 0 and g1 ≤ g2 this provides a strict
dissipative effect for (u1−u2)

+ whenever we have a non-zero set of times
t with | {u1 > u2 } | > 0 and | {u1 ≤ u2 } | > 0.
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Theorem 2.6.1. Let Ω be an open domain in Rd, d ≥ 1 and T >
0. Suppose φ satisfies (2.0.1), f satisfies (2.0.3a)-(2.0.3b) and g1, g2 ∈
L1(0, T ;L1). We consider u1, u2 to be two strong distributional solutions
to (1.2.1) in L1. Then for all 0 < t1 < t2 < T ,

∥[u1 − u2]
+(t2)∥1 ≤ eω(t2−t1)∥[u1 − u2]

+(t1)∥1 −
1

2

∫ t2

t1

I(τ) dτ

+ eω(t2−t1)
∫ t2

t1

∫
{u1>u2 }

(g1 − g2)
+ dx dτ

−
∫ t2

t1

∫
{u1>u2 }

(g2 − g1)
+ dx dτ

(2.6.1)

where for all τ ∈ [0, T ], omitting τ in u1(x, τ) etc., I(τ) is given by∫
D(τ)

|(φ(u1(x)) − φ(u1(y)))p−1 − (φ(u2(x)) − φ(u2(y)))p−1|
|x− y|d+sp

d(x, y)

(2.6.2)
with the domain of integration

D(τ) = {u1(x, τ) > u2(x, τ), u1(y, τ) ≤ u2(y, τ) }
∪ {u1(x, τ) ≤ u2(x, τ), u1(y, τ) > u2(y, τ) } .

Proof. We multiply (1.2.1) by sign+
0 (u1 − u2) and integrate over Ω ×

(t1, t2). Then

∥[u1 − u2]
+(t1)∥1 − ∥[u1 − u2]

+(t2)∥1

=

∫ t2

t1

∫
Ω

((−∆p)
sφ(u1) − (−∆p)

sφ(u2))1{u1>u2 } dx dτ

+

∫ t2

t1

∫
Ω

(F (u1) − F (u2))1{u1>u2 } dx dτ

−
∫ t2

t1

∫
Ω

(g1 − g2)1{u1>u2 } dx dτ

We evaluate the fractional p-Laplacian term as in [121, Section 5], noting
that φ strictly increasing implies that 1{u1>u2 } = 1{ϕ(u1)>ϕ(u2) }. Here we
omit the time dependence of u1(x, τ) and u2(x, τ) for brevity of notation.
We have, for τ ∈ (0, T ),∫

Ω

((−∆p)
sφ(u1) − (−∆p)

sφ(u2))1ϕ(u1)>ϕ(u2) dx

=
1

2

∫
R2d

(φ(u1(x)) − φ(u1(y)))p−1 − (φ(u2(x)) − φ(u2(y)))p−1

|x− y|d+sp

× (1{ϕ(u1(x))>ϕ(u2(x)) } − 1{ϕ(u1(y))>ϕ(u2(y)) })d(x, y).

(2.6.3)

Looking at the integrand, we notice that

1{ϕ(u1(x))>ϕ(u2(x)) } − 1{ϕ(u1(y))>ϕ(u2(y)) } (2.6.4)
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is 1 if and only if both u1(x) > u2(x) and u1(y) ≤ u2(y). Similarly,
(2.6.4) is −1 if and only if u1(x) ≤ u2(x) and u1(y) > u2(y). Otherwise,
this difference term is zero. So in both cases where (2.6.4) is non-zero,
the integrand of (2.6.3) will be positive and in fact we can write∫

Ω

((−∆p)
sφ(u1) − (−∆p)

sφ(u2))1{u1>u2 } dx = I(τ)

with I given by (2.6.2).
Importantly, this provides a dissipative effect for this difference u1−u2

whenever | {u1 > u2 } | > 0 and | {u1 ≤ u2 } | > 0.
For the remaining terms, we have∫ t2

t1

∫
Ω

(F (u1) − F (u2))1{u1>u2 } dx dτ ≥ −ω
∫ t2

t1

∥[u1 − u2]
+∥1 dτ

and we split g1 − g2 according to its sign. Then we can group together
terms with the same sign and apply a Grönwall inequality to obtain
(2.6.1).

2.7 A general Lℓ − L∞ regularizing effect

As in Section 2.2, we state these results for Lebesgue spaces Lqµ with
1 ≤ q ≤ ∞. We note that the following theorem generalizes [104,
Theorem 2.1] and [40, Theorem 1]. While these two theorems in [40,
104] are restricted to derive Lqµ − L∞

µ regularity estimates of solutions
of parabolic diffusion problems with homogeneous forcing terms g ≡ 0
and without Lipschitz perturbations (see also [103]), the following re-
sults can also treat evolution problems involving Lipschitz continuous
nonlinearities and L∞

µ -bounded forcing terms. In particular we consider
mild solutions u to{

u′(t) + Au(t) = g(t) for a.e. t ∈ (0, T ),

u(0) = u0,
(2.7.1)

where A is quasi m-accretive in Lq0µ with complete resolvent for some
1 ≤ q0 <∞.

For λ ≥ 0, we define the signed truncator Gλ(s) := [|s| − λ]+ sign(s)
for every s ∈ R and we set 0 < T ≤ ∞. Note that q − 1 ∈ [0,∞) so we
are using the notation ∥·∥q−1 to denote the usual Lebesgue integral even
when this is not a norm. When q − 1 = 0 this is given by

∥u∥0 =

∫
Σ

sign0 (|u|) dµ.

The condition (2.7.2) for the forcing term can always be satisfied by
choosing ρ = ∞ and ψ = ∞.
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Theorem 2.7.1. Let T > 0. For 1 ≤ q < r ≤ ∞, 1 ≤ σ < r, q ≤ ρ ≤ ∞
and 1 < ψ ≤ ∞ satisfying

1
ρ
<
(

1 − 1
ψ

) (
1 − σ

r

)
if σ ≥ q,

1
ρ
≤
(

1 − 1
ψ

)(
σ
q
− σ

r

)
if σ < q,

(2.7.2)

and
1

ρ
≤ 1

q
− σ

r

(
1 − 1

ψ

)
, (2.7.3)

let g ∈ Lψ(0, T ;Lρµ)∩L1(0, T ;Lqµ) and u0 ∈ Lqµ. Suppose u ∈ C([0, T ];Lqµ)
satisfies u(0) = u0 and for some L > 0, ω ≥ 0 and every λ ≥ 0, the “level
set energy inequality”

∥Gλ(e−ωt2u(t2))∥qq + L

∫ t2

t1

eω(σ−q)s∥Gλ(e−ωsu(s))∥σr ds

≤ ∥Gλ(e−ωt1u(t1))∥qq + qλ ω

∫ t2

t1

∥Gλ(e−ωsu(s))∥q−1
q−1 ds

+ q

∫ t2

t1

e−ωs
∣∣[Gλ(e−ωsu), g(s)]q

∣∣ ds
(2.7.4)

holds for all 0 ≤ t1 < t2 ≤ T . Further, assume t 7→ Gλ(e−ωtu(t)) satisfies
the following growth estimate in the Lq-norm,

∥Gλ(e−ωtu(t))∥q ≤
∥∥Gλ(e−ωsu(s))

∥∥
q

+

∫ t

s

e−ωτ∥g(τ)1{ e−ωτ |u(τ)|>λ }∥q dτ
(2.7.5)

for all 0 ≤ s < t ≤ T . Then there exists C > 0 depending on σ, q, r, ρ,
ψ and L such that

∥u(t)∥∞ ≤ C max
{

(eωβ1t
(
1
t

+ ω
) 1
σ(1− q

r )
(
∥u0∥q + ∥g∥L1(0,t;Lq)

)γ
,

eωβ2t ∥g∥η
Lψ(0,T ;Lρ)

(
∥u0∥q + ∥g∥L1(0,t;Lq)

)γψ } (2.7.6)

for all t ∈ (0, T ] with the exponents

γ =
1
σ
− 1

r
1
q
− 1

r

, γψ =
(1− 1

ψ )( 1
σ
− 1
r )−

1
ρσ

(1− 1
ψ )( 1

q
− 1
r )−

1
ρσ

+ 1
qσ

,

β1 =


1
σ
− 1
q

1
q
− 1
r

if σ < q,

0 if σ ≥ q,
β2 =

{
η(q − σ)(1 − 1

ψ
) if σ < q,

0 if σ ≥ q,

η =
1
qσ

(1− 1
ψ )( 1

q
− 1
r )−

1
ρσ

+ 1
qσ

.

(2.7.7)

Our proof of Theorem 2.7.1 is based on a De Giorgi iteration inspired
by [104] and [40]. For this, we modify [87, Chapter 2.5, Lemma 5.6] to
prove convergence of the following recurrence relation.
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Lemma 2.7.2. Let b ≥ 1, 0 < f < 1 and M ∈ N \ { 0 }. Suppose a
sequence (yk)k≥0 in [0,∞) satisfies the recursion relation

yk+1 ≤ bk
M∑
i=1

ci y
1+δi
k for all k ∈ N

where ci and δi are positive constants for all i ∈ { 1, ...,M }. Choose

C = min
i∈{ 1,...,M }

(
c
− 1
δi

i

)
and δm = mini∈{ 1,...,M } δi. If

y0 ≤
C

M
b
− 1

δ2m ,

then

yk ≤
C

M
b
− 1

δ2m b−
k
δm for all k ∈ N. (2.7.8)

In particular, if b > 1 then yk → 0 as k → ∞.

Proof. Estimate (2.7.8) follows via induction with

yk+1 ≤ bk
M∑
i=1

ci y
1+δi
k

≤ Cbk

M

(
b
− 1

δ2m b−
k
δm

)1+δm M∑
i=1

ci

(
C

M

)δi
≤ C

M
b
− 1

δ2m b−
k+1
δm .

Proof of Theorem 2.7.1. By (2.7.4), one sees that Gλ(u) ∈ Lσ(0, T ;Lrµ)
for every λ ≥ 0. Let λ ≥ 0 and t ∈ (0, T ] and for every integer k ≥ 0, set

tk = t(1 − 2−k), λk = λ(1 − 2−k), Gk(·) = Gλk(·),

and

Uk = sup
ŝ∈[tk,t]

∥Gk(e
−ωŝu(ŝ))∥qq + L

∫ t

tk

eω(σ−q)s∥Gk(e
−ωsu(s))∥σr ds.

Then the aim is to choose λ ≥ 0 such that Uk → 0 as k → ∞. By the
continuity of t 7→ ∥Gk(e

−ωt u(t))∥qq, there is an sk ∈ (tk−1, tk) satisfying

∥Gk(e
−ωsk u(sk))∥qq = 2k

t

∫ tk

tk−1

∥Gk(e
−ωs u(s))∥qq ds. (2.7.9)



CHAPTER 2. WELL-POSEDNESS IN L1 51

Further, note that

1{|e−ωsu|>λk} ≤ 1{|e−ωsu|>λk−1}

(
2k [|e−ωsu| − λk−1]

+

λ

)ℓ
for every ℓ ≥ 0. We can then estimate

|Gk(e
−ωsu(s))|q ≤

(
2k

λ

)ℓ
|Gk−1(e

−ωsu(s))|q+ℓ (2.7.10)

on [tk−1, t] for q ≥ 0 and ℓ ≥ 0. We now aim to obtain a recurrence
relation for Uk of the form in Lemma 2.7.2. Taking a supremum over
[tk, t] in (2.7.4) we can bound Uk by

Uk ≤ 2∥Gk(e
−ωtku(tk))∥qq + 2qλk ω

∫ t

tk

∥Gk(e
−ωsu(s))∥q−1

q−1 ds

+ 2q

∫ t

tk

e−ωs|[Gk(e
−ωsu)g(s)]q| ds.

(2.7.11)

Estimating the first term by Lemma 2.7.3 and choosing sk according
to (2.7.9),

∥Gk(e
−ωtku(tk))∥qq

≤
(
∥Gk(e

−ωsku(sk))∥q +

∫ tk

sk

e−ωτ∥g(τ)1{ e−ωτ |u(τ)|>λk }∥q dτ

)q
≤ 2k+q

t

∫ tk

tk−1

∥Gk(e
−ωs u(s))∥qq ds

+ 2q
(∫ tk

sk

e−ωτ∥g(τ)1{ e−ωτ |u(τ)|>λk }∥q dτ

)q
.

Separating the g in the second term here by Hölder’s inequality, we have∫ tk

sk

e−ωτ∥g(τ)1{ e−ωτ |u(τ)|>λk }∥q dτ

≤
(∫ tk

sk

∥e−ωτg(τ)∥ψρ dτ

) 1
ψ
(∫ tk

sk

∥1{ e−ωτ |u(τ)|>λk }∥
ψ′

ρ′q
dτ

) 1
ψ′

where we choose ρ′q and ψ′ such that 1
ρ

+ 1
ρ′q

= 1
q

and 1
ψ

+ 1
ψ′ = 1,

respectively. We can then estimate Uk, extending the time integrals
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(tk−1, t), with

Uk ≤ 2k+q+1

t

∫ t

tk−1

∥Gk(e
−ωs u(s))∥qq ds

+ 2q+1∥g∥q
Lψ(tk−1,t;L

ρ
µ)

(∫ t

tk−1

∥1{ e−ωτ |u(τ)|>λk }∥
ψ′

ρ′q
dτ

) q
ψ′

+ 2qλk ω

∫ t

tk−1

∥Gk(e
−ωsu(s))∥q−1

q−1 ds

+ 2q∥g∥Lψ(tk−1,t;L
ρ
µ)

(∫ t

tk−1

∥Gk(e
−ωsu(s))∥(q−1)ψ′

(q−1)ρ′ ds

) 1
ψ′

,

where we choose 1
ρ

+ 1
ρ′

= 1.

We apply (2.7.10) to each Gk term, as well as 1{ e−ωτ |u(τ)|>λk }, with
ℓ = ε1, 1+ε1, q+ε2−ρ′q and q+ε3−(q−1)ρ′. The positive constants ε1, ε2
and ε3 will later be chosen such that ℓ ≥ 0 in each case and an appropriate
recurrence relation may be obtained. Note that the requirement ℓ ≥ 0
will be satisfied as a result of assumption (2.7.2). Then noting that
λk < λ, there exists C > 0 depending on q such that

Uk
C

≤ 2k(1+ε1)

λε1

(
1
t

+ ω
) ∫ t

tk−1

∥Gk−1(e
−ωsu(s))∥q+ε1q+ε1 ds

+
(

2k

λ

) q(q+ε2)
ρ′q ∥g∥q

Lψ(0,t;L
ρq
µ )

(∫ t

tk−1

∥Gk−1(e
−ωsu(s))∥

(q+ε2)
ψ′
ρ′q

q+ε2 dτ

) q
ψ′

+ ∥g∥Lψ(0,t;Lρµ)
(

2k

λ

) q+ε3
ρ′ −(q−1)

(∫ t

tk−1

∥Gk−1(e
−ωsu(s))∥

(q+ε3)
ψ′
ρ′

q+ε3 ds

) 1
ψ′

.

(2.7.12)

Now it remains to recover Uk−1 from integrals of the form∫ t

tk−1

∥Gk−1(e
−ωsu(s))∥(q+ε)Mq+ε ds (2.7.13)

where ε > 0 and M > 0. In particular, we set qε := q+ ε and choose ε as
follows. To obtain Uk−1 from (2.7.13) we will apply Hölder’s inequality,
so choose ε > 0 and θ ∈ [0, 1] such that

1

qε
=
θ

q
+

1 − θ

r
and (1 − θ)qεM = σ.

In particular, we choose

ε =

{
σ
M

(
1 − q

r

)
if r <∞,

σ
M

if r = ∞,
(2.7.14)
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and

θ =

{
1 − 1

1+q(Mσ − 1
r )

if r <∞,

Mq
σ+Mq

if r = ∞,
(2.7.15)

satisfying θ < 1 and ε > 0 given that M > 0. The condition θ ≥ 0
requires that M ≥ σ

r
. Since we take M = 1, ψ′

ρ′q
and ψ′

ρ′
in the case

of (2.7.12), this is satisfied by assumptions (2.7.2) and (2.7.3). Then
applying standard Lp interpolation with θ,∫ t

tk−1

∥Gk−1(e
−ωsu(s))∥qεMqε ds

≤
∫ t

tk−1

e−ω(σ−q)s
(
∥Gk−1(e

−ωsu(s))∥qq
) θqεM

q ×

eω(σ−q)s∥Gk−1(e
−ωsu(s))∥(1−θ)qεMr ds

≤ 1

L
sup

ŝ∈[tk−1,t]

e−ω(σ−q)ŝ
(
∥Gk−1(e

−ωŝu(ŝ))∥qq
) θqεM

q ×

L

∫ t

tk−1

eω(σ−q)s∥Gk−1(e
−ωsu(s))∥σr ds.

We estimate e−ω(σ−q)s on [tk−1, t] according to the sign of σ − q so that

sup
s∈[tk−1,t]

e−ω(σ−q)s =

{
e−ω(σ−q)t if σ ≤ q,

1 if σ > q.

Hence, applying Young’s inequality such that both terms have the same
exponent and evaluating, we have∫ t

tk−1

∥Gk−1(e
−ωsu(s))∥qεMqε ds ≤ 1

L
eωt(q−σ)

+

U
M−σ

r
+1

k−1

where (q − σ)+ = max {0, q − σ}.
To apply Lemma 2.7.2, the exponents of Uk−1 corresponding to (2.7.12)

must be of the form 1 + δ with δ > 0. Hence we require

q

ρ′q
+

q

ψ′

(
1 − σ

r

)
> 1 and

1

ρ′
+

1

ψ′

(
1 − σ

r

)
> 1

which follow from (2.7.2). Rewriting (2.7.12) as a recurrence relation for
Uk+1, we introduce the following constants

c1 =
(
1
λ

)ε1 (1
t

+ ω
)
eωt(q−σ)

+

, c2 =
(
1
λ

) q(q+ε2)
ρ′q ∥g∥q

Lψ(0,t;L
ρq
µ )
e
qωt
ψ′ (q−σ)+ ,

c3 =
(
1
λ

) q+ε3
ρ′ −q+1 ∥g∥Lψ(0,t;Lρµ)e

ωt
ψ′ (q−σ)+ ,

b = max

{
21+ε1 , 2

q(q+ε2)

ρ′q , 2
q+ε3
ρ′ −q+1

}
,
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and exponents

δ1 = 1 − σ

r
, δ2 =

q

ψ′

(
1 − σ

r

)
+

q

ρ′q
− 1, δ3 =

1

ψ′

(
1 − σ

r

)
+

1

ρ′
− 1.

Then we obtain

Uk+1 ≤ bk+1

3∑
i=1

Cci U
1+δi
k

for some C > 0 depending on q, L and ψ. Then setting

δm := min {δ1, δ2, δ3} = δ3,

in order to apply Lemma 2.7.2, we require that

U0 ≤
1

3 b
1

δ2m

min
i∈{ 1,2,3 }

1

(Cci)
1
δi

. (2.7.16)

We estimate U0 by (2.7.11) and (2.7.5), so that

U0 ≤ 2

(
∥u0∥qq + q

∫ t

0

∥e−ωsu(s)∥q−1
q e−ωs∥g(s)∥q ds

)
≤ 2

(
∥u0∥qq + q

(
∥u0∥q +

∫ t

0

e−ωr∥g(r)∥q dr

)q−1 ∫ t

0

e−ωs∥g(s)∥q ds)

)

≤ 2(1 + q)

(
∥u0∥q +

∫ t

0

e−ωs∥g(s)∥q ds

)q
.

As the previous estimates were for arbitrary λ ≥ 0, relabelling C > 0 to
include b, we want to find λ such that

ci ≤
C(

∥u0∥q + ∥g∥L1(0,t;Lq)

)qδi (2.7.17)

for i ∈ { 1, 2, 3 }. Set

β1 =

{
q−σ
ε1

if σ ≤ q,

0 if σ > q,

κ1 =

{
(q−σ)ρ′q
ψ′q(q+ε2)

if σ ≤ q,

0 if σ > q,

κ2 =


q−σ

ψ′
(
q+ε3
ρ′ −q+1

) if σ ≤ q,

0 if σ > q.
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Then (2.7.17) holds if

λ ≥ Ceωβ1t

((
2q

t
+ qω

)(
∥u0∥q +

∫ t

0

e−ωs∥g(s)∥q ds

)qδ1) 1
ε1

,

λ ≥ Ceωκ1t

(
∥g∥q

Lψ(0,t;L
ρq
µ )

(
∥u0∥q +

∫ t

0

e−ωs∥g(s)∥q ds

)qδ2) ρ′q
q(q+ε2)

, and

λ ≥ Ceωκ2t

(
∥g∥Lψ(0,t;Lρµ)

(
∥u0∥q +

∫ t

0

e−ωs∥g(s)∥q ds

)qδ3) 1
q+ε3
ρ′ −(q−1)

,

for some C > 0 depending on q, σ, r, ρ, ψ and L. So taking λ as the
maximum of these estimates, we have by Fatou’s Lemma,

0 = lim inf
k→∞

Uk ≥ sup
ŝ∈[t,t]

∥Gλ(e−ωŝu(ŝ))∥qq +

∫ t

t

eω(σ−q)t∥Gλ(e−ωsu(s))∥σr ds.

Noting that t was chosen arbitrarily, this implies that

∥u(t)∥∞ ≤ λ for all t ∈ (0, T ].

Evaluating constants and simplifying, we obtain (2.7.6).

The following lemma shows that the growth condition on Gλ(e−ωtu(t))
given by (2.7.5) holds for operators with complete resolvent. In the case
λ = 0 this reduces to the standard growth estimate for accretive operators
with complete resolvent.

Lemma 2.7.3. Let 1 ≤ q0 < ∞ and suppose A is ω-quasi m-accretive
in Lq0µ with complete resolvent for some ω ≥ 0. Let T > 0, 1 ≤ q ≤ ∞
such that g ∈ L1(0, T ;Lqµ ∩Lq+εµ ) for some ε > 0 and u0 ∈ D(A)L

q0
µ ∩Lqµ.

Denote by u(t) the mild solution to (2.7.1). Then we have the growth
estimate

∥Gλ(e−ωtu(t))∥q ≤
∥∥Gλ(e−ωsu(s))

∥∥
q

+

∫ t

s

e−ωτ∥g(τ)1{ e−ωτ |u(τ)|>λ }∥q dτ
(2.7.18)

for all 0 ≤ s ≤ t ≤ T and λ ≥ 0.

Proof. For u ∈ D(JAh ), we can rewrite the resolvent operator in the
following way,

JA+ωIh
1−hω

u = (1 − hω)JAh u.

Then for A + ωI having complete resolvent, consider α ∈ R and take
j(·) = |Gλ(α·)|q in the complete resolvent property (2.2.14) with the
resolvent operator JA+ωIh

1−hω
to obtain the estimate∫

Σ

|Gλ(αv)|q dµ ≥
∫
Σ

∣∣∣∣Gλ

(
αJA+ωIh

1−hω
v

)∣∣∣∣q dµ

=
∥∥Gλ

(
α(1 − hω)JAh v

)∥∥q
q
.

