
Machine Learning in Portfolio
Management

STEVEN Y. K. WONG

BE (Hons), BCom, MFin

Supervisor: A/Prof. Jennifer S. K. Chan
Associate Supervisor: Dr. Lamiae Azizi

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Mathematics and Statistics
Faculty of Science

The University of Sydney
Australia

19 September 2023

Abstract

Financial markets are difficult learning environments. The data generation process is time-

varying, returns exhibit heavy tails and signal-to-noise ratio tends to be low. These contribute

to the challenge of applying sophisticated, high capacity learning models in financial markets.

Driven by recent advances of deep learning in other fields, we focus on applying deep learning

in a portfolio management context. This thesis contains three distinct but related contributions

to literature. First, we consider the problem of neural network training in a time-varying

context. Conventional batch training methods assume a stationary data generation process,

where training and out-of-sample data are assumed to be drawn from the same distribution.

This is suboptimal for applications where the data generation process changes over time, such

as in financial markets. To address this, we extend the early stopping algorithm into the online

context, which we term the Online Early Stopping algorithm. We show that a neural network

trained using this algorithm can track a function changing with unknown dynamics. We

provide a regret-bound for the algorithm and show that the worst-case tracking performance

of the algorithm is bound by the time-variance of the data generation process. We compare

the proposed algorithm to current approaches in predicting monthly U.S. stock returns and

show its superiority. Second, we consider the problem of learning in noisy environments.

Noisy learning environments such as financial markets are characterised by low noise-to-

signal ratio. This differs to information-rich applications such as image recognition. We

propose an approach that regularises the temporal convolutional network using a supervised

autoencoder, which we term the Supervised Temporal Autoencoder. We show that the addition

of the auxiliary reconstruction task is beneficial to the primary supervised learning task in

the context of stock return time-series forecasting. The supervised autoencoder denoises

the input and encourages the main network to retain features that are beneficial to both

prediction and reconstruction tasks. We also show that the supervised temporal autoencoder

is able to learn features directly from the transformed price series, alleviating the need for

ii

ABSTRACT iii

handcrafted features. The autoencoder also improves interpretability as users can observe the

output of the decoder and inspect features retained by the network. Third, we consider the

problem of quantifying forecast uncertainty in time-series with complex structures. Time-

varying variance, such as volatility clustering as seen in financial time-series, can lead to

large mismatch between predicted uncertainty and realised forecast error. We propose a novel

framework to deal with uncertainty quantification under the presence of volatility clustering,

building and extending the recent methodological advances in uncertainty quantification for

non-time-series data. We outline several methodological advancements, including the use

of scale mixture distribution and separate modelling of distribution hyperparameters. To

illustrate the performance of our proposed approach, we apply it onto cryptocurrency and

U.S. equities time-series forecasting for the designed use-case. We demonstrate superior

performance to the current state-of-the-art in both data sets. We further provide an evaluation

using a non-time-series benchmark data set (Appendix) to show the general applicability of

our framework. Finally, potential future research directions in advancing machine learning in

portfolio management is discussed.

Acknowledgements

After 5 arduous years, here I am, putting the final touches to my thesis. Looking back, I

am glad that I have spent 5 years of my life (albeit part time) to learn something new about

machine learning, and to give back my knowledge to science, however trivial my contributions

may be. I would like to start by thanking my supervisors, A/Prof. Jennifer Chan and Dr.

Lamiae Azizi, for whom I am forever grateful to have been mentored by. Without their

patience, support and knowledge, I would not have made it this far. I would like to thank Prof.

Richard Xu for initially accepting me into his PhD cohort. Even though we had to part ways,

his machine learning classes were immensely helpful to my PhD. A special thanks to Prof.

Maurice Pagnucco for supervising my Honours and leading the UNSW RoboCup team —

an unforgetable journey through artificial intelligence that I still cherish today. I would also

like to thank the many past and present colleagues who have shaped my understanding of

quantitative investing. All of these experiences culminated in this thesis.

Finally, I would like to thank my family for their support and patience. They are the

reason for my perseverance.

iv

Contents

Abstract ii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

Acronyms xiii

List of Notations xv

Author attribution statement 2

Declaration 3

Chapter 1 Introduction 4

1.1 Motivation . 4

1.2 Mechanics of financial markets . 5

1.3 Return expectations in financial markets . 7

1.4 A primer on quantitative portfolio management . 8

1.5 Challenges of forecasting in financial markets . 16

1.6 Potential applications of machine learning in portfolio management 21

1.6.1 Cross-sectional prediction using online deep learning 21

1.6.2 Time-series pattern recognition in noisy environments 23

1.6.3 Forecast uncertainty quantification . 25

1.6.4 Other possible directions . 27

1.7 Contributions and structure of the thesis . 29

v

vi CONTENTS

Chapter 2 Deep learning 32

2.1 Feedforward neural networks . 32

2.2 Neural network training . 37

2.3 Network weight initialisation . 43

2.4 Other network architectural considerations . 45

2.5 Specialised network architectures . 46

2.5.1 Recurrent neural networks . 46

2.5.2 Temporal convolutional networks . 51

2.5.3 Autoencoders . 56

Chapter 3 Time-varying neural network for stock return prediction 58

3.1 Introduction . 58

3.2 Preliminaries . 62

3.2.1 Problem setup . 62

3.2.2 Neural network training under concept drift . 65

3.2.3 Online optimisation . 66

3.3 The proposed Online Early Stopping algorithm . 68

3.3.1 Tracking a restricted optimum . 68

3.3.2 Proposed algorithm . 72

3.4 Simulation study. 73

3.4.1 Simulation data . 73

3.4.2 Simulation results . 74

3.5 Predicting U.S. stock returns . 75

3.5.1 U.S. equities data and model . 75

3.5.2 Predicting U.S. stock returns . 78

3.5.3 Time-varying feature importance . 80

3.5.4 Investable simulation . 85

3.6 Conclusions . 88

Chapter 4 Supervised temporal autoencoder for stock return time-series

forecasting 92

CONTENTS vii

4.1 Introduction . 92

4.2 Preliminaries . 96

4.2.1 Problem setup . 96

4.2.2 Neural networks for time-series applications . 97

4.2.3 Supervised autoencoders . 99

4.2.4 Deep learning in financial time-series prediction . 100

4.3 Proposed STAE and application to stock return forecasting 101

4.3.1 Data and experimental setup . 104

4.3.2 Main empirical results . 107

4.3.3 Explaining the predictions of STAE. 111

4.3.4 Further analysis of the reconstruction task . 113

4.4 Conclusion . 116

Chapter 5 Quantifying neural network uncertainty under volatility clustering 119

5.1 Introduction . 119

5.2 Preliminaries . 125

5.2.1 Problem setup . 125

5.2.2 Related work . 127

5.3 Uncertainty quantification under volatility clustering . 130

5.3.1 Modelling forecast uncertainty using a scale mixture distribution 130

5.3.2 Architecture of the neural network . 134

5.4 Experiments . 138

5.4.1 Uncertainty quantification in cryptocurrency time-series forecasting 138

5.4.2 Further results on U.S. equities . 142

5.4.3 Ablation study . 144

5.5 Conclusions . 146

Chapter 6 Conclusion 148

6.1 Contributions to machine learning in portfolio management 148

6.2 Future research . 151

Bibliography 157

viii CONTENTS

Appendix A Appendix 185

A1 Supplementary review of asset pricing . 185

A2 Supplementary review of forecasting models . 190

A2.1 Forecasting returns . 190

A2.2 Forecasting risk . 191

A2.3 Forecasting transaction costs . 192

A3 Hyperparameters used in Chapter 3 . 193

A4 Hyperparameters used in Chapter 4 . 194

A5 Hyperparameters used in Chapter 5 . 196

A6 Marginal distribution of a Scale Mixture . 197

A7 Negative log-likelihood of marginal distribution of a Scale Mixture 198

A7.1 Benchmarking on UCI dataset . 198

A8 Further analysis of parameters in a Scale Mixture . 201

A9 Further analysis of Evidential on uncertainty quantification in cryptocurencies . 202

List of Figures

1.1 Illustrative stages of a quantitative investment process 9

1.2 Share price of Facebook Inc. over 2017–18. 17

1.3 Share price of GameStop Inc. over 2020–21. 17

1.4 Share price of Devon Energy Corp. over 2017–21. 18

2.1 Diagram of a fully connected neural network 33

2.2 Function values of common activation functions 36

2.3 Function values and first derivatives of rectified linear unit (ReLU), sigmoid and

tanh 43

2.4 Diagram of recurrent neural network 47

2.5 Illustration of types of recurrent architectures 48

2.6 Diagram of long short-term memory cell 49

2.7 Illustration of convolution operation 52

2.8 Convolution types 54

2.9 Illustration of causal dilated convolution 55

2.10 Diagram of temporal convolution network 55

2.11 Illustration of an autoencoder 57

3.1 Weight movement along gradient 69

3.2 Average optimisation iterations as regulariser 72

3.3 Cumulative mean decile returns of EWNN and OES 81

3.4 Top 5 features based on rolling 12-month average feature importance over

1987-1991 82

3.5 Yearly average R2 to baseline predictions 83

3.6 Rolling 12-month average R2 to baseline prediction of oil & gas, banks and

technology companies 85

3.7 Optimal and estimated number of optimisation iterations computed by OES 86

ix

x LIST OF FIGURES

3.8 Monthly and rolling 12-month correlation between predictions of OES and EWNN 88

3.9 Cumulative mean decile returns of EWNN and OES on the investable set 89

4.1 The Supervised Temporal Autoencoder architecture 101

4.2 Diagram of encoder and decoder of STAE 102

4.3 Schema of training dataset used for time-series forecasting 105

4.4 Standardised log TRI of Facebook Inc. and reconstructed time-series at various ω.108

4.5 Cumulative decile returns based on ensemble forecasts of sequential neural

networks 110

4.6 Illustration of momentum and reversal patterns 111

4.7 Cross-sectional correlations of the ensemble prediction of STAE to MOM12 and

MOM1 112

4.8 R2 of regressing STAE predictions on momentum and reversals 112

4.9 Mean cross-correlation of models in ensemble of sequential neural networks 114

4.10 IC and cross-correlations of TCN and STAE at various ω 115

5.1 Illustration of separate modelling of distribution hyperparameters 134

5.2 Volatility and predicted uncertainty of Ensemble, Evidential and Combined for

BTC/USDT and ADA/USDT 141

5.3 Absolute monthly returns and predicted uncertainty of Ensemble, Evidential and

Combined for Chevron and IBM 144

5.4 Predicted uncertainties in ablation studies 145

A.1 Illustration of the Capital Asset Pricing Model 187

A.2 Steps in return forecasting 190

A.3 Prediction error and predicted uncertainty of Extended Evidential and Combined 203

List of Tables

1.1 An illustrative order book for a hypothetical stock 6

1.2 Mean-variance optimisation example 13

3.1 Simulation results of EWNN, OES and DTS-SGD 75

3.2 Descriptive statistics of monthly excess returns of U.S. equities from April 1957 to

December 2016 76

3.3 Predictive performance of EWNN and OES on U.S. equities 79

3.4 Decile returns of EWNN and OES 80

3.5 Predictive performance of EWNN and OES on the investable set 87

4.1 Benchmark results of sequential neural networks and momentum effect (MOM12) on

time-series forecasts of U.S. equities 108

4.2 Forecasting performance of sequential neural networks in validation set. 110

5.1 Comparison of Combined to Deep Ensemble and Deep Evidential regressions 138

5.2 Empirical results of Ensemble, Evidential and Combined on cryptocurrencies 140

5.3 Empirical results of Ensemble, Evidential and Combined on U.S. equities 143

5.4 Ablation studies on cryptocurrencies and U.S. equities 145

A.1Hyperparameter search range in Section 3.5 193

A.2Mean hyperparameters used in Section 3.5 193

A.3Common hyperparameters used in Section 4.3.2 194

A.4STAE and TCN hyperparameter search ranges used in Section 4.3.2 194

A.5N-BEATS hyperparameter search ranges used in Section 4.3.2 195

A.6LSTM hyperparameter search ranges used in Section 4.3.2 195

xi

xii LIST OF TABLES

A.7Transformer hyperparameter search ranges used in Section 4.3.2 195

A.8Hyperparameter search ranges used in Section 5.4.1 and 5.4.2 196

A.9Mean hyperparameters used in Section 5.4.1 and 5.4.2 196

A.10Comparing Ensemble (Lakshminarayanan et al., 2017), Evidential (Amini et al.,

2020) and Combined (this work) on root mean squared error (RMSE) and negative

log-likelihood (NLL) using the University of California Irvine Machine Learning

Repository (UCI) benchmark datasets. Average result and standard deviation over 5

trials for each method. The best method for each dataset and metric are highlighted in

bold. 199

A.11Comparing Ensemble, Evidential and Alternative (without separate modelling of the

four parameters of scale mixture distribution (SMD)) on RMSE and NLL using the

UCI benchmark datasets. Average result and standard deviation over 5 trials for each

method. The best method for each dataset and metric is highlighted in bold. 200

A.12Comparing Normal-Inverse-Gamma and Normal-Gamma on RMSE and NLL using

the UCI benchmark datasets. Average result and standard deviation over 5 trials for

each method. The best method for each dataset and loss function is highlighted in

bold. 201

A.13Empirical results of combining σ2 and β on UCI dataset 202

A.14Ablation study comparing Extended Evidential to Combined on cryptocurrencies 203

Acronyms

APT: Arbitrage Pricing Theory

ARCH: Autoregressive Conditional Heteroskedasticity

ARMA: autoregressive-moving-average

BNN: Bayesian neural network

CAPM: Capital Asset Pricing Model

CNN: convolutional neural network

CRSP: Center for Research in Security Prices

DGP: data generation process

DTS-SGD: Dynamic Exponentially Time-Smoothed Stochastic Gradient Descent

ELU: exponential linear unit

EWNN: expanding window neural network

GARCH: Generalised Autoregressive Conditional Heteroskedasticity

IC: information coefficient

IG: Inverse-Normal

KL divergence: Kullback-Leibler divergence

LSTM: long short-term memory

MCMC: Monte Carlo Markov Chain

MLP: multilayer perceptrons

MOM1: reversal effect

MOM12: momentum effect

MPT: Modern Portfolio Theory

MSE: mean squared error

MTL: multi-task learning

N-BEATS: Neural Basis Expansion Analysis for interpretable Time Series

NG: Normal-Gamma

xiii

xiv List of Notations

NIG: Normal-Inverse-Gamma

NLL: negative log-likelihood

NLP: natural language processing

OES: Online Early Stopping

OLS: ordinary least squares

PCA: principal component analysis

PTVII: Pearson Type VII

ReLU: rectified linear unit

RMSE: root mean squared error

RNN: recurrent neural network

SAE: supervised autoencoder

SGD: stochastic gradient descent

SIC: Standard Industrial Classification code

SMD: scale mixture distribution

SML: Security Market Line

STAE: Supervised Temporal Autoencoder

SVM: Support Vector Machine

TCN: temporal convolutional network

TRI: total return index

UCI: University of California Irvine Machine Learning Repository

UQ: uncertainty quantification

List of Notations

Symbol Description

X Uppercase bold font denotes matrix

x Lowercase bold font denotes vector

xi i-th row of X

xi,j Element in the i-th row and j-th column of X

xi i-th element of x

(X,y) ∼ D Input X and output y (or r) drawn from dataset D

p Probability density function

y Dependent variable of a regression (e.g., forward returns)

r Contemporaneous returns (t− 1 to t)

F Model (e.g., neural network)

f Activation function or a single network layer

ξ Factor return

B Batch size

b b-th batch

M Number of features or independent variables

N Number of stocks

T Number of periods

L Number of layers in a neural network

ℓ ℓ-th layer

W (ℓ) Network weights of layer ℓ

b(ℓ) Network bias of layer ℓ

θ(ℓ) (W (ℓ), b(ℓ)) weight set of layer ℓ

θ
⋃L

ℓ=1 θ
(ℓ) (all weight sets of neural network)

xv

Glossary 1

Symbol Description

a Activation values

τ Number of optimisation epochs

k Kernel size (of convolutional layer)

K Sequence length

L(y, ŷ) Loss between true y and predicted ŷ

J(θ) Abbreviation for L(F (X;θ),y)

∇̂J(θ) Stochastic gradient of J(θ)

η Learning rate

Author attribution statement

The proceeding thesis (with publications) is based on the following two published papers and

one working paper:

(1) Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu, “Time-

varying neural network for stock return prediction,” Intelligent Systems in Accounting,

Finance and Management, 29(1), 3–18, 2022. This work is presented in Chapter 3.

(2) Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu, “Super-

vised Temporal Autoencoder for Stock Return Time-series Forecasting,” Proceedings

of the IEEE 45th Annual Computer Software and Applications Conference, Madrid,

Spain, 2021. This work is presented in Chapter 4.

(3) Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, “Quantifying neural network

uncertainty under volatility clustering,” working paper, 2022. This work is presented

in Chapter 5.

Steven Wong was responsible for developing new methods, implementation, and writing the

3 papers. Steven Wong was responsible for at least 50% of the contribution, and was the first

and corresponding author in all aforementioned papers.

2

Declaration

This is to certify that to the best of my knowledge, the content of this thesis is my own work.

This thesis has not been submitted for any degree or other purposes, except where specified

for publication.

I certify that the intellectual content of this thesis is the product of my own work, except

where acknowledged with others, and that all the assistance received in preparing this thesis

and sources have been acknowledged.

Signed: STEVEN Y. K. WONG

1st February 2023

As supervisor for the candidature upon which this thesis is based, I can confirm that the

authorship attribution statements are correct.

Signed: JENNIFER S. K. CHAN

1st February 2023

3

CHAPTER 1

Introduction

Forecasting in financial markets is one of the most difficult problems in machine learning.

The prediction problem is time-varying and plagued by low signal-to-noise in the data. It

is markedly different to traditional applications of machine learning which have observed

tremendous success. To truly appreciate the unique challenges in applying machine learning

to financial markets, the reader has to first develop at least a cursory understanding of financial

markets. This chapter will first outline the motivations of this thesis, provide a primer on

quantitative portfolio management, discuss the challenges of forecasting in financial markets

and provide potential applications of machine learning in portfolio management.

1.1 Motivation

Machine learning has made significant advances across a wide range of applications, such as

achieving human-like accuracy in image recognition (e.g. Krizhevsky et al., 2012; Simonyan

and Zisserman, 2015; Szegedy et al., 2015; Schroff et al., 2015; He et al., 2016), speech

recognition (Graves et al., 2013; Maas et al., 2013), natural language processing (NLP)

(Collobert and Weston, 2008; Sutskever et al., 2014), win against a human champion in the

game of Go (Silver et al., 2016), fully autonomous driving (Bojarski et al., 2016), synthesis of

high quality speech from text (van den Oord et al., 2016), and medical image reconstruction

(Kang et al., 2017). By contrast, machine learning applied to financial applications is still

in its infancy. There have been some adoption of machine learning in financial applications,

such as reinforcement learning for optimal trade execution (Mounjid and Lehalle, 2021) and

loan default prediction (Turiel and Aste, 2020). However, linear regression is still a staple of

4

1.2 MECHANICS OF FINANCIAL MARKETS 5

the financial forecasting toolkit1. This begs the question — can machine learning techniques

revolutionise financial forecasting, as they have done in many other fields? This question is

an important one. Australia has the fastest growing pension market in the world, which ranks

as the 4th largest globally (Pham, 2019). Employing forecasting techniques, practitioners

manage this pool of capital with the aim of generating higher returns for their clients. Any

improvements to forecasting and portfolio management using machine learning could benefit

the lives of many future retirees.

Recently, Gu et al. (2020) compared a suite of machine learning models on stock return

forecasting and offered a glimpse of the potential of machine learning in financial applications.

However, for machine learning models to be truly successful in financial applications, they

must first overcome some characteristics of asset returns that complicate the forecasting

problem, such as heavy tails, low signal-to-noise ratio and time-varying data generation

process (DGP). Guided by this, in this thesis, we review and extend the machine learning

literature to tackle some of the challenges as highlighted in Section 1.5. We focus on deep

learning2 techniques due to their successes in Gu et al. (2020) and in many other fields, such

as image recognition and speech.

1.2 Mechanics of financial markets

In the simplest terms, a financial market (or capital market) is a place where investors (buyers

and sellers) exchange financial assets, such as stocks, bonds and foreign currencies3 at an

agreed price (Drake and Fabozzi, 2010). Such activity is fundamental to a well-functioning

financial market, which facilitates the transfer of capital4 from savers (as providers of capital)

to companies (as users of capital) and allows savers to earn a return on excess capital (Drake

1For example, see Grinold and Kahn (1999) for a discussion on forecasting models used by practitioners for
stock return forecasting. The models are predominately linear.

2Deep learning is a subfield of machine learning. Details are outlined in Section 2.
3Common stocks are equity instruments which entitle the holder to fractional ownership of a company. An

instrument where the company has agreed to repay the amount borrowed plus interest to the holder is called debt
(Drake and Fabozzi, 2010).

4In the context of this thesis, capital refers to money that is available for investment. In financial theory,
capital has a more philosophical meaning.

6 1 INTRODUCTION

and Fabozzi, 2010). On any given trading day, buyers and sellers offer to buy or sell quoted

quantities of assets. The stock market employs a limit order book system (Fabozzi et al.,

2011a). Two queues are maintained, bid and ask queues, as illustrated in Table 1.1. In the

illustrated state, there is no transaction. Suppose the last transaction occurred at $1.00/share.

A new buyer is willing to pay $1.01/share for 10,000 shares. The buyer would have executed

an order of 5,000 shares at $1.01 and exhausted the first row of the ask queue. The remaining

5,000 shares are added to the top of the bid queue at $1.01. Now, suppose this buyer is willing

to buy 10,000 stocks at any price (as opposed to $1.01 in the original example). Then the

buyer would have pushed the price up to $1.02 (second row of the ask queue). This buying

(selling) pressure pushing the price up (down) is called market impact Each change in last

traded price is called a tick. The amount of trading activity in a stock is called liquidity. A

highly liquid stock allows a high volume of trading with a relatively small change in price

(Amihud, 2002). In our hypothetical example in Table 1.1, the buyer may value the stock at

more than $1.00/share (based on the information they have access to). Thus, they are willing

to pay a higher price than the previous traded price of $1.00. Conversely, if a seller decides to

sell 20,000 shares at $0.99, they are expecting the stock to be worth less than $0.99. Over the

course of trading, buyers and sellers continuously impound information into the price, pushing

the price higher if information is positive and lower if information is negative. A bad product

review that dissuades would-be customers from purchasing the company’s products may have

a minuscule impact on the share price. On the contrary, some exogenous shocks, such as a

company’s profit for the quarter, can have a large impact on the share price. It is important to

note that the last traded price reflects information of only the marginal investor. A marginal

TABLE 1.1: An illustrative order book for a hypothetical stock. The bid
queue reflects potential buyers willing to buy the stock at the specified price.
Similarly, the ask queue reflects potential sellers at the specified price.

Bid ($/share) Quantity # Ask ($/share) Quantity

1 1.00 10,000 1 1.01 5,000
2 0.99 3,000 2 1.02 11,000
3 0.98 24,000 3 1.03 2,500
4 0.95 23,000 4 1.05 51,000
5 0.90 2,000 5 1.07 4,000

1.3 RETURN EXPECTATIONS IN FINANCIAL MARKETS 7

investor is the investor making the trade at any point-in-time and determining the next traded

price (Damodaran, 2022). In the example described at the beginning of this section, the

marginal investors are the buyer and seller executing a trade at $1.01. If a potential buyer

values the stock at only $0.40/sh, the buyer will sit deep in the bid queue and the order is

unlikely to be executed. Thus, the price reflects only the information of the marginal investor

and not the average information of all (potential) buyers and sellers. Now, suppose that the

investor purchased the stock at $1.00. One month later, the stock rose to $1.10 and paid a

$0.10 dividend, the stock’s total return for the month is 1.1+0.1
1
− 1 = 20%, price return is

1.1
1
− 1 = 10% and dividend yield is 0.1

1
− 1 = 10%. Unless specified otherwise, “return”

refers to total return the investor received for holding the asset over the said period. In this

thesis, we denote contemporaneous return (i.e., at time t, total return from t− 1 to t) as rt and

future return (i.e., total return over t to t+1) as yt. We will often use the term cross-sectional,

which refers to computing certain quantities on a per period basis.

1.3 Return expectations in financial markets

Before we attempt to predict financial markets using machine learning, we have to first ask

the question — are financial markets predictable? If so, what does the finance literature

say about how are financial markets predictable? In finance literature, the study of return

expectations (in other words, the prediction of returns) is known as asset pricing. In this

section, we provide a brief discussion of asset pricing models and empirical findings. For

interested readers, more details on this topic is provided in Appendix A1.

Underpinning mainstream financial theories is the efficient market hypothesis (Fama, 1970).

In the weak form, the hypothesis postulates that investors cannot outperform the market

(i.e., achieve higher return than the market at the same level of risk) using publicly known

information. This assumption forms the basis of well-known theories such as the Modern

Portfolio Theory (MPT) (Markowitz, 1952) and Capital Asset Pricing Model (CAPM) (Sharpe,

1964). CAPM is a theoretically grounded asset pricing model, which stipulates that sensitivity

to market return is the only factor that is predictive of asset returns. This sensitivity measure

8 1 INTRODUCTION

is known as beta or CAPM β. CAPM β can be found by regressing a stock’s returns on

returns of the market (as stipulated by Equation (A.4); Jensen, 1968). To readers familiar

with physics, in my view, the importance of CAPM to finance is akin to the Standard Model

(Oerter, 2006) to quantum physics — it provided a return forecasting model with strong

theoretical underpinning and won the joint discoverers the Nobel Prize in Economics (The

Nobel Foundation, 1990).

However, unlike the Standard Model, CAPM did not withstand the empirical test. Jensen

(1968) was the first to note that CAPM did not align with empirical observations of asset

returns. Since the publication of CAPM, numerous anomalies are found to be predictive of

stock returns, such as the size effect (small capitalisation stocks outperform large capitalisation

stocks; Banz, 1981) and value premium (cheap stocks outperform expensive stocks; Stattman,

1980; Rosenberg et al., 1985). Hundreds of firm characteristics are said to contain information

on future stock returns — a survey by Harvey et al. (2016) contained 313 published asset

pricing anomalies. The true DGP is likely to be significantly more complex than originally

suggested by CAPM and that there may be a large set of factors that drive stock returns. A

sufficiently large predictor set that could overwhelm linear regression models. The functional

forms of predictors are also unknown. For instance, Fama and MacBeth (1973) tested CAPM

β and β2 and found that both were statistically significant in predicting returns and thus,

opening the door to the potential use of machine learning in predicting returns.

1.4 A primer on quantitative portfolio management

Investors provide practitioners (investment managers) with capital, either through the pension

system or through excess savings. In doing so, investors expect a positive return on their

capital. Grinold and Kahn (1999) stated the objective of an investment manager is to achieve

higher risk-adjusted returns than the market. More formally, the objective can be stated as,

max
rp

E[rp − rb]
σ[rp − rb]

, (1.1)

1.4 A PRIMER ON QUANTITATIVE PORTFOLIO MANAGEMENT 9

where rp is return of the portfolio, rb is return of the benchmark5 and σ[rp − rb] is standard

deviation of portfolio return in excess of the benchmark. From Equation (1.1), it is immedi-

ately obvious that rp > rb is required in order for the ratio to be positive. For the rest of this

section, we provide a high-level overview of quantitative portfolio management as described

in Alford et al. (2011) and Grinold and Kahn (1999). We have intentionally left out details

of forecasting models in this section, deferring discussions to Appendix A2 for interested

readers.

Quantitative portfolio management involves the use of empirical, systematic and mathematical

methods to achieve the objective of the investment manager. The process of conducting

quantitative portfolio management (a quantitative investment process) is comprised of four

stages, as illustrated in Figure 1.1.

Forecasting Portfolio
Construction

Trading Evaluation

FIGURE 1.1: Illustrative stages of a quantitative investment process. Based
on the process described in Alford et al. (2011).

Forecasting is comprised of three components: 1) return forecasts; 2) risk forecasts; and, 3)

transaction cost forecasts. Practitioners select stocks based on their return forecasts. Thus,

rp is driven by the predictive power of the practitioner’s models. For this reason, return

forecasting is described by Alford et al. (2011) as the first and most critical step of an

investment process. We start with some features of each stock (also known as signals in

Grinold and Kahn, 1999; or factors and anomalies in Section 1.3). Feature examples include

market capitalisation, earnings-to-price ratio, and past 12-month return of the stock. Each

feature is the result of feature engineering from raw data by practitioners, either by applying

domain knowledge or through machine learning (e.g., in Chapter 4, we use time-series neural

networks to extract information from stock prices). Let X̃t ∼ RN×M be a matrix of M

features of N stocks at time t. Raw feature values are typically converted into scores. Popular

5A stock index that the portfolio is benchmarked against, e.g., S&P 500 and S&P/ASX 200.

10 1 INTRODUCTION

methods include converting raw values into a [0, 1] rank interval (e.g., in Gu et al., 2020) or

by standardisation (Grinold and Kahn, 1999),

xt,m =
x̃t,m − x̄t,m
σ(x̃t,m)

,

where x̃t,m is the m-th column of feature matrix X̃t and x̄t,m is the mean of the m column.

Practitioners estimates model F to forecast returns ŷt ∈ RN ,

ŷt = F (Xt). (1.2)

A popular choice of F amongst practitioners is the cross-sectional linear regression (Zhou

and Fabozzi, 2011), while neural networks are used in Gu et al. (2020) and Chapter 3. As

cross-sectional regression problems are discussed extensively in this thesis, using the example

of a linear model as F , we formally introduce the concept of cross-sectional prediction in

here. Suppose there are N stocks in the market, each with M features, forming input matrix

Xt ∈ RN×M at time t = 1, . . . , T . The i-th row in Xt is score vector xt,i ∈ RM of stock

i and the m-th column in Xt is score vector x(m)
t ∈ RN of feature m. We define return

of stock i as the percentage change in price plus dividends, rt,i = (pt,i + dt,i)/pt−1,i − 1,

where pt,i is price at time t and dt,i is dividend at t if a dividend is paid, and zero otherwise.

