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Abstract

Predictive data analysis has been identified as essential to support intelligent energy man-

agement for better energy sustainability and efficiency. Previous studies have showcased that

predicted energy information can benefit consumers economically by optimising energy usage

while assisting energy suppliers in efficiently planning power distribution and implementing

DR energy management. Recent advances in the Internet of Things (IoT) and Information and

Communication Technologies (ICT) simplify the collection of desired energy data streams

for further informatics analysis. With such energy data, machine learning (ML) prevails to

effectively infer future knowledge associated with online energy resource scheduling, e.g.,

renewable energy generation, load demands and electricity prices. Although some early

efforts have been dedicated to incorporating ML into energy management, computation re-

source limitations and data scarcity are two pressing challenges for on-site predictive energy

analysis. Due to privacy concerns, users prefer on-premise model establishment instead

of placing the training task in the cloud and sharing sensitive energy data. But most ML

algorithms rely heavily on solid computational resources and vast amounts of labelled data

to succeed. Users are often unable to fulfil the requirements in real-world scenarios. To

this end, this thesis uses different perspectives to propose several affordable solutions for

performing on-demand intelligent data analysis on local resource-constrained devices. Also,

three algorithm-specific training frameworks have been developed to solve data shortage

by leveraging easily obtainable but extensive data sources based on transfer learning and

federated learning. We implement our design under practical settings for photovoltaic (PV)

power prediction and non-intrusive load monitoring (NILM) as case studies to fully evaluate

their performances.
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CHAPTER 1

Introduction

Energy consumption has increased dramatically due to continued rapid economic growth, the

industrial revival, and the diverse life-related human demands. Energy resource exhaustion

and negative environmental footprint have raised significant concerns worldwide and become

critical areas of interest in different research communities. From [46, 20], it is worth noting

that electricity generation comprises 25% of the world’s carbon emissions, and up to 41% of

major energy consumption comes from the residential, commercial, and public service sectors.

In past decades, a considerable number of studies have focused on improving energy efficiency

and environmental sustainability in these sectors [117, 132, 48]. The concept of sustainable

computing has flourished in the Information Technology (IT) field. The wide deployment

of modern computing systems brings imperative demands for solving energy-related issues.

The main direction for such a goal is to explore energy schedulers, which can orchestrate

infrastructures to perform intelligent control of energy usage based on multi-source energy

generation.

As the most popular scheme for energy management, demand response (DR) has been widely

adopted to reduce the end users’ electricity tariff and increase the utilisation of renewable

energies by flattening the load profile according to dynamic electricity prices [6]. DR also

helps the energy supplier relieve the high pressure of electricity distribution and lower the

risk of blackouts due to overload around peak hours, improving the stability of the power

grid. Previous studies have proposed substantial energy management policies based on the

DR scheme from different perspectives, facilitating the development of energy management

systems (EMS) [24, 138]. However, uncertainties and intermittency, which inherently exist

in load demands and renewable energy generation, pose significant challenges to the online

1
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optimisation of energy usage. Emerging energy storage techniques further complicate real-

time decision making for EMS. As such, addressing such uncertainties is a prerequisite for

successful energy management. Fortunately, the advent of Machine learning (ML) techniques

empowers predictive information analysis of load demands and renewable energy generation,

making them essential tools for alleviating negative impacts due to uncertainties.

Energy usage and generation information has been recognised as key to improving energy

efficiency and environmental sustainability. Recent advances in the Internet of Things (IoT)

and Information and Communication Technologies (ICT) make it easy to achieve information

exchange and collect desired energy data for further informatics analysis [102, 94]. With

sufficient appliance-level consumption data, powerful ML approaches enable deep mining

of consumer usage patterns, reflecting various indoor activities practiced in daily life. Also,

various tailored ML algorithms allow practical forecasts on renewable energy generation

based on historical records, though such generation correlates to multiple environmental

variables with robust randomness, such as irradiance, temperature, humidity, and wind speed.

Consumers can reap economic benefits by integrating sustainable energy and optimising

energy management using predicted energy information. Such information can help the

energy suppliers efficiently schedule power distribution and implement DR, whilst also

considering consumers’ comfort.

However, the success of most ML algorithms relies highly on powerful computation resources

and large-scale labelled data [136]. In real-life scenarios, users are not always able to meet

the requirements. As we know, energy data is embedded with sensitive information about

individuals. Due to privacy concerns, electricity users prefer on-site model training, rather

than placing the training work in a cloud center. The resource-constrained local devices are

incapable of handling substantial workloads with diverse computational patterns, such as

rapid gradient computation, complex matrix calculation, and large-scale optimum search. To

this end, we propose a cost-effective means to perform on-demand intelligent data analysis

at local places using edge devices. As a case study, we implement photovoltaic (PV) power

prediction to thoroughly demonstrate the outstanding performance of our solution. Collecting

and labelling energy data is prohibitively labour-expensive, time-consuming, and error-prone.
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Furthermore, massive sensing equipment significantly increases capital investment at user

premises. The lack of labelled data will lead to failure in model construction for the target task.

In practice, a sufficient amount of data sources from other domains are available for model

training. Thus, effectively leveraging accessible data sources to train a model safely is a core

research challenge. Federated learning and transfer learning techniques are vital solutions

to data scarcity. They also bring fruitful benefits to other predictive analysis applications.

Prior works utilising these two techniques, however, are limited in the energy field. In this

thesis, we fill the technical gaps and propose three algorithm-specific training methods to

solve data shortage. Two correspond to transfer learning, and one is federated learning-based.

In this thesis, we focus on the energy disaggregation task and examine the performances of

our solution by implementing these three methods under suitable settings according to human

demands and environmental constraints.

To be specific, this research makes the following contributions:

• To better leverage solar energy, we provide a lightweight and interpretable analytic

solution for reducing the limitations of evolving PV systems. In this work, we create

a cost-effective clustering-based training framework for achieving accurate PV

output forecasting. Our framework orchestrates different predictors to lower forecast

errors by combining weather clustering and temporal pattern aggregation. Bayesian

optimisation is applied to find the appropriate time step size to learn full temporal

meteorological trends, whilst reaching an optimal trade-off between accuracy and

running costs. We first attempt to integrate two variants of gradient boosting decision

trees (GBDT) into our designed framework due to their low computational cost

and impressive performance for non-linear regression problems. To investigate

our solution’s performance, we implement it on a single powerful machine, then

on a resource-constrained edge cluster, and conduct three groups of comparative

experiments with other benchmark algorithms. The results show that our approach

outperforms the other learning algorithms and demonstrates the potential of boosting

trees for informative on-site prediction, especially when only edge devices with

limited computation capacities are available.
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• We also extend the application of GBDT to non-intrusive load monitoring (NILM)

and tackle two practical issues, data scarcity and domain shift. From our previous

work, LightGBM, as an effective implementation of GBDT, exhibits superiority in

accuracy and cost-efficiency compared with other ML algorithms. Hence, we choose

to use it as a base model to achieve energy disaggregation. We stitch together the

sequence-to-point training paradigm and LightGBM to thoroughly learn the signa-

tures of appliances from a long-term time series with low computation and storage

overhead. However, data shortage raises major concerns in practical applications

since data collection and manual annotation are time-consuming and expensive.

Lack of diversified training data often leads to low generality of boosting trees

when serving cross-domain tasks, due to statistical misalignment between different

domains. Also, the establishment of a new model, associated with considerable

hyper-parameter updates, will incur high computation overhead, even if limited

valuable target data can be used for training. To address such limitations, we propose

an adaptive model-based transfer learning approach for GBDT, enabling the re-use

of the knowledge in a fully-trained model. As the source data is privacy sensitive for

end users, our solution is designed for source-free training environments where only

limited labelled target data can be accessed. The experiment results indicate that our

developed approach successfully realises model transfer and maintains comparable

accuracy in the unseen target domain.

• We address data shortage and domain shift issues encountered by deep networks

for NILM applications. Currently, massive open-source datasets are available for

NILM studies, offering opportunities to improve the generality of prediction models.

This research trend urges a new need for a feasible method to realise multi-source

learning and alleviate the impacts of domain shift. In this work, we mathematically

formulate the multi-source domain adaptation for energy disaggregation and prove a

new generalisation bound of target risk in terms of weighted source risk and domain

discrepancy. Our induced domain discrepancy jointly considers the marginal shift

and conditional shift. Based on our bound, we develop a hybrid loss-driven multi-

source domain adversarial network (HLD-MDAN) to learn domain-invariant feature
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representations and structures for cross-domain tasks. Extensive experimental studies

validate our solution’s efficacy and superiority in single-source and multi-source

learning settings, compared with other state-of-the-art algorithms.

• We propose the use of a cost-effective collaborative learning framework, namely

Fed-GBM, to overcome the low model fitting of local on-site training in NILM

applications due to restricted data size. In Fed-GBM, a two-stage voting scheme

is employed to protect the users from privacy leakage and reduce communication

costs by locally filtering out invaluable data (histograms in the tree growth). To

boost resource utilisation, node parallelism for tree development is also introduced

with an online scheduling technique. Such technical designs greatly lower training

costs across different participants. We conduct extensive experimental research on

Fed-GBM, with the results proving that it performs admirably in all benchmark

assessments. This work broadens the horizon of GBDT algorithms for informative

analysis in the energy field and makes it possible to handle complex environments.

The remaining parts of the thesis are organised as follows. Chapter 2 introduces a lightweight

cluster-based training framework to overcome the limitations of PV systems and resource

constraints for edge learning. It also examines the feasibility and cost-efficiency of GBDT for

time-series predictive analysis. Chapter 3 extends the learning method to the NILM problem.

A source-free model-based transfer learning approach is proposed to mitigate the effects

of data scarcity in GBDT modelling. Chapter 4 delves deeper into the challenges of data

shortage and domain shift encountered by deep neural networks in NILM applications. It

introduces a novel multi-source learning framework and a domain adaptation approach for

cross-domain tasks. Unlike the application scenario in Chapter 3, where source data privacy

is a concern, this approach is particularly suitable when sufficient labelled source data are

open-source and easy-to-get for model training. Building upon the insights gained from

Chapter 2 and 3, Chapter 5 presents an alternative approach to address data scarcity from the

collaborative aspect. It proposes a cost-effective horizontal federated learning framework,

Fed-GBM, to enable the implementation of joint model training across different end users.

Chapter 6 presents the conclusion of all research works and briefly discusses future work.



CHAPTER 2

Lightweight Photovoltaic Power Prediction for Edge Computing

To meet the need for energy savings in Internet of Things (IoT) systems, solar energy has

been increasingly exploited to serve as a green and renewable source to allow systems to

better operate in an energy-efficient way. In this respect, accurate PV power output prediction

is a prerequisite for any energy-saving scheme employed in these systems. In this work,

we propose a unified training framework combined with the tree-boosting algorithm to

obtain a prediction model, which can provide short-term predictions of PV power output.

Compared with the training in a single powerful machine, our proposed framework is more

energy-efficient and fits into devices with limited computation and storage resources. The

experimental results show that our proposed framework is superior to other benchmark

machine learning algorithms.

2.1 Introduction

In recent years, the Internet of Things (IoT) paradigm has been increasingly applied to all

spheres of our daily lives. IoT applications can be found in a wide range of daily activities,

including home automation, health care, agriculture, smart cities and many more; and as an

enabler for bidirectional object-object and human-object interactions, eventually realising the

vision of a fully connected world. As reported in [106], it was expected that there would be

20.4 billion IoT devices deployed worldwide by 2020. With the dense deployment of IoT

devices, IoT applications will inevitably generate a massive amount of data, which has to

be processed, stored and properly accessed by end users [61]. Edge computing [18], as an

emerging distributed computing paradigm, has been introduced to enable data processing
6
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and on-demand services at the edge of the network for IoT applications. Thus, the desired

capabilities of large scale cloud data centers, such as rich resources of computation and

storage, can be used by IoT devices from the edge of the network.

Considering the growing concerns over building greener and more sustainable computing

systems, in [59], the authors argue that energy related issues are equally important to other

research efforts of edge computing, e.g. flexibility, scalability, security, programmability, and

real-time processing. To help reduce the energy consumption of edge computing systems,

the use of renewable energy has been considered an effective and sustainable means to

achieve the objective. To date, the most widely used and reliable renewable energy resource

is solar energy where electricity can be easily produced from photovoltaic (PV) panels.

However, solar power generation is heavily reliant on multiple meteorological factors, e.g.

solar irradiance, cloud opacity, and air temperature. Considering the uncertain nature of

meteorological factors, accurate PV power output prediction plays a vital role to enable

the smooth running of edge computing systems with solar energy supply. A number of

research studies have been dedicated to developing prediction models with the focus on

either improving forecasting accuracy or lowering the computation overhead. The existing

approaches used for PV output prediction can be broadly classified into two types [30]: classic

statistical algorithms, including numerical weather prediction (NWP) and Auto-Regressive

and Moving Average Model (ARMA); and machine learning algorithms, including extreme

learning machine (ELM), support vector regression (SVR), general regression neural network

(GRNN) and Artificial Neural Network (ANN). However, the models that can provide high

accuracy in prediction mostly need high computation and storage capacities at run-time. They

generally perform poorly in edge computing systems with limited resource. On the other

hand, lightweight algorithms are unable to provide good prediction results for further usage.

To tackle this issue, in this work, we develop an effective clustering-based training framework

as a computational model for predicting PV power output. In the framework, we integrate

temporal pattern aggregation with weather clustering to proactively reduce prediction errors.

To comprehensively consider temporal meteorological patterns, a Bayesian optimisation

algorithm is employed to search for the optimal time step size which leads to minimum
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prediction errors. In addition to that, we utilise two tree-based machine learning methods,

tree-structured self-organising map (TS-SOM) and tree-gradient boosting algorithm XG-

Boost/LightGBM, to realise the weather clustering and the training of the regression model

respectively. By using our proposed approach, accurate PV power output prediction can be

achieved with low computation overhead which makes it suitable for use on a wide range of

edge devices. The main contributions of this chapter are:

(1) We develop a lightweight computational framework for PV output prediction, which

significantly reduces the prediction error by explicitly utilising the temporal sequen-

tial patterns of solar energy generation.

(2) We explore the correlations between the time horizon of selected meteorological

patterns and prediction accuracy and integrate Bayesian optimisation algorithms into

our designed training framework to search for the optimal time steps for temporal

pattern aggregation.

(3) We implement two variants of boosting trees on an edge computing platform with

limited computation and storage resources to achieve better system energy efficiency.

2.2 Background

In this section, we investigate state-of-the-art techniques for PV output prediction and discuss

their respective features and contributions. Conventionally, there are a number of statistical

learning algorithms devoted to performing PV output prediction, such as Auto-Regressive

and Moving Average Model (ARMA) and Autoregressive Integrated Moving Average Model

(ARIMA) [96]. These methods enable direct prediction based on historical power output data

collected from PV monitor systems and exhibit time series characteristics of solar energy

generation. However, these approaches cannot comprehensively consider all the physical

factors for PV output prediction, inevitably resulting in high deviation between targets and

predictions. By contrast, a number of indirect prediction methods have achieved increasing

popularity in recent research, which select diverse meteorological patterns as input variables,

such as solar radiation, temperature, wind speed, wind direction, and humidity [57]. It has
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been proved that there is a strong correlation between solar energy generation and some

meteorological factors [133]. Thus, these indirect prediction approaches are broadly adopted

and show good performance on accuracy in practice. These indirect prediction approaches can

be further classified into traditional machine learning methods and artificial neural network

(ANN) techniques.

Instead of performing complex analysis on meteorological information and power outputs

to find specific rules for solar energy generation, the machine learning methods simplify the

prediction process by solely learning model parameters based on historical data, and retaining

the learned knowledge in a model. Support vector regression (SVR) is an extension of support

vector machine (SVM) to address non-linear regression on solar energy generation forecast

[32]. The computational complexity of SVR is not proportional to the dimensionality of the

input space and SVR shows excellent generalization capability. However, it is challenging for

SVR to perform training on large-scale sample data. Generalised regression neural network

(GRNN) is also adopted for PV output prediction in [14]. The network of GRNN is trained

by employing a single-pass learning strategy, thus it speeds up model training significantly. In

addition, some other machine learning algorithms with respective advantages and drawbacks,

such as K-nearest neighbours (KNN) [127], and multivariable linear regression (MLR)

[108] have been applied in this field as well. Regarding ANN models, recent research

increasingly uses ANN as the main prediction model to achieve solar energy generation

forecasts. In particular, recurrent neural network (RNN) is developed to enable the capability

of coping with temporal sequence problems and deliver excellent performance on nonlinear

mapping. However, the accuracy of ANN closely depends on massive data and the selection

of appropriate parameters [2].

In recent years, a number of ensemble methods have been explored to improve performance

in this field, some of which provide better accuracy than a single prediction model. In [66],

dynamic ensembles of neural networks are designed for one day-ahead PV output prediction.

The work in [122] integrates three methods, including ELM, GRNN and Elman, to achieve

short-term PV output prediction. In addition, tree-based ensemble methods, such as gradient

boosting decision tree (GBDT) and XGBoost exploit their advantages and outperform most
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TABLE 2.1: Weather features

Field Description Pearson correlation
ghi Global horizontal irradiance for center value 0.9767

ghi10 Global horizontal irradiance for 10% value 0.9629
ghi90 Global horizontal irradiance for 90% value 0.9744
dni Direct normal irradiance for center value 0.9275

dni10 Direct normal irradiance for 10% value 0.9077
dni90 Direct normal irradiance for 90% value 0.8644
dhi Diffuse horizontal irradiance 0.9314
ebh Direct horizontal irradiance 0.6617

air_temp Air temperature 0.3350
zenith Solar zenith angle. Range: 0∼180 -0.8013

azimuth Solar azimuth angle. Range: -180∼180 -0.0092
cloud opacity The quantity of cloud -0.2184

single models on non-continuous prediction for short-term PV power output [89]. However,

these approaches are time-consuming in model training, resulting in high memory usage and

computation cost, which is not appropriate for edge devices. To address the above limitations,

in this work, we leverage the power of the ensemble learning approach GBDT and combine

it with our proposed cluster-based training framework to realise PV output prediction. Our

solution can enhance prediction accuracy and lower computation and storage costs, which is

suitable for edge computing environments with resource constraints and real-time prediction

requirements.

2.3 Lightweight PV Prediction Model

In this section, we propose a lightweight computational framework for PV output prediction;

its overall design is given in Figure 2.1. The framework is comprised of three functional

components, namely temporal pattern aggregation, weather clustering, and model training.

Also, the weather features shown in Table 2.1 are used to establish prediction models.
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FIGURE 2.1: Overview of the framework for establishing prediction model

2.3.1 Temporal Patterns Aggregation

It is evident that meteorological factors can affect the PV power output, thus any noticeable

changes in weather conditions will cause sudden spikes and falls to occur in the PV output

curves [75]. If the temporal sequence pattern of the meteorological factors is not consciously

considered, an inaccurate prediction could easily occur [121]. Thus, to further enhance the

prediction accuracy, it is crucial to aggregate the temporal meteorological patterns before

performing the weather clustering and training of the prediction model.

In this step, the iterative strategy as shown in Figure 2.2 is used to construct the dataset for

weather clustering and model training respectively, but with different features. To construct

the dataset for the use of weather clustering, we employed all features listed in Table 2.1

to ensure the factors affecting weather are maximally involved. Let Wt denote a vector of

selected weather features at time t, and let n denote the selected size of time steps as the time

horizon for the vector combination. At any time point t, all the feature vectors, ranging from
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FIGURE 2.2: The iterative strategy for temporal pattern aggregation

t-n+1 to t, are combined as a new vector Ct+1 = {Wt−n+1, ...,Wt−1,Wt}. The vector Ct+1

represents the weather condition at time t+1 and will be used as a data sample for weather

clustering. By doing so, new data samples at different future time points can be iteratively

generated.

To determine the degree of correlation between the weather features and PV power output,

Pearson correlation coefficients are used to establish the extent to which these features impact

solar power generation. As listed in Table 2.1, it is not hard to observe that Global Horizontal

Irradiance (GHI), Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI)

have a strong correlation with PV power output and Pearson correlation of these features is

larger than 0.8. Besides, [84] demonstrates that the ratio of DHI and GHI can adequately

reflect the dynamics of solar energy generation. Thus, we only select the weather features that

represent solar irradiance as inputs to perform PV power output prediction model training,

including GHI, DNI, DHI, and zenith, which is denoted as I. Besides, a certain range of the

historical PV power output p is also used as input variables to reduce the computational cost

by learning the historical pattern from the missing weather features. By employing the same

strategy, at any time point t we aggregate all the selected feature vectors from t-n+1 to t as a

new vector, which can be denoted as Ft+1 = {It−n+1, pt−n+1, ..., It−1, pt−1, It, pt}. The newly

generated feature vector Ft+1 considers the temporal sequence nature of the weather and PV

power output, and enables comprehensive representation for PV power output at time t+1.
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2.3.2 Searching for Optimal Time Steps

Algorithm 1 Searching for optimal time steps
Input: D is the observed meteorological data

1: Tmax: is the maximum number of searching iteration
2: f : is the loss function for prediction model
3: ξ: is the search space
4:

Output: xbest is the selected time-step size resulting in lowest prediction errors
5: S ← InitialSampling(D, f )
6: for t = T0 to Tmax do
7: p(Y |S, D)← GaussBuild(S)
8: xnew ← argmaxx∈ξ Acquisition(x, p(Y |S, D))
9: M ← BuildModel(xnew)

10: ynew ← f (M , D)
11: S ← S ∪ (xnew, ynew)
12: end forreturn xbest

To obtain the optimal size of time steps for aggregating temporal patterns, we employed

a Bayesian optimization algorithm [97] in this work. A Bayesian optimization algorithm

is a sequential search technique that enables a search for a global optimization solution

for black-box functions in a cost-efficient way. Algorithm 1 is the pseudo code of using

a Bayesian optimization algorithm to search for the optimal value. Initially, several sizes

of time steps are randomly sampled and prediction errors for each selected time step size

are calculated respectively. As depicted in Algorithm 1, the result S is a set of vectors (xi,

yi). xi denotes the ith sampled size of time steps and yi is the corresponding prediction loss

for the model that is trained when xi is selected as the size of time steps to achieve pattern

aggregation. From line 2 to 8, a search for the optimal solution is performed iteratively.

Within the iteration, the first step is to build a Gaussian Distribution Model. Based on

the sample data contained in S, the values of mean and covariance kernel can be easily

derived. Then, based on the Gaussian Distribution Model, we utilize a standard acquisition

function, Expected Improvement Criterion (EI), to calculate the size of step times xnew that

brings about maximum (EI) value. Once the xnew is selected, a new model for PV output

prediction will be established and corresponding prediction loss can be calculated. Finally,

new vector (xnew, ynew) is added into S. With this method, the optimal size of time steps can

be obtained effectively and efficiently. Apart from Bayesian optimization, swarm intelligence
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Optimization [15], genetic algorithm [44], or differential evolution [65] also can be taken into

consideration for time step selection.