(2.7.19)
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Given s < t, take a partition (sn)n∈{ 0,1,...,N } of [s, t] given by sn = s +
n(t−s)
N

. Let

gn :=
N

t− s

∫ sn+1

sn

g(τ) dτ. (2.7.20)

Then let (vn)n∈{ 0,1,...,N } be the solution to the discrete problemvn +
t− s

N
Avn = vn−1 +

t− s

N
gn−1 for n = 1, ..., N,

v0 = u(s).

We can apply the resolvent estimate (2.7.19) to vn, taking h = t−s
N

.

Further, let Sn = {x ∈ Σ : e−ωt

(1−hω)N−n |vn + hgn| > λ} so that we may
separate terms.∥∥∥∥Gλ

(
e−ωt

(1 − hω)N−nvn

)∥∥∥∥
q

≤
∥∥∥∥Gλ

(
e−ωt

(1 − hω)N−n+1
(vn−1 + hgn−1)

)∥∥∥∥
q

≤
∥∥∥∥Gλ

(
e−ωt

(1 − hω)N−n+1
vn−1

)∥∥∥∥
q

+
e−ωth

(1 − hω)N−n+1

∥∥gn−11Sn−1

∥∥
q
.

Repeating this, we have

∥Gλ(e−ωtvN)∥q ≤

∥∥∥∥∥∥∥Gλ

 e−ωt(
1 − ω(t−s)

N

)N v0

∥∥∥∥∥∥∥
q

+
t− s

N

N−1∑
n=0

e−ωt(
1 − ω(t−s)

N

)N−n ∥gn1Sn∥q

which converges to (2.7.18) as N → ∞ by the definition of mild solution
and the projection (2.7.20).

The following proposition introduces the pointwise estimate (2.7.21)
for operators with complete resolvent which we will use as the condition
for applying Theorem 2.7.1 to the doubly nonlinear problem (1.2.1) (see
Section 2.7.1). In particular, this provides (2.7.4).

Proposition 2.7.4. For 1 ≤ q0 < ∞ and ω ≥ 0, let A be an ω-quasi
m-accretive operator on Lq0µ with complete resolvent. Suppose there are
q0 ≤ q < r ≤ ∞, 1 ≤ σ < r and C > 0 such that A satisfies the
one-parameter Sobolev type inequality

∥Gλ(u)∥σr ≤ C [Gλ(u), v + ω(Gλ(u) + λ1)]q (2.7.21)

for every (u, v) ∈ A and λ ≥ 0. Let T > 0, g ∈ L1(0, T ;Lq0µ ) ∩
L1(0, T ;Lq+εµ ) for some ε > 0 and u ∈ C([0, T ];Lq0µ ) ∩ L1(0, T ;L1∩∞

µ )
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be the mild solution to (2.7.1) where u0 ∈ D(A)L
q0
µ ∩ L1∩∞

µ . Then for
every λ ≥ 0, u satisfies the “level set energy inequality”

∥Gλ(e−ωt2 u(t2))∥qq +
q

C

∫ t2

t1

eω(σ−q)s∥Gλ(e−ωs u(s))∥σr ds

≤ ∥Gλ(e−ωt1 u(t1))∥qq + λω

∫ t2

t1

∥Gλ(e−ωs u(s))∥q−1
q−1 ds

+ q

∫ t2

t1

e−ωs
∣∣[Gλ(e−ωsu(s)), g]q

∣∣ ds
(2.7.22)

for all 0 ≤ t1 < t2 ≤ T .

Proof. Let { sn }n∈{ 0,1,...,N } be the discretization of the interval [t1, t2]

given by sn := t1 + n(t2−t1)
N

. Then set

gN(s) :=
N

t2 − t1

∫ sn+1

sn

g(τ) dτ for s ∈ [sn, sn+1)

for all n ∈ { 0, ..., N − 1 }, which will converge to g in L1(0, T ;Lq0µ ) ∩
L1(0, T ;Lqµ) as N → ∞. To see this, first check for continuous g then
argue by density. Let { vn }n∈{ 0,...,N } be the associated family of solutions
to the time discretized Cauchy problem satisfying

vn+1 = JAt2−t1
N

(
vn +

t2 − t1
N

gN(sn)

)
(2.7.23)

for all n ∈ { 0, ..., N − 1 } with v0 = u(t1). Note that by the complete
resolvent property of A with u0 ∈ Lqµ and g ∈ L1(0, T ;Lqµ), vn ∈ Lqµ
for all n ∈ { 0, ..., N }. We first obtain a discrete version of the integral
estimate (2.7.22) by discretizing with a telescoping sum and applying a
product rule. For q ≥ 1 we use the following property of q-brackets,

[u, v]q ≤
1

q
∥u+ v∥qq −

1

q
∥u∥qq (2.7.24)

for every u, v ∈ Lqµ. Here we apply (2.7.24) to the following telescoping
sum, taking u = Gλ(e−ωsnvn) and v = Gλ(e−ωsn−1vn−1) −Gλ(e−ωsnvn).

∥Gλ(e−ωt2vN)∥qq − ∥Gλ(e−ωt1u(t1))∥qq

=
N∑
n=1

∥Gλ(e−ωsnvn)∥qq − ∥Gλ(e−ωsn−1vn−1)∥qq

≤
N∑
n=1

q[Gλ(e−ωsnvn), Gλ(e−ωsnvn) −Gλ(e−ωsn−1vn−1)]q.

Noting that Gλ is a Lipschitz continuous function, we can differentiate
almost everywhere on R. Here we define

G′
λ(s) =

{
1 if |s| > λ,

0 if |s| ≤ λ,
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and

cn =

∫ 1

0

G′
λ(θe−ωsnvn + (1 − θ)e−ωsn−1vn−1)dθ,

so that we can rewrite this difference as an integral of the derivative with

Gλ(e−ωsnvn) −Gλ(e−ωsn−1vn−1) = cn
(
e−ωsnvn − e−ωsn−1vn−1

)
.

Then returning to the estimate in the discrete setting,

∥Gλ(e−ωt2vN)∥qq − ∥Gλ(e−ωt1u(t1))∥qq

≤ q
N∑
n=1

[Gλ(e−ωsnvn), cn
(
e−ωsnvn − e−ωsn−1vn−1

)
]q

≤ q
N∑
n=1

[Gλ(e−ωsnvn), cne
−ωsn−1(vn − vn−1)]q

+ q

N∑
n=1

[Gλ(e−ωsnvn), cn(e−ωsn − e−ωsn−1)vn]q.

Defining
Rn = [Gλ(e−ωsnvn), (cn − 1)(vn − vn−1)]q,

we can rewrite the previous estimate as

∥Gλ(e−ωt2vN)∥qq − ∥Gλ(e−ωt1u(t1))∥qq

≤ q(t2 − t1)

N

N∑
n=1

e−ωsn−1 [Gλ(e−ωsnvn),−Avn + gN(sn−1)]q

+ q
N∑
n=1

e−ωsn−1Rn + q
N∑
n=1

[Gλ(e−ωsnvn), e−ωsnvncn]q

(
1 − e

ω(t2−t1)
N

)
.

We now consider the values of vn and vn−1 for almost every x ∈ Σ to
show that Rn is non-positive. Note that cn ≤ 1 and in particular,

cn(x) ∈


{ 0 } if |θe−ωsnvn + (1 − θ)e−ωsn−1vn−1| ≤ λ for a.e. θ ∈ (0, 1),

{ 1 } if |θe−ωsnvn + (1 − θ)e−ωsn−1vn−1| > λ for a.e. θ ∈ (0, 1),

(0, 1) otherwise.

Since |e−ωsnvn(x)| ≤ λ implies that Gλ(e−ωsnvn(x)) = 0 and so does not
contribute to Rn, we consider only x ∈ Σ such that |e−ωsnvn(x)| > λ.
Then there will be some subinterval of θ ∈ (0, 1) such that

|θe−ωsnvn(x) + (1 − θ)e−ωsn−1vn−1(x)| > λ

implying that cn(x) > 0. If cn = 1 then cn(x) − 1 = 0 and so this will
not contribute to Rn. Hence we only consider x such that cn(x) ∈ (0, 1).
Since |e−ωsnvn(x)| > λ, this implies that either

|e−ωsn−1vn−1(x)| ≤ λ
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or
sign(vn−1(x)) = − sign(vn(x)).

For the first case, Gλ(e−ωsn−1vn−1(x)) = 0 so

(Gλ(e−ωsnvn(x)))q−1(vn(x) − vn−1(x))

=
(
(Gλ(e−ωsnvn(x)))q−1 − (Gλ(e−ωsn−1vn−1(x)))q−1

)
(vn(x) − vn−1(x))

≥ 0.

Note that for q = 1, (Gλ(vn(x)))q−1 = sign(Gλ(vn(x))). For the second
case, sign(vn(x) − vn−1(x)) = sign(vn(x)) so

(Gλ(e−ωsnvn(x)))q−1(vn(x) − vn−1(x)) ≥ 0.

Putting this together we have that Rn ≤ 0. Returning to the discrete
estimate,

∥Gλ(e−ωt2vN)∥qq − ∥Gλ(e−ωt1u(t1))∥qq

≤ q(t2 − t1)

N

N∑
n=1

e−ωsn−1 [Gλ(e−ωsnvn),−Avn + gN(sn)]q

+
N∑
n=1

∥Gλ(e−ωsnvn)∥qq
(

1 − e
qω(t2−t1)

N

)
.

Note that by (2.7.21),

e−ωsn−1 [Gλ(e−ωsnvn), Avn]q = e−ωsn−1e−(q−1)ωsn [Gλeωsn (vn), Avn]q

= e
ω(t2−t1)

N e−qωsn [Gλeωsn (vn), Avn]q

≥ e
ω(t2−t1)

N e−qωsn
1

C
∥Gλeωsn (vn)∥σr

− e
ω(t2−t1)

N e−qωsnω
(
∥Gλeωsn (vn)∥qq + λeωsn∥Gλeωsn (vn)∥q−1

q−1

)
= e

ω(t2−t1)
N

eωsn(σ−q)

C
∥Gλ(e−ωsnvn)∥σr

− e
ω(t2−t1)

N ω
(
∥Gλ(e−ωsnvn)∥qq + λ∥Gλ(e−ωsnvn)∥q−1

q−1

)
.

Hence we have

e−ωsn−1 [Gλ(e−ωsnvn), Avn]q

≥ eωsn(σ−q)

C
∥Gλ(e−ωsnvn)∥σr

− e
ω(t2−t1)

N ω
(
∥Gλ(e−ωsnvn)∥qq + λ∥Gλ(e−ωsnvn)∥q−1

q−1

)
.

We now aim to take N → ∞, first converting the discrete sums to
integrals. Let UN be a stepwise solution to (2.7.23) such that

UN(s) = v01{ 0 }(s) +
N∑
n=1

vn1(sn−1,sn](s)
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for every s ∈ [t1, t2]. We have

∥Gλ(e−ωt2vN)∥qq − ∥Gλ(e−ωt1u(t1))∥qq

≤ −q(t2 − t1)

N

N∑
n=1

(
eωsn(σ−q)

C
∥Gλ(e−ωsnvn)∥σr

+ e
ω(t2−t1)

N ω[Gλ(e−ωsnvn), Gλ(e−ωsnvn) − λ sign(Gλ(e−ωsnvn))]q

+ e−ωsn−1 [Gλ(e−ωsnvn), gN(sn)]q

)

+
N∑
n=1

∥Gλ(e−ωsnvn)∥qq
(

1 − e
qω(t2−t1)

N

)
≤ − q

C

∫ t2

t1

eω(σ−q)(s−sign(σ−q) t2−t1
N )

∥∥∥Gλ(e−ω(s+
t2−t1
N

)UN)
∥∥∥σ
r

ds

+

∣∣∣∣∣e
qω(t2−t1)

N − 1
t2−t1
N

− qωe
ω(t2−t1)

N

∣∣∣∣∣
∫ t2

t1

∥Gλ(e−ωsUN)∥qq ds

+ qωλe
ω(t2−t1)

N

∫ t2

t1

∥Gλ(e−ωsUN)∥q−1
q−1 ds

+ q

∫ t2

t1

∫
Σ

|Gλ(e−ωsUN)|q−1|gN | dµ ds.

We now prove convergence of each term in the estimate in order to
obtain the continuous version (2.7.22). Noting that UN(s) → u(s) in
C([0, T ];Lq0µ ) and since ∥·∥qq and ∥·∥σr are lower semicontinuous on Lq0µ ,
we have that

lim inf
N→∞

∥Gλ(e−ωt2vN)∥qq ≥ ∥Gλ(e−ωt2u(t2))∥qq

and applying Fatou’s lemma,

lim inf
N→∞

∫ t2

t1

eω(σ−q)s
∥∥∥Gλ(e−ω(s+

t2−t1
N

)UN(s))
∥∥∥σ
r

ds

≥
∫ t2

t1

eω(σ−q)s∥Gλ(e−ωsu(s))∥σr ds.

Next, note that by the complete resolvent property of A and Lemma
2.7.3 we can estimate UN and u in Lqµ uniformly on [0, T ]. Hence let M
bound both ∥UN∥q and ∥u∥q.∣∣∣∣∣1 − e−

qωt
N

t
N

− qω

∣∣∣∣∣
∫ t2

t1

∥Gλ(e−ωsUN(s))∥qq ds ≤

∣∣∣∣∣1 − e−
qωt
N

t
N

− qω

∣∣∣∣∣
∫ t2

t1

M q ds

→ 0

asN → 0. For the next term we prove uniform convergence ofGλ(e−ωsUN)
to Gλ(e−ωsu) in C([0, T ];Lq−1

µ ) when λ > 0. For this fix s ∈ [0, T ] and
let

fN = Gλ(e−ωsUN(s)) −Gλ(e−ωsu(s))
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so that fN → 0 in Lq0 . We note that

∥fN∥q ≤ 2M

and by Chebyshev’s inequality

µ({x ∈ Σ : |fN | > 0}) ≤ µ({x ∈ Σ : e−ωs|UN | ≥ λ or e−ωs|u| ≥ λ})

≤ 1

λq
(
∥e−ωsUN(s)∥q + ∥e−ωsu(s)∥q

)
≤ 2M

λq
.

Here we consider cases for q. For q − 1 ≥ q0, apply Hölder’s inequality
with θ chosen to satisfy

θ

q0
+

1 − θ

q
=

1

q − 1

to obtain

lim
N→∞

∥fN∥q−1 ≤ lim
N→∞

(
∥fN∥θq0∥fN∥

1−θ
q

)
= 0.

For q− 1 < q0, we apply Jensen’s inequality noting that | · |
q0
q−1 is convex.

Let
ΣN = {x ∈ Σ : |fN | > 0}

then we can again estimate fN with

∥fN∥q−1 ≤ µ(ΣN)
q0
q−1

−1∥fN∥q0 .

Note that for q − 1 < 1, we have∣∣∥Gλ(e−ωsUN)∥q−1
q−1 − ∥Gλ(e−ωsu)∥q−1

q−1

∣∣
≤
∫
Σ

∣∣∣∣∣Gλ(e−ωsUN)
∣∣q−1 −

∣∣Gλ(e−ωsu)
∣∣q−1

∣∣∣ dµ
≤
∫
Σ

|fN |q−1 dµ

so that
lim
N→∞

∥Gλ(e−ωsUN(s))∥q−1
q−1 = ∥Gλ(e−ωsu(s))∥q−1

q−1.

For the last term, note that gN → g in L1(0, T ;Lqµ) as N → ∞. So by a
corollary of Riesz-Fischer, there exists a subsequence Nk and a function
h ∈ L1(0, T ;Lqµ) such that |gNk(x)| ≤ h(x) for all k and a.e. x ∈ Σ.
Similarly, interpolating between q0 and q + ε,

∥Gλ(e−ωsUN(s)) −Gλ(e−ωsu(s))∥q
≤ ∥Gλ(e−ωsUN(s)) −Gλ(e−ωsu(s))∥θq0×

∥Gλ(e−ωsUN(s)) −Gλ(e−ωsu(s))∥1−θq+ε
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for some θ ∈ (0, 1]. Then with UN and u bounded in Lq+εµ ,

Gλ(e−ωsUN(s)) → Gλ(e−ωsu(s)) in Lq0µ as N → ∞

uniformly for all t ∈ [0, T ]. Hence taking another subsequence we have a
dominant Hλ ∈ L∞(0, T ;Lqµ). So we can estimate the integrand pointwise∣∣Gλ(e−ωsUNk(s))

q−1gN
∣∣ ≤ Hq−1

λ h a.e. on Σ × [0, T ).

Moreover this dominant is in L1(0, T ;L1
µ) with∫ t2

t1

∫
Σ

Hq−1
λ h dµ ds ≤ ∥Hλ∥L∞(0,T ;Lqµ)∥h∥L1(0,T ;Lqµ).

Hence we apply dominated convergence to obtain the continuous estimate
(2.7.22).

We now show that the pointwise estimate (2.7.21) from Proposition
2.7.4 implies a similar estimate when adding a Lipschitz perturbation.

Lemma 2.7.5. For 1 ≤ q <∞, let A be an operator on Lqµ and suppose
there are 1 ≤ r ≤ ∞, σ > 0, ω ∈ R, λ ≥ 0 and C > 0 such that (2.7.21)
is satisfied for all (u, v) ∈ A. Let F : Lqµ → Lqµ be Lipschitz continuous
with Lipschitz constant ω′ ≥ 0 and satisfying F (0) = 0. Then, the
operator A+ F in Lqµ satisfies

∥Gλ(u)∥σr ≤ C [Gλ(u), v + (ω + ω′)(Gλ(u) + λ sign(u))]q. (2.7.25)

Proof. Let v̂ = v + F (u). Then, since [·, ·]q is linear in the second term,

[Gλ(u), v̂+(ω + ω′)(Gλ(u) + λ sign(u))]q

= [Gλ(u), v + ω(Gλ(u) + λ sign(u))]q

+ [Gλ(u), F (u) + ω′(Gλ(u) + λ sign(u))]q.

(2.7.26)

By the Lipschitz condition,

−ω′|u| ≤ F (u) ≤ ω′|u|.

Hence

[Gλ(u), F (u)]q ≥ −ω′[Gλ(u), u]q

= −ω′[Gλ(u), Gλ(u) + λ sign(u)]q.

So applying this and the initial assumption to (2.7.26), we have (2.7.25).

We now extend the Lqµ − L∞
µ regularity of Theorem 2.7.1 to obtain

Lℓµ − L∞
µ regularity as in Theorem 2.1.3. For this we consider (2.7.6)

applied to ũ0 = u( t
2
) and g̃(s) = g(s + t

2
). The following theorem is

an extension of [50, Chapter 4] and in particular with r = ∞ gives the
desired regularity result.
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Theorem 2.7.6. For 1 ≤ ℓ < q < r ≤ ∞ and T > 0, let g ∈
L1(0, T ;Lℓµ ∩ Lqµ) and u : [0, T ] → Lℓµ such that u ∈ L∞(0, T ;Lℓµ ∩ Lrµ)
satisfying the exponential growth property (2.7.18) for all 0 < s ≤ t ≤ T
and some ω ≥ 0. Suppose there exist increasing functions c1(t), c2(t)
with c1(t) > 0 and c2(t) ≥ 0 for all t ∈ (0, T ] and exponents α ≥ 0,
0 < γ∗ ≤ γ <∞ such that

∥u(t)∥r ≤ max
{
c1(

t
2
)
(
2
t

+ ω
)α (∥u( t

2
)∥q + ∥g∥L1( t

2
,t;Lqµ)

)γ
,

c2(
t
2
)
(
∥u( t

2
)∥q + ∥g∥L1( t

2
,t;Lqµ)

)γ∗} (2.7.27)

for every t ∈ (0, T ]. Define

θ := 1 − γ

(
1
ℓ
− 1

q

1
ℓ
− 1

r

)

and suppose that θ > 0. Then for all ε ≥ 0 one has the Lℓµ−Lrµ estimate

∥u(t)∥r ≤ 2γ

(
2
α
γθ + sup

s∈(0,t]
N(s)θ

) γ
θ

max
{
c1(t)

1
θ

(
1
t

+ ω
)α
θ , c2(t)

1
θ

}
×

(
eωt∥u(0)∥ℓ +

∫ t

0

eω(t−τ)∥g(τ)∥ℓ dτ + ε

) θℓγ

θ

(2.7.28)

for all t ∈ (0, T ] where

N(t) := sup
s∈(0,t]

M( s
2
)∥g∥L1( s

2
,s;Lqµ) + c2(

s
2
)

1
γ

M(s)
1
θ

(
eωs∥u(0)∥ℓ +

∫ s
0
eω(s−τ)∥g(τ)∥ℓ dτ + ε

) θℓ
θ

,

M(t) := max
{
c1(t)

1
γ
(
1
t

+ ω
)α
γ , c2(t)

1
γ

}
,

and

θℓ :=

1
q
− 1

r

1
ℓ
− 1

r

.

Note that (2.7.28) may be infinite when ε = 0 and ∥u(0)∥ℓ = 0.

Proof. We first note that since γ∗ ≤ γ, we can estimate(
∥u( t

2
)∥q + ∥g∥L1( t

2
,t;Lqµ)

)γ∗
≤ max

{
1,
(
∥u( t

2
)∥q + ∥g∥L1( t

2
,t;Lqµ)

)γ}
for t ∈ (0, T ]. Hence, taking (2.7.27) to the power 1

γ
, we have

∥u(t)∥
1
γ
r ≤ max

{
c1(

t
2
)

1
γ
(
2
t

+ ω
)α
γ

(
∥u( t

2
)∥q + ∥g∥L1( t

2
,t;Lqµ)

)
,

c2(
t
2
)

1
γ

(
∥u( t

2
)∥q + ∥g∥L1( t

2
,t;Lqµ)

)
, c2(

t
2
)

1
γ

}
.



CHAPTER 2. WELL-POSEDNESS IN L1 64

We then apply standard interpolation on the Lqµ norm with exponent θℓ
and the growth estimate (2.7.18) on ∥u( t

2
)∥ℓ to obtain

∥u(t)∥q ≤
(
eωt∥u(0)∥ℓ +

∫ t

0

eω(t−τ)∥g(τ)∥ℓdτ
)θℓ

∥u(t)∥1−θℓr

for all t ∈ (0, T ]. By choice of θ, θℓ we have the relation

γ(1 − θℓ) = 1 − θ.

Then for all t ∈ (0, T ],

∥u(t)∥
1
γ
r ≤M( t

2
)

(
e
ωt
2 ∥u(0)∥ℓ +

∫ t
2

0

eω(
t
2
−τ)∥g(τ)∥ℓ

)θℓ

∥u( t
2
)∥

1−θ
γ

r

+M( t
2
)∥g∥L1( t

2
,t;Lqµ)

+ c2(
t
2
)

1
γ .

(2.7.29)

We aim to produce comparable terms on either side of this equation.
Since c1 and c2 are increasing, M( t

2
) ≤ 2

α
γM(t). Furthermore,

e
ωt
2 ∥u(0)∥ℓ +

∫ t
2

0

eω(
t
2
−τ)∥g(τ)∥ℓ dτ

≤ e−
ωt
2

(
eωt∥u(0)∥ℓ +

∫ t

0

eω(t−τ)∥g(τ)∥ℓ
)
.

