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Abstract

Summarisation aims to condense a given piece of information into a short and succinct

summary that best covers its semantics with the least redundancy. This helps users quickly

browse and understand long content by focusing on the most important ideas. Summarisation

on a single modality, such as text summarisation, has been actively studied for decades. Text

summarisation is a challenging task in natural language processing that condenses a document

into a succinct summary. With the explosion of multimedia data, multimodal summarisation

with multimodal output emerges and extends the inquisitiveness of the task. Summarising a

video-document pair into a visual-textual summary helps users obtain a more informative and

visual understanding. Although various methods have achieved promising performance, they

have limitations, including expensive training, lack of interpretability, and insufficient brevity.

Therefore, this thesis addresses the gap and examines the application of optimal transport

(OT) in unsupervised summarisation, and the major contributions are as follows: (1) An

interpretable OT-based method is proposed for text summarisation. It formulates summary

sentence extraction as minimising the transportation cost to a given document regarding their

semantic distributions; (2) An efficient and interpretable unsupervised reinforcement learning

method is proposed for text summarisation. Multi-head attentional pointer-based networks

are designed to learn the representation and extract salient sentences and words. The learning

strategy aims to mimic human judgment by optimising summary quality regarding OT-based

semantic coverage and fluency; (3) A new task, eXtreme Multimodal Summarisation with

Multiple Output (XMSMO) is introduced. It summarises a video-document pair into an

extremely short multimodal summary. An unsupervised Hierarchical Optimal Transport

Network is proposed to learn across multiple modalities and use OT solvers to maximise

multimodal semantic coverage. A new large-scale dataset is constructed to facilitate future

research in this new direction; (4) A Topic-Guided Co-Attention Transformer method is

proposed for XMSMO. It constructs a two-stage unimodal and cross-modal modelling with

v
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clustering-based cross-modal topic guidance. A novel OT-guided unsupervised training

strategy optimises from the perspective of the similarity between semantic distributions of

topics. Comprehensive experiments demonstrate the effectiveness of the proposed methods.
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CHAPTER 1

Introduction

1.1 Background and Research Motivation

Summarisation is the process of compacting information into a brief and concise summary

that captures the main meaning while minimising repetition. Its purpose is to assist users in

efficiently skimming through and comprehending lengthy content by highlighting key ideas.

While summarisation on a single modality, such as text summarisation [77, 106, 60, 48], has

been the subject of extensive research for decades, multimodal summarisation [141, 142, 52]

has attracted research interest in the past few years.

Text summarisation has always been an interesting yet challenging task in the natural language

processing field. It aims to transform the original document into a shorter version that covers

the main ideas, i.e. a summary [70, 83]. Doing so helps reduce the time for readers to acquire

knowledge and discover relevant information. It is one of the most challenging tasks in natural

language processing; it involves the ability to understand the meaning of the original text and

the ability to synthesise it in natural language. Even for a trained human abstractor, journalist,

or professional writer, it is still an intricate craft to master and is regarded as a form of fine

art [5]. This technique has broad applications in our everyday life. Figure 1.1 shows some

examples of text summarisation applications. For example, the most common one is the news

summarisation. Instead of reading an enormous amount of news articles, readers could grasp

the highlights of events that matter at a glance. Book summaries give an overview of the story

plot and the essence of the ideas to attract readers to continue reading the book. Abstracts

of scientific articles highlight major findings and contributions, allowing readers to acquire

knowledge quickly.
1
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FIGURE 1.1. Some examples of text summarisation applications, including
(a) news summary, (b) book summary, and (c) abstract of a scientific article.

With the exponentially increasing amount of text data and the request for instant knowledge, it

becomes infeasible and costly to generate summaries manually promptly. There is a growing

demand to develop and advance automatic text summarisation techniques. Early research on

text summarisation started as early as the 1950s [64]. Traditional methods apply different

techniques to identify the most important sentences or words in the input document and

combine them to form an output summary. They rely on handcrafted features, which mainly

depend on linguistic knowledge. Since more textual data are becoming available nowadays,

most proposed methods are deep learning-based since the first proposed in 2015[104]. An

input document is transformed into an output summary by deep learning models based on

features automatically learnt from the data. There are several comprehensive surveys of this

field [109][105][62][22][43].

While text summarisation has been investigated for decades, with the rapid growth of multime-

dia data [143], there is an emerging interest in Multimodal Summarisation with Multimodal

Output (MSMO) [141, 142, 52] in recent years. MSMO aims to summarise a pair of a video

or a set of images and a document into a visual-textual summary, since image and text could
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complement each other, where images help users to grasp events while texts provide more

details related to the events. Figures 1.2 and 1.3 show some examples of MSMO applications.

Such summarisation empowers users to swiftly identify the key aspects of multimodal content,

determining if further reading or watching is worthwhile according to multimodal summaries

with complementary visual and text content. This help users to better obtain a more inform-

ative and visual understanding of events. Also, this can help make the information more

accessible to users with various individual needs. For example, users with a reading disorder

may refer more to the visual summary, and users with vision impairments may find the textual

summary more accessible using a screen reader.

FIGURE 1.2. Example of MSMO, which summarises a set of images and a
document into a visual-textual summary.

After years of efforts by the research community, these existing methods have advanced

the task of text summarisation and multimodal summarisation. However, both of them

remain an open problem, and the current state-of-the-art can still not approximate a human

abstractor. One of the limitations is that existing text summarisation methods [125] often

first score the importance of individual sentences of a given document and then combine the

top-ranked ones to form a summary. However, the sentences with high importance scores

may not represent the document from a global perspective [45], resulting in a sub-optimal and

redundant summary. Another limitation is the expensive training cost of existing methods and
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FIGURE 1.3. Example of MSMO application summarising a video and docu-
ment into a visual-textual summary.

the lack of interpretability for the summarisation process. Most existing models are trained

by supervised methods, which may not be able to approximate human judgment.

For MSMO, one of the limitations is that most of the existing MSMO methods are designed

for short visual inputs, such as short videos and multiple images, without considering the

summary length. According to the statistics of YouTube1, one of the most popular online

video-sharing platforms, in 2023, more than 500 hours of video contents are uploaded every

minute; and more than a billion logged-in users visit YouTube each month and watch over

a billion hours of video every day. In particular, YouTube channels of news organisations

are a significant part of the content, which often have millions of subscribers and views. For

example, as of May 2023, the British Broadcasting Corporation News YouTube channel

had over 14 million subscribers and had accumulated over 4 billion views2. Given the

increasing pace of producing multimedia data and the subsequent challenge of keeping up

with the explosive growth of such rich content, these existing methods may be sub-optimal

to address the imminent issue of information overload of multimedia data. Moreover, most

existing methods are supervised, requiring the resource-expensive collection of ground-truth

summaries as supervision.

1https://blog.youtube/press/
2https://www.youtube.com/@BBCNews/about
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This thesis identifies four objectives to address the research gap of text summarisation and

MSMO. Our first objective is to improve the global-level optimisation for summarisation by

investigating the conceptualisation of text summarisation as an optimal transport problem for

the first time. There have been some studies on OT in NLP, such as document distance [47,

130], text generation [10], text matching [111], and machine translation [124]. These methods

generally focus on deriving similarities between words, sentences, and documents. On the

contrary, we for the first time formulate text summarisation as an OT problem that optimally

transports the semantic distributions between two texts (e.g., source document and summary

candidate). The second objective is to improve human judgment approximation and reduce

reliance on parallel training data by investigating unsupervised reinforcement-based text

summarisation method. The existing supervised learning methods trained with ground-truth

summaries [106, 131, 119, 61] and with reinforcement training to optimise the ROUGE

metric [92, 89] may not provide useful insights on human judgment approximation . The third

objective is to improve the information overload issue of multimedia data by investigating a

new task of extreme multimodal summarisation and collecting a new dataset, and investigating

an unsupervised hierarchical neural method for it. Most of the existing MSMO methods [141,

142, 52] are designed for short visual inputs, such as short videos and multiple images, without

considering the summary length. Given the increasing pace of producing multimedia data and

the subsequent challenge in keeping up with the explosive growth of such rich content, these

existing methods may be sub-optimal to address the imminent issue of information overload

of multimedia data. The fourth objective is to further enhance the extreme multimodal

summarisation task by investigating unsupervised topic-guided neural method to capture

the overarching themes in documents and videos effectively. As topic models are generally

useful for identifying key aspects from long documents [80], our proposed new architecture is

devised for the extreme multimodal summarisation task.

1.2 Contributions

The main contributions of this thesis are as follows:
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(1) A non-learning-based extractive text summarisation method - OTExtSum is proposed

by treating the text summarisation task as an optimal transport problem for the

first time. Two optimisation strategies for OTExtSum are designed to optimise this

problem formulation: beam search strategy and binary integer programming strategy.

(2) The first unsupervised compressive text summarisation method with dual-agent

reinforcement learning, namely URLComSum, is proposed. An efficient and inter-

pretable multi-head attentional pointer-based neural network is designed to learn

the representation and extract salient sentences and words. The unsupervised rein-

forcement learning strategy is designed to mimic human judgment by optimising

summary quality in terms of the semantic coverage reward, measured by Wasserstein

distance, and the fluency reward, measured by Syntactic Log-Odds Ratio (SLOR).

(3) A new task, eXtreme Multimodal Summarisation with Multiple Output (XMSMO),

is proposed. It aims to summarise a video-document pair into an extreme multimodal

summary (i.e., one cover frame as the visual summary and one sentence as the

textual summary). A novel unsupervised Hierarchical Optimal Transport Network

(HOT-Net) is proposed. The hierarchical encoding and decoding are conducted

across visual and textual modalities, and optimal transport solvers are introduced to

guide the summaries to maximise their semantic coverage. A new large-scale dataset

XMSMO-News is constructed for the research community to facilitate research in

this new direction.

(4) A novel transformer architecture - Topic-Guided Co-Attention Transformer (Topic-

CAT) - is proposed for emerging extreme multimodal summarisation. It constructs a

two-stage learning strategy for unimodal and cross-modal modelling with clustering-

based cross-modal topic guidance. A novel optimal transport-guided unsupervised

training strategy is devised to optimise TopicCAT from the perspective of the simil-

arity between semantic distributions of topics.

1.3 Thesis Structure

The rest of the thesis is organised as follows:
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Chapter 2 presents the background and the related studies for text summarisation and mul-

timodal summarisation with multimodal output methods.

Chapter 3 presents an interpretable optimal transport-based method (OTExtSum) for text

summarisation. It formulates summary sentence extraction as minimising the transportation

cost to a given document regarding their semantic distributions.

Chapter 4 presents an unsupervised reinforcement learning method (URLComSum) for text

summarisation. Multi-head attentional pointer-based networks learn the representation and

extract salient sentences and words. The learning strategy mimics human judgment by

optimising summary quality regarding semantic coverage and fluency.

Chapter 5 presents a new task, eXtreme Multimodal Summarisation with Multiple Output

(XMSMO). It summarises a video-document pair into an extremely short summary consisting

of one cover frame and one sentence. An unsupervised Hierarchical Optimal Transport

Network (HOT-Net) is proposed that conducts learning across multiple modalities and uses

optimal transport solvers to maximise semantic coverage. A new large-scale dataset is

constructed to facilitate research in this new direction.

Chapter 6 presents a Topic-Guided Co-Attention Transformer method (TopicCAT) for XMSMO.

It constructs a two-stage unsupervised learning strategy for unimodal and cross-modal model-

ling with clustering-based cross-modal topic guidance.

Chapter 7 concludes this thesis with a discussion of future work.



CHAPTER 2

Literature Review

The study investigates the task of text summarisation. In this chapter existing methods are

reviewed in Section 2.1. Since most existing works on text summarisation are extractive,

abstractive, and compressive-based, these approaches are discussed in Sections 2.1.1, 2.1.2,

and 2.1.3 correspondingly.

Moreover, as the study evolves and investigates the task of extreme multimodal summarisation

with multimodal summarisation, this chapter reviews multimodal summarisation in Section

2.3, with multimodal summarisation with unimodel output in 2.3.1 and that with multimodal

output in Section 2.3.2. Existing extreme summarisation methods and video summarisation

methods are also reviewed in Sections 2.4 and 2.2 respectively, since they are closely related

to our study of extreme multimodal summarisation.

2.1 Text Summarisation

Text summarisation aims to condense a given document into a short and succinct summary that

best covers the semantics of the document with the least redundancy. Most existing works on

text summarisation are extractive, abstractive, and compressive-based. Firstly, Section 2.1.1,

discusses existing extractive methods, which select salient sentences from a document to form

its summary and ensure the production of grammatically and factually correct summaries.

Secondly, Section 2.1.2, discusses existing abstractive methods, which usually formulate the

task as a sequence-to-sequence generation task, with the document as the input sequence and

the summary as the output sequence. Thirdly, in Section 2.1.3, existing compressive methods
8
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are discussed. It is a recent approach which aims to select words, instead of sentences, from

an input document to form a summary.

2.1.1 Extractive Text Summarisation

The extractive approach identifies and directly copies from the source document to form the

summary. It has the advantage of ensuring grammatically correct and semantically meaningful

summary output. However, it has the following drawbacks. Often the important information

spread across multiple sentences; the extractive approach fails to capture unless extracting all

these sentences. Also, without capturing the logical linkages between sentences, the ideas in

the extracted summary may not be coherent [32]. Since it is relatively more straightforward,

the majority of the previous works focused on extractive approach. In this section, we

review existing extractive summarisation methods in two categories: non-learning based and

learning-based methods.

2.1.1.1 Non-learning based Methods

Most of the non-learning based methods conceptualise text summarisation as a sentence

ranking task. Each sentence in a given document is scored in terms of various sentence

importance criteria, which measure how well the sentence could represent the document. The

top-ranked sentences are combined to form a summary. These methods often heavily rely on

handcrafted features in regards to linguistic knowledge by focusing on local and/or global

contexts.

Local Context based Methods. Local context-based methods rank a sentence based on the

features obtained from the sentence itself. Sentence features such as frequency-based and

topic-based were studied. Frequency-based features [16, 35] assume that the occurrence of

high-frequency terms in a sentence is associated with their importance. Topic-based features

[46, 85, 55] assume that the density of a set of topic terms is highly correlated to the topic of

a document.
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Global Context based Methods. As local context features could overlook the correlations

between sentences and lead to redundant summaries involving similar sentences, global

context-based methods rank individual sentences from the perspective of the entire document.

Discourse-based methods [71] construct a document’s rhetorical structure and extract the

sentences on the longest chain of the semantic structure, i.e. the main topic. Centroid-based

methods [100] cluster the sentences of a document through similarity measures and rank

the sentences based on their distances to the cluster centroids. TextRank [77], as a graph-

based method, is the state-of-the-art non-learning based method. A graph among document

sentences is first formed by connecting sentences using sentence similarity scores, then the

sentence connectivity can be used to score the importance of a sentence. Nonetheless, the

nature of these sentence based scoring methods could miss summary-level or document-level

patterns.

2.1.1.2 Learning-based Methods

With the success of deep learning methods in the field of natural language processing (NLP),

the deep learning-based text summarisation approach has then been popular in recent years.

Similar to the non-learning based approach, the learning-based methods often conceptualise

the task as a sentence ranking or a classification problem. For a sequence of sentences from

the input document, each sentence is assigned with an importance score. Highly-ranked

sentences are then combined to form a summary.

Most of these methods follow the sentence ranking conceptualisation, and a supervised

encoder-decoder scheme is generally adopted [79, 134, 82, 123]. An encoder formulates

document or sentence representations, and a decoder predicts a sequence of sentence im-

portance scores with the supervision of ground-truth sentence labels. Since the ground-truth

summaries are usually abstractive based and do not contain the labels of which sentences

should be extracted, the training objective of these methods relies on creating proxy target

labels for each sentence based on the similarity to the ground-truth summary sentence.

Instead of relying on proxy target labels, some supervised methods utilise reinforcement

learning [81, 15, 66] by directly optimising the ROUGE metric, which is used as the training
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reward. The reinforcement learning based summarisation task can be treated as a sentence

ranking problem [81] similar to the aforementioned methods [79, 134, 82, 123] or as a

contextual-bandit problem [66] . Instead of evaluating the scores of individual sentences, a

contextual-bandit agent evaluates the reward by selecting a subset of sentences from a given

document. The chosen sentences are then combined to form a summary.

To further address the discrepancy between the training objective and the evaluation metric,

various unsupervised methods [138, 87] have been proposed to leverage pre-trained language

models to compute sentence similarities and select important sentences. Some methods

[138] use these similarities to construct a sentence graph and select sentences based on their

centrality. Some methods [87] use these to score relevance and redundancy of sentences as

selection criteria.

Although these learning-based methods have significantly improved summarisation perform-

ance in terms of the ROUGE metric, computationally expensive training costs are inevitable,

and it is challenging to generalise the trained models to documents from other domains that

have distributions different from the training dataset. Furthermore, the extraction result from

both the existing learning-based and non-learning based approaches are lack of interpretability.

It is difficult to explain the correspondence and the coverage between a summary and a source

document using these deep models. Therefore, to address these limitations, it is necessary to

revisit the non-learning based approach.

2.1.2 Abstractive Text Summarisation

The abstractive approach involves paraphrasing and natural language generation, which may

generate novel words that are not in the source document. It is a better approximation of how

human summarise texts, yet it is challenging to generate grammatically correct sentences.

In this section, we review existing abstractive summarisation methods in two categories:

non-learning based and learning-based methods.
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2.1.2.1 Non-learning based Methods

The abstractive approach performs topic identification and interpretation by identifying and

fusing important words of the input document. It performs summary generation in natural

language by trying to ensure fluency and grammatical correctness of output summary. They

are broadly categorised into template-based and graph-based.

Template-based Methods. Template-based methods assume that summary generation could

be based on a set of pre-defined templates. At topic identification and interpretation stage,

snippets are extracted from the input document. The summary is then generated by populating

the snippets into the template.

Common methods to extract snippets from the input document include leveraging informa-

tion extraction techniques [33] which extract snippets by linguistic extraction patterns and

discourse-based approach [24] which aggregates the discourse trees of the sentences and

extracts snippets from the relation tuples, and word graph [86].

The pre-defined template is usually based on the assumption of domain and topic covered

by the method. Some methods experimented using a single template, assuming the output

summaries follow universal structure [33] [24]. To have better generalisation to other domains,

some [86] proposed to have multiple templates, such that output summaries could use the

corresponding domain or topic-specific template based on the topic of the input document.

Template-based methods suffer from poor generalisation since the predefined templates are

domain-specific.

Graph-based Methods. To better generalise to different domains, graph-based methods

assume that summary generation could be based on a traversal path on the graph-like structure

constructed according to the input document, which does not limit to a specific domain. At

topic identification and interpretation stage, common information among sentences is fused

in the construction process to produce a graph structure, such as word tree, word graph and

semantic graph. A set of predefined rules is then used to traverse the constructed graph. The

traversed words are combined to form a summary in natural language.
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The graph structure construction experimented include dependency trees [126] [108] and word

graph [23] [20], with words represented as a node and adjacency relation as an edge. Semantic

graphs are experimented to improve the semantic representation, such as rich semantic graph

[95] [78], where the nodes represent nouns and verbs of the text and the edges represent the

semantic relation between them, and abstract meaning representation (AMR) graph [57] [53],

where the nodes represent concepts and the edges represent the relationship between them.

Traversal rules experimented include finding the shortest path between the ’start of sentence’

node and the ’end of sentence’ node [20], and searching the path with the total weight of

word nodes [108]. For semantic graph, external AMR-to-text generator is experimented to

convert an AMR graph into summary in natural language [53].

2.1.2.2 Learning-based methods

Learning-based abstractive methods formulate text summarisation as a sequence-to-sequence

generation task, with the source document as the input sequence and the summary as the

output sequence. Most existing methods follow the supervised RNN-based encoder-decoder

framework [106, 131, 119, 61]. As supervised learning with ground-truth summaries may

not provide useful insights on human judgment approximation, reinforcement training was

proposed to optimise the ROUGE metric [92, 89], and to fine-tune a pre-trained language

model [48]. These models naturally learn to integrate knowledge from the training data while

generating an abstractive summary. Prior studies showed that these generative models are

highly prone to external hallucination, thus may generate contents that are unfaithful to the

original document [72].

2.1.3 Compressive Text Summarisation

Compressive methods select words from a given document to assemble a summary. Due

to the lack of training dataset, not until recently there have emerged works for compressive

summarisation [135, 75, 122, 13]. The formulation of compressive document summarisation

is usually a two-stage extract-then-compress approach: it first extracts salient sentences from
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a document, then compresses the extracted sentences to form its summary. Most of these

methods are supervised, which require a parallel dataset with document-summary pairs to

train. However, the ground-truth summaries of existing datasets are usually abstractive-

based and do not contain supervision information needed for extractive summarisation or

compressive summarisation. Several reinforcement learning based methods [135] use existing

abstractive-based datasets for training, which is not aligned for compression. Note that existing

compressors often perform compression sentence by sentence. As a result, the duplicated

information among multiple sentences could be overlooked. Therefore, to address these

limitations, we propose a novel unsupervised compressive method by exploring the dual-agent

reinforcement learning strategy to mimic human judgment and perform text compression

instead of sentence compression.