Regression target at t is return vector yt, where entry i is next period’s return yt,i = rt+1,i of

stock i. The input-output pair (Xt,yt) forms a cross-section which contains all features at t

and realised returns at t + 1. The time-series of cross-sections (1, . . . , t − 1) form a panel

dataset (Wooldridge, 2008): Dt−1 =
⋃t−1

t=1{Xt,yt}. Given the time-series of cross-sections

Dt−1, a popular estimation procedure used in finance literature is the Fama-MacBeth two-step

regression procedure (Fama and MacBeth, 1973). For each t ∈ {1, ..., t− 1}, estimate the

linear model on the cross-section {Xt,yt},

yt = ξ̂t,1xt,1 + · · ·+ ξ̂t,Mxt,M + ϵt, (1.3)

where {xt,m ∈ R |m = 1, ...,M} are scores of M features at time t, ξ̂t,m are regression coeffi-

cients (in finance literature, also known as factor returns), and ϵ are regression residuals. This

results in M time-series estimates of factor returns {ξ̂1,m, ξ̂2,m, . . . , ξ̂t−1,m},m = 1, . . . ,M .

1.4 A PRIMER ON QUANTITATIVE PORTFOLIO MANAGEMENT 11

Then, for prediction purposes, the expected return of factor m at t is the average of the

time-series of observed factor returns over 1, . . . , t− 1: ξ′t,m = 1
t−1

∑t−1
j=1 ξ̂j,m.

The pioneering work by Markowitz (1952) led to the use of variance as a measure of risk and

mean-variance optimisation as a method for portfolio construction. Let V̂t ∈ RN×N be the

estimated variance-covariance matrix,

V̂t = F (risk)(Xt), (1.4)

where F (risk) is the model for forecasting risk. For simplicity, we assume that the risk model

uses the same features as the return forecasting model (in practice, they do not have to share

the same features). The diagonal of V̂t are variance of each stock and off-diagonals are

covariance between the row-th and column-th stocks. A linear-regression-based F (risk) is

simply an extension of the Fama-MacBeth regression. t − 1 cross-sectional regressions

produces M time-series of factor returns {ξ̂1, . . . , ξ̂M}. Computing the variance-covariance

matrix using the factor returns produces a matrix of factor risks V ′
t ∈ RM×M . If a factor

variance-covariance matrix is used, then the matrix must be expanded back into a stock-level

variance-covariance matrix of N ×N dimensions, by multiplying by the feature scores,

V̂t = XtV
′
t X

T
t . (1.5)

As this thesis is mainly focused on return forecasting, we provide further details on risk

estimation in Appendix A2.2.

We further define ĉt ∈ RN to be estimated transaction costs,

ĉt = F (cost)(X
(cost)
t), (1.6)

where F (cost) and X
(cost)
t are transaction cost model and inputs into transaction cost model,

respectively. An example of transaction cost model used by practitioners is the square root

model (Grinold and Kahn, 1999),

ĉi,t = commission +
bid-ask spreadi,t

pi,t
+ κ(cost)

√√√√p
(trade)
i,t

p
(daily)
i,t

, (1.7)

12 1 INTRODUCTION

where commission is payable to facilitators of the trade (e.g., 0.1% payable to brokers),

bid-ask spread is the difference between the top bid and ask prices in the order book (e.g.,

bid-ask spread in Table 1.1 is $0.01), pi,t is price of stock i at t, κ(cost) is a scaling factor and

is the sole parameter of the model, and p
(trade)
i,t and p

(daily)
i,t are dollar value of the hypothetical

trade and average daily traded value (e.g., 12-month average daily traded value, where daily

traded value is the day’s share price × number of shares traded on the day) of stock i at t,

respectively. Computation of the hypothetical trade p
(trade)
i,t is described later in this section.

Equation (1.7) indicates that transaction cost is comprised of three components: 1) a fixed

percentage commission; 2) bid-ask spread (represents the cost of buying (selling) at the lowest

asking (highest bidding) price rather than waiting in the bid (ask) queue); 3) a market impact

component that is proportional to the relative sizes of our trade and liquidity in the stock.

Both bid-ask spread and market impact have been introduced in Section 1.2 and are further

explained in Appendix A2.3 For example, if the average daily traded value in Stock A is $1

million, a $100 trade is unlikely to cause any market impact. However, a $100,000 buy (sell)

is likely to cause the price to move higher (lower). Thus, the investor may pay a higher (or

lower) price than the last traded price. In Equation (1.7), this is assumed to be proportional

to the square-root of the ratio between value of the trade and daily average traded value in

the stock. A further description of the transaction cost forecasting model is also provided in

Appendix A2.3.

Combining return, risk and transaction cost forecasts, the portfolio is constructed using

mean-variance optimisation (Markowitz, 1952; Grinold and Kahn, 1999),

w′
t =argmax

w
ŷT
t w−λwT V̂t w−ĉTt (w−wt−1)

subject to
∑
i

wi = 1, (1.8)

where wi is the weight of the i-th stock in w, w′
t are optimal portfolio weights6 and λ is

investor’s risk aversion parameter. Note that ŷT
t w and ĉTt (w−wt−1) are both in units of

6Note that the vector of portfolio weights w (upright) differs from neural network weights W (introduced
in Chapter 2) and auxiliary loss weight ω (introduced in Chapter 4).

1.4 A PRIMER ON QUANTITATIVE PORTFOLIO MANAGEMENT 13

returns, but wT V̂t w is in unit of return variance. Thus, λ also serves as a scaling factor to

bring the risk penalty into the same scale as portfolio returns.

We use the following basic example to motivate the discussion on mean-variance optimisation

(Equation (1.8)). Suppose that are two stocks with characteristics listed in Table 1.2. The

TABLE 1.2: Hypothetical risks and returns of Stock A and B. Std Dev stands
for standard deviation of expected return. ρ is correlation between the expected
return of Stock A and B. Optimal Portfolio is solved by maximising the
Return/Risk of the portfolio by allocating to both Stock A and B.

Stock A Stock B Optimal Portfolio

Expected Return (%) 10.0 8.0 8.7
Std Dev (%) 12.0 9.0 9.2
Return/Risk 0.83 0.89 0.95

ρA,B 0.65 0.65

goal of the investor is to find the optimal wealth allocation within a set of assets (in this

basic example, between Stock A and B). Clearly, if the investor seeks the highest expected

return, the investor should allocate 100% of their wealth into Stock A. If the investor seeks

the lowest risk, then the investor should allocate their wealth into Stock B. Markowitz (1952)

showed that the portfolio optimisation problem can be generalised into Equation (1.8), a

convex optimisation problem, and that various portfolio objectives (e.g., maximising return,

minimising risk, or the simultaneous trade-off of both) can be achieved by varying level of λ.

Markowitz (1952) also showed that a better return/risk can be achieved (compared to investing

into a single asset) by diversifying across assets with expected returns that are not perfectly

correlated (theoretical background on Modern Portfolio Theory is given in Appendix A1). In

our two-stock basic example, expected return of the portfolio is,

E[rp] = wA E[rA] + wB E[rB],

where E[r{p,A,B}] and w{p,A,B} are expected return and weights of portfolio, Stock A and

Stock B, respectively. Expected risk (when measured in variance) of the portfolio is,

σ2
p = w2

Aσ
2
A + w2

Bσ
2
B + 2wAwbσAσBρA,B,

14 1 INTRODUCTION

where σ2
{p,A,B} is expected risk of portfolio, Stock A and Stock B, respectively. Continuing

with our basic example, for illustrative purposes, suppose the investor is seeking the maximum
E[rp]

σp
(this is known as the Sharpe ratio when computed on realised portfolio returns and

is introduced in Section 3.2). Then, using a solver, we find that the optimal allocation is

wA = 0.36 and wB = 0.64, which results in E[rp] = 0.087, σp = 0.092, E[rp]
σp

= 0.95 (also

shown in the last column of Table 1.2). Thus, by diversifying across two stocks, the portfolio

has higher expected return and lower risk than investing in Stock B and Stock A alone,

respectively. Solving Equation (1.8) using a solver and assuming transaction cost is zero, we

find that the maximum E[rp]

σp
objective is equivalent to λ = 5 in Equation (1.8). Other special

cases include maximum return (λ = 0) and minimum risk (λ→∞). In general, risk aversion

parameter λ is subjectively chosen by the investor depending on their risk appetite.

So far, our basic example involves a single period optimisation. Suppose the investor rebal-

ances their portfolio at the end of every month and that the weights immediately prior to

rebalancing are wA = 0.3 and wB = 0.7. Changing from wA = 0.3 to wA = 0.36 (wB = 0.7

to wA = 0.64) incurs transaction costs. Thus, the expected after cost return of Stock A (B) is

likely less than 15% (8%), and the optimal portfolio in the presence of transaction costs will

differ to the theoretical frictionless optimal portfolio. Suppose that the portfolio is $1 million

in value and transaction costs are assumed to be ĉt = [0.002, 0.002]T. Then, the hypothetical

trade of Stock A is computed as p(trade)
i,t = 1, 000, 000× (0.36− 0.3) = 60, 000, which incurs

cost of 60, 000× 0.002 = 120.

In analysing Equation (1.8), it can be seen that the objective is maximised if the portfolio

places 100% weight onto the stock with the highest expected return, if risk and costs are

ignored. However, with a covariance matrix where the entries v̂t,i,j < v̂t,i,i, i ̸= j, the risk

penalty wT V̂tw encourages diversification and prevents the portfolio from being fully aligned

with return forecasts. The portfolio is further constrained by the cost to trade ĉTt (w−wt−1),

which only allows the portfolio to switch between stocks if the increase in expected return

is greater than the two-way cost to trade (i.e., the cost of a buy and a sell). A stock position

can become “stale” if its return forecast no longer ranks highly but no other stock offers

a sufficiently high return forecast to cover transaction costs. In this case, a portfolio can

1.4 A PRIMER ON QUANTITATIVE PORTFOLIO MANAGEMENT 15

continue to hold a suboptimal stock even if better (theoretical) options are available. Thus,

over time, portfolio weights reflect the weighted averages of past return forecasts, rather than

the latest return forecasts. In sum, mean-variance optimisation is a balancing act between

maximising return (forecasts), while minimising risk penalty and transaction costs.

Next, the desired portfolio is then implemented by trading the difference between the desired

portfolio and the existing portfolio,

wt = f (trade)(w′
t−wt−1),

where f (trade) denotes the trading function that produces the actual portfolio wt (i.e., an

abstract function that involves sending orders to the market and observing actual execution of

the order) and the trades are given by w′
t−wt−1. Actual transaction costs incurred by trading

is given by,

ct = f (tcost)(w′
t−wt−1),

where f (tcost) is the actual market impact (as discussed in Section 1.2) and commissions paid

for the trades. For example, if inputs into f (tcost) are $1 million worth of trades, and costs are

comprised of 0.15% of market impact and 0.05% of commission, then actual transaction cost

is ct = $1million× (0.0015 + 0.0005) = $1000. To minimise market impact, a practitioner

may choose to trade patiently7. In doing so, the practitioner incurs opportunity cost (if return

forecasts are predictive of returns, waiting for a favourable trade price will lead to foregone

returns) and risk around the eventual execution price (Alford et al., 2011). The resultant

portfolio may differ from the desired portfolio, due to adverse price movements or prevailing

liquidity of the stocks.

Finally, performance of the portfolio is computed as the sum of actual realised stock returns

less actual transaction costs,

rp,t+1 = wT
t rt+1 − cTt (w

′
t−wt−1). (1.9)

7Using the example in Section 1.2 to illustrate, suppose the maximum price the investor is willing to pay
is $1.00/share. Then, the investor’s bid will sit in the bid queue, waiting for a seller who is willing to sell at
$1.00/share. The investor is guaranteed that the price paid is $1.00 but there is uncertainty as to when the
trade will occur (if at all). Conversely, if the investor is willing to pay any price, then the investor can trade
immediately but will consume the ask queue and thus “move” the market price with the trade.

16 1 INTRODUCTION

This completes the link from return forecasts (the most important step of the investment

process) to the outcome of the portfolio (objective of the investment manager).

1.5 Challenges of forecasting in financial markets

So far, we have introduced quantitative portfolio management, basic financial theory and the

vast potential feature set. We have also briefly discussed the importance of forecasting. In

this section, we start by providing several stylised facts on financial markets before formally

describing the challenges of forecasting in financial markets.

Fact 1: Asset returns have heavier tails than stipulated by the Normal distribution (Cont,

2001).

For example, on 26th July 2018, Facebook Inc. reported lower than expected second quarter

revenue and daily active user count (Salinas and Castillo, 2018). The stock fell 18.96% on

the day, as illustrated in Figure 1.2. This event is so rare that assuming daily returns are

normally distributed and using observations from initial public offering8 to 25th July 2018,

the probability of observing such an event is 6e−17.

Fact 2: Financial markets can exhibit endogeneity.

Literature and media outlets have documented some evidence of endogenous factors driving

stock returns. Over December 2020 to January 2021, social media users coordinated trading

activity in GameStop Inc., causing its share price to rise 1998% in two months. The dramatic

rise in value of GameStop shares was partly driven by a phenomenon known as a short

squeeze (El-Erian, 2021), where investors betting against a rising stock are forced to unwind

their bet, causing further buying pressure on the stock. This caused cascading buying pressure

on the stock and an escalating stock price, as shown in Figure 1.3. Endogeneity is also said to

have caused some stock market crashes, such as the crash of October 1929 and the “Dot-com”

crash of April 2000 (Johansen and Sornette, 2002).

8Initial public offering (IPO) is when a private company sell shares to the public for the first time. After
IPO, the stock becomes a publicly traded stock on the stock exchange.

1.5 CHALLENGES OF FORECASTING IN FINANCIAL MARKETS 17

2017-01
2017-04

2017-07
2017-10

2018-01
2018-04

2018-07
2018-10

2019-01

120

140

160

180

200

220

US
$/

sh
ar

e

Share price of Facebook Inc.

FIGURE 1.2: Share price of Facebook Inc. over 2017–18. The share price of
Facebook is observed to be on an upward trajectory prior to July 26, 2018 and
a downward trajectory afterwards. Source: Center for Research in Security
Prices (CRSP) database.

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07
2021-10

2022-01
0

50

100

150

200

250

300

350

US
$/

sh
ar

e

Share price of GameStop Inc.

FIGURE 1.3: Share price of GameStop Inc. over 2020–21. The share price of
GameStop peaked on January 27, 2021. Source: Yahoo! Finance (2022a).

Fact 3: Asset returns exhibit volatility clustering, where returns display irregular bursts of

volatility that are localised in time (Cont, 2001).

18 1 INTRODUCTION

Stock market crashes can also be caused by an exogenous shock, such as the 2020 global

stock market crash due to an emerging pandemic (Song et al., 2022). For example, the price of

Devon Energy, a U.S. oil and gas producer, plummeted during the March 2020 stock market

crash, as shown in Figure 1.4. The square of daily returns jumped to 0.14 during the height

of the crash, compared to a mean of 0.001 over 2017–2021. Volatility is also seen to cluster

in time. Following the peak in March 2020, volatility remains elevated over the next 6–12

months.

10

20

30

40

US
$/

sh
ar

e

Share price of Devon Energy Corp.

2017
2018

2019
2020

2021
2022

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Squared daily returns of Devon Energy Corp.

FIGURE 1.4: Share price of Devon Energy Corp. over 2019–21. Daily return
volatility spiked to 14% during the height of the crash. Source: Yahoo!
Finance (2022b).

In addition to heavy tails and volatility clustering, Cont (2001) has documented other asset

return characteristics such as absence of autocorrelation, aggregational Gaussianity, skewness

and conditional heavy tails.

1.5 CHALLENGES OF FORECASTING IN FINANCIAL MARKETS 19

There is one major distinction between the setup of conventional machine learning applications

and financial applications — stationarity of the DGP. In time-series analysis, non-stationarity

typically refers to properties (e.g., mean and variance) of a time-series changing over time

(Nason, 2006). In machine learning literature, non-stationarity refers to the DGP changing

over time, such as changes in the conditional distribution of the output given the input (Gama

et al., 2014). To avoid ambiguity, we use the terms time-varying or time-variability of the

DGP to refer to non-stationary DGP. However, we continue to use the term stationary to

describe DGP that do not change over time.

Conventional machine learning models are trained offline, using a historical set of training

data and are deployed after batch training (Gama et al., 2014). This training scheme is suitable

for stationary problems where the training set is assumed to be drawn from the same DGP as

out-of-sample data. As out-of-sample data are drawn from the same distribution as training

data, the generalisation gap9 is expected to be relatively small and the model is expected to

perform well after deployment. Examples of stationary problems include image recognition

(Schroff et al., 2015) and text translation (Sutskever et al., 2014). However, some prediction

problems are time-varying, yielding a phenomenon known as concept drift (Schlimmer and

Granger, 1986; Widmer and Kubat, 1996; Gama et al., 2014). For example, predicting a

user’s interests when following an online news stream is likely time-varying (Gama et al.,

2014). Finance literature has also documented evidence of time-variation of the DGP. Pesaran

and Timmermann (1995) estimated linear models with permutations of firm characteristics

over time, and performing model selection using both statistical and financial measures on

U.S. stocks. Both the selected variables and their coefficients of the best model change over

time. Bossaerts and Hillion (1999) reported similar findings in international stocks. There is

no consensus on the cause of time-varying predictability in the academic discourse. Some

argued that this time-variability is driven by macroeconomic conditions (e.g., Angelidis et al.,

2015). While explanations offered by McLean and Pontiff (2016) relate to data-mining bias

and effects of arbitrage by investors (which the authors referred to as publication-informed

trading). In other words, investors taking advantage of this effect causes its “mispricing” to

9Generalisation gap is defined as the difference between out-of-sample loss and training loss (Goodfellow
et al., 2016).

20 1 INTRODUCTION

disappear (for example, see Dong et al., 2020 for a proposed mechanism with which this

occurs). Thus, it is unsatisfactory for a practitioner to learn a static model as out-of-sample

performance can vary.

As noted in Section 1.3, there are hundreds or more factors that exhibit predictive power over

stock returns. These include (but are not limited to):

• Price-derived features, such as a stock’s past performance (Jegadeesh and Titman,

1993).

• Financial statement-derived features, such as valuation metrics (Asness et al., 2013).

• Social media (as illustrated by the GameStop example) and web searches (Huang

et al., 2020).

• Media reports (Fang and Peress, 2009).

The dataset in Gu et al. (2020) contains mainly price and financial statement features and

is the same dataset used in Chapter 3. In Chapter 4 and 5, only price features are used as

these chapters focuses on time-series predictions and uncertainty quantification (of time-series

predictions). Such a vast feature set has the potential of overwhelming conventional regression

techniques such as ordinary least squares (OLS), due to multi-collinearity (Gu et al., 2020).

Thus, any proposed machine learning alternatives to linear models must be able to handle a

large feature set.

In sum, stock return prediction poses a unique challenge for machine learning research. Stock

returns exhibit difficult to handle statistical characteristics such as heavy tails and volatility

clustering, and suffer from low signal-to-noise ratio and time-variability of the DGP. These

challenges are distinct from conventional applications of machine learning which have seen

significant advances.

1.6 POTENTIAL APPLICATIONS OF MACHINE LEARNING IN PORTFOLIO MANAGEMENT 21

1.6 Potential applications of machine learning in portfolio

management

As discussed in Section 1.4 and 1.5, machine learning in portfolio management presents some

unique challenges and requires new approaches that differ from conventional applications. In

this section, we discuss gaps in literature and identify ways in which machine learning can be

advanced or applied in financial markets.

1.6.1 Cross-sectional prediction using online deep learning

As noted in Section 1.5, return forecasting is an arduous task. Stock returns are not well-

behaved, plagued with heavy tails, low signal-to-noise ratio and time-varying cross-sectional

relationships. However, it is also the most important step of an investment process.

Much of the finance industry still relies on linear models. By contrast, machine learning has

achieved significant progress in other fields and could similarly offer prediction performance

improvements to empirical finance. Weigand (2019) provided a recent survey of machine

learning applied to empirical finance and noted that machine learning algorithms show

promise in addressing shortcomings of conventional linear models (such as the inability

to model non-linearities and handle large number of covariates). Notable works applying

neural networks to cross-sectional stock return prediction using a large feature set include

Messmer (2017), Abe and Nakayama (2018) and Gu et al. (2020). Both Messmer (2017)

and Abe and Nakayama (2018) are straightforward applications of feedforward networks10

on stock returns, where the input consists of tens of features, predicting U.S. and Japan

stock returns, respectively. Gu et al. (2020) compared a set of well-known machine learning

models on forecasting U.S. stock returns and found neural networks to provide the best

performance. Potential time-variability is assumed to be driven by macroeconomic conditions

and is modelled by interacting firm level features with macroeconomic indicators. Arguably,

this is an inefficient way of modelling interaction effects, as the 94 firm-level features are

10Feedforward neural networks are discussed in Section 2.1.

22 1 INTRODUCTION

interacted with 8 macroeconomic variables, resulting in 920 features (together with dummy

variables of 74 industries, 94× (8 + 1) + 74 = 920). Of the firm-level features used in the

three works, Gu et al. (2020) contains the most firm-level features (94). Messmer (2017)

contains 61 and are all contained within Gu et al. (2020). Abe and Nakayama (2018) contains

the least, at 25. However, due to different naming conventions, we cannot ascertain how many

are contained with Gu et al. (2020). Moreover, they do not consider all possible avenues

of time-variability of asset pricing models, such as the effects of investors’ own trading, as

highlighted by McLean and Pontiff (2016), and exogenous shocks. For instance, Lev and

Srivastava (2019) noted that the prominent value factor11 (Rosenberg et al., 1985; Fama and

French, 1992) has been unprofitable for almost 30 years — a period that includes multiple

business cycles and thus cannot be explained by macroeconomic conditions alone. The

authors noted that returns to the value factor have been negative since 2007, suggesting a

change in the underlying relationship. There are further empirical evidence of changes in

DGP. Employing genetic algorithms12 (Mitchell, 1996) to predict U.S. stock returns, Brogaard

and Zareei (2022) also found stock return predictability to have declined over time, which

implies that markets have become increasingly more efficient. Other works have sought to

incorporate finance theory directly into the network architecture and have used more advanced

network architectures. Gu et al. (2021) used an autoencoder to form “latent factors” and factor

exposures, in similar spirit as principal component analysis (PCA) (Hastie et al., 2020). The

resultant model is analogous to the Arbitrage Pricing Theory (APT) model but with latent

factors constructed by the autoencoder from a large feature set. Chen et al. (2021) used a

generative adversarial network (Goodfellow et al., 2014) to enforce the no arbitrage condition

in APT and reported strong performance in predicting U.S. stock returns. Changing DGP is

modelled with 178 macroeconomic indices. The authors reported declining performance over

time, and that using a small number of macroeconomic indices is only marginally better than

no macroeconomic data (i.e., a fixed DGP), and that including all 178 indices led to severely

11Suppose the share price is $1.00 and the firm’s asset value (net of debt) is $2.00 per share. Then the
book-to-market score is 2/1 = 2. A high score is interpreted as the stock trading cheaply relative to value of its
assets. This factor has been profitable since 1920s but its profitability has greatly diminished since its discovery
in 1986. Lev and Srivastava (2019) argue that this is due to deficiencies in accounting standards and economic
development.

12Genetic algorithms randomly search through candidate model specifications through simulated evolution.

1.6 POTENTIAL APPLICATIONS OF MACHINE LEARNING IN PORTFOLIO MANAGEMENT 23

worse performance. Financial markets have also observed plenty of exogenous shocks over

time, some of which do not have a parallel in history (e.g., the COVID-19 pandemic).

These empirical evidence suggest changes in the DGP may be unpredictable (e.g., due to

investors’ own arbitrage and exogenous shocks). Thus, there exists a gap in literature for deep

learning models that can track changes in the DGP of financial markets driven by unknown

dynamics.

1.6.2 Time-series pattern recognition in noisy environments

Stock returns are notoriously noisy. The best performing model in Gu et al. (2020) had R2 of

0.4%13. In practice, cross-sectional correlation between expected return and actual realised

return of 5% can be considered as “good” and 10% is “great” (Grinold and Kahn, 1999). By

contrast, state-of-the-art image recognition models can achieve image classification accuracy

of over 90% (for example, see Zhai et al., 2021). Thus, from a signal-to-noise perspective,

financial markets are vastly different from fields where deep learning has excelled, such as

image recognition.

In neural network architectural design, a network with greater depth is thought to be more

efficient than a shallow but wide network (i.e., a network with only a few layers but each

layer has many nodes) in approximating an arbitrary function (Lu et al., 2017). Training

very deep neural networks (over 100 layers deep) for image classification problems saw a

breakthrough in the form of ResNet (He et al., 2016), where skip connections that “jump” over

one or more layers are added to allow uninterrupted information flow between connecting

layers. This alleviates the problem of vanishing gradient, where the magnitude of the gradient

diminishes as training error is backpropagated through the network (Kolen and Kremer, 2001).

However, in very noisy environments such as financial markets, focus of training should be

on robustness rather than expressiveness, as highly expressive networks may overfit on noise,

leading to poor out-of-sample performance. To this end, there is no conclusive evidence in

literature regarding the robustness of neural networks in noisy environments. Drawing on

13Gu et al. (2020) used a non-standard definition of R2. Further details are provided in Section 3.2.1 and
Section 3.5.

24 1 INTRODUCTION

findings in other applications, Rolnick et al. (2018) finds that neural networks are robust

to high levels of artificially injected mis-classified labels in simple image recognition tasks.

The authors note that effective batch size (a concept that we will introduce in Section 3.2.2)

decreases as the level of white noise increases. Thus, highly noisy environments require larger

batch sizes. On the contrary, Moradi et al. (2021) finds that neural networks are not robust to

noise in clinical text. The authors inject character-level and word-level perturbations to reflect

realistic typographic errors encountered in the real world and find three different language

models trained specifically on clinical texts to have experienced material accuracy declines in

medical diagnostic tasks.

Ways to combat noisy data include increasing the amount of data used in training (Rolnick

et al., 2018)), which may not be readily available, and regularising the model. Popular

regularisation techniques for neural networks are L1 and L2 penalties (Goodfellow et al.,

2016), early-stopping (Goodfellow et al., 2016) and dropouts (Srivastava et al., 2014). L1

and L2 penalties in neural networks are analogous to their counterparts in linear models and

shrink network weights toward zero. Early-stopping can be interpreted as L2 penalties, and

dropout can be interpreted as ensembling using subnetworks. Both of these techniques are

introduced in Section 2.4. For classification problems, Patrini et al. (2017) propose to estimate

noise rates in class labels and introducing a correction term in the loss function which negates

the probability that a label is assigned due to noise. Multi-task learning (MTL) has also

been shown to improve generalisation performance across a range of classification tasks,

such as facial landmark recognition (Zhang et al., 2014) and natural language processing

(Collobert et al., 2011). MTL involves the addition of an auxiliary learning task that is

related to the primary learning task. The auxiliary learning task is thought to encourage

representation sharing and is introduced more formally in Section 4.1. There remains a need

for regularisation techniques specifically designed for regression noisy environments that may

potentially have broader applications outside of finance.

In Section 1.6.1, we have introduced the cross-sectional prediction problem in finance. An

alternative to cross-sectional prediction that is applicable in financial markets is time-series

forecasting. This can be interpreted as pattern recognition on past stock price or return

1.6 POTENTIAL APPLICATIONS OF MACHINE LEARNING IN PORTFOLIO MANAGEMENT 25

patterns to forecast future returns. Convolutional neural networks (CNNs) have proved to be

invaluable in image recognition tasks (e.g., Krizhevsky et al., 2012) and could extract more

patterns from share prices beyond anecdotal patterns documented in technical analysis. Sezer

et al. (2020) provided a recent survey on financial time-series forecasting with deep learning

and noted long short-term memory (LSTM) was the most popular method, followed by CNN.

Most works are straightforward applications of different neural network architectures on

stock returns (e.g., Chen et al., 2015), and are on 1–3 days ahead forecasts. This differs to

the 1-month ahead forecast of the momentum effect which, we argue, is more relevant for

investment managers due to constraints of transaction costs. There are two approaches to

dealing with noise in financial time-series forecasting in literature, both of which we see as

being deficient. First is to treat the time-series forecasting problem as a classification problem

(i.e., 1 if the stock rose over the next day, 0 otherwise; see Chen et al., 2015; Altilio et al.,

2019). This neglects the magnitudes of expected returns which will help practitioners in

differentiating relative performance of stocks. Second is to first apply wavelet transform

(Meyer, 1993) to denoise the sequence, then fit the denoised trend using a neural network (e.g.,

Yan and Ouyang, 2017; Li and Tam, 2017). Wavelet transform treats share price oscillation

around a trend as “waves” which are then removed. This relies on fitting parametric waves

onto the sequence and may inadvertently remove useful features from the sequence. Gap

exists in existing literature for an end-to-end neural pattern recognition technique that is

robust to noisy patterns in stock prices.

1.6.3 Forecast uncertainty quantification

Consider the following thought experiment. Suppose a practitioner has a model that can

perfectly forecast next day’s asset returns and that the practitioner’s goal is to maximise

terminal wealth. Then, on each day, the most rational decision would be to place all of the

investor’s wealth into the asset with the highest expected return on the next day. Next, suppose

that the investor’s model is a noisy estimator of future asset returns. Then, the investor

may choose to diversify across multiple assets and not place all their wealth on a single

bet. Based on this thought experiment, we would expect forecast certainty to have a role in

26 1 INTRODUCTION

the portfolio optimisation process. Various bet allocation models have been developed. In

wagering, where bets are independent and have well-defined binary outcomes, the optimal bet

allocation strategy is the Kelly criterion (Kelly, 1956). Forecast certainty is incorporated into

the Kelly criterion via expected probabilities of discrete outcomes. The Kelly criterion has

been extended to the case of Gaussian distributed outcome, where the optimal bet size is scaled

by the inverse of variance (Byrnes and Barnett, 2018). Mean-variance portfolio optimisation

(Markowitz, 1952) assumes that asset returns are described by mean and variance of their

expected returns. The resultant portfolio is extremely sensitive to expected returns which

are difficult to forecast. Black-Litterman portfolio optimisation was proposed to address this

shortcoming (Black and Litterman, 1992). In Black-Litterman, practitioners provide both their

“views” (expected returns) and “strength” of their views (forecast certainty). These views are

then incorporated into portfolio optimisation as priors in a Bayesian manner. Thus, it is useful

for a neural network to provide both the conditional mean (forecast) and conditional variance

(forecast uncertainty) which can then be used downstream in portfolio optimisation, such as

in determining optimal bet size.