Hence we define

Ku(t) :=
M(t)−

1
θ ∥u(t)∥

1
γ
r(

eωt∥u(0)∥ℓ +
∫ t
0
eω(t−τ)∥g(τ)∥ℓ dτ + ε

) θℓ
θ

for t ∈ (0, T ]

(2.7.30)
in order to estimate and rearrange (2.7.29) into a relation involving Ku

and N . Now we fix t ∈ (0, T ] so that after rearranging we may take a
supremum over (0, t] to obtain

sup
s∈(0,t]

Ku(s) ≤ 2
α
γθ sup

s∈(0, t
2
]

Ku(s)
1−θ +N(t).

We now aim to split the forcing term N(t) so as to incorporate this

into each Ku term. For this we define D(t) ≥ (2
α
γθ )

1
θ for t ∈ (0, T ] such

that
D(t) − 2

α
γθD(t)1−θ = N(t). (2.7.31)

Noting that θ ∈ (0, 1), this is possible as the function f(x) = x− cxα for

c ≥ 0 and α ∈ (0, 1) is continuous, satisfies f(c
1

1−α ) = 0 and is strictly
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increasing for x > (αc)
1

1−α (in particular for x ≥ c
1

1−α ). Further, we can
estimate (2.7.31) by

N(t) =
(
D(t)θ

) 1−θ
θ

(
D(t)θ − 2

α
γθ

)
≥
(
D(t)θ − 2

α
γθ

) 1
θ

so that

D(t) ≤
(

2
α
γθ +N(t)θ

) 1
θ
. (2.7.32)

Then,

sup
s∈(0,t]

Ku(s) −D(t) ≤ 2
α
γθ


 sup
s∈

(
0,
t
2

]Ku(s)

1−θ

−D(t)1−θ

 .

Noting that Ku(s) is bounded for all s ∈ (0, T ], either

sup
s∈(0,t]

Ku(s) ≤ D(t)

or we can extend to a supremum over (0, t] and combine terms, obtaining

sup
s∈(0,t]

Ku(s) −D(t) ≤ 2
α
γθ

(
sup
s∈(0,t]

Ku(s) −D(t)

)1−θ

(
sup
s∈(0,t]

Ku(s) −D(t)

)θ

≤ 2
α
γθ .

In either case, we have the uniform bound,

Ku(s) ≤
(

2
α
γθ

) 1
θ

+D(t)

for all s ∈ (0, t]. Applying (2.7.32), we have

Ku(t) ≤
(

2
α
γθ

) 1
θ

+
(

2
α
γθ +N(t)θ

) 1
θ

≤ 2
(

2
α
γθ +N(t)θ

) 1
θ
.

Rewriting this as an estimate on ∥u(t)∥r we obtain (2.7.28).

2.7.1 Application to the doubly nonlinear fractional
diffusive equation

By Theorem 2.4.1 and the proof of Theorem 2.1.1 we know that the
operator (−∆p)

sφ+F is m-accretive in L1 with complete resolvent where
F is the Nemytskii operator of f(·, u) satisfying (2.0.3a)-(2.0.3b). Hence
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to apply Theorem 2.7.1 we first prove the pointwise estimate (2.7.21)
for the operator (−∆p)

sφ in L1, giving Proposition 2.7.4 and thereby
outlining the proof of the Lm+1 − L∞ estimate of Theorem 2.7.9. We
then apply Theorem 2.7.6, proving the Lℓ − L∞ estimate of Theorem
2.1.3.

The following lemma allows us to estimate the key term for (2.7.4),
namely the q-bracket [Gλ(u), (−∆p)

s(um)]m+1. In particular, the re-
striction m ≥ 1 in this lemma results in the same restriction in The-
orem 2.1.3. Recall that we use the notation rm = |r|m−1r for powers and
that Gλ(r) = [|r| − λ]+ sign(r) for r ∈ R.

Lemma 2.7.7. Let 1 < p <∞, m ≥ 1 and λ ≥ 0. Given a, b ∈ R define
aλ = Gλ(a), bλ = Gλ(b). Then,

(am − bm)p−1(amλ − bmλ ) ≥ |amλ − bmλ |p.

Proof. If aλ − bλ = 0, both sides are 0. For aλ − bλ ̸= 0,

sign(amλ − bmλ ) = sign(am − bm)

|am − bm|p−2(am − bm)(amλ − bmλ ) = |am − bm|p−1|amλ − bmλ |

so we only need to prove that |amλ − bmλ | ≤ |am − bm|. We take cases,
assuming without loss of generality that |a| ≥ |b|. First suppose that
|a| ≤ λ or |b| ≤ λ so that aλ = bλ = 0 and the inequality is clear. Next,
if |b| ≤ λ and |a| > λ, then

|amλ − bmλ | = (|a| − λ)m ≤ (|a| − |b|)m ≤ |a|m − |b|m ≤ |am − bm|.

Hence we consider cases for a, b corresponding to |a| > λ and |b| > λ.
Suppose that a > λ and b > λ. Then noting that for m ≥ 1, |x|m−1 is
non-decreasing on the set [0,∞),

am − bm =

∫ a

b

d

dx
xm dx

≥
∫ a

b

m|x− λ|m−1 dx

= (a− λ)m − (b− λ)m.

Similarly for a < −λ, b < −λ, noting that |x|m−1 is non-increasing on
(−∞, 0],

am − bm ≥ (a+ λ)m − (b+ λ)m.

Finally, suppose that a > λ and b < −λ (similarly for a < −λ and b > λ).
Then

|amλ − bmλ | = (a− λ)m − (b+ λ)m

≤ am − bm

= |am − bm|.
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We can now derive the pointwise estimate for Proposition 2.7.4, giv-
ing the Sobolev-type inequality required for Theorem 2.7.1 in the case
of (1.2.1). Recall the notation of q-brackets from Section 2.2. In this
case with q = m+ 1 for m ≥ 1, the q-bracket is given by

[u, v]m+1 =

∫
Ω

|u|m−1u v dµ

for every u, v ∈ Lm+1.

Lemma 2.7.8. Let Ω be an open domain in Rd, d ≥ 1. For 1 < p <∞,
0 < s < 1, define ps according to the Sobolev embedding (2.1.7). Suppose
that sp < d or Ω is bounded. Let φ(r) = rm for r ∈ R where m ≥ 1.
Then (−∆p)

sφ satisfies the one-parameter Sobolev type inequality

∥Gλ(u)∥mpmps ≤ Cd [Gλ(u), (−∆p)
sφ(u)]m+1 (2.7.33)

for all φ(u) ∈ W
s,(2,p)
0 and λ ≥ 0. In particular, this is (2.7.21) with

q = m + 1, ω = 0, σ = mp and r = mps. If sp < d, Cd depends only on
d, otherwise it depends on s, p, d and |Ω|.

Proof. Let um ∈ W
s,(2,p)
0 . By Lemma 2.7.7 one sees that

[Gλu, (−∆p)
s(um)]m+1

=

∫
Rd

∫
Rd

|((u(t, x))m − (u(t, y))m|p−2((u(t, x))m − (u(t, y))m)

|x− y|d+sp
×

((Gλu(t, x))m − (Gλu(t, y))m) dx dy

≥
∫
Rd

∫
Rd

|(Gλu(t, x))m − (Gλu(t, y))m|p

|x− y|d+sp
dx dy

= [(Gλu(t, x))m]ps,p.

By the classical Sobolev inequality for Gagliardo semi-norms (cf. [89]),
when sp < d

∥u∥ps ≤ Cd [u]s,p

where ps is given by (2.1.7). Otherwise we use the embedding,

∥u∥ps ≤ Cd (∥u∥p + [u]s,p)

and the general estimate (see [91])

∥u∥p ≤ C[u]s,p

for u ∈ W s,p
0 where C depends on s, p, d and |Ω|. Applying these to

Gλ(u) we obtain (2.7.33).

With these preliminaries we can now apply Proposition 2.7.4 and The-
orem 2.7.1 to prove the Lm+1 − L∞ regularisation effect for the doubly
nonlinear nonlocal problem (1.2.1).
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Theorem 2.7.9. Let Ω be an open domain in Rd, d ≥ 1. Suppose p > 1,
0 < s < 1, and m ≥ 1 such that

m(p− 1) > 1 − (m+ 1)
sp

d
. (2.7.34)

Suppose that sp < d or Ω is bounded. Let qs = ps if p ̸= d
s
and qs >

max
{
p, 1 + 1

m

}
if p = d

s
. Let T > 0 and g ∈ L1(0, T ;L1)∩Lψ(0, T ;Lρ)∩

L1(0, T ;Lm+1+ε) for some ε > 0 where ρ ≥ m+ 1 and ψ > 1 satisfy
1
ρ
<
(

1 − 1
ψ

)(
1 − p

qs

)
if m(p− 1) ≥ 1,

1
ρ
≤
(

1 − 1
ψ

)
p
(

m
m+1

− 1
qs

)
if m(p− 1) < 1.

(2.1.9)

Let u(t) be the mild solution to (1.2.1) for u0 ∈ L1 ∩ Lm+1. Then one
has that

∥u(t)∥∞ ≤ C max
{
eβ1ωt

(
1
t

+ ω
)α (∥u0∥m+1 + ∥g∥L1(0,t;Lm+1)

)γ
,

eβ2ωt∥g∥η
Lψ(0,t;Lρ)

(
∥u0∥m+1 + ∥g∥L1(0,t;Lm+1)

)γψ }
(2.7.35)

for all 0 < t ≤ T , where we have the exponents

γ =

1
p
− 1

qs
m
m+1

− 1
qs

, γψ =

(
1 − 1

ψ

)(
1
p
− 1

qs

)
− 1

ρp(
1 − 1

ψ

)(
m
m+1

− 1
qs

)
− 1

ρp
+ 1

(m+1)p

,

α =
1

mp(1 − m+1
mqs

)
, η =

1

mp
(

1 − 1
ψ

)(
1 − m+1

mqs

)
+ 1 − m+1

ρ

,

(2.7.36)

and

β1 =


1
mp

− 1
m+1

1
m+1

− 1
mqs

if m(p− 1) < 1,

0 if m(p− 1) ≥ 1,

β2 =

{
η(m+ 1 −mp)

(
1 − 1

ψ

)
if m(p− 1) < 1,

0 if m(p− 1) ≥ 1.

(2.7.37)

Proof. Let F be the Nemytskii operator of f(·, u) and E the energy func-
tional (2.0.4). Then by Theorem 2.1.1 and the proof thereof, (−∆p)

sφ+F
is ω-quasi m-accretive in L1 and a mild solution to (1.2.1) exists in L1

for all u0 ∈ L1. By Lemma 2.7.8 and Proposition 2.7.5 we have that
(−∆p)

sφ+F satisfies the one-parameter Sobolev inequality (2.7.21) with
q = m + 1, σ = mp, r = mqs, C = Cd and ω the Lipschitz constant of
f . Note that for qs we have chosen p̃ in the Sobolev embedding (2.1.7).
Then we can apply Proposition 2.7.4 with q0 = 1 to obtain an estimate of
the form (2.7.4) with L given by m+1

Cd
. To satisfy the conditions on q, σ,

r we first note that all are in [1,∞] with q and σ finite given that p <∞.
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Then σ < r is equivalent to p < qs. This is clear when p ̸= d
s
. However

in the case p = d
s

we must choose qs > p. For q < r, we require that
m + 1 < mqs. When p < d

s
, this implies that 1 + 1

m
< (1

p
− s

d
)−1, equiv-

alent to (2.1.8) with ℓ = m + 1 and so is satisfied given that ℓ < m + 1.
When p = d

s
, we choose qs > 1 + 1

m
. In the case p > d

s
the inequality

is clear. We now apply Theorem 2.7.1 to obtain (2.7.35). For this we
also need m + 1 ≤ ρ ≤ ∞ and 1 < ψ ≤ ∞ to satisfy (2.7.2), hence
requiring (2.1.9).

We now extend this to the Lℓ − L∞ regularisation estimate of Theo-
rem 2.1.3 for the doubly nonlinear nonlocal problem (1.2.1) by applying
Theorem 2.7.6.

Proof of Theorem 2.1.3. Note that for ℓ < m+1, (2.1.8) implies (2.7.34).
We apply Theorem 2.7.9 to ũ(s) = u(s + t

2
) and g̃(s) = g(s + t

2
) to

obtain (2.7.27) for all t ∈ (0, T ] with

c1(t) = Ceβ1ωt, c2(t) = Ceβ2ωt∥g∥η
Lψ(0,t;Lρ)

, γ =

1
p
− 1

qs
m
m+1

− 1
qs

.

We now aim to apply Theorem 2.7.6, taking q and r in this theorem to be
m+ 1 and ∞, respectively. By Corollary 2.4.4 we have that the operator
(−∆p)

sφ + F is ω-quasi m-accretive with complete resolvent. Hence by
Lemma 2.7.3, u satisfies the exponential growth property (2.7.18). We
also require that γψ ≤ γ, equivalent to

ρ ≥ 1 −m(p− 1)

1 − p
qs

.

This is satisfied by (2.1.8) when p < d
s

since ρ ≥ m+1 > ℓ, by the choice
of qs when p = d

s
and since ρ ≥ 1 when p > d

s
. For the condition θ > 0

of Theorem 2.7.6, we require that

1 − γ

(
1 − ℓ

m+ 1

)
> 0.

In particular, this holds by (2.1.8) in the case p < d
s
, by the choice of

qs when p = d
s

and since ℓ ≥ 1 when p > d
s
. Hence we may apply

Theorem 2.7.6 to obtain (2.1.10).

2.8 Derivative estimates

We now consider the case φ(r) = rm with m ≥ 1 satisfying (1.2.3), refin-
ing the estimates of Section 2.5 in the case of the fractional p-Laplacian.
Importantly in this case we have the Lℓ − L∞ regularizing effect of Sec-
tion 2.7 and the function φ′(r) does not blow up as r → 0. This allows
us to remove the L∞ condition on the initial data under the assumptions
of Theorem 2.1.3.
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We first introduce a Lipschitz continuity result for t > 0 analogous
to Lemma 2.5.1, but with less restrictive initial data. This is due to the
homogeneity of the composed operator for such power-like φ. Recall that
Ṽ (g, t) is defined by

Ṽ (g, t) = lim sup
ξ→0+

∫ t/(1+ξ)

0

∥g(τ(1 + ξ)) − g(τ)∥1
ξ

dτ (2.1.14)

for 0 ≤ t ≤ T ≤ ∞.

Lemma 2.8.1. Let Ω be an open domain in Rd, d ≥ 1 and T > 0. Let
p > 1, 0 < s < 1 and f(·, u) satisfy (2.0.3a)-(2.0.3b). Suppose φ(r) = rm,
r ∈ R for m > 0 such that m(p − 1) ̸= 1. Suppose g ∈ L1(0, T ;L1) and
Ṽ (g, T ) < ∞. Then every mild solution u to (1.2.1) with u0 ∈ L1 is
Lipschitz continuous on each compact subset of (0, T ], satisfying

lim sup
h→0+

∥u(t+ h) − u(t)∥1
h

≤ Ce2ωt

t

(
∥u0∥1 +

∫ t

0

∥g(τ)∥1 dτ

)
+
eωt

t
Ṽ (g, t)

(2.1.15)

where C = m(p−1)+2
|m(p−1)−1| .

Proof. We note that (−∆p)
s·m is homogeneous of order α = m(p − 1),

so we apply [20, Theorem 4] with forcing term f̃(t) = −F (u(t)) + g(t).
Using the Lipschitz property of F and supposing that u is a mild solution
to (1.2.1), we have for all t ∈ (0, T ),

∥u(t(1 + ξ)) − u(t)∥1 ≤ |1 − (1 + ξ)
1

1−α |
(∫ t

0

ω∥u(τ)∥1 + ∥g(τ)∥1 dτ

)
+

|1 + ξ − (1 + ξ)
1

1−α |
1 + ξ

(∫ (1+ξ)t

0

ω∥u(τ)∥1 + ∥g(τ)∥1 dτ

)

+ (1 + ξ)
1

1−αω

∫ t

0

∥u(τ(1 + ξ)) − u(τ)∥1 dτ

+ (1 + ξ)
1

1−α

∫ t

0

∥g(τ(1 + ξ)) − g(τ)∥1 dτ

+ 2|1 − (1 + ξ)
1

1−α |∥u0∥1.

Applying Grönwall’s inequality,

∥u(t(1 + ξ)) − u(t)∥1

≤
(
|1 − (1 + ξ)

1
1−α |

(
2∥u0∥1 +

∫ t

0

ω∥u(τ)∥1 + ∥g(τ)∥1 dτ

)
+ |1 − (1 + ξ)

α
1−α |

(∫ (1+ξ)t

0

ω∥u(τ)∥1 + ∥g(τ)∥1 dτ

)

+ (1 + ξ)
1

1−α

∫ t

0

∥g(τ(1 + ξ)) − g(τ)∥1 dτ

)
e(1+ξ)

1
1−α ωt.
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Letting α = m(p−1) and dividing through by ξ, we can take the lim sup
as ξ → 0+ to obtain the estimate

lim sup
ξ→0+

∥u(t(1 + ξ)) − u(t)∥1
ξ

≤ eωt(1 + α)

|1 − α|

(∫ t

0

ω∥u(τ)∥1 + ∥g(τ)∥1 dτ

)
+ eωt

(
2∥u0∥1
|1 − α|

+ Ṽ (g, t)

)
.

So we apply the growth estimate on u in L1 given by Theorem 2.1.1 and
divide through again by t to obtain (2.1.15).

We have the following corollary to Lemma 2.5.3, applied when φ(r) =
rm, r ∈ R with m > 0 and E is given by (2.0.4).

Corollary 2.8.2. Let Ω ⊆ Rd, d ≥ 1, and m > 0. Suppose that f(·, u)
satisfies (2.0.3a)-(2.0.3b) and g ∈ BV (0, T ;L1) ∩ L1(0, T ;L∞). Then
every strong distributional solution u of (1.2.2) in L1 with initial data
u0 ∈ L∞ satisfies

2m

(m+ 1)2

∫ t

0

sk+2

∫
Ω

∣∣∣∣ d

ds
u
m+1

2

∣∣∣∣2 dx ds+
tk+2

2p
[um(t)]ps,p

≤ (k + 2)

∫ t

0

(k + 1 + ωs)sk∥u(s)∥m+1
m+1 ds

+m

∫ t

0

(
(k + 2)2 + ω2s2

)
sk∥u(s)∥m+1

m+1 ds

+ lim
h→0+

1

h

∫ t−h

0

sk+2∥g(s+ h) − g(s)∥1 ds ∥u∥mL∞(0,t;L∞)

+ 2(k + 2)

∫ t

0

sk+1∥g(s)∥1 ds ∥u∥mL∞(0,t;L∞)

(2.8.1)

for all t ∈ (0, T ] and k > −1.

We now apply and extend Lemma 2.5.3 using the L1 − L∞ regularity
of Theorem 2.1.3.

Lemma 2.8.3. Let Ω be an open domain in Rd, d ≥ 1, T > 0, p > 1
and 0 < s < 1. Suppose that sp < d or Ω is bounded. Let m ≥ 1 satisfy

m (p− 1) > 1 − sp

d
. (1.2.3)

Further suppose that f(·, u) satisfies conditions (2.0.3a)-(2.0.3b) and g ∈
BV (0, T ;L1) ∩ L1(0, T ;L1∩∞). Then every strong distributional solution
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u of (1.2.2) in L1 with u0 ∈ L1 satisfies, for all ε ≥ 0,∫ t

0

τ α̃
∫
Ω

∣∣∣∣ d

dτ
u
m+1

2 (τ)

∣∣∣∣2 dµ dτ + tα̃[um(t)]ps,p

≤ Ct (1 + ωt)2 max
{

(1 + ωt)αeωβ1t, tαeωβ2t∥g∥η
Lψ(0,t;Lρ)

}m
θ

×
(
eωt∥u0∥1 +

∫ t

0

eω(t−τ)∥g(τ)∥1 dτ + ε

) γm
θ(m+1)

+1

(1 +N(t)γm)

+ C

∫ t

0

τ α̃+m−1∥g(τ)∥m+1
m+1 dτ

(2.1.16)

for all t ∈ (0, T ], where α̃ = αm
θ

+ 2, N(t) is given by (2.1.11), exponents
are given by (2.1.12) and the estimate is possibly infinite when ε = 0.
Here C depends on m, p, s, d, qs, ρ and ψ (and |Ω| when sp ≥ d).

Proof. We estimate (2.5.4) from Lemma 2.5.2 further by also applying
Young’s inequality to the last term. This gives

m

(m+ 1)2

∫ t

0

τ k+2

∫
Ω

∣∣∣∣ d

dτ
u
m+1

2

∣∣∣∣2 dµ dτ +
tk+2

2p
[um(t)]ps,p

≤
∫ t

0

(
(k + 2)2(m+ 1) + (k + 2)ωτ + ω2mτ 2

)
τ k∥u∥m+1

m+1 dτ

+ (k + 2)

∫ t

0

τ k+1

∫
Ω

gum dµ dτ

+m

∫ t

0

τ k+2

∫
Ω

|g|2um−1 dµ dτ.

Furthermore, we have

τ k+1

∫
Ω

|g||u|m dµ ≤ 1

m+ 1
τ k+m+1∥g∥m+1

m+1 +
m

m+ 1
τ k∥u∥m+1

m+1

and

τ k+2

∫
Ω

|g|2|u|m−1 dµ ≤ 2

m+ 1
τ k+m+1∥g∥m+1

m+1 +
m− 1

m+ 1
τ k∥u∥m+1

m+1.

So we can estimate

m

(m+ 1)2

∫ t

0

τ k+2

∫
Ω

∣∣∣∣ d

dτ
u
m+1

2

∣∣∣∣2 dµ dτ +
tk+2

2p
[um(t)]ps,p

≤ 2

∫ t

0

(
(k + 2)2(m+ 2) + ω2(m+ 1)τ 2

)
τ k∥u∥m+1

m+1 dτ

+

(
2 +

k

m+ 1

)∫ t

0

τ k+m+1∥g∥m+1
m+1 dτ.
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We estimate ∥u∥m+1 by ∥u∥1 by applying Theorem 2.1.3 to ∥u∥∞ and
the standard growth estimate to ∥u∥1. We have,

∥u(t)∥m+1
m+1 ≤ ∥u(t)∥1∥u(t)∥m∞

≤ C max
{
eωβ1t

(
1
t

+ ω
)α
, eωβ2t∥g∥η

Lψ(0,t;Lρ)

}m
θ

(1 +N(t)γm)×(
eωt∥u0∥1 +

∫ t

0

eω(t−τ)∥g(τ)∥1 dτ + ε

) γm
(m+1)θ

+1

where variables are given by (2.1.11) and (2.1.12) with ℓ = 1. Note that
we require (1.2.3) to satisfy condition (2.1.8) of Theorem 2.1.3. Then for
k = αm

θ
we define α̃ = αm

θ
+ 2, giving (2.1.16).