2.3.3 Weather Clustering

Level 1

Level 2

Level 3

SOM Clustering

Generated Clusters Subset

FIGURE 2.3: The Framework of Tree-based SOM

Algorithm 2 TS-SOM
Input: dataset: is the aggregated dataset for weather clustering

1: θ: represents pre-set thresholds that is used to early stop clustering
2: attribute: represents attributes of TS-SOM tree, including depth, number of leaves

Output: clusters: are subsets retrieved from clustering
3: if StoppingCheck(θ, attribute, dataset) then
4: clusters← dataset return clusters
5: else
6: nodes← SOMClustering(dataset)
7: end if
8: attribute← attributeUpdate(attribute)
9: for each node ∈ nodes do

10: leaves← TS-SOM(node, θ, attribute)
11: AddClusters(leaves)
12: end for
13: clusters← GetClusters() return clusters

To proactively reduce prediction errors, a clustering-based model training method is adopted

to establish multiple prediction models for various synoptic types. Once the synoptic type is



2.3 LIGHTWEIGHT PV PREDICTION MODEL 15

determined, we can invoke a certain prediction model for further processing. However, there is

no standardisation that is globally accepted for weather classification, so that the classification

is substantially subjective and cannot precisely reflect the variation of meteorological factors.

Thus, weather clustering plays a vital role in establishment of an accurate PV power prediction

model. Once temporal pattern aggregation is finished, a dataset containing new feature vectors

will be uploaded to the weather clustering module. In this chapter, TS-SOM is employed to

realise the weather clustering. It is a hierarchical clustering method to divide the dataset into

multiple groups and each node of the tree is mapped to a traditional SOM neural network for

further clustering. It enables increasingly fine-grained weather clustering from the root to the

leaf. As shown in Figure 2.3, the root of a tree in level 1 contains all the data samples that

are involved in performing weather clustering. By implementing SOM clustering on the root,

the original dataset is partitioned into different groups and each node on level 2 represents

a subset with a unique centroid. In level 3, a new SOM neural network is established for

each node in level 2 and the dataset contained in each node of level 2 is further partitioned

into subsets of smaller size. Based on these partitioned subsets at level 3, the corresponding

child nodes will then grow iteratively. After finishing the training of a SOM neural network

in the hierarchical clustering procedure, there will be dead nodes without any data samples.

Thus, the actual number of child nodes generated from their direct parents located at the

upper layer needs to be adequately adjusted by analysing the feature map of the trained

network, where the feature map of SOM reflects the data structure because the corresponding

centroids show the distribution of different clusters. To avoid overfitting, pre-pruning is

expected to be implemented in TS-SOM. We can set some thresholds for different metrics,

including the number of leaves, tree depth, and most importantly, the number of data samples

in each leaf. Once any threshold is violated, the newly generated node will be pruned and

the tree-building process for the corresponding subtree will be stopped early. The specific

description of TS-SOM is shown in Algorithm 2. In this method, the total number of leaves

can be recursively retrieved.

Compared with the traditional SOM, TS-SOM enables parallel processing and can be im-

plemented in the edge computing platform, which, meanwhile, helps speed up the training

process to a large extent. Besides, this approach is more efficient for clustering hierarchical
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data of large size. In general, the weather conditions can be roughly classified into four

synoptic types, sunny, cloudy, rainy, and overcast. However, sometimes a partially cloudy day

resembles a sunny day for PV power generation. The hierarchical data clustering prevents the

case of the incorrect model from being invoked due to the wrong labelling of meteorological

data, which effectively enhances the prediction accuracy.

In addition, the weather clustering module is also effective in handling data loss, which is

often encountered in PV output prediction. More precisely, the latest meteorological data is

not always retrieved on time since inherent and unpredictable network delays could suddenly

occur during the data transmission. Once this is imposed, the corresponding model needs to

use the centroid of the same cluster as input to make the prediction. If data loss only occurs in

partial feature dimensions, KNN and iterative imputation techniques will support inferring

the missing part based on the other historical instances of the same cluster. By doing so, a

relatively reliable short-term prediction can still be performed without the latest weather data.

2.3.4 Gradient Boosting Tree for PV Prediction

Based on the clustering analysis of the historical meteorological data, the prediction models

are established respectively for different clusters. In this study, either XGBoost or LightGBM

can be utilised to perform short-term PV output prediction. Similar to the gradient boosting

decision tree (GBDT), XGBoost and LightGBM are tree-based models and employ an additive

training strategy. They ensemble a set of weak learners generated at different time steps of the

training, mostly using Classification and Regression Tree (CART), and the intermediate results

are summed up as the final prediction output. Unlike other implementations of boosting

algorithm presented in [95] [105], which use pre-sorted algorithms, LightGBM employs

a Histogram-based algorithm to compute best split points. For the traditional pre-sorted

algorithm, the values of variance gain for all possible split points on pre-sorted feature values

need to be calculated, which is inefficient and unexpectedly brings about huge overhead on

both computation and storage resources. Instead, a Histogram-based algorithm enhances

training efficiency and lowers memory usage to a large extent. Firstly, it maps continuous

feature values to discrete values and then splits these values into corresponding bins. Finally,
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it uses these bins to construct histograms for all the features during the model training. In each

bin, the number of data samples and sum of negative gradients are stored to search for the best

split point. Besides, to further enhance the construction speed of histograms in the training

process, a histogram differential acceleration strategy is employed. After a node partition is

finished, only the histogram construction of a new leaf will bring about computation cost, the

histogram of another leaf can be obtained by performing difference between the histogram of

its parent node and that of its brother. Instead of growing the tree level wise, like XGBoost

[25], LightGBM applies a leaf-wise algorithm to grow the tree. In this manner, the leaf with

the better gain will be assigned higher priority to perform node partition whereas a level-

wise growing strategy always splits all the nodes located in the same level. The leaf-wise

algorithm can provide better performance on accuracy. To further reduce computational

complexities when the feature dimension is high and data size is large, two novel techniques,

namely Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB)

are firstly proposed and integrated into the model training procedure. Because instances with

large gradients will contribute more to boosting information gain, GOSS randomly drops

the instances with small gradients and keeps the instance with large gradients. By using this

method, the size of training data is significantly reduced. Regarding the EFB algorithm, the

feature dimension can be shrunk by bundling the features that rarely take nonzero values

simultaneously. The theoretical analysis of these two techniques is elaborated in [50]. As in

the quantitative studies conducted in [50], LightGBM greatly improves the convergence of

training and the accuracy of prediction by employing these techniques.

In addition, LightGBM achieves optimisation in parallel learning, which enables distributed

model training in different working nodes. A voting parallel algorithm is firstly proposed

to better realise a trade-off between communication efficiency and accuracy in LightGBM.

For the conventional data-parallel algorithm, in order to globally identify the best split

points, working nodes need to communicate with each other to retrieve the histograms of

all features generated locally. The communication cost is proportional to the number of

features and histogram size. To lower the communication cost, the voting parallel algorithm

employs two-stage voting strategies, local voting and global voting respectively. Firstly, top-k

features with higher information gain will be selected locally at each working node. Then the
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candidate features will be ranked based on the times being selected, and top-2k features will

be chosen from the rank list. Within these 2k candidates, the histograms of each feature will

be globally aggregated and the information gain of each split point for each feature will be

calculated. After realising further global comparisons, the best split point can be identified.

The communication cost for this method is O(1). In our work, we integrate the voting parallel

algorithm into the edge computing paradigm, and thus the communication cost among edge

devices in the model training can be reduced to a large extent.

2.3.5 Interpretability Analysis for the Prediction Model

Unlike the linear models and the rule-based models that directly incorporate interpretability

into the structure of the model, GBDT is not an intrinsically interpretable machine learning

approach. To obtain its interpretability, we use a Post-hoc global explanation method [33] to

understand what knowledge is retained in the model. The feature importance, a widely used

metric in the global explanation method, is adopted to explicitly demonstrate the statistical

contribution of each selected feature for the prediction. As a type of tree-based ensemble

model, there are three traditional feature attribution methods to measure feature importance

for GBDT, namely, Weight, Gain and Cover [33]. Weight represents the relative number of

times a feature that is used to split across all the ensemble’s trees. It indicates how frequently

a particular feature appears in the decision trees during the model’s training process. Gain

measures the average training loss reduction as the gain when using a feature for node partition.

Features with higher gain values are considered more informative, as they contribute more to

reducing the model’s prediction error. Cover represents the relative coverage of the feature

across all the trees in the ensemble. It is the percentage of samples that pass through the

decision nodes where the feature is used for splitting, relative to the total number of samples

in the dataset. Features with higher cover values are used to make decisions for a larger

portion of the dataset, indicating their importance in capturing widespread patterns in the

data.

However, according to [74], these three methods violate the consistency principle of feature

attribution, where the feature with the highest importance will not decrease when the model
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changes. Meanwhile, more importance should be attributed to the features close to the root

rather than those close to the leaves. LIME (Local Interpretable Model-agnostic Explanations),

as an interpretable machine learning technique, provides explanations for individual instances

but not necessarily capturing the global behaviour of the model. Since it is based on simple

linear models, it may struggle to capture the intricacies of such complex models. Considering

such limitations, adopting these methods for measuring global feature importance is not suffi-

ciently reliable. Alternatively, the SHapley Additive Explanation (SHAP) method averages

all possible orderings of the features, rather than just the ordering specified by their position

in the tree [73]. By doing so, SHAP guarantees that the feature with the highest importance

remains unchanged in different regression models to solve the same issue. SHAP is then used

as a measurement tool to assess the importance of features within a trained boosting tree,

which intuitively demonstrates the learned representations and knowledge.

2.4 Result and Discussion

To evaluate the performance of our proposed framework and tree-boosting method for short-

term PV output prediction, we gathered one year of PV power output data from the PV panels

and obtained the corresponding meteorological data from the weather station installed at

the same location. The data was sampled every 30 minutes from Solcast [1], a platform

offering various services and tools to help individuals make informed decisions regarding

solar energy generation. Subsequently, we divided the collected records into two distinct

portions: 80% for the training set and 20% for the test set. We implemented the computational

framework presented in Section 2.3 on both powerful desktop computer and edge devices,

and the performance of different models for the PV output prediction is comprehensively

evaluated. The experiment results are presented accordingly.

2.4.1 Experimental Setup

To realise evaluation from different perspectives, we set up two testbeds, a powerful desktop

computer, and a cluster of edge devices. The desktop computer with Intel i7-7700 (6c/12t)
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CPU, 32GB DDR memory, and SSD 2TB 7200rpm hard disk, is utilised to implement three

groups of different learning algorithms for PV output prediction respectively. The operating

system is Ubuntu 16.04, and the installed software packages for implementing the machine

learning algorithms are Python 3.7, Scikit-learn 0.21.3 and tensorflow 1.13.2. The accuracy

of different models can be evaluated comprehensively on this testbed.

We also built an edge device cluster that is comprised of three Raspberry Pi 3B, each of which

is with a quad-core CPU and 1 GB RAM. The cluster is responsible for comparing training

costs of different learning methods on resource-constrained devices. The operating system is

64-bit Ubuntu Mate, and Dask is used as a data analysing framework to build up a cluster and

support different workers of a cluster to achieve distributed model training.

2.4.2 Evaluation Metrics

To evaluate the prediction performance of these trained models, we selected three broadly used

metrics for measuring regression accuracy, namely, Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE) and coefficient of determination (denoted as “R2”). The definitions

are given below, where ŷ and y denotes prediction value and observed value respectively.

MAE =
1

N

N∑
t=1

|ŷ(t)− y(t)| (2.1)

The MAE is the average error value in a set of predictions. This is the average difference

between prediction and observed values and all differences are equally weighted.

RMSE =

√√√√ 1

N
×

N∑
t=1

(ŷ(t)− y(t))2 (2.2)

The RMSE examines the root of average squared difference between prediction and observed

values. It reflects the quality of a model with non-negative numbers. Values closer to zero are

better.



2.4 RESULT AND DISCUSSION 21

R2 = 1−
∑N

t=1 (y(t)− ŷ(t))
2∑N

t=1 (y(t)− y)
2

(2.3)

For the coefficient of determination, the range of “R2” is between 0 and 1. The closer the

value of “R2” is to 1, the more accurately the model will perform and better generalisation

performance is provided. In contrast, if the value is closer to 0, the predictions generated

from the model cannot reflect the targets. In addition, to further evaluate the satisfaction on

training cost of different models, training time and execution time are another two metrics

that will be measured respectively.

2.4.3 Pattern Aggregation Evaluation
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FIGURE 2.4: Accuracy of four prediction models with different sizes of time step
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To verify the necessity of temporal pattern aggregation within the model training procedure,

we evaluate the performance of different prediction models when the time horizon of temporal

pattern aggregation varies. To better illustrate the experiment results, the maximum time

horizon for the evaluation is six hours, thus the selected size of time steps does not exceed

twelve. The results of performance on accuracy for four models are shown in Figure 2.4.

As shown in Figure 2.4, the optimal time-step size resulting in the lowest RMSE value for

four models differs. The optimal size of time steps for both XGBoost and LightGBM is nine,

which means the accuracy for the predictions is highest when meteorological patterns within

four and a half hours engage in and contribute to PV output prediction. In contrast, only the

continuous weather feature vectors within five time steps will bring about the best prediction

performance for GRNN and the optimal size of time step for SVR is three. After analysing

the results, we figure out that the prediction accuracy for the four models will not vary linearly

along with the selected time-step size and it is challenging to set up a model to explore optimal

size of time steps for different prediction models. Thus it is necessary to implement Bayesian

optimisation algorithm to search for the best time-step size for temporal pattern aggregation,

especially when the sampling rate of training data is high and the prediction interval is very

short.

2.4.4 Prediction Performance Evaluation
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FIGURE 2.5: Performance comparison of different methods
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TABLE 2.2: Performance of all algorithms

Algorithm MAE RMSE R2

Group 1: Non-clustering-based
SVR 42.13 56.74 0.9469

GRNN 24.02 48.94 0.9536
XGBoost 18.94 40.55 0.9712

LightGBM 21.12 40.57 0.9712
Group 2: Clustering-based

SVR 38.31 51.42 0.9418
GRNN 19.82 46.85 0.9602

XGBoost 14.60 32.58 0.9825
LightGBM 16.79 35.49 0.9792

Group 3: Recurrent neural network
LSTM 25.12 45.90 0.9652
GRU 25.37 47.85 0.9610

TABLE 2.3: Time Cost of all algorithms

Algorithm Training(s) Execution(s)
Group 1: Non-clustering-based

SVR 0.4343 0.013
GRNN 0.5513 0.207

XGBoost 0.4735 0.00076
LightGBM 0.0540 0.00029

Group 2: Clustering-based
SVR 0.3130 0.0093

GRNN 0.1960 0.1016
XGBoost 1.0033 0.0067

LightGBM 0.1669 0.0022
Group 3: Recurrent neural network

LSTM 299.26 20.52
GRU 219.56 21.22

To get a better understanding of the performance and effectiveness of the clustering-based

training framework and tree-boosting algorithm, we implemented two boosting trees and

another four state-of-the-art methods for PV output prediction, namely GRNN, SVR, LSTM,

and GRU. Each method has its own advantages in non-linear fitting and regression problems.

We set up three experiment groups for comparison: Group 1: clustering-based machine

learning models (SVR, GRNN, XGBoost, and LightGBM), Group 2: non-clustering-based
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FIGURE 2.6: PV output prediction results of different learning methods for a
typical day (randomly selected from the test set)

machine learning models (SVR, GRNN, XGBoost, and LightGBM), Group 3: two types

of advanced recurrent neural network (LSTM and GRU). Table 2.2 provides the accuracy

results of all methods and Table 2.3 shows the time cost for model training and prediction

respectively. Figure 2.5 compares the values of RMSE generated by four prediction models

when two different training strategies are employed. The PV output prediction of a typical

day using these four models is also given in Figure. 2.6.

As shown in Table 2.2, in both Group 1 and Group 2, two ensemble methods (LightGBM

and XGBoost) provide better performance on the test data set with higher accuracy and a

lower error rate compared to the others. Besides, with more than 0.97 of R2, these two models

indicate that they can also provide better generalisation performance and are applicable to

diverse weather conditions. After investigating metrics of all models, we can see that the
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accuracy and applicability of SVR for PV output prediction are the worst. It explicitly indicates

that SVR cannot provide good convergence on datasets that exhibit temporal sequence

patterns. However, as shown in Figure 2.5, by employing the clustering-based training

strategy, the values of RMSE and MAE for SVR model are significantly decreased. Similarly,

compared with non-clustering-based models, the accuracy of both clustering-based XGBoost

and clustering-based LightGBM is enhanced as well. In contrast, it is interesting to observe

that clustering-based GRNN does not show marked reduction on prediction errors. The RMSE

of clustering-based GRNN only drops from 48.94 to 46.85.

In addition, to further investigate the performance of ensemble models for PV output pre-

diction, we also implemented LSTM and GRU respectively as a comparative experiment

group, because these two deep learning techniques draw increasing attention to copying with

temporal sequential problems. For both RNN models, we build up a three-layer network,

including input layer, RNN layer and output layer. In the RNN layer, the number of neurons

for each LSTM cell and GRU cell is 162 and 189 respectively, which provides the optimal

performance on the training dataset. By comparing the accuracy with models in Group 3, two

tree-based ensemble models markedly exhibit better performance no matter whether a cluster-

based training strategy is adopted or not. Most importantly, the training cost and execution

cost of RNN is far higher than XGBoost and LightGBM as shown in Table 2.3. Thus, without

a particular cost-efficient distributed training paradigm being employed, these two algorithms

cannot support model training in the edge devices. Moreover, we also measured the time cost

of making predictions on the test data set for other models. It is noteworthy that even though

the performance of XGBoost and LightGBM is similarly good, the time cost of XGBoost is

much higher than LightGBM, especially in the model training. Considering limited resources

are available on edge devices, LightGBM is more appropriate for use to achieve high device

performance.

2.4.5 Performance Evaluation on Edge Devices

To investigate training cost and execution cost of different models on resource-constrained

edge devices, we implemented multiple machine learning models on the Raspberry Pi cluster.
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TABLE 2.4: Cost of all methods on edge devices

Algorithm Training time(s) Execution time(s)
SVR 3.90 0.15

GRNN 2.82 0.407
XGBoost 16.83 0.023

LightGBM 1.39 0.020

As shown in Table 2.4, even the execution time of XGBoost is relatively shorter than both

SVR and GRNN, its time cost on training is the highest one of all selected algorithms. Such a

result is similar to the experiment result obtained from the tests run on the desktop computer.

It is not hard to observe that the training time of LightGBM model is the shortest of all. This

is because LightGBM adopts Histogram-based algorithm to compute the best split points

for node partition, which enhances training efficiency to a large extent. Moreover, voting

parallel algorithm can support to significantly reduce the communication time for all working

nodes in the model training. On the other hand, we also evaluated the execution time of the

prediction of validation set. Both XGBoost and LightGBM have low execution time cost.

GRNN model took the longest time to perform prediction. This is due to GRNN model

contains a large number of parameters that is proportional to the amount of training data and

complex computation needs to be performed in each prediction. Thus, it leads to high resource

consumption on both computation and storage. Based on the analysis of experiment result,

we figure out that LightGBM brings the lowest time cost in both training and prediction, and

it is appropriate to be implemented on resource constrained edge devices.

2.4.6 Interpretability Evaluation

To evaluate the interpretability of our boosting tree for PV output prediction, we calculated the

SHAP values for XGBoost as shown in Figure. 2.7. The features are given in a non-ascending

order based on their importance. As shown in Figure. 2.7, the feature importance of "ghi" is

the highest, followed by "ghi10" and "ghi90". This indicates that the feature "ghi" makes the

most important contribution to the prediction. Apart from the global explanation, Figure. 2.7

also contains the localised explanation for individual weather condition. Each data point in

Figure. 2.7 is the Shapley value for an instance of a feature. After analysing the distribution
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FIGURE 2.7: Inpreterability Analysis Result
density of sample data on each feature, "ghi" clearly makes the most impact on the prediction

for most data samples.

2.5 Summary

In this chapter, we proposed an effective computational framework for fine-grained PV power

output prediction. In the framework, we integrate temporal pattern aggregation with weather

clustering to achieve the reduction of prediction errors. To derive the optimal size of time steps

that lead to minimum prediction errors, a Bayesian optimisation algorithm is employed for

temporal pattern aggregation. Besides, two tree-structured machine learning algorithms, TS-

SOM and boosting tree, are implemented on our designed framework, which are responsible

for weather clustering and PV output prediction respectively. To evaluate the performance of

our design, we implemented three groups of machine learning algorithms and investigated

training costs on different training environments. The experimental results show that our

proposed training framework integrated with Lightweight boosting tee can deliver excellent

performance on PV output prediction, and is appropriate for implementation on the edge

computing paradigm.



CHAPTER 3

Source-free Domain Adaptive Ensemble Trees for Non-intrusive Load

Monitoring

Sustainable energy management systems have been increasingly studied in recent years. Non-

intrusive load monitoring (NILM), as a key component, estimates the power consumption

of individual appliances from the main readings only. However, most NILM approaches

are computationally expensive, and their generality is negatively affected by the data drift

occurred when the models are used across domains. Besides, the threats of privacy violation

will rise in the model transfer due to the possible leakage of the personal information of the

users from the source domain. To address all these challenges, we designed a cost-efficient

learning method using a lightweight implementation of the gradient boosting tree for energy

disaggregation. We also proposed a source-free transfer learning algorithm using feature

importance analysis, which enhances the generalisation capability of tree-based ensemble

models applied in different domains while protecting privacy. We conducted experiments

with real-world data sets. The performance of our approach is superior to the state-of-the-art

solutions.

3.1 Introduction

The Internet of Things (IoT) enables a wide range of applications in energy management,

many of which cannot be best addressed by conventional approaches. Increasing efforts

are investing in delivering smart energy management systems for better energy utilisation

[83, 48, 131, 109]. Most online energy management strategies heavily rely on accurate

predictions of PV output and active incoming loads [72, 60]. At the user end, the information
28
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on energy supply and consumption helps the energy management systems schedule energy-

intensive tasks during periods of high solar production. The system can further optimise

energy usage by storing excess energy during sunny periods and discharging it during peak

load times when solar production is low. Consumers can reap economic benefits by integrating

sustainable energy and optimising energy management. Also, such information can help the

energy suppliers efficiently schedule power distribution and implement demand response

(DR) while consumers’ requirements are considered, improving the resilience and reliability

of grid power.

Thus, apart from PV output prediction as discussed in Chapter 2, appliance-level energy

usage information has been recognised as another key to improving energy efficiency and

environmental sustainability. As presented in [124], energy usage behaviours can be derived

from the energy consumption of individual devices, but with high costs and privacy concerns.