2.2 Video Summarisation

Video summarisation aims to summarise a video into keyframes that provide a compact

yet informative representation of a video. Early researches [65, 140, 31] usually rely on

handcrafted audiovisual features, such as audio, colour and motion, and utilise rule-based

or clustering-based techniques to pick up keyframes . Recent researches [127, 68, 39, 67,

129] usually formulate this task as a sequence-to-sequence problem, with the video frames

as the input sequence and the importance scores of each frame as the output sequence. The

frames with the highest importance score are then selected as the keyframes. Most existing

methods focus on modelling the temporal dependency and the spatio structure among frames

[4]. The temporal dependency-based approach usually follows a supervised LSTM-based

encoder-decoder framework [137, 118, 40] to exploit the temporal structure among the video

frames and predict the importance of each frame. To further incorporate the knowledge of

the spatio structure of frames, the spatiotemporal-based approach often adopts a combination

of CNNs and RNNs [41, 37, 128], where pre-trained CNNs are used to represent the visual

feature of the frames and RNNs are used to model the temporal dependency of the frames.
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2.3 Multimodal Summarisation

Multimodal summarisation aims to condense an input with multiple modalities into a short

summary [38] and creates concise and informative summaries that leverage the strengths

of different modalities. Existing methods are commonly categorised by the modality of the

output: with unimodal output and with multimodal output.

2.3.1 Multimodal Summarisation with Unimodal Output

Multimodal summarisation with unimodal output method summarises textual and visual

inputs into a textual summary or keyframes. Existing research [9, 51, 88, 59] often focuses on

generating better text summaries with the help of multimodal input. They often follow an

encoder-decoder architecture, in which the encoder utilises pre-trained CNN networks for

embedding visual features of images or video frames and RNN-based networks for encoding

language encoding temporal dependency of video frames; the decoder utilises RNN-based

networks for a text summary generation. A multimodal attention layer is used to fuse the

multimodal representation.

2.3.2 Multimodal Summarisation with Multimodal Output

Multimodal summarisation with multimodal output methods usually summarise textual and

visual inputs into a textual-visual summary. [141] first studied this task, which took a

document and an image set as the input. A supervised attention-based encoder-decoder

framework was devised. For encoding, a textual encoder and a visual encoder formulate the

document and visual representations, respectively. For decoding, a textual decoder generates

a textual summary, and a visual decoder selects the most representative image as a visual

summary. Additionally, a multimodal attention layer was incorporated to fuse the textual and

visual context information. To alleviate the modality-bias issue, a multitask learning was

applied to jointly consider the two MSMO subtasks: summary generation and text-image

relation recognition [142]. A hierarchical intra- and inter-modality correlation between the

image and text inputs was studied to enhance the multimodal context representation [132].
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[52] extended visual inputs to short videos, and introduced self-attentions to improve the

multimodal context representation. Most existing MSMO methods are designed for short

visual inputs, such as short videos and multiple images, without considering the summary

length. Given the increasing pace of producing multimedia data and the subsequent challenge

in keeping up with the explosive growth of such rich content, these existing methods may be

sub-optimal to address the imminent issue of information overload of multimedia data.

2.4 Extreme Summarisation

Extreme summarisation is a form of summarisation which involves creating extremely concise

summaries to further address the issue of information overload. Different from generic

summarisation, extreme summarisation aims to generate extremely short summaries, such as

cover images and one-line textual summaries, that users can browse and understand them at a

glance. Existing extreme summarisation methods focus on unimodal input and output. They

are reviewed in two categories, text-based and video-based.

2.4.1 Extreme Text Summarisation

The extreme text summarisation task was first explored by [80] who formulated the task as

a sequence-to-sequence learning problem, where the input was a source document and the

output was an extreme summary. A supervised encoder-decoder framework was studied and a

topic model was incorporated as an additional input to involve the document-level semantic

information and guide the summary to be consistent with the document theme. [7] introduced

multi-task learning and incorporated the title generation as a scaffold task to improve the

learning ability regarding the salient information in the document. These methods relied

on integrating the knowledge from pre-trained embedding models to generate abstractive

summaries. As a result, these generative models are highly prone to external hallucination

and it is possible to generate contents unfaithful to the original document, which was shown

by [72].
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2.4.2 Extreme Video Summarisation

Extreme video summarisation methods can be conceptualized as a frame ranking task, which

scores the frames in a video as the output. A deep learning method based on a CNN-based

autoencoder architecture was first proposed [30], in which the training is unsupervised and

the goal is to minimise a reconstruction loss considering the representativeness and aesthetic

quality of the selected frames. The performance of different CNNs was compared and the

ResNet-50 CNN outperformed the other CNNs, as studied by [98]. The scoring was improved

by [102] by incorporating additional CNNs to consider the quality of faces. It utilised a

Siamese CNN architecture, which was optimized by a piece-wise ranking loss using pairs

of frames. [2] proposed a generative adversarial network that introduced a reinforcement

learning scheme by rewarding the representativeness and aesthetic quality. Note that most

of these methods encode a video as a sequence of frames directly, whilst the hierarchical

semantic structure of a video has not been adequately explored.



CHAPTER 3

OTExtSum: Extractive Text Summarisation with Optimal Transport

In this chapter, we propose a novel non-learning-based method by for the first time formulating

text summarisation as an Optimal Transport (OT) problem, namely Optimal Transport Extract-

ive Summariser (OTExtSum). Optimal sentence extraction is conceptualised as obtaining an

optimal summary that minimises the transportation cost to a given document regarding their

semantic distributions. Such a cost is defined by the Wasserstein distance and used to measure

the summary’s semantic coverage of the original document. Comprehensive experiments on

four challenging and widely used datasets - MultiNews, PubMed, BillSum, and CNN/DM

demonstrate that our proposed method outperforms the state-of-the-art non-learning-based

methods and several recent learning-based methods in terms of the ROUGE metric.

3.1 Introduction

A common practice for text summarisation is extractive summarisation which aims to select

the salient sentences of a given document to form its summary. Extractive summarisation

ensures the production of grammatically and factually correct summaries, though the output

summaries could be inflexible. Since abstractive summaries are highly prone to contain

contents that are unfaithful and nonfactual to the original document [72], extractive summaries

are more practical for real-world scenarios, especially for the domains requiring formal writing

such as legal, science, and journalism documents.

Existing methods [125] often first score the importance of individual sentences of a given

document and then combine the top-ranked ones to form a summary. However, the sentences

with high importance scores may not well represent the document from a global perspective,
18
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which results in a sub-optimal summary. Recently, learning-based methods, especially those

based on supervised and unsupervised deep learning techniques [81, 138, 134, 82, 123, 139,

87] can significantly improve summarisation performance. However, training deep learning

models is computationally expensive, and it can be difficult to apply those models learned

from a particular domain to other domains with different distributions. Moreover, deep

learning methods generally lack interpretability for the summarisation process.

Motivated by these issues, we propose a novel non-learning based extractive summarisation

method, namely Optimal Transport Extractive Summariser (OTExtSum). As illustrated in

Figure 3.1, we formulate extractive summarisation based on the optimal transport (OT) theory

[94]. A candidate summary can be evaluated by an OT plan regarding the optimal cost to

transport between the semantic distributions of the summary and its original document. Then

a Wasserstein distance can be obtained with this optimal plan to measure the discrepancy

between the two distributions. To this end, it can be expected that a summary of high quality

minimizes this Wasserstein distance. Moreover, a common assumption in the formulations of

the OT problem is that the source and target distributions are fixed. In OTExtSum problem

formulation, we relax this assumption by adding an extraction vector m∗ to indicate which

document sentences would be extracted to form the summary’s semantic distribution, thus

making the target distribution variable.

The semantic distributions of a given document and its candidate summary can be formulated

in line with the frequency of their tokens. Inspired by Word Mover’s Distance [47], summar-

isation can be conceptualized as moving the "semantics" of a given document to its summary,

and the ideal summary is obtained at the minimal transportation cost. This ensures the highest

semantic coverage of the given document and the least redundancy in the summary without

explicitly modelling conventional criteria such as relevance and redundancy. Thus, under the

OT plan, the Wasserstein distance indicates the candidate summary’s semantic coverage of

the given document.

We design two optimisation strategies to approximate the extraction vector m∗, namely

beam search strategy [113], which iteratively evaluates the semantic coverage scores of a set

of candidate summaries to obtain the optimal extraction, and binary integer programming
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strategy, which approximates the optimal extraction given the constraints of the Wasserstein

distance and extraction budget. As a non-learning based method, OTExtSum does not require

any training and is applicable to different document domains. Furthermore, it provides

explainable results in terms of the semantic coverage of the summary.

FIGURE 3.1. Illustration of Optimal Transport Extractive Summariser
(OTExtSum).

Overall, the key contributions of this chapter are:

• We propose a non-learning based extractive summarisation method - OTExtSum

by treating the text summarisation task as an optimal transport problem for the first

time.

• We design two optimisation strategies for OTExtSum : beam search strategy and

binary integer programming strategy.
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• We present an interpretable visualisation of the semantic coverage of a generated

summary by visualising the transport plan between summary tokens and document

tokens.

• Comprehensive experimental results on four widely used datasets, including CNN/DM,

MultiNews, BillSum and PubMed, demonstrate that OTExtSum outperforms the

state-of-the-art non-learning based methods.

The remainder of this chapter is organised as follows. Section 3.2 describe the details

of our proposed method. Section 3.3 presents comprehensive experiments to evaluate the

effectiveness of our proposed method. Lastly, Section 3.4 concludes our study with discussions

on our future work.

3.2 Proposed Method

As shown in Figure 3.1, OTExtSum utilizes a text OT approximation to obtain the optimal

extraction vector m∗ = [m1, ...,mn]
T , where mi ∈ {0, 1} denotes whether the i-th sentence

is to be extracted (denoted by 1) or not (denoted by 0). The optimal extraction vector m∗

achieves an OT plan from the semantic distribution of the document to that of its optimal

candidate summary which has the minimum total transportation cost.

The OT approximation consists of four components: 1) a tokeniser & embedding procedure

that formulates token level representations and a semantic distribution estimation that com-

putes the frequency of each token within a summary or a document ; 2) a transportation cost

matrix that measures the cost using one token to represent another based on their Euclidean

distances; 3) an OT solver that approximates Wasserstein distance and semantic coverage of

the candidate summaries; and 4) an optimisation strategy that obtains the optimal extraction

vector by choosing the summary with the minimum Wasserstein distance, and thus with the

highest semantic coverage of the source document.
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3.2.1 Optimal Transport

Consider a transportation problem that transports goods from a collection of suppliers D =

{di|i = 1, ..., N} to a collection of customers S = {sj|j = 1, ..., N}, where di and sj indicate

the supply quantity of the i-th supplier and the order quantity of the j-th customer, respectively.

Note that, in this study, we consider the number of suppliers to be the same as the customers.

By defining tij as the quantity transported from the i-th supplier to the j-th customer, a

transport plan T = {tij} ∈ RN×N can be obtained. Given a cost matrix C = {cij} ∈ RN×N ,

where cij is the cost to deliver a unit of goods from the i-th supplier to the j-th supplier, the

cost of the transport plan T can be calculated. Particularly, an OT plan T∗ = {t∗i,j} ∈ RN×N

in pursuit of minimising the transportation cost can be obtained by solving the following

optimisation problem:

T∗ = argmin
T

N∑
i,j=1

tijcij,

s.t.
N∑
j=1

tij = di, ∀i ∈ {1, ..., N} ,

N∑
i=1

tij = sj, ∀j ∈ {1, ..., N} ,

tij ≥ 0, ∀i, j ∈ {1, ..., N} ,

(3.1)

where the first two constraints indicate the quantity requirements for both suppliers and

customers and the last constraint proves a non-negative order quantity. Mathematically, this

OT problem is to find a joint distribution T with respect to a cost C, of which the marginal

distribution is D and S. In particular, Wasserstein distance can be defined as:

dW (D,S|C) =
∑
i,j

t∗i,jci,j. (3.2)

It can be viewed as the distance between the two probability distributions D and S, if they are

normalized, in line with the cost C.
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3.2.2 Semantic Distribution

In the context of text summarisation, denote D = {s1, ..., sn} to represent a document,

where si denotes the i-th sentence contained in the document. The sentence si has a semantic

distribution TFi ∈ RN computed by the normalised bag-of-tokens with removal of stop-words:

TFi = [TFi1, ..., TFiN ]
T ,

TFij =
dj∑N
k=1 dk

,
(3.3)

where dj indicates the count of the j-th token in a vocabulary of size N .

A document D has a semantic distribution TFD:

TFD =
TF1 + . . . + TFn

n
. (3.4)

For a summary S ⊂ D with its corresponding extraction vector m, of which the i-th element

mi is an indicator (mi = 1 if si ∈ S, mi = 0 otherwise), it has a semantic distribution TFS:

TFS =
m1 × TF1 + ...+mn × TFn

m1 + ...+mn

. (3.5)

In our proposed method, a normalization step is introduced to approximate the semantic

distributions of D and S with term frequency. Note that after the normalization, TFD and

TFS have an equal total good quantities of 1 and can be completely transported from one to

the other. In addition, TFD and TFS satisfy the property of discrete probability distributions,

of which the sum should be 1.

3.2.3 Transport Cost between Tokens

We define the unit transportation cost between two tokens by measuring their semantic

similarity. Intuitively, the more semantically dissimilar a pair of tokens are, the higher the

“transport cost" of transporting one token to another. Given a pre-trained tokeniser and token
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embedding model with N tokens, define vi to represent the feature embedding of the i-th

token. The transport cost from the i-th token to the j-th token cij in C can be written as:

cij = ∥vi − vj∥2 , (3.6)

which is based on the Euclidean distance. 1

3.2.4 Semantic Coverage of Candidate Summaries

Intuitively, a good summary S is supposed to be close to the document D in terms of their

semantic distributions. OTExtSum utilizes the Wasserstein distance to measure the distance

between the two associated semantic distributions TFD and TFS with the OT cost. The

computation of the Wasserstein distance has time complexity of O(p3log(p)) [1], where p

denotes the number of unique words in the document.

In detail, it can be obtained with Eq. (3.2) as dW (TFD,TFS|C) with a pre-defined cost matrix

C. Then a semantic coverage score of the summary S in respect to the document D can be

further defined based on the Wasserstein distance:

g(D,S) = 1− dW (TFD,TFS|C). (3.7)

Therefore, OTExtSum aims to search for an extraction vector m, of which the corresponding

summary S minimises the Wasserstein distance, i.e. maximising the semantic coverage score

for the given document D by solving OT problems.

3.2.5 Optimisation Strategy

The remaining problem for OTExtSum is to search for the optimal extraction vector m∗

which achieves the minimum total transportation cost from the semantic distribution of the

document TFD to that of the optimal summary TFS, given a budget B which is the number of

sentences can be extracted to create a summary:

1We investigated the effect of different distance measurements. As discussed in Section 3.3.3, cost matrix
based on the Euclidean distance and the cosine distance yield similar ROUGE scores.
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m∗ = argmin
m

dW (TFD,TFS|C),

s.t. m1 + ...+mn ≤ B.

(3.8)

In search of optimal extraction vector m∗, we design two optimisation strategies, namely beam

search strategy to achieve better coverage approximation, and binary integer programming

strategy to achieve better computational efficiency.

Algorithm 1 Optimisation of OTExtSum with Beam Search Strategy
Input :D the document, B the budget of the number of extracted sentences, K the beam

width.
Output :S∗ the optimal extractive summary.

Compute the cost matrix C, and the document’s semantic distribution TFD;
Initialise m = 0, i.e. the candidate summary set S = ∅;
while # of sentences in candidate summary ≤ B ; do // Beam search

for k = 1, ..., |S| do
Generate the successor set Sk

b for Sk ∈ S;
S←

⋃
k Sk

b ;
for k = 1, ..., |S| do

Compute the semantic distribution TFSk of Sk ∈ S;
Compute the Wasserstein distance dW (TFD,TFSk |C) and the semantic coverage
g(TFD,TFSk |C));

Keep the top K candidate summaries with the highest g(TFD,TFSk |C)) and prune the
rest in S;

S∗ = argmax
Sk∈S

g(TFD,TFSk |C));

3.2.5.1 Beam Search Strategy

The Beam Search (BS) strategy with the beam width K maintains the candidate summary set

S and searches for the optimal extraction vector m∗, thus the optimal extractive summary S∗.

Algorithm 1 presents the steps to obtain the optimal summary with OTExtSum using the BS

strategy. The time complexity is O(BKn(p3log(p))).

Initially, we have m = 0, where none of the sentences are extracted. Then, each sentence

in the document D is selected as a candidate summary, which derives a set of candidate

extraction vectors corresponding to a set of candidate summaries, and its semantic coverage

score can be evaluated. The top K candidate summaries in terms of the semantic coverage



26 3 OTEXTSUM: EXTRACTIVE TEXT SUMMARISATION WITH OPTIMAL TRANSPORT

are kept in the set S and the rest are pruned. During the b-th iteration of the beam search,

by appending each possible sentence to an existing candidate summary Sk ∈ S, where the

sentence is not in Sk, a set of new candidate summaries Sk
b can be obtained. Then S is updated

by combining all these sets of new candidate summaries in regards to k:

S←
⋃
k

Sk
b . (3.9)

At the end of beam search, a set of final K summary candidates within the budget B is

obtained.

Among the K final candidates from the beam search, OTExtSum obtains the optimal extraction

vector and thus the optimal summary by choosing the candidate with the highest semantic

coverage of the document D.

Algorithm 2 Optimisation of OTExtSum with Binary Integer Programming Strategy
Input :D the document, B the budget of the number of extracted sentences, T the number

of iterations.
Output :S∗ the optimal extractive summary.

Compute the cost matrix C, Compute document’s semantic distribution TFD;
Initialise w ∈ Rn;
for iteration t ∈ [1, ..., T ] do

Convert w to probability value pr with Sigmoid function;
Convert pr to b = [bi, .., bn] by hard sampling from the Gumbel-Softmax distribution;
Construct summary’s semantic distribution TFS;
Compute the Wasserstein distance dW (TFD,TFS|C);
Compute the L1 regularisation of b;
Compute loss by weighted sum of the Wasserstein distance and the squared difference of
B and b;

Compute gradients and update w;
Compute m∗ by soft sampling Sigmoid(w) from the Gumbel-Softmax distribution;
Obtain S∗ by extracting top-B sentences with the highest mi values for i = 1, ..., n;

3.2.5.2 Binary Integer Programming Strategy

Some prior works showed that integer linear programming is an efficient solution to summar-

isation problem [73, 26].The Binary Integer Programming (BIP) strategy therefore is utilised

to search for the optimal extraction vector m∗ with T iterations. Based on the extraction

vector, we obtain the optimal extractive summary S∗. Algorithm 2 presents the optimisation
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steps to obtain the optimal summary with OTExtSum using the BIP strategy. The time

complexity is O(T (p3log(p))).

As m∗ is a multi-hot vector and is not differentiable, to make the backpropagation work, we

optimise a proxy continuous vector w ∈ Rn, which is differentiable. Then we hard sample

from the Gumbel-Softmax distribution [69] to discretise and compute a multi-hot vector b

during the iterations, and soft sample to compute m∗ at the end.

The BIP strategy optimises the following loss function w.r.t. w, which is a weighted sum of

the Wasserstein distance dW (TFD,TFS) and the L1 regularisation of b 2:

dW (TFD,TFS|C) + α|B −
n∑

i=1

bi|, (3.10)

where α denotes the weight of L1 regularisation.

3.3 Experimental Results

3.3.1 Datasets

To validate the effectiveness of the proposed OTExtSum on the documents with various

writing styles and its ability to achieve improved summarisation performance, we perform

experiments on four widely used challenging datasets collected from different domains.

Dataset Multi-News BillSum PubMed CNN/DM
Domain News Law Science News
#Sent./Doc. 80 46 102 33
B 9 7 6 3
Test Set Size 5,622 3,269 6,658 11,490

TABLE 3.1. Overview of the datasets. #Sent./Doc. denotes the average
number of sentences in the documents, B denotes the budget of number of
extracted sentences.