For Theorem 2.1.6, it remains to prove that under the given assump-
tions, for all u0 ∈ L1 the mild solution u to (1.2.1) is a strong distri-
butional solution in L1. We prove this similarly to [22], noting that the
L1 − L∞ regularizing effect and the Lipschitz continuity in L1 given by
Lemma 2.8.1 allow us to obtain similar key estimates with less regularity
of the initial data. However, we use [75, Lemme 2.1] rather than [22,
Theorem 1.1] to apply this to general open domains.

Proof of Theorem 2.1.6. Fix u0 ∈ L1 and let u be the mild solution
in L1 to (1.2.1) with initial data u0. Consider a sequence (u0,n)n∈N ⊂
D̂((−∆p)

s
|L1∩∞φ) such that u0,n → u0 in L1 as n → ∞. Such a sequence

exists because D((−∆p)
s
|L1∩∞φ) ⊆ D̂((−∆p)

s
|L1∩∞ and

D((−∆p)s|L1∩∞φ)L
1

= L1

by Theorem 2.1.1. Applying Theorem 2.1.2, (u0,n)n∈N generate strong
distributional solutions (un)n∈N in L1 satisfying un(0) = u0,n for each
n ∈ N. Moreover,

un → u in C([0, T ];L1)

as n→ ∞.
Consider 0 < t1 < t2 < T . Then by Theorem 2.1.3 and the standard

growth estimate in L1, un(t) ∈ L1 ∩ L∞ uniformly for all t ∈ (t1, t2)
and n ∈ N. Let vn = φ(un) for n ∈ N. Then since (un)n∈N is uni-
formly bounded in L∞(t1, t2;L

∞), we have that (vn)n≥1 is bounded in
L∞(t1, t2;L

∞) and so taking a subsequence, we can relabel such that

vn ⇀
∗ v weakly-∗ in L∞(t1, t2;L

∞)

for some v ∈ L∞(t1, t2;L
∞). Since φ(r) = rm with m ≥ 1 is increasing,

one has that v = φ(u).
Define β = φ−1,

β1/2(r) =

∫ r

0

((β)′(τ))1/2 dτ,
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and wn = β1/2(φ(un)) for n ∈ N so that

w′
n(t) =

√
φ′(un(t))

dun
dt

(t) for almost every t ∈ (0, T ).

By (2.1.16), we have that (wn)n∈N is uniformly bounded in W 1,2(t1, t2;L
2)

uniformly for all n ∈ N . So taking a further subsequence (nk)k≥1 with
nk → ∞ for weak convergences and relabelling, we have

wk → w in C([t1, t2];L
2) and

w′
k ⇀ w′ weakly in L2(t1, t2;L

2).

We have

|β1/2(vk) − β1/2(v)| =

∣∣∣∣∫ vk

v

((β)′(r))
1
2 dr

∣∣∣∣
≤ |vk − v|

1
2 |β(vk) − β(v)|

1
2 .

Hence w = β1/2(φ(u)). Define Ψ : R(β1/2) → R such that

Ψ ◦ β1/2 = β.

Then Ψ(0) = 0 and by [22, Lemma 4.3], Ψ is locally absolutely continuous
on R(β1/2). In particular, Ψ ∈ W 1,1(R(β1/2)). So u = Ψ(w) where
w ∈ W 1,2(t1, t2;L

2) and Ψ ∈ W 1,1(R(β1/2)). Moreover by Lemma 2.8.1,
u ∈ BV (t1, t2;L

1). Then by [75, Lemme], u ∈ W 1,1(t1, t2;L
1) and for

a.e. t ∈ (t1, t2),
du

dt
= Ψ′(w(t))

dw

dt
.

Since t1, t2 were arbitrary, we have that u ∈ W 1,1
loc ((0, T );L1) and hence

is a strong solution to (1.2.1). Then by a standard localisation argument
and the continuity of

√
φ′, we can apply lower semicontinuity of the L2

norm and E to obtain (2.1.16) for u0 ∈ L1.
To prove the distributional property we apply the method in [22,

Lemma 4.2] given that u ∈ W 1,1(t1, t2;L
1). Then for t ∈ (0, T ), ϕ(u(t)) ∈

D((−∆p)
s
|L1∩∞).

2.9 Strong solutions on open domains

In this section we prove Theorem 2.1.8. That is, we establish the exis-
tence of strong distributional solutions of (1.2.2) in L1 for an open domain
Ω ⊆ Rd. To do this, we approximate the unique mild solution u given
by Theorem 2.1.1 by strong distributional solutions un in L1(Ωn). For
this we cover Ω by (Ωn)n≥1, an increasing sequence of open and bounded
subsets of Ω. By Theorem 2.1.2, we have strong distributional solutions
(un)n≥1 of the associated initial boundary-value problem

∂un
∂t

+ (−∆p)
sumn + f(x, u) = g(x, t) in Ωn × (0, T ),

un = 0 in Rd \ Ωn × (0, T ),

un(x, 0) = u0,n on Ωn,

(2.9.1)
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where for each n ≥ 1, u0,n is a function in D̂((−∆p)
s
|L1∩∞·m) and u0,n

converges to the u0 of (1.2.2) in L1.
We note that the existence of mild solutions to (1.2.2) for initial data

in L1 and the density for initial data which we use for this approximation
both rely on the density result (2.1.1) of Theorem 2.1.1 for which we have
the sufficient condition φ ∈ W 1,q

loc (R) for q ∈ ( 1
1−s ,∞]. This results in the

restriction m > s in the statement of Theorem 2.1.8.

Due to our subdifferential setting, (−∆p)
s depends on the domain Ωn

moreso than just extending by 0. In particular, this is due to the space for
test functions, W

s,(2,p)
0 being larger for larger Ωn (see Proposition 2.3.1).

To provide the rigorous functional analytical setting of this approxima-
tion argument and the dependence on Ωn explicit, we introduce notation
for the doubly nonlinear operator on L1(Ωn) for n ≥ 1.

We define the energy functional En : L2(Ωn) → (−∞,+∞] by

En(u) =

{
1
2p

[u]ps,p if u ∈ W
s,(2,p)
0 (Ωn),

+∞ otherwise.
(2.9.2)

We then define the fractional p-Laplacian on Ωn as

(−∆p)
s
Ωnu := ∂L2(Ωn)En(u)

for every u ∈ D(∂L2(Ωn)En). We denote the restriction to L1∩∞(Ωn) by

(−∆p)
s
Ωn,1∩∞ :=

{
(u, v) ∈ L1∩∞(Ωn) × L1∩∞(Ωn)

∣∣∣ v = (−∆p)
s
Ωnu
}
.

Finally, we have the associated doubly nonlinear operator on L1(Ωn)
given by An := (−∆p)sΩn,1∩∞·mL1(Ωn) , defined as in Definition 2.0.1.

For f(x, u) satisfying, (2.0.1) and (2.0.3a) and F the Nemytskii oper-
ator of f on L1 as usual, we denote the associated Nemytskii operator
on L1(Ωn) by Fn for n ≥ 1. We can compare such Fn much more simply
by extending functions by zero since here we only have dependence on
the domain of the function itself (and not any test functions which could
restrict the domain of Fn).

With this setting, we now introduce the following Cauchy problem in
L1(Ωn), corresponding to (2.9.1),{

dun
dt

(t) + Anun(t) + Fn(un(t)) = g(t) in (0, T ),

un(0) = u0,n.
(2.9.3)

In order to compare solutions to (2.9.1) with solutions to (1.2.2), we
want to view both as problems in L1. Hence we introduce the following
extension for An to an operator on L1. That is, on L1(Ω) rather than
L1(Ωn). Let

Ãnu(x) =

{
[An(u1Ωn)](x) for x ∈ Ωn,

0 otherwise,
(2.9.4)
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for n ≥ 1. This simply restricts functions on Ω to Ωn and extends
functions in the range of the operator by zero. So solutions un to the
Cauchy problem (2.9.3) can be extended by zero to be defined on Ω ×
(0, T ) and thereby satisfy

dun
dt

(t) + Ãnun(t) + F (un(t)) = g(t) in (0, T ),

un(0) = u0,n.
(2.9.5)

To prove the convergence of (un)n≥1 as Ωn grows to cover Ω, we require
the following two results. The first lemma gives us a comparison principle
for the fractional p-Laplacian on subdomains which we will then apply
in order to approximate solutions to (1.2.2) by solutions to (2.9.1).

Lemma 2.9.1. Let 1 < p < ∞, 0 < s < 1, m > s, h ∈ L1(Rd) and Ω1,
Ω2 be open subsets of Rd satisfying Ω1 ⊆ Ω2. Define

w1 := (I + λ(Ã1 + F ))−1(h1Ω1) and

w2 := (I + λ(Ã2 + F ))−1(h1Ω2)

for 0 < λ < 1/ω. Suppose h(x) ≥ 0 a.e. on Rd. Then w1 ≤ w2 a.e. on
Rd.

Proof. By a standard density argument it is sufficient to consider h ∈
L1 ∩ L∞ with h ≥ 0 so that w1, w2 ∈ L1 ∩ L∞. In particular, then w1 ∈
D((−∆p)

s
Ω1,1∩∞) and w2 ∈ D((−∆p)

s
Ω2,1∩∞) when viewed as functions on

Ω1 and Ω2 respectively, since they are both zero outside their respective
domains. Moreover, by (2.2.13), since h ≥ 0 we have that w1 ≥ 0 and
w2 ≥ 0. We aim to estimate (w1 − w2)

+, hence we introduce a sequence
of q ∈ C1(R) to approximate sign+

0 (w1 −w2) := 1{w1>w2 }. In particular,
we require that 0 ≤ q ≤ 1, q(r) = 0 for r ≤ 0 and that there exists
M > 0 such that 0 < q′(r) < M for all r > 0. For convenience, we define
Q := q(w1 − w2). Note that Q = 0 in Rd \ Ω1 and

[Q]s,p =
1

p

(∫
Rd

∫
Rd

|q(w1(x) − w2(x)) − q(w1(y) − w2(y))|p

|x− y|d+sp
dy dx

) 1
p

≤ M

p

(∫
Rd

∫
Rd

|w1(x) − w2(x) − (w1(y) − w2(y))|p

|x− y|d+sp
dy dx

) 1
p

≤M([w1]s,p + [w2]s,p)

so that Q ∈ W
s,(2,p)
0 (Ω1) and hence also in W

s,(2,p)
0 (Ω2). We have that∫

Rd
(w1 − w2)q(w1 − w2) dx = −λ

∫
Rd

(Ã1w1 − Ã2w2)Q dx

−λ
∫
Rd

(F (w1) − F (w2))Q dx.
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Estimating the first term,

−λ
∫
Ω1

(−∆p)
s
Ω1,1∩∞(wm1 )Q dx+ λ

∫
Ω2

(−∆p)
s
Ω2,1∩∞(wm2 )Q dx

= −λ
∫
R2d

I(x, y)(Q(x) −Q(y))

|x− y|d+sp
d(x, y)

where

I(x, y) := (wm1 (x) − wm1 (y))p−1 − (wm2 (x) − wm2 (y))p−1

and
sign0(I(x, y)) = sign0(Q(x) −Q(y))

for all x, y ∈ Rd. In particular,

−λ
∫
Rd

(Ã1w1 − Ã2w2)Q dx ≤ 0.

For the second term we apply the Lipschitz continuity of F ,

−λ
∫
Rd

(F (w1) − F (w2))Q dx ≤ λω

∫
Rd

(w1 − w2)(q(w1) − q(w2)) dx.

By a standard approximation for sign+
0 , we then have that

(1 − λω)

∫
Rd

(w1 − w2)
+ dx ≤ 0

so that w1 ≤ w2 a.e. in Rd given that λ < 1/ω.

We can now prove the following approximation result for (1.2.2).

Proposition 2.9.2. Let Ω be an open subset of Rd, d ≥ 1, p > 1,
0 < s < 1, m > s and suppose (Ωn)n≥1 is the sequence of open subsets
of Ω defined by Ωn = Ω ∩ Bn where Bn is the ball centered at the origin
with radius n. Then, for every u0 ∈ L1, there is a sequence of functions
(u0,n)n≥1 with u0,n ∈ L1(Ωn) and um0,n ∈ D((−∆p)

s
Ωn,1∩∞) for each n ≥ 1

such that
lim
n→∞

u0,n1Ωn = u0 in L1.

Moreover, for each n ≥ 1, there is a unique strong distributional solution
un of the Cauchy problem (2.9.3) such that extending to Ω by zero,

lim
n→∞

un1Ωn = u in C([0, T ];L1) (2.9.6)

for every T > 0, where u is the unique mild solution of problem (1.2.2).

Proof. By Theorem 2.1.1, for each n ≥ 1, we can approximate u01Ωn ∈
L1(Ωn) by a sequence (u0,k)k∈N with um0,k ∈ D((−∆p)

s
Ωn,1∩∞). Taking a

diagonal subsequence and relabelling, we obtain the sequence (u0,n)n≥1

of the proposition. Moreover, by Theorem 2.1.2, for each n ≥ 1 there
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is a unique strong distributional solution un of the initial value prob-
lem (2.9.3) with initial data u0,n. Then, when extended by zero to be
defined on Ω, un is also a strong distributional solution of (2.9.1) and
therefore a strong solution of (2.9.5).

Next, by Corollary 2.4.4 (see also [50, Section 2]), for every λ > 0,

the resolvent operators J Ãn+Fλ := (I + λ(Ãn + F ))−1 and JA+Fλ := (I +
λ(A + F ))−1 are contractions on L1. Furthermore, by the m-accretivity
of An + Fn on L1(Ωn), Ãn + F is also m-accretive on L1. Then since
un,0 → u0 in L1, applying [12, Proposition 4.4 and Theorem 4.14], (2.9.6)
is equivalent to showing that for every h ∈ L1∩∞ and every 0 < λ < 1/ω,
for

w := JA+Fλ h and wn := J Ãn+Fλ h,

one has that
lim
n→∞

wn = w in L1. (2.9.7)

Hence we now aim to prove (2.9.7). By definition of Ãn, we can write

wn(x) =

{
[JAn+Fnλ (h1Ωn)](x) if x ∈ Ωn,

0 otherwise.

By [50, Proposition 2.19],

wm ∈ D((−∆p)
s
1∩∞) and wmn ∈ D((−∆p)

s
Ωn,1∩∞)

for every n ≥ 1. Moreover,

∥w∥1∩∞ ≤ 1
1−λω∥h∥1∩∞

and
∥wn∥1∩∞ ≤ 1

1−λω∥h∥1∩∞ for every n ≥ 1. (2.9.8)

Thus, multiplying

wn1Ωn + λ
(
(−∆p)

s
Ωn,1∩∞(wn1Ωn)m + Fn(wn1Ωn)

)
= h1Ωn (2.9.9)

by wmn and subsequently applying (2.9.8), one sees that

(1 − λω)∥wn∥m+1
m+1 + λ [wmn ]ps,p ≤ 1

(1−λω)m∥h∥1∥h∥
m
∞.

From this and by (2.9.8), we can conclude that (wmn )n≥1 is bounded in

W
s,(2,p)
0 . Thus, there is a v ∈ W

s,(2,p)
0 such that, after possibly passing to

a subsequence, and by setting w̃m := v,

lim
n→∞

wmn = w̃m weakly in W
s,(2,p)
0 . (2.9.10)

Moreover, the fractional Rellich-Kondrachov theorem (see [117, Theo-
rem 2.1]) yields that after possibly passing to a subsequence, wmn → w̃m

in Lq(K) for every compact subset K of Rd, where q ∈ [1,∞] depends on
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s, p and d. In particular, again possibly passing to a subsequence, one
has that wn(x) → w̃(x) for a.e. x ∈ Rd.

By Lemma 2.9.1, supposing first that h ≥ 0, we have that wn ≤ wn+1

a.e. on Rd. Thus and by (2.9.8), Beppo-Levi’s theorem of monotone
convergence yields that

lim
n→∞

wn = w̃ in L1 (2.9.11)

holds. Similarly, if h ≤ 0 then for every integer n ≥ 1, 0 ≤ w1 − wn ≤
w1 − wn+1 a.e. on Rd and by (2.9.8), it follows again from Beppo-Levi’s
theorem of monotone convergence that (2.9.11) holds. Now, let h ∈ L1∩∞

be general. Then we decompose h = h+ − h− into the positive part
h+ := h ∨ 0 and negative part h− := (−h) ∨ 0 of h, and set for every
integer n ≥ 1,

w+
n (x) :=

{
[JAn+Fnλ [h+1Ωn ]](x) if x ∈ Ωn,

0 otherwise,

and

w−
n (x) :=

{
[JAn+Fnλ [−h−1Ωn ]](x) if x ∈ Ωn,

0 otherwise.

Since −h− ≤ h ≤ h+, it follows from (2.2.13) that

w−
n ≤ wn ≤ w+

n a.e. on Rd for all n ≥ 1.

Moreover, by the previous monotone convergence arguments with h+ ≥ 0
and −h+ ≤ 0, w+

n ↑ w̃+ and w−
n ↓ w̃− in L1 for some limits w̃−, w̃+ ∈

L1∩∞. Hence, w̃+ + |w̃−| ∈ L1∩∞ and one has that |wn| ≤ w̃+ + |w̃−|
a.e. in Ω for all n ≥ 1. Therefore, Lebesgue’s dominated convergence
theorem implies that (2.9.11) holds for every h ∈ L1∩∞.

Since v
1
m = w̃, it remains to show that v

1
m = w := JAλ h. To see this, we

first note that by (2.9.8) and (2.9.11), one has that for every 1 ≤ q <∞,

lim
n→∞

wn = w̃ in Lq (2.9.12)

and so, multiplying (2.9.9) by wmn and subsequently, letting n→ ∞ gives
that

lim
n→∞

[wmn ]ps,p =
⟨h− λF (w̃), w̃m⟩

W
−s,(2,p)′
0 ,W

s,(2,p)
0

− ∥w̃∥m+1
m+1

λ
(2.9.13)

where we also apply the Lipschitz continuity of F and (2.9.10). Further,

since (wmn )n≥1 is bounded in W
s,(2,p)
0 , also the sequence ((−∆p)

s(wmn ))n≥1

in W
−s,(2,p)′
0 given by

⟨(−∆p)
s(wmn ), ξ⟩

W
−s,(2,p)′
0 ,W

s,(2,p)
0

=

∫
R2d

|wmn (x) − wmn (y)|p−2(wmn (x) − wmn (y))(ξ(x) − ξ(y))

|x− y|d+sp
dy dx
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for every ξ ∈ W
s,(2,p)
0 , is bounded. Therefore, there is a χ ∈ W

−s,(2,p)′
0

such that after possibly passing to a subsequence, one has that

lim
n→∞

(−∆p)
s(wmn ) = χ weakly∗ in W

−s,(2,p)′
0 . (2.9.14)

By the two limits (2.9.12) and (2.9.14), multiplying the equation (2.9.9)
by ξ ∈ C∞

c and subsequently, sending n→ ∞ yields that

⟨w̃ + λ (χ+ F (w̃)) − h, ξ⟩
W

−s,(2,p)′
0 ,W

s,(2,p)
0

= 0

for all ξ ∈ C∞
c , from where a standard density argument yields that

w̃ + λ (χ+ F (w̃)) = h in W
−s,(2,p)′
0 . (2.9.15)

Therefore, it remains to show that

χ = (−∆p)
s
1∩∞w̃

m. (2.9.16)

To prove this, we use the classical monotonicity trick (see, e.g., [92,
p. 172]). We begin by multiplying (2.9.15) by wmn . Due to (2.9.10),
(2.9.12) and (2.9.13), sending n → ∞ in the resulting equation yields
that

⟨χ, w̃m⟩
W

−s,(2,p)′
0 ,W

s,(2,p)
0

=
⟨h− λF (w̃), w̃m⟩

W
−s,(2,p)′
0 ,W

s,(2,p)
0

− ∥w̃∥m+1
m+1

λ
= lim

n→∞
[wmn ]ps,p.

(2.9.17)

Next, let ξ ∈ W
s,(2,p)
0 . Since the variational fractional p-Laplace operator

is a monotone operator (−∆p)
s : W

s,(2,p)
0 → W

−s,(2,p)′
0 in the sense that

⟨(−∆p)
s(v) − (−∆p)

s(ξ), v − ξ⟩
W

−s,(2,p)′
0 ,W

s,(2,p)
0

≥ 0

for every v, ξ ∈ W
s,(2,p)
0 , one has that

0 ≤ ⟨(−∆p)
s(wmn ) − (−∆p)

s(ξ), wmn − ξ⟩
W

−s,(2,p)′
0 ,W

s,(2,p)
0

= [wmn ]ps,p − ⟨(−∆p)
s(wmn ), ξ⟩

W
−s,(2,p)′
0 ,W

s,(2,p)
0

− ⟨(−∆p)
s(ξ), wmn − ξ⟩

W
−s,(2,p)′
0 ,W

s,(2,p)
0

for every n ≥ 1. Hence, sending n → ∞ in the previous inequality and
using (2.9.10), (2.9.14) and (2.9.17) gives that

0 ≤ ⟨χ− (−∆p)
s(ξ), w̃m − ξ⟩

W
−s,(2,p)′
0 ,W

s,(2,p)
0

.

Since in the last inequality ξ ∈ W
s,(2,p)
0 was arbitrary, we can choose

ξ = w̃m − µ ζ for any ζ ∈ W
s,(2,p)
0 and µ > 0. It follows that

0 ≤ ⟨χ− (−∆p)
s(w̃m − µ ζ), ζ⟩

W
−s,(2,p)′
0 ,W

s,(2,p)
0

.
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In this last inequality, we can send µ→ 0+ and obtain that

0 ≤ ⟨χ− (−∆p)
s(w̃m), ζ⟩

W
−s,(2,p)′
0 ,W

s,(2,p)
0

for every ζ ∈ W
s,(2,p)
0 ,

implying that χ = (−∆p)
s(w̃m). Since w̃ and h ∈ L1∩∞, it follows

from (2.9.15) that (2.9.16) holds and so we have shown that w̃+λ(Aw̃+
F (w̃) = h, or, equivalently, w̃ = JA+Fλ h. Since the resolvent JA+Fλ is
a contraction on L1, it follows that w̃ = w and thereby we have shown
that (2.9.7) holds. This completes the proof of this lemma.

With the preceding lemma in mind, we can now give the proof of The-
orem 2.1.8. Note, below we write Lp(W

s,(2,p)
0 ) instead of Lp(0, T ;W

s,(2,p)
0 )

for T > 0, and denote by Lp′ (W
−s,(2,p)′
0 ) the dual space of Lp(W

s,(2,p)
0 ).

Proof of Theorem 2.1.8. We only provide the proof for initial values u0 ∈
L1∩∞ since by Corollary 2.1.5 the same conclusion holds for general u0 ∈
L1 under the given restrictions on p, s, and m. So let u0 ∈ L1∩∞, take
(Ωn)n≥1 to be the sequence (Ω ∩ Bn)n≥1 of intersections with balls of
radius n and (u0,n)n≥1 the sequence of functions converging to u0 in L1

given by Proposition 2.9.2. In particular, um0,n ∈ D((−∆p)
s
Ωn,1∩∞). Then

define un to be the associated sequence of strong distributional solutions
to (2.9.3). We now prove the strong distributional properties of the mild
solution u of Cauchy problem (1.2.2) by considering the boundedness and
convergence of un and dun

dt
in appropriate Banach spaces.