Bayesian neural networks offer both forecasts and forecast uncertainties through imposing

a full Bayesian treatment over the entire network (Mitros and Namee, 2019). This involves

placing priors on network weights and training the network using Monte Carlo Markov Chain

(MCMC). However, a full Bayesian treatment incurs a high computational cost (Quiroz et al.,

2019). Recent advances focus on generating parameters of a distribution that is assumed to

have generated the data, (e.g., Lakshminarayanan et al., 2017; Amini et al., 2020). These

works provide an interesting way of quantifying forecast uncertainty, without the cost penalty

of a full Bayesian approach. However, both Lakshminarayanan et al. (2017) and Amini et al.

(2020) were developed for non-time-series applications and do not consider the possibility

of variance changing over time. In the context of financial time-series forecasting, stock

returns are known to exhibit volatility clustering (as discussed in Section 1.5). Gaps exist in

literature for neural network forecast uncertainty quantification techniques that can handle

time-varying uncertainty, particularly in the context of financial time-series. From a finance

application perspective, forecast uncertainty can be used to size bets, or as advanced warning

to protect the portfolio from increasing risk. For example, if forecast uncertainty reaches

1.6 POTENTIAL APPLICATIONS OF MACHINE LEARNING IN PORTFOLIO MANAGEMENT 27

a certain threshold, an investor could purchase portfolio insurance (e.g., put options which

allow the investor to sell stocks to the issuer of the options at a pre-agreed price) or liquidate

positions to reduce risk.

1.6.4 Other possible directions

In addition to the aforementioned applications of machine learning in portfolio management,

machine learning can also be used to extract useful information from unstructured data and

for efficient trading (in cost minimisation). These two topics are not addressed in this thesis.

Nonetheless, we provide a discussion on the two topics as future research directions.

Inputs form the bedrock of any prediction model. Pre-existing feature sets used in literature

and in practice typically evolve around price, company financial information and other eco-

nomic variables. Recently, there is an emerging trend towards incorporating alternative data

in the investment process. These datasets comprise of unconventional and often unstructured

information about a company or industry. For instance, Ranco et al. (2015) used Support

Vector Machine (SVM) to classify 1.5million tweets on Twitter14 on 30 stocks in the Dow

Jones Industrial Average index (Dow Jones) into positive, neutral and negative sentiment over

15 months. The authors found that polarity of tweet sentiment was associated with 1% of

cumulative excess return in the three days following the peak. Souma et al. (2019) used a

LSTM to classify Reuters15 news articles into positive and negative sentiment. The authors

reported positive prediction accuracy when applied to high frequency intraday tick data on

stocks in the Dow Jones index. Other potentially useful unstructured data include job listing

websites, product reviews, website traffic, satellite imagery of factories and car parks, and

product internet search trends. Techniques such as deep learning can be used to convert these

unstructured data into quantifiable data and incorporated in a prediction model.

After a portfolio has been selected, investors would implement the portfolio in the most cost

efficient manner. As introduced in Section 1.2 and discussed in Appendix A2.3, market

14Twitter is a social media platform where users can post short messages (called tweets) of any topic. URL:
twitter.com

15Reuters is a global news outlet. URL: www.reuters.com

twitter.com
www.reuters.com

28 1 INTRODUCTION

impact could substantially reduce realised returns. Therefore, the goal is to design a trading

policy (e.g., when and how to split a trade into parcels) that minimises costs incurred. This is

related to the one-way trading problem in computer science (El-Yaniv et al., 2001), where

a player observes a price sequence and decides whether or not to accept the current price.

The game ends when the required amount has been traded. There are two approaches to this

problem — online learning and reinforcement learning. Online learning (also called no-regret

learning, a concept to be introduced in Section 3.2.3) approaches the optimal trading problem

through the lens of game theoretics. The problem is set as a game against an adversary (also

called the nature) and the goal is to compare favourably to the best expert in hindsight (e.g.,

the best model parameters trained using all observations up to t). Dworkin et al. (2014)

proposed the Pursuit-Evasion Without Regret algorithm for optimal trading, which extends

online learning to incorporate a state16. The authors showed that the proposed algorithm

outperformed the constrained follow-the-lazy-leader algorithm on inventory management.

Distinct features of no-regret learning are the assumption of adversarial outcome and the

focus on worst-case performance (as nature can arbitrarily choose an outcome that is to the

worst detriment of the player). Possible extensions to this line of literature is to allow for some

predictability in intraday returns, such as the reversal pattern. Another possible approach

is reinforcement learning, which focuses on learning the optimal policy itself. Nevmyvaka

et al. (2006) was the first to apply reinforcement learning on the optimal trading problem and

reported substantial reduction in trading costs. Optimal policy learnt was based on time left

to trade and quantity remaining. One potential advancement is to use deep reinforcement

learning (e.g., see François-Lavet et al., 2018) to learn a more complex Q-value function,

beyond simply using the time and quantity dimensions. For instance, other variables such as

market capitalisation and recent share price performance may contain useful information for

optimal trade execution.

16The application of Dworkin et al. (2014) is in algorithmic trading, where an algorithm is used to autonom-
ously trade stocks in order to achieve an objective (e.g., minimise cost). In this context, state refers to the
inventory position in a given stock. Conventional no-regret learning algorithms are stateless. This stateful
augmentation blends reinforcement learning with no-regret learning (Dworkin et al., 2014).

1.7 CONTRIBUTIONS AND STRUCTURE OF THE THESIS 29

1.7 Contributions and structure of the thesis

At this point, the reader has been introduced to the portfolio management problem and relevant

financial theory. As discussed in Section 1.5 and 1.6, there are several gaps in literature on

applying deep learning in a portfolio management context.

This thesis provides three significant advances in deep learning techniques applicable to

financial markets. Each contribution details a methodological improvement to deep learning

that addresses a challenge in financial markets (e.g., time-varying DGP, low signal-to-noise

and volatility clustering), combined with a demonstration of the contribution in a financial

market application. As deep learning is featured in all three main contributions of this thesis, a

comprehensive review of neural networks is provided in Chapter 2, covering common network

architectures (Section 2.1, 2.5.1, 2.5.2), network training and optimisation (Section 2.2),

weight initialisation (Section 2.3), activation functions (Section 2.1), and neural network

regularisation techniques (Section 2.4). This chapter provides readers with an essential

understanding of neural networks which is required to fully grasp the advances proposed in

the rest of this thesis.

In Chapter 3, we address the time-varying cross-sectional prediction problem (as described in

Section 1.6.1) by introducing the Online Early Stopping (OES) algorithm for training neural

networks online. The neural network trained using OES is able to adapt to changes in the

DGP over time. We provide an optimality guarantee, where the performance of the algorithm

is lower bound by a multiple of the variance of the DGP. We compare OES to a stationary

network (i.e., a network that is trained offline and does not vary with time) and Dynamic

Exponentially Time-Smoothed Stochastic Gradient Descent (DTS-SGD), a state-of-the-art

online non-convex optimisation algorithm (introduced in Section 3.2.3). We demonstrate

the benefits of OES on a synthetic dataset and in predicting U.S. stock returns as a direct

comparison to Gu et al. (2020). This application tackles both the cross-sectional stock return

forecasting problem (as discussed in Section 1.6.1) and time-variability problem of financial

markets (as discussed in Section 1.5). We show that a neural network trained using OES

outperformed the state-of-the-art on the aforementioned problems. We also demonstrate that

30 1 INTRODUCTION

the network is able to track changes in the market, such as turning points of markets, with

compelling results that are likely to be useful to practitioners.

In Chapter 4, we simultaneously tackle the time-series pattern recognition and noise-robust

learning problems (as discussed in Section 1.6.2) by introducing a supervised autoencoder17

into a temporal convolutional network. We name this network the Supervised Temporal

Autoencoder (STAE). We argue that the supervised autoencoder imposes a nonparametric

functional form on the model, encouraging the network to retain features that are beneficial to

both the primary forecasting task and the auxiliary reconstruction task. The reconstruction task

also improves the interpretability of the model, as users can visualise features retained by the

network by inspecting the reconstructed sequence. We show that the proposed STAE provides

economically meaningful improvements over the momentum effect, a known predictor of

stock returns in finance literature. We also provide a precedence on applying sequential

neural networks18 to financial time-series at a large scale and is investable through forecasting

1-month ahead returns. We provide a benchmark against popular sequential neural networks,

namely temporal convolutional network (TCN), LSTM, Neural Basis Expansion Analysis for

interpretable Time Series (N-BEATS) and transformer (both N-BEATS and transformer are

state-of-the-art architectures for time-series/sequential applications), and demonstrate class-

leading performance. We hypothesise that supervised autoencoder is a potent regularisation

technique for neural networks that may find applications in other noisy environments.

In Chapter 5, we combine and extend two state-of-the-art methods, Ensemble and Evidential,

into a unified framework for the quantification of uncertainty in financial time-series (as

discussed in Section 1.6.3). The framework comprises of four improvements, namely the

use of SMD, separate modelling of distribution hyperparameters, ensembling and use of

second order return information. We propose a simplified parameterisation of the problem

as a scale mixture, which leads to the use of a Gamma prior on a variance scaling variable.

Using the UCI benchmark dataset, we demonstrate uncertainty quantification performance

that is overwhelmingly in favour of SMD over Normal-Inverse-Gamma (NIG). Comparing to

17A network architecture introduced in Section 2.5.3.
18In this context, sequential neural network refers to neural networks that are applicable for time-series

applications, such as recurrent neural network (RNN), LSTM and CNN.

1.7 CONTRIBUTIONS AND STRUCTURE OF THE THESIS 31

Ensemble and Evidential on the UCI dataset, cryptocurrency and U.S. equities time-series

forecasts, we demonstrate class-leading performance on all three datasets in terms of widely

used prediction performance measures. We show that only our proposed framework can

provide uncertainty estimates that track realised forecast errors. On the UCI benchmark

dataset, we show that our proposed framework benefits uncertainty quantification in non-time-

series applications. Thus, we conjecture that some or all of our proposed improvements may

benefit applications in other areas of machine learning.

In Chapter 6, we summarise the contributions provided in this thesis and discuss future

research directions. In particular, we highlight several potential improvements to our work.

CHAPTER 2

Deep learning

This thesis introduces several advances to deep learning models for applications in financial

markets. As deep learning is the main apparatus of this thesis, a literature review is provided

in this chapter.

Neural networks are a broad class of high capacity models which were inspired by the bio-

logical brain and can theoretically learn any function (a property known as the Universal

Approximation Theorem; see Hornik et al., 1989; Cybenko, 1989; Goodfellow et al., 2016). In

the 19th century, studies of brain activity led to the discovery of neurons that “fire an activation”

in response to some activity or stimulus (Bain, 1873; James, 1890). The introduction of the

perceptron (Rosenblatt, 1958), multilayer perceptron (Rosenblatt, 1961) and the backpropaga-

tion training algorithm (Rumelhart et al., 1986a) heralded the beginning of neural networks.

However, it is the increase in computing power and advances in training deeper networks that

led to the development of modern neural networks. The term deep learning refers to learning

with a neural network with many hidden layers, a property that is thought to contribute to

the approximation capacity of the network (Malach et al., 2021). Further advances in neural

network design and training led to the success of deep learning across multiple domains. The

rest of this section presents neural network architectures used in this dissertation.

2.1 Feedforward neural networks

The simplest form of neural network, the feedforward network, also known as multilayer

perceptrons (MLP), is a subset of neural networks which forms a finite acyclic graph (Good-

fellow et al., 2016). There are no loop connections and values are fed forward, from the

32

2.1 FEEDFORWARD NEURAL NETWORKS 33

...
...

...

x1

x2

x3

xM

h
(1)
1

h
(1)
2

h
(1)
H1

h
(2)
1

h
(2)
H2

O1

Input
layer

Hidden
layer 1

Hidden
layer 2

Ouput
layer

(a) Feedforward network

...

x1

x2

xM

Σ f a

b

w1

w2

wM

(b) A neuron

FIGURE 2.1: In Figure 2.1(a), an illustration of a fully connected network
with two hidden layers. Red, green and blue nodes signify input, hidden and
output neurons, respectively. Hℓ refers to the number of units in ℓ-th layer.
Arrows indicate direction of flow for the output value of the respective node.
Input to the network has M dimensions. In Figure 2.1(b), a single neuron
(depicted as h(ℓ)j in Figure 2.1(a)). Input to the neuron ({x1, x2, . . . , xM}) are
first linearly transformed and aggregated (depicted as Σ in the centre node).
Then, a non-linear activation f is applied, leading to activation value a. More
formally, the output of the neuron is a = f(w1x1 +w2x2 + · · ·+wMxM + b),
where wM ∈ R is network weight corresponding to input dimension M and
b ∈ R is bias.

input layer to hidden layers, and to the output layer. Each layer contains one or more neurons

(also called perceptrons). The operation of a neuron involves two steps. First, the input is

34 2 DEEP LEARNING

linearly combined with layer weights. Then, a non-linear activation function is applied on the

result, as depicted in Figure 2.1(b). A feedforward network is also called a fully connected

network if every node has every node in the preceding layer connected to it, as illustrated in

Figure 2.1(a).

Each layer (denoted ℓ ∈ {1, 2, ..., L}) consists of Hℓ units (i.e., dimension of the output of the

layer), activation function f (ℓ), network weights W (ℓ) ∈ Rnℓ−1×nℓ and bias b(ℓ) ∈ Rnℓ . This

includes the output layer (denoted ℓ = L). Input to the ℓ-th layer is the output of the previous

layer a(ℓ−1). Output of the layer is computed as (in matrix form),

z(ℓ) = (a(ℓ−1))TW (ℓ) + b(ℓ)

a(ℓ) = f (ℓ)
(
a(ℓ−1);W (ℓ), b(ℓ)

)
= f (ℓ)

(
z(ℓ)
)
. (2.1)

where a(ℓ) = (h
(ℓ)
1 , . . . , h

(ℓ)
Hℓ
), and z(ℓ) is termed weighted input. In other words, each layer of

the feedforward network performs a transformation of the input (output of the previous layer)

using the specified activation function. The Universal Approximation Theorem stipulates that

activation functions have the following properties (Liew et al., 2016):

(1) The output is non-constant for all ranges of inputs;

(2) Bounded within a range;

(3) Continuous over all values of point c of its domain, where limx→c f(x) = f(c);

(4) Monotonically increasing;

(5) Differentiable everywhere, where limc→0
f(x+c)−f(x)

c
exists for all x.

The fifth property is not a requirement of universal approximation but is required for back-

propagation learning algorithms. Popular choices of activation functions include (Goodfellow

et al., 2016):

• ReLU: f(x) = max(0, x);

• Sigmoid (σ): f(x) = 1
1+e−x ;

• Hyperbolic tangent (tanh): f(x) = tanh(x) = ex−e−x

ex+e−x .

2.1 FEEDFORWARD NEURAL NETWORKS 35

Sigmoid and tanh are closely related activation functions, as tanh(x) = 2 σ(2x) − 1. tanh

resembles the identity function near 0, as the gradient is close to 1 and tanh(0) = 0. Thus,

when training a neural network with small activation values (i.e., close to zero), a feedforward

network with tanh activation functions behaves like a linear model (Goodfellow et al., 2016).

Both sigmoid and tanh are used in recurrent networks, an architecture type that we will

discuss in Section 2.5.1. ReLU is a simple piece-wise activation function, where non-linearity

is provided by the max function. Owing to its simplicity, unimpeded gradient flow (when

the input value is positive) and ease of computation, ReLU (Jarrett et al., 2009; Nair and

Hinton, 2010) quickly became the activation function of choice for many applications and has

enabled the breakthrough in training state-of-the-art deep networks (Krizhevsky et al., 2012;

Ramachandran et al., 2018). However, ReLU also has several weaknesses (Goodfellow et al.,

2016). First, due to the max function, ReLU is discontinuous at zero. Thus, the derivative is

undefined when output is exactly zero. Second, its second derivative is zero almost everywhere

and there is no information pass through if the input value is negative. The zeroing out of

negative values has led to a phenomenon known as “dead neurons”, where a neuron can be

“stuck” in a non-active state (either by random initialisation or subsequent gradient updates)

as negative bias can cause the affine transformation of the input to be negative. As the neuron

is always outputting 0, its weights are not updated by gradient-based learning algorithms

(Maas et al., 2013). Note that both sigmoid and tanh suffer from the same problem when

input is extremely positive or negative, leading to gradient that is close to zero. Third, a ReLU

layer that has non-zero mean activation acts as bias for the next layer (Clevert et al., 2016). A

network with many ReLU layers will thus have accumulating biases. This phenomenon is

known as bias shift which slows down training. Various improvements to ReLU have been

proposed, such as exponential linear unit (ELU) (Clevert et al., 2016),

f(x) =

x if x > 0

α(ex − 1) Otherwise
, (2.2)

36 2 DEEP LEARNING

and Leaky ReLU (Maas et al., 2013),

f(x) =

x if x > 0

0.01x Otherwise
. (2.3)

At the time of writing, a potential candidate for the state-of-the-art in activation function

is the Swish function (Ramachandran et al., 2018), defined as f(x) = x · sigmoid(x). The

Swish function is a smooth convex function that dips as it approaches 0 from the negative

end, turning positive at 0 and asymptotically approaches ReLU at the infinity. The authors

have reported improved performance over other variants of ReLU in image recognition tasks.

Illustrative activation of each activation functions is shown in Figure 2.2.

Recall that a(0) is the input layer (input data in the form of vector or matrix). For regression

problems, the output layer typically has linear activation, where the output is a linear combina-

tion of the input and layer weights, and no non-linearity is applied. For classification problems,

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

Common activation functions
ReLU
sigmoid
tanh
ELU
Leaky ReLU
Swish

FIGURE 2.2: lllustration of ReLU, sigmoid, tanh, ELU, leaky ReLU and Swish.
For ELU, α = 1 is used. Note that Leaky ReLU is the same as ReLU where
x > 0 and marginally negative x < 0. ELU and ReLU are also the same when
x > 0. Region with f(x) < 0 is shaded in grey.

2.2 NEURAL NETWORK TRAINING 37

popular choices for output layer activation are the sigmoid function sigmoid : R → (0, 1)

(which can be used to model probability of observing a single class), or softmax,

softmaxi(x) =
exi∑C
j=1 e

xj

,

where softmaxi(x) is the predicted probability of observing class i = 1, . . . , C, normalised

by the probability of observing every other class.

2.2 Neural network training

In this section, we discuss the learning objective, backpropagation and optimisation methods

for neural networks.

Learning, in a theoretical context, involves finding a useful approximation Ĝ(x) to the function

G(x) (Hastie et al., 2020), whereG is function of interest and x is input to the function. In this

dissertation, we are concerned with finding approximations to Ĝ(x) using a neural network.

For brevity, we drop the layer designation and denote the entire network by F and weight

vector set θ =
⋃L

ℓ=1{W (ℓ), b(ℓ)}, where L is the number of layers and θ(ℓ) = {W (ℓ), b(ℓ)}

is the weight set of layer ℓ. We further denote a training instance of a supervised learning

problem1 as (x, y) ∼ D, where D is the training set. For regression problems, both inputs

x ∈ RM and outputs y ∈ R are real values, where M is the dimension of the input (i.e., the

number of features). A popular choice of loss function is the mean squared error (MSE)

(Goodfellow et al., 2016),

L(F (X;θ),y) =
1

N

N∑
j=1

(yj − F (xj;θ))
2, (2.4)

where N = |D| is number of observations in training set. For classification problems, loss

is measured as terms of relative entropy between the data distribution pD and distribution

1Supervised learning refers to a learning problem where the goal is to predict values of the outputs given
some values of inputs, which may be measured or preset (Hastie et al., 2020).

38 2 DEEP LEARNING

provided by the network pmodel,

DKL(pD||pmodel) =

∫
y

pD(y) log

(
pD(y)

pmodel(y)

)
dy,

and is typically implemented as the sum over all training instances,

DKL(pD||F) =
N∑
i=1

yi log

(
yi

F (xi)

)
,

where the neural network F (xi) is assumed to output an approximation to the empirical

distribution pD. This loss function is called Kullback-Leibler divergence (KL divergence)

(Kullback and Leibler, 1951; Goodfellow et al., 2016). A related loss function for classification

is cross-entropy (Goodfellow et al., 2016),

H(pD, pmodel) = H(pD) + DKL(pD||pmodel) (2.5)

H(pD) = −
∫
y

pD(y) log pD(y) dy,

where H(x, y) is cross-entropy between the distributions of x and y and H(x) is the entropy

of the distribution of x. Cross-entropy can be interpreted as the difference between two

distributions (the observed data and output of the model). For the purposes of neural network

training, it can be seen that cross-entropy and KL divergence are equivalent as the entropy of

the data is a constant.

Neural networks are trained using stochastic gradient descent (SGD). SGD is an iterative

optimisation algorithm. The algorithm begins with a set of starting weights (weight initial-

isation is discussed in Section 2.3) and a randomly sampled batch of observations (termed

minibatch). There are two reasons why a stochastic gradient is used as opposed to the full

gradient over the entire training set (in which case it is simply referred to as gradient descent

or batch gradient descent). First, SGD is the main way to train linear models on very large

datasets (Goodfellow et al., 2016). Large training sets are typically required to achieve good

generalisation2. Suppose the training set consists of N = 1billion observations. A single

2Generalisation refers to prediction or classification performance on unseen data (Goodfellow et al., 2016).
For a model to have good generalisation performance, the difference in performance of the model on training
and out-of-sample data is minimised.

2.2 NEURAL NETWORK TRAINING 39

gradient step that utilises the entire training set will be very computationally expensive. If

one minibatch consists of B = 100 observations, a single pass through the data will result in
1 billion

100
= 10million gradients steps. SGD relies on updating weights by the expected gradient,

calculated over a small batch and is thus computationally inexpensive. This greatly reduces

the computational cost per weight update (Goodfellow et al., 2016). Secondly, noisy gradients

can help the optimiser escape saddle points3 (Ge et al., 2015; Jin et al., 2017; Kleinberg et al.,

2018). For highly non-convex functions with many local minima and saddle points, stochastic

gradient can be interpreted as working on a smoothed, convolved version of the loss function

(Kleinberg et al., 2018). Thus, SGD has greater capacity to traverse the loss surface of highly

non-convex loss functions than batch gradient descent.

Next, we formally describe the SGD algorithm. Let D be the training set and (X̃b, ỹb) ∼ D

be the b-th randomly-drawn minibatch (where ·̃ signifies a minibatch; not to be confused with

network bias b). The basic stochastic gradient update equation is (Goodfellow et al., 2016),

θb+1 = θb − η∇̂J(θb) (2.6)

J(θb) = L(F (X̃b;θb), ỹb),

where the gradient of J(θb) at θb is ∇J(θb), θb is weight vector set at minibatch b, η is step

size (also called learning rate), ∇̂ is stochastic gradient and L is the loss function. The J(θb)

notation is used for brevity. Equation (2.6) describes gradient update at the network level. A

forward pass of information through the network, from the input layer, through hidden layers

and to the output layer is called forward propagation. Once training loss of the minibatch is

computed, the backpropagation algorithm (Rumelhart et al., 1986a) is used to attribute the

loss to weights and bias of each layer by computing the partial derivatives of each layer. Let

cb = J(θb) be the scalar loss for batch b. Then, the partial derivatives with respect to the

weights and bias of the output layer are (dropping the batch subscript for clarity),

∇̂(ℓ) =
∂c

∂a(ℓ)

∂a(ℓ)

∂θ(ℓ)
. (2.7)

3A saddle point is a point on the surface of the graph of a function where derivatives in orthogonal directions
are all zero, but is not a local extremum of the function (Wainwright and Chiang, 2005).

40 2 DEEP LEARNING

We denote the gradient vector set attributable to the ℓ-th layer as ∇̂(ℓ). The first partial

derivative ∂c
∂a(ℓ) is the rate of change of loss with respect to output of the final layer (i.e., ℓ = L,

the derivative of the loss function). For a regression problem where the output is a scalar,
∂c

∂a(ℓ) is also a scalar. If the output of the network is multi-dimensional, then ∂c
∂a(ℓ) is a vector

of gradients. The second partial derivative ∂a(ℓ)

∂θ(ℓ) is a gradient vector of the ℓ-th layer’s output

w.r.t. its weights. For squared loss (Equation (2.4)), the derivative is (a single instance of

observation shown),
∂c

∂a
(ℓ)
i

=
2

B
(a

(ℓ)
i − yi),

where B is the size of a minibatch. Similarly, loss attributable to the ℓ − 1-th layer can be

computed using the chain rule,

∇̂(ℓ−1) =
∂c

∂a(ℓ)

∂a(ℓ)

∂a(ℓ−1)

∂a(ℓ−1)

∂θ(ℓ−1)
.

Gradient of the network in Equation (2.6) is the collection of gradients of weights and biases

of all layers,

∇̂J(θ) = {∇̂(1), ∇̂(2), . . . , ∇̂(ℓ−1), ∇̂(ℓ)}. (2.8)

A single gradient update step is the simultaneous update of all layers by the gradient collection

scaled by the learning rate, computed using backpropagation.

Equation (2.6) is a recursive algorithm. The network is trained iteratively using each minibatch.

Minibatches are drawn from the training set without replacement until the exhaustion of the

training set. One cycle through the training set is called an epoch. The optimal number of

epochs (denoted τ) to train the network is found by monitoring loss on the validation set4.

Training is stopped when the validation loss decreases by less than a predefined amount,

called tolerance. This procedure is called early stopping (Morgan and Bourlard, 1990; Reed,

1993; Prechelt, 1998; Mahsereci et al., 2017). Algorithm 1 contains the schematics of an

early stopping algorithm, adapted from Algorithm 7.1 and Algorithm 7.2 in Goodfellow

et al. (2016). Early stopping can be seen as a regularisation technique which limits the

optimiser to search in the parameter space near the starting parameters (Sjöberg and Ljung,

1995; Goodfellow et al., 2016), as training is terminated when training no longer decreases

4A validation set is a portion of data that is withheld from training and is used for hyperparameter tuning.

2.2 NEURAL NETWORK TRAINING 41

validation loss. The early termination of training restricts network weights to be closer to the

initial values. In particular, given τ , the product ητ can be interpreted as the effective capacity

which bounds reachable parameter space from θ0 (network weights at the start of training),

thus early stopping behaves in a similar way to L2 regularisation (Goodfellow et al., 2016). In

Chapter 3, we propose an online version of early stopping that allows the network to learn

“online”.

Algorithm 1 Early stopping procedure. Training stops when validation loss does not improve
by at least ε for Q iterations.

Require: Maximum iterations {T ∈ N |T > 0}; tolerance {ε ∈ R |ε > 0}; patience
{Q ∈ N |Q > 0}; step size {η ∈ R |η > 0}, training set {Xtrain,ytrain}, validation set
Xtest,ytest

1: function EARLYSTOPPING(θ,Xtrain,ytrain,Xtest,ytest)
2: θbest ← θ
3: q ← 0
4: Jbest ←∞
5: for k = 1, ..., T do
6: θ ← θ − η∇̂J(ytrain, F (Xtrain;θ))
7: J ′ ← J(ytest, F (Xtest;θ))
8: if J ′ < Jbest then
9: τbest ← k

10: θbest ← θ
11: Jbest ← J ′

12: end if
13: if J ′ did not improve by at least ε then
14: q ← q + 1
15: if q ≥ Q then
16: break ▷ Assume convergence
17: end if
18: else
19: q ← 0
20: end if
21: end for
22: return τbest, θbest

23: end function

Advances in optimisation have allowed deeper and more sophisticated neural networks to be

trained. In the rest of this section, we will describe, at a high level, improvements to neural

network optimisation.

42 2 DEEP LEARNING

SGD uses a universal learning rate for all parameters of the network. However, some parts of

the network may require less updates than others (e.g., if they learn rarely seen but are highly

predictive features). A universal learning rate may lead to over-learning (under-learning) in

parts of the network that are frequently (infrequently) updated. Parameter-specific learning

rate was introduced in AdaGrad (Duchi et al., 2011), where learning rate for each parameter is

scaled by the cumulative sum of the square of past gradients. This has the effect of decreasing

learning rate for parameters that are frequently updated.

It was also observed that the magnitude of gradients can be very different across different

parts of the network. Hinton and Tieleman (2012) proposed RMSProp, which deals with

this problem by dividing the gradients by the square root of the moving average of squared

gradients for each weight. This effectively standardises the gradients. Adam (Kingma and

Ba, 2015) extends AdaGrad and RMSProp, computing adaptive learning rates based on

estimates of first and second moments of the gradients. Rather than updating by the actual

gradient ∇̂J(θk), Adam updates by the exponentially weighted average of past gradients

(thereby creating a momentum effect) scaled by the square root of the exponentially weighted

average of squared gradients. The exponentially weighted estimates are updated recursively

on each iteration, multiplied by a fixed decay rate. Kingma and Ba (2015) demonstrated faster

learning (faster decrease in training loss) on benchmark datasets. This was further extended by

Dozat (2016), incorporating Nesterov’s accelerated gradient (also called Nesterov momentum;

Nesterov, 1983) into Adam, named NAdam. The addition of Nesterov momentum has

previously been shown to improve regular SGD in hard to optimise problems (Sutskever et al.,

2013). At each update step, regular momentum (as used in Adam) is the weighted average

between the latest gradient and the weighted average of gradients of the previous step. It

was observed that a better quality gradient can be obtained by computing the latest gradient

using weights updated by the previous step’s weighted average gradients. This was shown

to further improve optimisation speed and, at the time of writing, can be considered as the

state-of-the-art in neural network optimisation.

2.3 NETWORK WEIGHT INITIALISATION 43

2.3 Network weight initialisation

Weight initialisation is an area of active research and is thought to play crucial roles in

enabling deeper networks and speeding up network training (Glorot and Bengio, 2010). Early

neural networks used sigmoid activation with randomly initialised network weights. This

type of network architecture was not conducive to training deep neural networks. Randomly

initialised weights are typically drawn from a zero mean distribution (e.g., U[1√
Hℓ
, 1√

Hℓ
],

where Hℓ is the number of units in the layer and is also called dimension of the layer) (Glorot

and Bengio, 2010). Note that dimension of the first layer of a neural network (i.e., the input

layer) has the same dimension of the input (i.e., H0 = M). A neural network that uses

sigmoid as activation function is prone to an accumulation of bias in a deep network. This

is due to mean activation of 0.5 for the sigmoid function. Shift in the distribution of inputs

to each hidden layer will cause the sigmoid function to become saturated5, as illustrated in

Figure 2.3. In here, it can be seen that if the expected value of inputs to a sigmoid function

is very high or very low, its derivative asymptotically approaches 0. For this reason, Glorot

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

ReLU
f(x)
f/ x

3 2 1 0 1 2 3
x

sigmoid
f(x)
f/ x

3 2 1 0 1 2 3
x

tanh
f(x)
f/ x

FIGURE 2.3: Illustration of ReLU, sigmoid and tanh, and their respective first
derivatives. ReLU has a discontinuity at 0, while both sigmoid and tanh suffer
from saturation at extreme values as gradient approaches 0.

and Bengio (2010) recommended against initialising network weights with small random

values if the sigmoid function is used — an issue that is partially alleviated with the advent of

ReLU, where gradient does not saturate for positive input values. ReLU expedited training
5Saturated sigmoid occurs when the input to the sigmoid function is close to zero. The sigmoid function

outputs values that asymptotically approach zero. Thus, as gradient vanishes, training is impeded.