Recent advances in informatics analysis enable deep mining of consumer usage patterns

from energy consumption data, reflecting indoor activities in daily life. Previous studies

[90, 38, 35] indicate that up to 15% reduction in electricity consumption can be achieved by

estimated appliance-level consumption data. Hence, a cost-effective approach to realising

the acquisition of appliance-level information needs to be investigated. Non-Intrusive Load

Monitoring (NILM) is a cost-effective solution to extract appliance-specific individual electri-

city consumption from whole-house load readings. Unlike intrusive load monitoring (ILM),

NILM only needs a central power for collecting aggregated data, avoiding the high expense of

sensor installation and maintenance. NILM is a practical instance of a blind source separation

problem where only a single mixture observation is available to recover all individual sources.

The uncertainty of energy usage behaviour and unidentifiable operation status of diverse

appliances increase the difficulties of appliance-level estimation.

After several waves of technical revolution for NILM, various experimentally feasible schemes

have been developed over the years, including hidden Markov model (HMM) and its variants

[93] [17], and deep-learning [51] [129] [11]. However, these approaches associate with high

computational complexity and training overhead. In recent works [23] [40] [21], GBDT

(Gradient Boosting Decision Tree) indicates remarkable performance on computational cost,
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accuracy and interpretability for the non-linear regression problems with limited, well-defined

feature dimensions. It is therefore worthy of exploring the potential of using GBDT on NILM

for better cost-efficiency.

Also, most existing NILM approaches carry out both training and validation in the same

domain. The generalisation of those approaches is unknown when crossing different domains

without model retraining. Known from our daily life, the signature of any appliance correlates

to living habits and operating patterns in different areas. The model trained on the source

domain at one place could experience performance degradation in the target domain at

another place. More precisely, the captured informative patterns and the knowledge of feature

representation kept in the trained model may lose efficacy, as data drift could occur for the

changes in feature values and distribution. Most importantly, collecting sufficient labelled

data and training a new model for the target domain is very time-consuming and expensive,

especially in cold-start scenarios.

Transfer learning is a promising technique to address the above concerns for ML-based

applications. It can reuse the knowledge embedded in the trained model by transferring the

well-trained model to the target domain with the minimum amount of retraining [91]. The

new model will adjust in the target domain with new data to provide a similar or even better

performance of energy disaggregation. Transfer learning can significantly reduce the training

time and computational resources required for modelling, and accelerate the development and

deployment of real-world NILM applications.

In previous studies, numerous transfer learning techniques [34] [139] [5] [69] had been

developed based on neural networks for NILM applications. However, the lack of an effective

method for domain adaptation precluded the use of GBDT in NILM applications. It is thus

essential to develop a transfer learning algorithm for the tree-based models. In addition,

[80] indicates that sensitive and private information can be extracted from historical energy

readings with advanced data mining techniques. Traditional transfer learning approaches, e.g.

instance-based [53], feature-based [5] and relation-based [86], could expose the readings of

the source domain and leak the privacy of end-users. To this end, this chapter proposes a

source-free model-based transfer learning approach for a tree-based ensemble model to enable
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accurate energy disaggregation across different domains in practical use while addressing

privacy concerns. The model transfer only requires the data at the target scene without any

source data involved. In addition, the model-based approach retains the entire architecture of

the pre-trained model from the source domain, and only the partial weights and parameters

may be further fine-tuned on the limited target data for new tasks. As a result, the approach

significantly reduces computation and storage while leading to improved performance, faster

convergence, and enhanced generalisation.

The main contributions of this chapter are:

(1) We unprecedentedly integrate an ensemble learning approach with the sequence-to-

point optimisation for NILM by only analysing low frequency power reading.

(2) We detect the changes in statistical properties of two different domains by performing

interpretability analysis on the trained NILM models. Based on the interpretability

analysis result, we discuss the influence of such changes on the estimations and

develop an algorithm to reduce the risk of data drift during the model transfer.

(3) We propose a source-free transfer learning approach with joint consideration of

effectiveness and privacy for any tree-based ensemble model.

(4) We conduct a comprehensive evaluation of the tree-based ensemble models for NILM

application and validate the feasibility of the proposed transfer learning framework.

3.2 Background

Many studies have been done on energy disaggregation since NILM proposed in the 1980s,

while HMMs were the most favoured technique for the earlier works. A recent work [93]

developed an HMM-based energy disaggregation approach without a complete knowledge of

its load devices. An unsupervised approach, with non-parametric FHMM, achieved energy

disaggregation with low-sampling energy reading [47]. However, [118] argued that the

efficacy of HMMs reduces as the size of the problem increases due to the presence of local

optima. [76] introduced another energy disaggregation algorithm that preserves dependencies

between energy loads with variants of HMM and viterbi algorithm. This algorithm is efficient
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enough to achieve real-time energy disaggregation with high accuracy results. However,

the complexity of this algorithm grows exponentially with the increase of the number of

appliances, which limits its practicality and suitability. In addition, the study [55] pointed out

the flexibility of this algorithm is limited, due to sub-meters need to be installed weeks ahead

when it deploys to new scenarios. [78] showed the performance of HMM can degrade due

to the load features of target appliances. The later work [37] [31] [88] [45] [79] [129] [11]

used deep-learning techniques for energy disaggregation. Some of them [45] [79] reformed

the HMM by performing deep-learning approaches as the feature extractors, while other

works obtained energy disaggregation results directly with deep-learning approaches [129]

[11]. [129] proposed a Convolutional Neural Networks (CNNs) based sequence-to-point

approach to estimate the power consumption of the midpoint of an input sequence, which

outperformed the existing sequence-to-sequence approaches. However, most deep learning

methods significantly increase the training overhead, so they are hard to complete model

training on devices with limited computation and memory resources in a reasonable time.

To further reduce the expense of obtaining labelled samples from various domains, [101]

designed a data augmentation approach to improve the transferability and accuracy of DNN

(deep neural network)-based NILM models. [34] [139] [5] [69] explored using a transfer

learning scheme to apply the models trained on extensive data sets to different target domains.

[34] extended [129] by adopting a transfer learning scheme to build an energy disaggregation

model with a low sampling rate and limited training samples. [139] [5], and [69] adopted

the state-of-the-art neural networks, generative adversarial networks and probabilistic neural

networks to realise energy disaggregation. Domain adaptation is performed to narrow the

domain shift between the synthetic and real-world domains. For NN-based models, the

performance of traditional transfer learning techniques, such as parameter sharing and fine

tuning, highly depends on the similarity of statistical patterns across different domains [5].

So TrGAN in [5] and GADM in [69] employed feature-based approaches and improved

the performance by minimising statistical distance. However, the historical data from the

source domain is necessarily involved in the transfer learning. Such involvement could lead

to potential privacy leakage since [80] has demonstrated that the sensitive information is able

to extract from disaggregated energy loads. It is thus essential to study how to improve the
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performance of domain adaptation without leaking sensitive information from the source

domain.

3.3 Methodology

This section will specify all the techniques and our developed algorithm to enable cost-

efficient model training for the NILM problem and solve the performance degradation due to

data drift on new scenes. We will first give an introduction to LightGBM and the sequence-to-

point learning paradigm. The integration of these two techniques guarantees high accuracy

of energy disaggregation. Then, the data drift between different domains is theoretically

and empirically investigated using a feature importance measurement. We finally present a

source-free model-based domain adaptation method to realise model transfer based on the

feature importance results.

3.3.1 LightGBM for NILM

Tree-based ensemble models show consistently high performance and cost-efficiency on

nonlinear regression problems, particularly when the interpretability and hardware cost of

parameter tuning are counted. As a variant of GBDT, LightGBM is a tree-based ensemble

model and optimises training speed and memory consumption by using the histogram-based

algorithm. Due to its superiority of training efficiency against other methods, we use a

LightGBM as the learner for solving NILM. Similar to the original GBDT, LightGBM uses

an additive training strategy [50]. It integrates a set of weak learners iteratively generated at

different time steps of the training, mostly using Classification and Regression Tree (CART),

and the intermediate results are summed up as the final prediction output. In regression, the

objective function of LightGBM is defined as:

obj(t) =
1

n

n∑
i=1

l(yi, ŷi(t−1) + ft(xi)) + Ω(ft). (3.1)

where xi is a feature vector of the ith sample data, and yi is the corresponding label, which

is the actual power consumption of the target appliance in this study. ŷi(t−1) represents the
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prediction result of xi at time step t− 1 in the additive training process of LightGBM, and the

function ft is a new CART generated at the tth iteration, which is responsible for mapping a

certain training sample xi to the corresponding leaves. The function l is used to calculate the

squared error of each data sample. Ω(ft) represents the regularisation term used to combat

overfitting of the new tree. The regularisation term imposes complexity constraints on the tree

by limiting the number of leaves and the scores on leaves. It can be mathematically defined

as:

Ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j (3.2)

wj =
(|
∑

xi∈j gi | −γ)
2∑

xi∈j hi + λ
(3.3)

where T is the number of leaves, wj represents the score assigned to the leaf j, and γ and λ

are hyperparameters of the penalty terms. wj can be calculated by Eq.(3.3), where gi and hi

represent the first-order and second-order derivatives of a sample xi, allocated to the leaf j.

Similar to GBDT, the feature that has the highest variance gain will be selected for each node

partition of a tree generated at the tth iteration. The formal mathematical definition used to

calculate the variance gain for each partition in LightGBM is given by:

Gain(O,Xk, S) =
∑
xi∈O

l(yi, ŷi(t−1) + wp)− (
∑
xk
i ≤S

l(yi,

ŷi(t−1) + wl) +
∑
xk
i >S

l(yi, ŷi(t−1) + wr))
(3.4)

where O is a set of samples to be partitioned at the tree node o, Xk denotes the kth feature, S

is the threshold for the feature Xk splitting the training data, xki denotes the value of feature

Xk for the ith data sample, wp is the score value assigned to the parent node o, and wl and wr

represent the scores assigned to the left leaf and right leaf respectively. Based on Eq.(3.4), the

best split points {Xk
best, Sbest} are expected to be found in the tree growth procedure.
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3.3.2 Structuring Temporal Sequences

X0 … Xt Xt+1 … Xα … Xt+n-1 … XT

Y0 … Yt Yt+1 … Yα … Yt+n-1 … YT

Main Power Meter

Target Appliance

Sequence of Power Readings

FIGURE 3.1: Sequence to Point

NILM aims to recognise the working status of any appliance from aggregated power measure-

ments and determine the power consumption at given time points. The inputs used for NILM

model training are continuous time-series aggregated load measurements from the main power

meter. When the readings are in high frequency, the computational complexity and memory

cost will significantly increase in both processes of training and inference. It is also hard to

select a regressor that can comprehensively capture operating patterns of appliances and keep

the learned knowledge into a model when the input is dense. To address these issues, we

split a long time-series of readings into small sequences that contain appliance usage patterns

in limited time steps. In this work, we manage the number of features by shortening the

length of the input while keeping the critical information and knowledge for learning energy

consumption patterns of each appliance. A sliding window is used to generate a set of short

sequences from a long measurement as samples for the NILM model construction.

Considering LightGBM only supports single value regression output, it is hard to apply

traditional sequence-to-sequence methods in our training framework. Inspired by the sequence-

to-point learning approach in [129], we map a short sequence of data to the corresponding

label at the midpoint of the given sequence. For example, as shown in Figure 3.1, the input is

a fixed-size window of the main power readings Xt:t+n−1, where t is the start time point of

the sliding window and n is the size of the window. The output is the power consumption

of a target appliance at the midpoint of the corresponding window, denoted as Yα, where

α = t+
⌊
n/2
⌋

. The window slides from the beginning of the sequence to the end, and the

step size is 1. In this process, Xt:t+n−1 can be deemed as a feature vector for the label Yα and
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we proposed to train a regressor F which maps Xt:t+n−1 to Yα. The regressor is defined as:

Yα = F (Xt:t+n−1) + ϵ (3.5)

where ϵ is the expected error of the estimation. To handle the start points and end points of the

output sequence Y={Y0...YT}, we use two strategies to construct the sequence. If the scale of

data set is large enough, we will generate full feature vectors for all elements of Y by using

the padding technique introduced in [129]. In this strategy, we first pad input sequence X

with
⌈
n/2
⌉

zeros at the beginning and end, and then corresponding feature vectors with zero

values can be generated for all elements at the edge of Y. These data samples will become

noise in the model training to help prevent overfitting. However, if the collected data set

is small, which is used as the target domain in the model transfer, it is rational to abandon

the start points and end points of Y because these samples with incomplete information will

significantly reduce the accuracy of the new established model. Thus, in this case, only the

element Yα of the output sequence, where α ∈ (
⌊
n/2
⌋
, T −

⌈
n/2
⌉
+ 1), is considered.

3.3.3 Feature Importance Analysis

There is always an intuition behind NILM, which is the appliances of the same type share

similar signatures that show the typical operating regime, such as active power and state

transition edges. In a static and ideal environment, the trained model is adequate for different

scenes and provides accurate estimation if the signatures of the appliances remain unchanged.

However, the statistical properties of the variables for energy disaggregation, such as value

scale and shape of distributions, could react to the environmental variations. With rapid

hardware development, the same appliance from multiple generations could behave differently.

Similar changes could also happen as the lifetime of an appliance decreases. The instances

distribution of an appliance relies on living habit and usage patterns of the users in different

regions. Without learned knowledge transfer functions, the trained model would perform

worse in another region for most of the times.

In this work, we investigate how the informative patterns change from the source domain

to the target domain, and to what extent the changes affect the estimations. The change of
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FIGURE 3.2: Comparison of SHAP feature importance of different appliance
models on UK-DALE (top) and REDD (bottom)

statistical properties involved in the new data is defined as data drift. The best approach

of implicitly detecting data drift is to monitoring the correlation between predictions and

selected features. Traditional approaches for correlation analysis, including Pearson, Kendall,

Spearman and Information Value, either apply to linear correlation or only accept input data

that must be category features. We instead use feature importance to reveal the correlation

between a label and a feature. Shapley Additive Explanation (SHAP) method is used to

measure the feature importance in a trained model where the importance of each feature

is given by the Shapley value. SHAP enables both global interpretations and individual

interpretations. Meanwhile, it guarantees consistency property for feature attribution [73]. By

doing so, SHAP implicitly shows the variations of learned representations and knowledge

between two different domains.
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For ease of interpretation, we use two widely used open data sets, UK-DALE [52] and

REDD [54], to demonstrate feature importance analysis. Figure 3.2 shows four groups of

SHAP summary plots of four appliances, namely dishwasher, washing machine, fridge and

microwave. In a summary plot, the features are ranked in descending order by their average

absolute Shapley value. Each feature represents the power reading at a time point within a

fixed-size sliding window. Each point on a summary plot represents a sample instance, and its

position in x-axis depicts the corresponding Shapley value for that feature. The distribution

of the Shapley values per feature for all instances can be obtained in a plot. As shown in

Figure 3.2, the importance of the features of the same appliance could vary considerably from

one domain to another. For the dishwasher model, the feature 12 is ranked as a top-5 feature

on UK-DALE, whereas losing its statistical significance on REDD. The feature 9 is the most

important feature on REDD while it is not ranked in top 5 in UK-DALE. For the microwave

model, feature 11 and feature 5, both ranked as top 5 features on UK-DALE, but show low

magnitudes of feature attributions on REDD. Similar to this one, for the fridge model, the

importance of feature 10 and feature 11 varies in between two domains. It is noteworthy that

the scale of SHAP value for some features and the relationship between feature value and

the corresponding impact on the model output could still vary even their ranking remains

unchanged. For example, feature 0 and feature 18 in the dishwasher model show a positive

correlation with the model output on UK-DALE. However, massive sample instances of these

two features make negative contribution to predictions when the model migrates to REDD.

Despite the large differences mentioned above, according to Figure 3.2, it is also interesting to

notice that the features, making more impacts on estimations in both domains, are either the

central points or the edge points of the sliding window, such as feature 9, feature 8, feature 0

and feature 18. For the models of fridge and washing machine, the important features remain

largely intact in both domains. Moreover, feature 8 and feature 9 dominate the feature effects

on different data sets. Thus, the feature importance analysis reveals the appliances of the same

type from different domains share more or less similar patterns, which helps us to realise

model transfer in real-world applications.
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Algorithm 3 Feature Selection for The Target Domain
Input: Ms: is the trained LightGBM model for the source domain

1: SHAP : is the function to derive a list of features with
2: information of SHAP values for a given data set and model
3: Dt: is the data set from the target domain
4: λ: is the threshold to select features

Output: L′
shap: is the final list of all selected features

5: L′
shap← []

6: Lshap← SHAP(Ms, Dt)
7: Lshap← Sort(Lshap)
8: Stotal← SumShap(Lshap)
9: ratio← 0

10: for feature ∈ Lshap do
11: ratio← ratio+ feature.shap/ Stotal

12: if ratio ≤ λ then
13: L′

shap.append(feature)
14: else
15: break
16: end if
17: end for
18: return L′

shap

3.3.4 Model-based domain adaptation

Although LightGBM is a cost-effective machine learning approach for NILM, it is arguable

that the trained model can transfer to different regions or appliances for sustainable use. Direct

sharing is the most common way for implementing model transfer between two domains, but

it could degrade the accuracy of estimations when the source and target do not share the same

input patterns. However, if we train a new model, a small data set makes the model more

susceptible to overfitting leading to poor generalisation. The poor generalisation will cause

accuracy loss on new instances that do not appear in the training data set. It will also cause

the extra computational cost for model training if the size of the data set of the target domain

is larger. The data of energy consumption of appliances is always sensitive because human

behaviours and usage patterns can be extracted from it. To protect the privacy of end-users

from the source domain and alleviate data drift, we develop a model-based transfer learning

algorithm, other than the instance-based or relation-based approaches.
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Algorithm 4 Model-based domain adaptation
Input: TrainGBM : is the lightGBM training function

1: Ms: is the trained LightGBM model for the source domain
2: Ts: is the number of trees of the trained model for the source domain
3: Dt: is the data set from the target domain
4: Tmax: is the maximum number of trees in the target model
5: L′

shap: is a list of selected features that keep unchanged
6: Pt: is the pre-set parameters for continually training
7: σ is the parameter that activates early stopping
8: γ: is the threshold for revising the target model

Output: Mt: is transferred model for the target domain
9: function TREEREVISE(G′, H′, node, Dsub, L′

shap, γ)
10: if node.splitFeature is null or γ is not satisfied then
11: node.weight← CalculateWeight(G′, H′, Dsub)
12: node.SetAsLeave()
13: else
14: node.splitFeature←FindBestSplit(G′, H′, Dsub, L′

shap)
15: Dl

sub, D
r
sub,←DataSplit(node.splitFeature, Dsub)

16: G′
l, H′

l, G′
r, H′

r,←DerivativeSplit(node.splitFeature,
17: G′, H′)
18: TreeRevise(G′

l, H′
l, node.leftChild, Dl

sub, L
′
shap, γ)

19: TreeRevise(G′
r, H′

r, node.rightChild, Dr
sub, L

′
shap, γ)

20: end if
21: return node
22: end function
23: Mt← []
24: G′, H′= Initialise(Mt, Dt)
25: for tree ∈Ms and EarlyStop(σ, Mt) is false do
26: root′← TreeRevise(G′, H′, tree.root, Dt, L′

shap, γ)
27: tree′ = ConstuctTree(root′)
28: Mt.append(tree′)
29: G′, H′= UpdateDerivative(Mt, Dt)
30: end for
31: Tt=Mt.GetTreeNum()
32: if Tt < Tmax then
33: Mt← TrainGBM(Dt, Pt, Tmax - Tt, Mt)
34: end if
35: return Mt

In our approach, we iteratively modify split points of each tree to achieve domain adaptation.

Compared with [36], our proposed algorithm enables adaptive feature selection in a new

domain rather than just retaining the entire backbone of the source model. More precisely,

if the best split feature for nodes from the original LightGBM model loses its efficacy on
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the new data set, all features need to be reconsidered. Thus, there are two key steps in our

design. Before modifying the original model, we evaluate the importance of features on the

new data set and select the features that make more contributions to the estimations on the

target domain. As shown in Algorithm 3, the features in the target domain will initially be

ranked by SHAP values, and then the top features in the ranking list will be iteratively pushed

into a new feature list L′
shap based on a pre-set threshold λ. Once L′

shap is determined, the

original model needs to be modified according to the data set Dt from the target domain.

Algorithm 4 illustrates the general workflow of model-based domain adaptation. All element

trees within the trained model Ms are modified iteratively and then grouped together as a

new model. Function TreeRevise() is called to recursively access all nodes of the tree and

adaptively revise their parameters. In this procedure, four scenarios need to be addressed by

different strategies.

(1) Parameters tuning for intermediate nodes: As mentioned, feature importance

could vary with the change of feature distribution and the value scale between two

different domains. The original split features that lose efficacy on the target domain

cannot provide sufficient informative patterns to support a remarkable increase on

the split gain at a given node. To maintain the performance of the model for energy

disaggregation, we need to reserve the split features involved in L′
shap and pay more

attention to the split features that lose power for the estimation. Besides, to avoid

unbalanced sample division due to the change of feature distribution and value scale,

it is also necessary to find the best split points for all intermediate nodes. Based

on Eq.(3.4), the gain of each possible split point can be calculated. In this process,

both first-order and second-order derivatives of all samples, G′ and H′, are constantly

updated based on the output of the current target model Mt. To improve the training

efficiency, the histogram differential acceleration strategy used in LightGBM is also

employed in the searching process. We do not need to evaluate the split gain for all

possible feature values. Like the tree construction, the computational complexity for

split finding is proportional to the size of the data set and feature dimensions.

(2) Score calculation for leaves: For a LightGBM model, the predictions of data

samples are determined by the leaf scores of each tree member, and each leaf score
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is calculated by the training samples allocated to that leaf. Considering that the split

point of each intermediate node and distribution of input data has changed in the

revise of each tree, the samples fall into a given leaf node will become different.

When a leaf node is accessed, a new leaf score is expected to be calculated by

Eq.(3.3) and then assigned to the corresponding leaf.

(3) Pre-pruning for trees: LightGBM is a leaf-wise tree-structured model, and hence

the depth of some branches is greater than others. If the whole backbone of the

source model is strictly reserved, the training data from the target domain will not be

divided in the way as expected in the source domain because of impacts from data

drift. Imbalance division of data will occur so that the number of samples allocated

into some nodes may be extremely small. In this case, two potential issues should

be taken into account. First, the continuous division will lead to overfitting, which

hinders the model providing high performance as expected in the future scenes. On

the other hand, for nodes deep down the tree, it is hard to find a split point that

provides positive information gain. To prevent overfitting and make better use of

statistical information of collected target samples, we impose complexity constraints

γ on the currently revised tree by limiting information gain, the number of leaves

and the number of training samples in each node. These well-defined constraints are

hyper-parameters that need to be provided at the beginning of the model transfer

process. In practice, it is required to set these parameters adaptively on the basis of

the scale of the training set. Once any of these pre-set constraints are violated, the

currently visited node will be set as a leaf, and the subtree from this node will be

removed.