Multiplying the differential equation in (2.9.1) by umn and subsequently,
for every T > 0, integrating over (0, T ) yields that

1
m+1

∥un(t)1Ωn∥m+1
m+1

∣∣∣T
0

+

∫ T

0

[umn (t)]ps,p dt

=

∫ T

0

∫
Ωn

(−Fn(un) + gn)umn dx dt

(2.9.18)

which we estimate by

1
m+1

∥un(t)1Ωn∥m+1
m+1

∣∣∣T
0

+

∫ T

0

[umn (t)]ps,p dt

≤
∫ T

0

(1 + ω)∥un(t)1Ωn∥m+1
m+1 + ∥g(t)∥m+1

m+1 dt.

(2.9.19)

Since u0 ∈ L1∩∞, Proposition 2.9.2 and the standard growth estimate of
Theorem 2.1.1 imply that for every 1 ≤ q <∞,

lim
n→∞

un1Ωn = u in C([0, T ];Lq) (2.9.20)

for every T > 0. Thus (2.9.19) implies that (umn )n≥1 is bounded in

Lp(W
s,(2,p)
0 ). Since the space Lp(W

s,(2,p)
0 ) is reflexive and by (2.9.20),
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we can conclude that um ∈ Lp(W
s,(2,p)
0 ) and after possibly passing to a

subsequence,

lim
n→∞

umn 1Ωn = um weakly in Lp(W
s,(2,p)
0 ). (2.9.21)

In particular, one has that the sequence (As,p(u
m
n ))n≥1 of linear bounded

functionals given by

⟨As,p(u
m
n ), ξ⟩

Lp′ (W
−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

=
1

2

∫ T

0

∫
R2d

(umn (x) − umn (y))p−1(ξ(x) − ξ(y))

|x− y|d+sp
d(x, y) dt

for every ξ ∈ Lp(W
s,(2,p)
0 ), is bounded in Lp′ (W

−s,(2,p)′
0 ). Therefore, there

is a χ ∈ Lp′ (W
−s,(2,p)′
0 ) such that after possibly passing to a subsequence,

one has that

lim
n→∞

As,p(u
m
n ) = χ weakly∗ in Lp

′
(W

−s,(2,p)′
0 ). (2.9.22)

We now consider the following equation in L1(Ωn),

dun
dt

(t) + Anun(t) + Fn(un)(t) = gn(t) for t ∈ (0, T ). (2.9.23)

We first note that (Fn(un)1Ωn)n≥1 and (gn1Ωn)n≥1 are bounded in the

dual space Lp′ (W
−s,(2,p)′
0 ) since, by the Lipschitz property of F and

the growth estimate (2.1.2), F (un) and gn are bounded in the dual
space Lp′ (0, T ;Lp′ ). Hence, given (2.9.22), we have that (dun

dt
1Ωn)n≥1

is also bounded in Lp′ (W
−s,(2,p)′
0 ). Thus, taking another subsequence,

(dun
dt
1Ωn)n≥1 converges weak-∗ in Lp′ (W

−s,(2,p)′
0 ). Applying test functions

and (2.9.20), we can conclude that du
dt

∈ Lp′ (W
−s,(2,p)′
0 ) and we have the

weak-∗ convergence,(
dun
dt

+ Fn(un) − gn
)
1Ωn ⇀

∗ du
dt

+F (u)−g in Lp
′
(W

−s,(2,p)′
0 ) (2.9.24)

as n→ ∞.
Hence, multiplying (2.9.23) by a test function ξ ∈ C∞

c ((0, T )×Rd) and
sending n→ ∞ leads to〈

du
dt

(t) + χ+ F (u) − g, ξ
〉
Lp′ (W

−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

= 0.

Therefore, we have shown that

du
dt

(t) + χ+ F (u) = g in W
−s,(2,p)′
0 for a.e. t ∈ (0, T ). (2.9.25)

Now we can show that u is a distributional solution of (1.2.1) by proving

that χ = As,p(u
m). Here, As,p is the lifted operator As,p : Lp(W

s,(2,p)
0 ) →

Lp′ (W
−s,(2,p)′
0 ) given by

⟨As
p(v), ξ⟩

Lp′ (W
−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

=
1

2

∫ t2

t1

∫
R2d

|v(x) − v(y)|p−2(v(x) − v(y))(ξ(x) − ξ(y))

|x− y|d+sp
d(x, y) dt
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for every v, ξ ∈ Lp(W
s,(2,p)
0 ). To prove this, we again use the monotonicity

trick (cf, the proof of Proposition 2.9.2), but to the lifted operator As
p.

First, we note that multiplying (2.9.25) by um yields that

1
m+1

∥u∥m+1
m+1

∣∣∣T
0

+ ⟨χ+ F (u) − g, um⟩
Lp′ (W

−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

= 0.

Thus (2.9.18) and (2.9.20) imply that

lim
n→∞

∫ T

0

[umn (t)]sp,s dt = ⟨χ, um⟩
Lp′ (W

−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

. (2.9.26)

By the monotonicity of As,p, one has that

0 ≤⟨As
p(u

m
n ) −As,p(ξ), u

m
n − ξ⟩

Lp′ (W
−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

=

∫ T

0

[umn (t)]ps,p dt− ⟨As
p(u

m
n ), ξ⟩

Lp′ (W
−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

− ⟨As,p(ξ), u
m
n − ξ⟩

Lp′ (W
−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

for all n ≥ 1. Thus, sending n → ∞ in the last inequality and by
using (2.9.21), (2.9.22), and (2.9.26), one finds that

0 ≤ ⟨χ−As,p(ξ), u
m − ξ⟩

Lp′ (W
−s,(2,p)′
0 ),Lp(W

s,(2,p)
0 )

for every ξ ∈ Lp(W
s,(2,p)
0 ). Now, by proceeding as in the proof of Propo-

sition 2.9.2, we can choose ξ = um − µ ζ, taking µ → 0+, to conclude
that χ = As,p(u

m).
Applying Corollary 2.8.2 and the standard growth estimate (2.1.2), we

can deduce that the sequence (umn (t))n≥1 is bounded in W
s,(2,p)
0 for every

t > 0, and that ( d
dt
u
m+1

2
n 1Ωn)n≥1 is bounded in L2(t1, t2;L

2) for every
0 < t1 < t2 <∞. Then by (2.9.20) and Fatou’s lemma, we can conclude

that d
dt
u
m+1

2 ∈ L2
loc((0,∞);L2) and um(t) ∈ W

s,(2,p)
0 for every t > 0. In

particular, one has that w := u
m+1

2 ∈ W 1,1
loc ((0,∞);L1

loc).
Ifm(p−1) ̸= 1, then by Theorem 2.1.6, u is locally Lipschitz continuous

on (0, T ) with values in L1. In the case m(p − 1) = 1, by assumption
we have that ∥(−∆p)

s
1∩∞u

m
0,n∥1 is uniformly bounded for n ≥ 1. Then

applying the Lipschitz estimate for un given by Lemma 2.5.1, together
with (1.2.1), we have that u is Lipschitz continuous on (0, T ) with values

in L1. Therefore, and since p(r) := r
2

m+1
−1r ∈ L1

loc(R), it follows from
[22, Theorem 1.1] that u ∈ W 1,1

loc ((0, T );L1
loc).

Now in the case m(p − 1) ̸= 1, we apply the Lipschitz estimate on u
(both in the case m(p− 1) ̸= 1 and m(p− 1) = 1), to obtain

∥∂tu(t)∥L1(Ωn) = lim sup
h→0+

∥u(t+ h) − u(t)∥L1(Ωn)

h

≤ lim sup
h→0+

∥u(t+ h) − u(t)∥L1

h

≤ L(t)
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for every t > 0 and n ≥ 1 where L(t) is obtained from (2.1.15) when
m(p − 1) ̸= 1 and (2.5.1) when m(p − 1) = 1. Sending n → ∞ in this
inequality shows that u ∈ W 1,1

loc ((0, T );L1), and in particular a strong
solution of (1.2.1).

Thus, we also prove the regularity of solutions stated in Theorem 2.1.6.

2.10 Hölder regularity

This section is dedicated to the parabolic Hölder regularity of mild solu-
tions to the initial boundary value problem

ut(t) + (−∆p)
sum(t) + f(·, u(t)) = g(·, t) in Ω × (0, T ),

u(t) = 0 in Rd \ Ω × (0, T ),

u(0) = u0 on Ω,
(2.10.1)

for 1 < p < ∞ with p ̸= 1 + 1
m

, 0 < s < 1 and where Ω is an open,
bounded domain in Rd, d ≥ 2. For global Hölder regularity we consider
only the case m = 1. For the local Hölder result, we apply the following
local elliptic Hölder regularity result from [30].

Theorem 2.10.1 ([30, Theorem 1.4]). Let Ω ⊂ Rd be a bounded and
open set. Assume 2 ≤ p < ∞, 0 < s < 1 and q ≥ 1 satisfies q > d

sp
. We

define the exponent

Θ(d, s, p, q) := min

{
1

p− 1

(
sp− d

q

)
, 1

}
. (2.10.2)

Let u ∈ W s,p
loc (Ω) ∩ L∞

loc(Ω) ∩ Lp−1
sp (Rd) be a local weak solution of

(−∆p)
su = h in Ω,

where h ∈ Lqloc(Ω). Then u ∈ Cδ
loc(Ω) for every 0 < δ < Θ.

Proof of Theorem 2.1.9. In order to apply Theorem 2.10.1, we require a
distributional solution. Hence, first consider u to be a strong distribu-
tional solution to (1.2.1) with u0 ∈ D̂((−∆p)

s
|L1∩∞φ). By the standard

growth estimate (2.1.2), u(t) ∈ L1 ∩ L∞ for t ∈ [0, T ] and hence by the
Lipschitz condition of f , for F the Nemytskii operator of f , F (u(t)) ∈ L1

for all t ∈ [0, T ]. We now apply Theorem 2.10.1 with

h(t) := g(t) − F (u(t)) − ut(t) ∈ L1

for almost every t ∈ (0, T ). Then by [30, Theorem 1.4], for almost every
t ∈ (0, T ),

[um(t)]Cδ(BR/8(x0)) ≤ C

[
∥u0∥L∞(BR(x0)) + ∥u(t)∥p−1 + ∥h(t)∥

1
p−1

1

]
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for some C > 0 depending on R, s, p, d and δ. Applying the homogeneous
regularizing effects of Theorem 2.1.6, we estimate ut ∈ L1 so that

∥h(t)∥1 ≤ ∥g(t)∥1 + ωeωt
(
∥u0∥1 +

∫ t

0

∥g(r)∥1 dr

)
+
C̃e2ωt

t

(
∥u0∥1 +

∫ t

0

∥g(r)∥1 dr + V (t, g)

)
for t ∈ (0, T ) where C̃ > 0 depends on m and p.

We now approximate mild solutions u with u0 ∈ L1 using the density
result of Theorem 2.1.1, and applying Fatou’s lemma, we have um(t) ∈
Cδ

loc(Ω) for almost every t ∈ (0, T ).
Since rm, r ∈ R, is locally Lipschitz continuous for m ≥ 1, we obtain

Hölder continuity of u(t) in this case by composition.

Our proof of global Hölder regularity employs the following elliptic
Hölder regularity result for the fractional p-Laplacian from [73].

Theorem 2.10.2 ([73, Theorem 1.1]). Let Ω be a bounded domain in Rd,
d ≥ 2, with a boundary ∂Ω of the class C1,1, p ∈ (1,∞) and 0 < s < 1.
There exists α ∈ (0, s] and CΩ > 0 depending on d, p, s,Ω such that if
h ∈ L∞, then the weak solution u ∈ W s,p

0 of{
(−∆p)

su = h in Ω,

u = 0 in Rd \ Ω,
(2.10.3)

belongs to Cα(Ω) and satisfies

∥u∥Cα(Ω) ≤ CΩ∥h∥
1
p−1

L∞ . (2.10.4)

For this we use a restriction to the set of continuous functions u : Ω →
R vanishing on the boundary ∂Ω, which we denote by C0(Ω). Following
the notation in Definition 2.2.14, we denote by (−∆p)

s
|C0

the restriction of

(−∆p)
s to C0(Ω) ×C0(Ω). We first prove accretivity and density results

for this operator on C0(Ω). The proof of density follows the idea in [98,
Proposition 5.4].

Proposition 2.10.3 (Density of D((−∆p)
s
|C0

) in C0(Ω)). Let Ω be a

bounded domain in Rd, d ≥ 2, with a boundary ∂Ω of the class C1,1, F the
Nemytskii operator of f on C0(Ω) satisfying (2.0.3a)-(2.0.3b), p ∈ (1,∞)
and 0 < s < 1. Then (−∆p)

s
|C0

+ F is m-completely accretive in C0(Ω).

Furthermore, if s < 1 − 1
p
then the set D((−∆p)

s
|C0

) is dense in C0(Ω).

Proof. Since Ω has finite Lebesgue measure, one has that the subdiffer-
ential satisfies (−∆p)

s
|C0

⊆ (−∆p)
s. Then since (−∆p)

s + F is ω-quasi

m-completely accretive in L2, for every g ∈ C0(Ω) and λ > 0, there is a
unique uλ ∈ L2 satisfying

(1 + λω)uλ + λ
(
∂E(uλ) + F (uλ)

)
= g in L2. (2.10.5)
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Moreover, by the complete accretivity condition, uλ ∈ L∞. Hence uλ is
a weak solution of the non-local Poisson problem (2.10.3) with

h := −F (uλ) +
g − (1 + λω)uλ

λ
∈ L∞,

and so Theorem 2.10.2 yields that uλ ∈ Cα
0 (Ω), satisfying

(1 + λω)uλ + λ
(
(−∆p)

s
|C0
uλ + F (uλ)

)
= g in L2.

As g ∈ C0(Ω) and λ > 0 were arbitrary, we have thereby shown that
the shifted operator (−∆p)

s
|C0
uλ + F (uλ) + ωIC0 satisfies the range con-

dition (2.2.6).
To prove the density result, fix u ∈ C∞

c (Ω). We first prove that u +
(−∆p)

su ∈ L∞ by splitting the domain to deal with local and nonlocal
estimates. For ε > 0,

(−∆p)
su ≤

∫
Bε(x)

|u(x) − u(y)|p−1

|x− y|d+sp
dy +

∫
Rd\Bε(x)

|u(x) − u(y)|p−1

|x− y|d+sp
dy.

Estimating |u(x) − u(y)| by the derivative sups∈Ω |u′(s)||x − y| for the
first term,∫

Bε(x)

|u(x) − u(y)|p−1

|x− y|d+sp
dy ≤

∫
Bε(x)

sups∈Ω |u′(s)|p−1|x− y|p−1

|x− y|d+sp
dy

≤ CB sup
s∈Ω

|u′(s)|p−1

∫ ε

0

1

rd+1−(1−s)p r
d−1 dr

where CB is a constant for integration over a d-dimensional ball. Then
we have ∫ ε

0

1

r2−(1−s)p dr = C
[
r(1−s)p−1

]ε
0

which is bounded for s < 1 − 1
p
. For the nonlocal term,∫

Rd\Bε(x)

|u(x) − u(y)|p−1

|x− y|d+sp
dy ≤ CB∥u∥∞

∫ ∞

ε

1

rd+sp
rd−1 dr

= C∥u∥∞
[
r−sp

]ε
∞

for some C > 0. Since sp > 0, this is bounded and (−∆p)
su ∈ L∞. We

now define f := A1u = u + (−∆p)
su ∈ L∞ and approximate by fn ∈

C∞
c (Ω) ⊂ C0(Ω) such that fn → f in Lp

∗
s as n→ ∞ with ∥fn∥∞ ≤ ∥f∥∞

and where 1
p∗s

+ 1
ps

= 1 and ps is given by (2.1.7).

We now solve A1un = fn ∈ C0(Ω) using the m-accretivity of (−∆p)
s
|C0

,

finding that un ∈ C0(Ω) and so un ∈ D((−∆p)
s
|C0

). Moreover, by the

elliptic Hölder estimate (2.10.4) with (fn)n∈N bounded in L∞, (un)n∈N is
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bounded in Cα(Ω). Hence taking a subsequence and relabelling, we have
convergence to a function in C(Ω).

Next, we prove that this limit is u by considering convergence in W s,p.
For w ∈ D((−∆p)

s
|C0

) we can define φw(v) := (A1w, v)L2 for all v ∈ W s,p.

Estimating by Hölder’s inequality,

|φun(v) − φu(v)| ≤
∫
Ω

|(fn − f)v| dµ

≤ ∥fn − f∥p∗s∥v∥ps
≤ Cd∥fn − f∥p∗s∥v∥W s,p

by the standard Sobolev embedding (2.1.7). Hence φun → φu in (W s,p)′

and so (φun)n≥1 is bounded in (W s,p)′. Then we also have that

(A1un, un)L2 = ∥un∥22 + [un]ps,p

≤ Cu (1 + ∥un∥W s,p) .

Now

lim inf
∥v∥Ws,p→∞

(A1v, v)L2

∥v∥W s,p

=
∥v∥2 + [v]ps,p
∥u∥W s,p

≥ ∥v∥p−1
W s,p

→ ∞

for p ∈ (1,∞). Hence (un)n≥1 is bounded in W s,p and passing to a
subsequence we have that un ⇀ ũ in W s,p. We extend φw(v) to w ∈ W s,p

by defining φw(v) = (w + (−∆p)
sw, v)L2 for w ∈ W s,p \D((−∆p)

s
|C0

). By

Minty’s theorem, [112, Proposition II.2.2],

⟨φv − φun , v − un⟩ ≥ 0

for all v ∈ W s,p. We have the convergences φun → φu in (W s,p)′ and
un ⇀ ũ in W s,p so that

⟨φv − φũ, v − u⟩ ≥ 0

for all v ∈ W s,p. Applying Minty’s theorem again, φũ = φu so that by
the uniqueness provided by the accretivity of (−∆p)

s in L2, ũ = u. Also,
since un ⇀ u in W s,p, we have that un → u in C0(Ω), relabelling by
appropriate subsequences. Then the density of C∞

c (Ω) in C0(Ω) gives us
the desired density result.

We now prove Hölder continuity in the identity case, m = 1. In this
theorem, the case p = 2 is well-known. We note that this proof of
parabolic regularity relies on the global Hölder regularity estimate of the
elliptic problem which we believe is not optimal, in particular with the
L∞ norm required in (2.10.4), and that a stronger elliptic result would
also improve this parabolic result.
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Proof of Theorem 2.1.10. By Proposition 2.10.3, we have that (−∆p)
s
|C0

+

F is ω-quasi m-completely accretivity in C0(Ω) and D((−∆p)s|C0
)
C0 =

C0(Ω). The Crandall-Liggett theorem (see [51], [11]) says that −(∂C0E +
F ) generates a strong continuous semigroup of ω-quasi contractions on
C0(Ω) where E is given by (2.0.4). Further, since (−∆p)

s
|C0

is homoge-

neous of order p− 1, and since

(−∆p)
s
|C0

⊆ ∂LqE

for all 1 ≤ q ≤ ∞, it follows from [71] that for initial data u0 ∈
C0(Ω) and g ∈ C((0, T );C0(Ω))∩BV (0, T ;C0(Ω)), the mild solution u ∈
C([0, T ];C0(Ω)) of the initial boundary value problem (2.10.1) is a strong
solution with u ∈ W 1,∞(δ, T ;C0(Ω)). Moreover, u ∈ C lip([δ, T ];C0(Ω))
for every 0 < δ < T . In particular, u is a weak solution of the non-local
Poisson problem (2.10.3) with

h := g(t) − F (u) − ut(t) ∈ C((0, T );C0(Ω)).

Hence, by the elliptic regularity result Theorem 2.10.2, we obtain that
u(t) ∈ Cα(Ω) for all t ∈ (0, T ) for some α ∈ (0, s].



Chapter 3

Barenblatt solutions

Our focus in this chapter is to investigate the self-similar properties of
(1.1.3) and establish an existence result for Barenblatt solutions. Such
self-similar solutions with Dirac delta as initial data have a long history
in the context of linear elliptic and parabolic equations in particular,
where they are fundamental solutions which provide a rich theory for the
generation of general solutions [61]. Despite lacking this property in the
nonlinear setting, Barenblatt solutions are nevertheless of great interest
as they give insight into the existence and regularity theory. Moreover,
they provide insight into the asymptotic behaviour of solutions. We refer
to [15, 47, 54, 120] and the references therein. Barenblatt solutions are
often otherwise referred to as fundamental or source-type solutions due
to their role in the theory of linear equations.

Such Barenblatt solutions in the nonlinear setting have been intro-
duced first in the case of the porous medium equation (1.1.2) by Zel’dovich
and Kompaneets [131], by Barenblatt in [13, 14] and by Pattle in [102].
These techniques have been extended to a wide range of nonlinear prob-
lems, both local and nonlocal. Here the connection to the asymptotic
behaviour of the porous medium equation has been introduced in [23,
63, 78, 79]. Naturally, they have been considered for p-Laplacian evo-
lution equations, studied by Kamin and Vázquez [80] and the doubly
nonlinear diffusive equation by Saá [110]. We also note [47] where the
anisotropic case of the doubly nonlinear diffusive equation is considered.
In the nonlocal case, the fractional diffusive problem and the fractional
p-Laplacian evolution problem has been considered by Vázquez [121, 122,
126].

The general idea for obtaining such self-similar solutions for these evo-
lution equations is to use self-similarity properties to reduce the equation
to an ODE via a change of coordinates to ‘self-similar variables’. The
solution of this ODE then forms the self-similar profile of the Barenblatt
solution. Importantly, this relationship between Barenblatt solutions and
inherent scaling properties provides a connection to the asymptotic be-
haviour of solutions as we will see when obtaining global barrier functions
and comparison estimates in Section 3.3. Moreover, this places Baren-

89
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blatt solutions into the wider context of scaling techniques which have
given rise to a wide array of key results in the analysis of elliptic and
parabolic problems, particularly for physical processes. We refer to [15,
16] and [120].

In the case of m = 1, Barenblatt solutions for (1.1.3) have been studied
by Vázquez in [121, 126]. Our results and proofs extend those to the case
m ≥ 1, and p > pc where

pc :=
1 +m
s
d

+m
. (3.0.1)

We note that p > pc corresponds to (1.2.3) and is a standard condition
in this context due to the self-similar scaling properties of (1.1.3). See,
for example, the case p = 2 [122] with the condition m > (d−2s

d
)+ and

m = 1 [126] requiring p > 2d
d+s

.
In particular, these are self-similar solutions with a Dirac delta as ini-

tial data in a limiting sense as t→ 0. We introduce self-similar solutions
to (1.1.3) in Section 3.1, in particular the appropriate scaling transfor-
mation under which these solutions are invariant. Furthermore, we prove
an Aleksandrov symmetry principle in Section 3.2 and a global barrier
for solutions to (1.1.3) in Section 3.3 which we use in the proof of our
main result.