44 2 DEEP LEARNING

and allowed deeper networks to be trained6. Another contributing factor to slow learning

is the decrease in variance of backpropagated gradient as one moves from the output layer

backwards (Bradley, 2010; Glorot and Bengio, 2010). This is a deficiency of backpropagation,

where loss is progressively attributed to each layer starting from the output. Variance of

the gradient diminishes as loss is backpropagated through a deep network. To minimise the

decrease in gradient variance attributable to weight initialisation, Glorot and Bengio (2010)

proposed normalised initialisation (also called Glorot initialisation or Xavier initialisation),

where initial weights are drawn from U
(
−
√

6
Hℓ−1+Hℓ

,
√

6
Hℓ−1+Hℓ

)
or N

(
0, 2

Hℓ−1+Hℓ

)
(note

that Hℓ−1 is the input dimension and M (ℓ) is the output dimension of the layer). Variance of

the distribution with which weights are drawn accounts for the change in dimension between

layers. This ensures that variance is constant throughout the network at the initial stage of

training7. Derivation for the variance parameter was based on linear activation. However, the

authors showed that normalised initialisation is still beneficial for networks with sigmoid or

tanh activations. He et al. (2015) argued that the assumption of linear activation is invalid

for a network with ReLU activation, and proposed an alternative activation (also called

He initialisation), where weights are drawn from N
(
0, 2

M(ℓ−1)

)
. The authors demonstrated

superior image classification performance using ReLU activation. In sum, weight initialisation

strategy can have profound influence on network convergence and the ability to successfully

train deep neural networks. Kumar (2017), Glorot and Bengio (2010) and He et al. (2015)

have demonstrated the importance of maintaining stable variance of gradient across the layers.

To this end, He initialisation is shown to be superior for networks with ReLU activation, while

Xavier initialisation can be used for networks with sigmoid and tanh activations.

6However, as noted earlier in Section 2.1, this was until network architecture hit the bottleneck of ReLU.
ReLU has positive expected activation. This leads to bias shift which slows down training and is addressed by
ELU (Clevert et al., 2016) and other variants of ReLU that allow negative activation.

7However, it is not until the advent of residual connections that “depth barrier” of deep neural network is
truly broken.

2.4 OTHER NETWORK ARCHITECTURAL CONSIDERATIONS 45

2.4 Other network architectural considerations

In addition to the aforementioned architectural considerations, modern neural networks

typically also use batch normalisation (Ioffe and Szegedy, 2015) and dropout (Srivastava

et al., 2014).

Batch normalisation is the transformation of the output of each hidden layer. For each

minibatch with batch size B, input to the batch normalisation layer X ∈ RB×M (i.e., output

of the preceding hidden layer a(ℓ−1)), each instance of the batch is standardised along each

dimension,

x̃i,m =
xi,m − E[xm]√

Var[xm]
,

where xi,m is input dimension m = 1, . . . ,M of instance i of the batch and xm ∈ RB×1 is

the column vector of the m-th dimension (batch subscript dropped for legibility). Note that

mean and variance are computed per batch, not over the entire training set. The standardised

values are then linearly transformed,

am = αx̃m + β,

where α and β are learnable parameters of the batch normalisation layer that shift and scale

the standardised input. Note that a batch normalisation layer is added after a hidden layer

and is thus a transformation of the output of the preceding hidden layer. Ioffe and Szegedy

(2015) argued that batch normalisation reduced internal covariate shift, a phenomenon where

the distribution of network activations changes as network parameters are updated during

training. The authors argued that by fixing the distribution of activation of each hidden layer,

both training speed and accuracy of classifiers improved (in benchmark image classification

datasets).

However, subsequent works have disputed the working mechanism of batch normalisation.

Various alternative explanations have been proposed. Santurkar et al. (2018) found that batch

normalisation induces a smoother loss function surface and gradients. This surface is easier

to traverse by the optimiser, allowing for faster training. Approaching the problem from

a classical optimisation perspective, Kohler et al. (2019) argued that batch normalisation

46 2 DEEP LEARNING

works by splitting the optimisation task into optimising length and direction of the parameters

separately. This was motivated by a related technique, weight normalisation, which normalises

neural network weights to separate lengths from their directions (Salimans and Kingma, 2016).

Kohler et al. (2019) demonstrated that this reparameterisation provided faster convergence. In

sum, both alternative explanations relate batch normalisation to aspects of optimisation.

Dropout (Srivastava et al., 2014) involves randomly dropping out units (along with their

connections) throughout the network during training. Implementation is straightforward. Each

forward pass through the dropout layer (typically placed after a hidden layer) is multiplied by

a 1-and-0 mask, where the zeros are randomly drawn according to the pre-specified dropout

rate. Each time random dropout is applied, the masked network is a subnetwork of the full

network. At inference time, the full network is used (without masking) where the weights are

the result of averaging over many different subnetworks. Thus, dropout can be interpreted as

an inexpensive way of ensembling within the network. Dropout was shown to improve neural

network performance across a range of vision, speech recognition, document classification

and computational biology tasks (Srivastava et al., 2014).

2.5 Specialised network architectures

2.5.1 Recurrent neural networks

RNN (Rumelhart et al., 1986b; Goodfellow et al., 2016) and its variants have been the

workhorses of speech and languages (Chiu et al., 2018) and other sequential applications.

RNNs differ from feedforward networks in that they are (directed or undirected) graphs along

a temporal dimension. RNNs maintain a vector of hidden states that encode the observed

sequence and are recursively updated as new observations become available. Thus, recurrent

networks can be thought of as sharing parameters for each temporal step. A recurrent network

can be configured to have different feedback connections, with the most basic being recurrence

of the hidden state, as illustrated in Figure 2.4. In here, the hidden state of each temporal step

is recursively updated. Input xt is first combined with the hidden state of the previous step,

2.5 SPECIALISED NETWORK ARCHITECTURES 47

h0 h1 h3 ht=ht

y0

x0

y1

x1

y2

x2

yt

xt

yt

xt . . .
FIGURE 2.4: Left: An illustration of a recurrent layer with cyclical connection
back to itself for each temporal step. After each activation, the hidden state is
carried forward to the next temporal step. Right: The unfolded computational
graph of the recurrent layer for each temporal step. In here, x, h and y signify
input, hidden state and output, respectively.

resulting in an updated hidden state,

ht = f(xT
t Wx + hT

t−1Wh + bh),

where Wx are weights for the input, and Wh and bh are weights and bias for the previous

hidden state. The updated hidden state is then used to compute output of the layer,

yt = g(hT
t Wo + bo),

where g, Wo and bo are activation function, weights and bias for converting the hidden state

to output.

In the example presented in Figure 2.4, the recurrent connection is hidden-to-hidden. The

recurrent connection can also be output-to-hidden. However, such recurrence is less powerful

as it requires that the output units capture all past information that the network uses to make

predictions (Goodfellow et al., 2016). There are advantages in using specialised network

architectures for sequential problems (Goodfellow et al., 2016). First, the same recurrent

network can be used to model sequences of varying length, a type of input that is common

in NLP problems where sentences and texts are of arbitrary length. A feedforward network

requires a fixed structure and can only model sequences of pre-defined length. Second,

consider a classification problem where sequences of arbitrary length K map to C different

classes. If one were to model such a problem using feedforward networks, the number of

48 2 DEEP LEARNING

parameters in the model will scale by O(CK). However, as parameters are shared across

temporal steps in a recurrent network, the number of parameters in a RNN is O(1) with

respect to sequence length (Goodfellow et al., 2016). This is also implicitly assuming that the

conditional distribution of yt+1 is stationary given yt.

Due to its flexibility in modelling sequences (both input and output) of arbitrary length, recur-

rent network architectures can be designed to suit many different applications. The different

architecture types are illustrated in Figure 2.5. The one-to-one architecture corresponds to a

One-to-one One-to-many Many-to-one Many-to-many Many-to-many

FIGURE 2.5: Types of recurrent architectures. Red, green and blue nodes
signify input, hidden (recurrent) and output neurons, respectively. Each type
differs by the type of association between input, recurrence and output.

conventional use of recurrent networks, such as weather forecasting (Cebeci, 2019). Similar

to a pooled regression, the RNN is presented with one observation of input and makes a

forecast in a one-to-one manner on each time step. The one-to-many architecture receives an

encoding of a task and generates a sequence. This type of architecture have been used for

music synthesis (Jaques et al., 2017). Many conventional time-series forecasting applications

can be classified as many-to-one, where the network observes a sequence of inputs and makes

a classification or prediction. Financial time series forecasting problems such as Li et al.

(2017) and those in Chapter 4 are examples of many-to-one networks. There are two types

of many-to-many architectures — one where inputs and outputs are in sync along the time

dimension; and where outputs lag inputs by an offset. The former is used in applications such

as named entity recognition (Katiyar and Cardie, 2018), while the latter is used in machine

translation, such as the Seq2seq model (Sutskever et al., 2014). In Seq2seq, the encoder part

of the recurrent network converts the sentence to be translated into a latent representation,

which is then re-generated by the decoder portion of the network in the target language.

2.5 SPECIALISED NETWORK ARCHITECTURES 49

However, despite their success, recurrent networks are notoriously difficult to train (Pascanu

et al., 2013; Bai et al., 2018). In an unrolled computational graph, recurrent networks can be

considered as neural networks with unlimited depth. Modelling long term dependencies is

especially challenging as gradients propagated through many layers tend to explode or vanish

(Bengio et al., 1994; Pascanu et al., 2013). Even if we assume that gradients remain stable,

long-term dependencies are difficult to maintain as recursively multiplied Jacobians lead to

exponentially smaller weights given to long-term interactions (Goodfellow et al., 2016). To

address this, LSTM networks (Hochreiter and Schmidhuber, 1997; Goodfellow et al., 2016)

were introduced with a memory cell containing a self-loop that allows gradients to flow over

long durations. The basic schematics of a LSTM is illustrated in Figure 2.6. Gating is central

σ

Forget
Gate

σ tanh σ

× +

×

Input
Gate

×

tanh
Output
Gate

ct−1

Memory
Cell

ht−1

Hidden
State

xtInput

ct

ht

htOutput

FIGURE 2.6: An illustration of a long short-term memory “cell”. The forget
gate controls whether information stored in the memory cell is retained. The
input gate controls whether the new input is stored into the memory cell. The
output gate incorporates information in the memory cell into the output.

to the LSTM, which consists of three gates: the forget gate, the input gate (also called update

gate) and the output gate. The forget gate controls how much memory from the previous time

50 2 DEEP LEARNING

step is retained8,

ft = σ(W (f)xt +U (f)ht−1 + b(f)),

where ft is the forget gate unit at time step t, σ denotes the sigmoid function, W , U and b

are network weights applied the input and hidden state, and bias, respectively. The forget gate

combines the input and hidden state into a ft ∈ (0, 1)H vector, where H is the dimension of

the LSTM unit. The input gate it ∈ (0, 1)H controls how much information is incorporated

into the memory cell,

it = σ(W (i)xt +U (i)ht−1 + b(i)).

The input and hidden state are transformed into a cell input vector c̃t ∈ (−1, 1)H ,

c̃t = tanh(W (c)xt +U (c)ht−1 + b(c)).

Memory carried forward from t− 1 is modulated by the forget gate and the cell input vector

is modulated by the input gate. The two are then combined to form the updated memory cell

state,

ct = ft ⊗ ct−1 + it ⊗ c̃t,

where ⊗ is the Hadmard product (i.e., element-wise multiplication). The output gate ot ∈

(0, 1)H controls the amount of information from the memory cell that is incorporated into the

hidden state,

ot = σ(W (o)xt +U (o)ht−1 + b(o))

ht = ot ⊗ tanh(ct). (2.9)

The updated hidden state ht is the output of the LSTM cell at t. Advances in LSTM (and

other recurrent networks) had enabled major breakthroughs in machine translation (Sutskever

et al., 2014), speech recognition (Graves et al., 2013) and handwriting recognition (Graves

et al., 2009).

8In this section, f is used to denote the forget gate, not to be confused with activation function f used
throughout this dissertation.

2.5 SPECIALISED NETWORK ARCHITECTURES 51

2.5.2 Temporal convolutional networks

CNNs are specialist networks for data that has a known, grid-like topology (Goodfellow

et al., 2016). Examples include time-series of fixed length (a 1-D grid) or images (2-D

grid). CNN has achieved human-like accuracy in image recognition tasks (Krizhevsky et al.,

2012; Szegedy et al., 2015; Schroff et al., 2015). In this section, the mathematical operation

convolution and a CNN-derived network achitecture known as temporal convolutional network

(TCN)9 are discussed. We refer readers to Goodfellow et al. (2016) for a comprehensive

discussion on general CNNs.

Convolution is the modification of one function by another, producing a third function. More

formally, the convolution of functions10 f and g results in function o indexed by i (Goodfellow

et al., 2016),

o(i) =

∫
f(j) g(i− j) dj (2.10)

o(i) = (f ∗ g)(i),

where ∗ is the convolution operator. To put it more concretely, suppose g(·) in Equation (2.10)

is a weighting function (e.g., a probability density function). Then, f ∗ g results in a function

that returns the weighted average of f by g. In this case, f is the input and g is the kernel

(also known as filter). In image recognition, the input is typically 2-D with discrete index

(Goodfellow et al., 2016),

O(i, j) =
∑
m

∑
n

F(m,n)G(i−m, j − n).

An example of convolution is illustrated in Figure 2.7. This example uses one 2-D kernel, with

kernel size of 2. Size of the kernel relates to how much local information is used each time the

kernel is convolved with the input. Each value in output O is the result of a sum-product of

four adjacent values (2× 2) of input F and kernel G. For time-series input, a 1-D kernel (e.g.,

with dimensions 2× 1) is used which slides along the sequence during convolution. Number

9Also known as dilated convolutional networks.
10Note that in this section, we use (upright) f and g symbols and their capitalised counterparts to illustrate the

workings of convolution. Not to be confused with the meaning of f (activation function) in the rest of the thesis.

52 2 DEEP LEARNING

of kernels11 is analogous to number of units of a hidden layer in a feedforward network, and

dictates the output dimension of the convolution layer. Suppose that number of kernels is 3.

Then, G has dimensions 2× 2× 3 (three 2× 2 kernels stacked together) and convolution is

performed three times, resulting in O ∈ R3×3×3. In Figure 2.7, size of the resultant matrix

shrank by 1. Various zero-padding strategies exist if the desire is to maintain the dimensions

of the output, such as by padding the surroundings of the input with 0.

F

1 2 3×1 4×0

5 6 7×0 8×1

9 1 2 3

4 5 6 7

∗

G

1 0

0 1
=

O

7 9 11

6 8 10

14 7 9

FIGURE 2.7: An illustration of a convolution operation. Input F is convolved
with kernel G, producing O. The highlighted cells is a single convolution
operation, yielding 3× 1 + 4× 0 + 7× 0 + 8× 1 = 11. The same operation
is repeated horizontally and vertically.

Given that regular feedforward networks are underpinned by universal approximation prop-

erties, one may wonder why CNNs are required for image recognition problems. Suppose

an image has dimensions of 1000 × 1000 pixels and three colour channels per pixel. The

resulting input tensor contains 3 million values. Next, suppose a feedforward network is

used for this problem and the first hidden layer contains 500 units. The resultant number of

connections at the first hidden layer is 3million× 500 = 1.5 billion. Such a parameter space

is likely infeasibly large to be trained efficiently. CNN solves this problem by utilising three

important concepts: sparse interactions, parameter sharing and equivariant representations

(Goodfellow et al., 2016). Sparse interactions (also known as sparse connectivity) is achieved

by using a kernel that is much smaller than the input dimensions. Memory requirement and

efficiency can be significantly improved if small, meaningful features can be detected out

11Also called number of filters or number of channels. The latter due to it being analogous to colour channels
in image applications.

2.5 SPECIALISED NETWORK ARCHITECTURES 53

of thousands of pixels. The same small (in dimensions) kernel is used throughout the layer,

leading to parameter sharing. This encourages the network to learn a kernel that can extract

useful features that are common across the input and greatly reduces the parameter space.

This also leads to equivariance, where the same feature appearing in different location in

an image (or at different times in a time-series) will lead to the exact same output, just at a

different location (different point in time). Thus, only one representation needs to be learned

and can detect the same feature anywhere in the input.

As noted in Section 2.5.1, recurrent neural networks are difficult to train and suffer from

exploding/vanishing gradient that renders modelling long term dependencies challenging.

Sequential processing also makes scaling up computation to take advantage of recent advances

in parallel hardware acceleration difficult (Bai et al., 2018). Recently, convolutional networks

have been shown to be competitive against recurrent network-based architectures in a range of

sequence learning tasks (van den Oord et al., 2016; Kalchbrenner et al., 2016; Bai et al., 2018).

van den Oord et al. (2016) proposed a novel CNN architecture, known as WaveNet (also known

as dilated convolutional network), and showed that it generated more naturally sounding

speech than LSTM. The main components of WaveNet consist of dilated convolution layers

with causal padding (termed causal convolutions in van den Oord et al., 2016) and residual

connections (He et al., 2016). In standard convolution, the filter convolves with a symmetrical

number of values to the left and right of the centre of the filter (as depicted in Figure 2.7).

This is problematic in time-series as values on the right represent future observations that

would not have been known at the centre. This is mitigated with causal padding which shifts

the sequence such that the rightmost value of each convolution corresponds to the centre of

the original sequence. Causal padding refers to appending d× (k − 1) zeros to the beginning

of the sequence, where d is dilation rate and k is kernel size. This is illustrated in Figure 2.8.

In standard convolution (Figure 2.8(a)), the illustration depicts the first convolution of a kernel

of size 3 with the first 3 elements of the input sequence. The first output value uses up to the

third value from the input sequence and is thus “looking ahead in time.” In causal convolution

(Figure 2.8(b)) and assuming a dilation rate of 1, 1 × (3 − 1) = 2 zeros are padded to the

beginning (left) of the input sequence. The kernel is convolved with the first three elements

of the padded sequence (two leading zeros and the first element of the original sequence),

54 2 DEEP LEARNING

1 2 3 4 5

1 2 3

(a) Standard convolution

0 0 1 2 3 4 5

1 2 3 4 5

(b) Causal convolution

FIGURE 2.8: In the top row, green nodes denote outputs after convolution
with a kernel of size 3, numbered by the n-th convolution operation (striding
from left to right). In the bottom row, red nodes denote the input sequence,
numbered by the n-th element in the sequence. White nodes denote zero pad-
ding. Darker colours denote nodes undergoing convolution. In Figure 2.8(a),
the 3rd convolution operation will access the 4th element in the input.

producing the first output value. Thus, the output contains no look ahead information. Note

that due to the two padded zeros, causal convolutions produce a longer output sequence than

standard convolution with no padding. Standard convolution can also have zeros padded

to both beginning and end of the sequence to maintain length of the sequence if required.

Dilated convolution (also called à trous convolution) expands the receptive field of the node by

skipping input nodes (i.e., inserting zeros to the kernel). For example, suppose that a network

with dilation rates are multiples of 2 and kernel size of k = 3, as depicted in Figure 2.9. The

first convolution layer in Figure 2.9 has dilation rate of 20 = 1, the second is 21 = 2, third

is 22 = 4, and so on. In each dilated convolution layer, d − 1 zeros are added in between

each value in the kernel (dilation rate of 1 equates to no dilation). For example, the third

convolution layer in Figure 2.9 has 22−1 = 3 zeros inserted between each value of the kernel,

with receptive field that spans the entire sequence of 15 elements. Values that are multiplied

by 0 in the kernel (depicted using dashed grey connections) do not contribute to the final

result. Thus, the network can cover sequences of arbitrary length by stacking multiple dilated

convolution layers and having d ≥ 2.

Bai et al. (2018) proposed the TCN as a generalisation of WaveNet — without conditioning,

context stacking or gated activation. However, it retains the key ingredient of dilated causal

convolution layers organised into residual blocks, first introduced in ResNet (He et al., 2016)

and is Illustrated in Figure 2.10. Each residual block in Figure 2.10 consists of four layers —

dilated causal convolution, batch normalisation, spatial dropout (Tompson et al., 2015) and

2.5 SPECIALISED NETWORK ARCHITECTURES 55

FIGURE 2.9: Causal dilated convolutions with kernel size of 3 and dilation
rate of multiples of 2. Red nodes represent the input sequence and the two
green layers represent convolution layers. Nodes without a connection or are
connected with a dashed grey line are multiplied by zeros in the kernel. The
top (output) node reaches the entire input sequence without using every node
in the intermediate layer. The receptive field can be varied by increasing or
decreasing the number of dilated convolutional layers.

Input Sequence

DCConv
BN/DO/ReLU

...

DCConv
BN/DO/ReLU

Output Sequence

FIGURE 2.10: Illustration of a TCN. Residual blocks correspond to green
layers in Figure 2.9 and consist of skip connection, dilated causal convolution
(abbrev. DCConv), batch normalisation , spatial dropout and rectified linear
unit activation layers (abbrev. BN/DO/ReLU).

ReLU. Spatial dropout is similar to the regular dropout (introduced in Section 2.4). However,

instead of randomly dropping out observations, spatial dropout randomly drops an entire

dimension. The output sequence of a residual block is first added to the input sequence

(of the said residual block) via skip connection, then feed into the next residual block as

56 2 DEEP LEARNING

input sequence. Bai et al. (2018) showed that TCN was superior to LSTM across a range

of sequence modelling tasks. The authors also noted five advantages of TCN (along with

two disadvantages) over recurrent networks, most notably, parallelism and stable gradients.

Stable gradients allow convolutional networks to access longer history (one year of daily

prices is over 250 observations) than recurrent networks. TCN provides another useful tool

for modelling time-series data.

2.5.3 Autoencoders

An autoencoder is an unsupervised neural network that learns a latent representation of the

input (Goodfellow et al., 2016). First introduced in LeCun (1987); Bourlard and Kamp (1988);

Hinton and Zemel (1993), the autoencoder consists of two parts, an encoder that encodes

the input into a latent representation h = f(x) and a decoder that reconstructs the input

x̂ = g(h). Each of encoder and decoder contains one or more hidden layers. Typically,

dimensions of h is chosen to be significantly smaller than the dimension of x such that

the autoencoder learns a useful representation that summarises the input, as illustrated in

Figure 2.11. Autoencoder learns the latent representation of input via hidden layers, and is

equivalent to PCA when it has precisely one linear hidden layer (Baldi and Hornik, 1989; Le

et al., 2018). Thus, traditional applications of autoencoders are in dimensionality reduction

and generative modelling.

2.5 SPECIALISED NETWORK ARCHITECTURES 57

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Ouput
layer

FIGURE 2.11: An illustration of an autoencoder. The input x ∈ R5 is con-
verted into a latent representation h ∈ R2 using 2 hidden layers. h is then
converted back into the (reconstructed) input.

CHAPTER 3

Time-varying neural network for stock return prediction

The motivating application of this chapter is in predicting cross-sectional stock returns in a

portfolio context and has been discussed in Section 1.6.1. We propose the OES algorithm

and show that a neural network trained using this algorithm can track a function changing

with unknown dynamics. We provide a regret-bound for the algorithm and show that the

worst-case tracking performance of the algorithm is bound by the time-variations of the DGP.

We compare the proposed algorithm to current approaches on predicting monthly U.S. stock

returns and show its superiority. Using this algorithm, we also provide evidence that supports

recent findings in finance literature that suggest financial markets are time-varying. These

contributions have resulted in the following publication:

Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu, “Time-varying

neural network for stock return prediction,” Intelligent Systems in Accounting, Finance and

Management, 29(1), 3–18, 2022.

3.1 Introduction

At every interval, an investor forecasts expected return of assets and performs security

selection. This problem is closely related to asset pricing (as discussed in Section 1.3 and

Appendix A1), cross-sectional predictions and time-varying DGP. To reiterate, literature has

found hundreds of factors (Harvey et al., 2016) that can predict stock returns. Literature has

also documented evidence of time-variability of the DGP (e.g., Pesaran and Timmermann,

1995; Bossaerts and Hillion, 1999). Both the true functional-form of the DGP and its time-

varying dynamics are not known.

58

3.1 INTRODUCTION 59

To address this, we simultaneously address both challenges by proposing the Online Early

Stopping (OES) algorithm, which allows neural networks to adapt to a time-varying function.

Our problem is characterised by information release over time and iterative decision making.

This shares a remarkably similar setup with online optimisation1. Optimisation in this context

is called online as decisions are made with past information but not the future. As noted in

Section 2.2, one of the hyperparameters in batch (offline) neural network training is the number

of optimisation epochs τ . In OES, we propose to treat τ as a learnable parameter that varies

over time (t), as τt, and is recursively estimated over time. We provide τt with a new meaning

— a regularisation parameter that controls the amount of update neural network weights

receive as new observations are revealed. Thus, if consecutive cross-sectional observations

are very different then we would expect τt to be relatively small and the neural network is

prevented from overfitting to any one period. Conversely, a slowly changing function will

have a high degree of continuity and we would expect the network to fit more tightly to each

new observation. Using this training algorithm, a neural network can adapt to changes in the

DGP over time. For practitioners, we show that a neural network trained with OES can be a

powerful prediction model and a useful tool for understanding the time-varying drivers of

returns.

Neural network training is an optimisation problem (Evens et al., 2021). We draw on concepts

in online optimisation to provide a performance bound that is related to the variability of

each period. We do not assume any time-varying dynamics of the underlying function, a

typical approach in online optimisation2. The benefit of this approach is that it can track any

source of variability in the underlying function, including macroeconomic, arbitrage-induced,

market condition-induced, or other unknown sources. For instance, Lev and Srivastava (2019)

suggested that the negative return to the value factor was related to diminishing relevance of

book equity as an accounting measure. Such drivers would not have been captured by the

macroeconomic approach in Gu et al. (2020). Nonetheless, we acknowledge that a limitation

of our approach is the difficulty in explaining the source of variability. Attributing the source

1We formally describe the context in Section 3.2.1.
2Online convex optimisation is typically formulated as a game against an adversary, where solutions are

designed to provide worst-case performance guarantees. See (Shalev-Shwartz, 2012) for an overview.

60 3 TIME-VARYING NEURAL NETWORK

requires measuring interactions between features and sources, of which some may be difficult

to quantify. Existing model explanation methods (e.g., Local Interpretable Model-Agnostic

Explanations; Ribeiro et al., 2016) attribute model output to input through approximations.

Thus, the addition of interaction terms between each feature to each source could lead to a

substantial increase in dimensionality.

We provide two evaluations of OES: 1) a simulation study based on a dataset simulated from

a non-linear function evolving under a random-walk; 2) an empirical study of U.S. stock

returns. The empirical study is based on Gu et al. (2020), who compared several machine

learning algorithms for predicting monthly returns of all U.S. stocks. The best performing

machine learning model in Gu et al. (2020) as measured by R2 (this measure is discussed in

more detail in Section 3.2.1) was a three-layer fully connected neural network with ReLU

activation, dropouts and batch normalisation. The network was trained annually using all

available data up to t. The same network is then used for monthly prediction over the next

12 months, upon which an additional 12 months of new data is added to the training set

and training is repeated. The majority of the dataset were made available to the public and

are used in this chapter. We note that the setup in Gu et al. (2020) is suboptimal for our

portfolio selection problem for three reasons. Firstly, (raw) monthly stock returns contain

characteristics that complicate the forecasting problem, such as outliers, heavy tails, and

volatility clustering (Cont, 2001). These characteristics are likely to impede a predictor’s

ability to learn. Secondly, the dataset in Gu et al. (2020) contains stocks with very low

market capitalisation, are illiquid, and are unlikely to be accessible by institutional investors.

Thirdly, at the individual stock level, forecasting stocks’ excess returns over risk free rate also

encompasses forecasting market excess returns. As practitioners are typically concerned with

relative performance between stocks3, the market return component adds unnecessary noise

to the problem of relative performance forecasting. Thus, in addition to comparison with

Gu et al. (2020), we also present results based on a more likely use case by practitioners, by

excluding stocks with very low capitalisation and forecasting cross-sectionally standardised

excess returns. We show that forecasting performance significantly improved based on this
3In the simplest form, a long-only investor will hold a portfolio of the top ranked stocks and a long-short

investor will buy top ranked stocks and sell short bottom ranked stocks. Thus, relative performance is relevant to
practitioners.

3.1 INTRODUCTION 61

re-formulation. We propose to measure performance using the information coefficient (IC),

a widely applied performance measure in investment management (Ambachtsheer, 1974;

Grinold and Kahn, 1999; Fabozzi et al., 2011b). OES achieves an IC of 4.58% on the U.S.

equities dataset, compared to 3.82% under an expanding window approach in Gu et al. (2020).

For context, an IC of 5% in predicting cross-sectional returns is considered as “good” by

practitioners (Grinold and Kahn, 1999).

A summary of our contributions in this chapter is as follows:

• We propose the OES algorithm which allows a neural network to track a time-

varying function. OES can be applied to existing network architectures and requires

significantly less time to train than the expanding window approach in Gu et al.

(2020). In our tests, OES took 1/7 the time to train and predict as compared to the

expanding window approach of expanding window neural network (EWNN)4. This

finding has a practical implication as practitioners wishing to employ deep learning

models have limited time between market close and next day’s open to generate

features and train new models, which is made worse if an ensemble is required.

• We show that firm features exhibit time-varying importance and that the model

changes over time. We find that some prominent features, such as market capit-

alisation (the size effect) display declining importance over time. This finding is

consistent with McLean and Pontiff (2016) and highlights the importance to consider

time-varying models.

• We find that firm features, in aggregate, experience a fall in importance in predicting

cross-sectional returns during market distress (e.g. Dot-com bubble in 2000–01).

The importance of sector dummy variables (e.g., technology and oil stocks) rose

over the same period, suggesting the importance of sectors is also time-varying. Our

analysis indicates that sectors have an important role in predicting stock returns

during market distress. We expect this to be especially true if market stress impacts

certain sectors more than others, such as travel and leisure stocks during a pandemic.