CNN/DailyMail (CNN/DM) [34] is the standard single-document datasets with manually-

written summaries. Multi-News [18] is a multi-document dataset which summarises multiple
2We choose L1 regularisation for sparsity [84].
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Method Multi-News
ROUGE-1 ROUGE-2 ROUGE-L

LEAD 42.3 14.2 22.4
ORACLE 45.4 20.6 28.1

Non-learning based Methods
LexRank [17] 38.3 12.7 13.2
TextRank [77] 38.4 13.1 13.5
OTExtSum-BIP (GPT2) 40.6 12.1 20.7
OTExtSum-BIP (BERT) 40.6 12.1 20.7
OTExtSum-BS (Word2Vec) 42.3 12.8 21.9
OTExtSum-BS (GPT2) 42.4 14.2 23.2
OTExtSum-BS (BERT) 43.1 13.9 22.5

Unsupervised Deep Learning based Methods
PacSum [138] 43.2 14.3 28.5
PMI [87] 40.5 13.2 19.8

Supervised Deep Learning based Method
MatchSum [139] 46.2 16.5 41.9
PEGASUS [131] 47.5 18.7 24.9

TABLE 3.2. Comparisons between our OTExtSum and the state-of-the-art
methods across different categories. The highest scores are bold, and the
second highest ones are underlined.

Method BillSum
ROUGE-1 ROUGE-2 ROUGE-L

LEAD 43.5 25.6 37.8
ORACLE 43.7 25.7 38.0

Non-learning based Methods
LSA [27] 32.6 15.7 26.3
TextRank [77] 34.4 17.8 27.8
OTExtSum-BIP (GPT2) 36.6 15.6 30.6
OTExtSum-BIP (BERT) 36.6 15.6 30.6
OTExtSum-BS (Word2Vec) 40.1 19.4 34.3
OTExtSum-BS (GPT2) 36.5 19.7 32.0
OTExtSum-BS (BERT) 37.5 19.7 32.6

Supervised Deep Learning based Method
PEGASUS [131] 57.3 40.2 45.8

TABLE 3.3. Comparisons between our OTExtSum and the state-of-the-art
methods across different categories. The highest scores are bold, and the
second highest ones are underlined.

news articles. We concatenate the multiple articles as a single input. BillSum [44] is a dataset

for law document summarization, which contains long state bill documents. PubMed [12] is a
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Method PubMed
ROUGE-1 ROUGE-2 ROUGE-L

LEAD 34.0 8.6 27.1
ORACLE 37.1 15.5 30.4

Non-learning based Methods
LSA [27] 33.9 9.9 29.7
LexRank [17] 39.2 13.9 34.6
OTExtSum-BIP (GPT2) 35.4 10.8 28.8
OTExtSum-BIP (BERT) 35.4 10.8 28.8
OTExtSum-BS (Word2Vec) 38.2 11.7 30.8
OTExtSum-BS (GPT2) 39.7 13.8 32.3
OTExtSum-BS (BERT) 39.8 13.6 32.3

Unsupervised Deep Learning based Methods
PMI [87] 37.8 13.4 29.9

Supervised Deep Learning based Method
MatchSum [139] 41.2 14.9 36.8
PEGASUS [131] 45.1 19.6 27.4

TABLE 3.4. Comparisons between our OTExtSum and the state-of-the-art
methods across different categories. The highest scores are bold, and the
second highest ones are underlined.

scientific article dataset that uses the abstract section as the ground-truth summary and the

long body section as the document. Table 3.1 shows an overview of the four datasets.

We followed [139] to set B for CNN/DM, PubMed and Multi-News, and used the average

number of sentences in the summaries to set B for BillSum since this is a common practice

in the literatures [81]. These datasets were obtained from a source, namely HuggingFace

Datasets 3. Since OTExtSum does not require training, for a fair comparison, all experimental

results are reported on the test splits of the four datasets only.

While CNN/DM contains shorter documents and summaries, the other three datasets are more

challenging because they have more extended documents and summaries, thus having a higher

chance to extract sentences containing redundant contents or having limited relevance to the

document.

3https://huggingface.co/docs/datasets/
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Method CNN/DM
ROUGE-1 ROUGE-2 ROUGE-L

LEAD 40.0 17.5 32.9
ORACLE 43.1 23.7 37.5

Non-learning based Methods
TextRank [77] 34.1 12.8 22.5
OTExtSum-BIP (GPT2) 34.1 12.6 28.1
OTExtSum-BIP (BERT) 34.1 12.6 28.1
OTExtSum-BS (Word2Vec) 32.3 10.8 25.9
OTExtSum-BS (GPT2) 33.5 12.0 26.7
OTExtSum-BS (BERT) 34.5 12.8 27.8

Unsupervised Deep Learning based Methods
PacSum [138] 40.3 17.6 24.9
PMI [87] 36.7 14.5 23.3

Supervised Deep Learning based Method
MatchSum [139] 44.2 20.6 40.4
PEGASUS [131] 44.2 21.5 41.1

TABLE 3.5. Comparisons between our OTExtSum and the state-of-the-art
methods across different categories. The highest scores are bold, and the
second highest ones are underlined.

3.3.2 Implementation Details

In terms of the pre-trained token embedding model, we compare the static embedding model

Word2Vec and the contextual embedding models BERT and GPT2. For the hyperparameter

settings of the BIP strategy, the number of iteration T was set to 200, α was set to 1, and it

used the SGD optimiser [110] with learning rate 0.1. For the BS strategy, the beam width K

was set to 5 4.

We obtained the pre-trained Word2vec (Google News 300 dimension) from GENSIM 5, and

the contextual embedding models BERT (base version) and GPT2 from HuggingFace 6. To

compute the Wasserstein distances, we adopted GENSIM, the POT 7 and GeomLoss [19]

libraries. List of stop-words was from NLTK library 8. Our experiments were run on a

4We chose the beam width in line with a common practice in the literature [74]
5https://radimrehurek.com/gensim/index.html
6https://huggingface.co
7https://pythonot.github.io
8https://www.nltk.org
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GeForce GTX 1080 GPU card. We obtain our ROUGE scores by using the pyrouge package
9.

Our OTExtSum is compared against LEAD [106], ORACLE [79], the state-of-the-art non-

learning based methods and the recent unsupervised learning-based methods. LEAD and

ORACLE are standard baselines in the summarisation task. LEAD baseline extracts the

first several sentences of a document as a summary. ORACLE baseline greedily extracts the

sentences that maximise the ROUGE-L score based on the reference summary. We compare

with the results of strong non-learning-based methods, including LSA [27], TextRank [77], and

LexRank [17]. Their results on MultiNews, BillSum, PubMed, and CNN/DM are from [18],

[44], [12], and [87] respectively. For an informative reference, we report recent unsupervised

learning-based methods, including PacSum [138], which its released model was trained on the

news domain, and PMI [87], which its released models were trained on the news and science

domains. Their results on CNN/DM are from [87]. Their results on MultiNews, BillSum,

and PubMed are evaluated on the datasets with the corresponding released models from the

same domains. And we include the results of the state-of-the-art supervised learning-based

methods with extractive approach MatchSum from [139], and those with abstractive approach

PEGASUS from [131].

3.3.3 Quantitative Analysis

The commonly used ROUGE metric [54] is also adopted for our quantitative analysis. It

evaluates the content consistency between the generated summary and the reference summary.

In detail, ROUGE-n scores measure the number of overlapping n-grams between the generated

summary and the reference summary. A ROUGE-L score considers the longest common

subsequence between the generated summary and the reference summary.

Performance Overview. The experimental results of OTExtSum on the four datasets are

listed in Table 3.2, 3.3, 3.4 , 3.5 in terms of ROUGE-1, ROUGE-2 and ROUGE-L F-scores.

We observed that the BS strategy could generally achieve better optimisation results than the

9https://pypi.org/project/pyrouge/



32 3 OTEXTSUM: EXTRACTIVE TEXT SUMMARISATION WITH OPTIMAL TRANSPORT

BIP strategy. It is in line with our design understanding that beam search can better reach the

global optimum. Whereas, the two strategies achieve similar results in CNN/DM, which could

be because CNN/DM has fewer document sentences and lower budget, thus fewer possible

solutions and easier to find the optimum.

OTExtSum outperforms the state-of-the-art non-learning based methods and is comparable to

the learning-based methods. Note that the state-of-the-art methods usually optimise at the

sentence level, whilst OTExtSum is based on the summary level OT evaluation, by which the

quality of the resulting summaries is improved.

We observed that OTExtSum obtains significantly better ROUGE scores than the baseline

methods on Multi-News, BillSum and PubMed, while the improvement is not that significant

on CNN/DM . When the summary is more extended, such as these three more challenging

datasets, the summary sentences are more likely to have redundant content. That is, even

summary-level optimisation is more difficult to achieve, our OTExtSum demonstrates higher

improvements.

OTExtSum is a non-learning based method, and training is not required. Unlike learning-

based methods, it is not limited by the training data domain and can be used for different

domains. Experimental results demonstrate generalisation ability of OTExtSum over news,

law, and science domains.

Method Multi-News
ROUGE-1 ROUGE-2 ROUGE-L

Euc. \wo s.w. 43.1 13.9 22.5
Cos. \wo s.w. 43.1 13.9 22.5
Euc. \w s.w. 43.4 14.4 23.4
Cos. \w s.w. 43.9 14.2 23.1

TABLE 3.6. Ablation studies of OTExtSum based on the BS optimisation
strategy and pre-trained BERT tokeniser.

Effects of Token Embeddings Models. OTExtSum is dependent on a pre-trained token

embedding method. Specifically, the token embedding model affects the cost matrix C and

the tokenisation, thus the frequency vector, of the document. We examine how different
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Method BillSum
ROUGE-1 ROUGE-2 ROUGE-L

Euc. \wo s.w. 37.5 19.7 32.6
Cos. \wo s.w. 39.0 19.5 33.6
Euc. \w s.w. 36.9 19.6 32.2
Cos. \w s.w. 38.1 19.6 33.0

TABLE 3.7. Ablation studies of OTExtSum based on the BS optimisation
strategy and pre-trained BERT tokeniser.

Method PubMed
ROUGE-1 ROUGE-2 ROUGE-L

Euc. \wo s.w. 39.8 13.6 32.2
Cos. \wo s.w. 39.8 13.6 32.3
Euc. \w s.w. 40.6 13.8 33.0
Cos. \w s.w. 40.6 13.6 32.9

TABLE 3.8. Ablation studies of OTExtSum based on the BS optimisation
strategy and pre-trained BERT tokeniser.

Method CNN/DM
ROUGE-1 ROUGE-2 ROUGE-L

Euc. \wo s.w. 34.5 12.8 27.8
Cos. \wo s.w. 34.4 12.4 27.7
Euc. \w s.w. 34.1 12.1 27.1
Cos. \w s.w. 34.1 12.1 27.1

TABLE 3.9. Ablation studies of OTExtSum based on the BS optimisation
strategy and pre-trained BERT tokeniser.

token embedding models would affect the performance of OTExtSum by comparing static

embedding model Word2Vec, and contextual embedding models BERT and GPT2.

The results on most of the datasets indicate that a more advanced contextual embedding model

such as BERT and GPT2 is more effective than a static embedding model Word2Vec. It is in

line with the intuitive understanding that a more representative model with adequate training

samples often approximates better token embeddings and representation. Despite that, the

performance of OTExtSum with Word2Vec is surprisingly competitive.

Effects on Stop-words. We investigate the impact of stop-words on the performance of

OTExtSum. As shown in Table 3.6, 3.7, 3.8, 3.9 (s.w. denotes stop-words), the effect varies
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slightly across the datasets, and may not much influence the ROUGE scores. It could be

because text summarisation does not generally depend on stop-words. A side benefit of

removing the stop-words is reducing the vocabulary size and thus the computation time of

OT.

Effects on Distance Measurement. We examine how the distance measurement of the cost

matrix would impact the performance of OTExtSum. As shown in Table 3.6, 3.7, 3.8, 3.9

(Euc. denotes the Euclidean distance and Cos. denotes the cosine distance), cost matrix based

on the cosine distance and the Euclidean distance usually yield similar ROUGE scores.

3.3.4 Interpretable Visualisation

OTExtSum is able to provide an interpretable visualisation of the summarisation procedure.

Figure 3.2 illustrates the transport plan heatmap, which indicates the transportation of semantic

contents between tokens in the document and its resulting summary. The higher the intensity,

the more the semantic content of a particular document token is covered by a summary token.

Purple line highlights the transportation from the document to the summary of semantic

content of token “month”, which appears in both the document and the summary. Red line

highlights how the semantic content of token “sponsor”, which appears in the document only

but not the summary, are transported to token “tour” and “extension”, which are semantically

closer and have lower transport cost, and thus achieve a minimum transportation cost in the

OT plan.

3.3.5 Qualitative Analysis

Figure 3.3 , 3.4 , 3.5, and 3.6 compare the summaries produced by OTExtSum and TextRank.

TextRank extracted sentences that are salient on their own yet redundant when combined to

form a summary. In comparison, OTExtSum is able to compose summaries that have higher

semantic coverage and less redundant content.
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FIGURE 3.2. Interpretable visualisation of the OT plan from a source docu-
ment to a resulting summary on the CNN/DM dataset.

Figure 3.3 shows a sample summary comparison on the Multi-News dataset. OTExtSum

based summary sentences are highlighted in yellow colour. TextRank based summary

sentences are underlined in red colour. TextRank extracted redundant contents, specifically

the part 1 is duplicated with the part 3 , and the part 2 is duplicated with the part 4 . The



36 3 OTEXTSUM: EXTRACTIVE TEXT SUMMARISATION WITH OPTIMAL TRANSPORT

FIGURE 3.3. A sample summary comparison on the Multi-News dataset.

summary generated by OTExtSum has ROUGE-1 F-Score of 65.21 and Semantic Coverage

Score of 0.93, while the summary generated by TextRank has ROUGE-1 F-Score of 44.87 and

Semantic Coverage Score of 0.89. Semantic Coverage Score of the ground-truth summary is

0.89.

Figure 3.4 shows a sample summary comparison on the BillSum dataset. OTExtSum based

summary sentences are highlighted in yellow colour. TextRank based summary sentences are

underlined in red colour. TextRank extracted redundant contents, specifically the part 1 ,

2 3 , 4 , and 5 are duplicated. The summary generated by OTExtSum has ROUGE-1

F-Score of 44.2 and Semantic Coverage Score of 0.92, while the summary generated by
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FIGURE 3.4. A sample summary comparison on the BillSum dataset.

TextRank has ROUGE-1 F-Score of 33.2 and Semantic Coverage Score of 0.77. Semantic

Coverage Score of the ground-truth summary is 0.84.

Figure 3.5 shows a sample summary comparison on the PubMed dataset. OTExtSum based

summary sentences are highlighted in yellow colour. TextRank based summary sentences

are underlined in red colour. TextRank extracted redundant contents, specifically the part 1

is duplicated with the part 4 , and the part 2 is duplicated with the part 3 . The summary

generated by OTExtSum has ROUGE-1 F-Score of 73.1 and Semantic Coverage Score of

0.92, while the summary generated by TextRank has ROUGE-1 F-Score of 66.0 and Semantic

Coverage Score of 0.89. Semantic Coverage Score of the ground-truth summary is 0.91.

Figure 3.6 shows a sample summary comparison on the CNN/DM dataset. OTExtSum based

summary sentences are highlighted in yellow colour. TextRank based summary sentences are

underlined in red colour. TextRank extracted redundant contents, specifically the part 1 is

duplicated with the part 2 . The summary generated by OTExtSum has ROUGE-1 F-Score

of 50.5 and Semantic Coverage Score of 0.89, while the summary generated by TextRank has

ROUGE-1 F-Score of 35.7 and Semantic Coverage Score of 0.83. Semantic Coverage Score

of the ground-truth summary is 0.80.
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FIGURE 3.5. A sample summary comparison on the PubMed dataset.

FIGURE 3.6. A sample summary comparison on the CNN/DM dataset.

3.4 Conclusion

In this chapter, we have presented OTExtSum, the first optimal transport-based optimisation

method for extractive text summarisation. It aims to identify an optimal subset of sentences for

producing a summary that achieves high semantic coverage of the document by minimising

the Wasserstein distance between the semantic distributions of the document and the summary.

It helps obtain a summary from a global perspective and provides an interpretable visualisation

of extraction results. In addition, OTExtSum does not require computationally expensive

training. The comprehensive experiments demonstrate the effectiveness of OTExtSum, which
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is generalisable over various document domains. In our future work, we will explore other

OT solvers for extractive summarisation.



CHAPTER 4

Efficient and Interpretable Compressive Text Summarisation with

Unsupervised Dual-Agent Reinforcement Learning

In this chapter, we propose an efficient and interpretable compressive summarisation method

that utilises unsupervised dual-agent reinforcement learning to optimise a summary’s semantic

coverage and fluency by simulating human judgment on summarisation quality. Our model

consists of an extractor agent and a compressor agent, and both agents have a multi-head

attentional pointer-based structure. The extractor agent first chooses salient sentences from a

document, and then the compressor agent compresses these extracted sentences by selecting

salient words to form a summary without using reference summaries to compute the summary

reward. To our best knowledge, this is the first work on unsupervised compressive summar-

isation. Experimental results on three widely used datasets (e.g., Newsroom, CNN/DM, and

XSum) show that our model achieves promising performance and a significant improvement

on Newsroom in terms of the ROUGE metric, as well as interpretability of semantic coverage

of summarisation results.

4.1 Introduction

Compressive summarisation is a recent approach which aims to select words, instead of

sentences, from an input document to form a summary, which improves the factuality and

conciseness of a summary. The formulation of compressive document summarisation is

usually a two-stage extract-then-compress approach [135, 75, 122, 13]: it first extracts

salient sentences from a document, then compresses the extracted sentences to form its

summary. Most of these methods are supervised, which require a parallel dataset with
40
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document-summary pairs to train. However, the ground-truth summaries of existing datasets

are usually abstractive-based and do not contain supervision information needed for extractive

summarisation or compressive summarisation [122, 75, 13].

FIGURE 4.1. Illustration of our proposed URLComSum.

Therefore, to address these limitations, we propose a novel unsupervised compressive sum-

marisation method with dual-agent reinforcement learning strategy to mimic human judgment,

namely URLComSum. As illustrated in Figure 4.1, URLComSum consists of two modules,

an extractor agent and a compressor agent. We model the sentence and word representations

using an efficient Bi-LSTM [28] with multi-head attention [115] to capture both the long-

range dependencies and the relationship between each word and each sentence. We use a

pointer network [117] to find the optimal subset of sentences and words to be extracted since

the Pointer Network is well-known for tackling combinatorial optimization problems. The

extractor agent uses a hierarchical multi-head attentional Bi-LSTM model for learning the

sentence representation of the input document and a pointer network for extracting the salient

sentences of a document given a length budget. To further compress these extracted sentences

all together, the compressor agent uses a multi-head attentional Bi-LSTM model for learning

the word representation and a pointer network for selecting the words to assemble a summary.

As an unsupervised method, URLComSum does not require a parallel training dataset.We

propose an unsupervised reinforcement learning training procedure to mimic human judgment:

to reward the model that achieves high summary quality in terms of semantic coverage and

language fluency. Inspired by Word Mover’s Distance [47], the semantic coverage reward is

measured by Wasserstein distance [94] between the semantic distribution of the document and
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that of the summary. The fluency reward is measured by Syntactic Log-Odds Ratio (SLOR)

[91]. SLOR is a referenceless fluency evaluation metric, which is effective in sentence

compression [42] and has better correlation to human acceptability judgments [49].

The key contributions of this chapter are:

• We propose the first unsupervised compressive summarisation method with dual-

agent reinforcement learning, namely URLComSum.

• We design an efficient and interpretable multi-head attentional pointer-based neural

network for learning the representation and for extracting salient sentences and

words.

• We propose to mimic human judgment by optimising summary quality in terms of

the semantic coverage reward, measured by Wasserstein distance, and the fluency

reward, measured by Syntactic Log-Odds Ratio (SLOR).

• Comprehensive experimental results on three widely used datasets, including CNN /

DM, XSum, Newsroom, demonstrate that URLComSum achieves great performance.

The remainder of this chapter is organised as follows. Section 4.2 describe the details

of our proposed method. Section 4.3 presents comprehensive experiments to evaluate the

effectiveness of our proposed method. Lastly, Section 4.4 concludes our study with discussions

on our future work.

4.2 Proposed Method

As shown in Figure 4.1, our proposed compressive summarisation method, namely URLCom-

Sum, consists of two components, an extractor agent and a compressor agent. Specifically,

the extractor agent selects salient sentences from a document D to form an extractive sum-

mary SE, and then the compressor agent compresses SE by selecting words to assemble a

compressive summary SC.
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4.2.1 Extractor Agent

Given a document D consisting of a sequence of M sentences {si|i = 1, ...,M}, and each

sentence si consisting of a sequence of N words {weij|j = 1, ..., N}1, the extractor agent

aims to produce an extractive summary SE by learning sentence representation and selecting

LE sentences from D. As illustrated in Figure 4.2, we design a hierarchical multi-head

attentional sequential model for learning the sentence representations of the document and

using a Pointer Network to extract sentences based on their representations.