(4) Abandon invalid trees: In the iteration of domain adaptation, the parameters of

intermediate nodes, leaf scores and even tree structure of some visited trees have

been revised. This will possibly take effects on the following trees that have not been

visited, and these trees maybe lose efficacy to provide positive information gain.

Instead, continuous revision of these trees will possibly pose threats to decreasing

the accuracy of the target model. Therefore, we will keep eyes on the trend of the

improvement of the information gain, as shown in line 25 from Algorithm 4. If
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the gain of Mt keep unchanged or drop down in σ iterations, we will terminate the

domain adaptation, and abandon the trees of the original model.

After modifying all element trees, continual training is performed if the maximum number

of trees Tmax is larger than the number of trees Ts in the source model. LightGBM training

module in API is called, and the wrapper function TrainGBM() will train Tmax - Tt trees

based on parameters Pt and modify target model Mt accordingly.

3.4 Experiment and Discussion

This section implemented our design and two state-of-the-art models, CNN-based and GAN-

based, to evaluate NILM disaggregation performance1. To promote a fair comparison and

reproducibility of results, we used two popular data sets, UK-DALE and REDD, for our

experimental studies. We also validated the effectiveness of the model transfer by comparing

the accuracy of transferred LightGBM models with and without our proposed algorithm.

The model transfer was also implemented on the CNN-based and GAN-based models as

performance indexes.

3.4.1 Data Sets

In our experiments, we chose the readings of four common appliances, washing machine,

fridge, dishwasher, and microwave in REDD and UK-DALE, for NILM analysis. Our

experimental data sets were built by the power readings from building 1 and 2 from UK-

DALE and houses 1, 2, 3 from REDD. They were used to evaluate the performance of

LightGBM for the NILM application and perform comparisons with other learning methods.

REDD and UK-DALE are collected from two different countries, showing different statistical

patterns in practical use. They are thus suitable for validating the feasibility of the proposed

transfer learning approach in real-life NILM applications. We created the models on UK-

DALE and transferred them to the target domain represented by REDD since the number of

1https://anonymous.4open.science/r/Transferable-Tree-based-Ensemble-Model-for-NILM-477E/
README.md

https://anonymous.4open.science/r/Transferable-Tree-based-Ensemble-Model-for-NILM-477E/README.md
https://anonymous.4open.science/r/Transferable-Tree-based-Ensemble-Model-for-NILM-477E/README.md
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samples of UK-DALE is 350K, far more than REDD with only 10K samples. The sampling

rate of readings from two data sets is different, so it is critical to pre-process the data and make

their sampling rate the same before further processing. For each data set, 80% of samples

were used for model training and the remainder for testing.

3.4.2 Experimental Setup

To conduct our experiments, we implemented multiple training models on a desktop computer

with Intel i7 8700 Processor, 32GB DDR4 RAM, and NVIDIA GTX 1080 Graphics Card with

8GB GDDR5X VRAM. The operating system is Ubuntu 16.04, and the software packages

used for the experiments include Python 3.7, Scikit-learn 0.21.3, TensorFlow 2.30, Keras

2.4.0 and LightGBM 3.0.0. In this work, we used two state-of-the-art models as comparison

baselines. One is CNN integrated with sequence-to-point learning paradigm, and the other

is GAN trained with sequence-to-sequence learning paradigm. Both showed high accuracy

in previous NILM studies against other non-ensemble machine learning approaches while

providing network interpretability by visualising the operation patterns captured from feature

maps. We resembled the architecture of the neural network and the hyper-parameters for

model training in [34] and [5]. The setting of hyper-parameters for different models is

given in TABLE 3.1. The window size used in our experiments was set to 19 by default

unless otherwise indicated. [103] specifies the impact of the window size on disaggregation

performance and provides an assessment measure to guide the window size selection.

3.4.3 Performance Metrics

In our experimental studies, five widely used metrics were used to evaluate the performance

of energy disaggregation designs from different perspectives. All the tests were evaluated on

a time series, ranging from 1 to T. At a given time point t ∈ [1, T ], ŷit and yit represent the

power consumption estimation and ground truth power of the appliance i, respectively. The

details of the selected metrics are provided below.
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TABLE 3.1: The parameters for training NILM models

Hyper-parameters for training LightGBM
Maximum boosting round 100 Learning rate 0.232
Maximum depth 10 L1 regularisation 0.0214
Maximum bins 500 L2 regularisation 0.0001

Hyper-parameters for training CNN
Maximum epochs 100 Learning rate 0.001
Batch size 1024 Beta1 0.9
Early-stopping epochs 10 Beta2 0.999
Optimizer type Adam Epsilon 10−8

Hyper-parameters for training GAN
Maximum epochs 100 LR for generator 0.00002
Batch size 1024 LR for discriminator 0.00001
Early-stopping epochs 10 Beta1 0.5
Optimizer type Adam Beta2 0.999

The accuracy of the power consumption estimate for an individual appliance is often measured

by MAE and Signal Aggregate Error (SAE) [93] [34]. By averaging absolute differences

between ŷit and yit, MAE illustrates the deviation between the estimates and observed values,

while SAE measures the relative error between the total energy estimate and actual energy

consumption of an individual appliance. SAE is defined as

SAE =
|
∑T

t=1 ŷ
i
t −
∑T

t=1 y
i
t|∑T

t=1 y
i
t

(3.6)

For MAE and SAE, their value scales differ for different appliances. It is hard to tell whether

the differences reflect a more, or less, model performance. To tackle this issue, we used the

normalised disaggregation error (NDE) [56] to compare the accuracy of the models used for

different appliances. It reports the normalised error between the estimates and the ground

truth of an appliance and is defined as

NDE =

√∑T
t=1 ∥ŷit − yit∥

2∑T
t=1 ∥yit∥

2 (3.7)
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TABLE 3.2: Different Models Tested on UK-DALE

Appliance CNN (seq2point) LightGBM GAN
MAE SAE NDE MAE SAE NDE MAE SAE NDE

Washing machine 17.708 0.011 0.514 17.110 0.0034 0.519 18.592 0.635 0.366
Fridge 20.873 0.022 0.533 18.861 0.0003 0.509 34.107 0.334 0.609
Dishwasher 20.786 0.176 0.492 17.857 0.0042 0.503 14.344 0.105 0.105
Microwave 8.742 0.127 0.658 6.886 0.0025 0.671 5.793 0.158 0.397
EAcc 0.700 0.728 0.670

For all three metrics, the lower the value, the more minor deviation between estimates and

ground truth generated by the model. As mentioned, the performance of a NILM model varies

among appliances. It is also essential to introduce a metric to evaluate the overall performance

of an algorithm. In this work, the estimation accuracy EAcc [54] is used and given by

EAcc =

[
1−

∑T
t=1

∑N
i=1 |ŷit − yit|

2
∑T

t=1

∑N
i=1 |yit|

]
(3.8)

Unlike the metrics aforementioned above, a NILM method is verified to provide good overall

performance only if EAcc is low. We also used two other metrics [100], estimated energy

fraction index (EEFI) and actual energy fraction index (AEFI) in our experimental studies.

They are used to demonstrate the overall performance of various algorithms and illustrate the

deviation between the estimated energy fraction and actual energy fraction of an appliance.

They are defined as

EEFI =

∑T
t=1 ŷ

i
t∑T

t=1

∑N
i=1 ŷ

i
t

(3.9)

AEFI =

∑T
t=1 y

i
t∑T

t=1

∑N
i=1 y

i
t

(3.10)

3.4.4 Performance of LightGBM

To examine how LightGBM is performed on NILM, we compared it with the CNN-based and

GAN-based solutions from different perspectives. All models were trained and tested on the

same data set to allow fair comparison. TABLE 3.2 and 3.3 shows how well these models
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TABLE 3.3: Different Models Tested on REDD

Appliance CNN (seq2point) LightGBM GAN
MAE SAE NDE MAE SAE NDE MAE SAE NDE

Washing machine 4.590 0.028 0.194 4.755 0.0071 0.228 6.976 0.140 0.300
Fridge 33.006 0.006 0.560 26.300 0.0014 0.480 55.234 0.931 0.940
Dishwasher 16.909 0.084 0.635 13.417 0.0060 0.588 12.125 0.472 0.730
Microwave 17.150 0.288 0.611 12.431 0.0057 0.592 13.201 0.716 0.951
EAcc 0.689 0.757 0.613

TABLE 3.4: Performance of Transferred Models on REDD

Appliance
CNN

(Domain Adapted)
LightGBM

(Directly Transferred)
LightGBM

(Domain Adapted)
GAN

(Domain Adapted)
MAE SAE NDE MAE SAE NDE MAE SAE NDE MAE SAE NDE

Washing machine 5.008 0.006 0.205 28.034 0.498 0.848 3.265 0.0043 0.149 21.508 0.715 0.817
Fridge 30.525 0.085 0.551 53.587 0.303 0.749 29.753 0.0013 0.528 51.249 0.833 0.895
Dishwasher 16.498 0.001 0.620 23.146 0.439 0.850 11.741 0.0081 0.508 15.011 0.939 0.960
Microwave 12.848 0.225 0.611 21.061 0.003 0.905 10.521 0.0062 0.524 16.658 0.607 0.947
EAcc 0.716 0.449 0.762 0.528

TABLE 3.5: Comparison of average overhead of three models for UK-DALE,
including model size, training cost and inference cost

Method Model Size(KB) Training Time(s) Inference Time(s)
CNN 11935 5621.41 82.50

LightGBM 830 162.42 8.09
GAN 182896 11722.01 212.40
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FIGURE 3.3: EEFI and AEFI on UK-DALE

performed on UK-DALE and REDD respectively. By comparing the values of MAE and SAE

on two data sets, we noticed that LightGBM provides a more accurate estimation against the

other two NN-based approaches in energy disaggregation of an individual appliance. With

the largest values of SAE across all selected appliances, the GAN-based models generate the

largest errors in estimating total energy consumption. CNN also shows worse performance

on SAE than LightGBM. Regarding MAE, the GAN only shows good performance on the
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FIGURE 3.5: NDE Comparison on REDD

dishwasher and microwave but not the others. Especially for the fridge, the MAE value of

GAN is 2× higher than that of LightGBM. Also, its NDE values are extremely high and vary

a lot across appliances. These results indicate that GAN always incurs significant errors on

the subset of tested instances and cannot provide stable effectiveness on different appliances.

Instead, the NDE values for LightGBM and CNN are relatively small and merely vary within

a limited range. Besides, the LightGBM model has the lowest EAcc on both UK-DALE and

REDD, showing the best overall performance on NILM applications. Figure 3.3 and 3.4 also
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show the deviations between the estimated energy fractions of all tested models and actual

energy fractions. Compared to CNN and GAN, the fractions of energy estimates produced by

the LightGBM model are more close to the fractions of energy consumed by customers.

To investigate the cost-efficiency of three NILM approaches, we carefully examined the model

size, training cost and inference cost, respectively. TABLE 3.5 shows the comparison result

on UK-DALE. It indicates the storage and computation overhead of both CNN and GAN

models is far higher than LightGBM. As shown in TABLE 3.5, the average model sizes of

two neural networks reach 11935KB and 182896KB, 14× and 220× larger than LightGBM.

As for running costs, the average training time of LightGBM goes 162.42s, while the average

inference time is only 8.09s. LightGBM achieves 35× and 72× speedup over CNN and

GAN in model training. The average inference time of LightGBM is 10× and 26× faster

than two NN-based methods. The expensive computation and storage overhead will preclude

NN-based models from a wide range of devices with limited resources. Overall, with joint

consideration of accuracy and cost-efficiency, LightGBM provides superior performance

against the other two neural networks for NILM applications.

3.4.5 Performance of Transfer Learning

From TABLE 3.2 and 3.3, we noted that the performance of LightGBM, CNN and CAN

models for the same target appliance vary considerably between two data sets when three

metrics are jointly considered. The results indicate that either user habits on appliances or

signatures of appliances are significantly different in these two regions, leading to a difference

in the accuracy of the established models for the same appliance. It also empirically verified

that data drift occurred between REDD and UK-DALE, the same as a result from feature

importance analysis in section 3.3.3. We thus then considered performing domain adaptation

for the models trained from UK-DALE and then examined the performance of the domain-

adapted models on REDD. This section validated the feasibility of our designed transfer

learning approach for tree-based NILM models by comparing it with other techniques by the

selected metrics. For LightGBM models, both direct sharing and our proposed algorithm

were implemented and comprehensively evaluated. As for performance baselines, domain
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FIGURE 3.6: The power consumption estimations for the four appliances on
REDD by two types of models: the standard LightGBM models trained on
REDD, and the domain adapted LightGBM models trained on UK-DALE and
fine-tuned on REDD

adaptation was also performed on CNN and GAN models by using transfer learning techniques

in [34] and [5] accordingly.

Regarding the NN-based models, CNN and GAN show different experimental results in

TABLE 3.4 when applying a similar fine-tuning technique. Compared with the models directly

trained on REDD, the performance of the domain-adapted CNN models are remarkably

improved. In contrast, GAN only increases its accuracy on the fridge model but not the others.

As shown in Figure 3.5 and TABLE 3.4, domain-adapted CNN models, more or less, increase

NDE and SAE of the corresponding directly-trained models. Interestingly, CNN outperforms

GAN after domain adaptation is realised on the target data set.

For the direct transfer approach, LightGBM models for the four appliances are trained on

UK-DALE individually, then used on REDD directly. As shown in TABLE 3.4, the errors of

estimation from all appliance models dramatically increased and each model provides poor

performance on all metrics. Additionally, in Figure 3.5, all the components in the row of direct

transferred are red, which illustrate that this approach brings high normalised disaggregation

errors to four appliances. For dishwasher, its NDE value is larger than 1 so that the model

trained on UK-DALE failed to produce satisfactory estimates on the target domain.
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We performed model-based domain adaptation when transferring the LightGBM models from

source to target domain in our approach. To fine tune the parameters for each tree, it is of great

importance to firstly restore the structure of NILM models constructed on UK-DALE. By using

the LightGBM toolkit, we extracted a detailed model structure from the dumped LightGBM

model. Based on the collected model structures, we successfully performed domain adaptation

on the source models, and then the revised models were examined accordingly on REDD.

As shown in TABLE 3.4, we can see that the domain-adapted LightGBM models by our

approach outperform the other transferred models in all metrics. Unlike transfer learning

on CNN and GAN, domain-adapted LightGBM lowers the MAE value without sacrificing

the performance of the other metrics. Compared with LightGBM, CNN and GAN models

trained on REDD, our approach still performs better in our experiment. Figure 3.5 also

shows the high performance of our revised LightGBM model, as it always shows the lowest

NDE value and increased stability for most appliances on REDD. Besides, we assess the

overall performance of transferred models by comparing the long-period energy estimation

performance, EEFI and AEFI, for the four selected appliances. The results are shown in Figure

3.4. Both LightGBM models, trained on REDD and the used domain-adaptation, provide

a better approximation for the ground truth than other models, which resembles the result

of EAcc. To provide more intuitive performance comparison results, we plotted the energy

estimates with a given period for each appliance as shown in Figure 3.6. It is clear that our

transfer learning algorithm enables the increase in accuracy and provides near-ground-truth

power estimation. For such performance improvement, we believe our design makes the

target model inherit latent knowledge of both domains without increasing the complexity of

the model structure and generalises the model established on the source domain. Thus, the

transferred model has a better potential to perform well on unknown scenarios.

3.5 Summary

In this work, we design a cost-effective learning approach for energy disaggregation with low-

frequency main readings. The first attempt is made to integrate LightGBM with the sequence-

to-point training paradigm. Compared with the state-of-the-art techniques, LightGBM shows
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remarkable gains in both accuracy and cost-efficiency. However, we cannot always train

an oracle model when the availability of training data is limited. We thus proposed a

unique model-based transfer learning method for tree-based ensemble models to reduce data

collection overhead and extra training costs while maintaining comparable accuracy in a new

target domain. As only the training samples from the target domain are required, the users’

behaviours and the privacy of end-users from the source domain are reliably protected. In the

experiments, by using our designed algorithm, our models show intact performance in the

target domain and enhance the generability of the original models.



CHAPTER 4

Multi-source Domain Adaptive Network for Non-intrusive load

Monitoring

Learning-based methods are the new trends in non-intrusive load monitoring (NILM) im-

plementations but require large labelled data to work properly at end-user premises. In this

chapter, we formulate an unsupervised multi-source domain adaptation problem to address

this challenge by leveraging rich public datasets for building the NILM model. Next, we

prove a new generalisation bound for the target domain under multi-source settings. A hy-

brid loss-driven multi-source domain adversarial network (HLD-MDAN) is developed by

approximating and optimising the bound to tackle the domain shift between source and target

domains. We conduct extensive experiments on three real-world residential energy datasets to

evaluate the effectiveness of HLD-MDAN, showing that it is superior to other methods in

single-source and multi-source learning scenarios.

4.1 Introduction

Chapter 3 presents an impactful and innovative source-free transfer learning approach to

mitigate the concerns posed by data scarcity and domain drift within gradient boosting

trees. For better use of state-of-the-art NILM techniques, this chapter seamlessly delves

into the intricate landscape of deep learning and discusses the pressing challenges when

neural networks are built for accurate energy disaggregation. First, the success of deep neural

networks relies greatly on the availability of large-scale labelled datasets. The collection and

labelling of the data from individual appliances are costly and error-prone as end-users often

lack equipment and domain knowledge. The concern of privacy leakage also precludes users
53
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from sharing sensitive appliance-level information and measurements. Second, public datasets

with annotations are now becoming available for NILM studies. They can be combined to

train models. However, these models may suffer from accuracy degradation when deployed

to new users due to the distribution discrepancy between training and unseen activity samples.

This phenomenon is known as domain shift [22] and stems from usage habits, appliance

working patterns, and environmental noise. Third, domain adaptation (DA) is a powerful

tool that is used to address domain shifts. To date, limited studies [69, 63] use DA in NILM

algorithms and these feature the single-source DA approach. Using multiple sources can

provide richer data but these sources may have different relationships to the target. Naively

combining sources will incur a risk of negative transfer when the training involves sources

irrelevant to the target. With multi-source data, NILM model training requires a domain-

adaptive technique to extract statistical relationships among domains to rule out detrimental

data sources.

This work is the first attempt to introduce multi-source DA to NILM. We design an adversarial

multi-source learning approach to fully exploit multiple open-source labelled datasets and

limited unlabelled target data for model construction. The insufficient data issue and domain

shift are thus handled by transferring domain-invariant and task-specific knowledge across do-

mains. Also, our approach attributes weights to each source according to domain discrepancy

with the target domain. The source weights are optimised by model training to explore the

statistical relationships between the target domain and source domains.

The main contributions of this work are threefold:

(1) We perform a theoretical analysis to prove a new generalisation bound for domain

adaptation of the NILM models under a multi-source, single-target setting. The new

bound is tighter than existing ones as it combines source risk, marginal shift and

conditional shift to ensure successful domain adaptation in a regression task.

(2) With the new bound, we define a hybrid loss function to guide the optimisation of

model parameters. A hybrid loss-driven multi-source domain adversarial network

(HLD-MDAN) is proposed to realise domain adaptation for deep neural networks.
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Also, the embedded weighting scheme enables the automatic selection of related

houses during the model training.

(3) We comprehensively investigate our approach’s adaptation in single-source and multi-

source scenarios through conducting comparative experiments with other popular

algorithms on real-world datasets.

4.2 Background

The core idea of DA is to ensure models from the source domain generalise well in the target

domain. [12] discloses the underlying nature of domain adaptation by proving a generalisation

bound for target risk, which is highly related to distribution discrepancy between domains in

feature space. Some works utilise maximum mean discrepancy (MMD) [125], correlation

alignment (CORAL) [113], and central moment discrepancy (CMD) [128] to realise the

distribution match. [70] leverages multi-kernel MMD to optimise deep representation for

domain alignment, and [71] extends MMD to match the joint distributions of multiple domain-

specific layers across domains. Besides, adversarial learning [39, 64] performs well in

extracting domain-invariant representations for DA. These approaches, however, are designed

for single-source DA and often lead to negative transfer in a multi-source scenario. The

main routine of multi-source DA is deriving optimal source weights for adversarial learning.

In [136, 104], the authors propose different weighting schemes based on their theoretical

analysis results. These works build on the covariate shift assumption but omit the conditional

shift.

Deep learning is a recent trend in NILM studies, including convolutional neural networks

(CNN) [130, 111], recurrent neural networks (RNN) [49], denoising auto-encoders [16] and

generative adversarial networks [11]. Although these deep learning solutions all outperform

traditional solutions, they often overfit the training data. We often encounter accuracy

degradation when using a model trained in one dataset on another, due to the distribution

discrepancy between the datasets. The classic domain adaptation techniques were adopted in

[63, 69] to match the feature distribution over different datasets for NILM. However, these
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works build on single-source DA methods, in which all the gathered energy datasets are

directly combined into a unified source for the adaptation process. They neglect crucial

findings that the relationship between any two domains is different [12]. Naive combining

of datasets implies that equal weights are assigned to different data sources during model

training. In addition, the approach used to reduce domain discrepancy between source and

target domains is mainly designed for classification rather than regression, so it often fails to

realise domain adaptation for NILM problems.

4.3 Problem Statement

In this section, we first analyse the statistical characteristics of energy consumption data from

different domains and instantiate three domain shift modes that potentially impact the model’s

generalisation ability in practical application. Then, we mathematically model a multi-source

domain adaptation problem for NILM.

4.3.1 Domain Shift Modes

The NILM models are built on aggregated consumption data from power meters embedded

with informative knowledge of the target appliances’ operational status. A major hypothesis

of traditional learning approaches states that the training data (source domain) shares the

same distribution with the test data (target domain). This hypothesis does not hold in

NILM applications since the statistical distributions of different domains change along with

environmental variations, namely domain shift [22].

Domain shift often stems from users’ habits, appliance working patterns, and environmental

noise. We verified this phenomenon by illustrating the distribution discrepancy of active

power consumption of a target appliance and the whole-house load between households. The

houses are randomly selected from REFIT (F), REDD (R), and UKDALE (U). We visualise

the results in Figure 4.1 and 4.2. The number, followed by #, is the corresponding dataset’s

house number. The aggregated loads and the target appliance’s power readings correspond

to the features and labels in an energy disaggregation task. According to Figure 4.1, the
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FIGURE 4.1: Distribution of normalised main readings and power consump-
tion of active dishwasher and microwave over randomly selected houses from
REFIT, UK-DALE, and REDD

distribution shape and the value range of both feature and label possibly change over houses

from three different datasets. Figure 4.2 examines the distribution gaps between houses from

the same dataset and indicates the same results. From the results, we identified three common

domain shift modes:

• The shape of the feature distribution varies, e.g. F#10 and U#1 (M.W).

• The range of the feature values shifts without changing the distribution shape, e.g.

F#9 and U#1 (D.W).