4Training performed on AMD Ryzen™ 7 3700X, Python 3.7.3, Tensorflow 1.12.0 and Keras 2.2.4.

62 3 TIME-VARYING NEURAL NETWORK

• Using a subuniverse that is more accessible to institutional investors (by excluding

microcap stocks), we show that OES exhibits superior predictive performance. We

find that the mean correlation between predictions of OES and EWNN is only 35.9%

and the monthly correlation is lowest immediately after a shock (e.g., recession). We

attribute this to OES adapting to the recovery which manifests as lower drawdown

post the Global Financial Crisis.

• We show that an ensemble formed by averaging the standardised predictions of

the two models exhibits the highest IC, decile spread and Sharpe ratio. Thus,

practitioners may choose to deploy both models in a complementary manner.

In the rest of this chapter, we denote the algorithm of Gu et al. (2020) as expanding window

neural network (EWNN) and our proposed Online Early Stopping algorithm as OES. This

chapter is organised as follows. Section 3.2 defines our cross-disciplinary problem and

provides an overview of online optimisation. Section 3.3 outlines our main contribution of

this chapter — the proposed OES algorithm which introduces time-variations to the neural

network. Simulation results are presented in Section 3.4, which demonstrates the effectiveness

of OES in tracking a time-varying function. An empirical study on U.S. stock returns is

outlined in Section 3.5. Finally, Section 3.6 discusses the empirical finance problem and

concludes the chapter with some remarks.

3.2 Preliminaries

3.2.1 Problem setup

The setup of the problem in this Chapter largely follows that of the cross-sectional prediction

problem defined in Section 1.6.1 and is repeated in here for convenience.

Similar to a classical online learning setup, a player iteratively makes portfolio selection

decisions at each period. We call this iterative process per interval training. There are N

stocks in the market, each with M features, forming input matrix Xt ∈ RN×M at time t =

1, . . . , T . The i-th row in Xt is feature vector xt,i of stock i. To simplify notations, we define

3.2 PRELIMINARIES 63

return of stock i as the percentage return over the next period, i.e., yt,i = (pt+1,i+dt+1,i)/pt,i−

1, where pt,i is price at time t and dt,i is dividend at t if a dividend is paid, and zero otherwise.

In other words, the player uses information up to time t (e.g., earnings-to-price ratio at t) to

predict a stock’s return over t to t + 1. Player predicts stock returns ŷt ∈ RN by choosing

θt ∈ Θ, which parameterises prediction function {F : RN×M 7→ RN ; ŷt = F (Xt;θt)}.

Market reveals yt and, for regression purposes, player incurs squared loss,

Jt(θt) =
1

N

N∑
i=1

(yt,i − ŷt,i)2.

This general iterative portfolio selection setup is shared across Chapter 4, 5 and this chapter.

The true function Φt : RN×M 7→ Rn drifts over time and is approximated by F with time-

varying θt. Player’s objective is to minimise loss incurred by choosing the best θt at time t

using observed history up to t− 1. Both the functional form and time-varying dynamics of

Φt are not known Hence a neural network is used to model the cross-sectional relationship at

each t and the time-variability is formulated as a network weights tracking problem. The loss

function Jt verifies the same assumptions adopted in Aydore et al. (2019), which are:

• Jt is bounded: |Jt| ≤ D;D > 0,

• Jt is L-Lipschitz: |Jt(a)− Jt(b)| ≤ L ∥a− b∥ ;L > 0,

• Jt is β-smooth: ∥∇Jt(a)−∇Jt(b)∥ ≤ β ∥a− b∥ ; β > 0.

We denote the gradient of Jt at θt as∇Jt(θt) and stochastic gradient as ∇̂Jt(θt) = E[∇Jt(θt)],

or where the context is obvious,∇t and ∇̂t respectively.

As performance measure, Gu et al. (2020) used pooled R2
oos without mean adjustment in the

denominator,

R2
oos = 1−

∑
(t,i)∈Doos

(yt,i − ŷt,i)2∑
(t,i)∈Doos

y2t,i
, (3.1)

where Doos is the pooled out-of-sample dataset covering January 1987 to December 2016

in the empirical study. There are several shortcomings with this performance measure. The

number of stocks in the U.S. equities dataset starts from 1,060 in March 1957, peaks at over

9,100 in 1997 and falls to 5,708 at the end of 2016. A pooled performance metric will place

more weight on periods with a higher number of stocks. An investor making iterative portfolio

64 3 TIME-VARYING NEURAL NETWORK

allocation decisions would be concerned with accuracy on average over time. Moreover, asset

returns are known to exhibit non-Gaussian characteristics (Cont, 2001). Summary statistics

of monthly U.S. stock returns are provided in Table 3.2 (in Section 3.5), which confirms

the existence of considerable skewness and time-varying variance. Therefore, we provide

three additional metrics. The first metric is the IC, defined as the cross-sectional Pearson’s

correlation5 between predictions and actual returns:

IC =
1

T

T∑
t=1

ICt, ICt = ρ(yt, ŷt). (3.2)

The time-series of IC is averaged to give the final score, which we refer to as mean IC

(Equation (3.2)). Note that even though correlation is a score rather than a percentage, IC is

typically expressed as a percentage by practitioners. IC was first proposed by Ambachtsheer

(1974) and is widely applied in investment management for measuring predictive power of a

forecaster or an investment strategy (Grinold and Kahn, 1999; Fabozzi et al., 2011b). The

second metric is the annualised Sharpe ratio, calculated as,

SR =
12× E[Pt∈Doos]√
12× Var[Pt∈Doos]

, (3.3)

where Pt∈Doos is the decile return spread. Decile return spread is computed by first sorting

stocks into deciles based on their predicted return at t, where decile 10 (decile 1) contains

stocks with the highest (lowest) preducted return. The average return for each decile is then

computed. Decile return spread is the difference between monthly returns of decile 10 and

decile 1 at t,

Pt =
10

N

[
N∑
i=1

yt,iδ
(10)
t,i −

N∑
i=1

yt,iδ
(1)
t,i

]
, (3.4)

where δ(d)t,i is the decile indicator and ŷ(d)t is the boundary of the d-th decile of all ŷt,i sorted in

ascending order,

δ
(d)
t,i =

1 if ŷ(d−1)
t < ŷt,i ≤ ŷ

(d)
t ,

0 otherwise.

Note that in the experiment results in Section 3.5, we use the label P10-1 for the average

decile return spread computed over all t, rather than for a single t in Equation (3.4). The
5Rank IC, which uses Spearman’s rank correlation instead of Pearson’s, is also used in practice.

3.2 PRELIMINARIES 65

decile return spread and its associated Sharpe ratio are commonly used to measure economic

performance of an investment strategy and are used in Gu et al. (2020). The third metric is

the average monthly R2, where denominator is adjusted by the cross-sectional mean, as a

conventional complement to R2
oos.

3.2.2 Neural network training under concept drift

A detailed description of neural networks is provided in Chapter 2, including a description of

the standard early stopping algorithm in Section 2.2. In the classical early stopping algorithm,

a randomly drawn portion of data is used for validation. Training is stopped when validation

loss decreases by lower than a predefined amount. Given optimisation steps τ , the product ητ

can be interpreted as the effective capacity which bounds reachable parameter space from

starting weights, thus behaving like L2 regularisation (Goodfellow et al., 2016). A discussion

of aspects of neural network training that is relevant to online problems is presented in this

section.

For time series problems where chronological ordering is important, popular approaches

include expanding window (each new time slice is added to the panel dataset) and rolling

window (the oldest time slice is removed as a new time slice is added, Rossi and Inoue,

2012). Instead of randomly splitting training and validation sets, the out-of-sample procedure6

can be used where the end of the series is withheld for evaluation. This is unsatisfactory

in the context of stock return prediction for two reasons. First, each period is drawn from

a different data distribution D (hereon denoted by Dt for dataset drawn at time t, or Doos

for all periods in the out-of-sample dataset). A regression that is fitted on a sliding window

of size w effectively assumes that data at t + 1 is drawn from the average DGP of the past

t − w, . . . , t cross-sections. Secondly, if data is scarce in terms of time periods, estimates

for optimal optimisation steps τ̂t can have large stochastic error. For instance, monthly data

with a window size of 12 months and 3:1 training-validation split. τ̂ is estimated using only

3 months of data. To the best of our knowledge, there is no procedure for adapting early

stopping in an online context with time-varying dynamics.

6As described in Bergmeir et al. (2018).

66 3 TIME-VARYING NEURAL NETWORK

Note that even though the problem studied in this chapter contains a time-dimension, the

problem itself concerns cross-sectional predictions. Thus, conventional sequential neural

networks such as recurrent neural networks (Rumelhart et al., 1986b) and long-short term

memory networks (Hochreiter and Schmidhuber, 1997) are not well suited to this problem.

However, there have been some recent advances in dealing with concept drifts in time-series

problems, such as Liu et al. (2019) who proposed to explicitly model concept drift in a

discriminative manner inside an extreme learning machine, and Samanta et al. (2020) who

proposed to model time-varying temporality of time-series using a Bayesian approach.

3.2.3 Online optimisation

Optimising network weights to track a function evolving under unknown dynamics is an

online optimisation problem. A discussion on relevant concepts in online optimisation is

provided in this section. Interested readers are encouraged to read Shalev-Shwartz (2012) for

a comprehensive review. In online optimisation literature, iterate is often denoted by xt and

loss function by ft. We have used θt as iterate to be consistent with our parameter of interest

and Jt as loss function to avoid conflict with our use of f as activation function.

Optimality of online optimisation and its variants for this class of problems under various

assumptions have been well documented in literature (e.g., Shalev-Shwartz, 2012; Cesa-

Bianchi et al., 2012; Dworkin et al., 2014). Thus, online optimisation is also well suited

to our iterative portfolio selection problem due to their similarities. Applications of online

optimisation in finance first came in the form of the Universal Portfolios by Cover (1991).

However, most of the early works in online optimisation are focused on the convex case and

assume each draw of Jt is from the same distribution (in other words, Jt is stationary). These

assumptions are not consistent with our problem. Recently, Hazan et al. (2017) extended

online convex optimisation to the non-convex and stationary case. This was further extended

by Aydore et al. (2019) to the non-convex and non-stationary7 case, with the proposed DTS-

SGD algorithm. Non-convex optimisation is NP-Hard8. Therefore, existing non-convex

7Non-stationarity in online optimisation literature refers to time-variability of loss function Jt.
8In computer science, NP-Hard refers a class of problems where no known polynomial run-time algorithm

exists.

3.2 PRELIMINARIES 67

optimisation algorithms focus on finding local minima (Hazan et al., 2017). For this reason,

one difference between online convex optimisation and online non-convex optimisation is

that the former focuses on minimising sum of losses relative to a benchmark (for instance,

the minimiser over all time intervals θ∗ = argminθ∈Θ
∑

t Jt(θ) is one of the most basic

benchmarks), and the latter focuses on minimising sum of gradients (e.g.,
∑

t∇Jt(θt)),

without comparison to a benchmark. This sum is called regret and the optimisation objective

is called regret minimisation. In online optimisation, it is desirable to design algorithms that

minimises average regret over time (e.g.,
∑

t Jt(θ)

T
), as this guarantees that as T →∞, average

regret suffered by the algorithm converges to zero (Shalev-Shwartz, 2012). Readers familiar

with time-series analysis might be taken aback by the lack of parameters in a typical online

optimisation algorithm. This is due to the game theoretic approach of online optimisation and

the focus on worst case performance guarantees, as opposed to the average case performance

in statistical learning. Regret bounds are typically functions of properties of the loss function

(e.g., convexity and smoothness) and are dependent on environmental assumptions.

At each interval t, DTS-SGD updates network weights using a time-weighted sum of past

observed gradients. Time weighting is controlled by a forget factor κ. In analysing DTS-SGD,

we note two potential weaknesses. Firstly, neural networks are notoriously difficult to train.

Geometry of the loss function is plagued by an abundance of local minima and saddle points

(see Chapter 8.2 of Goodfellow et al., 2016). Momentum and learning rate decay strategies

(for instance, Sutskever et al., 2013; Kingma and Ba, 2015) have been introduced which

require multiple passes over training data, adjusting learning rate each time to better traverse

the loss surface. DTS-SGD performs a single weight update at each period which may have

difficulties in traversing highly non-convex loss surfaces. Secondly, during our simulation

tests, we observed that loss can increase after a weight update. One possibility is that a past

gradient is taking the weights further away from the current local minima. This is particularly

problematic for our problem as stock returns are very noisy.

68 3 TIME-VARYING NEURAL NETWORK

3.3 The proposed Online Early Stopping algorithm

3.3.1 Tracking a restricted optimum

We start by providing an informal discussion of the algorithm. Neural networks are universal

approximators (Cybenko, 1989; Goodfellow et al., 2016). That is, it can approximate any

function up to an arbitrary accuracy. Thus, given a network structure and a time-varying

function, network weights trained with data from a single time interval (i.e., a cross-sectional

slice of time) neatly summarise the function at that interval. The Euclidean distance between

consecutive sets of weights can be interpreted as the amount of variations in the underlying

function expressed in weight space. Simply using θt−1 to predict on t will lead to an

overfitted result. To illustrate, suppose θt ∈ R, θ0 = 0 and θ{t>0} alternates in a sequence

of {1,−1, 1,−1, ...}9. Then, it is clear that using θ1 to predict on t = 2 will lead to a worse

outcome than using θ0. In this scenario, the optimal strategy is to never update weights (or

scale updates by zero). Generally, the optimal policy is to regularise updates such that the

network is not overfitted to any single period.

In the rest of this section, we present our main theoretical results. Formally, our goal is to track

the unobserved minimiser of Jt, a proxy for the true asset pricing model, as closely as possible.

In regret analysis, it is desirable to have regret that scales sub-linearly to number of periods

T , which leads to asymptotic convergence to the optimal solution10. Hazan et al. (2017)

demonstrated that in the non-convex case, a sequence of adversarially chosen loss functions

can force any algorithm to suffer regret that scales with T as Ω
(

T
w2

)
11. Locally smoothed

gradients (over a rolling window of w loss functions) were used to improve smoothed regret,

with a larger w advocated by Hazan et al. (2017). Aydore et al. (2019) extended this to use

rolling weighted average of past gradients which give recent gradients a higher weight to

track a dynamic function. Inevitably, smoothing will track a time-varying minimiser with a

tracking error that is proportionate to w and the forget factor κ.

9This is the worst case scenario for OES which we will revisit at the end of this section.
10The sum of regret increases sub-linearly to T . Thus, as T →∞, average regret→ 0.
11In computer science, Ω notation refers to the lower bound complexity.

3.3 THE PROPOSED ONLINE EARLY STOPPING ALGORITHM 69

(1)
−∇Jt−1(θ

′)

−∇Jt(θ′)

(2)
−∇Jt−1(θ

′)

−∇Jt(θ′)

FIGURE 3.1: At each optimisation iteration, weights can be visualised as
moving along the direction of −∇Jt−1(θ

′). On the left, optimisation should
continue until −∇Jt(θ′) is perpendicular to −∇Jt−1(θ

′). On the right, optim-
isation should terminate.

To address this, we propose a restricted optimum (denoted by θ∗
t at time t) as the tracking target

of our algorithm. At time t, the online player selects θt based on observed {∇1, . . . ,∇t−1}.

As the network is trained using gradient descent, we propose to restrict the admissible weight

set to the path formed from θ∗
t−1 and extending along the gradient vector −∇t−1 (in other

words, the path traversed by gradient descent). The point θ′ along this path with the minimum

∥∇Jt(θ′)∥ is the restricted optimum. We argue that the trade-off between restricting the

admissible weight space and solving the simplified problem is justified as other points in the

weight space are not attainable via gradient descent and is thus unnecessary to consider all

possible weight sets in Θ. Without assuming any time-varying dynamics, updating weights

using an average of past gradients (similar to Hazan et al., 2017) will induce a tracking error

to the time-varying function. To illustrate the restricted optimum concept, let θ′ = θ∗
t−1 be our

starting point of optimisation, g = −∇Jt−1(θ
′) and g′ = −∇Jt(θ′). The possible scenarios

during training are (also illustrated in Figure 3.1):

(1) If
∣∣∣cos−1 [⟨g,g′⟩]

∥g∥∥g′∥

∣∣∣ < π/2, then moving along g will also improve Jt(θ′) until g is

perpendicular to g′ or θ′ has reached a local minima of Jt−1.

70 3 TIME-VARYING NEURAL NETWORK

(2) If
∣∣∣cos−1 [⟨g,g′⟩]

∥g∥∥g′∥

∣∣∣ ≥ π/2, then following g will not improve Jt(θ′) and training

should terminate.

This observation motivates our OES algorithm. In this section, we will use θ∗
t to denote

restricted optimal weights at t and θt to denote the online player’s choice of weights. Suppose

θ∗
t evolves under the dynamics of,

θ∗
t = θ∗

t−1 − vt−1∇Jt−1(θ
∗
t−1), (3.5)

where vt−1 is sampled from an unknown distribution. vt−1 can be interpreted as a regulariser

which provides the optimal prediction weights on Jt if we are restricted to travelling along

the direction of −∇Jt−1(θ
∗
t−1). In this context, ∥∇Jt(θ∗

t)∥ is the minimum gradient suffered

by the player. Solution to the iterative portfolio selection problem described in Section 3.2.1

contains two loops (one nested within the other). The outer loop recursively updates θ∗
t for

each portfolio selection interval t = 1, . . . , T (each θ∗
t in Equation (3.5)). The inner loop

relates to the transition between each t, where SGD iteratively updates θ∗
t−1 to arrive at θ∗

t by

approximating vt−1 in (3.5). In here, let τ ∗t be the optimal number of optimisation steps at

time t, τt be the estimated number of optimisation steps and k be the k-th SGD optimisation

step. At iteration t, we solve optimal optimisation steps τ ∗t−2,

τ ∗t−2 = argmin
τ ′≥0

Jt−1

[
θ∗
t−2 − η

τ ′∑
k=1

∇Jt−2(θ
∗
t−2,k)

]
. (3.6)

We start from t − 2 as solving τ ∗t−1 requires Jt which we are yet to observe. This leads to

optimal weights (the restricted optimum) trained on Jt−2 for prediction on Jt−1,

θ∗
t−1 = θ∗

t−2 − η
τ∗t−2∑
k=1

∇Jt−2(θ
∗
t−2,k), (3.7)

and can be approximated by,

θ∗
t−2 − η

τ∗t−2∑
k=1

∇Jt−2(θ
∗
t−2,k) ≈ θ∗

t−2 − ητ ∗t−2∇Jt−2(θ
∗
t−2),

which implies vt−2 ≈ ητ ∗t−2. To predict r̂t, we choose τt−1 = 1
t−2

∑t−1
q=2 τ

∗
t−q and train

prediction weights on Jt−1 by substituting in ⌊τt−1 + 0.5⌋ (the rounded up estimate of

3.3 THE PROPOSED ONLINE EARLY STOPPING ALGORITHM 71

optimisation steps),

θt = θ∗
t−1 − η

⌊τt−1+0.5⌋∑
k=1

∇Jt−1(θ
∗
t−1,k) ≈ θ∗

t−1 − ητt−1∇Jt−1(θ
∗
t−1). (3.8)

As η is a constant chosen by hyperparameter search, τt−1 can be interpreted as a proxy to

the regulariser vt−1. Using our β-smooth assumption (in Section 3.2.1) and substituting in

definitions of θt and θ∗
t (in Equation 3.8), we obtain total regret,

∥∇Jt(θt)−∇Jt(θ∗
t)∥ ≤ β ∥θt − θ∗

t ∥ ,
T∑
t=2

∥∇Jt(θt)−∇Jt(θ∗
t)∥ ≤

T∑
t=2

β ∥θt − θ∗
t ∥ ,

≤
T∑
t=2

β
∥∥ητ ∗t−1∇Jt−1(θ

∗
t−1)− ητt−1∇Jt−1(θ

∗
t−1)

∥∥ , (3.9)

where we start from t = 2 as our algorithm requires at least 2 cross-sectional observations.

The elegance of Equation 3.9 is that it conforms with the conventional notion of regret,

with cumulative gradient deficit against an optimal outcome in place of cumulative loss. As

τt−1 is the unbiased estimator of τ ∗t−1, Equation 3.9 indicates that the cumulative deficit is

asymptotically bounded by the variance of τ ∗t−1. This concept is illustrated in Figure 3.2.

If τ ∗t−1 is constant, then τt−1 will converge to τ ∗t−1 and the optimal weights are achieved.

Conversely, if τ ∗t−1 has high variance, then the player will suffer a larger cumulative gradient

deficit.

Finally, we discuss the best and worst case scenarios of OES. The best case scenario is if

θt is stationary, such that τ ∗t = 0. In this case, from Equation (3.2), regret is 0. The worst

case scenario is the example discussed at the beginning of this section. Suppose that θt ∈ R,

θ0 = 0 and θ{t>0} alternates in a sequence of {1,−1, 1,−1, ...}. In this case, estimated steps

τt = 0 and θt never updates. Thus, the upper bound on regret is (from Equation (3.2)),

T∑
t=2

∥∇Jt(θt)−∇Jt(θ∗
t)∥ ≤

T∑
t=2

β
∥∥ητ ∗t−1∇Jt−1(θ

∗
t−1)− 0

∥∥ ,
and total regret scales linearly with time, average regret (total regret divided by T) converges

a constant and the network always underfit the data. However, as discussed in Section 3.2.3,

72 3 TIME-VARYING NEURAL NETWORK

θ∗1,t − θ∗1,t−1

θ∗2,t − θ∗2,t−1

E
[∥∥θ∗t − θ∗t−1

∥∥]
FIGURE 3.2: Illustration of estimating E

[∥∥θ∗
t − θ∗

t−1

∥∥]. Suppose θ∗
t =

[θ∗1,t θ∗2,t] is a row vector with two elements. Twenty one random θ∗
t vectors

were drawn with each θ∗
t − θ∗

t−1 pair represented as an arrow. The circle has
radius 1

20

∑21
t=2

∥∥θ∗
t − θ∗

t−1

∥∥. θt is regularised by limiting how far it can travel
from θ∗

t−1 which is E
[∥∥θ∗

t − θ∗
t−1

∥∥].
regret in convex problems is typically compared to a benchmark (e.g., loss suffered by the

best hindsight minimiser). In our worst case scenario, the best hindsight minimiser is also

θ = 0. Thus, regret suffered by OES converges to the best hindsight minimiser in our worst

case. In other words, in the worst case, loss suffered by OES converges to a neural network

that is trained on the entire pooled dataset. In Section 3.5, we demonstrate the real world

performance of OES on U.S. equities dataset.

3.3.2 Proposed algorithm

Our strategy is to modify the early stopping algorithm to recursively estimate τt. An outline

is provided below as an introduction to the pseudocode in Algorithm 2:

(1) At t, solve τ ∗t−2 (Equation 3.6) and θ∗
t−1 (Equation 3.7) by training on Jt−2 and

validating against Jt−1 (step 3 of Algorithm 2).

(2) Recursively estimate τt−1 as the mean of observed {τ ∗1 , ..., τ ∗t−2} (line 4).

3.4 SIMULATION STUDY 73

(3) Start from θ∗
t−1 and perform gradient descent for ⌊τt−1+0.5⌋ iterations (Equation 3.8).

The new weights are θt (line 5–9).

(4) Predict using θt (line 11).

EarlyStopping on line 3 is the classical early stopping procedure as outlined in Algorithm 1

(in Section 2.2). In our implementation of the algorithm, we have used stochastic gradient

∇̂t−1 instead of the full gradient∇t−1. Validation is performed before the first training step to

allow for the case where τbest = 0 (i.e., we start from the optimal weights).

Algorithm 2 General framework for online early stopping. The outer loop recursively
estimates τt−1. See Algorithm 1 for the EarlyStopping function.
Require: data Xt,yt ∼ pt at interval t; θ∗

0 initialized randomly
1: τ ′ ← 0
2: for t = 2, ..., T do
3: τ ′,θ∗

t−1 ← EARLYSTOPPING(θ∗
t−2,Xt−2,yt−2,Xt−1,yt−1)

4: τ ← τ (̇t−2)+τ ′

t−1

5: θ ← θ∗
t−1

6: for i = 1, ..., ⌊τ + 0.5⌋ do
7: θ ← θ − η∇̂t−1(θ)
8: end for
9: θt ← θ

10: Receive input Xt

11: Predict r̂t ← F (Xt;θt)
12: Receive output yt

13: end for

In the next two sections, we conduct two empirical studies. First is based on simulation data

which highlights the use of OES, and the second on predicting U.S. stock returns based on

the dataset in Gu et al. (2020) and is presented in Section 3.5.

3.4 Simulation study

3.4.1 Simulation data

For the simulation study, we create the following synthetic dataset:

• T = 180 months, each month consists of N = 200 stocks.

74 3 TIME-VARYING NEURAL NETWORK

• Each stock has M = 100 features, forming input matrix of X ∈ R180×200×100 and

output vector r ∈ R180×200.

• Let xt,i,j be the value of feature j of stock i at time t. Each feature value is randomly

set to xt,i,j ∼ N(0, 1).

• Each feature is associated with a latent factor ψt,j = 0.95ψt−1,j + 0.05δt,j , where

δt,j ∼ N(0, 1) and ψ0,j ∼ N(0, 1). ψt,j follows a Wiener process and drifts over

time.

• Each output value is yt,i =
∑M

j=1 tanh(xt,i,j × ψt,j) + ϵt,i, where ϵt,i ∼ N(0, 1).

Thus, yt is non-linear with respect to Xt and the relationship changes over time.

We have used the same network setup and hyperparameter ranges as the empirical study on

U.S. equities (outlined in Table A.1) but with a batch size of 50. EWNN has the same setup

but is re-fitted at every 10-th time intervals. The dataset is split into three 60 interval blocks.

Hyperparameters for OES are chosen using a grid search, a procedure called hyperparameter

tuning. For each hyperparameter combination, the network is trained on the first 60 intervals

and validated on the next 60 intervals. Hyperparameters with the minimum MSE in the

validation set is used in the remaining 60 intervals as out-of-sample data. Performance

metrics are calculated using the out-of-sample set. DGP of the synthetic dataset is designed

to be non-linear and time-varying. We expect a slower decay rate to benefit EWNN and a

faster decay rate to benefit OES. Size of train, validate and test sets are chosen arbitrarily

and is not expected to change the results. DTS-SGD follows the same training scheme as

OES, with additional hyperparameters: window period w ∈ {5, 10, 20} and forget factor

κ ∈ {0.9, 0.8, 0.7}. These hyperparameters relate to speed of change of the DGP. A faster

changing DGP will lead to smaller window period and forget factor.

3.4.2 Simulation results

Our synthetic data requires the network to adapt to time-varying dynamics. Table 3.1 records

results of the simulation. EWNN struggles to learn the time-varying relationships, with mean

R2 of −8.26% and mean rank correlation of −4.07%. This is expected as the expanding

window approach used in EWNN assumes the relationships at t are best approximated by

3.5 PREDICTING U.S. STOCK RETURNS 75

TABLE 3.1: Simulation results and selected hyperparameters by hyperpara-
meter search averaged over time and ensemble networks. Values are in per-
centages unless specified (w refers to number of periods).

% EWNN OES DTS-SGD

Metrics
Pooled R2

oos -7.12 50.22 0.13
Mean R2 -7.77 49.64 -0.33
IC -4.21 71.24 6.29

Hyperparameters
Mean L1 penalty 0.01 0.09 0.04
Mean η 0.55 1.00 0.10
Mean w (periods) 14
Mean κ 83.00

the average relationships in the observed past. OES significantly outperforms the other two

methods in this simple simulation, achieving mean R2 of 49.64% and mean rank correlation

of 69.63%. These results demonstrate OES’s ability to track a non-linear, time-varying

function reasonably closely. There is a preference for higher L1 regularisation and learning

rate. In Aydore et al. (2019), the authors reported issues of exploding gradient with the static

time-smoothed stochastic gradient descent in Hazan et al. (2017) and that DTS-SGD provided

greater stability. In our simulation test, we observe gradient instability with DTS-SGD as

well. During training, loss can increase after a weight update. We hypothesise that a past

gradient is taking network weights away from the direction of the current local minima and

could be an issue with this general class of optimisers. Lastly, we find that mean R2 tends

to be slightly lower than R2
oos (which is reasonable with a smaller denominator of a negative

term, see Equation (3.1)).

3.5 Predicting U.S. stock returns

3.5.1 U.S. equities data and model

The U.S. equities dataset in Gu et al. (2020) consists of all stocks listed on NYSE, AMEX,

and NASDAQ from March 1957 to December 2016. The average number of stocks exceeds

76 3 TIME-VARYING NEURAL NETWORK

5,200. Excess returns over risk-free rate are calculated as forward one-month stock returns

over Treasury-bill rates. As noted in Section 3.2.1, stock returns exhibit non-Gaussian

characteristics. Table 3.2 presents descriptive statistics of excess returns. Monthly excess

returns are positively skewed and contain possible outliers that may influence the regression.

We follow Gu et al. (2020) in using MSE but note that MSE is not robust against outliers. As

noted in Section 3.1, we also provide an alternative setup that excludes microcap stocks. The

alternative setup and empirical results are presented in Section 3.5.4.

The feature set includes 94 firm level features, 74 industry dummy variables (based on the

first two digits of Standard Industrial Classification code (SIC)), and interaction terms with

8 macroeconomic indicators. The firm features and macroeconomic indicators used in Gu

et al. (2020) are based on Green et al. (2017) and Welch and Goyal (2008), respectively. Firm-

level features include price-based measures, valuation metrics and accounting ratios. These

features are also highlighted in Section 1.5. The purpose of interacting firm-level features

with macroeconomic indicators is to capture any time-varying dynamics that are related

to (common across all stocks) macroeconomic indicators. For instance, suppose valuation

metrics have a stronger relationship with stock returns during periods of high inflation. Then,

TABLE 3.2: Descriptive statistics of monthly excess returns of U.S. equities
from April 1957 to December 2016, grouped into 10-Year periods. The
numbers in the left column indicate percentiles. Monthly excess returns appear
to contain some extreme values, particularly on the positive end. Variance of
monthly excess returns varied over time.