FIGURE 4.2. Illustration of the extractor agent.

4.2.1.1 Hierarchical Sentence Representation

To model the local context of each sentence and the global context between sentences, we use

two-levels Bi-LSTMs to model this hierarchical structure, one at the word level to encode the

word sequence of each sentence, one at the sentence level to encode the sentence sequence of

the document. To model the context-dependency of the importance of words and sentences,

1We have pre-fixed the length of each sentence and each document by padding.
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we apply two levels of multi-head attention mechanism [115], one at each of the two-level

Bi-LSTMs.

Given a sentence si, we encode its words into word embeddings xei = {xeij|j = 1, ..., N} by

xeij = Enc(weij), where Enc() denotes a word embedding lookup table. Then the sequence

of word embeddings are fed into the word-level Bi-LSTM to produce an output representation

of the words lew:

lewij =
←−−→
LSTM(xeij), j ∈ [1, N ] . (4.1)

To utilize the multi-head attention mechanism to obtain aewi = {aewi1, ..., aewiN} at word level,

we define Qi = lewi , Ki = Vi = xei,

aewi = MultiHead(Qi, Ki, Vi) . (4.2)

The concatenation of lewi and aewi of the words are fed into a Bi-LSTM and the output is

concatenated to obtain the local context representation hews
i for each sentence si:

hewij =
←−−→
LSTM(

[
lewij; ae

w
ij

]
), j ∈ [1, N ] ,

hews
i = [hewi1, ...,he

w
iN ] .

(4.3)

To further model the global context between sentences, we apply a similar structure at

sentence level. hews = {hews
i |i = 1, ...,M} are fed into the sentence-level Bi-LSTM to

produce output representation of the sentences les:

lesi =
←−−→
LSTM(hews

i ), i ∈ [1,M ] . (4.4)

To utilize the multi-head attention mechanism to obtain aes = {aes1, ..., aesM} at sentence

level, we define Q = les, K = V = hews,

aes = MultiHead(Q,K, V ). (4.5)

The concatenation of the Bi-LSTM output les and the multi-head attention output aes of

the sentences are fed into a Bi-LSTM to obtain the final representations of sentences hes =

{hes1, ...,hesM}:

hesi =
←−−→
LSTM([lesi ; ae

s
i ]), i ∈ [1,M ] . (4.6)
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4.2.1.2 Sentence-Level Extraction

Similar to [11], we use an LSTM-based Pointer Network to decode the above sentence

representations hes = {hes1, ...,hesM} and extract sentences recurrently to form an extractive

summary SE = {A1, ..., Ak, ..., ALE
} with LE sentences, where Ak denotes the k-th sentence

extracted.

At the k-th time step, the pointer network receives the sentence representation of the previous

extracted sentence and has hidden state dek. It first obtains a context vector de′k by attending

to hes:
ueki = vT tanh(W1he

s
i +W2dek), i ∈ (1, ...,M) ,

aeki = softmax(ueki ), i ∈ (1, ...,M) ,

de′k =
M∑
i=1

aekihe
s
i ,

(4.7)

where v,W1,W2 are learnable parameters of the pointer network. Then it predicts the

extraction probability p(Ak) of a sentence:

dek ← [dek, de
′
k] ,

ueki = vT tanh(W1he
s
i +W2dek), i ∈ (1, ...,M) ,

p(Ak|A1, ..., Ak−1) = softmax(uek) .

(4.8)

Decoding iterates until LE sentences are selected to form SE .

4.2.2 Compressor Agent

Given an extractive summary SE consisting of a sequence of words wc = {wci|i = 1, ..., N},

the compressor agent aims to produce a compressive summary SC by selecting LC words

from SE. As illustrated in Figure 4.3, it has a multi-head attentional Bi-LSTM model to

learn the word representations. It uses a pointer network to extract words based on their

representations.
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FIGURE 4.3. Illustration of the compressor agent.

4.2.2.1 Word Representation

Given a sequence of words wc, we encode the words into word embeddings xc = {xci|i =

1, ..., N} by xci = Enc(wci). Then the sequence of word embeddings are fed into a Bi-

LSTM to produce the words’ output representation lcw:

lcwi =
←−−→
LSTM(xci), i ∈ [1, N ] . (4.9)

To utilise the multi-head attention mechanism to obtain acw = {acw1 , ..., acwN}, we define

Q = lcw, K = V = xc,

acw = MultiHead(Q,K, V ). (4.10)

The concatenation of lcw and acw of the words are fed into a Bi-LSTM to obtain the repres-

entation hcwi for each word wci:

hcwi =
←−−→
LSTM([lcwi ; ac

w
i ]), i ∈ [1, N ] . (4.11)

4.2.2.2 Word-Level Extraction

The word extractor of the compressor agent shares the same structure as that of the extractor

agent’s sentence extractor. To select the words based on the above word representations

hcw = {hcw1 , ...,hcwN}, the word extractor decodes and extracts words recurrently to produce

{B1, ..., Bk, ..., BLC
}, where Bk denotes the word extracted at the k-th time step. The selected
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words are reordered by their locations in the input document and assembled to form the

compressive summary SC.

4.2.3 Reward in Reinforcement Learning

We use the compressive summary SC to compute the reward of reinforcement learning and

denote Reward(D,SC) as Reward(D,S) for simplicity. Reward(D,S) is a weighted sum of

the semantic coverage award Rewardcov(D,S) and the fluency reward Rewardflu(S):

Reward(D,S) = wcovRewardcov(D,S)

+wfluRewardflu(S) ,
(4.12)

where wcov and wflu denote the weights of two rewards.

4.2.3.1 Semantic Coverage Reward

We compute Rewardcov with the Wasserstein distance between the corresponding semantic

distributions of the document D and the summary S, which is the minimum cost required

to transport the semantics from D to S. We denote D = {di|i = 1, ..., N} to represent a

document, where di indicates the count of the i-th token (i.e., word or phrase in a vocabulary

of size N ). Similarly, for a summary S = {sj|j = 1, ..., N}, sj is respect to the count of the

j-th token . The semantic distribution of a document is characterized in terms of normalised

term frequency without the stopwords. The term frequency of the i-th token in the document

D and the j-th token in the summary S are denoted as TFD(i) and TFS(j), respectively.

By defining TFD = {TFD(i)} ∈ RN and TFS = {TFS(j)} ∈ RN , we have the semantic

distributions within D and S respectively.

The transportation cost matrix C is obtained by measuring the semantic similarity between

each of the tokens. Given a pre-trained tokeniser and token embedding model with N tokens,

define vi to represent the feature embedding of the i-th token. Then the transport cost cij from

the i-th to the j-th token is computed based on the cosine similarity: cij = 1− <vi,vj>

∥vi∥2∥vj∥2
. An

optimal transport plan T∗ = {t∗i,j} ∈ RN×N in pursuit of minimizing the transportation cost
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can be obtained by solving the optimal transportation and resources allocation optimization

problem [94]. Note that the transport plan can be used to interpret the transportation of tokens

from document to summary, which brings interpretability to our URLComSum method.

Wasserstein distance measuring the distance between the two semantic distributions TFD

and TFS with the optimal transport plan is computed by: dW (TFD,TFS|C) =
∑

i,j t
∗
ijcij .

Rewardcov(D,S) can be further defined as:

Rewardcov(D,S) = 1− dW (TFD,TFS|C) . (4.13)

4.2.3.2 Fluency Reward

We utilise Syntactic Log-Odds Ratio (SLOR) [91] to measure Rewardflu(S), which is defined

as: Rewardflu(S) =
1
|S|(log(PLM(S))− log(PU(S))) , where PLM(S) denotes the probability

of the summary assigned by a pre-trained language model LM , pU(S) =
∏

t∈S P (t) denotes

the unigram probability for rare word adjustment, and |S| denotes the sentence length.

We use the Self-Critical Sequence Training (SCST) method [103], since this training algorithm

has demonstrated promising results in text summarisation [92, 48]. For a given input document,

the model produces two separate output summaries: the sampled summary Ss, obtained by

sampling the next pointer ti from the probability distribution at each time step i, and the

baseline summary Ŝ, obtained by always picking the most likely next pointer t at each i. The

training objective is to minimise the following loss:

Loss = −(Reward(D,Ss)− Reward(D, Ŝ))

· 1
N

N∑
i=1

log p(tsi |ts1, ..., tsi−1,D) ,
(4.14)

where N denotes the length of the pointer sequence, which is the number of extracted

sentences for the extractor agent and the number of extracted words for the compressor agent.

Minimising the loss is equivalent to maximising the conditional likelihood of Ss if the sampled

summary Ss outperforms the baseline summary Ŝ, i.e. Reward(D,Ss)− Reward(D, Ŝ) > 0,

thus increasing the expected reward of the model.
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4.3 Experimental Results

4.3.1 Experimental Settings

We conducted comprehensive experiments on three widely used datasets: Newsroom [29],

CNN/DailyMail (CNN/DM) [34], and XSum [80]. We set the LSTM hidden size to 150 and

the number of recurrent layers to 3. We performed hyperparameter searching for wcov and wflu

and decided to set wcov = 1 , wflu = 2 in all our experiments since it provides more balanced

results across the datasets. We trained the URLComSum with AdamW [63] with learning

rate 0.01 with a batch size of 3. We obtained the word embedding from the pre-trained GloVe

[93]. We used BERT for the pre-trained embedding models used for computing semantic

coverage reward. We chose GPT2 for the trained language model used for computing the

fluency reward due to strong representation capacity.

As shown in Table 4.1, we followed [75] to set LE for Newsroom and [139] to set LE for

CNN/DM and XSum. We also followed their protocols to set LC by matching the average

number of words in summaries.

Dataset Newsroom CNN/DM XSum
#Sentences in Doc. 27 39 19
#Tokens in Doc. 659 766 367
LE 2 3 2
LC 26 58 24
Train 995,041 287,113 204,045
Test 108,862 11,490 11,334

TABLE 4.1. Overview of the three datasets. #Sentences in Doc. and #Tokens
in Doc. denote the average number of sentences and words in the documents re-
spectively. LE denotes the number of sentences to be selected by the extractor
agent. LC denotes the number of words to be selected by the compressor agent.
Train and Test denote the size of train and test sets.

We compare our model with existing compressive methods which are all supervised, including

LATENTCOM [135], EXCONSUMM [75], JECS [122], CUPS [13]. Since our method is

unsupervised, we also compare it with unsupervised extractive and abstractive methods,

including TextRank [77], PacSum [138], PMI [87], and SumLoop [48]. To better evaluate
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Method ROUGE-1 ROUGE-2 ROUGE-L
LEAD 33.9 23.2 30.7
LEAD-WORD 34.9 23.1 30.7

Supervised Methods
EXCONSUMM (Ext.)* 31.9 16.3 26.9
EXCONSUMM (Ext.+Com.)* 25.5 11.0 21.1

Unsupervised Methods
SumLoop (Abs.) 27.0 9.6 26.4
TextRank (Ext.) 24.5 10.1 20.1
URLComSum (Ext.) 33.9 23.2 30.0
URLComSum (Ext.+Com.) 34.6 22.9 30.5

TABLE 4.2. Comparisons on the Newsroom test set. The symbol * indicates
that the model is not directly comparable to ours as it is based on a subset (the
"Mixed" ) of the dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L
LEAD 40.0 17.5 32.9
LEAD-WORD 39.7 16.6 32.5

Supervised Methods
LATENTCOM (Ext.) 41.1 18.8 37.5
LATENTCOM (Ext.+Com.) 36.7 15.4 34.3
JECS (Ext.) 40.7 18.0 36.8
JECS (Ext.+Com.) 41.7 18.5 37.9
EXCONSUMM (Ext.) 41.7 18.6 37.8
EXCONSUMM (Ext.+Com.) 40.9 18.0 37.4
CUPS (Ext.) 43.7 20.6 40.0
CUPS (Ext.+Com.) 44.0 20.6 40.4

Unsupervised Methods
SumLoop (Abs.) 37.7 14.8 34.7
TextRank (Ext.) 34.1 12.8 22.5
PacSum (Ext.) 40.3 17.6 24.9
PMI (Ext.) 36.7 14.5 23.3
URLComSum (Ext.) 40.0 17.5 32.9
URLComSum (Ext.+Com.) 39.3 16.0 32.2

TABLE 4.3. Comparisons between our URLComSum and the state-of-the-art
methods on the CNN/DM test set. (Ext.), (Abs.), and (Com.) denote the
method is extractive, abstractive, and compressive respectively.

compressive methods, we followed a similar concept as LEAD baseline [106] and created

LEAD-WORD baseline which extracts the first several words of a document as a summary.

The commonly used ROUGE metric [54] is adopted.
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Method ROUGE-1 ROUGE-2 ROUGE-L
LEAD 19.4 2.4 12.9
LEAD-WORD 18.3 1.9 12.8

Supervised Methods
CUPS (Ext.) 24.2 5.0 18.3
CUPS (Ext.+Com.) 26.0 5.4 19.9

Unsupervised Methods
TextRank (Ext.) 19.0 3.1 12.6
PacSum (Ext.) 19.4 2.7 12.4
PMI (Ext.) 19.1 3.2 12.5
URLComSum (Ext.) 19.4 2.4 12.9
URLComSum (Ext.+Com.) 18.0 1.8 12.7

TABLE 4.4. Comparisons between our URLComSum and the state-of-the-art
methods on the XSum test set in terms of ROUGE F-score. URLComSum
(Ext.) denotes the extractive summary produced by our extractor agent. URL-
ComSum (Ext.+Com.) denotes the compressive summary produced further by
our compressor agent.

4.3.2 Quantitative Analysis

The experimental results of URLComSum on different datasets are shown in Table 4.2, Table

4.3 and Table 4.4 in terms of ROUGE-1, ROUGE-2 and ROUGE-L F-scores. (Ext.), (Abs.),

and (Com.) denote that the method is extractive, abstractive, and compressive, respectively.

Note that on the three datasets, LEAD and LEAD-WORD baseline are considered strong

baselines in the literature and sometimes perform better than the state-of-the-art supervised

and unsupervised models. As also discussed in [106, 87], it could be due to the Inverted

Pyramid writing structure [97] of news articles, in which important information is often

located at the beginning of an article and a paragraph.

Our URLComSum method significantly outperforms all the unsupervised and supervised

ones on Newsroom. This demonstrates the effectiveness of our proposed method. Note

that, unlike supervised EXCONSUMM, our reward strategy contributes to performance

improvement when the compressor agent is utilised. For example, in terms of ROUGE-L,

EXCONSUMM(Ext.+Com.) does not outperform EXCONSUMM(Ext.), while URLCom-

Sum(Ext.+Com.) outperforms URLComSum(Ext.). Similarly, our URLComSum method

achieves the best performance among all the unsupervised methods on XSum, in terms of
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ROUGE-1 and -L. URLComSum underperforms in ROUGE-2, which may be due to the

trade-off between informativeness and fluency. The improvement on Newsroom is greater

than those on CNN/DM and XSum, which could be because the larger size of Newsroom is

more helpful for training our model.

Our URLComSum method achieves comparable performance with other unsupervised meth-

ods on CNN/DM. Note that URLComSum does not explicitly take position information into

account while some extractive methods take advantage of the lead bias of CNN/DM, such as

PacSum and LEAD. Nevertheless, we observe that URLComSum(Ext.) achieves the same

result as LEAD . Even though URLComSum is unsupervised, eventually the extractor agent

learns to select the first few sentences of the documents, which follows the principle of the

aforementioned Inverted Pyramid writing structure.

4.3.3 Ablation Studies

Effect of Compression. We observed that the extractive and compressive methods usually

obtain better results than the abstractive ones in terms of ROUGE scores on CNN/DM

and Newsroom, and vice versa on XSum. It may be that CNN/DM and Newsroom contain

summaries that are usually more extractive, whereas XSum’s summaries are highly abstractive.

We noticed that URLComSum(Ext.+Com.) generally achieves higher ROUGE-1 and -L

scores than its extractive version on Newsroom. Meanwhile, on CNN/DM and XSum, the

compressive version has slightly lower ROUGE scores than the extractive version. We

observe similar behaviour in the literature of compressive summarisation, which may be that

the sentences of news articles have dense information and compression does not help much to

further condense the content.

Effect of Transformer. Note that we investigated the popular transformer model [115] in our

proposed framework to replace Bi-LSTM for learning the sentence and word representations.

However, we noticed the transformer-based agents do not perform as well as the Bi-LSTM-

based ones while training from scratch with the same training procedure. The difficulties of

training a transformer model have also been discussed in [96, 58]. Besides, the commonly
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used pre-trained transformer models, such as BERT [14] and BART [50], require high

computational resources and usually use subword-based tokenizers. They are not suitable for

URLComSum since our compressor agent points to words instead of subwords. Therefore, at

this stage Bi-LSTM is a simpler and more efficient choice. Nevertheless, the transformer is a

module that can be included in our framework and is worth further investigation in the future.

Comparison of Extraction, Abstraction and Compression Approaches. We observed that

the extraction and compressive approaches usually obtain better results than the abstractive

in terms of ROUGE scores on CNN/DM and Newsroom, and vice versa on XSum. It may

be because CNN/DM and Newsroom contain summaries that are usually more extractive,

whereas XSum’s summaries are highly abstractive. Since the ROUGE metric reflects lexical

matching only and overlooks the linguistic quality and factuality of the summary, it is difficult

to conclude the superiority of one approach over the others solely based on the ROUGE

scores. Automatic linguistic quality and factuality metrics would be essential to provide

further insights and more meaningful comparisons.

4.3.4 Qualitative Analysis

In Figure 4.4, 4.5, 4.6, summaries produced by URLComSum are shown together with the

reference summaries of the sample documents in the CNN/DM, XSum, and Newsroom

datasets. This demonstrates that our proposed URLComSum method is able to identify salient

sentences and words and produce reasonably fluent summaries even without supervision

information.

The following shows the sample summaries generated by URLComSum on the CNN/DM,

XSum, and Newsroom datasets. Sentences extracted by the URLComSum extractor agent are

highlighted. Words selected by the URLComSum compressor agent are underlined in red.

Our unsupervised method URLComSum can identify salient sentences and words to produce

a summary with reasonable semantic coverage and fluency.

Figure 4.4 shows a sample summary produced by URLComSum on the CNN/DM dataset. The

summary generated by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores
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of 68.8, 52.7, and 62.4 respectively, with semantic coverage reward 0.76 and fluency reward

0.64, while the reference summary has semantic coverage reward 0.80 and fluency reward

0.62.

FIGURE 4.4. A sample summary produced by URLComSum on the CNN/DM
dataset.

Figure 4.5 shows a sample summary produced by URLComSum on the XSum dataset. The

summary generated by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-Scores

of 38.1, 20.0, and 33.3 respectively, with semantic coverage reward 0.77 and fluency reward

0.56, while the reference summary has semantic coverage reward 0.73 and fluency reward

0.59.

FIGURE 4.5. A sample summary produced by URLComSum on the XSum
dataset.

Figure 4.6 shows a sample summary produced by URLComSum on the Newsroom dataset.

The summary generated by URLComSum has ROUGE-1, ROUGE-2, and ROUGE-L F-

Scores of 76.6, 62.2, and 76.6 respectively, with semantic coverage reward 0.79 and fluency
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reward 0.61, while the reference summary has semantic coverage reward 0.76 and fluency

reward 0.65.

FIGURE 4.6. A sample summary produced by URLComSum on the News-
room dataset.

4.3.5 Interpretable Visualisation of Semantic Coverage

URLComSum is able to provide an interpretable visualisation of the semantic coverage

on the summarisation results through the transportation matrix. Figure 4.7 illustrates the

transport plan heatmap, which associated with a resulting summary is illustrated. A heatmap

indicates the transportation of semantic contents between tokens in the document and its

resulting summary. The higher the intensity, the more the semantic content of a particular

document token is covered by a summary token. Red line highlights the transportation from

the document to the summary of semantic content of token “country”, which appears in both

the document and the summary. Purple line highlights how the semantic content of token

“debt”, which appears in the document only but not the summary, are transported to token

“bankruptcy” and “loans”, which are semantically closer and have lower transport cost, and

thus achieve a minimum transportation cost in the OT plan.

4.4 Conclusion

In this chapter, we have presented URLComSum, the first unsupervised and an efficient

method for compressive text summarisation. Our model consists of dual agents: an extractor

agent and a compressor agent. The extractor agent first chooses salient sentences from a
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FIGURE 4.7. Interpretable visualisation of the OT plan.

document, and the compressor agent further select salient words from these extracted sen-

tences to form a summary. To achieve unsupervised training of the extractor and compressor

agents, we devise a reinforcement learning strategy to simulate human judgement on summary

quality and optimize the summary’s semantic coverage and fluency reward. Comprehensive

experiments on three widely used benchmark datasets demonstrate the effectiveness of our

proposed URLComSum and the great potential of unsupervised compressive summarisation.