• The label distribution shifts while the feature distribution remains similar, e.g. F#4

and F#12 (M.W).

Domain shift could cause performance degradation and even make the trained models lose

efficacy on the target domain. As a promising technique in the family of transfer learning,

domain adaptation can be applied to enhance the transferability and generalisation ability of

the trained NILM models.
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FIGURE 4.2: Distribution of normalised main readings and power consump-
tion of active dishwasher and microwave across houses from REFIT

4.3.2 Multi-souce Domain Adaptation for NILM

The increasing availability of open-source labelled NILM datasets provides rich data for

model training and validation. Using a single-source domain adaptation on the naive merged

datasets is far from optimal. This strategy makes models suffer a high risk of negative transfer,

theoretically and empirically verified in [136]. To this end, we propose a multi-source learning

framework to incorporate data from diverse source domains into the target domain for NILM

applications. Before introducing technical details, we first introduce the notations as Table 4.1

and define the problem of multi-source domain adaptation (MSDA) for NILM.

Suppose we have N independent labelled datasets to form different source domains. We

define the ith source domain as < DSi
, fSi

>, where DSi
is the marginal distribution of input

data XSi
, and fSi

is the true labelling function to map XSi
to corresponding labels YSi

. In

an energy disaggregation task, xjSi
∈ XSi

and yjSi
∈ YSi

, the feature and the label of an

input instance represent the aggregated load consumption and the power usage of the target
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TABLE 4.1: Key Notations

Notation Definition
Si The ith source domain
T Target domain
DSi The marginal distribution of input data from Si

D̂Si The empirical distribution of sampled data from Si

fSi The labeling function over Si

XSi The feature set on Si

YSi The label set on Si

DT The marginal distribution of input data from T

D̂T The empirical distribution of sampled data from T
fT The labeling function over T
XT The feature set on T
YT The label set on T
X Feature space
Y Label space
H Hypothesis space
h A hypothesis fromH / The desired predictor
ℓ The loss function defined over label space
ϵSi(h) The source risk of Si

ϵT (h) The target risk
ϵ̂Si(h) The empirical source risk of Si

ϵ̂T (h) The empirical target risk
d∗H The domain discrepancy over a given hypothesis
αi The domain weight of Si

Le The energy disaggregation loss
Ld The domain discrepancy loss
Lc The conditional shift loss
g The feature extractor
h′i The domain discriminator for Si

θg The model parameters of g
θh The model parameters of h
θh′

i
The model parameters of h′i

appliance, respectively. Similarly, the target domain is defined as < DT , fT >, but the labels

YT cannot be given in the unsupervised setting. As we only consider the homogeneous transfer

in this work, all different domains share the same feature space X and label space Y . We

also define a hypothesis h: X → Y of a hypothesis classH and a loss ℓ: Y × Y → R+. The

loss is supposed to be bounded by M over Y . Given an instance x, the loss of a hypothesis

h ∈ H w.r.t. the labelling function f is ℓ(h(x), f(x)). For ∀h, h′ ∈ H, the average loss of

two hypotheses under a distribution D is defined as: ϵD(h, h′) = Ex∼D[ℓ(h(x), h
′(x))]. It

is a measure to estimate the distance of two hypotheses under a certain distribution. When
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h′(x) = fSi
(x) is fixed, the source risk of domain DSi

in terms of the hypothesis h can be

defined as ϵSi
(h) = ϵSi

(h, fSi
). We also use ϵ̂Si

(h) to denote the empirical risk of h over D̂Si
.

D̂Si
is the empirical distribution induced by m i.i.d. samples drawn from DSi

. Similarly,

ϵT (h) and ϵ̂T (h) represent the target risk and the corresponding empirical risk.

The objective of the multi-source NILM learning is to find an optimal hypothesis h that

minimises the target risk ϵT (h). In practice, no labelled data is available in the target domain,

and it is hard to directly approximate fT using only the aggregated load readings. Based on

the computational learning theory [7], the generalisation bound on ϵT (h) can be formulated

by the convex combination of {ϵ̂Si
(h)}Ni=1 and the discrepancy between {D̂Si

}Ni=1 and D̂T .

Thus, the objective converts to minimise the generalisation bound on ϵT (h) by optimising

model parameters. The theoretical details and proofs are provided in the following sections.

4.4 Theoretical Analysis for MSDA

This section defines the discrepancy of two distributions with the same hypothesis h for a

regression task. We prove a new generalised bound of target risk for the MSDA problem

using the domain discrepancy and the Rademacher complexity theory.

4.4.1 Technical Tools

First, three core lemmas are given for the following proof.

LEMMA 1 ([9]). Let H be a hypothesis class mapping X to [0, 1]. Given a sample set

S = {x1, ..., xm} of size m drawn from the distribution D, for all δ ∈ (0, 1), with probability

at least 1− δ, the following inequality holds for all h ∈ H:

Ex∼D[h(x)] ≤
1

m

m∑
i=1

h(x) + 2R̂S(H) + 3
√
log(2/δ)/2m
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LEMMA 2 (Ledoux-Talagrand’s contraction lemma [43]). LetH be a hypothesis class over

X and ϕ be a L-Lipschitz function. For samples S generated from any distribution, we have:

RS(ϕ ◦ H) ≤ LRS(H)

where ϕ ◦ H := {ϕ ◦ h | h ∈ H} is a class of composite functions.

LEMMA 3 ([77]). Let H be a hypothesis class over X , and ℓ : Y × Y → R be a loss

function bounded by M > 0. Let D be a distribution over X and D̂ is its corresponding

empirical distribution induced by m i.i.d. samples S = {x1, ..., xm} drawn from D. Given a

discrepancy distance discℓ for D and D̂ over ℓ, for all δ ∈ (0, 1), with probability at least

1− δ, we have:

discℓ(D, D̂) ≤ R̂S(H∗
ℓ ) + 3M

√
log(2/δ)/2m

whereH∗
ℓ := {ℓ(h(x), h′(x))| h, h′ ∈ H}.

4.4.2 Domain Discrepancy for Regression

Then, we introduce the basics of regression-based domain discrepancy (RBDD).

DEFINITION 4.4.1. Given a hypothesis classH on an instance space X and two distributions

D and D′ over X , for any hypothesis h ∈ H, the discrepancy between the two distributions

w.r.t. h is defined as:

d∗H(D,D
′;h) := max

h′∈H
|ϵD(h, h′)− ϵD′(h, h′)| (4.1)

RBDD reflects the discrepancy between two distributions as the difference between two

regression losses. To measure this domain discrepancy, we search for another hypothesis

h′ ∈ H that maximises |ϵD(h, h′)−ϵD′(h, h′)|. In practice, h′ is set as close to h on the source
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domain as possible. The similarity between two distributions can thus be easily estimated

with finite instances. If two distributions are not discriminative overH, the value of ϵD(h, h′)

will be close to ϵD′(h, h′). From the definition of (4.4.1), we have the below lemma to bound

target risk.

LEMMA 4. Let D and D′ be two distributions over an instance space X , for any h, h′ ∈ H,

|ϵD(h, h′)− ϵD′(h, h′)| ≤ d∗H(D,D
′;h) (4.2)

4.4.3 A Generalisation Upper Bound for Domain Adaptation

Before presenting the generalisation bound of target risk, there is a lemma introducing two

triangle inequalities w.r.t. ϵD and d∗H, for the proofs of the following theorems.

LEMMA 5. For any hypothesis spaceH and any distributions D, D′, D∗ over X , if the loss

function ℓ for regression problem follows triangular inequality, the following inequalities

holds:

∀h1, h2, h3 ∈ H, ϵD(h1, h2) ≤ ϵD(h1, h3) + ϵD(h3, h2) (4.3)

d∗H(D,D
′;h) ≤ d∗H(D,D

∗;h) + d∗H(D
∗, D′;h) (4.4)

PROOF. In view of the definition of ϵD(h1, h2), we have:

ϵD(h1, h2) = Ex∼D[ℓ(h1(x), h2(x))]

≤ Ex∼D[ℓ(h1(x), h3(x)) + ℓ(h3(x), h2(x))]

= ϵD(h1, h3) + ϵD(h3, h2)

Similarly, it is easy to verify that the triangular inequality also holds on d∗H(D,D
′;h). For
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any h ∈ H, define h′ := argmaxh′∈H|ϵD(h, h′)− ϵD′(h, h′)|:

d∗H(D,D
′;h) = |ϵD(h, h′)− ϵD′(h, h′)|

= |ϵD(h, h′)− ϵD∗(h, h′) + ϵD∗(h, h′)− ϵD′(h, h′)|

≤ |ϵD(h, h′)− ϵD∗(h, h′)|+ |ϵD∗(h, h′)− ϵD′(h, h′)|

≤ d∗H(D,D
∗;h) + d∗H(D

∗, D′;h)

where the first inequality comes from the triangular inequality of |.|, and the second one is

due to Lemma 4. □

Combining d∗H(DS, DT ;h) and the source risk, we have the following theorem that character-

ises a generalisation bound on the target risk for domain adaptation.

THEOREM 4.4.1. LetH be a hypothesis space over X and <DS, fS>,<DT , fT> be source

and target domains on X . For any hypothesis h ∈ H, the following bound related to target

risk holds:

ϵT (h) ≤ϵS(h) + d∗H(DS, DT ;h) + min{ϵS(fS, fT ), ϵT (fS, fT )} (4.5)

PROOF. The sketch of the proof is provided:

ϵT (h) ≤ ϵT (h, fS) + ϵT (fS, fT ) + ϵS(h, fS)− ϵS(h, fS)

≤ ϵT (fS, fT ) + ϵS(h, fS) + |ϵT (h, fS)− ϵS(h, fS)|

≤ ϵS(h) + d∗H(DS, DT ;h) + ϵT (fS, fT )

where the first inequality is based on Lemma 5, the second one comes from the property of |.|,

and the third one follows Lemma 4. By choosing to add and subtract ϵS(h, fT ) rather than

ϵS(h, fS) and deleting the use of triangle inequality in the first line, we also have:
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ϵT (h) = ϵT (h, fT ) + ϵS(h, fT )− ϵS(h, fT )

≤ ϵS(h, fT ) + |ϵT (h, fT )− ϵS(h, fT )|

≤ ϵS(h, fT ) + d∗H(DS, DT ;h)

≤ ϵS(h) + d∗H(DS, DT ;h) + ϵS(fS, fT )

where the property of |.| and two lemmas are also applied to the deduction above. By

combining these two inequalities, we obtain a tight bound as shown in Theorem 4.4.1. □

REMARK. This theorem explicitly indicates that three terms in (4.5) jointly determine the

generalisation bound of target risk regarding a given hypothesis h. Similar to the bound in

[136], the first term is the source risk, whereas the second denotes the marginal distribution

discrepancy between the source and target domains. These two terms, however, are not good

enough to ensure the success of domain adaptation in NILM applications. In our derived

bound, the third term measures the discrepancy between the labeling functions of the two

domains. It is another necessary condition for successful domain adaptation and reflects

the underlying conditional shift problem, corresponding to the third shift mode previously

mentioned.

We then extend the generalisation bound to the setting of MSDA for the regression problem

as follows:

THEOREM 4.4.2. Let H be a hypothesis class over X . Let DT and {DSi
}Ni=1 be the target

distribution and N source distributions over X . Given a vector α ={α1, ..., αN} of domain

weights for {DSi
}Ni=1, with

∑N
i=1 αi = 1 always satisfied, we have:

ϵT (h) ≤
N∑
i=1

αi

(
ϵSi

(h) + d∗H(DSi
, DT ;h)

)
+min{ϵα(fα, fT ), ϵT (fα, fT )} (4.6)

where ϵα is the source risk of the weighted combination domain Dα, and fα is its labelling

function.
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PROOF. First, we give a definition of ϵα(h, fα) and d∗H(Dα, DT ;h) to better support the

proof. ∀h ∈ H, define ϵα(h, fα) :=
∑N

i=1 αiϵSi
(h) and d∗H(Dα, DT ;h) :=

∑N
i=1 αid

∗
H(DSi

, DT ;h).

By replacing Ds with Dα and following the proof of Theorem 4.4.1, we have:

ϵT (h) ≤ ϵT (h, fα) + ϵT (fα, fT ) + ϵα(h, fα)− ϵα(h, fα)

≤ ϵT (fα, fT ) + ϵα(h, fα) + |ϵT (h, fα)− ϵα(h, fα)|

≤ ϵα(h) + d∗H(Dα, DT ;h) + ϵT (fα, fT )

=
N∑
i=1

αi

(
ϵSi

(h) + d∗H(DSi
, DT ;h)

)
+ ϵT (fα, fT )

ϵT (h) = ϵT (h, fT ) + ϵα(h, fT )− ϵα(h, fT )

≤ ϵα(h, fT ) + |ϵT (h, fT )− ϵα(h, fT )|

≤ ϵα(h, fT ) + d∗H(Dα, DT ;h)

≤ ϵα(h) + d∗H(Dα, DT ;h) + ϵα(fα, fT )

=
N∑
i=1

αi

(
ϵSi

(h) + d∗H(DSi
, DT ;h)

)
+ ϵα(fα, fT )

By combining these two inequalities, we can obtain the bound in (4.6). □

REMARK. We introduce a weighted combination source Dα for domain adaptation. The

vector of weights α shows the different relationships between the sources and the target and

helps resist negative transfer. This bound can be reduced to (4.5) when having only one source

domain.

With limited access to the samples from both source and target domains, the true statistical

distributions of different domains are usually unknown. It is hard to calculate the true source

risk and the discrepancy distance between source and target for a given source. Now, we

bound ϵSi
(h) and d∗H(DSi

, DT ;h) by their corresponding empirical estimations, ϵ̂Si
(h) and

d∗H(D̂Si
, D̂T ;h), which can be derived from finite training samples. We have the following
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two lemmas to bound ϵSi
(h) and d∗H(DSi

, DT ;h) using the Rademacher complexity theory

and its properties [9, 43, 77].

LEMMA 6. LetH be a hypothesis class over X , and ℓ be a L-Lipschitz loss bounded by M .

For ∀δ ∈ (0, 1) and a sample set S = {x1, ..., xm} of size m drawn from the distribution D,

with probability at least 1− δ, we have:

∀h∈H, ϵS(h)≤ ϵ̂S(h)+2LR̂S(H)+3M
√
log(2/δ)/2m (4.7)

where R̂S(H) is empirical Rademacher complexity ofH over S.

PROOF. We scale the loss ℓ to [0, 1] by dividing by M and thus obtain a new function

class Hℓ/M . According to the risk bound in terms of empirical Rademacher complexity

presented in Lemma 1, we have:

Ex∼D[ℓ(h(x), fS(x))]/M ≤
1

m

m∑
i=1

ℓ(h(xi), fS(xi))/M + 2R̂S(Hℓ/M) + 3
√
log(2/δ)/2m

For ∀h ∈ H, we know ϵS(h) = Ex∼D[ℓ(h(x), fS(x))] and ϵ̂S(h) = 1
m

∑m
i=1 ℓ(h(xi), fS(xi)) ,

where ℓ(h(x), fS(x)) is an element of the class of composite functionsHℓ := {ℓ(h(x), fS(x))|

h ∈ H}. Following the property of empirical Rademacher complexity, we have R̂S(Hℓ/M) =

1
M
R̂S(Hℓ). In regression problems, we often define loss ℓ(h(x), fS(x)) := ϕ(h(x)− fS(x)),

where ϕ: R→ R and L-Lipschitz. Hℓ also can be denoted as {ϕ(h(x)− fS(x))| h ∈ H}. By

Ledoux-Talagrand’scontraction lemma, we have R̂S(Hℓ) ≤ LR̂S(H− fS) withH− fS :=

{h(x)− fS(x)| h ∈ H}. Due to the property of the empirical Rademacher complexity: for

any fixed function f, R̂S(H + f) = R̂S(H), we have R̂S(H− fS) = R̂S(H). Now we can

conclude that R̂S(Hℓ) ≤ LR̂S(H). By combining all the above inequalities, the lemma is

verified. □

LEMMA 7. Let H be a hypothesis class over X and ℓ be a L-Lipschitz loss bounded by

M > 0. For any two distributions D and D′, let D̂ and D̂′ be the corresponding empirical

distributions generated with m i.i.d. samples. For all δ ∈ (0, 1), with probability at least
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1− δ, the below inequality holds for all h ∈ H:

d∗H(D,D
′;h) ≤ d∗H(D̂, D̂

′;h) + 4LR̂S(H) + 6M
√
log(2/δ)/2m (4.8)

PROOF. By Lemma 2 related to d∗H(D,D
′;h), we have:

d∗H(D,D
′;h) ≤d∗H(D, D̂;h) + d∗H(D̂, D̂

′;h) + d∗H(D̂
′, D′;h)

We define a class of functions H∗
ℓ := {ℓ(h(x), h′(x))|∀h, h′ ∈ H}. By Lemma 3, with

probability at least 1− δ, we have:

d∗H(D, D̂;h) ≤ R̂S(H∗
ℓ ) + 3M

√
log(2/δ)/2m

Similarly, with probability at least 1− δ, we also have:

d∗H(D
′, D̂′;h) ≤ R̂S(H∗

ℓ ) + 3M
√

log(2/δ)/2m

∀h, h′ ∈ H, we define loss ℓ(h(x), h′(x)) := ϕ(h(x) − h′(x)), where ϕ: R → R and L-

Lipschitz. By Ledoux-Talagrand’s contraction lemma, we have R̂S(H∗
ℓ ) ≤ LR̂S(H∗) with

H∗ := {h(x)− h′(x)| h, h′ ∈ H}. With the definition of the Rademacher variables,H∗ can

be bounded by:

R̂S(H∗) = Eσ[sup
h,h′

1

m
|

m∑
i=1

σi(h(xi)− h′(xi))|]

≤ Eσ[sup
h

1

m
|

m∑
i=1

σi(h(xi))|] + Eσ[sup
h′

1

m
|

m∑
i=1

σi(h
′(xi))|]

= 2R̂S(H)

Hence, we can conclude that R̂S(H∗
ℓ ) ≤ 2LR̂S(H). Using a union bound to combine all the

inequalities above, we can get the bound as (4.8). □

With these two lemmas, we derive a new generalisation bound for MSDA in terms of ϵ̂Si
(h)

and d∗H(D̂Si
, D̂T ;h) as below:
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THEOREM 4.4.3. Let H be a hypothesis class over X . Let DT and {DSi
}Ni=1 be the target

distribution and N source distributions over X . {D̂Si
}Ni=1 and D̂T are the corresponding

empirical distributions generated with m i.i.d. samples from each domain. Given a vector α

={α1, ..., αN} of domain weights, with
∑N

i=1 αj = 1 always satisfied, for all δ ∈ (0, 1), with

probability at least 1− δ, the following bound holds:

ϵT (h) ≤
N∑
i=1

αi

(
ϵ̂Si

(h) + d∗H(D̂Si
, D̂T ;h)

)
+min{ϵα(fα,

fT ), ϵT (fα, fT )}+ 6LR̂Sα(H) +O(
√
log(1/δ)/m)

(4.9)

where R̂Sα(H) =
∑N

i=1 αiR̂Si
(H).

REMARK. The upper bound of target risk in this theorem depends on four terms. The first

term is a weighted combination of empirical source risks and RBDDs. The second term

implicitly shows the distance of label functions between the target domain and the mixture

source domain. The last two terms illustrate the other two factors related to the size of the

hypothesis class and the number of sample instances.

4.5 Methodology

This section presents a neural network-based solution to the unsupervised MSDA for en-

ergy disaggregation. Using the generalisation bound in Theorem 4.4.3, we first detail the

formulation of a hybrid loss, jointly considering regression loss on source domains, marginal

shift, and conditional shift between source domains and target domain. The loss combination

determines the model parameters and the feature representations as an optimisation objective.

We then specify the implementation of an optimisation algorithm for model establishment.

4.5.1 Hybrid Losses for Domain Adaptation

Suppose we have m unlabelled instances from the target domain DT and N labelled sources

{DSi
}Ni=1 that each has labelled instances of size m. We introduce a representation space



4.5 METHODOLOGY 69

Z and a feature extractor g: X → Z. g is parameterised by θg and achieves feature trans-

formation of X . A hypothesis from H is used as a predictor h : Z → Y . h ◦ g denotes the

composite function h(g(·)). To realise MSDA for NILM with collected instance data, we

need to minimise the generalisation bound derived from Theorem 4.4.3. When data size and

hypothesis classH are fixed, only three terms determine the bound value, i.e., the weighted

combination of source risks, the marginal distribution discrepancy, and the conditional distri-

bution discrepancy between the target domain and the N source domains. Considering these

terms, we carefully design the following three losses to guide the neural network training

jointly.

Energy Disaggregation Loss: We want to guarantee that the learned feature representations

are task discriminative by minimising the weighted source risks. Without such constraint,

the model will learn meaningless knowledge and perform energy disaggregation poorly. The

energy disaggregation loss can be calculated by:

Le =
N∑
i=1

αi

( 1
m

m∑
j=1

ℓ(h(g(xji )), y
j
i )
)

(4.10)

where ℓ is a loss function following triangle inequality and symmetric property, and yji is the

true label of jth instance from DSi
domain.

Domain Discrepancy Loss: As discussed, small RBDD enables successful domain adaptation

and makes it possible to generalise the trained neural network to the target domain. Based on

Definition 4.4.1, we formulate the domain discrepancy loss as a weighted sum of RBDDs.

Ld =
N∑
i=1

αi max
h′
i∈H
|ϵSi

(h ◦ g, h′i ◦ g)− ϵT (h ◦ g, h′i ◦ g)|

=
N∑
i=1

αi max
h′
i∈H
| 1
m

m∑
j=1

ℓ
(
h(g(xji )), h

′
i(g(x

j
i ))
)
− 1

m

m∑
j=1

ℓ
(
h(g(xjT )), h

′
i(g(x

j
T ))
)
|

(4.11)

where h′i is another trained predictor that assists in approximating the regression-based domain

discrepancy between the source domain DSi
and the target domain. In practice, we realise

domain adaptation by simultaneously optimising g and h′i to minimise the RBDD of two
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distributions. To reach this goal, we reformulate the optimisation of Ld as a minimax saddle

point problem:

min
θg

N∑
i=1

αi max
h′
i∈H
|ϵSi

(h ◦ g, h′i ◦ g)− ϵT (h ◦ g, h′i ◦ g)| (4.12)

Conditional Shift Loss: In Theorem 4.4.3, the second term of the bound implicitly reflects the

discrepancy of the conditional distribution, and is another necessary condition for successful

domain adaptation. To minimise the generalisation bound on target risk, we define a new

loss with a distance measure, namely conditional embedding discrepancy [112], and align

the conditional distributions by optimising the loss in the training process. As conditional

embedding discrepancy is defined in terms of the conditional embedding operator, we first

introduce the basics of such an operator. In this chapter, representations Z ⊆ Z , generated

from feature extractor g, and Y ⊆ Y are the inputs and outputs of the predictor h. P (Y |Z)

denotes the conditional distribution. We now embed the random variables Z and Y into

corresponding reproducing kernel Hilbert spaces (RKHS)Hz andHy by using feature maps

ψ : Z → Hz and ϕ : Y → Hy. According to [112], the conditional embeddings of entire

distribution P (Y |Z) can be defined as:

CY |Z = CY ZC
−1
ZZ = EY Z [ψ(Y )⊗ ϕ(Z)]E−1

ZZ [ϕ(Z)⊗ ϕ(Z)] (4.13)

where CY Z is the cross-covariance operator defined in [8], CY Z is the self-covariance operator,

and ⊗ is the tensor product. The empirical estimate of CY |Z on the source domain Si and the

target domain is:

ĈSi

Y |Z =
1

m
ΥSi

HSi
Φ⊺

Si

( 1
m
ΥSi

HSi
Υ⊺

Si

)−1

ĈT
Y |Z =

1

m
ΥTHTΦ

⊺
T

( 1
m
ΥTHTΥ

⊺
T

)−1
(4.14)

where Υ = (ψ(g(x1)), ..., ψ(g(xk))), Φ = (ϕ(ŷ1), ..., ϕ(ŷk)), ŷ represents the output of the

model, m is instance number for a given domain, and H denotes an idempotent centering

matrix defined by H = I − 1
m

11⊺. As in [67], the conditional embedding discrepancy is

formulated as a Hilbert-Schmidt norm of two empirical conditional embeddings. We define
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the conditional shift loss Lc for MSDA as a weighted combination of conditional embedding

discrepancies.