Our main result is the following theorem.

Theorem 3.0.1. Suppose m ≥ 1, p > pc, 0 < s < 1, d ≥ 1 are such
that m(p− 1) ̸= 1 and sp < d. Then for all M > 0 there exists a unique
Barenblatt solution Γ to (1.1.3) of the form

Γ(x, t;M) = M spβt−dβF (M−(m(p−1)−1)βxt−β) (3.0.2)

where

β =
1

d(m(p− 1) − 1) + sp
(3.0.3)

and the profile function F : Rd → R is positive, radially symmetric and
is decreasing such that F (r) has decay at infinity with order depending
on p and given by (3.3.2). Moreover, Γ decays in time uniformly with
respect to x.
In particular, Γ is a strong distributional solution in L1 of the doubly

nonlinear nonlocal diffusion equation (1.1.3) having Mδ0 as initial datum
as t→ 0+, where δ0 is the Dirac δ-function with mass

∫
Rd δ0 dx = 1.

Here M is called the mass. We note that p > pc ensures that we have
self-similar transformations of the form presented in Section 3.1 and, in
particular, that we obtain the global bound stated in Section 3.3.

3.1 Self-similar solutions

We are interested in scaling transformations of time and space under
which (1.1.3) is invariant. Moreover, we consider self-similar solutions,
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that is, classes of solutions which are invariant under such a one-parameter
group of scaling symmetries. Such solutions plays a key role in the asymp-
totic behaviour as well as the existence and regularity of such evolution
equations.

We first introduce two important scaling transformations for (1.1.3).
Scaling time, space and amplitude, we have that (1.1.3) is invariant under
the transformation

Tku(x, t) = kdu(kx, kdm(p−1)−d+spt) (3.1.1)

for all k > 0. By the amplitude scaling, this transformation also conserves
mass. We can scale only the time and amplitude with

T̂Mu(x, t) = Mu(x,Mm(p−1)−1t) (3.1.2)

which will scale the mass of u by the factor M > 0.
Since (1.1.3) is invariant under the scaling transformation (3.1.1), we

look for self-similar solutions of the form

U(x, t;M) = t−dβF (xt−β;M) (3.1.3)

for some β ∈ R. Here F (z;M) is chosen to have mass M > 0 and
the factor t−dβ conserves the mass of U in time. Substituting (3.1.3)
into (1.1.3), we have that setting

β =
1

dm(p− 1) − d+ sp
(3.0.3)

we obtain such a self-similar solution where the profile F satisfies

−dβF (z) − β∇F (z) · z + (−∆p)
s(F (z))m = 0.

Equivalently,
(−∆p)

s(F (z))m = β∇ · (zF ) (3.1.4)

which we refer to as the self-similar profile equation. We will also use the
radial form with r = |z|, given by

(−∆p)
s(F (z))m = βr1−d

(
rdF (z)

)
r
. (3.1.5)

Note that we can scale the profile function with M = 1, F (z; 1), to
have unit mass. Then by the rescaling (3.1.2), we can deduce the profile
of mass M to be

F (z;M) = M spβF (M−(m(p−1)−1)βz; 1).
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3.2 An Aleksandrov symmetry principle

Using the radial symmetry of the fractional p-Laplacian, we prove an
Aleksandrov symmetry principle [2] for{

du
dt

(t) + (−∆p)
sum(t) = 0 in (0,∞),

u(0) = u0,
(3.2.1)

in L1(Rd), extending the fractional p-Laplacian with m = 1 from [121].
We consider a reflection around a hyperplane in Rd, denoting the re-
flection map by Π : Rd → Rd. Then the hyperplane splits Rd into two
disjoint open sets. The idea of this method is to obtain a typical dif-
ference comparison in the sense of T -accretive operators, such as the
estimate (2.1.3), but for a solution and its reflection on one half-space.
By the translation and rotational invariance of the operator (−∆)s·m, we
can consider the specific case where the hyperplane is {x ∈ Rd | x1 = 0 }
and the reflection is given by Π(x) := (−x1, x2, ..., xd).

Here we modify a standard comparison principle idea, used for example
in [127], obtaining estimates on the whole domain.

Theorem 3.2.1. Suppose 0 < s < 1, p > 1, d ≥ 1 and m > s. Let u be
the mild solution of (3.2.1) with initial data u0 ∈ L1. Let Π : Rd → Rd

denote reflection around a hyperplane H, splitting Rd into Ω1 and Ω2. If

u0(x) ≤ u0(Π(x)) in Ω1,

then

u(x, t) ≤ u(Π(x), t) in Ω1 × [0, T ].

Of important consequence are the following two corollaries giving us
radially decreasing solutions with bounded initial data and radial sym-
metry of solutions with radially symmetric initial data, respectively.

Corollary 3.2.2. Suppose 0 < s < 1, p > 1, d ≥ 1 and m > s. Then
mild solutions u of (3.2.1) with non-negative, compactly supported initial
data u0 in a ball BR(0) are radially decreasing in space for all |x| ≥ R
and t ≥ 0.

Proof. This follows from Theorem 3.2.1 by taking hyperplanes perpen-
dicular to the radial direction and with distance at least R from the
origin. Then data closer to the origin is non-negative and the data away
from the origin zero.

The next corollary follows similarly.

Corollary 3.2.3. Suppose 0 < s < 1, p > 1, d ≥ 1 and m > s.
Then mild solutions u of (3.2.1) with non-negative, radially symmetric
and radially decreasing initial data are radially symmetric and radially
decreasing in space for all x ∈ Rd and t ≥ 0.
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Before proving Theorem 3.2.1, we prove two lemmas. The first allows
us to use the variational formulation of the fractional p-Laplacian when
restricting to the half-space in Theorem 3.2.1.

Lemma 3.2.4. Let Π : Rd → Rd be the reflection around a hyperplane H
in Rd and Ω1 be a half-space associated with H. If a measurable function
u satisfies [u]s,p <∞ and

|u(x)| ≤ |u(x) − u(Π(x))| (3.2.2)

for all x ∈ Ω1 then [u1Ω1 ]s,p ≤ 2[u]s,p.

Proof. We let Ω2 be the other half-space given by reflecting Ω1 around
H. To estimate the seminorm

[u1Ω1 ]
p
s,p =

∫
Rd

∫
Rd

|u(x)1Ω1(x) − u(y)1Ω1(y)|p

|x− y|d+sp
dx dy, (3.2.3)

we consider the integrand for (x, y) ∈ Rd × Rd, taking x and y in each
half-space given by the hyperplane H.

In the region Ω1 × Ω1, the integrand of (3.2.3) will correspond to the
integrand of [u]s,p in the same region. Moreover, on Ω2×Ω2 the integrand
of (3.2.3) is zero. Hence we consider the case where x and y are in
opposite regions, assuming without loss of generality that x ∈ Ω1 and
y ∈ Ω2. Then we can apply (3.2.2) to the integrand of (3.2.3), with∫

Ω2

∫
Ω1

|u(x)1Ω1(x) − u(y)1Ω1(y)|p

|x− y|d+sp
dx dy =

∫
Ω2

∫
Ω1

|u(x)|p

|x− y|d+sp
dx dy

≤
∫
Ω2

∫
Ω1

|u(x) − u(y) − (u(Π(x)) − u(y))|p

|x− y|d+sp
dx dy

≤ 2p−1

∫
Ω2

∫
Ω1

|u(x) − u(y)|p + |u(Π(x)) − u(y)|p

|x− y|d+sp
dx dy.

We can then estimate the second term by a change of variable,∫
Ω2

∫
Ω1

|u(Π(x)) − u(y)|p

|x− y|d+sp
dx dy =

∫
Ω2

∫
Ω2

|u(x) − u(y)|p

|Π(x) − y|d+sp
dx dy

≤
∫
Ω2

∫
Ω2

|u(x) − u(y)|p

|x− y|d+sp
dx dy.

Note that for the last inequality, choosing coordinates such that the hy-
perplane H is given by the set

{
x ∈ Rd : x1 = 0

}
, we have

|Π(x) − y|2 = |x1 + y1|2 +
d∑
i=2

|xi − yi|2 ≥ |x− y|2 (3.2.4)

when x1 and y1 have the same sign and hence when x and y are in the
same half-space. Combining the integrals on each region, we have the
desired estimate.
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The next lemma is a typical key estimate for obtaining comparison
principles as we will be able to transfer this estimate to the time derivative
of two solutions. However, notably in this case, we restrict to the half-
space Ω1 which requires additional considerations compared to the full
domain Rd. For this lemma we note that we can approximate the positive
part of the sign function sign+

0 by a sequence (qM)M>0 where

qM(s) =


1 if s ≥ 1

M
,

Ms if 0 < s < 1
M
,

0 if s ≤ 0.

Lemma 3.2.5. Let 0 < s < 1, p > 1, d ≥ 1 and m > 0. Let Π : Rd → Rd

denote reflection around a hyperplane H, splitting Rd into open subsets
Ω1 and Ω2. Suppose u ∈ L1∩∞ such that um ∈ D((−∆p)

s
|L1∩∞) and let

û(x) := u(Π(x)) for all x ∈ Rd. We consider q ∈ C1(R) satisfying
0 ≤ q ≤ 1, q(s) = 0 for s ≤ 0 and 0 < q′(s) < M for all s > 0 given
M > 0. Then∫

Ω1

((−∆p)
sum − (−∆p)

sûm) q(um − ûm) dx ≥ 0. (3.2.5)

In particular, one has that∫
Ω1

((−∆p)
sum − (−∆p)

sûm)1{u>û } dx ≥ 0. (3.2.6)

Proof. We let v = um, v̂ = ûm. Note that

[q(v − v̂)]s,p =
1

p

(∫
Rd

∫
Rd

|q(v(x) − v̂(x)) − q(v(y) − v̂(y))|p

|x− y|d+sp
dx dy

) 1
p

≤M

(∫
Rd

∫
Rd

|v(x) − v̂(x) − (v(y) − v̂(y))|p

|x− y|d+sp
dx dy

) 1
p

≤ 2M [v]s,p.

Let Q(x) denote q(v(x) − v̂(x)) for x ∈ Rd. Since q(s) = 0 for s ≤ 0, we
have either q(v(x) − v(Π(x))) = 0 or q(v(Π(x)) − v(x)) = 0, and so Q
satisfies (3.2.2). Then by Lemma 3.2.4, [Q1Ω1 ]s,p < ∞ and so we apply
the variational formulation,∫

Rd
((−∆p)

sv(x) − (−∆p)
sv̂(x))Q(x)1Ω1 dx

=

∫
Rd

∫
Rd

(v(x) − v(y))p−1 − (v̂(x) − v̂(y))p−1

|x− y|d+sp
×

(Q(x)1Ω1(x) −Q(y)1Ω1(y)) dy dx.

To show that this integral is non-negative, consider x and y in the two
regions Ω1 and Ω2 on either side of the hyperplane H. First note that in
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Ω1 × Ω1, we have∫
Ω1

∫
Ω1

((v(x) − v(y))p−1 − (v̂(x) − v̂(y))p−1) (Q(x) −Q(y))

|x− y|d+sp
dy dx.

(3.2.7)
Considering the sign of the integrand in (3.2.7) and noting that q is

non-decreasing, we have that whenever Q(x) ̸= Q(y),

sign
(
(v(x) − v(y))p−1 − (v̂(x) − v̂(y))p−1

)
= sign (v(x) − v̂(x) − (v(y) − v̂(y)))

= sign(Q(x) −Q(y)).

So (3.2.7) is non-negative, while in the case of Ω2 × Ω2, both indicator
functions are zero. For the cross terms Ω1 ×Ω2 and Ω2 ×Ω1, we apply a
change of variables, mapping y to Π(y) and x to Π(x), respectively. Note
that |x− Π(y)| = |Π(x) − y|. For the sum of these terms, we have∫

Ω1

∫
Ω2

((v(x) − v(y))p−1 − (v̂(x) − v̂(y))p−1)Q(x)

|x− y|d+sp
dy dx

−
∫
Ω2

∫
Ω1

((v(x) − v(y))p−1 − (v̂(x) − v̂(y))p−1)Q(y)

|x− y|d+sp
dy dx

=

∫
Ω1

∫
Ω1

((v(x) − v̂(y))p−1 − (v̂(x) − v(y))p−1) (Q(x) +Q(y))

|x− Π(y)|d+sp
dy dx.

If this is non-negative we are done, so consider the domain on which
this integrand may be negative. In particular, since Q is only non-zero
when v − v̂ > 0, this can only occur when v(x) > v̂(x) and v(y) < v̂(y)
or when v(y) > v̂(y) and v(x) < v̂(x). By symmetry of x and y, we
may consider only the first case. Let Ωx = Ω1 ∩ { v(x) > v̂(x) } and
Ωy = Ω1 ∩ { v(y) < v̂(y) }. Then for (x, y) ∈ Ωx × Ωy, we have∫

Ωx

∫
Ωy

((v(x) − v̂(y))p−1 − (v̂(x) − v(y))p−1) (Q(x) +Q(y))

|x− Π(y)|d+sp
dy dx

≥ −
∫
Ωx

∫
Ωy

((v(x) − v(y))p−1 − (v̂(x) − v̂(y))p−1) (Q(x) −Q(y))

|x− y|d+sp
dy dx

where we also use that |x − Π(y)| ≥ |x − y| for x, y ∈ Ω1 as in (3.2.4).
Hence the sum of both cases are bounded by the original Ω1 × Ω1 term,
(3.2.7). So we have the desired non-negativity,∫

Rd
((−∆p)

sv(x) − (−∆p)
sv̂(x)) q(v(x) − v̂(x))1Ω1 dx ≥ 0.

Letting q converge to sign+
0 and noting that rm is strictly increasing for

r ∈ R, we can replace v by um, giving (3.2.6).

We finally apply this half-space estimate to (1.2.1) and prove Theorem
3.2.1.
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Proof of Theorem 3.2.1. Using the translation and rotational invariance
of the operator (−∆p)

s·m, we may assume that Ω1 = {x ∈ Rd : x1 > 0 }.
Denote û(x) := u(Π(x)) for all x ∈ Rd. First suppose that u is a strong
distributional solution to (1.2.1) with initial data u0 ∈ L1 ∩ L∞ and
that (qM)M>0 converges to the positive indicator function [sign0]

+. Then
û(x, t) := u(Π(x), t) is also a strong distributional solution with initial
data û0. By the chain rule and applying Lemma 3.2.5,

d

dt

∫
Ω1

(u(t) − û(t))+ dx =

∫
Ω1

(u′(t) − û′(t))1{u>û } dx

= −
∫
Ω1

((−∆p)
sum(t) − (−∆p)

sûm(t))1{u>û } dx

≤ 0

noting that the composition (−∆p)
sum(t) ∈ L1. Then we have,∫

Ω1

(u(t) − û(t))+ dx ≤
∫
Ω1

(u0 − û0)
+ dx. (3.2.8)

We approximate L1 initial data by functions u0,k ∈ L1 ∩ L∞ such that
um0,k ∈ D((−∆p)

s
1∩∞). Then since these are strong distributional solu-

tions, taking k → ∞, we obtain (3.2.8) for mild solutions u with initial
data u0 ∈ L1. Applying (3.2.8) when u0(x) ≤ u0(Π(x)) then gives the
result.

3.3 Barrier construction

In this section, we produce global barriers for solutions u to (1.2.1) with
initial data which is bounded with compact support. These barrier func-
tions are radially symmetric, decreasing in x and have sufficient decay
at infinity to be integrable in space for all t ≥ 0. Moreover, we will use
these barrier functions to construct Barenblatt solutions to (1.2.1). Such
barrier functions have been proven for the fractional p-Laplacian case
with m = 1 in [121] and [126]. We apply the same methods for more
general m > s.

We show the existence of such global barriers to (1.2.1) in the range
0 < s < 1, m > s and p > pc, defined by (3.0.1), corresponding to the
homogeneity condition

m(p− 1) > 1 − sp

d
.

In particular, this matches the range of the self-similar scaling transfor-
mation (3.1.1) and associated self-similar solutions (3.0.2) with β > 0
defined by (3.0.3).

When considering these barriers, we split the range of p into three
regions. Define p1 to be the positive solution to

msp1(p1 − 1)

1 −m(p1 − 1)
= d,
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corresponding to the homogeneity condition

m(p1 − 1) =
d

d+ sp1
. (3.3.1)

Note that 1 < pc < p1 < 1 + 1
m

.
We separately consider the upper region where p > p1, the critical case

p = p1 and the lower sublinear region pc < p < p1. We find barriers with
different rates of decay at infinity in each region. Hence the critical case

p1 is the transition point between the decay regimes of |z|−
sp

1−m(p−1) (for
p < p1) and |z|−(d+sp) (for p > p1) since

d+ sp1 =
sp1

1 −m(p1 − 1)
.

We first define the decay function g by

g(r) :=


r−d−sp if p > p1,

r−d−sp log(r) if p = p1,

r−
sp

1−m(p−1) if pc < p < p1.

(3.3.2)

for all r > 0. Then for positive constants A, C1, C2, R1 and R2, we
introduce the barrier function H : Rd × [0,∞) → [0,∞) in the following
way. For p ≥ p1,

H(x, t) =


A(t+ 1)−dβ if |x(t+ 1)−β| ≤ R1,

C1|x|−d if R1 < |x(t+ 1)−β| ≤ R2,

C2(t+ 1)−dβg(|x|(t+ 1)−β) if |x(t+ 1)−β| > R2.

(3.3.3)
For pc < p < p1,

H(x, t) =

{
A(t+ 1)−dβ if |x(t+ 1)−β| ≤ R2,

C2(t+ 1)−dβg(|x|(t+ 1)−β) if |x(t+ 1)−β| > R2.
(3.3.4)

We then have existence of barrier functions with the following theorem.

Theorem 3.3.1 (Global barrier). Let d ≥ 1, 0 < s < 1, m > s and p >
1. Suppose u is a mild solution to (3.2.1) with initial data u0 ∈ L1(Rd)
which is bounded and has compact support. Define H : Rd × [0,∞) →
[0,∞) by (3.3.3) or (3.3.4) as appropriate. Then there exist positive
constants A, C1, C2, R1 and R2 such that |u(t)| ≤ H(t) a.e. in Rd for
t ≥ 0.

To prove this we apply the methods presented in [121] in the super-
linear case and [126] in the sublinear case. The proofs follow essentially
by taking p̂ := m(p − 1) + 1, ŝ := sp

p̂
and applying the relevant calcula-

tions to (−∆p̂)
ŝ in place of (−∆p)

s·m. We can apply such a replacement
despite not being able to directly combine the exponent m with p − 1
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due to the nature of the estimates required for these barrier functions.
In particular, focusing on the spatial coordinates, for a barrier function
H and a point y0 ∈ Rd, we will only need to estimate (−∆p)

sH(y0) from
below. So we can typically ignore the first term of the difference, given
that H is non-negative, i.e.

(H(y0)
m −H(y)m)p−1 ≥ −H(y)m(p−1).

Meanwhile the issue of ŝ ≥ 1 can be resolved by instead applying the
smoothness of Hm and using the associated boundedness properties of
(−∆p)

sHm, in particular those given by [85].
The outline in each case will be to find super-solutions to the self-

similar profile equation (3.1.4), rescale these to obtain super-solutions
to (1.2.1) and then apply a comparison principle on Rd × [0,∞).

3.3.1 Super-solutions to the profile equation

To obtain pointwise estimates of (3.1.4), we use the Cauchy principal
value of (−∆p)

s which will agree with Definition 2.0.1 when both exist but
will not necessarily have the same domain. In particular, we introduce
the following approximation for ε > 0,

(−∆p)
s
εu(z) :=

∫
Rd\Bε(z)

(u(z) − u(y))p−1

|z − y|d+sp
dy (3.3.5)

for all z ∈ Rd. Then (−∆p)
s
ε converges to the principal value as ε→ 0.

The following lemma provides a global bound with decay of order |x|−d.
The idea is to refine this estimate for large |x| such that the global barrier
is integrable in space.

Lemma 3.3.2. Let d ≥ 1, p > 1, 0 < s < 1 and m > s. Suppose u is
a mild solution to (3.2.1) with initial data u0 ∈ L1(Rd) which is bounded
with compact support. Then for C > 0 sufficiently large, depending on d
and u0, we have

|u(x, t)| ≤ C|x|−d (3.3.6)

for all x ∈ Rd and t > 0.

Proof. Given a ball B centered at the origin and containing the support
of u0, we bound |u0| pointwise a.e. by a smooth, radially symmetric and
radially decreasing function û0 with compact support defined such that

û0(x) = ∥u0∥∞

for all x ∈ B. We let û(x, t) be the associated mild solution to (3.2.1)
in L1. Since û0 is radially symmetric and radially decreasing, by Corol-
lary 3.2.3, û(x, t) is radially decreasing in Rd for all t ≥ 0. Since û(x, t) is
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monotone decreasing in the radial variable, there exists M > 0, depend-
ing only on d, such that

û(x, t)|x|d ≤M

∫
{y∈Rd:|y|<|x|}

û(y, t) dy ≤M∥û0∥1

for a.e. x ∈ Rd, where we have used the standard accretive growth esti-
mate in L1(Rd). Hence û(x, t) ≤ C|x|−d in Rd × [0,∞) for some C > 0
depending on d and u0. Similarly, we have that −û ≥ −C|x|−d. So
comparing u, −u with û and −û by (2.1.3), we have (3.3.6).

For p ≥ p1 we choose a profile barrier function such that the interme-
diate region will be bounded by Lemma 3.3.2. We choose

G(z) =


A if |z| ≤ R1,

C1|z|−d if R1 < |z| ≤ R2,

C2g(|z|) if |z| > R2,

(3.3.7)

where g(r) is defined by (3.3.2). In particular, g is smooth, decreasing
and such that G(z) is integrable at infinity. We glue the separate regions
by matching constants. In particular, we require that

A = C1R
−d
1 and C2 =

C1

Rd
2g(R2)

. (3.3.8)

We then require the super-solution condition in the remaining regions.
We first consider the near region since this is independent of g.

Lemma 3.3.3 (Near region for p > 1). Let d ≥ 1, p > 1, 0 < s < 1 and
m > 0. Define G : Rd → [0,∞) by (3.3.7) where the positive constants
C1 and R1 are chosen to satisfy (3.3.11), R2 ≥ R1 and A, C2 are given
by (3.3.8). Then

(−∆p)
s
εG(z)m − β∇ · (zG(z)) ≥ 0 (3.3.9)

for all ε > 0 sufficiently small and all z ∈ Rd with |z| ≤ R1.

Proof. We have that

−β∇ · (zG(z)) = −βdA (3.3.10)

for |z| ≤ R1. Since the integrand is non-negative,

(−∆p)
s
εG(z)m ≥

∫
{|z−y|≥3R1}∩{|y|≥2R1}

(Am −G(y)m)p−1

|z − y|d+sp
dy

for all 0 < ε < R1 and all z ∈ Rd satisfying |z| ≤ R1. Then using (3.3.8),

(Am −G(y)m)p−1 ≥ Am(p−1)(1 − 2−dm)p−1.
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Integrating and relabelling C > 0 as needed,

(−∆p)
s
εG(z)m ≥ CAm(p−1)

∫ ∞

3R1

r−sp−1 dr

= CAm(p−1)R−sp
1 .