Our method provides interpretability of semantic coverage of summarisation results.



CHAPTER 5

TLDW: Extreme Multimodal Summarisation of News Videos

In this chapter, we introduce a new task, eXtreme Multimodal Summarisation with Multimodal

Output (XMSMO) for the scenario of TL;DW - Too Long; Didn’t Watch, akin to TL;DR.

XMSMO aims to summarise a video-document pair into a summary with an extremely

short length, which consists of one cover frame as the visual summary and one sentence

as the textual summary. We propose a novel unsupervised Hierarchical Optimal Transport

Network (HOT-Net) consisting of three components: hierarchical multimodal encoders,

hierarchical multimodal fusion decoders, and optimal transport solvers. Our method is trained,

without using reference summaries, by optimising the visual and textual coverage from

the perspectives of the distance between the semantic distributions under optimal transport

plans. To facilitate the study on this task, we collect a large-scale dataset XMSMO-News

by harvesting 4,891 video-document pairs. The experimental results show that our method

achieves promising performance in terms of ROUGE and IoU metrics.

5.1 Introduction

Most of the existing MSMO methods are designed for short visual inputs, such as short

videos and multiple images, without considering the summary length. Given the increasing

pace of producing multimedia data and the subsequent challenge in keeping up with the

explosive growth of such rich content, these existing methods may be sub-optimal to address

the imminent issue of information overload of multimedia data.

In this chapter, we introduce a new task, eXtreme Multimodal Summarisation with Multimodal

Output (XMSMO), for the scenario TLDW which stands for Too Long; Didn’t Watch). As
57
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FIGURE 5.1. Illustration of our newly proposed task XMSMO.

shown in Figure 5.1, XMSMO aims to summarise a pair of a video and its corresponding

document into a multimodal summary with an extremely short length. That is, an extreme

multimodal summary consists of one cover frame as the visual summary and one sentence as

the textual summary. To solve this new task, we propose a novel unsupervised Hierarchical

Optimal Transport Network (HOT-Net) architecture including three components, the hier-

archical multimodal encoders, the hierarchical multimodal (fusion-based) decoders and the

optimal transport solvers. The hierarchial structure could improve abstraction at multiple

levels and multiple modalities and integration across these levels and modalities.

Specifically, the hierarchical visual encoder formulates the representations of a video from

three levels including frame-level, scene-level and video-level; the hierarchical textual en-

coder formulates the representations of a document from three-levels as well: word-level,

sentence-level and document-level. Then, the hierarchical decoder formulates the cross-modal

representations in a local-global manner and evaluates candidate cover frames and candidate

words, which are used to form a visual summary and a compressive textual summary, respect-

ively. Note that a compressive textual summary offers a balance between the conciseness issue

of extractive summarisation and the factual hallucination issue of abstractive summarisation.
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Finally, our optimal transport-based unsupervised training strategy is devised to mimic human

judgment on the quality of an extreme multimodal summary in terms of visual and textual

coverage. The coverage is measured by a Wasserstein distance with an optimal transport

plan measuring the distance between the semantic distributions of the summary and the

original content. Wasserstein distance is used to take the semantic relationship between tokens

into account and bring interpretability into the summarisation process. In addition, textual

fluency and cross-modal similarity are further considered, which can be important to obtain a

high-quality multimodal summary.

Additionally, to facilitate the study on this new task XMSMO and evaluate our proposed

HOT-Net, we built the first dataset of such kind, namely XMSMO-News, by harvesting 4,891

video-document pairs as input and cover frame-title pairs as multimodal summary output

from the British Broadcasting Corporation (BBC) News Youtube channel from year 2013 to

2021.

In summary, the key contributions of this chapter are:

• We introduce a new task, eXtreme Multimodal Summarisation with Multiple Output

(XMSMO) as TLDW, which stands for Too Long; Didn’t Watch. It aims to summarise

a video-document pair into an extreme multimodal summary (i.e., one cover frame

as the visual summary and one sentence as the textual summary).

• We propose a novel unsupervised Hierarchical Optimal Transport Network (HOT-

Net). The hierarchical encoding and decoding are conducted across both the visual

and textual modalities, which improve abstraction at multiple levels and multiple

modalities and integration across these levels and modalities. Optimal transport

solvers are introduced to guide the summaries to maximise their semantic coverage.

• We devise a new unsupervised training strategy that mimics the human judgment of

a multimodal summary’s quality by minimising the quartet loss of visual coverage,

textual coverage, textual fluency, and cross-modal consistency.

• We constructed a new large-scale dataset, XMSMO-News, for the research com-

munity to facilitate research in this new direction. Experimental results on this
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dataset demonstrate that our method outperforms other baselines in terms of ROUGE

and IoU metrics.

The remainder of this chapter is organised as follows. Section 5.2 describe the details

of our proposed method. Section 5.3 presents comprehensive experiments to evaluate the

effectiveness of our proposed method. Lastly, Section 5.4 concludes our study with discussions

on our future work.

5.2 Proposed Method

FIGURE 5.2. Illustration of the hierarchical multimodal encoder and hier-
archical multimodal fusion decoder of our unsupervised Hierarchical Optimal
Transport Network (HOT-Net) proposed for XMSMO.

As shown in Figure 5.2, our proposed eXtreme Multimodal Summarisation method, namely

unsupervised Hierarchical Optimal Transport Network (HOT-Net), consists of three com-

ponents, the hierarchical multimodal encoders, the hierarchical multimodal (fusion-based)

decoders and the optimal transport solvers. Specifically, the hierarchical visual encoder formu-

lates frame-level, scene-level and video-level representations of a video V. The hierarchical

textual encoder formulates word-level, sentence-level and document-level representations of a

document D. Then, the hierarchical visual decoder selects an optimal frame f∗ as an extreme

visual summary, and the hierarchical textual decoder produces an extreme textual summary
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s∗ based on the cross-modal guidance. Finally, the optimal transport solvers conduct unsu-

pervised learning to optimise the encoders and the decoders in pursuit of the best semantic

coverage of the obtained summaries.

5.2.1 Hierarchical Multimodal Encoders

5.2.1.1 Hierarchical Visual Encoder

Given an input video V, it can be represented as a sequence of T frames, i.e. V = {xframe
i |i =

1, ...T}. By grouping the consecutive frames with similar semantics, this input video V can

be segmented into a sequence of T ′ scenes, i.e. V = {xscene
j |j = 1, ..., T ′}, where xscene

j

consists of the video frames from the ij0-th to the ij1-th frame, where j0 indicates the start

index of the frame and j1 indicates the end index of the frame for the j-th scene in the video.

The hierarchical visual encoder learns the scene-level and video-level representations based

on xframe
i and xscene

j , respectively.

To characterize a video frame xframe
i , a pre-trained neural network can be introduced. The CLIP

model [101] is adopted in this study since it is the state-of-the-art multi-modal embedding

model. For the sake of convenience, we use the the symbol xframe
i to represent this pre-trained

feature of the i-th frame. To further model the scene-level features, a pooling method is

introduced, which is denoted as a function gscene. In detail, for the j-th scene, its representation

xscene
j can be obtained by observing its associated frame-level features xframe

i , i = ij0 , ..., ij1

as:

xscene
j = gscene({xframe

ij0
, ...,xframe

ij1
}). (5.1)

Particularly, a generalized pooling operator (GPO) [8] is adopted as the pooling method in this

study, since it is shown to be an effective and efficient pooling strategy for different features.

With the scene-level features, a pooled global (i.e., video-level) representation can be derived

as:

xvideo = gvideo({xscene
1 , ...,xscene

T ′ }), (5.2)

where gvideo is a video-level pooling function based on a GPO operator.
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5.2.1.2 Hierarchical Textual Encoder

An input document D can be viewed as a sequence consisting of U words as {xword
m |m =

1, ..., U}, or a sequence of U ′ sentences {xsentence
n |n = 1, ..., U ′}. The n-th sentence consists

of consecutive words in D from the mn0-th to the mn,1-th word. Similar to the visual encoder,

a hierarchical textual encoder is introduced to learn the sentence-level and the document-level

representation.

A pre-trained CLIP model is introduced to formulate the word-level features, which is denoted

as xword
m for the m-th word. Next, a pooling mechanism gsentence is adopted to formulate the

sentence-level features. In detail, the n-th sentence-level features can be computed as:

xsentence
n = gsentence({xword

mn0
, ...,xword

mn,1
}). (5.3)

Finally, the global representation of the document D can be derived based on the sentence-

level features:

xdocument = gdocument({xsentence
1 , ...,xsentence

U ′ }), (5.4)

where gdocument is a document-level pooling function based on GPO.

5.2.2 Hierarchical Multimodal Fusion

To attend and fuse the representations from the visual and textual modalities, we adopt a

graph-based attention mechanism (GAT) [116]. This multimodal fusion formulation helps

easily extend the attention layer to future additional modalities, such as an audio modality.

Each modality feature can be treated as a vertex feature of a graph. The relationships between

modalities are formulated by graph convolution to attend over the other modalities, which

then updates the representations of each modality. Particularly, a hierarchical local, which

focuses between scene and sentence levels, and global, which focuses between video and

document levels, observations are introduced by a graph fusion strategy.

For local multimodal fusion, the representations of the scenes xscene = {xscene
1 , ...,xscene

T ′ }

and sentences xsentence = {xsentence
1 , ...,xsentence

U ′ } are fed into graph fusion modules f scene
local and
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f sentence
local . The resulted representation, which can be viewed as an information exchange

between modalities, are fed into an average pooling operator gavg to obtain the local mul-

timodal context representations ẋscene
j and ẋsentence

n :

ẋscene
j =gavg([f scene

local (x
scene
j ;xsentence

1 ), ...,

f scene
local (x

scene
j ;xsentence

U ′ )]),
(5.5)

ẋsentence
n =gavg([f sentence

local (xsentence
n ;xscene

1 ), ...,

f sentence
local (xsentence

n ;xscene
T ′ )]).

(5.6)

For global multimodal fusion, the global representations of the document xdocument and video

xvideo are fed into a graph fusion module fglobal:

ẋ = gavg(fglobal(
[
xvideo;xdocument])). (5.7)

5.2.3 Hierarchical Multimodal Decoders

5.2.3.1 Visual Decoder

Our visual decoder consists of three stages: 1) scene-guided frame decoding, 2) video-guided

frame decoding, and 3) cross-modality-guided frame decoding. It aims to evaluate the

probability of a particular frame being a cover frame.

To produce a scene-aware decoding outcome of evaluating each frame, a scene-guided visual

decoder hscene derives a latent decoding yscene
j for frames from ij0 to ij1 , j = 1, ..., T ′, as

follows:
yscene
j = {yscene-frame

ij0
, ...,yscene-frame

ij1
}

= hscene({xframe
ij0

, ...,xframe
ij1
}|ẋscene

j ),
(5.8)

where hscene is a bi-directional GRU [6] and ẋscene
j is a multimodal scene guidance, which can

be viewed as a prior knowledge. Next, to produce a video-guided frame decoding outcome,

we have:
yvideo = {yvideo-frame

1 , ...,yvideo-frame
T }

= hvideo({xframe
ij0

, ...,xframe
ij1
}|xvideo),

(5.9)
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where hvideo is a bi-directional GRU and xvideo is a unimodal video guidance as a prior

knowledge. Finally, to produce a global multimodal context-aware decoding, we adopt a

Bi-GRU decoder ḣvideo with the guidance of the cross-modal embedding ẋ:

ẏvideo = {ẏvideo-frame
1 , ..., ẏvideo-frame

T }

= ḣvideo(yvideo-frame
1 , ...,yvideo-frame

T |ẋ).
(5.10)

To this end, the optimal frame f∗ is obtained with a frame-wise linear layer activated with a

softmax function:

f∗ = argmaxt(Linear(ẏvideo)). (5.11)

5.2.3.2 Textual Decoder

Similar to the visual decoder, the textual decoder also consists of three stages: 1) sentenced-

guided word decoding, 2) document-guided word decoding, and 3) cross-modality-guided

word decoding. It aims to evaluate the probability of a word being selected in a compressive

summary.

To produce a sentence-aware decoding outcome, a sentence decoder hsentence derives a latent

decoding ysentence
n for words from mn0 to mn,1, n = 1, ..., U ′, where n0 indicates the start

index of the word and n1 indicates the end index of the word for the n-th sentence in the

document, as follows:

ysentence
n = {ysentence-word

mn0
, ...,ysentence-word

mn1
}

= hsentence({xword
mn0

, ...,xword
mn,1
}|ẋsentence

n ),
(5.12)

where hsentence is a bi-directional GRU and ẋsentence
n is used as a prior knowledge for the

multimodal sentence guidance. Then, to produce a document-level textual decoding, we have:

ydocument = {ydocument-word
1 , ...,ydocument-word

U }

= hdocument({xword
mn0

, ...,xword
mn,1
}|xdocument),

(5.13)

where hdocument is a bi-directional GRU and xdocument
n is a unimodal document guidance. Finally,

to produce a global cross-modal context-aware decoding for each word, a Bi-GRU decoder
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ḣdocument is adopted with the guidance of the global multimodal embedding ẋ:

ẏdocument = {ẏdocument-word
1 , ..., ẏdocument-word

U }

= ḣdocument(ydocument-word
1 , ...,ydocument-word

U |ẋ).
(5.14)

As a result, the optimal compressive summary s∗ with length k is obtained by:

s∗ = topk(Linear(ẏdocument)). (5.15)

Note that the selected k words are ranked in line with their scores obtained from the linear

layer with a softmax activation. Thus, the sentence s∗ can be constructed with these words

and their orders.

FIGURE 5.3. Optimal transport solver of HOT-Net for our unsupervised
training strategy.

5.2.4 Optimal Transport-Guided Semantic Coverage

Our method is trained without reference summaries by mimicking the human judgment on the

quality of a multimodal summary, which minimises a quartet loss of visual coverage, textual

coverage, textual fluency, and cross-modal similarity. An overview of the training strategy is

shown in Figure 5.3.
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5.2.4.1 Optimal Transport-Guided Document Coverage

Intuitively, a high-quality summary is supposed to be close to the original document regarding

their semantic distributions. Wasserstein distance is used to take the semantic relationship

between tokens into account and bring interpretability into the summarisation process. We

measure the Wasserstein distance [47] Ldocument between the document D and the selected

sentence s∗. It is the minimal cost required to transport the semantics from s∗ to D, measuring

the semantic coverage of s∗ on D.

Given a dictionary, the number of the α-th token (i.e, a word in a dictionary) occurred in D

can be counted as PD(α). As a result, the semantic distribution TFD of the document D can

be defined with the normalized term frequency of each token. In detail, for the α-th element

of TFD, we have:

TFD(α) =
PD(α)∑
α′ PD(α′)

. (5.16)

The semantic distribution TFs∗ of the selected sentence s∗ can be derived in a similar manner.

The normalized term frequency of the α-th token in s∗ is:

TFs∗(α) =
Ps∗(α)∑
α′ Ps∗(α′)

. (5.17)

Note that TFD and TFs∗ have an equal total token quantities of 1 and can be completely

transported from one to the other mathematically.

A transportation cost matrix C = (cαα′) is introduced to measure the semantic similarity

between the tokens. Given a pre-trained tokeniser and token embedding model, define uα

to represent the feature embedding of the α-th token. The transport cost cαα′ from the α-th

token to the α′-th one is computed based on the cosine similarity:

cαα′ = 1− < uα,uα′ >

∥uα∥2 ∥utα′∥2
. (5.18)

Note that the method to obtain token representations uα follows the same method that we

formulate for word representations xword
(·) by a pre-trained model.
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Then, an optimal transport plan matrix T∗(D, s∗) = (t∗αα′(D, s∗)) in pursuit of minimizing

the transportation cost can be obtained by solving the following optimization problem:

T∗(D, s∗) = argmin
T(D,s∗)

∑
α,α′

tαα′(D, s∗)cαα,

s.t.
∑
α′

tαα′(D, s∗) = TFD(α),∑
α=1

tαα′(D, s∗)tDoc
ij = TFs∗(α

′),

tαα′(D, s∗) ≥ 0,

∀α, α′.

(5.19)

To this end, the Wasserstein distance can be defined as:

Ldocument =
∑
α,α′

t∗αα′(D, s∗)cαα′ , (5.20)

which is associated with the optimal transport plan. By minimizing Ldocument, a high-quality

summary sentence is expected to be obtained.

5.2.4.2 Optimal Transport-Guided Video Coverage

In parallel, a good cover frame is supposed to be close to the original video regarding their

perceptual similarity. We measure the loss of visual coverage by computing the Wasserstein

distance Lvideo between the corresponding colour signatures of the mean of video frames in

V and the cover frame f∗. It can be viewed as the minimal cost required to transport the

semantics from f∗ to V.

By denoting f̄ as the mean of the video frames in V, we define r̄ and r∗ as the colour signatures

of f̄ and f∗, respectively. In detail, we have:

r̄ = {(µ̄1, τ̄1), ..., (µ̄n̄, τ̄n̄)} ,

r∗ = {(µ∗
1, τ

∗
1 ), ..., (µ

∗
m∗ , τ ∗m∗)} ,

(5.21)

where µ̄i and µ∗
j are the points in the colour space, and τ̄i and τ ∗j are the corresponding weights

of the points.



68 5 TLDW: EXTREME MULTIMODAL SUMMARISATION OF NEWS VIDEOS

An optimal transport plan matrix T∗(V, f∗) = (t∗ββ′(V, f∗)) ∈ Rm̄×m∗ in pursuit of min-

imizing the transportation cost between r̄ and r∗ can be obtained by solving the following

optimization problem:

T∗(V, f∗) = argmin
T(V,f∗)

∑
β,β′

tββ′(V, f∗)
∥∥µ̄β − µ∗

β′

∥∥ ,

s.t.
∑
β′

tββ′(V, f∗) = τ̄β,

∑
β

tββ′(V, f∗) = τ ∗β′ ,

tββ′(V, f∗) ≥ 0,

∀β, β′ ,

(5.22)

where T(V, f∗) is a transport plan. Then, a Wasserstein distance measuring the distance

between the two colour signatures can be derived as:

Lvideo = t∗ββ′(V, f∗)
∥∥µ̄β − µ∗

β′

∥∥ , (5.23)

which is associated with the optimal transport plan. By minimizing Lvideo, a high-quality

summary frame is expected to be the cover frame.

5.2.4.3 Textual Fluency

Inspired by [48], we adopt a pre-trained language model PLM to measure the fluency of the

textual summary LFluency. The loss can be defined as:

LFluency = PLM(s∗), (5.24)

where PLM computes the probability of s∗ being a sentence.

5.2.4.4 Cross-modal Consistency

The semantic consistency should exist between the cover frame and the one-sentence summary.

To formulate this, we measure the cross-modal similarity between the two embeddings of the

cover frame f∗ and the one-sentence summary s∗. The loss can be defined based on a cosine
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similarity:

Lcross-modal = 1− cos(f∗, s∗). (5.25)

In summary, four losses have been obtained to measure the summarisation quality: Ldocument,

Lvideo, Lfluency and Lcross-modal. To this end, a loss function to optimize the proposed architecture

can be formulated as follows:

L = λdLdocument + λvLvideo

+λfLfluency + λcLcross-modal,
(5.26)

where λd, λv, λf and λc are the hyper-parameters controlling the weights of each loss term.

5.3 Experimental Results

5.3.1 Dataset

To the best of our knowledge, there is no existing large-scale dataset for XMSMO. Hence,

we collected the first large-scale dataset of such kind, XMSMO-News, from the British

Broadcasting Corporation (BBC) News Youtube channel 1. We used the Pytube library to

collect 4,891 quartets of video, document, cover frame, and one-sentence summary from

the year 2013 to 2021. We used the video description as the document and video title as the

one-sentence summary, as these visual and textual summaries were professionally created

by the BBC. 2 We then split the quartets randomly into the train, validation, and test sets at a

ratio 90:5:5. To facilitate future research that may utilise audio modality, we also collected

the transcript of the video, which is automatically generated by Youtube. Six samples from

XMSMO-News are shown in Figure 5.4. It shows that our dataset covers a wide variety of

topics.

Table 5.1 shows the statistics and the comparison of our XMSMO-News dataset with other

benchmarks on multimodal summarisation with multimodal output. The major differences

1https://www.youtube.com/c/BBCNews
2We removed the trailing promotional text from the video title and video description.
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FIGURE 5.4. Some samples in our XMSMO-News dataset.

are regarding the input and output lengths: XMSMO-News has an average duration of 345.5

seconds, whereas VMSMO [52] has 60 seconds only.