Lc =
N∑
i=1

αi

∥∥∥ĈSi

Y |Z − Ĉ
T
Y |Z

∥∥∥2
Hz⊗HY

(4.15)

In the model training, each weighted component of Lc can be formulated in terms of Gaussian

kernels forHz andHy, and [67] details the derivation process.

The core of domain adaptation is to construct a fine-grained model that allows domain-

invariant feature representations by eliminating distribution shift while guaranteeing our

desired task’s success. According to the specification of the three network losses introduced

above, we know that Ld and Lc cooperatively align the marginal and conditional distribution

between the source domains and the target domain, and Le contributes to the performance

satisfaction of the learning task. To realise unsupervised MSDA, we define a hybrid loss

function by combining three losses. The hybrid loss is formulated as:

Lhybrid = (1− λ)Le + λ[µLc + (1− µ)Ld] (4.16)

where λ and µ are the weight factors within [0, 1]. They jointly control the training attention

over three losses and regularise their value scales. At the initial stage of model training, we

let Le dominate Lhybrid for better convergence and accuracy by setting λ to zero or to an

extremely small value. When showing good overall performance on source domains, the

model will concentrate on improving transferability on the target domain by dynamically

changing λ value. To enable a better accuracy-transferability trade-off, the Adam optimisation

strategy is applied for adaptively updating λ and µ.

4.5.2 Adversarial Learning for Parameters Optimisation

Inspired by Theorem 4.4.3, we propose HLD-MDAN to fulfil the goal of MSDA by minim-

ising the generalisation bound. In practical applications, the objective is to optimise model

parameters that realise the minimisation of hybrid loss. Fig.4.3 shows the general network
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FIGURE 4.3: An overview of HLD-MDAN architecture

architecture and the implementation for MSDA. Three critical components, including feature

extractor g, desired predictor h, and domain discriminators {h′i}Ni=1, constitute the whole

neural network. θg, θh and {θh′
i
}Ni=1 are their corresponding model parameters. Both g and h

follow the interpretation in 4.5.1. g is used to extract high-level representations from inputs,

sharing between source and target domains. All network structures with powerful feature

representation capability can be selected as feature extractors. Convolutional neural networks

(CNNs), recurrent neural networks (RNNs), and attention-based networks are widely used

in the NILM problem. h is the desired predictor and is responsible for outputting the power

consumption of the target appliance with computation results of g. We aim to generalise g

and h well on the target domain by fully exploiting statistical relationships between labeled

source data and unlabeled target data. Also, we develop a domain discriminator h′i for each

source domain Si to approximate domain discrepancy loss Ld according to (4.11). h′i shares

the same structure with h but facilitates different model parameters. Since optimising Ld is a

minimax problem, as presented in (4.12), we apply an adversarial training method to reduce

domain shift and learn domain-invariant representations. In the training process, θg is trained

to lower Ld, whereas θh′
i

is updated to increase Ld for easier domain discrimination. They

compete against each other to achieve distribution alignment between the source domains and
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Algorithm 5 Implementation of HLD-MDAN

Input: The labeled datasets of N source domains {(XSi
, YSi

)}Ni=1, the unlabeled dataset of
target domain XT , the dataset size m, pre-trained epochs M ′, maximum training epochs
M , batch size n, weight parameter λ, µ

Output: The optimised parameters θg, θh, {θh′
i
}Ni=1, α

1: Initialise parameters θg, θh and {θh′
i
}Ni=1, ηg, ηh,{ηh′

i
}Ni=1 for corresponding model parts.

Initialise domain weights αi ∈ α with αi ← 1
N

and learning rate ηα
2: for t = 1→M do
3: for each minibatch j = 1→ m/n do
4: Forward propagation
5: Sample n instances from each domain as a minibatch
6: {(X(j)

Si
, Y

(j)
Si

)}Ni=1, X(j)
T ← Sample({(XSi

, YSi
)}Ni=1, XT )

7: for i = 1→ N do
8: Z

(j)
Si
← g(X

(j)
Si
), Ŷ (j)

Si
← h(Z

(j)
Si
) #Source domain

9: end for
10: Z

(j)
T ← g(X

(j)
T ), Ŷ (j)

T ← h(Z
(j)
T ) #Target domain

11: for i = 1→ N do
12: Ŷ

′(j)
Si
← h′i(Z

(j)
Si
), Ŷ

′(j)
Ti
← h′i(Z

(j)
T ) #Discriminator

13: end for
14: Compute Le, Lc, Ld based on the outputs above
15: λ← 0 if t < M ′

16: Lhybrid ← (1− λ)Le + λ[µLc + (1− µ)Ld]
17: Backward propagation
18: θ

(t+1)
g ← θ

(t)
g − ηg(▽θgLhybrid)

19: θ
(t+1)
h ← θ

(t)
h − ηh(▽θhLe +▽θhLc)

20: for i = 1→ N do
21: θ

(t+1)

h′
i
← θ

(t)

h′
i
− ηh′

i
(▽θh′

i

(−Ld))

22: end for
23: α(t+1) ← α(t) − ηh(▽αLd +▽αLc)

24: α
(t+1)
i ← α

(t+1)
i /||α(t+1)||1 #Normalize αi ∈ α

25: end for
26: end for
27: return θg, θh, {θh′

i
}Ni=1, α

the target domain. Similar to other adversarial domain adaptations [39], the gradient reversal

layer is implemented in our architecture to optimise θg and θh′
i

simultaneously in backward

propagation. Besides, θh and α are also optimised by the related gradients. In our approach,

the gradient of θh corresponds to Le and Lc, while the convergence of α is determined by Ld

and Lc. All different parameters are iteratively updated until the stop criteria are met. The

pseudo-code of our solution is summarised in Algorithm 5.



74 4 MULTI-SOURCE DOMAIN ADAPTIVE NETWORK FOR NON-INTRUSIVE LOAD MONITORING

4.6 Experiments

In this section, we tested our solution on real-world NILM datasets and compared it with the

benchmark algorithms for performance evaluation.

4.6.1 Experimental Setup

Datasets: We used three publicly available datasets, REDD [54], UK-DALE [52], and REFIT

[87], to showcase the adaptation performance of our method under unsupervised settings. The

fridge (FG), washing machine (WM), dishwasher (DW), and microwave (MV) were selected

as target appliances for energy disaggregation. Since the raw measurements in the three

datasets were sampled differently, we first preprocessed data to unify the sampling rates every

8 seconds for both aggregated readings and appliance-level power consumption data. We

adopted the sequence-to-point learning paradigm to generate input samples in the experiments.

A fixed-size window n slides throughout a long-term sequence of measurements with the

step size d. For a given start time point t of the window, a short sequence of aggregated

readings {xt,...,xt+n−1} is extracted as the feature vector. The corresponding label is the

target appliance’s power consumption at the window midpoint, denoted as yt+n/2. We set

the window size n as 19 for short-term energy disaggregation, and the step size d for REDD,

UK-DALE, and REFIT as 2, 16, and 16, respectively.

Benchmarks: We selected four methods to be the benchmark algorithms for perform-

ance comparison. i) Baseline is a basic model trained without domain adaptation. ii)

DANN+JMMD [69] is an adversarial neural network conditioned on the joint distribution

loss for domain adaptation. It has been empirically proven to alleviate domain shifts in NILM.

iii) MDAN [135] achieves MSDA by using dH distance and an adversarial learning strategy

similar to DANN. We adopted the soft version in this chapter. iv) AHD-MSDA [104] is an

unsupervised DA method for regression tasks. We applied the network structure in [130] for

all methods.
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TABLE 4.2: Houses selected for evaluation of single-source and multi-source
domain adaptation

App. Single-source Multi-source
FG [F#15 R#3] [R#1 R#2 U#1 U#2 F#12 F#15]

WM [F#16 R#3] [ R#1 R#2 U#1 U#2 F#9 F#16]
DW [F#18 R#1] [ R#1 R#2 U#1 U#2 F#13 F#18]
MV [F#17 R#1] [ R#1 R#2 U#1 U#2 F#10 F#17]

Experiment implementation: The basic neural network comprises five convolutional layers

as the feature extractor and one fully-connected layer as the desired predictor. For the feature

extractor, we set the kernel size as 10, 8, 6, 5, and 5. The filter numbers are 30, 30, 40, 40,

and 50, respectively. The input of the predictor is 1024. For model training, the learning rate

of the Adam optimiser is 0.0001, and the maximum epoch number is 50 with a batch size of

64. To improve convergence speed, except for the baseline, the models constructed in other

approaches were first pre-trained for 10 epochs only using the source data. Then domain

adaptation-related loss started to work. All models were trained on a desktop computer with

Intel i7 8700 CPU @2.81GHz, 32GB DDR4 RAM, and NVIDIA GTX 1080 Graphics Card

with 8GB GDDR5X VRAM. The software packages used for the implementation include

Python 3.7 and PyTorch 1.10.0 with CUDA 11.3.

4.6.2 Performance Comparison

This chapter investigated HLD-MDAN in single-source and multi-source scenarios using

three widely-used metrics for NILM as introduced in Chapter 3, which include MAE, SAE,

and NDE.

Single-source: Under the single-source setting, we randomly picked one labelled house

from REFIT as the source domain and one house from REDD as the target domain for

each target appliance. The details of house selection are provided in Table 4.2, with the

bold entries representing target houses. We report the comparison results of single-source

domain adaptation across different methods in the left part of Table 4.3, denoted as F→R.

HLD-MDAN outperformed benchmarks when three metrics were jointly considered, even

though it was designed for multi-source learning problems. HLD-MDAN can significantly
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TABLE 4.3: Results of domain adaptation with different learning approaches

App. Methods
F → R H∗

1 → R H∗
2 → U H∗

3 → F
MAE SAE NDE MAE SAE NDE MAE SAE NDE MAE SAE NDE

FG

i) 48.30 0.55 0.81 55.61 0.54 0.67 47.52 0.80 0.90 39.32 1.08 1.07
ii) 46.80 0.53 0.80 50.84 0.51 0.65 41.66 0.55 0.83 33.81 0.55 1.02
iii) 47.22 0.42 0.80 52.84 0.53 0.67 49.60 1.00 1.03 33.54 0.46 1.03
iv) 46.28 0.49 0.81 57.43 0.64 0.74 42.82 0.07 0.82 38.30 0.70 1.06

Ours 44.47 0.37 0.78 42.90 0.36 0.57 40.52 0.38 0.90 31.84 0.43 0.95
Improved 7.93% 32.73% 3.70% 22.86% 33.33% 14.93% 14.73% 91.25% 8.89% 19.02% 60.19% 11.21%

WM

i) 41.52 0.73 0.99 34.65 0.86 0.96 56.96 1.82 0.96 81.21 2.81 1.10
ii) 37.98 0.72 0.88 30.54 0.53 0.89 29.79 0.68 0.87 35.82 0.32 0.92
iii) 37.84 0.70 0.98 37.46 0.53 0.87 37.44 0.83 0.91 65.96 2.17 1.00
iv) 38.93 0.64 0.96 33.03 0.55 0.81 30.15 1.00 1.00 33.76 0.34 0.93

Ours 36.67 0.60 0.93 29.55 0.03 0.79 27.61 0.23 0.82 28.00 0.31 0.92
Improved 11.68% 17.81% 6.06% 14.72% 96.51% 17.71% 51.53% 87.36% 14.58% 65.52% 88.97% 16.36%

DW

i) 57.74 0.47 2.00 45.17 1.70 1.35 52.46 0.58 0.91 63.29 0.40 1.13
ii) 39.79 0.03 1.13 42.16 0.10 1.38 30.60 0.41 0.77 59.34 1.65 1.20
iii) 43.45 0.23 1.49 51.16 0.87 1.51 43.82 0.20 0.82 80.04 2.05 1.11
iv) 38.49 0.16 1.18 39.79 0.45 1.29 34.08 0.59 1.00 61.16 2.10 1.08

Ours 31.76 0.41 1.13 30.39 0.45 0.97 21.54 0.29 0.76 52.31 0.15 1.12
Improved 44.99% 93.62% 43.50% 32.72% 94.12% 28.15% 58.94% 65.52% 16.48% 17.35% 62.50% 4.42%

MV

i) 44.59 0.08 1.00 32.60 0.53 0.86 40.95 0.60 0.90 54.98 1.64 1.14
ii) 34.36 0.10 1.05 27.75 0.39 0.81 29.07 0.40 0.90 47.06 0.39 0.99
iii) 42.98 0.15 1.05 36.38 0.73 0.92 48.40 0.14 0.83 64.05 1.73 1.15
iv) 40.18 0.43 1.00 36.00 0.62 0.94 29.39 0.46 0.95 45.70 0.37 0.90

Ours 32.73 0.02 0.99 20.58 0.34 0.89 29.01 0.40 0.81 42.42 0.35 0.90
Improved 26.60% 75.00% 1.00% 36.87% 35.85% 5.81% 29.16% 76.67% 10.00% 22.84% 78.66% 21.05%

The row improvement shows the relative improvements in the best result of all methods compared with
the baseline.
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FIGURE 4.4: Source weight α and Kullback-Leibler divergence estimations
over different houses

improve energy disaggregation over diverse target appliances with different working patterns.

For example, DW has a complex multi-stage active profile, and MV mainly operates at high



4.6 EXPERIMENTS 77

1 3 5 7 9
Source number

30

40

50

60

70

80

M
AE

baseline
ours

FIGURE 4.5: Estimation accuracy of HLD-MDAN for fridge with different
numbers of data sources

2 1 0 1 2

2

1

0

1

2
source domain
target domain

FG (pre-trained)

2 1 0 1 2

2

1

0

1

2

source domain
target domain

FG (domain adapted)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

source domain
target domain

WM (pre-trained)

2 1 0 1 2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

source domain
target domain

WM (domain adapted)

FIGURE 4.6: t-SNE visualisation of extracted feature instances before and
after using HLD-MDAN for FG (H∗

1→ R) and WM (H∗
3→ F)

power consumption with a relatively simple active profile. Using HLD-MDAN, the MAE

improvement can reach 26.60% and 44.99% for DW and MV, respectively. In addition, only

HLD-MDAN realises lower SAE and NDE than the baseline model for MV, whereas the rest

do not.
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Multi-source: Our experimental datasets were built on the power readings of houses 1 and 2

from REDD, houses 1 and 2 from UK-DALE, and two randomly selected houses from REFIT.

In each case, one house was marked in bold in Table 4.2 as the target, while the rest were the

sources. The labelled sources that were named as H∗
1, H∗

2, and H∗
3 in Table 4.3 represent the

target house from REDD, UK-DALE, and REFIT, respectively. Baseline and DANN+JMMD

were trained on the simple combination of all of the selected sources, while the others used

multiple data sources with different weighting schemes.

In Table 4.3, we note that HLD-MDAN dominated in most cases. HLD-MDAN obtained the

lowest MAE on the targets, bringing about a remarkable improvement to them. It achieved

51.53% and 58.94% MAE improvement for WM and DW with inconsistent working states.

Also, for FG with low power consumption, HLD-MDAN improved MAE significantly, whilst

the others performed closer to the baseline. Although the benchmarks occasionally obtained

lower SAE and NDE on some targets, HLD-MDAN still offered a comparable performance.

The performance consistency, however, only appears on HLD-MDAN and not on the others.

We can observe the instability of the other methods due to encountering unexpected negative

transfers, e.g. MDAN for DW (H∗
3 → F) and AHD-MSDA for FG (H∗

1 → R).

4.6.3 Analysis and Discussion

4.6.3.1 Effects of Weighting Scheme

We validated our weighting scheme in practice. In our method, we know that the distribution

similarity with the target determines the α value of a given source. We estimated the Kullback-

Leibler divergence (KLD) with [99] for all pairs of source and target, implicitly measuring the

distribution distance. Fig. 4.4 shows the final source weights and KLD estimations. Notably,

the source domain with low KLD is more likely assigned high weight. This result aligns well

with the core idea of our algorithm: high weights are assigned to the sources close to the

target.
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4.6.3.2 Effects of Sample diversity

There is an intuition behind data analysis that we can improve the generalisation ability of a

model by feeding more data samples with diverse statistical characteristics. For NILM in an

unsupervised MSDA setting, we face data-inefficiency issues by naively adding more labelled

houses to boost adaptation performance. We investigated the MAE of the HLD-MDAN model

for FG when varying the number of data sources, shown in Fig. 4.5. We note that, whether

HLD-MDAN or the baseline is applied, MAE decreases with the increase of labelled houses

at the beginning, though it remains stable after the source number reaches 5. The reason is that

the added houses from REFIT are far from the target when the source number is larger than 5.

The data quality bounds the performance improvement on the target using HLD-MDAN.

4.6.3.3 Ablation Study

We also investigated the effectiveness of each component in our solution by comparing

MDAN, AHD-MSDA and HLD-MDAN. Table 4.3 shows that MDAN performed the worst in

most tasks and failed to realise domain adaptation on the target domain. According to the

results of H∗
3 → F for DW and MV, MDAN suffered negative transfer and showed severe

accuracy deterioration compared with the baseline. This result is due to the inappropriate use

of dH for regression and ignoring conditional shift loss. In contrast, AHD-MSDA performs

better than MDAN by replacing dH with a tailored regression-based domain discrepancy

measure similar to ours. As a case study, the result empirically verifies that dH is not

ideal for training adversarial neural networks in a regression task. Instead, RBDD is more

powerful in shrinking the marginal distribution gap between domains in such an application

environment. We implemented the t-SNE embeddings on the outputs from the feature extractor

and compared the results of the before and after domain adaptation with RBDD, shown in

Fig. 4.6. For FG and WM, distribution discrepancies between the source and target domains

can be significantly reduced by applying domain adaptation. Also, the necessity of the newly

introduced conditional embedding discrepancy for improving generality can be verified by

comparing the performance of HLD-MDAN and AHD-MSDA. In Table 4.3, it can be seen

that HLD-MDAN outperforms AHD-MSDA in most tasks. This observation indicates that
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conditional loss helps the model generalise better on the target domain. Thus, we can conclude

that an effective combination of all of the above losses leads to the success of HLD-MDAN.

4.7 Summary

This chapter addresses the data shortage issue for NILM model construction by leveraging

multiple easily obtainable datasets with sufficient appliance-level annotations. We identify

three domain shift modes on the real-world data and formulate an MSDA problem for energy

disaggregation. To solve the problem, we prove a new generalisation bound of target risk

given in Theorem 4.4.3 for multi-source learning. Our bound leads to a hybrid loss as 4.16 to

guide model convergence by considering covariate and conditional shifts. To address hybrid

loss, we propose an effective adversarial training algorithm for neural networks to optimise

the learned representations, ensuring the model generalises well with the unlabelled target

domain. Extensive experiments validate the effectiveness and superiority of our solution

in both single-source and multi-source learning scenarios. We will deploy our design in

prototype systems to test its practicality and to finetune the design.



CHAPTER 5

Federated Gradient Boosting Trees for Non-Intrusive Load Monitoring

Non-intrusive load monitoring (NILM) is a computational technique to allow appliance-level

energy disaggregation for sustainable energy management. Most NILM models require

considerable training data to capture sufficient appliance signatures for robust model fitting.

However, local on-site training cannot satisfy that requirement due to limited data availability.

It is thus conceivable to perform data collaboration among different stakeholders. Unfor-

tunately, current collaborative learning approaches rely on deep learning, encryption, and

differential privacy techniques associated with either expensive computation or inefficient

communication. In this chapter, we propose a cost-effective collaborative learning frame-

work, Fed-GBM (Federated Gradient Boosting Machines), consisting of two-stage voting

and node-level parallelism, to address the problems in co-modelling for NILM. Through

extensive experiments on real-world residential datasets, Fed-GBM shows remarkable per-

formance in convergence, accuracy, computation and communication efficiency. The impact

of hyper-parameters in Fed-GBM is also extensively studied to guide better practical use.

5.1 Introduction

This chapter consistently elucidates the constraints that arise in NILM applications within

user premises, particularly in cases where local resources prove insufficient to fully realise

the implementation of the solutions outlined in preceding chapters. First, as mentioned in

Chapter 3, recent NILM solutions are mostly deep neural networks based [111, 5, 11]. Their

complex structure and associated hyper-parameters impose a high overhead in training and

inference, less suitable for devices with limited computation and storage resources. Second,
81
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most studies [130, 92, 111] focus on long-term (more than one hour) energy disaggregation,

which naturally requires a long sequence of main readings for each estimate. Managing such

long readings consumes substantial storage space on local devices. Third, NILM models

need considerable training data to extract representative statistical characteristics to gain

high performance. However, imbalanced data often occurs at user premises due to the

operating frequency of the appliances and thus leads to poor model fitting [3], especially

in the cold-start phase. Although existing approaches can tackle this issue by collecting

data from stakeholders for centralised model training, the potential risks of privacy leakage

[120, 110] and expensive data transmission preclude them from practical use. Lastly, existing

collaborative training approaches depend on encryption and differential privacy techniques

to protect privacy [114, 28]. They introduce extra computation cost in model training and

degrade the model performance at runtime. In addition, communication efficiency is usually

neglected in recent solutions [68, 115, 119], which, however, is a noted and important factor

in designing a collaborative learning system. Large communication footprints could hamper

the system scalability and cause network congestion, particularly when bandwidth is limited

at the user end. Thus, it is imperative to lower communication costs to support collaborative

modelling activities.