% 1957-1966 1967-1976 1977-1986 1987-1996 1997-2006 2007-2016

Mean 0.95 0.25 0.95 0.64 0.90 0.50
Std Dev 9.98 14.89 15.84 18.44 19.93 16.26
Skew 212.44 184.21 365.98 1059.88 502.41 783.70
Min -76.38 -91.88 -90.14 -99.13 -98.30 -99.90
1 -20.27 -31.41 -33.82 -40.39 -44.61 -38.96
10 -9.26 -14.99 -14.38 -15.61 -17.08 -14.25
25 -4.42 -7.78 -6.54 -6.64 -6.91 -5.76
50 -0.10 -0.65 -0.52 -0.41 0.00 0.24
75 5.14 6.21 6.67 6.18 6.67 5.84
90 11.62 16.23 16.43 16.11 17.57 14.06
99 33.04 49.60 51.99 56.92 65.43 48.08
Max 255.29 432.89 1019.47 2399.66 1266.36 1598.45

3.5 PREDICTING U.S. STOCK RETURNS 77

this information will be encoded in the interaction term. The aggregated dataset therefore

contains 94 × (8 + 1) + 74 = 920 features. Each feature has been appropriately lagged to

avoid look-forward bias and is cross-sectionally ranked and scaled to [−1, 1]. Table A.6 in

the Internet Appendix of Gu et al. (2020) contains the full list of firm features.

A subset of the data is available on Dacheng Xiu’s website12 which contains 94 firm-level

characteristics and 74 industry classification. Our main result uses 94 + 74 = 168 firm-level

features but results with the full 920 features are also provided as a comparison. At this

point, it is useful to remind readers that our goal is to track a time-varying function when the

time-varying dynamics are unknown. In other words, we assume that time-varying dynamics

between stock returns and features are not well understood or are unobservable. As such,

the subset of data without interaction terms is sufficient for our problem. If macroeconomic

indicators do encode time-varying dynamics, our network will track changing macroeconomic

conditions automatically.

Data is divided into 18 years of training (from 1957 to 1974), 12 years of validation (1975–

1986), and 30 years of out-of-sample tests (1987–2016). We use monthly total returns of

individual stocks from CRSP. Where stock price is unavailable at the end of month, we use the

last available price during the month. Table A.1 (Appendix A3) records test configurations as

outlined in Gu et al. (2020) and in our replication. A total of six hyperparameter combinations

(L1 penalty and η in Table A.1) are tested. We use the same training scheme as Gu et al.

(2020) to train EWNN. Once hyperparameters are tuned, the same network is used to make

predictions in the out-of-sample set for 12 months. Training and validation sets are rolled

forward by 12 months at the end of every December and the model is re-fitted. An ensemble

of 10 networks is used, where each prediction ŷt,i is the average prediction of 10 networks.

To train OES, we keep the first 18 years (to 1974) as training data, and next 12 years (to 1986)

as validation data. For each permutation of hyperparameter set, we have trained an online

learner up to 1986. Hyperparameter tuning is only performed once on this period, as opposed

to every year in Gu et al. (2020). As the algorithm does not depend on a separate set of data

for validation, we simply take the hyperparameter set with the lowest monthly average MSE

12Dacheng Xiu’s website https://dachxiu.chicagobooth.edu/

https://dachxiu.chicagobooth.edu/

78 3 TIME-VARYING NEURAL NETWORK

over 1975–1986 as the best configuration to use for rest of the dataset. Batch size of 1,000 for

OES was chosen arbitrarily.

3.5.2 Predicting U.S. stock returns

In this section, we present our U.S. stock return prediction results. DTS-SGD did not complete

training with a reasonable range of hyperparameters due to exploding gradient and is omitted

from this section. As an overarching comment, R2 for both EWNN and OES on U.S. stock

returns are very low and are consistent with the findings of Gu et al. (2020). First, results with

and without interaction terms are presented in Table 3.3, keeping in mind that our method

should be compared against EWNN without interaction terms. Without interaction terms, OES

and EWNN achieve IC of 4.53% and 3.82%, respectively. The relatively high correlation of

OES (compared to EWNN) indicates that it is better at differentiating relative performance

between stocks. This is particularly important in our use case as practitioners build portfolios

based on expected relative performance of stocks. For instance, a long-short investor will buy

top-ranked stocks and short sell bottom-ranked stocks and earn the difference in relative return

between the two baskets of stocks. Mean R2 are−12.14% and−9.68% for OES and EWNN,

respectively. Note that the denominator of mean R2 is adjusted by the cross-sectional mean of

excess returns. Therefore, negative means R2 of both OES and EWNN indicate that neither

method can accurately predict the magnitude of cross-sectional returns. Finally, OES scores

−2.48% on R2
oos and EWNN scores 0.22%. The low values of both methods underscore

the difficulty in return forecasting. EWNN achieves higher Sharpe ratio (Equation (3.3))

than OES, at 1.63 and 0.83, respectively. As we will point out in Section 3.5.4, the high

Sharpe ratio of EWNN is driven by microcap stocks. Despite the very low R2, both methods

can generate economically meaningful returns. This underscores our argument that R2 is

not the best measure of performance and verifies practitioners’ choice of correlation as the

preferred measure. We observe similar performance with interaction terms, suggesting that

the 8 macroeconomic time series have little interaction effect with the 94 features. In the

subsequent results in this section, we only report statistics without interaction terms.

3.5 PREDICTING U.S. STOCK RETURNS 79

TABLE 3.3: Predictive performance on U.S. equities. Pooled R2
oos is calcu-

lated across the entire out-of-sample period as a whole. Mean R2 and IC
are calculated cross-sectionally for each month then averaged across time.
P10-1 is the average monthly spread between top and bottom deciles. Sharpe
ratio is based on P10-1 return spread and annualised. Mean hyperparameters
are calculated over the ensemble of 10 networks and across all periods. As
reported are results in Gu et al. (2020).

With Interactions W/O Interactions

% As reported EWNN OES EWNN OES

Metrics
Pooled R2

oos 0.4 0.13 -1.93 0.22 -2.48
Mean R2 -9.89 -11.93 -9.68 -12.17
IC 3.51 4.22 3.82 4.53
P10-1 3.27 1.83 2.10 2.39 2.41
Sharpe ratio 2.36 0.94 0.72 1.63 0.83

Hyperparameters
Mean L1 penalty 0.0012 0.0154 0.0024 0.0028
Mean η 0.77 0.10 0.67 0.10

So why do IC and R2
oos diverge? The answer lies in Table 3.4 and Figure 3.3. Here, we form

decile portfolios based on predicted returns over the next month and track their respective

realised returns. OES predicted values span a wider range than EWNN. This has contributed

to a lower R2, even though OES can better differentiate relative performance between stocks.

EWNN used a pooled dataset which will average out time-varying effects. As a result, the

average gradient will likely be smaller in magnitude. This is evident from the lower mean

L1 penalty and higher learning rate η chosen by validation. By contrast, OES trains on

each time period individually and the norm of the gradient presented to the network at each

period is likely to be larger. This led to a lower learning rate chosen by validation. Hence,

variance of OES predicted values is higher and potentially requires higher or different forms

of regularisation.

In Table 3.4 and Figure 3.3, we observe that the prediction performance of EWNN is con-

centrated on the extremities, namely P1 and P10, with realised mean returns of −0.47% and

1.92% respectively. Stocks between P3 and P7 are not well differentiated. By contrast, OES

is better at ranking stocks across the entire spectrum. Realised mean returns of OES are more

80 3 TIME-VARYING NEURAL NETWORK

evenly spread across the deciles, resulting in higher correlation than EWNN. P10-1 realised

portfolio returns are similar across EWNN and OES at 2.39% and 2.41%, respectively. How-

ever, the difference in mean return spread increases when calculated on a quintile basis (mean

return of top 20% of stocks minus bottom 20%), to 1.75% and 1.90% for EWNN and OES,

respectively. This reflects better predictiveness in the middle of the spectrum of OES. An

investor holding a well diversified portfolio is more likely to utilise predictions closer to the

center of the distribution and experience relative returns that are reminiscent of the quintile

spreads (and even tertile spreads) rather than decile spreads. Lastly, forecast dispersion of

OES is relatively high compared to EWNN and realised decile returns. We hypothesise that

this is due to the small training dataset used by OES on each iteration (consisting of only the

cross-section) and suggests additional regularisation may be required.

3.5.3 Time-varying feature importance

So far, our forecasts are predicated on time-varying relationships between features and stock

returns. How do features’ importance change over time? To examine this, we train the OES

TABLE 3.4: Predicted and realised mean returns by decile where each row
represents a decile. P1 is the mean excess returns of the first decile (0-10%
of bottom ranked stocks) and P10-1 is P10 less P1 showing the return spread
between the best decile relative to the worst decile. As reported are original
results from Table A.9 in Gu et al. (2020).

As reported EWNN OES

% Predicted realised Predicted realised Predicted realised

P1 -0.31 -0.92 -0.59 -0.47 -3.53 -0.50
P2 0.22 0.16 0.09 0.15 -1.96 0.03
P3 0.45 0.44 0.37 0.54 -1.07 0.27
P4 0.60 0.66 0.55 0.64 -0.34 0.48
P5 0.73 0.77 0.70 0.73 0.30 0.67
P6 0.85 0.81 0.84 0.78 0.88 0.85
P7 0.97 0.86 0.99 0.85 1.46 1.04
P8 1.12 0.93 1.17 0.96 2.10 1.18
P9 1.38 1.18 1.43 1.26 2.89 1.42
P10 2.28 2.35 2.33 1.92 4.25 1.91
P10-1 2.58 3.27 2.92 2.39 7.78 2.41

3.5 PREDICTING U.S. STOCK RETURNS 81

1988 1992 1996 2000 2004 2008 2012 2016

2

0

2

4

6

8

EWNN
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P10-1

1988 1992 1996 2000 2004 2008 2012 2016

OES

FIGURE 3.3: Cumulative mean excess returns by decile sorted based on
predictions by EWNN and OES. Each portfolio follows the same construction
as described in Table 3.4. However, cumulative mean excess returns of each
portfolio is presented in the chart.

model at every period and make a baseline prediction. For each feature j = 1, ...,M , all

values of j are set to zero and a new prediction is made. A new R2 is calculated between the

new prediction and the baseline prediction, denoted as R2
t,j . The importance of feature j at

time t is calculated as FIt,j = 1−R2
t,j . Our measure tracks features that the network is using.

This is different from the procedure in Gu et al. (2020) where R2 is calculated against actual

stock returns, rather than a baseline prediction.

To illustrate the inadequacy of a non-time-varying model, we first track feature importance

over January 1987 to December 1991. The top 10 features with the highest feature importance

are (in order of decreasing importance): idiovol (CAPM residual volatility), mvel1 (log market

capitalisation), dolvol (monthly traded value), retvol (return volatility), beta (CAPM beta),

mom12m (12-month minus 1-month price momentum), betasq (CAPM beta squared), mom6m

(6-month minus 1-month month price momentum), ill (illiquidity), and maxret (30-day max

daily return). Rolling 12-month averages were calculated to provide a more discernible

trend, with the top 5 shown in Figure 3.4. Feature importance exhibits strong time-variability.

82 3 TIME-VARYING NEURAL NETWORK

1988
1992

1996
2000

2004
2008

2012
2016

Date

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ro
llin

g
12

-m
on

th
 F

ea
tu

re
 Im

po
rta

nc
e

(R
2)

beta
retvol
dolvol
mvel1
idiovol

FIGURE 3.4: Top 5 features based on rolling 12-month average feature import-
ance over 1987-1991. Three rapid falls can be seen which coincide with the
1990–91 U.S. recession, Dot-com bubble (2000–03) and the Global Financial
Crisis (2007–09). These periods are shaded for reference.

Rolling 12-month average feature importance fell from 14% to 16% at the start of the out-of-

sample period to a trough of 2% to 6% before rebounding. This indicates that the network

would have changed considerably over time. Rapid falls in feature importance can be seen

in Figure 3.4, over 1990–91, 2000–01 and 2008–09. These periods correspond to the U.S.

recession in early 1990s, the Dot-com bubble and the Global Financial Crisis, respectively.

Thus, market distress may explain rapid changes in feature importance.

Next, we examine changes in importance for all features on a yearly basis. Figure 3.5

displays considerable year-to-year variations in feature importance. As there are just a few

clusters of features with relatively higher feature importance, the network’s predictions can

be attributed to a small set of features. This is likely due to the use of L1 regularisation

which encourages sparsity. There is an overall trend towards lower importance over time,

consistent with the publication-informed trading hypothesis of McLean and Pontiff (2016).

For instance, the importance of market capitalisation (mvel1) has decreased over time, as

documented in Horowitz et al. (2000). There are periods of visibly lower importance for all

features, over 2000–02 and 2008–09, and to a lesser extent 1990 and 1997 (Asian financial

3.5 PREDICTING U.S. STOCK RETURNS 83

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

absacc
acc

aeavol
age
agr

baspread
beta

betasq
bm

bm_ia
cash

cashdebt
cashpr

cfp
cfp_ia

chatoia
chcsho

chempia
chinv

chmom
chpmia

chtx
cinvest

convind
currat

depr
divi

divo
dolvol

dy
ear
egr
ep

gma
grcapx
grltnoa

herf
hire

idiovol
ill

indmom
invest

lev
lgr

maxret
mom12m
mom1m

mom36m
mom6m

ms
mve_ia
mvel1
nincr

operprof
orgcap

pchcapx_ia
pchcurrat

pchdepr
pchgm_pchsale

pchquick
pchsale_pchinvt
pchsale_pchrect

pchsale_pchxsga
pchsaleinv

pctacc
pricedelay

ps
quick

rd
rd_mve
rd_sale

realestate
retvol
roaq

roavol
roeq
roic

rsup
salecash

saleinv
salerec

secured
securedind

sgr
sin
sp

std_dolvol
std_turn

stdacc
stdcf
tang

tb
turn

zerotrade

0.02

0.04

0.06

0.08

0.10

0.12

0.14

FIGURE 3.5: Yearly average R2 to baseline predictions (in decimal). The
OES network appeared to use only a handful of features. Shades of feature
importance are distinctly lighter over 2000–02, 2008–09, and to a lesser extent
in 1990 and 1997. Importance of some features have eroded over time (e.g.,
dolvol, maxret and turn).

84 3 TIME-VARYING NEURAL NETWORK

crisis). If all features have lower importance during market distress, then what explains stock

returns during these periods? To answer this question, we turn to importance of sectors, using

SIC 13 (Oil and Gas), 60 (Depository Institutions) and 73 (Business Services) as proxies

for oil companies, banks and technology companies, respectively. Figure 3.6 records the

rolling 12-month average R2 to baseline prediction of banks, oil and technology companies.

The peak of importance of SIC 73 overlaps with the Dot-com bubble and peak of SIC 60

occurs just after the Global Financial Crisis (which started as a sub-prime mortgage crisis).

Importance of SIC 13 peaked in 2016, coinciding with the 2014–16 oil glut which saw oil

prices fell from over US$100 per barrel to below US$30 per barrel. This is an example of how

an exogenous event that is confined to a specific industry impacts on predictability of stock

returns. Thus, a plausible explanation for the observed results is that firm features explain less

of cross-sectional returns during market shocks, which becomes increasingly explained by

industry groups. This is particularly true if the market shock is industry related. For instance,

technology companies during the Dot-com bubble, oil companies during an oil crisis and

lodging companies during a pandemic. This underscores the importance to have a dynamic

model that adapts to changes in the true model.

In this chapter, we argue that τ ∗t can be interpreted as a measure of variations between

consecutive months. Recall that to solve τ ∗t , we train on Dt and validate on Dt+1. Thus,

τ ∗t is low if training on Dt is not beneficial for prediction on Dt+1 and τ ∗t is high if Dt and

Dt+1 are relatively similar and there is a lot of room to update the network before early

stopping terminates training. An example of such scenario is when the market is at a turning

point, transiting from a risk-averse (risk-seeking) environment to a risk-seeking (risk-averse)

environment. Optimal number of iterations τ ∗t is specific to month t and using it to train

a network to predict for the next month will lead to overfitting. However, it is still useful

to analyse τ ∗t as it provides information on the time-variability of the market as a whole.

Figure 3.7 records both τ ∗t and τt of OES, including the hyperparameter tuning period (from

1957 to 1986). τt converges quickly to approximately 4 iterations and stays relatively stable

throughout the approximately 60-year history. Most of the time, τ ∗t fluctuates between 1 and

7, and occasionally jumps to over 10. Periods of U.S. recession and the 2014–16 oil glut

have been shaded in grey. Additionally, we have also shaded two market events in green, the

3.5 PREDICTING U.S. STOCK RETURNS 85

1988
1992

1996
2000

2004
2008

2012
2016

Date

0.000

0.002

0.004

0.006

0.008

0.010

Ro
llin

g
12

-m
on

th
 S

IC
 Im

po
rta

nc
e

(R
2)

sic.13
sic.60
sic.73

FIGURE 3.6: Rolling 12-month average R2 to baseline prediction of SIC
code 13, 60 and 73, as proxies for oil & gas companies, banks and technology
companies, respectively. R2 of technology companies peaks over 2001–02,
banks over 2008–10, and oil companies over 2015–16. Duration of 1990–91
U.S. recession, Dot-com bubble, Global Financial Crisis and the 2014–16 oil
glut have been shaded in grey.

Black Monday stock market crash in October 1987, and the collapse of Long-Term Capital

Management in August 1998. These events have caused τ ∗t to spike, indicating a sudden

change in the underlying DGP. The month with the highest τ ∗t is March 2009, which coincides

with the start of a broad market rebound during the depth of the Global Financial Crisis.

During these periods (τt < τ ∗t), OES stops training early and prevents overfitting to the large

change in DGP.

3.5.4 Investable simulation

As noted in Section 3.1, the dataset in Gu et al. (2020) contains many stocks that are small and

illiquid. The U.S. Securities and Exchange Commission (2013) defines “microcap” stocks as

companies with market capitalisation below US$250–300 million and “nanocap” stocks as

companies with market capitalisation below US$50 million. At the end of 2016, there are

over 1,300 stocks with market capitalisation below US$50 million and over 1,800 stocks with

86 3 TIME-VARYING NEURAL NETWORK

1960
1970

1980
1990

2000
2010

Date

0

5

10

15

20

25

Op
tim

iza
tio

n
Ite

ra
tio

ns

Optimal steps *
t

Estimated steps t

FIGURE 3.7: Optimal and estimated number of optimisation iterations. U.S.
recessions and the oil glut (2014–16) have been shaded in grey. Two market
shocks — the Black Monday stock market crash in October 1987 and the
collapse of Long-Term Capital Management in August 1998, have been shaded
in green.

market capitalisation between US$50 million and US$300 million. Together, microcap and

nanocap stocks constitute close to half of the dataset as of 2016. Thus, we also provide results

excluding these stocks. At the end of every June, we calculate breakpoint based on the 5-th

percentile of NYSE listed stocks and exclude stocks with market capitalisation below this

value. Once rebalanced, the same set of stocks are carried forward until the next rebalance

(unless the stock ceases to exist). This cutoff is chosen to approximately include the larger

half of U.S.-listed stocks, with the average number of stocks exceeding 2,600. We label this

dataset as the investable set. To mitigate the impact of outliers, we also winsorise excess

returns at 1% and 99% for each month (separately). Winsorised returns are then standardised

by subtracting the cross-sectional mean and dividing by cross-sectional standard deviation.

Standardisation is a common procedure in machine learning and can assist in network training

(LeCun et al., 2012). Predicting a dependent variable with zero mean also removes the need

to predict market returns which are embedded in stocks’ excess returns (over risk-free rate).

3.5 PREDICTING U.S. STOCK RETURNS 87

This transformation allows the neural network to more easily learn the relationships between

relative returns and firm characteristics.

Results based on this investable set are presented in Table 3.5. BothR2
oos and IC improved once

microcaps are excluded, with OES scoring 6.05% on IC and EWNN on 5.74%. However,

EWNN experienced a significant drop in mean decile spread (to 1.69% per month) and

Sharpe ratio (0.69), suggesting that microcaps are significant contributors to the results using

the full dataset. By contrast, mean decile spread and Sharpe ratio remain stable for OES, at

2.41% and 0.82, respectively. This indicates that the predictive performance of OES was

not driven by microcap stocks. We believe this is a meaningful result for practitioners as

this subset represents a relatively accessible segment of the market for institutional investors.

An ensemble based on the average of cross-sectionally standardised predictions of the two

models achieved the best IC, decile spread and Sharpe ratio relative to OES and EWNN.

Mean monthly correlation between OES and EWNN is only 35.9%. Thus, an ensemble based

on the two methods can effectively reduce variance of the predictions. Monthly correlations

between the two models are presented in Figure 3.8. We observe that correlation tends to be

TABLE 3.5: Predictive performance on the investable set. Ensemble is the
average of standardised predictions of the two methods. Pooled R2

oos is calcu-
lated across the entire out-of-sample period as a whole. Mean R2 and IC are
calculated cross-sectionally for each month then averaged across time. Pt is
the average monthly spread between top and bottom deciles. Sharpe ratio is
based on Pt and annualised by multiplying

√
12. Mean hyperparameters are

calculated over the ensemble of 10 networks and across all periods.

% EWNN OES Ensemble

Metrics
Pooled R2

oos 0.35 -1.37
Mean R2 0.35 -1.37
IC 5.74 6.05 6.29
P10-1 1.69 2.41 2.60
Sharpe ratio 0.69 0.82 0.96

Hyperparameters
Mean L1 penalty 0.0211 0.0046
Mean η 0.87 0.10

88 3 TIME-VARYING NEURAL NETWORK

lowest immediately after a recession or crisis. We hypothesise that OES is quicker to react to

economic recovery.

1988
1992

1996
2000

2004
2008

2012
2016

Date

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Co
rre

la
tio

n

Correlation
Rolling 12m Average

FIGURE 3.8: Monthly and rolling 12-month correlation between predictions
of OES and EWNN. Duration of 1990–91 U.S. recession, Dot-com bubble,
Global Financial Crisis and the 2014–16 oil glut have been shaded in grey.

Turning to cumulative decile returns presented in Figure 3.9, we observe significant draw-

downs for EWNN during recovery phases of the Dot-com bubble and Global Financial Crisis.

P1 of EWNN bounced back sharply during these episodes, causing sharp drops in decile

spreads and are consistent with momentum crashes (Daniel and Moskowitz, 2016). By con-

trast, decile spreads of OES appear to react to the recovery more quickly. Consistent with

prior findings, the spreads between decile 3 to 7 are also better under OES than EWNN in the

investable set. Given these favourable characteristics, practitioners are likely to find OES a

useful tool to add to the armoury of prediction models.

3.6 Conclusions

Stock return prediction is an arduous task. The true model is noisy, complex and time-varying.

Mainstream deep learning research has focused on problems that do not vary over time and,

3.6 CONCLUSIONS 89

1988 1992 1996 2000 2004 2008 2012 2016
4

2

0

2

4

6

8

EWNN
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P10-1

1988 1992 1996 2000 2004 2008 2012 2016

OES

FIGURE 3.9: Cumulative mean excess returns by decile sorted based on
predictions by EWNN and OES in the investable set.

arguably, time-varying applications have seen less advancements. In this chapter, we propose

an Online Early Stopping algorithm that is easy to implement and can be applied to an existing

network setup. We show that a network trained with OES can track a time-varying function

and achieve superior performance to DTS-SGD, a recently proposed online non-convex

optimisation technique. Our method is also significantly faster, as only two periods of training

data are required at each iteration, compared to the pooled method used in Gu et al. (2020)

which re-trains the network on the entire dataset annually. In our tests, the pooled method

took 5.5 hours to iterate through the entire dataset (an ensemble of ten networks therefore

takes 55 hours)13. By contrast, our method took 44.25mins for a single pass over the entire

dataset (an ensemble of ten networks took 7.4 hours).

Gu et al. (2020) suggested that a small dataset and low signal-to-noise ratio were reasons for

the lack of improvement with a deeper network. To this end, we show that only a handful

of features contribute to predictive performance. This may be due to correlation between

features and the use of L1 regularisation which encourages sparsity. We also find evidence of

13Tests performed on AMD Ryzen™ 7 3700X, Python 3.7.3, Tensorflow 1.12.0 and Keras 2.2.4. Hyperpara-
meter grid search was performed concurrently.

90 3 TIME-VARYING NEURAL NETWORK

time-varying feature importance. In particular, features such as log market capitalisation (the

size effect) and 12-month minus 1-month momentum have seen a gradual decrease to their

importance towards the end of our test period, consistent with the publication-informed trading

hypothesis of McLean and Pontiff (2016). We find that sectors can also exhibit time-varying

importance (for instance, technology stocks during the Dot-com bubble). These results have

strong implications for practitioners forecasting stock returns using well known asset pricing

anomalies. Excluding microcaps, we find that OES offers superior predictive performance in

a subuniverse that is accessible to institutional investors. We find that correlation between

OES and EWNN is at its lowest after a recession or crisis. We argue that this is driven by

faster reactions of OES in tracking the recovery. An ensemble based on the average prediction

of the two models achieves the best IC and Sharpe ratio, suggesting that the two methods may

be complementary.

From an academic perspective, recent advances in deep learning such as dropout and residual

connections (He et al., 2016) may allow deeper networks to be trained, enabling more

expressive asset pricing models. Given the higher variance of predictions produced by OES,

future work should explore alternative methods of regularisation including dropouts, L2

penalty or a mixture of regularisation techniques.

In Section 3.3.1, we have discussed the worst case regret of OES which, under adversarial

assumptions, can lead to regret that scales linearly with time. We note that our worst case

regret converges to the best hindsight minimiser (i.e., the best choice of θ if the investor is

only allowed to pick one θ for all time periods in hindsight). Thus, this provides users with a

guarantee on worst case performance that is no worse than the best hindsight minimiser. The

interpretation of this performance guarantee is as follows. In the worst case, our proposed

OES algorithm will converge to the performance of a single neural network that is fitted on

the entire dataset, as if the problem is stationary. However, this opens up an avenue for future

research in advancing online non-convex optimisation algorithms that achieve regret that

scales sublinearly with time, such that average regret converges to zero as T →∞.

In this chapter, we have applied neural networks in a cross-sectional prediction context —

inputs into the network are point-in-time attributes of a stock and the problem is treated as a

3.6 CONCLUSIONS 91

conventional panel regression problem (with a neural network in place of a linear regression

model). The network itself does not learn time-series features of the raw time-series. In

Chapter 4, we explore neural networks that can learn from time-series directly.

CHAPTER 4

Supervised temporal autoencoder for stock return time-series forecasting

Financial markets are noisy learning environments. We propose an approach that regularises

the TCN using a supervised autoencoder, which we term the STAE. We show that the addition

of the auxiliary reconstruction task is beneficial to the primary supervised learning task in

the context of stock return time-series forecasting. The supervised autoencoder denoises the

input and encourages the main network to retain features that are beneficial to both prediction

and reconstruction tasks. We show that the supervised temporal autoencoder is able to learn

features directly from noisy stock price series, alleviating the need for handcrafted features.

These contributions have resulted in the following publication:

Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu, “Supervised

Temporal Autoencoder for Stock Return Time-series Forecasting,” Proceedings of the IEEE

45th Annual Computer Software and Applications Conference, Madrid, Spain, 2021.

4.1 Introduction

The motivating application of this chapter is in time-series stock return predictions — a

problem that can be cast as a pattern recognition task. Using financial time-series forecasting

as the motivating application, we focus solely on advancing the existing state-of-the-art deep

learning techniques to deal with noise in a regression setting, as discussed in Section 1.6.2. In

particular, the noisiness of financial markets exacerbates the difficulty in recognising patterns

in stock prices/returns.

92

4.1 INTRODUCTION 93

Deep learning has become the state-of-the-art in many time-series applications, such as

machine translation (Sutskever et al., 2014) and audio generation (van den Oord et al., 2016).

Whilst deep learning has achieved tremendous success in sequential applications such as

speech and languages, advances in their applications in economics and finance have been

relatively modest. Historically, sophisticated machine learning methods have not fared well

in forecasting competitions such as the M-competitions1 (Makridakis and Hibon, 2000;

Makridakis et al., 2018; Hyndman, 2020). Empirical results suggest that simpler statistical

methods are at least as accurate as sophisticated methods, and models that best fitted training

data do not necessarily lead to higher forecasting performance out-of-sample (Makridakis

et al., 2018). We argue that time-series in linguistics and speech are information rich — where

preceding words or sound waves have high information content for the learning task and

are naturally well-suited to neural networks with their rich parameterisation. In contrast,

time-series in finance and economics are information deprived — where signal-to-noise tends

to be low (Gu et al., 2020). Thus, good generalisation performance in high-noise environments

requires regularisation and certain “scaffolds” to guide the model through the noisy data.

Classical statistical models such as autoregressive-moving-average (ARMA) (Box et al.,

1994) models have strong scaffolds. The user picks the orders of autoregressive and moving

average terms (through hyperparameter tuning). The two components additively contribute to

the forecast in a linear manner. The scaffold “guides” the model to look for autoregressive

relationships in the input sequence and residuals, and can be interpreted as a constraint

on the functional form of the sequential DGP. However, statistical models such as ARMA

are less able to capture more complex or non-linear patterns embedded in the time-series.

Recently, Oreshkin et al. (2020) proposed Neural Basis Expansion Analysis for interpretable

Time Series (N-BEATS), a hybrid model where basis functions are parameterised by fully-

connected blocks. The authors reported state-of-the-art performance on the M4 competition

dataset. Users are able to apply domain knowledge when choosing which basis function

to use. For instance, if the user knows, a priori, that the data exhibits seasonality, then a

cyclical basis function can be used. Basis functions provide a “strong form” of scaffold for

1M-competitions are forecasting competitions with datasets consisting of mainly business, economics,
finance and demographics time-series.

94 4 SUPERVISED AUTOENCODER

the model. As the overall structure of the model is imposed by the user, the model only needs

to fill in the intricacies during learning. This hybrid model approach aids interpretability and

generalisation (by preventing an unconstrained neural network from overfitting on noise), but

ultimately sacrifices the prized expressiveness of neural networks and requires assumptions on

the data generation process. This restrictiveness may be undesirable to some users who want to

take a more data-driven approach. At the other end of the spectrum, sequential neural network

architectures have taken full advantage of the expressiveness on offer for information-rich

applications. LSTM has been a popular choice of neural network architecture for sequential

applications (as discussed in Section 2.5.1). More recently, transformer models (Vaswani

et al., 2017) have achieved breakthrough advances in natural language processing (e.g., Devlin

et al., 2019; Brown et al., 2020). The use of “direction-agnostic” attention mechanism allows

transformers to perform paired associations in any part of the sequence, and thus solving

a limitation of LSTM for language applications (Vaswani et al., 2017; Zeng et al., 2022).