Table 5.2 provides an analysis showing that the textual summary of XMSMO-News dataset is

more challenging than that of MSMO dataset. We report the percentage of novel n-grams in

the target gold summaries that do not appear in their source documents. There are 38.57%

novel unigrams in the XMSMO-News reference summaries compared to 17.59% in MSMO

dataset; the proportion of novel constructions grows for larger n-grams. This indicates that

XMSMO-News textual summaries are more abstractive.

Previous study [72] shows that there may be factual hallucination issues in the titles of BBC

news articles. In our future research, we plan to conduct a similar study to investigate if the
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Dataset XMSMO-News VMSMO MSMO
#Train/Val/Test 4382 / 252 / 257 180000 / 2460 / 2460 293965 / 10355 / 10262
Language English Chinese English
Visual Input Video Video Multiple unordered images
Textual Input Document Document Document
Visual Output Cover frame Cover frame One image
Textual Output One-sentence Arbitrary length Multi-sentence
Frames/Video 8827.4 1500.0 6.6
Video Duration(s) 345.5 60.0 -
Tokens/Document 101.7 96.8 723.0
Tokens/Summary 12.4 11.2 70.0
Annotation Full Partial1 Partial2

1 Not all ground-truth data is available;
2 No visual ground-truth on training and validation splits.

TABLE 5.1. Comparison of XMSMO-News with existing MSMO benchmark
datasets.

XMSMO-News MSMO
unigrams 38.57 17.59
bigrams 78.24 52.01
trigrams 91.25 69.49
4-grams 95.58 77.68

TABLE 5.2. The proportion of novel n-grams (%) in ground-truth summaries
in XMSMO-News and MSMO datasets. Results are computed on the test
set. We show that our XMSMO-News dataset is more abstractive and more
challenging since the summary consists of more novel words.

textual summary in our XMSMO-News dataset may contain some hallucinated content that

cannot be verified from the source video and document.

5.3.2 Implementation Details

We used the PyTorch library for the implementation of our method. We set the hidden size of

GPO and GRU to 512. For the pre-trained CLIP model and the pre-trained token embedding

model BERT (base version) used for computing the loss of textual coverage, we obtained

them from HuggingFace 3. To detect the scenes of a video, we utilised the PySceneDetect

3https://huggingface.co
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library 4. To compute the Wasserstein distances, we utilised the POT library 5 and the OpenCV

library, respectively. For video preprocessing, we extracted one of every 360 frames to obtain

120 frames as candidate frames. All frames were resized to 640x360. We trained HOT-Net

using AdamW [63] with a learning rate of 0.01 and a batch size of 3 for about 72 hours. All

experiments were run on a GeForce GTX 1080Ti GPU card. For evaluation, we obtained our

ROUGE scores by using the pyrouge package 6.

5.3.3 Baselines

To evaluate our proposed method HOT-Net, we compared it with the following categories

of baseline methods. 1) Extreme multimodal summarisation method PEGASUS-XSUM +

CA-SUM [131, 3], which is a combination of the state-of-the-art method of the extreme text

summarisation task PEGASUS-XSUM [131] and that of the extreme video summarisation task

CA-SUM [3], respectively; 2) Multi-modal summarisation with multimodal output approach

includes: VMSMO [52], which is the state-of-the-art multimodal summarisation method

utilising video and document as input, and zero-shot CLIP [101] method, which is based

on the state-of-the-art multimodal embedding method CLIP with a fully connected layer for

classification to perform multimodal summarisation; and 3) Unimodal extreme summarisation

methods for reference include: PG [106], ProphetNet [99], and PEGASUS-XSUM [131],

which are the state-of-the-art methods of extreme text summarisation, and ARL[2] and

CA-SUM [3], which are the state-of-the-art method of extreme video summarisation. The

baseline models PEGASUS-XSUM and CLIP were obtained from HuggingFace [120], PG

was obtained from the Github7, and ProphetNet [99], CA-SUM [3], and VMSMO [52] were

obtained from the authors’ implementations. CA-SUM was obtained from the author’s Github
8; VMSMO was obtained from the author’s Github 9 with modifications on the latest libraries’

update and bug fixing.

4http://scenedetect.com/en/latest/
5https://pythonot.github.io
6https://pypi.org/project/pyrouge/
7https://github.com/kukrishna/pointer-generator-pytorch-allennlp
8https://github.com/e-apostolidis/CA-SUM
9https://github.com/iriscxy/VMSMO
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5.3.4 Quantitative Analysis

For the quantitative evaluation of a textual summary, we followed the same evaluation protocol

as the baseline methods [131, 52] and adopt the commonly used ROUGE metric [54] for text

summarisation. For the visual summary, the commonly used Intersection over Union (IoU)

[107] and frame accuracy [76] metrics for video summarisation are adopted.

The ROUGE metric evaluates the content consistency between a generated summary and a

reference summary. In detail, the ROUGE-n F-scores calculates the number of overlapping

n-grams between a generated summary and a reference summary. The ROUGE-L F-score

considers the longest common subsequence between a generated summary and a reference

summary.

ROUGE-n =
# overlapping n-grams

# n-grams in ground-truth summary
(5.27)

IoU metric evaluates the high-level semantic information consistency by counting the number

of overlap concepts between the ground-truth cover frame and the generated one.

IoU =
Number of overlapping concepts

Total number of concepts
(5.28)

Frame accuracy metric is to compare lower-level visual features, the ground-truth cover frame

and generated cover frame are considered to be matching when pixel-level Euclidean distance

is smaller than a predefined threshold. 10

Accuracy =
Matching cover frame

Number of ground-truth cover frames
(5.29)

To evaluate the overall performance on both modalities, we compute the overall evaluation as:

0.5× IoU
Best IoU

+ 0.5× ROUGE-L
Best ROUGE-L

, (5.30)

10We followed [76] to set the predefined threshold to 0.6.
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where the best IoU and the best ROUGE-L are the best scores among all the evaluated

methods.
Method Textual Evaluation Visual Evaluation Overall Evaluation

ROUGE-1 ROUGE-2 ROUGE-L Frame Accuracy IoU
Extreme Text Summarisation

PG [106] 2.43 0.08 2.25 - - -
ProphetNet [99] 3.77 0.09 3.56 - - -
PEGASUS-XSUM [131] 4.36 0.12 4.00 - - -

Extreme Video Summarisation
ARL [2] - - - 0.59 0.68 -
CA-SUM [3] - - - 0.57 0.69 -

Multimodal Summarisation with Multimodal Output
VMSMO [52] Divergence Divergence Divergence 0.57 0.69 0.49
CLIP [101] 4.14 0.08 3.80 0.54 0.63 0.89

Extreme Multimodal Summarisation
PEGASUS-XSUM + CA-SUM 4.36 0.12 4.00 0.57 0.69 0.95
HOT-Net (Ours) visual only - - - 0.60 0.68 -
HOT-Net (Ours) textual only 3.85 0.05 3.60 - - -
HOT-Net (Ours) w/o multimodal fusion 3.99 0.05 3.73 0.56 0.70 0.93
HOT-Net (Ours) w/o local-level multimodal fusion 4.45 0.06 4.16 0.59 0.70 0.98
HOT-Net (Ours) w/o global-level multimodal fusion 3.65 0.06 3.45 0.58 0.68 0.88
HOT-Net (Ours) w/o fluency loss 4.58 0.06 4.28 0.57 0.68 0.98
HOT-Net (Ours) w/o cross-modal loss 4.58 0.06 4.28 0.57 0.68 0.98
HOT-Net (Ours) 4.64 0.07 4.33 0.57 0.68 0.99

TABLE 5.3. Comparisons between our HOT-Net and the state-of-the-art sum-
marisation methods on XMSMO-News. Our method outperforms the baseline
models in terms of ROUGE-1 and ROUGE-L, which demonstrate the quality
of the generated extreme textual summary, and achieves promising results
in terms of frame accuracy and IoU, which demonstrate the quality of the
generated extreme visual summary.

The experimental results of HOT-Net on XMSMO-News are shown in Table 5.3 including

ROUGE-1, ROUGE-2. and ROUGE-L F-scores, and IoU. Our method outperforms the

baseline models in terms of ROUGE-1 and ROUGE-L, which demonstrate the quality of

the generated extreme textual summary, and achieves promising results in terms of frame

accuracy and IoU, which demonstrate the quality of the generated extreme visual summary.

HOT-Net underperforms in terms of ROUGE-2, which may be due to the trade-off between

informativeness and fluency. PEGASUS-XSUM was trained on massive text corpora which

may help improve the fluency of natural language generation. This trade-off is further

discussed in the Qualitative Analysis section. Our work is the first study on this new topic

and we expect the performance to improve over time.

The ROUGE metric reflects lexical matching only and often overlook the conciseness, lin-

guistic quality and factuality of a summary, which are the key quality of a good summary.

Since XMSMO-News extreme summaries are highly abstractive and very short (the summaries
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of the extreme text summarisation dataset XSum [80] have 23 tokens on average; meanwhile,

textual summaries of XMSMO-News have 12 tokens on average), conciseness, linguistic

quality and factuality metrics would be essential to provide further insights. However, human

evaluation is highly subjective, which is challenging to draw a meaningful comparison and

conclusion, as pointed out in [36]. We advocate developing automatic metrics of conciseness,

linguistic quality, and factuality for more meaningful evaluations in future research.

5.3.5 Ablation Study

To study the effect of the proposed mechanisms, we compare a number of different settings of

our HOT-Net and the results can be found in Table 2. We first observe that multimodal learning

improves the modelling by comparing it to the visual or textual-only method. Our fusion

strategy is also important to obtain high-quality textual summaries. The local-and-global

hierarchical mechanism improves the results of the textual summary. However, it does not

have much impact on the results of the visual summary, which may be due to that the overall

model architecture has achieved its best possible potential in terms of producing a visual

summary. Additionally, the fluency loss and cross-modal loss improve the textual summary

as well.

5.3.6 Qualitative Analysis

Figure 5.5 compares the summaries produced by HOT-Net and the baseline methods, and

the reference summary of a sample in the XMSMO-News dataset. The example on the left

hand side is about a US congressman who made an unusual appearance and flipped upside

down. The example on the right hand side is about US President Donald Trump’s UK visit.

The example demonstrates that our proposed HOT-Net method produces factually correct and

reasonably fluent extreme textual summary that captures the essence of the document even

without supervision. In comparison, as highlighted in red colour, PEGASUS-XSUM produces

a fluent but unfaithful summary with information that does not occur in the original document.

Most of the methods agree on the choice of the cover frame, whilst ours and CA-SUM are
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FIGURE 5.5. Example summaries generated by baseline methods and HOT-
Net on XMSMO-News.

closer to the ground truth. For the second example, since the aeroplane appears repeatedly

and occupies a comparatively large area on the frames, there is room for improvement to

learn and identify the information which human considers to be important, such as a frame

containing the face of the key human figure.

5.3.7 Interpretable Visualisation of Semantic Coverage

HOT-Net is able to provide an interpretable visualisation of the textual semantic coverage on

the summarisation results. Figure 5.6 illustrates the transport plan heatmap, which indicates

the transportation of semantic contents between tokens in the document and its resulting

summary. The higher the colour intensity, the more the semantic content of a particular

document token is covered by a summary token.
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FIGURE 5.6. Interpretable visualisation of the OT plan from a source docu-
ment to a resulting summary on the XMSMO-News dataset.

5.4 Conclusion

In this chapter, we have introduced a new task - eXtreme Multimodal Summarisation with

Multimodal Output (XMSMO), which aims to summarise a video-document pair into an

extreme multimodal summary, consisting of one cover frame as the visual summary and one

sentence as the textual summary. We present a novel unsupervised deep learning architec-

ture, which consists of three components: hierarchical multimodal encoders, hierarchical

multimodal fusion decoders, and optimal transport solvers. To achieve unsupervised learning,

besides the optimal transport-based semantic coverage guidance, textual fluency and cross-

modal similarity are explored as well. In addition, we construct a new large-scale dataset

XMSMO-News to facilitate research in this new direction. Experimental results demonstrate

the effectiveness of our method.
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According to the data analysis and experiments on our XMSMO-News dataset, our new task

XMSMO has the following challenges: 1) Difficulty to identify the most salient textual and

visual information. Since the summaries are extremely succinct, users would expect the

summaries to include only the most important information. 2) Difficulty to ensure factuality

and faithfulness. The extreme summaries is expected to give a only gaze to the full picture of

the news event, it would be essential for users to trust that the summaries are representative and

accurate descriptions of what happened without requiring further validation by digesting the

details. 3) Difficulty to evaluate the model performance. Since the summaries are extremely

short, the commonly used evaluation metrics of textual and visual summarisation, which are

mainly designed to longer summaries and usually measure token and object overlapping,

may penalise the false tokens and objects heavily and may not be a good fit to reflect the

performance of the models. Developing automatic metrics that measure the qualities of

the summaries, including informativeness, conciseness, linguistic and image quality, and

factuality, would provide more meaningful evaluations.

In the future, we will explore the metric space to measure the optimal transport plan in a more

efficient and effective manner. Moreover, we will explore improved ways to learn and identify

the information that humans would consider to be important, such as a frame containing the

face of a key character.



CHAPTER 6

TopicCAT: Unsupervised Topic-Guided Co-Attention Transformer for

Extreme Multimodal Summarisation

In this chapter, we propose a novel Unsupervised Topic-guided Co-Attention Transformer

(TopicCAT) based method to produce extreme multimodal summaries for video-document

pairs. Specifically, there are two learning stages for a comprehensive multimodal under-

standing with a topic-based guidance: a unimodal learning stage and a cross-modal learning

stage where a cross-modal topic model is devised to capture the overarching themes present

in both documents and videos. To achieve unsupervised learning which does not require

the resource-expensive collection of ground-truth multi-modal summaries, we propose an

optimal transport-based optimisation scheme to evaluate summary coverage from a semantic

distribution perspective at the topic level. Comprehensive experiments demonstrate the state-

of-the-art performance of our proposed TopicCAT method on a new dataset containing 4,891

video-document pairs collected from British Broadcasting Corporation News Youtube with a

BERTScore of 84.46 and an accuracy of 0.60.

6.1 Introduction

To tackle this emerging extreme multimodal summarisation task, we propose a novel Un-

supervised Topic-guided Co-Attention Transformer (TopicCAT) method, which builds on

the remarkable success of Transformers in sequential modelling [115]. Overall, TopicCAT

consists of two learning stages for a comprehensive multimodal understanding with a topic-

based guidance: a unimodal learning stage as Stage-I and a cross-modal learning stage as

Stage-II. To capture the overarching themes present in both documents and videos effectively,
79
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a cross-modal topic model is introduced, which is based on the embedding clustering of

the two modalities jointly. In Stage-I, transformer-based encoder-decoder structures are

devised for visual and textual learning individually to characterise unimodal patterns with

their corresponding topic embeddings; while in Stage-II, a co-attention is adopted to obtain

multimodal topic embeddings, which are treated as the multimodal topic guidance for the

transformers in this stage to involve complementary multimodal contexts.

Our unsupervised training strategy is crafted to emulate human evaluation of the quality of an

extreme multimodal summary by inspecting visual and textual topic coverage and cross-modal

topic similarity. The approach avoids the need for resource-intensive collection of ground-

truth summaries for supervision. Specifically, we devise novel loss functions based on optimal

transport, assessing the differences in topic-level semantic distributions between: 1) video and

cover frame representations; 2) document and one-sentence text summary representations;

and 3) cover frame and one-sentence text summary representations. To address these three

aspects, the network’s weights are optimised to minimise three corresponding Wasserstein

distances. informed by their optimal transport plans, which signify the minimal efforts to

transform one distribution into another.

In summary, the key contributions of this chapter are as follows:

• A novel deep learning method - TopicCAT for the emerging extreme multimodal

summarisation task based on Transformer neural networks, encompassing a two-

stage unimodal and cross-modal learning strategy with topic guidance.

• A novel optimal transport guided unsupervised learning strategy is devised to optim-

ise TopicCAT from the perspective of the similarity between semantic distributions

of textual and visual topics.

• Comprehensive experiments and analysis are conducted on a new large-scale mul-

timodal dataset demonstrate the effectiveness of the proposed TopicCAT method in

achieving the state-of-the-art performance .

The remainder of this chapter is organised as follows. Section 6.2 describes the details

of our proposed method. Section 6.3 presents comprehensive experiments to evaluate the
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effectiveness of our proposed method. Lastly, Section 6.4 concludes our study with discussions

on our future work.

6.2 Proposed Method

As shown in Figure 6.1, the proposed TopicCAT method consists of two learning stages with

the topic guidance including a unimodal learning stage and a cross-modal learning stage. Our

unsupervised learning method does not rely on ground-truth summaries as supervision for

training, while an optimal transport based unsupervised learning strategy on the topic-level is

proposed from a semantic distribution perspective.

FIGURE 6.1. Illustration of the proposed Unsupervised Topic-Guided Co-
Attention Transformer, namely TopicCAT, for extreme multimodal summar-
isation.

6.2.1 Visual and Textual Embeddings

To achieve contextualized and cross-modal consistency in embeddings for both documents

and videos, the state-of-the-art CLIP model [101] is utilized to encode textual and visual data

into a shared latent space. Specifically, an input video V can be represented by a sequence of

frame embeddings, which is denoted as V = {xframe
i |i = 1, ...T}, where T is the number of

frames. Note that to maintain the sequential structure within the video sequence, the frame

embeddings contain additional positional patterns by following the approach outlined in

[115].
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Moreover, the global representation of the video V can be derived with frame-level features:

xv = gv({xf
1, ...,x

f
T}), (6.1)

where gv is a video-level pooling function. Specifically, gv is based on a global average

pooling which averages the frame features over time.

An input document D can be viewed as a sequence consisting of U words as {xw
m|m =

1, ..., U}. Similarly, we use a pre-trained CLIP model with a position encoding to formu-

late the word-level features and xw
m denotes the embedding of the m-th word. The global

representation of the document D can be derived based on the word-level features:

xd = gd({xw
1 , ...,x

w
U}), (6.2)

where gd is a document-level average pooling function.

FIGURE 6.2. Illustration of cross-modal topic modelling to uncover the latent
topics within multimodal inputs.

6.2.2 Crossmodal Topic Clustering

A crossmodal topic model aims to effectively encapsulate the overarching themes that present

in both documents and videos. Our method for uncovering latent topics in document-video

pairs encompasses a streamlined and efficient framework that clusters document and video

embeddings jointly, as depicted in Figure 6.2. Specifically, we apply a clustering method

to group similar documents and videos together into K clusters. Following [136], we opt

for K-Means clustering owing to its efficiency and user-friendliness. The resulting clusters

indicate the topics or themes presented in the document-video pairs, wherein each cluster
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encompasses semantically related documents and videos. To obtain the topic vector tx ∈ RK

for a given contextualised embedding x, we transform it into the topic space through a topic

function as follows:

txv = topic(xv), txd = topic(xd), (6.3)

where each dimension of the obtained vector denotes the ℓ2 distance to a cluster centre.

6.2.3 Stage-I: Topic-Guided Unimodal Learning

In this stage, summarisation is conducted on each modality individually with the correspond-

ing topic guidance. Specifically, to determine whether a frame effectively represents the

overall context of the video, we condition each frame based on the video topic vector. This is

achieved by employing a Transformer-based encoder-decoder structure to obtain frame-level

representations that are aware of the video’s topic:

x̄v,s1 = {x̄f,s1
1 , ..., x̄fs1

T }

= Encv,s1(xv),

xv,s1 = {xf,s1
1 , ...,xf,s1

T }

= Decv,s1(x̄v,s1 ⊕ txv),

(6.4)

where ⊕ indicates a frame-wise concatenation with the video topic vector and the topic is

introduced during the decoding procedure.

Likewise, to ascertain whether a word well reflects the overall context of the document,

we condition each word on the document topic vector. This is achieved by utilizing the

Transformer to generate a sequence of word representations that are aware of the document’s

topic:
x̄d,s1 = {x̄w,s1

1 , ..., x̄w,s1
T }

= Encd,s1(xd),

xd,s1 = {xw,s1
1 , ...,xw,s1

T }

= Decd,s1(x̄d,s1 ⊕ txd).

(6.5)
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6.2.4 Multimodal Co-Attention Transformer & Multimodal Topic

Guidance

To better characterise the inter-dependency of cross-modal representations and develop an

integrated understanding of both the document and the video, we introduce a multimodal

co-attention mechanism. Specifically, we adapt the multi-head self-attention mechanism from

Transformer Network, which takes into account only a single modality, to a co-attention

mechanism that considers multiple modalities. The co-attention mechanism uses queries Q

from one modality, and keys K and values V from another modality to generate features

xvideo, co and xdoc, co for one modality based on the other modality.