In this chapter, we propose a cost-effective collaborative NILM framework, Fed-GBM

(Federated Gradient Boosting Machines), to address the above challenges. By cost, we

mean computational time and communication overhead consumed by collaborative learning

activities. Fed-GBM integrates horizontal federated learning and Gradient Boosting Decision

Tree (GBDT) training. The use of GBDT in our design is motivated by its results in non-linear

regression problems with low computation complexity [23, 40]. By cooperating with the

sequence-to-point (seq2point) learning, GBDT models can reach state-of-the-art accuracy

for NILM without excessive computational complexity. We also perform short-term energy

disaggregation by shrinking the window size used in seq2point, significantly reducing data

management costs at local devices. Additionally, short-term estimation will make it possible to

achieve real-time decision making on energy management. Federated learning is a technique

that collaboratively trains a model across distributed devices without explicit data exchange

[62]. Horizontal federated learning is a specific type of federated learning. It fits the NILM
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applications where local data from different householders share the same feature space. Based

on this technique, GBDT models can be jointly trained by multiple users and enhance model

fitting ability locally and globally. Fed-GBM employs a two-stage voting scheme to lower

communication costs by reducing the gradient information exchange during the joint model

training. Our design implicitly protects users from privacy leakage while minimising the costs

of using privacy protection measures. Moreover, an online scheduling strategy is proposed

to enable node parallelism in model training, further improving computation efficiency and

resource utilisation.

The main contributions of this chapter are:

(1) A cost-effective horizontal federated learning framework, Fed-GBM, is proposed for

NILM to conduct joint GBDT model training among different electricity users. The

framework addresses the data shortage and imbalance problems while matching the

best-known accuracy of the centrally-trained method.

(2) We improve the model’s communication efficiency by introducing a two-stage voting

scheme for the horizontal federated learning environment, and the performance

bound is also analysed. The benefits of privacy preservation of our model are also

discussed.

(3) By leveraging characteristics of depth-wise GBDT, we explore the potential parallel-

ism of model training and define it as an online-time Non-clairvoyant scheduling

problem under precedence constraints. A node-level parallelism strategy is proposed

to improve the computation efficiency of each participant under a given resource

budget.

(4) We implement a prototype of Fed-GBM1 and evaluate its performance with the

residential datasets. Extensive experiments are conducted to determine the impact of

hyper-parameters used in two-stage voting and node-level parallelism. The results

provide a concise guide on selecting tuned hyper-parameters and let models achieve

a better trade-off among different metrics in practice.

1https://anonymous.4open.science/r/Fed-GBM-NILM-0D27/README.md

https://anonymous.4open.science/r/Fed-GBM-NILM-0D27/README.md
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5.2 Background

Federated learning has become a promising collaborative training approach to perform data

operation among distributed data owners [126]. It can be classified into horizontal federated

learning, vertical federated learning, and federated transfer learning. Most federated learning

research is neural networks based [82, 13, 116], while other machine learning models are less

focused. As GBDT shows remarkable success in data mining competitions, recent studies

[137, 58, 68, 27, 115, 123] started integrating federated learning with GBDT. The privacy

concerns of the decision tree models were first discussed in [4]. To relieve such concerns,

[137] made the first attempt to enable safe tree-based distributed data mining with differential

privacy. [27] and [123] proposed encryption-based strategies for GBDT in vertical federated

learning. Horizontal federated GBDT learning was also presented in [68, 115]. They both

performed a secure aggregation technique to alleviate privacy leakage. These solutions

are costly in practice as they require extensive computation resources, and communication

efficiency is not considered in the framework design.

5.3 Preliminaries

5.3.1 Gradient Boosting Decision Tree

Gradient boosting decision trees (GBDT) is a tree-based ensemble model in the family of

gradient boosting machines. It comprises a set of decision trees, and each tree is responsible

for attributing a given input instance x to a leaf node with a weightw, representing a prediction.

The final prediction result is obtained by summing the weights of all trees. The training

of GBDT is implemented in a step-wise approach. Given a set of instances, the ith sample

consists of a feature vector xi and a label yi, the goal is to minimise a regularised objective

function for each tree iteratively. The objective function for the tth tree is defined as

objt =
n∑

i=1

l(yi, ŷi(t−1) + ft(xi)) + Ω(ft). (5.1)
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where l is the loss function (squared error in regression), ŷi(t−1) is the sum of prediction

results from the previous t− 1 trees, and ft(xi) is the weight of the leaves where xi is assigned

in the newly generated tth tree. Ω(ft) represents the regularization term used to limit the

overfitting of the new tree. It can be mathematically defined as Ω(ft) = γT + 1
2
λ
∑T

j=1 w2
j ,

where T is the number of leaves, wj represents the score assigned to the leaf j, and γ and λ are

hyperparameters of the penalty terms. The regularization term imposes complex constraints

on the tree by limiting the number of leaves and the scores on leaves. In [26], objt can also be

formed as a second-order approximation.

objt =
n∑

i=1

[gift(xi) +
1

2
hift2(xi) + l(yi, ŷi(t−1))] + Ω(ft) (5.2)

gi = ∂ŷi(t−1)l(yi, ŷi(t−1)) hi = ∂2
ŷi(t−1)l(yi, ŷi(t−1)) (5.3)

where gi and hi represent the first-order and second-order gradients, which can be obtained by

Eq.(5.3). With the gradients of all instances, the optimal weight of leaf j and objective value

can be obtained by

w∗
j = −

Gj

Hj + λ
, obj∗t = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT (5.4)

where Gj =
∑

i∈Ij gi, Hj =
∑

i∈Ij hi. Ij is a set of instances assigned to the leaf j. From

obj∗t , variance gain for each leaf can be calculated by Eq.(5.5) if a node split is performed and

instances are partitioned into two subsets depicted as L and R.

Gainj =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ
]− γ (5.5)

Each intermediate node is recursively split based on the selected feature and its corresponding

threshold with the highest variance gain to construct a tree from root to leaf. In this process,

some widely-used variants of GBDT [26, 50] employ a histogram acceleration technique to

improve the efficiency of the model training.
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5.3.2 Horizontal Federated Learning

Federated learning is an emerging and fast-growing collaborative training method in the

artificial intelligent industry. Motivated by people’s awareness of privacy protection and data

control, federated learning enables data owners to perform co-modelling under the constraint

that locally sensitive information is not allowed to be exposed to other participants and the

central server. It can be roughly divided into three categories: horizontal federated learning,

vertical federated learning, and federated transfer learning. Horizontal federated learning is

widely used in cases where the datasets from different owners have the same feature space. In

detail, there are n participants {P1,. . . , Pn} with instance sets {I1,. . . , In}, and each instance

set Ii contains full features {x1,. . . , xs}. Under a given learning protocol for coordination

and security, all participants collaboratively train a model without directly exposing raw

data. The commonly-used horizontal federated learning framework is proposed by [81]. In

this framework, model training is distributed across multiple participants and periodically

aggregates the locally-trained model parameters globally. Inspired by this method, we propose

a federated GBDT training framework for NILM.

5.4 Federated Gradient Boosting machines (Fed-GBM) for

NILM

To improve the communication efficiency of federated learning and enable privacy protection,

we design a federated learning framework named Fed-GBM for energy disaggregation among

different power users. A framework overview is illustrated in Fig.5.1.

5.4.1 System Roles

Our design contains two roles: server and local runner (power user).

Server: used as a synchronisation controller to coordinate all local runners to jointly train a

model of a target appliance. During the model training phase, the server receives the local
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Algorithm 6 Fed-GBM Model Training
Input: Instance sets {I1,. . . , IM} contains {N1,. . . , NM} samples, located at runners {P1,. . . ,

PM}. Each sample contains S features and a label y, λ is the stopping criterion.
Output: A trained Model with T regression trees

1: Preprocess the samples by seq2point and Initialise their prediction values locally
2: for s = 1→ S do
3: find Q quantiles for each feature
4: end for
5: for t = 1→ T do
6: queue← [ ]: // priority queue
7: queue.push(root) //root node
8: for i = 1→M do
9: {(gj, hj)}Ni

j=1← CalculateGrad({yj}Ni
j=1, {ŷj}Ni

j=1)
10: end for
11: while queue is not empty do
12: nodes= queue.pop( ) // Pop multiple nodes and run in parallel
13: for node ∈ nodes do
14: for i = 1→M do
15: // Gs={G1

s,...,G
Q
s }, Hs={H1

s ,...,HQ
s }

16: {(Gs,Hs)}Si
s=1 ← BuildHist({(gj, hj)}Ni

j=1, node)
17: F TopK

i ←LocalVote({(Gs, Hs)}Si
s=1)

18: SendtoServer(F TopK
i )

19: end for
20: //Server Executes:
21: XTopK ← GlobalVote({F TopK

i }Mi=1)
22: {(Gk,Hk)}k∈XTopK ← Aggregate( XTopK , {Pi}Mi=1)
23: Split← FindSplit( {(Gk,Hk)}k∈XTopK )
24: Broadcast(Split, {Pi}Mi=1)
25: //Runners Executes:
26: children=ApplySplit(node, Split, λ)
27: queue.push(children)
28: end for
29: end while
30: Update prediction value of the samples at each P
31: Model.append(NewTreet)
32: end for
33: return Model

training results and makes the final decision to select the model parameters that are used to

split the tree nodes in the GBDT model, including features and corresponding thresholds.

These global parameters will be sent to all local runners to update the model. As depicted in
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FIGURE 5.1: An overview of Fed-GBM framework

Algorithm 6, there are three core functions executed within the training process: GlobalVote,

Aggregate and FindSplit.

Local runner: represents a wide range of computing devices with limited computation

and storage resources located at end-user premises. The instance sets appear in different

runners in a horizontal federated learning system but have the same user-defined feature

space. As illustrated in Fig.5.1 and Algorithm 6, the runners participate in the entire model

training. They are responsible for data pre-processing, tree structure initialisation, gradient

computation, local histograms establishment, local split finding, and model updating. Local

and global parameters can be exchanged via the pre-defined communication channel to

perform two-stage voting in each iteration effectively.

5.4.2 The Workflow of Fed-GBM Training

The detail of the joint model training is shown in Algorithm 6, which contains six phases as

shown below:

(1) Initialise quantile sketches and prediction values: Each local runner manages an

instance set for model training, and each instance sample comprises features and a

label derived from the seq2point learning paradigm. The local runners jointly create
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the pre-set Q quantile sketches for different features. Then, each runner randomly

initialises prediction values of local samples (line 1-4).

(2) Initialise the new tree: GBDT constructs an additive ensemble of trees that are

trained sequentially. Any newly grown tree is constructed by recursively splitting

the leaf nodes of the new tree until reaching a pre-defined stopping criterion λ. The

leaf nodes to be split are stored in a priority queue. The root of the new tree is first

pushed into the queue and set to active. By executing the CalculateGrad function,

the runners concurrently calculate the gradients of local samples based on their

corresponding labels and prediction values (line 6-10).

(3) Build histograms: In the process of tree growth, the active tree nodes are iteratively

pulled off the priority queue. For a given tree node, each local runner Pi uses the

first-order and second-order gradients {(gj, hj)}Ni
j=1 to build the histograms. Each

histogram corresponds to a feature s. In a histogram, data samples are partitioned

into Q bins according to the created quantile sketch of s. Each bin q records the

sum of gradients Gq
s and Hq

s of the samples that reside in the bin. Based on the

histograms of all features, the best split point can then be found (line 16).

(4) Find split: We design a communication-efficient two-stage voting scheme (detailed

in Section 5.4.3) to find the splits for active nodes. In this process, the runners and the

server jointly search the split with maximum variance gain. Instead of searching on

all features, the server collects the top-K feature candidates from each local runner

and determines the global candidate features by majority voting. By aggregating the

histograms of the candidate features to the global one, the server finds the best split

point and then sends the result to all runners (line 17-24).

(5) Apply split: When the best split point is received from the server, local runners will

apply the split. Two scenarios are taken into account. If a stopping criterion is met,

the node stops the growth from that brunch and becomes a leaf. Otherwise, the node

is split and corresponding children are pushed into the priority queue for further

processing. The local runners repeat phases (3)-(5) until the queue becomes empty.

When the growth of the current tree finishes, both the runners and the server will

proceed to the next tree (line 26-27).
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(6) Produce the model: When the current tree number equals the maximum number of

training rounds, the system will stop training and output a NILM model. Otherwise,

the training procedures of phases (2)-(5) are iteratively performed by the local

runners and the server until reaching the threshold.

5.4.3 Two-stage Voting for Fed-GBM

Some existing works [115] follow the idea of traditional data parallelism algorithms to enable

horizontal federated learning for GBDT; the histograms of all features are built at local

runners and then sent to the server for further processing. Assuming no message exchange

happens between runners and no node parallelism is involved, the total communication cost is

(MSH2D), where M is the number of runners, S is the number of features, equal to the size

of the selected window in the seq2point training paradigm, H is the size of a histogram, and

2D represents the node number of a binary tree where D is the depth of a depth-wise tree. The

cost is proportional to S when other factors are fixed. As network traffic is highly dynamic,

the large message overhead could weaken such systems’ robustness and cost efficiency.

To reduce communication costs while preventing information leakage, we propose a two-stage

voting scheme for horizontal federated learning and prove its feasibility in Section 5.4.4.

In our approach, instead of performing the split finding over the whole feature space, only

the candidates who pass the local voting stage are entitled to engage in the global search at

the server. The communication overhead is thus significantly reduced, as well as the risk of

information leakage, discussed later in Section 5.4.6.

Voting at local runner: For the locally-built histograms, all runners execute the function

LocalVote in Algorithm 6 to perform split finding in parallel. In the searching process, all

features and corresponding split thresholds are iteratively evaluated by calculating variance

gains. According to the maximum variance gain, the runner selects top-K candidate features

and sends the result to the server. The result is a list of feature indexes. So the communication

cost in this step is (MK).
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Voting at server: In the split finding phase, the server first stays in a synchronous barrier and

waits to collect the local voting results from all runners. Once all results are fully retrieved, the

server performs global voting among all received candidates. In this step, the server selects

a list of βK (β>1 & β ∈ N+) candidate features by using majority voting. The features are

ranked based on the times chosen by runners, and the candidates with a higher majority win.

For a given feature, there is a sufficient condition to ensure it is selected into the global feature

list by majority voting, which is provided as a lemma and will be used in Section 5.4.4.

LEMMA 8. If a feature f is selected by no less than [M
β
+ 1] local runners in the local voting,

it must be contained in the global top-βK feature candidates.

PROOF. We prove this lemma using proof by contradiction. Assuming no less than [M
β
+1]

runners select a feature f , but this feature is still not one of the global top-βK candidate

features. So, minimum βK features are selected by at least [M
β
+ 1] runners. The top-βK

features use no less than (M
β
+ 1)βK=KM+βK votes. As all local runners have only KM

votes, there is a contradiction in this case. Thus, f is one of the global top-βK feature

candidates. □

Global Split Finding: After globally selecting candidate features, the server first waits to

collects the histograms of these features from all local runners and aggregates the histograms

of the same feature to a global one. Then the function FindSplit in Algorithm 6 is executed to

search for the best split feature and corresponding split point.

In this manner, only the histograms of K features need to be sent by runners, and the total

communication cost of our design is (MKH2D +MK), which is independent of S. In

practical use, a proper value of K
S

is the key to achieving the desired tradeoff between

communication efficiency and model accuracy.

5.4.4 Theoretical Analysis for Two-stage Voting

This part gives a theoretical analysis to ensure a probability bound of finding the optimal

global split using the two-stage voting scheme, which reflects the performance gap with the
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traditional centralised searching scheme. With the lower bound, we show that the two-stage

voting scheme is of practical importance, and the gap can be effectively reduced by more

users engagement in co-modelling. Now we provide the probability bound by a theorem as

follows:

THEOREM 5.4.1. Suppose that m local runners P={P1, ..., Pm} manage different sizes of

datasets {N1, ..., Nm} in a horizontal federated learning system, and follow the two-sage

voting scheme to train a GBDT model. Let local voting size to be K and global voting size to

be βK (β>1 & β ∈ N+). For an arbitrary tree node, the feature with the largest variance

gain can be found in full feature space S with a probability of at least

m∑
n=[m

β
+1]

Cn
m∑

t=1

∏
Pi∈Rt

(
1−

(
S∑

j=K+1

δ(j)(Ni, K)

)) ∏
Pi∈P/Rt

(
S∑

j=K+1

δ(j)(Ni, K)

)
(5.6)

In (5.6), δ(j)(Ni, K) = α(j)(Ni) + 4e−c(j)Ni(l(j)(K))
2

, where l(j)(K) indicates the distance

between the largest variance gain and the jth largest one for any j ≥ K + 1, Also,

limNi→∞ α(j)(Ni) = 0, and c(j) is constant. Rt ⊆ P denotes a set of the runners that

select the best split feature in the local top-K list.

PROOF. To better understand the proof, we first introduce some necessary notations. For

a given tree node, the top-K ranked list of features by the variance gain is Li at any runner

Pi, and the global feature list over all runners by majority voting is L′. The feature with the

largest variance gain is fmax. We denote n as the number of runners selecting fmax as a

candidate feature. In this chapter, there are two steps to prove the theorem. First, we calculate

the lower bound of probability for the case any given runner Pi selects fmax, denoted as

P(fmax ∈ Li). We know that households from the same geographic region share similar

appliance signatures and usage patterns [10, 34]. As our approach serves the same application

scenario, we let datasets in different runners share the same data distribution. Under such

conditions, we follow the mathematical proof of Theorem 4.1 in [85] and easily derive the

lower bound of P(fmax ∈ Li) as following:



5.4 FEDERATED GRADIENT BOOSTING MACHINES (FED-GBM) FOR NILM 93

P(fmax ∈ Li) ≥ 1−
S∑

j=K+1

δ(j)(Ni, K) (5.7)

Second, based on the result from the first step, we can calculate the lower bound of probability

for the case where best split feature is selected into the global candidate list at the server,

represented as P(fmax ∈ L′). According to Lemma 8, n ≥ [m
β
+ 1] is a sufficient condition

for fmax ∈ L′ to be satisfied. P(n ≥ [m
β
+ 1]) can be calculated as follows:

P(n ≥ [
m

β
+ 1]) =

m∑
n=[m

β
+1]

P(n)

=
m∑

n=[m
β
+1]

Cn
m∑

t=1

P(Rt|Rt ⊆ P, |Rt| = n)

=
m∑

n=[m
β
+1]

Cn
m∑

t=1

∏
Pi∈Rt

P(fmax ∈ Li)
∏

Pi∈P/Rt

P(fmax /∈ Li)

(5.8)

By combining Ineq.(5.7) and Eq.(5.8), we can get the lower bound of P(fmax ∈ L′) in

Theorem 1 . □

REMARK. By Theorem 1, our proposed training scheme can guarantee that, for a given node,

the best split feature can be selected with a probability of at least (5.6). From a statistical

viewpoint, we can improve the accuracy of the GBDT model by boosting the probabilistic

lower bound of finding the optimal split for each node during the tree growth. Meanwhile, the

theorem presents users with a clear path to improving the model’s accuracy by adjusting the

parameters accordingly. The size of local training data Ni, voting size K, and the number

of local runners m are the three key parameters that could affect the model’s accuracy.

By combining (5.6) and the definition of δ(j)(Ni, K), we can observe that fixing the other

parameters to increase Ni, the lower bound of P(fmax ∈ L′) also increases since δ(j)(Ni, K)

decreases. Especially when the data is sufficient in the local runners, the local voting result

is similar to the global voting one and P(fmax ∈ Li) →1. Similarly, the lower bound also

increases with the increase of K. But if Ni is large enough, K becomes insensitive to the

lower bound change, and thus we can select a small K to reduce the communication cost
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during the model training. The increase of m also contributes to improving the lower bound.

With more participators, the empirical distribution of training data will closely approximate

the population distribution, and the lower bound will approach 1. However, it could result in

higher synchronisation overhead and aggravate the risk of server crashes. We can leverage

the above findings in real applications to get a fine-tuned parameter combination to meet

diversified customers’ demands.

5.4.5 Node Parallelism for Tree Growth

As the workload of splitting a node is small, the available CPU cores cannot be fully utilised

at both local runners and the server. It results in the waste of computation resources. To

address such an issue, we propose a node-level parallelism scheme for tree growth.

During the training, any two nodes in the queue have no parent-child relationship, since only

when an active node is split and deactivated their children can be added to the queue. So

there is a chance to achieve parallelism among different nodes during the model training.

In our system design, there are w executors with identical resources running in parallel at

runners and the server. The value of w is limited by the maximum computation capacity

of local runners. The jobs of node split, issued during the tree growth, are assigned among

these executors for processing. Before introducing a feasible solution to job scheduling, we

first identify the scheduling problem in the node-level parallelism scheme by the following

proposition.

PROPOSITION 1. Given w executors with identical resources for jointly training a GBDT

model on the Fed-GBM framework, the job allocation under node-level parallelism setting is

a Pw | online-time-nclv, prec, rj | Cmax scheduling problem.

PROOF. In the node-level parallelism scheme, w executors with identical resources run

parallel at a local runner or the server. They can be seen as w parallel machines, represented

by Pw. The scheduler needs to determine when and where the continuously released jobs

are executed during tree construction. The jobs have precedence constraints, represented by

prec. Apart from the root node, any tree node is generated by its parent node. This makes its
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corresponding split job j released only after its parent job i is finished. The release time of the

job j denoted as rj is equivalent to the completion time of the job i. For the online-time-nclv

scheduling problem, where nclv is short for Non-clairvoyance, the scheduler is not aware of

the existence of a job until its release and also has no information about the processing time

of that job at its release date. Since the jobs are dynamically generated during the tree growth,

their processing time is unknown when released and is hard to be estimated. It is thus to be

formed as an online-time-nclv problem. Besides, our objective is to minimise the makespan

Cmax (total time cost) of the tree construction. Overall, the job allocation can be described

by using the three-field Graham’s notation [42] as a Pw | online-time-nclv, prec, rj | Cmax

scheduling problem when the node-level parallelism is enabled for Fed-GBM. □

The List Scheduling (LS) algorithm proposed by [41] achieves the best-provable competitive

ratio of the online-time-nclv scheduling problems. LS assigns a released job for node split

to the executor that has the least load among the executors. Compared with optimal offline

algorithm (OPT), the following ratio always holds

Cmax(LS)

Cmax(OPT )
≤ 2− 1

w
, w ≥ 2 (5.9)

At both local runners and the server, LS assists in optimising the fair sharing of executors over

split jobs with non-trivial dependencies and reaches the best performance ratio of (2- 1
w

). Our

node parallelism design significantly improves computation efficiency and resource utilisation

for model training with this approach.