So to satisfy the super-solution equation (3.3.9) in this region, comparing
with (3.3.10), relabelling C and rearranging, we want to satisfy

Am(p−1)−1 ≥ CRsp
1

where C > 0 depends on s, p, d and m. Applying (3.3.8) gives

C
m(p−1)−1
1 ≥ CR

d(m(p−1)−1)+sp
1 . (3.3.11)

We now prove the super-solution condition in the most involved region,
the far region. For this we first consider the case p > p1, defining

G(z) =


A if |z| ≤ R1,

C1|z|−d if R1 < |z| ≤ R2,

C2|z|−(d+sp) if |z| > R2,

(3.3.12)

with matching conditions

A = C1R
−d
1 and C2 = C1R

sp
2 . (3.3.13)

Here we will make room around the singularity in (3.3.5) at y = z by
considering |z| ≥ 2R2. The intermediate region where G(z) = C1|z|−d is
important to be able to do this.

Lemma 3.3.4 (The far region for p > p1). Let d ≥ 1, 0 < s < 1, m > 0
and p > p1. Define G : Rd → [0,∞) by (3.3.12) where positive constants
C1, R1, R2 satisfy (3.3.15) and A, C2 are given by (3.3.13). Then

(−∆p)
s
εG(z)m − β∇ · (zG(z)) ≥ 0 (3.3.9)

for all ε > 0 sufficiently small and all z ∈ Rd with |z| ≥ 2R2.

Proof. Fix z ∈ Rd with |z| ≥ 2R2. Applying (3.3.13), we have that

−β∇ · (zG(z)) = βspC1R
sp
2 |z|−d−sp > 0 (3.3.14)

which we will use to control the fractional p-Laplacian term. Hence we
estimate (−∆p)

s
εG(z)m by separating (3.3.5) into regions corresponding

to G.
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In the region
{
y ∈ Rd : |y| ≤ R1

}
, noting that G ≥ 0 on Rd and |z| ≤

2|z − y|, we have∫
{y∈Rd:|y|≤R1}

(G(z)m −G(y)m)p−1

|z − y|d+sp
dy ≥ −CRd

1A
m(p−1)|z|−d−sp

= −CCm(p−1)
1 R

−d(m(p−1)−1)
1 |z|−d−sp

for some C > 0 depending on d.
In the region

{
y ∈ Rd : R1 < |y| ≤ R2

}
, relabelling the constant C as

needed, we similarly have∫
{R1<|y|≤R2}

(G(z)m −G(y)m)p−1

|z − y|d+sp
dy ≥ −C

∫ R2

R1

(C1r
−d)m(p−1)

(|z|/2)d+sp
rd−1 dr

= −CCm(p−1)
1

∫ R2

R1

r−dm(p−1)+d−1 dr |z|−d−sp

where C > 0 depends on d, s, p and m.
In the region

{
y ∈ Rd : |y| > |z|

}
, the integrand will be positive so

this can be ignored. The intermediate region
{
y ∈ Rd : R2 ≤ |y| ≤ |z|

}
contains the singularity at y = z. Hence we further split this region by
integrating the ball B|z|/2(z) centered at z separately.

We treat the annulus regionD =
{
y ∈ Rd : R2 ≤ |y| ≤ |z|

}
\B|z|/2(z) as

in the previous cases, noting that |z− y| ≥ |z|/2. Then again relabelling
C, ∫

D

(G(z)m −G(y)m)p−1

|z − y|d+sp
dy ≥ −

∫
D

(
C2|y|−(d+sp)

)m(p−1)

(|z|/2)d+sp
dy

≥ −CCm(p−1)
1 R

−d(m(p−1)−1)
2 |z|−d−sp

since (d+ sp)m(p− 1) > d by assumption (3.3.1), where C > 0 depends
on d, s, p and m. In particular, (3.3.1) ensures that this and the following
estimate on B|z|/2(z) do not grow relative to (3.3.14) as |z| → ∞.

Finally, we consider the ball centered around z, B|z|/2(z). By [85,
Lemma 3.6], since Gm is C2 without critical points in B|z|/2(z), the inte-
gral ∫

B|z|/2(z)\Bε(z)

(G(z)m −G(y)m)p−1

|z − y|d+sp
dy

is bounded independently of ε > 0. To determine the dependence on |z|,
we apply a rescaling, finding that∣∣∣∣∣
∫
B|z|/2(z)\Bε(z)

(G(z)m −G(y)m)p−1

|z − y|d+sp
dy

∣∣∣∣∣ ≤ CC
m(p−1)
2 |z|−(d+sp)m(p−1)−sp

≤ CC
m(p−1)
1 R

−d(m(p−1)−1)
2 |z|−(d+sp).

where C > 0 depends on d, s, p andm, again using that (d+sp)m(p−1) >
d by assumption. Note that this matches the previous estimate.
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For G(z) to be a super-solution we require that (3.3.14) bounds all
these terms together for all |z| ≥ 2R2. We then multiply the estimate in
each region by |z|d+sp and apply (3.3.8) to R2 to reduce variables. Then
the super-solution condition (3.3.9) holds given that

C
1−m(p−1)
1 ≥ CR

−d(m(p−1)−1)
1 R−sp

2 ,

C
1−m(p−1)
1 ≥ C

∫ R2

R1

r−d(m(p−1)−1)−1 drR−sp
2 ,

C
1−m(p−1)
1 ≥ CR

−d(m(p−1)−1)−sp
2

(3.3.15)

for C > 0 depending on d, s, p and m.

We prove the critical case p = p1 very similarly to the case p > p1, but
now with a correction term. Define G : Rd → [0,∞) by

G(z) =


A if |z| ≤ R1,

C1|z|−d if R1 < |z| ≤ R2,

C2|z|−(d+sp1) log(|z|)γ if |z| > R2,

(3.3.16)

for all z ∈ Rd where γ = 1
1−m(p−1)

. We then have the matching conditions,

A = C1R
−d
1 and C2 =

C1R
sp1
2

log(R2)γ
. (3.3.17)

Lemma 3.3.5 (The far region for p = p1). Let d ≥ 1, 0 < s < 1, m > 0
and p = p1. Define G : Rd → [0,∞) by (3.3.16) where positive constants
C1, R1, R2 satisfy (3.3.18) and A, C2 are given by (3.3.17). Then

(−∆p)
s
εG(z)m − β∇ · (zG(z)) ≥ 0 (3.3.9)

for all ε > 0 sufficiently small and all z ∈ Rd with |z| > min { 2R2, 2e
γ
sp1 }.

Proof. In radial coordinates with r = |z|,

−βr1−d(rdG(y))r = C2β

(
sp1 −

γ

log(r)

)
r−(d+sp1) log(r)γ.

For r > 2e
γ
sp1 , we have

−βr1−d(rdG(z))r ≥
CC1R

sp1
2

log(R2)γ
|z|−(d+sp1) log(|z|)γ

for some C > 0 depending on m, s and d. As usual we now esti-
mate the fractional p-Laplacian term (−∆p1)

s
εG(z)m for z ∈ Rd with

|z| > min { 2R2, 2e
γ
sp1 }. These estimates are done similarly to those in

Lemma 3.3.4. For {y ∈ Rd : |y| ≤ R2 or |y| ≥ |z|}, the calculations are
the same.
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However, in the intermediate region
{
y ∈ Rd : R2 ≤ |y| ≤ |z|

}
we must

account for the new decay. For the annulus region

D :=
{
y ∈ Rd : R2 ≤ |y| ≤ |z|

}
\B|z|/2(z),

we integrate by parts to obtain,∫
D

(G(z)m −G(y)m)p1−1

|z − y|d+sp1
dy ≥ −CCm(p1−1)

2 |z|−d−sp log(|z|)γ

since (d+ sp1)m(p1 − 1) = d, where C > 0 depends on d, s and m.
For the ball B|z|/2(z), we again apply [85, Lemma 3.6] and a rescaling,

finding that∣∣∣∣∣
∫
B|z|/2(z)\Bε(z)

(G(z)m −G(y)m)p−1

|z − y|d+sp
dy

∣∣∣∣∣ ≤ CC
m(p−1)
2 |z|−d−sp log(|z|)γ−1

again noting that (d+ sp)m(p1 − 1) = d.
For G(z) to be a super-solution we require that (3.3.14) bounds all

these terms together for all |z| ≥ 2R2. Then, relabelling C > 0 as needed,
we can multiply each condition by |z|d+sp1 log(|z|)−γ and rearrange to
obtain the conditions

C1 ≥ CRd−sp1γ
2 , C1 ≥ C log(R2)

γR−sp1
2 , C1 ≥ CR−sp1

2 . (3.3.18)

We now consider the lower sublinear case pc < p < p1. Here we use a
barrier function of the form

G(z) =

{
A if |z| ≤ R2,

C2|z|−
sp

1−m(p−1) if |z| > R2,
(3.3.19)

for z ∈ Rd with the matching condition

A = C2R
− sp

1−m(p−1)

2 . (3.3.20)

Note that p > pc ensures that G is integrable at infinity.

Lemma 3.3.6 (The far region for pc < p < p1). Let d ≥ 1, 0 < s < 1,
m > 0 and pc < p < p1. Define G : Rd → [0,∞) by (3.3.19) where
C2 > 0 satisfies (3.3.21), R2 > 0 and A is given by (3.3.20). Then

(−∆p)
s
εG(z)m − β∇ · (zG(z)) ≥ 0 (3.3.9)

for all ε > 0 sufficiently small and all z ∈ Rd with |z| > R2.
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Proof. In radial coordinates with r = |z|,

−βr1−d(rdG(y))r =
C2

1 −m(p− 1)
r−

sp
1−m(p−1) > 0.

We use this to compensate for the (possibly negative) fractional p-Laplacian
term. Evaluating (−∆p)

s
εG

m, first consider y0 ∈ Rd such that |y0| = 1.
Then,

(−∆p)
s
εG(y0)

m = C
m(p−1)
2

∫
Rd\Bε(y0)

(
1 − r−

spm
1−m(p−1)

)p−1

|y0 − y|d+sp
dy.

The integrand is positive for r > 1, so this region can be ignored. For
p < p1, G

m(p−1) ∈ L1(B1(0)) so the integrand is also bounded in L1

near y = 0. Hence it remains to estimate near y = y0. Since G(y)m

is a C2 function without critical points, we can also apply [85] so that
the principal value is bounded in a small ball around y0 with bound
independent of y0. So as in [126], there is a finite constant k(d, s, p,m)
such that

(−∆p)
sG(y0)

m = −kCm(p−1)
2 .

We evaluate for |y0| ≠ 1 by the spatial scaling transformation

vh(y) := hγv(hy)

for h > 0 with γ = sp
1−m(p−1)

. This leaves the profile bound (3.3.19)

invariant and scales the profile equation (3.1.5) by r−γ such that

(−∆p)
sG(y)m − βr1−d(rdG(y))r =

(
C2

1 −m(p− 1)
− kC

m(p−1)
2

)
r−γ.

Then we satisfy the super-solution condition (3.3.9) for

C2 ≥ (k(1 −m(p− 1)))1/(1−m(p−1)) . (3.3.21)

3.3.2 A comparison principle

We now convert profile functions back to the standard coordinates of
(1.2.1) and apply a comparison principle.

Lemma 3.3.7 (Comparison principle). Let 0 < s < 1, p > 1, m > s
and d ≥ 1. Let u be a mild solution to (1.2.1) with initial data u0 ∈ L1.
Suppose H : Rd × [0,∞) → R satisfies the super-solution condition

(H ′(t) + (−∆p)
s
εH

m(t))1{u>H } ≥ 0 (3.3.22)

a.e. in Rd for all t > 0 and all ε > 0 sufficiently small. Suppose |u0| ≤
H(0) a.e. in Rd. Then for all t ≥ 0, u(t) ≤ H(t) almost everywhere in
Rd.
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Proof. By Theorem 2.1.1, we can approximate u0 by smooth data to get
strong distributional solutions converging to u in L1(Rd). Hence first
suppose that u is a strong distributional solution of (1.2.1).

As usual we estimate the signed difference, noting that H is piecewise
smooth,

d

dt

∫
Rd

(u(t) −H(t))+ dx =

∫
Rd

(u′(t) −H ′(t))1{u>H } dx

≤ −
∫
Rd

((−∆p)
su(t) + (−∆p)

s
εH

m(t))1{u>H } dx.

By the accretivity of (−∆p)
s·m in L1 and using that ·m is strictly increas-

ing so that 1{um>Hm } = 1{u>H }, we have the monotonicity estimate∫
Rd

((−∆p)
sum(t) − (−∆p)

sHm(t))1{u>H } dx ≥ 0.

Hence it remains to prove the convergence of (−∆p)
s
εH

m(t). We can
approximate 1u>H by q(u −H) for q ∈ C1(R) as usual with 0 ≤ q ≤ 1,
q(r) = 0 for r ≤ 0, 0 < q′(r) < M for some M > 0 for all r > 0. Then
letting Q(t) = q(u(t)−H(t)) for 0 < t <∞ and noting that H ∈ W s,(2,p)

and Q ∈ W s,(2,p), we can use the symmetry of the fractional p-Laplacian,
fixing t > 0, to obtain∫

Rd
((−∆p)

s
εH

m)Q dx =

∫
R2d\{|z−y|<ε}

(Hm(z) −Hm(y))p−1Q(z)

|z − y|d+sp
d(y, z)

=
1

2

∫
R2d\{|z−y|<ε}

(Hm(z) −Hm(y))p−1(Q(z) −Q(y))

|z − y|d+sp
d(y, z)

which converges to ((−∆p)
s
εH

m)Q as ε → 0. Taking q to approximate
sign+

0 and integrating the previous difference estimate, we obtain,∫
Rd

(u(t) −H(t))+ dx ≤
∫
Rd

(u(0) −H(0))+ dx.

Similarly, comparing −u and −H and noting that −H will be a sub-
solution to (1.2.1), we have that |u(t)| ≤ H(t) a.e. on Rd for t ≥ 0 so
long as |u0| ≤ H(0).

Proof of Theorem 3.3.1. Converting the barriers G given by (3.3.12) for
p > p1, (3.3.16) for p = p1 and (3.3.19) for pc < p < p1 back to (x, t)
coordinates gives us the barrier function

H(x, t) = (t+ 1)−dβG(x(t+ 1)−β)

defined by (3.3.3). Note that H(x, 0) = G(x).
Hence in light of Lemma 3.3.7 and the previous pointwise estimates,

we need only prove that such constants can be chosen for G in each case
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so that H bounds |u| at t = 0 and the super-solution condition (3.3.9) is
satisfied whenever u > H.

First, in the case p > p1, we want to satisfy the conditions of Lemma
3.3.3 and Lemma 3.3.4 while also ensuring that H bounds u elsewhere.
In particular, this requires (3.3.11), (3.3.15) and C1 ≥ C for some C > 0
with this last inequality coming from the pointwise bound in the in-
termediate region R1 ≤ |z| ≤ 2R2. For this we consider cases on the
homogeneity of the operator (−∆p)

s·m.
If m(p− 1) > 1, we require

C1 ≥ CR
d+ sp

m(p−1)−1

1 , C1 ≤ CRd
1R

sp
m(p−1)−1

2 , C1 ≥ C

and so we can take R1 large enough to contain the support of u0, C1

large enough to satisfy the first and last inequalities while also ensuring
that A ≥ ∥u0∥∞ and R2 large enough for the remaining inequality.

In the case m(p− 1) = 1, we require

Rsp
1 ≤ C, Rsp

2 ≥ C, Rsp
2 ≥ C log(R2), C1 ≥ C.

So we can take R1 sufficiently small and R2 sufficiently large to satisfy the
first three inequalities. Then by taking C1 large enough, we can ensure
that H(0) bounds |u0|.

In the case m(p− 1) < 1, we require

C1R
sp

1−m(p−1)
−d

1 ≤ C, C1R
sp

1−m(p−1)
−d

2 ≥ C, C1 ≥ C.

Note that pc < p < 1 + 1
m

implies that sp
1−m(p−1)

> d. So fix R2 > 0
such that BR2 contains the support of u0. Then take C1 large enough to
satisfy the last two inequalities and ensure that H bounds u0 at t = 0.
Finally take R1 small enough to satisfy the first inequality.

In the case p = p1, we require (3.3.11), (3.3.18) and C1 ≥ C for some
C > 0. As in the previous case, we can take R2 large, C1 large and R1

small to satisfy all conditions.
Finally, in the case pc < p < p1, we require (3.3.21) and, by applying

Lemma 3.3.3 with R1 = R2,

C2R
sp

1−m(p−1)
−d

2 ≤ C,

so we can satisfy all conditions by taking R2 small and C2 large.

3.4 Finite time of extinction

In the porous medium case, φ(u) = um with 0 < m < 1, we can obtain
extinction in finite time following the method presented for the frac-
tional Laplacian case in [83]. We first prove a comparison principle for
the doubly nonlinear problem (1.2.1), extending [22, Theorem 4.1] to
inhomogeneous boundary data on Rd. By constructing an explicit su-
persolution and subsolution on RN we can then prove extinction in finite
time.
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Theorem 3.4.1 (Finite time of extinction). Let Ω be a bounded do-
main in Rd, d ≥ 1, p > 1 and 0 < s < 1. Let u be a strong distributional
solution to (1.2.1) with u0 ∈ L∞ where φ is strictly increasing, φ(R) = R,
φ(0) = 0 and 1

φp−1 ∈ L1(0, ∥u0∥∞), f ≡ 0 and g ≡ 0. Then u(t, ·) = 0
for all t ≥ t∗ where t∗ is given by

t∗ =
1

C

∫ ∥u0∥∞

0

1

(φ(τ))p−1
dτ (3.4.1)

and C, given by (3.4.7), depends on Ω, p, s and d.

We have the following corollary in the case φ(r) = rm, r ∈ R.

Corollary 3.4.2. Let Ω be a bounded domain in Rd, d ≥ 1, p > 1 and
0 < s < 1. Let u be a strong distributional solution to (1.2.2) with f ≡ 0,
g ≡ 0, u0 ∈ L∞ and m > 0 such that m(p− 1) < 1. Then u(t, ·) = 0 for
all t ≥ t∗ where t∗ is given by

t∗ = 1
C(1−m(p−1))

∥u0∥1−m(p−1)
∞

and C, given by (3.4.7), depends on Ω, p, s and d.

In the casem > s we may extend this result to mild solutions in L1 with
initial data in L1∩∞ by approximation due to the density result (2.1.1)
and the standard growth estimate (2.1.3).

Finite time of extinction of solutions to (1.2.1) was also proved for the
fractional porous medium equation (p = 2) in [83] in the Dirichlet case
and [100] for the Cauchy problem. See also [123, 126] for discussion of
extinction for the fractional p-Laplacian evolution problem on Rd.

3.4.1 A parabolic comparison principle

We first introduce the inhomogeneous fractional Sobolev space for Ω an
open domain in Rd, d ≥ 1, and b ∈ L1

loc(Rd \ Ω),

W
s,(2,p)
b (Ω) =

{
u ∈ W s,(2,p)(Rd) |u = b a.e. on Rd \ Ω

}
and the fractional p-Laplacian for u ∈ W

s,(2,p)
b (Ω). In this setting we

have the energy functional E : L2(Ω) → (−∞,∞] defined by

E(u) =

{
1
2p

[u]ps,p if u ∈ W
s,(2,p)
b (Ω),

+∞ otherwise,

so that the fractional p-Laplacian is given by the subdifferential operator
of E in L2. In particular, we use the variational equation,

1

2

∫
R2d

(u(x) − u(y))p−1(v(x) − v(y))

|x− y|d+sp
dy dx =

∫
Ω

h(x)v(x) dx (3.4.2)
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so that we have the characterization,

∂E(u) =
{
h ∈ L2 : u, h satisfy (3.4.2) for all v ∈ L2 with [v]s,p <∞

}
.

For every u ∈ W
s,(2,p)
b (Ω) this is then unique, so we write (−∆p)

su =
∂E(u).

In this setting we consider the following inhomogeneous evolution equa-
tion,

ut + (−∆p)
sφ(u) + f(·, u) = g on Ω × [0, T ],

u(t) = h(t) on Rd \ Ω × [0, T ],

u(0) = u0 on Ω.

(3.4.3)

In particular, we have the comparison principle.

Theorem 3.4.3 (Comparison principle for inhomogeneous boundary
data). Let Ω be an open domain in Rd, d ≥ 1, 0 < s < 1, p > 1, T > 0, f
satisfy (2.0.3a)-(2.0.3b) and φ : R → R be strictly increasing and satisfy
φ(0) = 0. Suppose u and û ∈ W 1,1((0, T );L1) are two strong distri-
butional solutions in L1 to the inhomogeneous Dirichlet problem (3.4.3)
with initial data u0, û0 ∈ L1, forcing terms g, ĝ ∈ L1((0, T );L1) and
boundary data h, ĥ ∈ L1

loc(Rd \Ω), respectively. If h(t) ≤ ĥ(t) a.e. on Rd

for a.e. t ∈ (0, T ), then∫
Ω

(u(t) − û(t))+ dµ ≤ eωt
∫
Ω

(u0 − û0)
+ dµ

+

∫ t

0

eω(t−s)
∫
Ω

(g(s) − ĝ(s))1{u>û } dµ ds

(3.4.4)

for all 0 ≤ t ≤ T .

Proof. Since u and û are distributional solutions, we have that φ(u(t)) ∈
W

s,(2,p)
φ(h(t))(Ω) and φ(û(t)) ∈ W

s,(2,p)

φ(ĥ(t))
(Ω) for a.e. t ∈ (0, T ). We first prove

an estimate on the sign of (−∆p)
su−(−∆p)

sû given that u ≤ û on Rd\Ω.
We approximate the sign function by considering all q ∈ C1(R) satisfying
0 ≤ q ≤ 1, q(s) = 0 for s ≤ 0 and q′(s) > 0 for s > 0 and prove that∫

Ω

((−∆p)
su− (−∆p)

sû)q(u− û) dx ≥ 0.

By assumption, q(u− û) = 0 on Rd \ Ω. So we have∫
Ω

((−∆p)
su− (−∆p)

sû)q(u− û) dx

=

∫
Rd

∫
Rd

(u(x) − u(y))p−1 − (û(x) − û(y))p−1

|x− y|d+ps
×

(q(u(x) − û(x)) − q(u(y) − û(y))) dy dx.
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We split these integrals into {u ≥ û } and {u < û } terms noting that
q(u(x) − û(x)) = 0 on {u < û }. On {u ≥ û } × {u ≥ û }, using the
monotonicity of q(s), we have∫∫

{u≥û }2

(u(x) − u(y))p−1 − (û(x) − û(y))p−1

|x− y|d+ps
×

(q(u(x) − û(x)) − q(u(y) − û(y))) dy dx ≥ 0.

On {u < û } × {u < û } we have

q(u(x) − û(x)) − q(u(y) − û(y)) = 0.