However, it remains to be seen if this flexibility afforded by transformers can benefit highly

noisy financial time-series. In this chapter, we propose the Supervised Temporal Autoencoder

(STAE) as an extension of the TCN (Bai et al., 2018). STAE augments TCN with an auxiliary

learning task which acts as a regulariser. We show that STAE improved generalisation of TCN

in time-series prediction of monthly returns of a broad set of U.S. stocks. In our proposed

dual-objective network, interpretability is achieved through examining the replicated sequence

produced by the autoencoder. We show in Section 4.3.2 that the autoencoder has a denoising

effect on stock prices. We note that there have been previous attempts in combining an

autoencoder with other network architectures (e.g., with LSTM in Heaton et al., 2016 and

with CNN in Korczak and Hemes, 2017). However, in these works, the autoencoder is used

for dimensionality reduction rather than as a regulariser as proposed in this chapter.

Methods of forecasting stock returns can be classified into two types, by cross-sectional pre-

diction using firm-level features (as described in Section 1.6.1 and Chapter 3); and time-series

forecasting2 (as described in Section 1.6.2 and this chapter). Time-series forecasting implicitly

assumes a stock’s history contains information about its own future. This assumption stands

2Typically, features include a stock’s own closing price history and related time-series data such as open,
high, low and traded volume.

4.1 INTRODUCTION 95

in contrast to the popular hypothesis within the finance discipline that stock prices evolve

under a random walk (Fama, 1965). However, empirical evidence suggests at least a low level

of predictability in stock returns. Finance literature has documented one aspect of stock return

predictability, termed the MOM12 (Jegadeesh and Titman, 1993), defined as the change in

price (adjusted for splits/dividends) from 12 months ago to 1 month ago. MOM12 was found

to predict stock returns 1 month ahead. The momentum effect is pervasive and has been

found to occur across many asset classes (Asness et al., 2013). Momentum has an intuitive

interpretation — stocks that have increased (decreased) in value over (approx.) one year will

continue to increase (decrease) in value over the next month. In other words, momentum

describes the medium-term trending behaviour of stocks. In this chapter, we show that neural

networks can learn this pattern directly from price data. As we will show in this chapter, this

simple pattern is in fact very difficult to learn using conventional deep learning models. We

argue that this is due to characteristics of stock returns that impedes learning, namely outliers,

low signal-to-noise ratio, heavy tails and volatility clustering, as discussed in Section 1.5. Our

contributions in this chapter are as follows:

• We propose STAE, a supervised autoencoder augmentation to TCN, a powerful

convolutional network for sequential learning. The autoencoder regularises the

network and provides a scaffold that can be interpreted as a nonparametric functional-

form. This encourages the latent representation to retain information about the input

sequence.

• We show that STAE materially improves forecasting performance of TCN and

provides an economically meaningful improvement over MOM12, a well-known

predictor of returns in financial literature.

• We show that the addition of autoencoder aids interpretability, by allowing the user

to inspect the reconstructed input and visualise the features of the original sequence

that are retained by the network.

• We establish a benchmark of neural network-based time-series forecasting perform-

ance in a large and investable set of U.S. stocks, comparing STAE to TCN, N-BEATS,

LSTM and transformer. We show that STAE commands class-leading performance

96 4 SUPERVISED AUTOENCODER

in this challenging application, and that the reconstruction task is beneficial to

forecasting performance even if added at a small weight.

• We provide a precedence on a set of transformations for augmenting raw price series

into inputs for neural networks. We show that the network can learn useful features

from this transformed series directly, eliminating the need for handcrafted features.

The rest of this chapter is organised as follows. In Section 4.2.1, we outline the problem

setup. Section 4.2.2, 4.2.3 and 4.2.4 introduce existing literatures on convolutional neural

networks, supervised autoencoders and financial time-series forecasting using deep learning.

In Section 4.3, we describe our proposed STAE. Data and experimental setup of our empirical

test is outlined in Section 4.3.1 and results in Section 4.3.2. Finally, we provide concluding

remarks in Section 4.4

4.2 Preliminaries

4.2.1 Problem setup

We start with the familiar iterative asset return forecasting process of an investor. At every

period t ∈ {1, . . . , T}, there are N stocks. We define total return index (TRI)3 ut,i > 0 of

each stock i at t as the accumulation index, computed as the compounded change in price

adjusted by dividends ut,i = ut−1,i(pt,i + dt,i)/pt−1,i, where u0,i = 1, pt,i is price4 at time

t and dt,i is dividend at t if a dividend is paid, and zero otherwise. The input sequence is

the log-transformed total return index xt,i = {log ut−K+1,i, log ut−K+2,i, . . . , log ut,i}, where

K = 250 is chosen to be the approximate number of trading days per year and is motivated by

the momentum effect (i.e., the one-year change in share price exhibiting predictive power on

stock returns over the subsequent month). Further pre-processing of the sequence is outlined

in Section 4.3.1.

3As noted in Section 1.2, total return includes both change in price and dividends. TRI is the compounded
accumulation index of total returns. On the day a stock pays a dividend, its share price typically falls by roughly
the dividend amount. TRI adds back dividends onto the price series such that stocks that pay dividends are not
unfairly penalised.

4For simplicity, we assume that price is already adjusted for stock splits.

4.2 PRELIMINARIES 97

The dependent variable is forward 1-month return (proxied by 20 trading days), computed

as the log-difference in TRI yt,i = log ut+20,i − log ut,i. Note that this differs from the use

of percentage returns in Chapter 3 (chosen to be comparable to Gu et al., 2020). Percentage

returns are not normally distributed as the left tail is limited to −100%, while the right tail

is unlimited. Log-difference of the TRI (also known as continuously compounded return

or logarithmic return) is also not normally distributed due to heavy tails (Peiró, 1994) but

is often assumed to be Normal for modelling purposes (Isichenko, 2021). These choices

allow our time-series model to be directly compared to the momentum and reversal effects, as

documented in Jegadeesh and Titman (1993). Finally, the investor’s objective is to find the

model F (x;θ) that best forecasts forward 1-month returns, by minimising the expected loss,

min
F,θ∈Ω

Ex,y∈D [L(F (x;θ), y)] .

In Section 4.3, we further define the model F and parameterisation θ.

4.2.2 Neural networks for time-series applications

In this section, we provide a discussion on neural network architectures that can be applied to

time-series applications.

There are three broad categories of sequential neural network architectures: RNN (and its

variants, as discussed in Section 2.5.1), TCN (as discussed in Section 2.5.2) and, more

recently, transformer models (Vaswani et al., 2017). Bai et al. (2018) argued that RNN suffers

from several shortcomings, namely exploding and vanishing gradients, lack of parallelism

and difficulty in retaining long term memory. TCN, utilising dilated convolutions, is able to

model sequence of arbitrary length by increasing the kernel size and stacking multiple dilated

convolution layers. Dilated convolutions provide the network with direct gradient flow to

any part of the sequence while still preserving the temporal ordering of the sequence, thereby

alleviating the problem of unstable gradients in recurrent networks. Using a benchmark dataset,

Bai et al. (2018) demonstrated TCN’s superior performance against other popular recurrent

networks, including the LSTM. TCN is further validated in other sequential applications, such

as speech synthesis (van den Oord et al., 2016), weather forecasting (Yan et al., 2020) and

98 4 SUPERVISED AUTOENCODER

traffic prediction (Dai et al., 2020). Moreoever, CNNs have achieved tremendous success in

conventional image recognition tasks (Krizhevsky et al., 2012; Szegedy et al., 2015; Schroff

et al., 2015). Thus, TCN makes for an ideal candidate for pattern recognition in time-series

applications.

Sequential neural networks are often used for natural language processing applications.

Sentence structure plays an important role in languages. For example, “the cat is brown”

and “a brown cat” both have the same semantic meaning and differs in ordering of words.

However, “the dog barked at the car because it was scared” and “the dog barked at the car

because it was fast” contain a simple change of words and the subject association is completely

different (dog with scared and car with fast). This context dependency proved challenging for

conventional recurrent networks where temporal ordering is preserved and information flow is

directional. More advanced LSTM-based language models, such as the model underpinning

Google Translate5 (Wu et al., 2016), employ bidirectional recurrence (Schuster and Paliwal,

1997) and attention (Luong et al., 2015). Bidrectional recurrence utilises separate LSTMs

in both directions, while attention allows a word in the sentence to be associated with any

other word in the sentence, regardless of adjacency. Both of these features increase flexibility

and reduce scaffolding (i.e., information flow is no longer unidirectional). Transformers take

this paradigm one step further by dropping recurrence and relying solely on self-attention

(Vaswani et al., 2017). For each element of the sequence, self-attention computes association

scores with every other element in the sequence. Thus, allowing gradients to flow between any

pair of elements within the sequence and is permutation-invariant (Zeng et al., 2022). This

flexibility proved vital in recent breakthroughs in machine translation applications (Vaswani

et al., 2017; Devlin et al., 2019; Brown et al., 2020). However, Zeng et al. (2022) argued

that time-series modelling involves extracting information from an ordered set of data points,

which runs contrary to the permutation-invariant flexibility that is emblematic of transformers.

Thus, transformers are unsuitable for long-term time-series forecasting. Whilst acknowledging

that transformers are designed to solve different applications than time-series forecasting,

driven by their compelling performance in NLP problems, we include transformers in our

benchmark of neural network models for financial time-series forecasting.

5https://translate.google.com

https://translate.google.com

4.2 PRELIMINARIES 99

Lastly, as discussed in Section 4.1, some recent advances focus on combining statistical

constructs with neural networks, such as N-BEATS, which have also shown promising

results in time-series applications. Rather than taking a data-driven approach (e.g., LSTM,

transformers), N-BEATS allows the user to pre-specify basis functions which form the

backbone of the model. The basis functions are parameterised by the outputs of fully

connected layers. The choice of basis functions can be interpreted as placing a prior on

the functional-form of the time-series. In this chapter, we compare time-series forecasting

performance of our proposed STAE architecture, to TCN, LSTM, transformers, N-BEATS and

MOM12. The selected models represent two distinct approaches to time-series forecasting

— one which emphasises on flexibility and “letting the data speak”, and one which imposes

functional-form restrictions and thus regularises the model.

4.2.3 Supervised autoencoders

Owing to its vast learning capacity, neural networks can also easily overfit. This is particularly

problematic for noisy environments such as financial markets. Advances in improving

generalisation of neural networks include dropouts (Srivastava et al., 2014), early stopping

(Morgan and Bourlard, 1990) and norm regularisation. Suddarth and Kergosien (1990) first

proposed using an auxiliary learning task to assist with network training. More generally,

MTL has been shown to improve generalisation performance across a range of tasks, such as

facial landmark recognition (Zhang et al., 2014) and natural language processing (Collobert

et al., 2011). Simultaneously learning multiple tasks can reduce overfitting through shared

representations and by leveraging auxiliary information in secondary tasks. Supervised

autoencoder (SAE), first proposed by Le et al. (2018), are a special case of MTL where

the auxiliary task is to reconstruct the input used for the supervised learning task via an

autoencoder (as discussed in Section 2.5.3; LeCun, 1987; Bourlard and Kamp, 1988; Hinton

and Zemel, 1993). Le et al. (2018) and Epstein and Meir (2019) provided the theoretical

generalisation bounds of autoencoders and showed that the addition of reconstruction error

can improve generalisation of a classifier. The reconstruction task exhibit similar stability to l2

regularisation but without the negative bias from shrinkage. The SAE learns two contradictory

100 4 SUPERVISED AUTOENCODER

tasks. The supervised learner only wants to retain features that are relevant for the supervised

task, while autoencoder wants to retain all features that are relevant for reconstruction of the

original input (Epstein and Meir, 2019). Thus, the autoencoder prevents the supervised learner

from discarding too many features of the original sequence. We argue that this is beneficial to

learning in a noisy environment (such as financial markets) as the supervised learner may be

overfitting on spurious correlations. To date, SAEs have been applied to specific tasks such

as classifying biological signals (Thiam et al., 2020; Barlaud and Guyard, 2020) and dialect

detection (Parida et al., 2020). In this work, we show that SAE can improve generalisation in

financial time-series prediction.

4.2.4 Deep learning in financial time-series prediction

Time-series forecasting using deep learning methods have been an active area of research and

has been discussed in Section 1.6.2. Sezer et al. (2020) provided a recent survey of financial

time-series forecasting using deep learning. In summary, majority of existing works focus on

very short horizon forecasting, such as daily return or next day’s closing price, using short

sequences (e.g., Li et al., 2017 used previous day’s close, high, low and open prices to predict

next day’s closing price). Very short term strategies are typically difficult to implement in

practice due to high turnover, transaction costs (commissions, bid-ask spread and market

impact) and overnight slippage6. Many existing works are also based on a small set of stocks

(e.g., Hiransha et al., 2018 is based on 5 stocks) and/or over a short history (e.g., Chandra and

Chand, 2016 used 3 stocks over 2006-10). Some previous methods use neural networks to

tune parameters of handcrafted features (e.g., Lim et al., 2019). Our work differs from existing

works in three ways. Firstly, we forecast forward 1-month return (proxied by 20 trading days,

as opposed to daily returns in many existing works) and compare forecasting performance of

our proposed network to a known predictor (the momentum effect) in finance literature. We

only consider “pattern recognition on stock prices” a success if the neural network can learn

additional patterns from stock prices that is above and beyond the momentum effect (which is
6Generally, predicted daily returns (based on the expected change in closing prices of today and tomorrow)

are not achievable as the positions can only be initiated at market open the follow day at the earliest. If a stock’s
price is expected to increase tomorrow, the opening price is also likely to be higher than today’s closing price.
This close-to-open slippage is the overnight slippage.

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 101

based on just two data points — start and end stock prices). Secondly, in keeping with the

spirit of deep learning, our approach performs feature selection automatically and without

the need of any feature engineering (apart from log-transform and standardising daily prices).

A common transformation of time-series is to take the first difference. If this is beneficial

to the forecasting task, we expect the network to learn this directly from the data. Thirdly,

we provide empirical results on the largest 3,000 stocks listed in the U.S. over 1984-2020, a

dataset in which existing works have not being tested in.

4.3 Proposed STAE and application to stock return

forecasting

We propose to augment TCN by adding a decoder which regularises the predictor subnetwork

(convolutional encoder and fully connected predictor, as depicted in Figure 4.1). We term

this network the Supervised Temporal Autoencoder (STAE). As per TCN, the convolutional

Input

Encoder

Latent

Decoder

Reconstructed

Flatten

Fully connected

Prediction

FIGURE 4.1: The Supervised Temporal Autoencoder architecture. A convolu-
tional encoder converts input sequence into a latent representation which is
used as input into one or more fully connected layers. Prediction produces
output for the primary supervised learning task and Reconstructed is the re-
constructed input sequence, as the auxiliary learning task.

102 4 SUPERVISED AUTOENCODER

Input (250× 1)

DCConv (250× k(e))
BN/DO/ReLU

...

DCConv (250× k(e))
BN/DO/ReLU

Latent (1× k(e))
(a) Encoder

Latent (1× k(e))

ConvTrans (2× k(d))
BN/DO/ReLU

ConvTrans (10× k(d))
BN/DO/ReLU

...

ConvTrans (250× k(d))
BN/DO/ReLU

ConvTrans (250× 1)

(b) Decoder

FIGURE 4.2: In 4.2(a), the encoder contains stacks of residual blocks. Each
residual block consists of skip connection, dilated causal convolution (abbrev.
DCConv), batch normalization (Ioffe and Szegedy, 2015), spatial dropout
(Tompson et al., 2015) and rectified linear unit activation layers (abbrev.
BN/DO/ReLU). In 4.2(b), the decoder uses transposed convolution layers
(abbrev. ConvTrans) to reproduce the original sequence from latent representa-
tion. k(e) and k(d) are number of filters in convolutional layers of encoder and
decoder, respectively. Each convolutional layer may have a different number
of filters.

encoder (as depicted in Figure 4.2(a)) is organised into residual blocks (each containing dilated

causal convolution, batch normalisation, dropout and ReLU layers) with skip connections

between blocks. As the input are time-series, we use 1-D kernels in both the encoder and

decoder. We use dilation rates of powers of 2 and allow hyperparameter search to choose

between 8, 16 and 32 kernels, and kernel size of 2, 5 and 10, corresponding to daily7, weekly

and fortnightly features, respectively. For each output sequence of the last residual block,

we take the last cell of the sequence as the latent representation of the entire sequence (as

illustrated in Figure 2.9). The decoder uses transposed convolutions (also called deconvolution,

Long et al., 2015) to recreate the original sequence from the latent representation, as illustrated

in Figure 4.2(b). To reduce the hyperparameter search space, both encoder and decoder share

the same number of kernels which is kept constant for all dilated convolution layers. In sum,

7For kernel size of 2, if the kernel learns values of {−1, 1}, then the sum product of this kernel with the
input corresponds to the difference between the two data points.

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 103

STAE differs from conventional autoencoders in using temporal convolutions (as explained in

Section 2.5.2 and Figure 2.9), as opposed to variants of recurrent networks such as Seq2Seq

in (as discussed in Section 2.5.1; Sutskever et al., 2014) and letting reconstruction to serve

only as a secondary task (rather than primary objective).

Next, we define the composite loss used to train STAE. The composite loss is the weighted

sum of the prediction loss and reconstruction loss. As preliminaries, B is the size of each

minibatch and K = 250 is the input sequence length (as defined in Section 4.2.1). Input

X ∈ RB×K is a matrix of B price sequences and y ∈ RB×1 is vector of forward 1-month

stock returns. F (X;θ) is comprised of three sub-networks, encoder F (e)(X;θ(e)), decoder

F (d)(h;θ(d)) and predictor F (p)(h;θ(p)), where h is the latent representation produced by

F (e), as depicted in Figure 4.1. For brevity, we use θ = {θ(e),θ(d),θ(p)} to denote weights

and bias of all three sub-networks as a whole and θ{(e),(d),(p)} to denote weights and biases of

encoder, decoder and predictor, respectively. We train network F (X;θ(e),θ(d),θ(p)) at each

t using 10 years of daily prices preceding t. Further details on construction of the training set

is provided in Section 4.3.1. The network is trained with composite loss:

L(X,y;θ(e),θ(d),θ(p)) = ℓ(p)(X,y;θ(e),θ(p)) + ωℓ(r)(X;θ(e),θ(d)),

where ℓ(p) is prediction loss (primary learning objective), ℓ(r) is reconstruction loss (auxiliary

learning objective), ω ∈ [0, 1] is the weight on ℓ(r), and θ(p),θ(e),θ(d) are weights for

predictor-, encoder- and decoder-part of the network, respectively. For brevity, we denote

composite loss, prediction loss and reconstruction loss as simply L, ℓ(p) and ℓ(r). We use

quadratic loss for both prediction and reconstruction losses:

ℓ(p) =
1

B

B∑
i=1

[
yi − F (p)(F (e)(xi;θ

(e));θ(p)))
]2

ℓ(r) =
1

B

1

K

B∑
i=1

K∑
j=1

[xi,j − x̂i,j]
2 ,

where xi is the i-th row of matrix X , xi,j is the j-th entry in the sequence xi, and,

x̂i,j = F (d)(F (e)(xi;θ
(e));θ(d)).

104 4 SUPERVISED AUTOENCODER

Thus, θ(e) is influenced by both the prediction loss and reconstruction loss. With the loss

function defined, the network is trained using SGD and early stopping (as discussed in

Section 2.2). We use ℓ(p) as the early stopping criterion rather than the composite loss as we

are concerned with the best prediction performance. As the primary and auxiliary tasks have

different convergence rates, using the composite loss as early stopping criterion may cause

our predictor to under or overfit. We choose optimal ω as part of the hyperparameter search

and expect ω to have similar behaviour to other regularisation techniques. A low ω will lead

to under-regularisation and STAE will converge to TCN. A high ω will force the network to

place too much focus on reproducing the input sequence and thus the prediction performance

will deteriorate.

There are two distinct advantages of STAE in this context. Firstly, STAE can improve

generalisation without resorting to function-form constraints in N-BEATS (as discussed in

Section 4.1, function-form constraints are introduced into N-BEATS via user-defined basis

functions). Secondly, by inspecting the reconstructed input from the decoder, the user can

make sense of the features retained by the network and thus provide interpretability.

4.3.1 Data and experimental setup

Our empirical results are based on U.S. stock prices from CRSP. We construct TRI for each

stock, adjusted by stock splits/consolidations and inclusive of dividends. We create a proxy of

the Russell 3000 index by taking the 3,000 largest stocks in the U.S. at the end of every June.

The same set of stocks are tracked for twelve months until the next rebalance (unless they are

delisted). This broad universe ensures that there is sufficient breadth for the network to learn

from but also excludes stocks with very low capitalisation that are unlikely to be investable

by institutional investors. To the best of our knowledge, this universe is also broader than

existing literature on time-series stock return prediction. Our dataset spans from 1984 to

2020. We use the initial 10 years, split into 7 years of training and 3 years of validation, for

hyperparameter tuning. Then, for every January, we train a new network using 10 years of

prices for stocks within the index in every month. The 10-year rolling window provides the

network with sufficient data for training and ensures timeliness of the training set (in contrast

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 105

to an expanding window approach). The same network is used for prediction throughout the

year. This provides us with 26 years of out-of-sample predictions for evaluation. Note that

the results presented in this chapter differs to the published paper Wong et al. (2021) as the

dataset is extended from 2018 to 2020, the models are re-trained with the addition of LSTM

and transformers for comparison.

250 trading days
20 days

250 trading days

...
250 trading days

20 days

10 years

FIGURE 4.3: Training data is created by taking blocks of 250 + 20 days of TRI.

Next, we will first describe pre-processing procedures for sequences X , then expected return

y. Recall that in Section 4.3, we have defined sequence length K = 250 and y is forward

20-day return. In the 10-year rolling window, there are ⌊(252 × 10 − 270)/20⌋ = 112

cross-sections8. Let T = {t− 20× (i− 1)|i = 1, . . . , 112}, t ∈ T be period counter and,

x∗
t−20,i = {log ut−K−19,i, log ut−K−18,i, . . . , log ut−20,i}, (4.1)

be a K-length price sequence for stock i. Log-transformation is performed in Equation (4.1)

to stabilise variance (a common procedure for compounding economic time-series, Box and

Jenkins, 1976; Lütkepohl and Xu, 2012). The median value of each sequence is then removed

to centre the sequence9,

µ
(med)
t−20,i = med(x∗

t−20,i)

x′
t−20,i = x∗

t−20,i − µ
(med)
t−20,i,

8Assuming an average of 252 trading days per year.
9Otherwise, stocks with high TRI values will denominate the training dataset once the training set is

standardised.

106 4 SUPERVISED AUTOENCODER

where med is the median function. Values of all sequences X ′
t = {xt−20,i|(i ∈ N : i ≤

N) ∧ (t ∈ T)} are standardised10,

Xt =
X ′

t − X̄ ′
t

σ(X ′
t)

,

where X̄ ′
t and σ(X ′

t) are mean and standard deviation computed over all values of X ′
t,

respectively. Standardised sequences Xt are then used as input into the network. Expected

return is the forward 20-day return and cross-sectionally standardised,

y′t,i = log ut − log ut−20

y′
t = {y′t,i}Ni=1

yt =
y′
t − ȳ′

t

σ(y′
t)
.

The training dataset is the pooled dataset, comprising of Dt = {(xt−20,i, yt,i)|i = 1, . . . , N ∧

t ∈ T} standardised input-output pairs. This description is illustrated in Figure 4.3. Xt is

standardised as a whole (i.e., elementwise) to preserve relative volatility of sequences11. For

yt, the mean return of the cross-section represents the market return which may be difficult to

forecast. yt is standardised cross-sectionally to remove the market return12. This treatment of

yt is consistent with prior works (e.g., Fischer and Krauss, 2018). In effect, the neural network

learns to predict a score drawn from N(0, 1). Predictions of the network ŷt are transformed

10Note that before standardisation, values are first winsorised at 1% to remove outliers. This is applied to
both X ′

t and y′
t.

11Consider two sequences, one where daily returns have standard deviation of 10% and another has standard
deviation of 1%. Standardising X ′

t as a whole preserves both the shape of the sequence (e.g., upward or
downward trending) and relative volatility, while standardising each sequence individually does not preserve
relative volatility and standardising by date does not preserve shape of the sequence.

12In our portfolio selection problem, we are only concerned with relative performance between stocks. Thus,
it is safe to remove the market return (i.e., the cross-sectional mean). In Section 3.5.4, we have shown that this
formulation improves the neural network’s ability to predict stock returns.

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 107

back into the original distribution (in units of return) by,

µ
(D)
t =

1

|T |
∑
t∈T

ȳ′
t

σ
(D)
t =

1

|T |
∑
t∈T

σ(y′
t)

ŷ′
t = ŷtσ

(D)
t + µ

(D)
t .

As noted in Section 4.2.2, we compare STAE to MOM1213, TCN, LSTM, transformers and

N-BEATS. TCN and STAE use mostly identical hyperparameter ranges. For N-BEATS,

we use trend and generic models, and search over a range of polynomial dimensions. For

LSTM, we search over the number of LSTM layers, followed by a fully-connected layer.

For transformers, we search over the complexity of the multi-head attention block, followed

by a fully-connected layer. Appendix A4 outlines the full sets of hyperparameters of each

model. We train 10 networks for each model and compare the average performance. To gauge

performance, we compare average cross-sectional MSE (Equation (2.4)), IC (Equation (3.2)),

mean decile return (Equation (3.4)) and Sharpe ratio (Equation (3.3)).

4.3.2 Main empirical results

We start by discussing what the STAE “sees”. Figure 4.4 records the input to the models

(standardised log TRI of Facebook Inc.) and the reconstructed sequences at various recon-

struction loss weights. Note that auxiliary loss weight ω = 1 means both prediction and

reconstruction have equal weight and will thus be influenced by what the predictor sees as

important. There is a bias towards zero at the beginning of the sequence. This is due to causal

padding which appends zeros to the start of the sequence. Thus, with a kernel size of 5, the

first convolution involves 4 zeros and the first value of the sequence. Across the various ω,

the reconstructed sequence tracks the overall shape of the true sequence reasonably well, with

the exception of the local minima during 2018. Based on Figure 4.4, we interpret that STAE

sees a general upward sloping trend.

13MOM12 is return over 11 months. We convert it into a monthly forecast by dividing by 11.

108 4 SUPERVISED AUTOENCODER

FIGURE 4.4: Standardised log TRI of Facebook Inc. and reconstructed time-
series at various ω.

TABLE 4.1: Main results: Mean forecasting performance (of 10 networks
scored individually) and performance of the ensemble (abbrev. Ens.) over
the out-of-sample period (1994–2020). Decile return is mean difference in
monthly returns of top and bottom deciles based on ensemble forecasts. Sharpe
ratio is calculated as annualised decile returns divided by annualised standard
deviation of decile returns. Best values in bold.

Metric MOM12 N-BEATS LSTM Transformer TCN STAE

Mean IC (%) 1.77 1.76 2.11 2.25 1.74 2.76
Std Dev of IC (%) 0.32 0.41 0.28 0.91 0.25
Mean MSE 0.0205 0.0176 0.0176 0.0176 0.0175 0.0176
Ens. IC (%) 1.77 2.20 3.20 2.61 2.92 3.36
Ens. MSE 0.0205 0.0176 0.0175 0.0176 0.0175 0.0176
Decile Return (%) 0.67 0.57 1.11 0.57 0.92 1.05
Sharpe Ratio 0.25 0.25 0.58 0.22 0.40 0.45

Next, we turn to forecast accuracy. IC (introduced in Section 3.2.1) is our primary performance

measure and is a widely used performance metric in investment management (Grinold and

Kahn, 1999; Fabozzi et al., 2011b). We present two types of IC to illustrate the effects of

ensembling. First, mean IC, given as the average IC of the 10 networks in the ensemble

(computed for each network individually, then average is taken). Second, ensemble IC

(denoted Ens. IC), given as the IC of the ensemble forecasts of the 10 networks (forecasts of

the 10 networks are first averaged to produce the ensemble forecasts, then IC is computed).

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 109

The IC measure in Chapter 3 corresponds to ensemble IC. Similarly, we also report mean and

ensemble MSE for the average of the 10 networks and the ensemble, respective. Consistent

with Chapter 3, we also report decile return spread (Equation (3.4)) of the ensemble forecasts

and Sharpe ratio of the decile return spread (Equation (3.3)). Table 4.1 records out-of-sample

performance over 1994 to 2020. Overall, STAE achieved the highest IC for both the ensemble

forecast (3.36%) and each individual network (on average, at 2.76%). LSTM is ranked second

on IC, at 3.20% for the ensemble and 2.11% for the average over 10 networks. Transformer

scored second on mean IC at 2.25% (over 10 networks) but IC of the ensemble is only ranked

fourth, at 2.61%. Mean monthly decile return for LSTM is 1.11%, marginally higher than

STAE at 1.05%. Sharpe ratio is also marginally higher at 0.58, compared to STAE at 0.45. For

practitioners, IC, decile returns and Sharpe ratio are important performance metrics (Sharpe

ratio and decile returns are related as Sharpe ratios are derived from decile returns, and are

used by Gu et al., 2020). However, decile returns focus on top and bottom 10% of forecasts

without accounting for the middle 80% of the distribution of forecasts. There are investment

strategies that rely on less extreme return forecasts. In general, IC provides a more complete

pictures of prediction performance by incorporating all forecasts. The higher IC of STAE

reflects better ranking of stocks across the whole distribution, despite having similar decile

returns. Both STAE and LSTM are economically meaningfully better than MOM12, with

IC of 1.77%, mean decile return of 0.67% and Sharpe ratio 0.25. Comparing STAE to TCN,

STAE is better on IC, mean decile return and Sharpe ratio. All 5 machine learning models

achieve similar MSE of 0.0175–0.0176. Both TCN and LSTM appear to benefit more from

ensembling, with IC of the ensemble forecast being 50% to 60% higher than the average IC

of the individual models. This is compared to an increase of only 22% for STAE and 16%

for transformer. In the case of STAE, we speculate that by regularising the network using an

autoencoder, the networks are slightly more correlated to each other and thus reducing the

benefits of ensembling. This is explored in more details in Section 4.3.4. Finally, N-BEATS

has not performed well in our test. Due to the complexity of hyperparameter combinations, it

is possible that the optimal hyperparameters lie outside of the search range.