5.4.6 Discussion on Privacy Leakage

In our training system, no peer-to-peer communication is allowed. This design means attackers

can not pretend to be participants to directly retrieve sensitive data from other users in the

learning process. A communication channel is established only between each runner and the

server. There are three places where the privacy leakage potentially occurred. First, local

voting results need to be uploaded to the server for global voting. Except for the partial feature

indexes, no other informative knowledge is exposed. Second, the server collects histograms of
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global feature candidates to perform split finding. For any immediate node, only partial local

samples are involved in the histogram construction. Using two-stage voting, the number of

histograms is a constant K, and locally-selected candidate features are dynamically changed

at different nodes. So it is hard to obtain histograms of full features with all data samples,

and the risk of privacy leakage is significantly relieved, especially when the K is far smaller

than the total feature number. Third, the global result is learned by all the runners. The

result only contains the split information for a certain node, the best split feature, and the

corresponding threshold. Based on such information, the runners know the direction to split

the node. Malicious runners cannot deduce any sensitive information of any users from it.

5.5 Experiments

FIGURE 5.2: Comparison of performance over different training methods

FIGURE 5.3: Convergence of training loss for Fed-GBM on REDD
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FIGURE 5.4: Comparison of MAE across three houses between locally-
trained methods and Fed-GBM on REDD

FIGURE 5.5: Convergence of training loss for Fed-GBM across five houses on REFIT

FIGURE 5.6: Comparison of MAE across five houses between locally-trained
methods and Fed-GBM on REFIT

5.5.1 Experimental Setup

(1) Datasets: In the experiments, we employed three open datasets, UK-DALE, REDD,

and REFIT, each containing the residential low-frequency appliance-level and ag-

gregated power consumption. Our experimental datasets are built from the power

readings of houses 1, 2, and 3 from REDD, building 1, 2 from UK-DALE, and

five randomly selected houses from REFIT. For all datasets, we sampled the active

load every 8 seconds. Commonly-used appliances were chosen to implement model
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training, such as dishwasher, fridge, washing machine, and microwave. For each

dataset, 80% of samples were used for model training, and the remainder for testing.

(2) GBDT Implementation: To better evaluate the performance of GBDT for NILM,

we constructed different models for four common appliances from UKDALE and two

state-of-the-art neural networks, CNN and GAN, as performance indexes. All models

were constructed and tested based on the same dataset to allow fair comparison. We

implemented the architecture of CNN and GAN based on [34] and [5] respectively.

The hyper-parameters for training different NILM models are provided in Table 5.1.

In these experiments, the window sizes of seq2point were set to 19 to study the short-

period energy disaggregation on the selected appliances. These three algorithms

were implemented on a desktop computer with Intel i7 8700 CPU @2.81GHz, 32GB

DDR4 RAM, and NVIDIA GTX 1080 Graphics Card with 8GB GDDR5X VRAM.

TABLE 5.1: The parameters for training NILM models

Hyper-parameters for training CNN
Maximum epochs 100 Learning rate 0.001
Batch size 1024 Beta1 0.9
Early-stopping epochs 10 Beta2 0.999
Optimizer type Adam Epsilon 10−8

Hyper-parameters for training GAN
Maximum epochs 100 LR for generator 0.00001
Batch size 1024 LR for discriminator 0.00001
Early-stopping epochs 10 Beta1 0.5
Optimizer type Adam Beta2 0.999

Hyper-parameters for training GBDT
Maximum boosting round 100 Learning rate 0.232
Maximum depth 10 L1 regularisation 0.0214
Maximum bins 500 L2 regularisation 0.0001

(3) Fed-GBM Implementation: Fed-GBM was implemented in Python and deployed

on a scalable distributed Dask Fargate cluster connected to a powerful EC2 server

from AWS. Dask is an open-source lightweight distributed computing library, which

enables the control of data locality and management of task scheduling [107]. The

workers represent the distributed power users, each equipped with 4 vCPU and 4GB

RAM. The EC2 server coordinates different workers to train a unified GBDT model
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based on our proposed algorithm. The specification of the server is 72 vCPU, 144GB

RAM, 2 x 900 NVMe SSD, and 25Gbps network bandwidth.

(4) Evaluation Metrics: We also used three commonly-used metrics for performance

evaluation of NILM models, including MAE, SAE, and NDE. For all three metrics,

the lower the value, the more minor deviation between estimates and ground truth

generated by the model. We also defined a scoring metric to assess different values

of hyper-parameter K used by two-stage voting. It reflects the trade-off among

accuracy, training overhead, and information leakage in Fed-GBM. The scoring

metric and relevant notations are defined as follows:

scoreK =
GainK

LossK
=

γ · TOGK

α · ALK + β · PLK
, α+ β = 1, α, β ∈ (0, 1) (5.10)

ALK =MAEK −MAEKmax

, TOGK = TCKmax − TCK (5.11)

where TCK denotes training cost,ALK , PLK and TOGK are accuracy loss, privacy

loss and the gain of training overhead whenK is assigned for two-stage voting. Since

PLK=δ(K) is proportional to the value of K, we directly use K to quantify privacy

leakage in our experiment. α, β, γ are the weights assigned to ALK , PLK and

TOGK respectively, showing the importance of each factor. They need to be pre-

defined based on the condition depicted in Eq.(5.10). The higher score a model

obtains, the better trade-off it can achieve in practical applications.

5.5.2 Performance of GBDT for NILM

TABLE 5.2: Performance of Different Models for Energy Disaggregation

Appliance CNN (seq2point) GBDT GAN
MAE SAE NDE MAE SAE NDE MAE SAE NDE

Washing machine 17.71 0.011 0.51 17.11 0.0034 0.52 18.59 0.635 0.37
Fridge 20.87 0.022 0.53 18.86 0.0003 0.51 34.11 0.334 0.61
Dishwasher 20.79 0.176 0.49 17.86 0.0042 0.50 14.34 0.105 0.11
Microwave 8.74 0.127 0.66 6.89 0.0025 0.67 5.79 0.158 0.40
Mean 17.03 0.084 0.54 15.18 0.0026 0.55 18.21 0.308 0.37
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TABLE 5.3: Comparison of average performance on model size, training and
inference costs over three models on UK-DALE

Method Model Size(KB) Inference Time(s) Training Time(s)
CNN 11935 82.50 5621.41

GBDT 830 8.09 162.42
GAN 182896 212.40 11722.01

To validate the effectiveness of GBDT on NILM, we comprehensively examined the accuracy

and running costs by different metrics and compared it with the CNN-based and GAN-

based solutions. The performance comparison results are shown in Fig. 5.2 and Table 5.2.

According to Fig. 5.2(a) and Table 5.2, we observe that GBDT outperformed CNN on all

target appliances when the three performance metrics are jointly considered. GAN provided

the best accuracy on the dishwasher and microwave but had the worst performance on the

others. This result suggests that the performance of the GAN model varies over appliances. It

can also be validated from Fig. 5.2(b), which shows the NDE distribution of three methods on

different appliances. NDE values of both GBDT and CNN vary in a limited range (0.4 to 0.6),

while large variance occurs in the GAN model (0.1 to 0.6). We can thus conclude that GBDT

and CNN provide stable effectiveness for different target appliances, but GAN shows low

stability and is inappropriate for residential applications. In Table 5.2, we also noticed that the

average SAE of GBDT is only 0.0026, far better than the other two models. It indicates that

GBDT can produce the near-ground-truth energy estimation. Additionally, we investigated

the average model size, training time and inference time of three different models on the

selected appliances. As shown in Table 5.3, both CNN and GAN models incur large storage

and computation costs. The average model sizes of two neural networks reach 11935KB and

182896KB, 14× and 220× larger than GBDT, respectively. Under the same hardware settings,

the average training time of GBDT is only 162.42s, 34× faster than CNN. The GAN shows

the largest training cost, which is 11722s since both generator and discriminator have to be

trained for energy disaggregation. Given the same data size for testing, GBDT is 10× and

26× faster than CNN and GAN in inference time. Overall, GBDT significantly outperforms

the other two neural networks for NILM applications regarding performance and resources

needed, making it more applicable for a wider range of devices.
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5.5.3 Overall Performance of Fed-GBM

TABLE 5.4: Comparison of estimation accuracy of different methods on REDD

Appliance Locally-trained Fed-GBM Centrally-trained
MAE SAE NDE MAE SAE NDE MAE SAE NDE

Dishwasher 11.78 0.020 0.55 9.60 0.016 0.44 9.58 0.006 0.43
Fridge 23.39 0.0006 0.45 22.17 0.0002 0.44 20.04 0.0003 0.44

Washing machine 4.90 0.013 0.27 2.66 0.005 0.16 2.39 0.004 0.15
Microwave 10.85 0.019 0.62 9.02 0.014 0.46 7.75 0.008 0.41

TABLE 5.5: Comparison of estimation accuracy of different methods on REFIT

Appliance Locally-trained Fed-GBM Centrally-trained
MAE SAE NDE MAE SAE NDE MAE SAE NDE

Dishwasher 36.39 0.020 0.79 32.84 0.009 0.762 32.74 0.012 0.77
Fridge 37.03 0.004 0.72 36.53 0.007 0.733 36.50 0.004 0.73

Washing machine 22.44 0.104 0.85 19.67 0.064 0.782 18.66 0.069 0.74
Microwave 7.46 0.098 0.91 7.51 0.073 0.865 7.35 0.049 0.88

Kettle 27.67 0.048 0.79 24.63 0.016 0.771 23.92 0.042 0.76

In this experiment, we evaluated the effectiveness and the generalisation ability of Fed-GBM

on REDD and REFIT. As mentioned, we selected three houses from REDD and five random

houses from REFIT. Both convergence and accuracy were evaluated.

Convergence: The loss convergences of the Fed-GBM models for two residential scenarios

are shown in Figs. 5.3 and 5.5. For each target appliance model, we studied the overall

training loss and the loss in each house. As shown in Fig. 5.3, except for the performance of

the washing machine model on house 2, the training loss across other target appliances drops

with the increase of boost rounds. As the washing machine is infrequently used in house

2 and the portion of data reflecting active operation status is extremely low, the downward

trend of training loss is not obvious compared with other houses. Although the initial and

final losses of the three houses are different due to the divergence of usage patterns among

different users, it is easy to observe that the convergence rates of the three houses are similar

to the overall one. In REFIT, more power users contribute to the co-modelling, and more

target appliances engage in energy disaggregation. As depicted in Fig. 5.5, Fed-GBM can

still provide stable overall loss convergence across five target appliances without sacrificing

anyone’s performance. The result illustrates that both overall and local convergences are
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FIGURE 5.7: Comparison of outgoing traffic by using Fed-GBM and Feder-
Boost for different appliances. (a) and (c) show the combined communication
cost of different local runners for building a tree on REDD and REFIT. (b) and
(d) are the corresponding box plots, showing the outgoing traffic distribution
over different trees.

guaranteed by Fed-GBM regardless of appliance type, appliance number, and residential

environment.

Accuracy: Our implemented Fed-GBM models were compared with the locally-trained ones

and centrally-trained ones on different appliances. The comparison results over three main

performance metrics are provided in Tables 5.4 and 5.5. For both REDD and REFIT, the

centrally-trained models often achieve the best performance, while the locally-trained ones

always show the worst. This result is because the centralised training method can easily extract

sufficient representative knowledge and identify statistical patterns from all power users. It

also ensures the natural generalisation of the models across different houses in practical use.

In contrast, locally-trained models, built on limited training data, cannot sufficiently capture

common appliance signatures, especially when the usage frequency of the target appliance

is low. Similar to centrally-trained models, Fed-GBM models outperform locally-trained

ones. They provide a close approximation of MAE to the centrally-trained method and
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also prevent information leakage from individual power users. Moreover, some Fed-GBM

models achieve lower SAE or NDE values than the centrally-trained ones, such as in the

case of the dishwasher and kettle in REFIT. It means Fed-GBM sometimes provides a better

estimation of total energy consumption and helps avoid outlier estimates. Apart from the

overall performance evaluation, accuracy examination is performed on individual household

owners from REDD and REFIT. The result is presented in Fig. 5.4 and 5.6. We observed that

the MAE value of Fed-GBM is lower than that of local ones for most households. Fed-GBM

shows remarkable adaptability across different power users. In brief, the experimental results

verify that Fed-GBM has superior performance against the other two training approaches

when both privacy protection and accuracy are jointly considered.

Communication Efficiency: The improvement of communication efficiency is also carefully

examined on Fed-GBM compared with a state-of-the-art horizontal federated GBDT al-

gorithm, FederBoost [115]. As communication efficiency is the main focus, we implemented

the FederBoost prototype without involving its secure aggregation and differential privacy

components in our tests. Both algorithms were examined under the same network settings to

make a fair comparison. For the tree construction, we monitored the outgoing traffic of each

local runner on REDD and REFIT. The results are provided in Fig.5.7. As depicted in Fig.5.7

(a) and (c), the combined outgoing traffic of FederBoost is more than two times of Fed-GBM.

The communication cost of each runner shows the same result. According to Fig.5.7 (b) and

(d), the maximum outgoing traffic of Fed-GBM is less than 3MB for any appliance, while

FederBoost averagely generates more than 4MB traffic during the tree growth. In addition,

Fed-GBM remains at a stable communication cost since the outgoing traffic varies within a

narrow range. However, FederBoost shows a significant variance in communication cost, so

the unbalanced communication cost could often occur over different trees. Overall, Fed-GBM

reduces communication overhead and balances the outgoing traffic over different trees.

5.5.4 Performance of Node-level Parallelism

We evaluated the node-level parallelism of Fed-GBM by implementing model training with

different executors on REFIT. The results are shown in Fig.5.8. Compared with the sequential
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FIGURE 5.8: Comparison of training overhead over different number of
executors for five appliances

training process on a single executor, there is a significant reduction of training cost along

with the increment of the executors before reaching 8. When the number is greater than 8, the

time cost reduction will gradually decrease. When reaching 16, the increment of executors

commences incurring more time cost. The experiment result suggests our design can fully

utilise the computation capacity of devices. However, the large number of executors can cause

resource underutilisation at the initial layers of the tree as not that many jobs require service.

This negative effect on training efficiency will become obvious if the executor number exceeds

a threshold. Therefore, we have to carefully consider the dual effect of the executor number

and find an optimal value for the node-level parallelism in practical use.

5.5.5 Analysis of the impact of K value

FIGURE 5.9: Impacts of K on communication efficiency for Fed-GBM. The
blue dash line represents the outgoing traffic of Fed-GBM with a 95% confid-
ence interval, while the green dash line shows the result of FederBoost.
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FIGURE 5.10: Impacts of K on loss convergence for Fed-GBM

FIGURE 5.11: Impacts of K on accuracy and training cost for Fed-GBM

FIGURE 5.12: The score comparison of different K values

To better understand the impact of the K value for Fed-GBM, we carried out model train-

ing with different K values on five selected appliances from REFIT. The window size for

seq2point is extended to 99 to demonstrate the scalability of our approach. It is also the

acceptable maximum K value for short-term NILM. We first examined the impacts of K on

communication efficiency for Fed-GBM. As shown in Fig. 5.9, for any appliance model, the

total outgoing traffic of local runners increases with the K value. The blue dash line depicts

the arithmetic mean of transferred data volumes overs five appliance by using Fed-GBM

while the green dash line represents the result of FederBoost. It is easy to note that the

average communication cost of Fed-GBM is proportional to K but does not exceed Feder-

Boost, which complies with the theoretical analysis in Section 5.4.3. Fig. 5.10 shows the

convergence of training loss for different K. For any target appliance, the downward trends

of the models with different K are similar when the boost rounds increase. Thus we can

tell that the convergence of Fed-GBM is not sensitive to the K value. Finally, accuracy and

training cost are another two critical factors that should be assessed when determining K

value for model construction. The details of evaluation results are given in Fig. 5.11 which



106 5 FEDERATED GRADIENT BOOSTING TREES FOR NON-INTRUSIVE LOAD MONITORING

shows the time cost of model training rises with the increase of the K value. This contributes

to the incremental communication cost and workloads for split finding. However, for most

appliances, the variance of MAE is not a definite downward trend as the K value increases.

There is no linear correlation between MAE and K. The lowest MAE of dishwasher and

microwave occurs when K is 60, while both fridge and washing machine show the highest

estimation accuracy when K is 40. For the kettle, MAE decreases with the increase of K.

Thus, it is interesting to note that MAE does not always decrease when K increases. A low

K value in the setting of two-stage voting could bring more accurate estimates.

Based on the metric defined in Eq.(5.10), we can also evaluate the performance of Fed-GBM

by jointly considering training cost, accuracy, and privacy protection when different values

are assigned to K. To be specific, Fig.5.12 demonstrates the impact of K for the final score

assessment. The K value associated with the highest score differs in five appliances, but the

peak often occurs at 20. The score will drop for most appliances when K is greater than 40.

Thus, there is a high probability that K
S

, valued between 20% and 40%, achieves the highest

score and the best trade-off between the factors for the NILM model training.

5.6 Summary

This chapter proposes a collaborative learning framework, Fed-GBM, to address the low

model fitting of local on-site training due to the limited data scale in NILM applications. In

Fed-GBM, a two-stage voting scheme is proposed to simultaneously realise communication

cost reduction and privacy protection. Node parallelism for tree growth is also implemented

based on an online scheduling algorithm to improve resource utilisation. Our technical designs

significantly reduce the training costs for adapting different levels of resource provision. We

also conducted comprehensive experimental studies for Fed-GBM, and it shows remarkable

performance in all tests. The impact of the K value for two-stage voting and executor number

for node-level parallelism is also extensively studied to guide the hyper-parameter selection

in practical use.
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Conclusion

This thesis discusses the benefits of using intelligent data analysis to improve energy man-

agement and describes two pressing challenges emerging in ML-based predictive analysis

applications. The first of these issues is the lack of a cost-effective approach suitable for

devices with limited resources. The second is the data scarcity issue, which leads to the failure

of model fitting on target prediction tasks.

Energy management is an online scheduling problem requiring prompt energy-related know-

ledge estimation. As such, predictive analysis in the energy field can be categorised as a

time-sensitive task and needs on-premises implementation. Besides, advanced deep mining

techniques increase the potential risk of privacy leakage. This means that users typically

prefer to place the training and inference task in the local devices in case information breaches

occur during run time. Existing powerful ML-based models, however, contain large-scale

hyper-parameters and impose high computation and storage costs at run time. Resource-

constrained local devices poorly accommodate such models with complex structures. Toward

this end, Chapter 2 and 3 propose lightweight learning solutions for two predictive analysis ap-

plications, photovoltaic power prediction and non-intrusive load monitoring. We leverage the

advantages of state-of-the-art implementation with gradient boosting decision trees (GBDT)

to lower computational costs and improve prediction accuracy. Since time series are involved

in both applications, we introduce two similar data preprocessing strategies to fully capture

the latent temporal patterns from a long-term time series. Such data augmentation approaches

further enhance performance guarantee. Chapter 5 creates a federated version of GBDT for

joint NILM modelling. This work takes a step toward lowering communication costs and

107
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improving resource utilisation, extending the use of GBDT to wider hardware settings and

various environmental constraints.

In this research, considerable research efforts have been dedicated to addressing the data

shortage issue for energy management. Although labelled data from the real scene is precious

and necessary for model training, it is also labour-expensive to acquire. As such, transfer

learning and federated learning are promising techniques for solving target learning tasks by

leveraging more easily obtainable datasets from other sources. Chapter 3 presents a unique

source-free knowledge transfer approach using gradient boosting trees to alleviate the impact

of data drift, whilst also protecting source data from privacy leakage. We also use feature

importance derived from Shapley Additive Explanations (SHAP) to quantify the transferability

of each feature. Based on the transferability, only partial nodes need optimal searching, and

the whole model structure remains, which significantly reduces computation costs. Chapter 4

theoretically explores the driven factors that affect transferability between source and target

tasks and presents a multiple source domain adaptation (MSDA) algorithm based on our

newly proven generalisation bound of target risk. Our defined domain discrepancy fully

considers both marginal and conditional shifts, which are potentially detrimental to model

performance on target tasks. To reduce such domain discrepancy, an adversarial learning

strategy is applied to optimise model parameters for learning task-discriminative and domain-

invariant features. Our solution extracts the statistical relationships between labelled source

data and unlabelled target data. Thus, our target models can address detrimental sources by

adaptively assigning high weights to the source domains similar to the target domain. From

a collaborative perspective, Chapter 5 presents a feasible federated learning framework to

achieve multi-source learning through the use of limited labelled data from different energy

users. Extensive experimental studies validate that our approaches enable the established

model to generalise well with different task users.
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6.1 Future Work

We identify four research directions for the ongoing studies based on our prior works, which

are provided as follows:

• Although it is empirically proved in Chapters 2 and 3 that the variants of GBDT show

outstanding performance over wide resource-constrained devices for energy-related

predictive analysis tasks, the prior works on parallelism and training acceleration

are still limited on the tree-based ensemble algorithms, as discussed in Chapter

5. We plan to develop more cost-effective optimisation solutions for constructing

gradient-boosting trees across various heterogeneous edge computing systems.

• In this thesis, the conventional deterministic point prediction, which is employed for

PV forecasting and NILM tasks, is often error-prone, and bad predictions potentially

jeopardise the online scheduling of energy resources. As a feasible alternative,

distributional prediction is introduced as a feasible alternative to tame the detrimental

energy-related estimates by jointly considering a specified confidence interval of

predictions. In future work, we will explore cost-effective learning methods for

distributional prediction. This approach will allow energy management systems

to have better control over the uncertainties in decision making and significantly

improve the power system’s reliability and energy scheduling performance.

• The transfer learning techniques proposed in Chapter 3 and 4 help solve the data

shortage issues and power NILM applications significantly. However, NILM model-

ling only requires main readings as the input features, which is relatively conveni-

ent to be collected. In other real-world applications, e.g. PV output forecasting

and load prediction, the full dimensions of well-characterised features are only

sometimes available in different domains, which makes knowledge transfer more

difficult for multi-source learning tasks. To this end, we will develop a unified

heterogeneous transfer learning paradigm (though feature dimensions and data distri-

bution may be different) for state-of-the-art ML models. Our design aims to extract

domain-invariant semantic information from multiple domains with varying spaces

of features. A dimension-agnostic transferability quantification strategy needs to be
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explored to effectively disclose the relationships between source and target domains

in order to be able to fully use learned knowledge from available data sources.

• Regarding the collaborative modelling of boosting trees in Chapter 5, we first

plan to use a wide range of single-board computers to replace the Dask Fargate

cluster as the geographically distributed edge devices in our prototype system. Such

implementation will provide us with a more sensitive testing environment to study

our framework’s effectiveness compared to GBDT-based approaches and other

available alternatives [134, 119, 19]. Second, we will explore the performance

of node-level parallelism on the leaf-wise model. [98] made the first attempt in

a high-performance computing environment, which we aim to extend to broader

application scenarios. Third, we will develop a location-aware decentralised training

architecture for privacy-preserving collaborative learning. This will help to avoid

costly communication overheads with the far-end server. Last, and most importantly,

we will investigate the potential of the asynchronous training of GBDT [29], and

integrate an asynchronous training strategy into the design of a federated learning

system. Thus, our design will be more adaptable and able to be used in a complex

distributed computing environment with heterogeneous devices.
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