Mathematically, for frame embeddings in the video obtained in Stage-I, we have:

xv, co = Linear(Q+ Linear(MultiHead(Q,K, V ))), (6.6)

where Q = xv,s1 and K = V = xd,s1 . Similarly, for word embeddings in the document, we

have:

xd, co = Linear(Q+ Linear(MultiHead(Q,K, V ))), (6.7)

where Q = xd,s1 , and K = V = xv,s1 . Note that the weights of linear layers and multi-head

co-attentions in Eq. (6.6) and Eq. (6.7) are different. For the sake of convenience, we do not

differentiate them for the rest of the discussions in this chapter.

To this end, the resulting embeddings from the two co-attention mechanisms are fused to

characterise the multimodal inputs comprehensively:

xd-v = Linear(
[
gv(xv, co); gd(xd, co)

]
), (6.8)

where gv and gd denote the global average pooling function. We then obtain the multimodal

topic vector to represent the overall multimodal context with:

txd-v = topic(xd-v). (6.9)
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6.2.5 Stage II: Topic-Guided Crossmodal Learning

With the multimodal topic guidance, which involves the context between different modalities,

another stage of transformer based sequential learning is conducted. Specifically, the frame-

level video representations in the second stage can be obtained as:

x̄v,s2 = {x̄f,s2
1 , ..., x̄f,s2

T }

= Encv,s2(xv,s1);

xv,s2 = {xf,s2
1 , ...,xf,s2

T }

= Decv,s2(x̄v,s2 ⊕ txd-v).

(6.10)

To this end, the optimal frame f∗ is obtained with 1) a frame-wise linear layer activated by a

softmax function which estimates the probability that a frame to be a cover frame, and 2) the

index of the frame that maximizes this probability is identified:

f∗ = argmax(softmax(Linear(xv,s2))). (6.11)

Likewise, the word-level representations with multimodal topic guidance in the second stage

can be formulated as:
x̄d,s2 = {x̄w,s2

1 , ..., x̄w,s2
T }

= Encd,,s2(xd,s1);

xd,s2 = {xw,s2
1 , ...,xw,s2

T }

= Decd,,s2(x̄d,s2 ⊕ txd-v).

(6.12)

Next, an optimal compressive summary s∗ with a budget k (i.e. summary length) can be

obtained as:

s∗ = top-k(softmax(Linear(xd,s2))). (6.13)

Note that the selected k words are ranked in line with their scores obtained from the word-wise

linear layer with a softmax activation. Thus, a summary sentence s∗ can be constructed with

these words in line with their orders.
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6.2.6 Optimal Transport-Guided Unsupervised Training Strategy

Our training strategy aims to mimic human judgement on the quality of an extreme multimodal

summary. Hence, we minimise a quartet loss function that considers 1) the coverage of visual

topics Lv, and 2) the coverage of textual topics from a semantic distribution perspective Ld, 3)

the consistency between the topics of different modalities Ld−v, and 4) the fluency of textual

summaries Lfluency. Figure 6.3 illustrates our training strategy.

FIGURE 6.3. Illustration of the proposed optimal transport guided unsuper-
vised training strategy.

6.2.6.1 Document Topic Coverage

Intuitively, a high-quality text summary regarding its semantic distribution is expected to

closely reflect the semantic distribution of the original document. Specifically, we propose to

measure the distribution difference at the topic level, which helps reduce the computational

cost and observe the distributions from a global perspective.

Mathematically, the Wasserstein distance LDoc is adopted [47] between the topic vector txd of

the document D and the topic vector ts∗ = topic(s∗) of the summary s∗. It is the minimum
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cost required to transport the topics from s∗ to D, measuring the topic coverage of s∗ on D. A

transportation cost matrix C = {cij} is introduced to measure the transportation cost between

the latent topics i and j. In this study, we assume a uniform transportation cost between the

latent topics.

Then, an optimal transport plan T∗(D, s∗) = (t∗i,j(D, s∗)) in pursuit of minimising the

transportation cost can be obtained by solving the following optimisation problem:

T∗(D, s∗) = argmin
T(D,s∗)

∑
i,j

tij(D, s∗)cij,

s.t.
N∑
j=1

tij(D, s∗) = txd ,

N∑
i=1

tij(D, s∗) = ts∗(j),

tij(D, s∗) ≥ 0,∀i, j.

(6.14)

To this end, the Wasserstein distance can be defined as:

Ld =
∑
i,j

t∗ij(D, s∗)cij, (6.15)

which is associated with the optimal transport plan. By minimizing LDoc, a high-quality

textual summary s∗ can be obtained.

6.2.6.2 Video Topic Coverage

Similarly, a good cover frame is expected to be close to the original video regarding the

similarity of their topic distributions. Mathematically, we measure a loss based on video topic

coverage by computing the Wasserstein distance LV ideo between the topic vector txvideo of the

video V and the topic vector tf ∗ of the cover frame f∗. It is the minimum cost to transport

the topics from f∗ to V, and can be treated as the topic coverage of V by f∗. Specifically, we
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solve the following optimisation problem:

T∗(V, f∗) = argmin
T(D,f∗)

∑
i,j

tij(V, f∗)cij,

s.t.
N∑
j=1

tij(V, f∗) = txv ,
N∑
i=1

tij(V, f∗) = tf∗(j),

tij(V, f∗) ≥ 0,∀i, j.

(6.16)

To this end, the Wasserstein distance can be defined as:

Lv =
∑
i,j

t∗ij(V, f∗)cij. (6.17)

By minimizing Lv in terms of f∗, f∗ is expected to be well representative for the input video.

6.2.6.3 Cross-Modal Topic Consistency

The topic consistency should exist between the cover frame and the one-sentence summary.

To formulate this aspect, we introduce a cross-modal topic consistency loss LCross−modal by

computing the Wasserstein distance between the embeddings of the two topic vectors: the

cover frame f∗ and the one-sentence summary s∗. In detail, we have:

Ld-v =
∑
i,j

t∗ij(s
∗, f∗)cij. (6.18)

6.2.6.4 Textual Fluency

We utilise Syntactic Log-Odds Ratio (SLOR) [91] to measure Lfluency, which is defined as:

Lfluency(S) =
1

|S|
(log(PLM(S))− log(PU(S))) , (6.19)

where PLM(S) represents the probability of the summary as assigned by a pre-trained lan-

guage model LM , pU(S) =
∏

t∈S P (t) signifies the unigram probability used for rare word

adjustment, and |S| denotes the sentence length.

Overall, four loss terms have been derived to measure the quality of a multimodal summary:

Ld, Lv, Ld-v, and Lfluency. Hence, the loss function to optimize the proposed TopicCAT model
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can be formulated as follows:

L = λdLd + λvLv

+λd-vLd-v + λfluencyLfluency,
(6.20)

where λd, λv, λd-v, and λfluency are the hyperparameters controlling the weights of each term.

6.3 Experiments and Discussions

6.3.1 Dataset

We evaluated our proposed TopicCAT on a large-scale dataset for extreme multimodal

summarisation. The new dataset was collected from the British Broadcasting Corporation

(BBC) News Youtube channel1, which has 4,891 quartets of video, document, cover frame,

and one-sentence summary from Year 2013 to Year 2021. We utilized the video description as

the document, while employing the video title as the one-sentence summary, as these visual

and textual summaries were professionally created by the BBC. Subsequently, we split the

quartets randomly into the training, validation, and test sets, adhering to a ratio 90:5:5. For

video preprocessing, we selected one out of every 360 frames, resulting in 120 candidate

frames. All frames were resized to 640x360 dimensions.

This dataset shares some similarities with the datasets proposed in [141] and [52] in terms of

the input and output modalities, whilst there are two major differences between the dataset

used in this study and those in previous works. The first difference pertains to the input and

output lengths: the dataset used in this study has an average video duration of 345.5 seconds,

while the videos in [52] generally last only 60 seconds, and the samples in [141] consist of a

set of unordered images. A longer duration with more complex contents are more likely to be

benefit from a topic modelling pipeline. The second distinction is related to summarization:

the dataset in this study includes a one-sentence textual summary, whereas neither [52] nor

[141] addresses the kind of extreme multimodal summarization that our work does. This

1https://www.youtube.com/c/BBCNews
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allows us to evaluate our approach by taking a video and its associated document as input to

produce a single image accompanied by a one-sentence text.

6.3.2 Implementation Details

We implemented our method using the PyTorch, setting the hidden size of the transformers

to 512 and the number of heads to 4. Experiments were conducted with varying numbers of

topic clusters K, ranging from 1 to 20. The optimal cluster number was determined to be 10,

as identified by the elbow method. The pre-trained CLIP model for TopicCAT was obtained

from HuggingFace [120].

Note that we found 5 epochs to be an optimal choice since the model reaches its best

performance and does not improve further after this. Overall, TopicCAT has 466,663,683

number of learnable parameters and 1.8G memory footprint. Our experiments were conducted

on a GeForce RTX 3090 GPU.

6.3.3 Baselines

We compared TopicCAT with the following categories of baselines. 1) MSMO approach

includes: VMSMO [52], which is the state-of-the-art multimodal summarisation method

utilising video and document as input, and zero-shot CLIP [101] method, which is based

on the state-of-the-art multimodal embedding method CLIP with a fully connected layer for

classification to perform multimodal summarisation; 2) Unimodal extreme summarisation

methods for reference includes: PG [106], PEGASUS-XSUM [131] and ProphetNet [99],

which are the state-of-the-art methods of extreme text summarisation, and ARL[2] and CA-

SUM [3], which are the state-of-the-art method of extreme video summarisation. The CLIP

model was obtained from HuggingFace [120]; PG was obtained from the Github 2; ProphetNet

[99], CA-SUM [3], and VMSMO [52] were obtained from the authors’ implementations.

2https://github.com/kukrishna/pointer-generator-pytorch-allennlp



6.3 EXPERIMENTS AND DISCUSSIONS 91

6.3.4 Quantitative Analysis

For the quantitative evaluation of a textual summary, BERTScore [133] and the commonly

used ROUGE metric [54] are adopted , and the commonly used Intersection over Union (IoU)

[107] and frame accuracy [76] metrics are adopted for video summarisation evaluation.

Method BERTScore ROUGE-1 ROUGE-2 ROUGE-L
Extreme Text Summarisation

PG [106] 83.26 2.43 0.08 2.25
ProphetNet [99] 85.53 3.77 0.09 3.56
PEGASUS-XSUM [131] 86.75 4.36 0.12 4.00

Multimodal Summarisation with Multimodal Output
VMSMO [52] Divergence Divergence Divergence Divergence
CLIP [101] 83.79 3.35 0.05 3.14

Extreme Multi-Modal Summarisation
HOT-Net 84.00 4.64 0.07 4.33
TopicCAT (Ours) 84.46 4.54 0.08 4.21

TABLE 6.1. Comparisons between the textual evaluation of our TopicCAT
and the state-of-the-art methods.

As shown in Table 6.1, our method’s performance in text summarization compares favorably

with most state-of-the-art methods for ROUGE-1 and ROUGE-L scores, highlighting its

effectivenes. Note that TopicCAT falls short in BERTScore and ROUGE-2 compared to

ProphetNet and PEGASUS-XSUM, which may be due to the trade-off between fluency and

informativeness. Refer to Section 6.3.6 for further analysis on this. Note that ProphetNet is

a large generative language model with a more complex architecture requiring significantly

more training data. In comparison, our method has a more efficient architecture and training

strategy and is able to achieve comparable results. Our work is the pioneering study on this

new topic and we expect the performance to improve over time.

In terms of the visual summarisation, Table 6.2 lists the comparisons of the evaluation metrics

between different methods. Our method achieves superior performance in terms of frame

accuracy and competitive performance regarding IoU compared with baseline methods, which

demonstrate the quality of the generated extreme visual summary.
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Method Frame Accuracy IoU
Extreme Video Summarisation

ARL [2] 0.59 0.68
CA-SUM [3] 0.57 0.69

Multimodal Summarisation with Multimodal Output
VMSMO [52] 0.57 0.69
CLIP [101] 0.58 0.68

Extreme Multi-Modal Summarisation
HOT-Net 0.57 0.68
TopicCAT (Ours) 0.60 0.69

TABLE 6.2. Comparisons between the visual evaluation of our TopicCAT and
the state-of-the-art methods.

6.3.5 Ablation Study

To study the effect of the proposed mechanisms, a number of different settings of our

TopicCAT are compared and the results are shown in Table 6.3.

6.3.5.1 Effects of Topic Guidance.

It is evident that intra- and inter-modal topic contexts enhance the modelling and outcomes of

multimodal summarisation when contrasted with approaches that do not utilize this informa-

tion. As detailed in Table 6.3, for intra-modal topic information, the one without visual topic

information observes lower performance in terms of frame accuracy and IoU; and the one

without textual topic information observes lower BERTScore performance and ROUGE-2,

this may indicate it is less fluency, which is a crucial quality of extreme textual summary.

For inter-topic information, the one without multimodal topic information shows diminished

performance in all metrics.

Method Textual Evaluation Visual Evaluation
BERTScore ROUGE-1 ROUGE-2 ROUGE-L Frame Acc. IoU

TopicCAT (Ours) 84.46 4.54 0.08 4.21 0.60 0.69
- multimodal topic 83.21 2.95 0.03 2.78 0.58 0.69
- visual topic 84.46 4.54 0.08 4.21 0.58 0.68
- textual topic 82.42 4.66 0.04 4.30 0.60 0.69

TABLE 6.3. Ablation studies on different settings of TopicCAT.
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Training Strategy Topic Coverage based Semantic Coverage based
Training Time (hours) 17.68 (-7.3%) 19.07

TABLE 6.4. Comparison of training times with different strategies: topic
coverage based vs full content coverage based.

6.3.5.2 Effects of Topic Coverage vs Semantic Coverage

In this study, we utilize the optimal transport-guided training loss, which focuses on the topic

level coverage. Note that the Wasserstein distance and optimal transport problem can be

formulated on the full contents (i.e., word distributions for documents and pixel distributions

for videos) as well. We compared these two settings, where we observe that it has a negligible

impact on quantitative performance but can reduce 7.3% training time as shown in Table 6.4.

6.3.6 Qualitative Analysis

FIGURE 6.4. Example summaries generated by the baseline methods and
TopicCAT.

Figure 5.5 compares the summaries produced by our TopicCAT and baselines, and a reference

summary. The examples demonstrate that TopicCAT produces factually accurate summaries,
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successfully identifying key information that aligns with the reference summary, as underlined.

Remarkably, TopicCAT achieves this without the need for supervision. In contrast, the

baselines fall short of capturing the essence of the documents. TopicCAT’s textual summary

is reasonably fluent yet has a room for further improvement.

In the kayaking example, TopicCAT aligns closely with the ground truth by recognizing the

kayaking event on the river, a detail missed by CA-SUM, ARL, and CLIP. In the Christmas

tree example, TopicCAT selects a quality frame showcasing the tree, whereas ARL and CLIP

choose a watermark frame, as highlighted by a bounding box. Despite this success, there

remains room for improvement in identifying key human-centered aspects like frame quality

and central object emphasis.

In a broader research perspective of summarisation, while existing methods are more cap-

able of advanced reasoning, they still remain constrained by the same limitations as their

predecessors. Unfaithful or nonsensical output can be generated if the expected outcome

is not clearly known or defined beforehand. This risk is present to some extent in almost

every application that involves content generation. This risk is similar to human agents who

can make mistakes and therefore need scripts and guidelines to assist them. As the current

research direction seems to be moving away from the rule- and template-based approaches and

towards more open discussions, an intriguing future direction would be to design a framework

that achieves a balance between the two.

6.3.7 Visualisation of the Topic Space

We explore and visualise the latent topic space inferred by our multimodal topic model,

mapping it into a 2D space using t-SNE. As shown in Figure 6.5, when coloured by modality,

no single modality appears isolated in either the CLIP space or the multimodal topic space.

Furthermore, in the visualisation distinguished by cluster, documents (blue) and videos

(orange) tend to form more distinct clusters within the multimodal topic space generated by

our model compared to the CLIP embedding space.
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FIGURE 6.5. t-SNE visualization forthe topic distributions in the CLIP em-
bedding space and those in our multimodal topic space.

FIGURE 6.6. t-SNE visualizations of topic distributions of random video-
document pairs.

In addition, we examine the proximity between documents and videos within the same pair as

they are mapped into the latent topic space. A couple of randomly selected document-video

pairs are illustrated in Figure 6.6. Generally, documents are found to be closer to their

corresponding videos in themultimodal topic space than in the CLIP space, as indicated by the

yellow and purple lines. These observations align with the intended behavior of our proposed

mechanisms.

6.3.8 Limitations

Since the extreme multimodal summarisation task is a new field, prior datasets [52, 141]

are not suitable for our modelling pipeline and evaluations. Our current evaluations rely on

a single-source dataset from BBC News, possibly introducing style bias. Future research

should expand to consider summarisation from diverse content, possibly through approaches

like few-shot or zero-shot learning, leveraging large-scale pre-trained models. In addition,
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our current optimal transport optimization utilizes a straightforward metric space for the

cost function. Future work should investigate alternative approaches such as tree-sliced or

graph-sliced metric spaces to enhance semantic distribution understanding and computational

efficiency.

6.4 Conclusion

This chapter introduces TopicCAT, a novel deep learning method for extreme multimodal

summarization, which condenses a video-document pair into a concise summary comprising

a single cover frame and a sentence. TopicCAT is structured around two learning stages

for an in-depth multimodal understanding guided by topics: a unimodal stage and a cross-

modal stage, wherein a cross-modal topic model identifies the overarching themes within

both documents and videos. Leveraging an optimal transport-based unsupervised learning,

the approach optimizes summary coverage at the topic-level from a semantic distribution

perspective. Extensive experiments on a large-scale extreme multimodal summarization

dataset demonstrate the effectiveness of the proposed method.



CHAPTER 7

Conclusion

7.1 Summary and Conclusions

Text summarisation is a challenging task in natural language processing where the aim is

to shorten a document into a brief and concise summary that captures the key information

with as little redundancy as possible. This is helpful for people who want to quickly un-

derstand important information without reading long texts. As the amount of multimedia

data increases, there is a growing interest in multimodal summarisation with multimodal

output, which combines a video-document pair into a visual-textual summary. This type of

summarisation provides users with a more comprehensive and visual understanding of events.

While various methods have shown promising results, they have drawbacks such as high cost,

low interpretability, and lack of conciseness. Therefore, this thesis addresses the gaps by

devising unsupervised and interpretable text summarisation and multimodal summarisation

methods.

Firstly, a non-learning-based extractive text summarisation method - OTExtSum is proposed

by treating the text summarisation task as an optimal transport problem for the first time. Two

optimisation strategies for OTExtSum are designed to optimise this problem formulation:

beam search strategy and binary integer programming strategy.

Secondly, the first unsupervised compressive text summarisation method with dual-agent

reinforcement learning, URLComSum, is proposed. An efficient and interpretable multi-head

attentional pointer-based neural network is designed to learn the representation and extract

salient sentences and words. The unsupervised reinforcement learning strategy is designed to
97
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mimic human judgment by optimising summary quality in terms of the semantic coverage

reward, measured by Wasserstein distance, and the fluency reward, measured by Syntactic

Log-Odds Ratio (SLOR).

Thirdly, a new task - eXtreme Multimodal Summarisation with Multiple Output (XMSMO) is

proposed. It aims to summarise a video-document pair into an extreme multimodal summary

(i.e., one cover frame as the visual summary and one sentence as the textual summary). A

novel unsupervised Hierarchical Optimal Transport Network (HOT-Net) is proposed. The

hierarchical encoding and decoding are conducted across visual and textual modalities, and

optimal transport solvers are introduced to guide the summaries to maximise their semantic

coverage. A new large-scale dataset XMSMO-News is constructed for the research community

to facilitate research in this new direction.

Finally, A novel transformer architecture - Topic-Guided Co-Attention Transformer (Topic-

CAT) - is proposed for emerging extreme multimodal summarisation. It constructs a two-stage

learning strategy for unimodal and cross-modal modelling with clustering-based cross-modal

topic guidance. A novel optimal transport-guided unsupervised training strategy is devised to

optimise TopicCAT from the perspective of the similarity between semantic distributions of

topics.

7.2 Future Outlook

The potential research directions to advance text and multimodal summarisation are outlined

as follows:

7.2.1 Explainable and faithful summarisation

Designing explainable and faithful summarisation methods becomes crucial as the demand

for reliable and interpretable AI systems increases. These techniques are vital in building

confidence in AI systems that aid decision-making and content curation [56] . By designing

summarisation systems that are transparent in the generation process and accurate in terms
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of the summary content, these methods can enable users to comprehend the reasoning and

enhance the dependability of such systems.

7.2.2 Application-oriented and domain-specific summarisation

As summarisation methods have been advanced and are achieving promising results, these

methods could be applied and customised to design application-oriented and domain-specific

summarisation methods to tackle real-world needs. Examples are news summarisation

[25], financial document summarisation [21], lifelogging summarisation [114], and text and

multimodal simplification [112].