Then applying the symmetry of x and y to the remaining two terms, we
have that∫

Ω

((−∆p)
su− (−∆p)

sû)q(u− û) dx

≥ 2

∫
{u≥û }

∫
{u<û }

(u(x) − u(y))p−1 − (û(x) − û(y))p−1

|x− y|d+ps
×

q(u(x) − û(x)) dy dx

≥ 2

∫
{u≥û }

∫
{u<û }

(û(x) − û(y))p−1 − (û(x) − û(y))p−1

|x− y|d+ps
×

q(u(x) − û(x)) dy dx

= 0.

Letting q converge to [sign0]
+ and noting that φ(u) > φ(û) if and only if

u > û, ∫
Ω

((−∆p)
sφ(u) − (−∆p)

sφ(û))1{u>û } dµ ≥ 0. (3.4.5)

By the chain rule, (3.4.3) and (3.4.5),

d

dt

∫
Ω

(u(t) − û(t))+ dµ =

∫
Ω

(u′(t) − û′(t))1{u>û } dµ

= −
∫
Ω

((−∆p)
sφ(u)(t) − (−∆p)

sφ(û)(t))1{u>û } dµ

+

∫
Ω

(F (u) − F (û))1{u>û } dµ+

∫
Ω

(g(t) − ĝ(t))1{u>û } dµ

≤ ω

∫
Ω

(u(t) − û(t))+ dµ+

∫
Ω

(g(t) − ĝ(t))1{u>û } dµ.

Applying a Grönwall inequality,∫
Ω

(u(t) − û(t))+ dµ ≤ eωt
∫
Ω

(u0 − û0)
+ dµ

+

∫ t

0

eω(t−s)
∫
Ω

(g(s) − ĝ(s))1{u>û } dµ ds.
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3.4.2 Proof of finite time of extinction

We now suppose that Ω is bounded in order to construct a super-solution
and a sub-solution which are truncated within a ball containing Ω.

Proof of Theorem 3.4.1. We let u be a strong distributional solution to
(1.2.1). We will construct a super-solution and sub-solution on Rd ×R+

to bound u via separation of variables of the form µ(x)T (t) using the
fundamental solution. In particular, we choose T to be a decreasing
function such that T (t∗) = 0 for some t∗ > 0.

Choose R > 0 such that Ω ⊂ BR(0). In order to apply Theorem 3.4.3
we require that this super-solution V (x, t) satisfies

Vt + (−∆p)
sφ(V ) ≥ 0. (3.4.6)

Letting β = φ−1 we set V (x, t) = β(W (x, t)) with W (x, t) = µ(x)T (t),
where we choose

µ(x) =


R−d−ps for |x| ≤ R,

|x|−d−ps for |x| ∈ (R, 3R),

0 for |x| ≥ 3R.

Defining

CR :=
ωd−1

4d+psd
(3d − 2d)

(
1 − 2−d−ps)p−1

R−sp (3.4.7)

with ωd denoting the volume of a d-dimensional unit ball, and

t∗ =
1

CR

∫ ∥u0∥∞

0

1

(φ(τ))p−1dτ,

we set

T (t) =

{
Rd+psφ(σ(t∗ − t)) if t < t∗

0 if t ≥ t∗

where σ(t) satisfies ∫ σ(t)

0

1

(φ(τ))p−1dτ = CRt

for t ∈ [0, t∗]. Note that V (x, 0) = ∥u0∥∞ and V (x, t∗) = 0 for x ∈ Ω.
Moreover, Vt = −CR (φ(σ(t∗ − t)))p−1.

For x ∈ Ω, we have

(−∆p)
sµ(x) ≤

∫
Rd\BR(0)

R−(d+ps)(p−1)

|x− y|d+ps
dy

which is bounded since ps > 0 so that (−∆p)
sµ(x) ∈ L∞ and so we

can apply the singular integral form of the fractional p-Laplacian. Let
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g = Vt + (−∆p)
sφ(V ) on Ω× (0,∞). Note that V ∈ W 1,1

loc (0,∞;L1(Rd)).
Then V is a strong distributional solution to

vt + (−∆p)
sφ(v) = g on Ω × (0,∞),

v(t) = Vt(t) on Rd \ Ω × (0,∞),

v(0) = v0 in Rd,

(3.4.8)

where V (t) ≥ u(t) on Rd \ Ω and V (0) ≥ u0. Applying Theorem 3.4.3,
we have that∫

Ω

(u(t) − V (t))+ dµ ≤ −
∫ t

0

∫
Ω

g(s)1{u>V } dµ ds.

To obtain that u(t) ≤ V (t) almost everywhere on Ω× (0,∞), it therefore
remains to prove that the right-hand side is bounded by zero.

For x ∈ Ω, using the singular integral formulation,

(−∆p)
sµ(x) ≥

∫
B3R(0)\B2R(0)

(
R−d−ps − |y|−d−ps

)p−1

|x− y|d+ps
dy

≥
(
R−d−ps(1 − 2−d−ps)

)p−1
∫
B3R(0)\B2R(0)

1

(4R)d+sp
dy

≥ ωd−1

4d+psd
(3d − 2d)R−sp (R−d−ps(1 − 2−d−ps)

)p−1
.

Rewriting (3.4.6) in terms of the separated variables µ(x) and T (t),
and applying the estimate on (−∆p)

sµ, it is sufficient for T (t) to satisfy

d

dt
β(R−d−psT (t)) + CR

(
R−d−psT (t)

)p−1 ≥ 0 on (0, t∗).

In particular, we require that

dσ

dt
= CR (φ(σ))p−1 on (0, t∗),

which holds by definition of σ. Hence

Vt + (−∆p)
sφ(V ) ≥ 0

for all x ∈ Ω.
Similarly for −u and −V we have, with respect to the Lebesgue mea-

sure, 
(−V )t + (−∆p)

sφ(−V ) ≤ 0 on Ω × (0,∞),

−V (0, ·) ≤ u0 on Rd,

−V ≤ u on Rd \ Ω × (0,∞),

hence we have that for almost every x ∈ Ω and all t ≥ 0, −V (t) ≤ u(t) ≤
V (t) and so u(t) = 0 for t ≥ t∗.
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3.5 Existence of a Barenblatt solution

In this section, we aim to prove the existence of a Barenblatt solution
which tends to a Dirac delta as t → 0+. Here we use a rescaling tech-
nique from [127], see also [121] where this is proven for the fractional
p-Laplacian.

Theorem 3.5.1. Let d ≥ 1, 0 < s < 1, m ≥ 1 and p > pc such that
m(p−1) ̸= 1 and sp < d. Then for any mass M > 0 there exists a strong
distributional solution Γ to (1.2.1) in L1 which is nonnegative, radially
symmetric, decreasing radially in space with decay given by g(|x|) and

decays in time with order t
− 1
m(p−1)− p

qs uniformly in x. Moreover, Γ tends
to a Dirac delta as t→ 0+.

Proof. For a given smooth, positive, radially symmetric initial datum
u0 ∈ L1∩∞ with compact support contained in the open unit ball B1(0)
and having mass

∫
Rd u0 dx = 1, let u be the corresponding positive strong

distributional solution of (1.2.1) provided by Theorem 2.1.8. By applying
the scaling transformation (3.1.1) to u, one obtains that for every integer
k ≥ 1,

uk(x, t) := kdu(kx, kd(m(p−1)−1)+spt), x ∈ Rd, t ≥ 0, (3.5.1)

is a strong distributional solution of the doubly nonlinear nonlocal diffu-
sion equation (1.1.3) with initial datum uk,0 := kd u0(k·) representing a
nascent δ-function in the sense that uk,0 converges to the Dirac delta δ0
function in the sense of distributions as k → ∞. Therefore, it remains
to study the existence and properties of the limit function

lim
k→∞

uk(x, t) for every x ∈ Rd and t > 0.

In particular, we will take the limit of a subsequence of (uk)k≥1 to define
the Barenblatt solution Γ(x, t). By (2.1.2),

∥uk(t)∥1 ≤ ∥uk,0∥1 = 1 (3.5.2)

for every t ≥ 0 and every k ≥ 1. From the L1 − L∞ regularization
estimate (2.1.13), we have that

sup
k≥1

∥uk(t)∥∞ ≤ C t−α for every t > 0, (3.5.3)

where α > 0 is defined as in Corollary 2.1.5 and so (3.5.2) yields that

sup
k≥1

∥umk (t)∥p ≤ C(m−1) t−(m−1)α for every t > 0. (3.5.4)

Further, applying (2.1.15) and Corollary 2.1.7 to (uk)k≥1 gives that

sup
k≥1

∥∂tuk(t)∥1 ≤
2

|m(p− 1) − 1|
1

t
for every t > 0, (3.5.5)
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and

sup
k≥1

[umk (t))]ps,p ≤ C t−(1+mα) for every t > 0. (3.5.6)

Therefore, for every δ > 0, the sequence
(
∂uk
∂t

)
k≥1

is bounded in the

space L∞(δ,∞;L1). In particular, (3.5.4) and (3.5.6) yield that the se-
quence (umk )k≥1 is bounded in L∞(δ,∞;W s,p). Since the previous esti-
mates (3.5.2)-(3.5.6) remain valid on any compact subset K of Rd, and
W s,p(K) is compactly embedded into L1(K) by the Rellich-Kondrachov
theorem for fractional Sobolev spaces (see [117, Theorem 2.1]), it fol-
lows from Simon’s compactness result [114, Theorem 1] that (umk )k≥1 is
relatively compact in C([t1, t2];L

1(K)) for every 0 < t1 < t2.
Now, for every integer n ≥ 1, let In = [1/n, n] and Kn = {x ∈ Rd :

|x| ≤ n}. Then (In)n≥1 is an increasing sequence of compact intervals,
approximating the positive open real line (0,∞), and (Kn)n≥1 is an in-
creasing sequence of compact subsets of Rd approximating Rd. Since
both sequences (In)n≥1 and (Kn)n≥1 are countable, a standard diagonal
argument yields the existence of a subsequence (uφ(k))k≥1 of (uk)k≥1 and
an element Γ ∈ C((0,∞);L1

loc) such that

lim
k→∞

uφ(k) = Γ in C([t1, t2];L
1(K)) (3.5.7)

for every 0 < t1 < t2 and every compact subset K of Rd. Further, since
each uφ(k) is given by (3.5.1), we can apply the global bound for u given
by (3.3.3) and (3.3.4), so that for all R > R2 and t ≥ 0, we have

∥uφ(k)(t)∥L1({|x|≥R})

≤ C2(t+ φ(k)−
1
β )−dβ

∫
{|x|≥R}

g
(
|x|(t+ φ(k)−

1
β )−β

)
dx

= C2

∫
{|z|≥R(t+ϕ(k)

− 1
β )−β}

g(|z|) dz.

Since g(|z|) is integrable in Rd in each case, for any given ε > 0, there
is an R > 0 such that for every 0 < t1 < t2,

sup
k≥1

sup
t∈[t1,t2]

∥uφ(k)(t)∥L1({|x|≥R}) < ε.

Combining this with (3.5.7) gives

lim
k→∞

uφ(k) = Γ in C([t1, t2];L
1)

for every 0 < t1 < t2, and by (2.1.13),

lim
k→∞

uφ(k) = Γ in C([t1, t2];L
q) (3.5.8)
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for every 1 ≤ q < ∞. Next, let 0 < t1 < t2 and K be a compact subset
of Rd. Then by (3.5.5) and (3.5.8), one sees that

∥Γ(t2) − Γ(t1)∥L1(K) ≤ lim
k→∞

∥uk(t2) − uk(t1)∥L1(K)

≤ lim
k→∞

∫ t2

t1

∥∂tuk(t)∥L1(K) dt

≤ lim
k→∞

∫ t2

t1

∥∂tuk(t)∥1 dt

≤ 2
log t2 − log t1
|m(p− 1) − 1|

.

Hence, applying an increasing sequence (Kn)n≥1 of compact subsets of
Rd to the preceding inequality and subsequently sending n → ∞ yields
that

∥Γ(t2) − Γ(t1)∥1 ≤ 2
log t2 − log t1
|m(p− 1) − 1|

(3.5.9)

for every 0 < t1 < t2. Therefore Γ ∈ C((0,∞);L1) and is locally ab-
solutely continuous with values in L1. Moreover, by (3.5.9), Γ is in
W 1,∞(δ, T ;L1) satisfying

lim
h→0+

∥∥∥∥Γ(t+ h) − Γ(t)

h

∥∥∥∥
1

≤ 2 lim
h→0+

log(t+ h) − log t

h|m(p− 1) − 1|
=

2

t |m(p− 1) − 1|
.

Next, since uφ(k) is a strong distributional solution of (1.1.3), we may
multiply (1.1.3) by umφ(k) and subsequently integrate over (t1, t2) for given
0 < t1 < t2. Then, one obtains that

1
m+1

∥uφ(k)(t2)∥m+1
m+1 +

∫ t2

t1

[umφ(k)(t))]
p
s,p dt = 1

m+1
∥uφ(k)(t1)∥m+1

m+1. (3.5.10)

Integrating (3.5.6) over (t1, t2), we also have that∫ t2

t1

[umφ(k)(t))]
p
s,p dt ≤ C

mα
t−mα1 . (3.5.11)

Thanks to the two estimates (3.5.4) and (3.5.11), we have that for every
0 < t1 < t2, (umφ(k))k≥1 is bounded in Lp(t1, t2;W

s,p). From here, we
proceed similarly to the proof of Theorem 2.1.8 in order to show that
Γ is a strong distributional solution to (1.2.1). Letting 0 < t1 < t2,
the space Lp(t1, t2;W

s,p) is reflexive, so by (3.5.8) we can conclude that
Γm ∈ Lp(t1, t2;W

s,p). After possibly passing to another subsequence of
(umφ(k))k≥1, we have that

lim
k→∞

umφ(k) = Γm weakly in Lp(t1, t2;W
s,p). (3.5.12)

In particular, one has that the sequence (As,p(u
m
φ(k)))k≥1 of linear bounded

functionals on Lp(t1, t2;W
s,p) given by

⟨As,p(u
m
φ(k)), ξ⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p)

=
1

2

∫ t2

t1

∫
R2d

(umφ(k)(x) − umφ(k)(y))p−1(ξ(x) − ξ(y))

|x− y|d+sp
d(x, y) dt
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for every ξ ∈ Lp(t1, t2;W
s,p), is bounded in Lp′ (t1, t2;W

−s,p′ ). Therefore,
there is an χ ∈ Lp′ (t1, t2;W

−s,p′ ) such that after possibly passing to a
subsequence, one has that

lim
n→∞

As,p(u
m
φ(k)) = χ weakly∗ in Lp

′
(t1, t2;W

−s,p′ ). (3.5.13)

Further, since uφ(k) is a strong distributional solution of (1.1.3), it follows
from

∂tuφ(k) + As,p(u
m
φ(k)) = 0 (3.5.14)

that (∂tuφ(k))k≥1 is bounded in Lp′ (t1, t2;W
−s,p′ ). Thus and since Γ ∈ L1,

it follows from (3.5.8) that ∂tΓ ∈ Lp′ (t1, t2;W
−s,p′ ) and, after possibly

passing to another subsequence of (uφ(k))k≥1, that

lim
k→∞

∂tuφ(k) = ∂tΓ weakly∗ in Lp
′
(t1, t2;W

−s,p′ ). (3.5.15)

Hence, multiplying (3.5.14) by a test function ξ ∈ C∞
c ((t1, t2) ×Rd) and

sending k → ∞ yields that

⟨∂tΓ(t) +X∗, ξ⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p) = 0,

which yields that

∂tΓ(t) + χ = 0 in W−s,p′ for a.e. t ∈ (t1, t2). (3.5.16)

Now, we are ready to prove that Γ is a distributional solution of (1.2.1)
on (t1, t2). To do this, it remains to show that χ = As,p(Γ

m), where As,p

is the lifted operator As,p : Lp(t1, t2;W
s,p) → Lp′ (t1, t2;W

−s,p′ ) given by

⟨As
p(v), ξ⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p)

=
1

2

∫ t2

t1

∫
R2d

|v(x) − v(y)|p−2(v(x) − v(y))(ξ(x) − ξ(y))

|x− y|d+sp
d(x, y) dt

for every v, ξ ∈ Lp(t1, t2;W
s,p). For this, note that multiplying (3.5.16)

by Γm yields that

1
m+1

∥Γ∥m+1
m+1

∣∣∣t2
t1

+ ⟨χ,Γm⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p) = 0.

Thus (3.5.8) and (3.5.10) yield that

lim
n→∞

∫ t2

t1

[umφ(k)(t)]
s
p,s dt = ⟨χ,Γm⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p). (3.5.17)

By the monotonicity of As,p, one has that

0 ≤⟨As
p(u

m
φ(k)) −As,p(ξ), u

m
φ(k) − ξ⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p)

=

∫ t2

t1

[umφ(k)(t)]
p
s,p dt− ⟨As

p(u
m
φ(k)), ξ⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p)

− ⟨As,p(ξ), u
m
φ(k) − ξ⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p)
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for every k ≥ 1. Thus, sending k → ∞ in the last inequality and by
using (3.5.12), (3.5.13), and (3.5.17), one obtains that

0 ≤ ⟨χ−As,p(ξ), u
m − ξ⟩Lp′ (t1,t2;W−s,p′ ),Lp(t1,t2;W s,p)

for every ξ ∈ Lp(t1, t2;W
s,p). Now, by proceeding as in the proof of

Proposition 2.9.2, we can choose ξ = um − µ ζ, taking µ → 0+, to
conclude that χ = As,p(Γ

m).
Thus Γ is a distributional solution of (1.1.3) and it remains to show that

Γ is differentiable with values in L1
loc at almost everywhere t ∈ (0,∞).

Since the argument is exactly the same as the one given in the proof of
Theorem 2.1.1, we omit this part.

We can estimate Γ by applying the global bounds (3.3.3) and (3.3.4)
to u so that there exists C2 > 0 and R2 > 0 such that

u(x, t) ≤ C2(t+ 1)−dβg(|x|(t+ 1)−β),

for a.e. x ∈ Rd and t ≥ 0 satisfying |x| > (t+ 1)βR2. Then for k ≥ 1,

uk(x, t) ≤ C2(t+ k−
1
β )−dβg

(
|x|(t+ k−

1
β )−β

)
for all |x| > (t+ k−

1
β )βR2. Hence there exists C > 0 such that

Γ(x, t) ≤ Ct−dβg(|x|t−β) (3.5.18)

for all |x| > Ctβ. So Γ tends to a Dirac delta as t→ 0+.
It remains to prove the radial symmetry properties of Γ. Since umϕ(k)

converged to Γm weakly in Lp(t1, t2;W
s,p), we have a subsequence, rela-

belled as uk, which converges pointwise almost everywhere in [t1, t2]×Rd

for 0 < t1 < t2. Then applying Corollary 3.2.3, uk is radially symmetric
and radially decreasing so that the same holds for Γ almost everywhere in
(0,∞)×Rd. Moreover, (3.5.18) gives the decay of Γ in space and (3.5.3)
gives the decay in time.

Proposition 3.5.2. The strong distributional solution Γ given by Theo-
rem 3.5.1 is self-similar with the form (3.0.2) where F : Rd → R satisfies
the properties of Theorem 3.0.1.

Proof. We apply a rescaling to self-similar variables,

V (y, τ) = tdβΓ(x, t) for t > 0 and x ∈ Rd (3.5.19)

where y = xt−β and τ = log t. Then since Γ ∈ W 1,∞(δ,∞;L1) ∩
L∞(δ,∞;W s,p) for all δ > 0, we can apply those estimates such that
V ∈ W 1,∞(δ,∞;L1) ∩ L∞(δ,∞;W s,p) for all δ > 0. Moreover, since Γ is
a strong distributional solution, V is a strong distributional solution to

∂τV − β∇ · (yV ) + (−∆p)
sV = 0
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for τ ∈ R and y ∈ Rd. In particular, since ∂tΓ ∈ L∞(δ,∞;L1), ∂τV ∈
L∞(δ,∞;L1) and

∂tΓ = t−dβ−1 (∂τV − β∇ · (yV ))

by the rescaling (3.5.19), we have that ∇ · (yV ) ∈ L∞(δ,∞;L1) for all
δ > 0.

We have the following lemma from [121] wherein uk is defined by (3.5.1)
and u1 is the positive strong distributional solution corresponding to a
given radially symmetric initial datum u0 ∈ L1∩∞ with compact sup-
port contained in the unit ball and having mass 1 as in the proof of
Theorem 3.5.1.

Lemma 3.5.3 ([121, Lemma 6.1]). If v1 is the rescaled function from u1
and vk from uk according to (3.5.19), then

vk(y, τ) = v1(y, τ + log(k)).

Since (relabelling by an appropriate subsequence) uk converges point-
wise almost every to Γ in Rd × (0,∞), vk(y, τ) also converges pointwise
almost everywhere to V (y, τ) in Rd × (−∞,∞). By Lemma 3.5.3, we
know that vk(y, τ) = v1(y, τ + log(k)) so that, for h > 0, pointwise we
have that

V (y, τ + h) = lim
k→∞

vk(y, τ + h)

= lim
k→∞

vk+eh(y, τ)

= V (y, τ)

almost everywhere in Rd × (−∞,∞). Hence V is independent of τ and
Vτ = 0 almost everywhere. Hence F = V is an appropriate profile
function. Moreover, we carry the radial symmetry properties of U to
F .

3.6 Uniqueness of the Barenblatt solution

We obtain uniqueness of the self-similar profile using a method of mass
difference analysis, applied to the evolution fractional p-Laplacian in [121]
(see also [127]). This completes the proof of Theorem 3.0.1.

Theorem 3.6.1. The Barenblatt solution given by Theorem 3.5.1 is
unique for each M > 0.

Proof. Let Γ1 and Γ2 be two Barenblatt solutions to (1.1.3) with profile
functions F1 and F2, respectively as defined in (3.0.2). Suppose F1 and
F2 have the same mass M . Since F1 and F2 are both positive and∫

Rd
F1(z) dz =

∫
Rd
F2(z) dz = M,
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one either has that F1 = F2 a.e. on Rd, or∫
Rd

(F1(z) − F2(z))+ dz > 0

and ∫
Rd

(F2(z) − F1(z))+ dz > 0.

Then (3.0.2) implies that for t > 0, the difference Γ1(t) − Γ2(t) of the
corresponding Barenblatt solutions Γ1 and Γ2 is also sign-changing. In
particular, Γ1 and Γ2 satisfy the L1 dissipation inequality for differences,
Theorem 2.6.1, with strict inequality. Hence using the form (3.0.2) for
Γ1 and Γ2,

t−dβ2 ∥[F1(xt
−β
2 ) − F2(xt

−β
2 )]+∥1 < t−dβ1 ∥[F1(xt

−β
1 ) − F2(xt

−β
1 )]+∥1

for 0 < t1 < t2. Now a change of variable implies that

∥[F1 − F2]
+∥1 < ∥[F1 − F2]

+∥1

giving a contradiction.
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[117] Félix del Teso, David Gómez-Castro, and Juan Luis Vázquez.
“Estimates on translations and Taylor expansions in fractional
Sobolev spaces”. In: Nonlinear Anal. 200 (2020), pp. 111995, 12.
issn: 0362-546X. doi: 10.1016/j.na.2020.111995.
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