7.2.3 Query-base multimodal summarisation

There has been research on query-based text summarisation [90] and video summarisation

[121] for decades. However, to my best knowledge, there is no existing research on query-

based multimodal summarisation. Introducing user interaction in the summarisation process

could better address users’ information needs and help improve user satisfaction.

7.2.4 Evaluation of extreme multimodal summarisation

The current methods for automatically evaluating textual summaries focus on matching words

and similarity against ground-truth or reference summaries and often overlook important

qualities such as brevity, language quality, and factuality of a summary. Extreme summaries

are brief, with an average of 23 tokens in the extreme text summarisation dataset XSum [80]

and 12 tokens in this newly collected extreme multimodal summarisation dataset. Evaluating

conciseness, language quality, and accuracy is crucial to gain deeper insights. However,

evaluating these qualities is difficult because human evaluation is subjective, as pointed out

in [36]. To overcome this challenge, creating automatic metrics for evaluating conciseness,

language quality, and factuality would be crucial in future research to obtain more meaningful

evaluation results.



Bibliography

[1] Jason Altschuler, Jonathan Weed and Philippe Rigollet. ‘Near-linear time approx-

imation algorithms for optimal transport via Sinkhorn iteration’. In: International

Conference on Neural Information Processing Systems(NeurIPS). 2017.

[2] Evlampios Apostolidis et al. ‘Combining Adversarial and Reinforcement Learning for

Video Thumbnail Selection’. In: International Conference on Multimedia Retrieval

(ICMR). Taipei, Taiwan: Association for Computing Machinery, 2021, pp. 1–9.

[3] Evlampios Apostolidis et al. ‘Summarizing Videos Using Concentrated Attention and

Considering the Uniqueness and Diversity of the Video Frames’. In: International

Conference on Multimedia Retrieval (ICMR). Newark, NJ, USA: Association for

Computing Machinery, 2022, pp. 407–415.

[4] Evlampios Apostolidis et al. ‘Video Summarization Using Deep Neural Networks: A

Survey’. In: Proceedings of the IEEE (2021).

[5] W Ashworth. ‘Abstracting as a fine art’. In: Information scientist (1973).

[6] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. ‘Neural machine translation

by jointly learning to align and translate’. In: (2015).

[7] Isabel Cachola et al. ‘TLDR: Extreme Summarization of Scientific Documents’. In:

Findings of the Association for Computational Linguistics: EMNLP 2020. Online:

Association for Computational Linguistics, 2020, pp. 4766–4777.

[8] Jiacheng Chen et al. ‘Learning the best pooling strategy for visual semantic em-

bedding’. In: IEEE conference on computer vision and pattern recognition (CVPR).

2021.

[9] Jingqiang Chen and Hai Zhuge. ‘Abstractive Text-Image Summarization Using Multi-

Modal Attentional Hierarchical RNN’. In: Conference on Empirical Methods in

100



BIBLIOGRAPHY 101

Natural Language Processing (EMNLP). Brussels, Belgium: Association for Compu-

tational Linguistics, Oct. 2018, pp. 4046–4056.

[10] Liqun Chen et al. ‘Adversarial Text Generation via Feature-Mover’s Distance’. In:

International Conference on Neural Information Processing Systems (NeurIPS). 2018.

[11] Yen-Chun Chen and Mohit Bansal. ‘Fast Abstractive Summarization with Reinforce-

Selected Sentence Rewriting’. In: Annual Meeting of the Association for Compu-

tational Linguistics (ACL). Melbourne, Australia: Association for Computational

Linguistics, 2018, pp. 675–686.

[12] Arman Cohan et al. ‘A Discourse-Aware Attention Model for Abstractive Summar-

ization of Long Documents’. In: Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (NAACL-

HLT). 2018.

[13] Shrey Desai, Jiacheng Xu and Greg Durrett. ‘Compressive Summarization with Plaus-

ibility and Salience Modeling’. In: Conference on Empirical Methods in Natural

Language Processing (EMNLP). 2020.

[14] Jacob Devlin et al. ‘BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding’. In: Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (NAACL-

HLT). 2019.

[15] Yue Dong et al. ‘BanditSum: Extractive Summarization as a Contextual Bandit’. In:

Conference on Empirical Methods in Natural Language Processing (EMNLP). 2018.

[16] H. P. Edmundson. ‘New Methods in Automatic Extracting’. In: Journal of the ACM

16 (1969), pp. 264–285.

[17] G. Erkan and D. R. Radev. ‘LexRank: Graph-based Lexical Centrality as Salience in

Text Summarization’. In: Journal of Artificial Intelligence Research (2004).

[18] Alexander Fabbri et al. ‘Multi-News: A Large-Scale Multi-Document Summarization

Dataset and Abstractive Hierarchical Model’. In: Annual Meeting of the Association

for Computational Linguistics (ACL). 2019.



102 BIBLIOGRAPHY

[19] Jean Feydy et al. ‘Interpolating between Optimal Transport and MMD using Sinkhorn

Divergences’. In: International Conference on Artificial Intelligence and Statistics.

2019.

[20] Katja Filippova. ‘Multi-Sentence Compression: Finding Shortest Paths in Word

Graphs’. In: International Conference on Computational Linguistics (COLING). 2010.

[21] Negar Foroutan et al. ‘Multilingual Text Summarization on Financial Documents’.

In: Financial Narrative Processing Workshop. Marseille, France: European Language

Resources Association, June 2022, pp. 53–58.

[22] Mahak Gambhir and Vishal Gupta. ‘Recent automatic text summarization techniques:

a survey’. In: Artificial Intelligence Review (2017).

[23] Kavita Ganesan, ChengXiang Zhai and Jiawei Han. ‘Opinosis: A Graph Based Ap-

proach to Abstractive Summarization of Highly Redundant Opinions’. In: Interna-

tional Conference on Computational Linguistics (COLING). 2010.

[24] Shima Gerani et al. ‘Abstractive Summarization of Product Reviews Using Discourse

Structure’. In: Conference on Empirical Methods in Natural Language Processing

(EMNLP). 2014.

[25] Demian Gholipour Ghalandari and Georgiana Ifrim. ‘Examining the State-of-the-

Art in News Timeline Summarization’. In: Annual Meeting of the Association for

Computational Linguistics (ACL). Online: Association for Computational Linguistics,

July 2020, pp. 1322–1334.

[26] Dan Gillick and Benoit Favre. ‘A scalable global model for summarization’. In:

Workshop on Integer Linear Programming for Natural Language Processing. 2009.

[27] Yihong Gong and Xin Liu. ‘Generic text summarization using relevance measure

and latent semantic analysis’. In: Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR). 2001.

[28] Alex Graves and Jürgen Schmidhuber. ‘Framewise phoneme classification with bid-

irectional LSTM and other neural network architectures’. In: Neural networks (2005).



BIBLIOGRAPHY 103

[29] Max Grusky, Mor Naaman and Yoav Artzi. ‘Newsroom: A Dataset of 1.3 Million

Summaries with Diverse Extractive Strategies’. In: Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT). 2018.

[30] Hongxiang Gu and Viswanathan Swaminathan. ‘From Thumbnails to Summaries-A

Single Deep Neural Network to Rule Them All’. In: IEEE International Conference

on Multimedia and Expo (ICME). San Diego, CA, USA: IEEE, 2018, pp. 1–6.

[31] Genliang Guan et al. ‘Keypoint-based keyframe selection’. In: IEEE Transactions on

Circuits and Systems for Video Technology 23.4 (2013), pp. 729–734.

[32] Vishal Gupta and Gurpreet Singh Lehal. ‘A survey of text summarization extractive

techniques’. In: Journal of emerging technologies in web intelligence (2010).

[33] Sanda Harabagiu, Finley Lacatusu and Paul Morarescu. ‘Multidocument Summar-

ization with GISTexter’. In: International Conference on Language Resources and

Evaluation (LREC). 2002.

[34] Karl Moritz Hermann et al. ‘Teaching Machines to Read and Comprehend’. In: Inter-

national Conference on Neural Information Processing Systems (NeurIPS). Montreal,

Canada: MIT Press, 2015, pp. 1693–1701.

[35] Eduard Hovy and Chin-Yew Lin. ‘Automated Text Summarization and the Summarist

System’. In: TIPSTER Text Program Phase III. 1998.

[36] David M. Howcroft et al. ‘Twenty Years of Confusion in Human Evaluation: NLG

Needs Evaluation Sheets and Standardised Definitions’. In: International Conference

on Natural Language Generation (INLG). Dublin, Ireland: Association for Computa-

tional Linguistics, 2020, pp. 169–182.

[37] Cheng Huang and Hongmei Wang. ‘A Novel Key-Frames Selection Framework for

Comprehensive Video Summarization’. In: IEEE Transactions on Circuits and Systems

for Video Technology 30.2 (2020), pp. 577–589.

[38] Anubhav Jangra et al. ‘A Survey on Multi-Modal Summarization’. In: ACM Comput-

ing Surveys (Feb. 2023). ISSN: 0360-0300.



104 BIBLIOGRAPHY

[39] Zhong Ji et al. ‘Video summarization with attention-based encoder–decoder networks’.

In: IEEE Transactions on Circuits and Systems for Video Technology 30.6 (2019),

pp. 1709–1717.

[40] Zhong Ji et al. ‘Video Summarization With Attention-Based Encoder–Decoder Net-

works’. In: IEEE Transactions on Circuits and Systems for Video Technology 30.6

(2020), pp. 1709–1717.

[41] Yifan Jiao et al. ‘Three-Dimensional Attention-Based Deep Ranking Model for Video

Highlight Detection’. In: IEEE Transactions on Multimedia 20.10 (2018), pp. 2693–

2705.

[42] Katharina Kann, Sascha Rothe and Katja Filippova. ‘Sentence-Level Fluency Eval-

uation: References Help, But Can Be Spared!’ In: Conference on Computational

Natural Language Learning (CoNLL). 2018.

[43] Wafaa S. El-Kassas et al. ‘Automatic text summarization: A comprehensive survey’.

In: Expert Systems with Applications (2021).

[44] Anastassia Kornilova and Vladimir Eidelman. ‘BillSum: A Corpus for Automatic

Summarization of US Legislation’. In: Workshop on New Frontiers in Summarization

(NFiS). 2019.

[45] Krtin Kumar and Jackie Chi Kit Cheung. ‘Understanding the Behaviour of Neural

Abstractive Summarizers using Contrastive Examples’. In: Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT). 2019.

[46] Julian Kupiec, Jan Pedersen and Francine Chen. ‘A trainable document summarizer’.

In: Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR). 1995.

[47] Matt Kusner et al. ‘From Word Embeddings To Document Distances’. In: International

Conference on Machine Learning (ICML). Lille, France: JMLR.org, 2015, pp. 957–

966.



BIBLIOGRAPHY 105

[48] Philippe Laban et al. ‘The Summary Loop: Learning to Write Abstractive Summaries

Without Examples’. In: Annual Meeting of the Association for Computational Lin-

guistics (ACL). Online: Association for Computational Linguistics, 2020, pp. 5135–

5150.

[49] Jey Han Lau, Alexander Clark and Shalom Lappin. ‘Grammaticality, Acceptability,

and Probability: A Probabilistic View of Linguistic Knowledge’. In: Cognitive Science

41.5 (2017), pp. 1202–1241.

[50] Mike Lewis et al. ‘BART: Denoising Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and Comprehension’. In: Annual Meeting of the

Association for Computational Linguistics (ACL). 2020.

[51] Haoran Li et al. ‘Multi-Modal Sentence Summarization with Modality Attention

and Image Filtering’. In: International Joint Conference on Artificial Intelligence

(IJCAI). IJCAI’18. Stockholm, Sweden: AAAI Press, 2018, pp. 4152–4158. ISBN:

9780999241127.

[52] Mingzhe Li et al. ‘VMSMO: Learning to Generate Multimodal Summary for Video-

based News Articles’. In: Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP). Online: Association for Computational Linguistics, 2020, pp. 9360–

9369.

[53] Kexin Liao, Logan Lebanoff and Fei Liu. ‘Abstract Meaning Representation for

Multi-Document Summarization’. In: International Conference on Computational

Linguistics (COLING). 2018.

[54] Chin-Yew Lin. ‘ROUGE: A Package for Automatic Evaluation of Summaries’. In:

Text Summarization Branches Out. Barcelona, Spain: Association for Computational

Linguistics, 2004, pp. 74–81.

[55] Chin-Yew Lin and Eduard Hovy. ‘The Automated Acquisition of Topic Signatures

for Text Summarization’. In: International Conference on Computational Linguistics

(COLING). 2000.

[56] Pantelis Linardatos, Vasilis Papastefanopoulos and Sotiris Kotsiantis. ‘Explainable AI:

A Review of Machine Learning Interpretability Methods’. In: Entropy 23.1 (2021).

ISSN: 1099-4300.



106 BIBLIOGRAPHY

[57] Fei Liu et al. ‘Toward Abstractive Summarization Using Semantic Representations’.

In: Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT). 2015.

[58] Liyuan Liu et al. ‘Understanding the Difficulty of Training Transformers’. In: Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP). 2020.

[59] Nayu Liu et al. ‘Multistage Fusion with Forget Gate for Multimodal Summarization

in Open-Domain Videos’. In: Conference on Empirical Methods in Natural Language

Processing (EMNLP). Online: Association for Computational Linguistics, Nov. 2020,

pp. 1834–1845.

[60] Yang Liu and Mirella Lapata. ‘Text Summarization with Pretrained Encoders’. In:

Conference on Empirical Methods in Natural Language Processing and the Interna-

tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong

Kong, China: Association for Computational Linguistics, 2019, pp. 3730–3740.

[61] Yixin Liu et al. ‘BRIO: Bringing Order to Abstractive Summarization’. In: Annual

Meeting of the Association for Computational Linguistics (ACL). Dublin, Ireland:

Association for Computational Linguistics, 2022, pp. 2890–2903.

[62] Elena Lloret and Manuel Palomar. ‘Text summarisation in progress: a literature

review’. In: Artificial Intelligence Review (2012).

[63] Ilya Loshchilov and Frank Hutter. ‘Decoupled Weight Decay Regularization’. In:

International Conference on Learning Representations (ICLR). New Orleans, LA,

USA: OpenReview.net, 2018.

[64] H. P. Luhn. ‘A Business Intelligence System’. In: IBM Journal of Research and

Development (1958).

[65] Jiebo Luo, Christophe Papin and Kathleen Costello. ‘Towards extracting semantically

meaningful key frames from personal video clips: from humans to computers’. In:

IEEE Transactions on Circuits and Systems for Video Technology 19.2 (2008), pp. 289–

301.

[66] Ling Luo et al. ‘Reading Like HER: Human Reading Inspired Extractive Summariz-

ation’. In: Conference on Empirical Methods in Natural Language Processing and



BIBLIOGRAPHY 107

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).

2019.

[67] Caixia Ma et al. ‘Adaptive Multiview Graph Difference Analysis for Video Summar-

ization’. In: IEEE Transactions on Circuits and Systems for Video Technology 32.12

(2022), pp. 8795–8808.

[68] Mingyang Ma et al. ‘Similarity based block sparse subset selection for video summar-

ization’. In: IEEE Transactions on Circuits and Systems for Video Technology 31.10

(2020), pp. 3967–3980.

[69] Chris J. Maddison, Andriy Mnih and Yee Whye Teh. ‘The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables’. In: International Conference

on Learning Representations (ICLR). 2016.

[70] Inderjeet Mani. Automatic summarization. John Benjamins Publishing, 2001.

[71] Daniel Marcu. ‘Discourse Trees Are Good Indicators of Importance in Text’. In:

Advances in Automatic Text Summarization. 1999.

[72] Joshua Maynez et al. ‘On Faithfulness and Factuality in Abstractive Summarization’.

In: Annual Meeting of the Association for Computational Linguistics (ACL). Online:

Association for Computational Linguistics, 2020, pp. 1906–1919.

[73] Ryan McDonald. ‘A Study of Global Inference Algorithms in Multi-Document Sum-

marization’. In: European Conference on IR Research. 2007.

[74] Clara Meister, Ryan Cotterell and Tim Vieira. ‘If Beam Search Is the Answer, What

Was the Question?’ In: Conference on Empirical Methods in Natural Language

Processing (EMNLP). 2020.

[75] Afonso Mendes et al. ‘Jointly Extracting and Compressing Documents with Summary

State Representations’. In: Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies (NAACL-HLT).

2019.

[76] Safa Messaoud et al. ‘DeepQAMVS: Query-Aware Hierarchical Pointer Networks for

Multi-Video Summarization’. In: International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR). New York, NY, USA: Association

for Computing Machinery, 2021, pp. 1389–1399.



108 BIBLIOGRAPHY

[77] Rada Mihalcea and Paul Tarau. ‘TextRank: Bringing Order into Text’. In: Conference

on Empirical Methods in Natural Language Processing (EMNLP). Barcelona, Spain:

Association for Computational Linguistics, 2004, pp. 404–411.

[78] Ibrahim F. Moawad and Mostafa M. Aref. ‘Semantic graph reduction approach for ab-

stractive Text Summarization’. In: International Conference on Computer Engineering

and Systems (ICCES) (2012).

[79] Ramesh Nallapati, Feifei Zhai and Bowen Zhou. ‘Summarunner: A recurrent neural

network based sequence model for extractive summarization of documents’. In: AAAI

Conference on Artificial Intelligence. 2017.

[80] Shashi Narayan, Shay B. Cohen and Mirella Lapata. ‘Don’t Give Me the Details, Just

the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summar-

ization’. In: Conference on Empirical Methods in Natural Language Processing

(EMNLP). Brussels, Belgium: Association for Computational Linguistics, 2018,

pp. 1797–1807.

[81] Shashi Narayan, Shay B. Cohen and Mirella Lapata. ‘Ranking Sentences for Extractive

Summarization with Reinforcement Learning’. In: Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT). 2018.

[82] Shashi Narayan et al. ‘Stepwise Extractive Summarization and Planning with Struc-

tured Transformers’. In: Conference on Empirical Methods in Natural Language

Processing (EMNLP). 2020.

[83] Ani Nenkova and Kathleen McKeown. ‘Automatic Summarization’. In: Foundations

and Trends® in Information Retrieval 5 (2011), pp. 103–233.

[84] Andrew Y Ng. ‘Feature selection, L 1 vs. L 2 regularization, and rotational invariance’.

In: International Conference on Machine Learning (ICML). 2004.

[85] Chikashi Nobata and Satoshi Sekine. ‘CRL/NYU summarization system’. In: Docu-

ment Understanding Conference (DUC). 2004.

[86] Tatsuro Oya et al. ‘A Template-based Abstractive Meeting Summarization: Lever-

aging Summary and Source Text Relationships’. In: International Natural Language

Generation Conference (INLG). 2014.



BIBLIOGRAPHY 109

[87] Vishakh Padmakumar and He He. ‘Unsupervised Extractive Summarization using

Pointwise Mutual Information’. In: Conference of the European Chapter of the Asso-

ciation for Computational Linguistics (EACL). 2021.

[88] Shruti Palaskar et al. ‘Multimodal Abstractive Summarization for How2 Videos’. In:

Annual Meeting of the Association for Computational Linguistics (ACL). Florence,

Italy: Association for Computational Linguistics, July 2019, pp. 6587–6596.

[89] Jacob Parnell, Inigo Jauregi Unanue and Massimo Piccardi. ‘RewardsOfSum: Explor-

ing Reinforcement Learning Rewards for Summarisation’. In: Workshop on Structured

Prediction for NLP (SPNLP). Online: Association for Computational Linguistics,

2021, pp. 1–11.

[90] Ramakanth Pasunuru et al. ‘Data Augmentation for Abstractive Query-Focused Multi-

Document Summarization’. In: AAAI Conference on Artificial Intelligence. Vol. 35.

15. May 2021, pp. 13666–13674.

[91] Adam Pauls and Dan Klein. ‘Large-Scale Syntactic Language Modeling with Treelets’.

In: Annual Meeting of the Association for Computational Linguistics (ACL). Jeju

Island, Korea: Association for Computational Linguistics, 2012, pp. 959–968.

[92] Romain Paulus, Caiming Xiong and Richard Socher. ‘A Deep Reinforced Model for

Abstractive Summarization’. In: International Conference on Learning Representa-

tions (ICLR). 2018.

[93] Jeffrey Pennington, Richard Socher and Christopher Manning. ‘Glove: Global Vectors

for Word Representation’. In: Conference on Empirical Methods in Natural Language

Processing (EMNLP). 2014.

[94] Gabriel Peyré, Marco Cuturi et al. ‘Computational optimal transport: With applications

to data science’. In: Foundations and Trends in Machine Learning (2019).

[95] Laura Plaza, Alberto Díaz and Pablo Gervás. ‘A semantic graph-based approach to

biomedical summarisation’. In: Artificial Intelligence in Medicine (2011).
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