Figure 4.5 records cumulative decile returns of MOM12, STAE, TCN, LSTM, transformer

and N-BEATS. Cumulative returns of STAE, TCN and LSTM are significantly higher than

110 4 SUPERVISED AUTOENCODER

1996
2000

2004
2008

2012
2016

2020

0

1

2

3

4
MOM12
STAE
TCN
N-BEATS
LSTM
Transformer

FIGURE 4.5: Cumulative decile returns based on ensemble forecasts of each
model. Decile returns are calculated as mean top decile returns less mean
bottom decile returns.

MOM12, transformer and N-BEATS. All 6 strategies experienced a “crash” in March 2009,

as the U.S. market rebound from the depth of the global financial crisis. This is to be expected,

as the input into the models are stocks’ own price history and does not include information

about the prevailing economic environment. A similar but smaller crash is noted at the end of

the Dot-com bubble in 2003. One notable feature is the lower forecast efficacy of all models

after the Dot-com bubble14 We hypothesise that market efficacy has improved following the

wide spread adoption of computers since the early 2000s. This constitutes concept drift and is

discussed in Section 1.5.

TABLE 4.2: Validation results: Mean forecasting performance (of 10 net-
works) over the validation period (1991–1993). MSE is based for standardised
returns and are not comparable to Table 4.1. Best values in bold.

Metric MOM12 N-BEATS LSTM Transformer TCN STAE

Mean IC (%) 5.45 7.07 6.38 7.15 6.99 8.50
Mean MSE 0.9953 0.9963 0.9951 0.9955 0.9929

Next, we examine forecasting performance on the validation set, recorded in Table 4.2. STAE

leads other models on mean IC (over 10 networks) by a large margin, scoring 8.50%. TCN,
14Cumulative returns in Figure 4.5 show relatively steeper inclines until 2003, then a more benign profile

after 2003.

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 111

LSTM, transformer, N-BEATS and MOM12 scored 6.99%, 6.38%, 7.15%, 6.99% and

5.45%, respectively. MSE is also the lowest for STAE compared to other models. Note

that MSE here is computed using cross-sectionally standardised monthly returns (as used in

network training and validation), not raw returns in Table 4.1. Comparing IC of MOM12 in

the validation set to the out-of-sample set, IC fell from 5.45% to 1.77%. Similarly for STAE,

mean IC fell from 8.50% to 2.76%. This indicates a general decline in return predictability

and is consistent with our observations in Figure 4.5.

4.3.3 Explaining the predictions of STAE

In this section, we examine the predictions of STAE in relations to two well-known anomalies

in finance literature — the momentum and reversal effects.

Jegadeesh and Titman (1993) found two patterns in U.S. stock prices — a medium term

trending effect (termed momentum, as discussed in Section 4.1), and a short term reversal

effect (MOM1) where stocks that rose (fell) the most over the current month tend to reverse in

the subsequent month. If the only pattern that exists in prices is momentum, then we expect

predictions produced by the neural network to be highly correlated with MOM12. Conversely,

if the only pattern that exists in stock prices is reversal (i.e., stock prices are oscillating within

a range), then neural network predictions will be correlated with MOM1. We conjecture that

the two patterns can be conceptualised as alternating periods of trending and reversal patterns,

as illustrated in Figure 4.6.

Price

Time

FIGURE 4.6: A hypothetical illustration of momentum and reversal patterns in stocks.

112 4 SUPERVISED AUTOENCODER

1996
2000

2004
2008

2012
2016

2020

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Co

rre
la

tio
n

MOM12
MOM1

FIGURE 4.7: Cross-sectional correlations of the ensemble prediction of STAE
to MOM12 and MOM1.

1996
2000

2004
2008

2012
2016

2020

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
2

FIGURE 4.8: R2 of the cross-sectional regression: ŷ
(STAE)
i = β0 +

β1MOM12i + β2MOM1i. Mean R2 is 28%.

Momentum and reversal patterns are simple 12-month and 1-month change in price, respect-

ively. We argue that if a neural network were to learn complex, non-linear patterns from stock

prices directly, the resultant predictions will be correlated with both MOM12 and MOM1.

Moreover, when regressing ensemble predictions of STAE (ŷ(STAE)
i) on MOM12 and MOM1

scores,

ŷ
(STAE)
i = β0 + β1MOM12i + β2MOM1i,

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 113

we would expect theR2 to be relatively low. Figure 4.7 records the cross-sectional correlations

of ensemble predictions of STAE to MOM12 and MOM1. Mean correlations to MOM12

and MOM1 are 0.46 and 0.07, respectively. This suggests that STAE’s predictions tend to

be driven by trends, as shown by the relatively higher correlation to MOM12 than MOM1.

Correlations to both momentum and reversal patterns are highly variable over time. Maximum

(minimum) correlations to MOM12 and MOM1 are 0.81 (-0.28) and 0.66 (-0.61), respectively.

We note that correlation to MOM12 tends to be lower after a market downturn, namely the end

of 2003 (right after the Dot-com bubble) and 2011-12 (after global financial crisis). However,

we do not observe a fall in correlation in 2020 during the pandemic. This may be because the

10-year rolling window is chronologically split into 7 years of training data and 3 years of

validation data (used for early stopping). Patterns observed during a crisis are only visible to

the network 3 years after they occurred. This underlies the reason we are yet to observe a

divergence in correlation to MOM12 in 2020. Figure 4.8 records R2 of regressing ensemble

predictions of STAE on MOM12 and MOM1. Mean R2 is relatively low, at 28%, indicating

that STAE is extracting non-trivial patterns from stock prices that cannot be explained by

simple trend and reversal patterns.

4.3.4 Further analysis of the reconstruction task

In this section, we provide further analysis on the regularisation effects of the reconstruction

task.

The benefit of ensembling can be illustrated by analysing the expected loss of the ensemble

predictor (Goodfellow et al., 2016),

E

(1

U

U∑
i=1

ϵi

)2
 =

1

U2
E

[
U∑
i=1

(
ϵ2i +

∑
j ̸=i

ϵiϵj

)]

=
v

U
+
U − 1

U
c. (4.2)

where U is number of predictors in the ensemble, ϵi ∼ N(0, v) is the error incurred by

model i, which is assumed to be drawn from a N(0, v) distribution, and c is the expected

114 4 SUPERVISED AUTOENCODER

N-
BE

AT
S

LS
TM

Tr
an

sf
or

m
er

TC
N

ST
AE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Cr

os
s-

co
rre

la
tio

n

48%
41%

68%

29%

64%
Cross-correlation

FIGURE 4.9: Mean cross-correlation of every network to every other network
in the ensemble (of 10) for each model used in Section 4.3.2.

covariance between any two models of the ensemble. Equation (4.2) shows that expected

loss of the ensemble predictor is lower bound by the variance of individual models scaled

by size of the ensemble. That is, if each model of the ensemble is independent of all other

models, then expected loss of the ensemble predictor decreases logarithmically by size of the

ensemble. This “diversification” benefit is offsetted by positive correlations between models

in the ensemble. The higher the correlation between models of the ensemble, the higher the

expected loss of the ensemble. Due to random weight initialisation and non-convexity, every

neural network will be different, even though they are trained on the training set. In Table 4.1,

we observe that ensembling has a greater positive impact on TCN and LSTM than STAE and

transformer. This is due to higher cross-correlation between networks within each ensemble

for STAE and transformer, as shown in Figure 4.9. The mean cross-correlations for STAE and

transformer are 0.64 and 0.68, respectively. These are significantly higher than LSTM and

TCN, at 0.41 and 0.29. In the case of STAE, we hypothesise that the auxiliary learning task is

imposing a non-parametric structure on the representation of the sequence. Thus, predictions

by different networks are more correlated.

Next, we investigate whether higher weight assigned to the auxiliary task increases correlation

and its impact on forecast accuracy. In this experiment, we fix the encoder kernel size to 2 with

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 115

TCN = 0.10 = 0.20 = 0.30 = 0.40 = 0.50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IC

Validation: Distribution of IC

TCN = 0.1 = 0.2 = 0.3 = 0.4 = 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IC

Out-of-sample: Distribution of IC

TCN = 0.1 = 0.2 = 0.3 = 0.4 = 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IC

0.065

0.074
0.079 0.078 0.075

0.082
Validation: IC of ensemble

TCN = 0.1 = 0.2 = 0.3 = 0.4 = 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IC

0.032 0.033 0.031 0.031 0.034 0.032

Out-of-sample: IC of ensemble

TCN = 0.1 = 0.2 = 0.3 = 0.4 = 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Cr
os

s-
co

rre
la

tio
n

0.41

0.79 0.79 0.76 0.75
0.81

Validation: Mean cross-correlation over 10 networks

TCN w=0.1 w=0.2 w=0.3 w=0.4 w=0.5
0.0

0.2

0.4

0.6

0.8

1.0

Cr
os

s-
co

rre
la

tio
n

0.32

0.66 0.65 0.67 0.65 0.65

Out-of-sample: Mean cross-correlation over 10 networks

FIGURE 4.10: Top row: Distribution of IC for each network of the ensemble
for TCN and STAE at different auxiliary loss weights (ω). Middle row: IC
of the ensemble predictor for TCN and STAE. Bottom row: Mean cross-
correlation between the predictions of each network of the ensemble.

16 filters, and only vary auxiliary loss weight ω ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We compare STAE

at various ω against TCN (i.e., ω = 0) on IC of each network (in an ensemble of 10), IC of the

ensemble predictor (i.e., mean prediction of the 10 networks), and average cross-correlation

of each network to every other network in the ensemble. This experiment is performed on the

validation set and in the out-of-sample set. Figure 4.10 records results of the experiment. In

116 4 SUPERVISED AUTOENCODER

the top row, we observe that even a small weight to the auxiliary task (at 0.1) is beneficial

to IC. All values of ω achieved better median IC (over ensemble of 10) than TCN but the

trend between IC and ω is not monotonic. The range of IC varies widely for TCN in both

the validation set and the out-of-sample set. As all networks use the same hyperparameters,

this indicates that TCN is prone to being stuck in unfavourable local minimas. In the middle

row, we observe that all values of ω achieved better mean IC for the ensemble prediction

than TCN in the validation set. All models achieved similar IC in the out-of-sample set. As

discussed in Section 4.3.2, we conjecture that increasing market efficiency has placed an

upper bound on the information content of a stock’s own price history. Finally, in the bottom

row, we observe that STAE has materially higher cross-correlation between networks in the

ensemble than TCN, even at low ω. Cross-correlation does not appear to escalate with ω.

Based on these observations, we conclude that the auxiliary task is beneficial to the prediction

task, even at a low weight. Finance literature has documented evidence of declining stock

return predictability (e.g., Brogaard and Zareei, 2022) — an empirical finding we have also

confirmed in Chapter 3 and this chapter. Main stream finance theory (the efficient market

hypothesis, as discussed in Section 1.3) relates stock return predictability to the market’s

information processing efficiency. Hypothesising that market efficiency is improving over

time, information content of price history is higher in the validation set (1991–1993) than

out-of-sample set (1994–2020), a higher ω appears to be more beneficial when information

content is high.

4.4 Conclusion

In this chapter, we propose to use an autoencoder to regularise a TCN for time-series stock

return forecasting. We argue that this is beneficial to the supervised learning task as the

convolutional filters are constrained to learn features that are useful for reconstruction of the

original input and for prediction. Thus, representation sharing will reduce the likelihood of

the filters learning spurious features and improve generalisation in noisy environments such

as financial markets. We propose STAE, by augmenting TCN with a convolutional decoder

for the auxiliary task and show that STAE provides better forecasting performance than TCN

4.4 CONCLUSION 117

in predicting U.S. stock returns using a time-series of TRI. The reconstructed input by the

decoder also assists the user in interpreting the features learnt by the network. We show that

neural networks can learn features from (transformed) price series directly, eliminating the

need for handcrafted features.

There are two potential extensions to this work. On the topic of improving financial time-

series forecasting, in this work, we have demonstrated that STAE outperforms other neural

network architectures in forecasting stock returns relying solely on a stock’s own price history.

We observe a degradation in predictability over time, which we attribute to improving market

efficiency and declining information content of prices. Future work can investigate providing

the neural network with more information about the stock, such as its size, OHLCV (opening

price, day’s high, day’s low, closing price and traded volume), CAPM beta (as discussed

in Section 1.3) and measures of business performance15. In particular, we observe a sharp

fall in decile returns when the market turns (e.g., in March 2009 and April 2020). This is

an example of exogenous shock. Informing the neural network with the prevailing market

condition may potentially improve its ability to anticipate turning points. To combat concept

drift, observations can be time-weighted, or models can be trained in an online manner (such

as using the OES algorithm as introduced in Chapter 3). For clarity, in this chapter, we have

focused solely on the time-series forecasting in noisy environment problem. We hypothesise

that regularising a neural network using an autoencoder has general applicability in other

noisy learning environments, outside of financial time-series forecasting. In Section 6.2, we

discuss ways of combining the STAE introduced in this chapter with the OES algorithm to

train neural networks that can adapt to time-varying DGP and remain robust to noise.

On the topic of improving neural network forecasting in general noisy environments, we

have demonstrated that the addition of an auxiliary reconstruction task helped regularise

a neural network. We observe that the auxiliary task increased cross-correlation between

networks in the ensemble, which decreased the effectiveness of ensembling. Potential ways

to decrease cross-correlation are to use bagging (Hastie et al., 2020), where both features and

time periods are randomly dropped to increase diversity within the ensemble, or different look
15Similar to the inputs used in Chapter 3, such as accounting measures of profitability and firm valuation.

However, differing to Chapter 3, we can provide a time-series of these metrics instead of just the cross-section.

118 4 SUPERVISED AUTOENCODER

back windows. The auxiliary task enforces a non-parametric functional form on the latent

representation of the sequence, similar to imposing a linear trend shape constraint in linear

models. A potential improvement is to combine STAE with attention (Vaswani et al., 2017),

where the auxiliary task provides the non-parametric overall trend and attention is applied on

deviations from the trend. This decomposition combines a “noise-robust” component with an

attention-component that focuses on small intricacies. We also hypothesise that the auxiliary

task would also benefit LSTM and transformers. Thus, a positive finding in using a supervised

LSTM autoencoder would add to the body of evidence that an auxiliary reconstructon task is

beneficial to learning in financial markets.

So far in this thesis, we have examined both cross-sectional and time-series forecasting of

stock returns using neural networks. In both applications, outputs of the neural network are

point estimates conditional on the input. However, if we were to “bet” on the predictions of

a neural network, we need to ask — how confident are we in the predictions? In Chapter 5,

we will examine methods of incorporating elements of statistical models to provide both the

conditional mean and conditional variance of the predictions.

CHAPTER 5

Quantifying neural network uncertainty under volatility clustering

Time-series with time-varying variance pose a unique challenge to uncertainty quantification

methods. Time-varying variance, such as volatility clustering as seen in financial time-

series, can lead to large mismatch between predicted uncertainty and forecast error. Building

on recent advances in neural network uncertainty quantification literature, we extend and

simplify Deep Evidential Regression and Deep Ensembles into a unified framework to deal

with uncertainty quantification under the presence of volatility clustering. We show that

a Scale Mixture Distribution is a simpler alternative to the Normal-Inverse-Gamma prior

that provides favorable complexity-accuracy trade-off. To illustrate the performance of our

proposed approach, we apply it to two sets of financial time-series exhibiting volatility

clustering: cryptocurrencies and U.S. equities.

5.1 Introduction

Asset returns are known to exhibit irregular bursts of high volatility that cluster in time (termed

volatility clustering; Cont, 2001). This poses a challenge to practitioners during portfolio

construction which involves the trade-off of return and risk. To motivate the discussion,

consider the following simple thought experiment. Suppose an investor has a model that

can perfectly forecast next day’s asset returns and that the investor’s goal is to maximise

terminal wealth. Then, on each day, the most rational decision would be to place all of

the investor’s wealth into the asset with the highest expected return on the next day. Next,

suppose that the investor’s model is a noisy estimator of future asset returns. Then, the

investor may choose to diversify across multiple assets. This intuition serves as the basis

119

120 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

of mean-variance portfolio optimisation (Equation (1.8)) discussed in Section 1.4 and has

led to the development of various models for optimal bet allocation that depend on some

measures of risk, such as Kelly criterion (where optimal bet size is proportional to expected

return divided by variance of expected return1 which can be replaced by forecast uncertainty;

Kelly, 1956; Byrnes and Barnett, 2018) and Bayesian-based portfolio optimisation (Black

and Litterman, 1991). Forecast uncertainty can also serve as advanced warning to protect the

portfolio from increasing risk. For example, if forecast uncertainty reaches a certain threshold,

an investor could purchase portfolio insurance (e.g., put options which allow the investor to

sell stocks to the issuer of the options at a pre-agreed price) or liquidate positions to reduce

risk.

Forecast uncertainty has an important role in many applications. Such quantity is easy to

obtain for statistical models such as linear regression. However, classical neural networks

for regression problems are typically trained using MSE and provide point estimates for the

mean prediction conditional on the input without regards for the conditional variance (see

Goodfellow et al., 2016). As a modeller (in our case, an investor), one is concerned with

predictive uncertainty (Gawlikowski et al., 2021). This is the total uncertainty around a point

estimate. Predictive uncertainty can be decomposed into (Gruber et al., 2023): aleatoric

uncertainty, and epistemic uncertainty. Aleatoric uncertainty originates from the stochastic

relationship between input variable X taking value x and output variable Y (Gruber et al.,

2023). As long as the conditional distribution of Y |x is not degenerate (i.e., Y cannot be

perfectly predicted), there will always be aleatoric uncertainty. Aleatoric uncertainty does

not typically depend on sample size. By contrast, epistemic uncertainty is attributable to

the model and typically scales inversely with sample size (Meinert et al., 2022). Epistemic

uncertainty can be further decomposed into model uncertainty, which relates to the correct

specification of the model, and parametric uncertainty, which relates to the correct estimation

of model parameters (Sullivan, 2015; Gruber et al., 2023). Epistemic uncertainty refers to

the part of predictive uncertainty that is reducible through additional information (e.g., more

observations and additional variables). In practice, a clear separation between aleatoric and

1Note that this differs to Sharpe ratio, which is return divided by standard deviation of return. Kelly criterion
is scaled by variance.

5.1 INTRODUCTION 121

epistemic uncertainties is often impossible. To illustrate, consider the (fair) dice rolling

experiment, commonly considered to be a process of pure randomness. However, if the initial

position and each rotation of the dice can be measured, then it is possible to predict the

outcome of each dice roll (Hora, 1996; Gruber et al., 2023). Thus, what is truly aleatoric

(i.e., unpredictability of dice roll) and what is epistemic (i.e., initial position and rotation of

the dice are merely missing variables) may be difficult to disentangle from a philosophical

perspective.

Traditionally, neural network uncertainty quantification requires the use of Bayesian methods

or evaluation of the model in unseen data (Meinert et al., 2022). A Bayesian neural network

(BNN) is a full probabilistic interpretation of neural network, by placing priors on network

weights and inducing a distribution over a parametric set of functions (MacKay, 1992; Neal,

1996; Gal, 2016). Modern BNNs can be trained using MCMC (e.g., the Metropolis-Hastings

algorithm; Hastings, 1970) and Variational Inference techniques (Jospin et al., 2022). Jospin

et al. (2022) notes four advantages of using BNNs over classical neural networks, with

two being relevant to uncertainty quantification. First, Bayesian methods provide a natural

approach to uncertainty quantification and are better calibrated than classical neural networks

(Mitros and Namee, 2019; Kristiadi et al., 2020; Ovadia et al., 2019; Jospin et al., 2022).

Second, BNN allows distinguishing between epistemic uncertainty and aleatoric uncertainty.

However, despite their advantages, MCMC-based methods are computationally expensive

(Quiroz et al., 2019). Thus, limiting the applicability of BNNs.

Recent advances (see Gawlikowski et al., 2021 for a recent survey) have focused on predicting

the conditional distribution that is most likely to have generated the data and thus bridging

the gap between BNNs and classical neural networks. In particular, using a neural network to

generate parameters of a conditional distribution that is assumed to have generated the data

(Lakshminarayanan et al., 2017; Amini et al., 2020) offers an attractive trade-off between

adequately quantifying uncertainty and avoiding the computational cost of a full Bayesian

treatment. In Lakshminarayanan et al. (2017) (the Ensemble method, also know as Deep

Ensembles), regression target y is assumed to be drawn from y ∼ N(µ, σ2), where N is the

Normal distribution, µ is the expectation of y and σ2 models aleatoric uncertainty. In this

122 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

setup, σ2 is incapable of quantifying epistemic uncertainty. Lakshminarayanan et al. (2017)

addressed this by using an ensemble of neural networks with randomly initialised weights.

Each network settles in a different local minima and produces different µ and σ2 for the

same input. The variance of µ across the ensemble thus provides an estimate of epistemic

uncertainty. Addressing this shortcoming, Amini et al. (2020) (the Evidential method, also

know as Deep Evidential Regression) proposed to place an evidential prior2, the NIG, on µ, σ2.

In this construct, prediction µ is assumed to be drawn from the priors: µ ∼ N(γ, σ2ν−1) and

σ2 ∼ InvGam(α, β), where σ2 remains as an estimate of aleatoric uncertainty, InvGam (or

IG) is the Inverse-Gamma distribution and σ2ν−1 (with σ2 ∼ InvGam(α, β)) is estimated

epistemic uncertainty. Epistemic uncertainty is linked to aleatoric uncertainty via ν, which

is learnt from the data. The marginal distribution of a Normal likelihood with NIG prior

is the Student’s t-distribution. This mimics a Bayesian setup and circumvents the costly

computational burden of MCMC methods by analytically integrating out unobserved variables.

Ensemble and Evidential require only minimal modifications to a conventional neural network

architecture — requiring only the NLL function of the marginal distribution as loss function

and a new output layer. Evidential has been applied to navigation (Liu et al., 2021; Cai et al.,

2021; Singh et al., 2022) and medical fields (Soleimany et al., 2021; Li and Liu, 2022), and has

been extended into the multi-task learning domain (Oh and Shin, 2022). Multivariate models

related to Evidential include the Natural Posterior Network which also uses a conjugate

prior (NIG for regression problems and Dirichlet for categorical classification problems;

Charpentier et al., 2021), and Regression Prior Networks which uses a Normal-Wishart prior

(Malinin et al., 2020).

However, more recent works have highlighted weaknesses of the Evidential method. Scoring

rules are a class of loss functions that measure the discrepancy between a predicted distribution

and the observed distribution (Gneiting and Raftery, 2007). A scoring rule is proper if the

score is maximised when the discrepancy is minimised, and is strictly proper if the maximum

is unique. Thus, strictly proper scoring rules provide attractive loss functions for scoring

probabilistic forecasts. Evidential can be interpreted as a hierarchical method with a prior
2In contrast to conventional priors in Bayesian inference where the modeller has to specify the parameters

of the prior distribution, the evidential prior (e.g., NIG in Evidential) learns these hyperparameters from the data.
Note that NIG is a conjugate prior to the Normal distribution (Bernardo and Smith, 2000).

5.1 INTRODUCTION 123

distribution that controls the data distribution. Bengs et al. (2023) argues that in order for

hierarchical methods such as Evidential to comply with the requirements of proper scoring

rules, rather than training on observable values of y, the predictor must be trained on the

imaginary distribution around each observation that depicts its uncertainty, which cannot

possibly exist. This requirement stems from the definition of proper scoring, which requires

the learner be scored against the “ground truth”. As α and β relate to the prior distribution in

Evidential, they are not directly observed as data. Thus, hierarchical methods that estimate

both the prior and likelihood parameters lack theoretical guarantees on the robustness of

their estimated distributions. Similarly, Meinert et al. (2022) argued that unlike aleatoric

uncertainty, epistemic uncertainty has no “ground truth” and is difficult to estimate objectively.

To motivate this argument, Meinert et al. (2022) used the example of points lined up perfectly

in a straight line. If one point is perturbed such that the points no longer form a straight line.

Without relying on a-priori assumptions, it is impossible to perform point-wise separation

of aleatoric and epistemic uncertainties (i.e., whether the single deviation is due to noise or

the correctness of the linear model and its estimated slope). The marginal t-distribution of

NIG is overparameterised, which leads to the finding that it is possible to minimise the NLL

irrespective of ν (interpreted as “strength of the data” in Amini et al., 2020). As a further

critique of the network architecture, we note that all four hyperparameters of Evidential are

derived from the same latent representation outputted by the last hidden layer. The four

hyperparameters can have vastly different scales (e.g., in our motivating application, γ is

in scale of 0.01, while ν is in scale of 10). We consider this feature to be a weakness of

these approaches as the latent representation has to provide a sufficiently rich encoding to

linearly derive all hyperparameters of the distribution. Nonetheless, successful applications

of Evidential on real world datasets has led Meinert et al. (2022) to conclude that Evidential

is a heuristic to Bayesian methods and may be appropriate for applications that aim to capture

both aleatoric and epistemic uncertainties but do not demand an accurate distinction between

them, such as our motivating application.

In this work, we are concerned with neural network uncertainty quantification for time-series

that exhibit time-varying variance, such as time-series of asset returns. We combine and

extend Ensemble and Evidential into a framework (the Combined method) for quantifying

124 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

predictive uncertainty of this class of time-series. We propose to formulate the problem

using the SMD, a simpler alternative to the NIG prior, to address some of the shortcomings

highlighted by Meinert et al. (2022) and Bengs et al. (2023). In SMD, a sole Gamma prior

is placed on the scaling factor of variance of the Normal distribution, rather than both the

mean and variance in Evidential. This is motivated by our asset return forecasting application,

where the mean is typically close to zero (in scale of 0.01) and thus uncertainty is negligible,

and volatility is significantly larger (standard deviation in scale of 0.1). This is consistent

with fitting a return series with models such as Generalised Autoregressive Conditional

Heteroskedasticity (GARCH) (Bollerslev, 1986) in which the mean process is typically

assumed zero or first order autoregressive (Carroll and Kearney, 2009). Integrating out the

scaling factor of SMD results in a marginal t-distribution, of which its variance indicates

the predictive uncertainty. Epistemic uncertainty is assumed to be the difference between

variance of the marginal t-distribution and variance of the assumed Normal data distribution.

This simplification trades off granular attribution of aleatoric and epistemic uncertainties

afforded by the NIG prior but allows the reduction of the number of effective parameters by

one and resolves the overparameterisation of NIG, as highlighted by Meinert et al. (2022).

We also propose a novel architecture to model parameters of the marginal distribution using

disjoint subnetworks, rather than a single output layer as in Ensemble and Evidential. We

show through an ablation study in Section 5.4.3 that this is crucial to forecasting predictive

uncertainty that closely tracks forecast error when the time-series exhibit volatility clustering.

As both forecast accuracy and estimation of predictive uncertainty are important to our

motivating application, we incorporate model averaging into our Combined method and show

that it significantly improves forecast accuracy without significantly changing the estimated

predictive uncertainty. This work also provides a template for uncertainty quantification in

time-series that exhibit volatility clustering, such as time-series of asset returns.

To illustrate our contributions, we apply our proposed method to cryptocurrency and U.S.

equities time-series forecasting. Cryptocurrencies are an emerging class of digital assets.

They are highly volatile and frequently exhibit price bubbles (Fry and Cheah, 2016; Hafner,

2018; Chen and Hafner, 2019; Núñez et al., 2019; Petukhina et al., 2021), with large volumes

of high frequency data (e.g., prices in hourly intervals) freely available from major exchanges.

5.2 PRELIMINARIES 125

This makes cryptocurrencies an ideal testbed for uncertainty quantification methodologies

in financial applications. Given the extreme levels of volatility, we view cryptocurrencies

as one of the most challenging datasets for this type of application. A comparison in U.S.

equities is also provided which illustrates performance in conventional financial time-series.

In the rest of this paper, we first describe the setup of our motivating application (asset return

forecasting) in Section 5.2.1 and review of related works in Section 5.2.2. We describe

our proposed framework in Section 5.3. Data description and empirical results of applying

Ensemble, Evidential and Combined on cryptocurrency are presented in Section 5.4.1 and U.S.

equities in Section 5.4.2. An ablation study analysing the benefits of each of our proposed

enhancements is presented in Section 5.4.3. Whilst this paper is focused on uncertainty

quantification in time-series that exhibit volatility clustering, in Appendix A7.1, we also

provide a direct comparison to Evidential and Ensemble using the UCI benchmark datasets

(non-time-series), as previously analysed in Hernández-Lobato and Adams (2015), Gal and

Ghahramani (2016), Lakshminarayanan et al. (2017), and Amini et al. (2020). Finally,

concluding remarks are provided in Section 5.5.

5.2 Preliminaries

5.2.1 Problem setup

The basic setup of the problem in this chapter follows that of Chapter 4. At every period

t ∈ {1, . . . , T}, an investor observes price history up to t and uses the preceding {K ∈ Z |0 <

K < t} period returns to forecast one-step ahead returns. Similar to Chapter 4, we define

an asset’s return at time t as the log difference in price rt = log pt − log pt−1 and, consistent

with empirical findings in finance literature (Pesaran and Timmermann, 1995; Cont, 2001),

we assume that the DGP is time-varying:

rt ∼ N(µt, σ
2
t). (5.1)

126 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

Let ζt = (µt, σ
2
t) be parameters of the assumed DGP, xt−1 = {rt−K , rt−K+1, . . . , rt−1} be

a K-length input sequence3 using returns up to t − 1 and yt−1 = rt be forward one period

return. The training dataset is comprised of Dt = {(xq−1, yq−1)|q ∈ N : q ≤ t} input-output

pairs4 and is essentially a set of sequences formed with a K-length sliding window and their

corresponding regression targets. Our goal is to forecast yt (which corresponds to rt+1). At

each t, the investor’s goal is to solve the optimisation problem5,

θt = argmin
θ∗

−
t−1∑
q=K

log p(yq|F (xq;θ
∗)), (5.2)

where F (x;θ) is a neural network with input x and parameters θ, θ =
⋃L

ℓ=1{W (ℓ), b(ℓ)}

is the set of network weights and biases and, in this context, p(y|F (x;θ)) is the likelihood

of observing y based on the outputs of neural network F (·; ·) and the assumed marginal

distribution. In other words, the investor is concerned with recovering the parameters ζ̂t =

(µ̂t, σ̂
2
t) := F (xt;θt) that are most likely to have generated the observed data. In this

setup, σ̂2
t can be interpreted as an estimate of aleatoric uncertainty and is an estimate of the

contemporaneous variance of the DGP at time t.

There are two parts to this problem. The first part concerns uncertainty quantification

specifically for time-series that exhibit volatility clustering and is the primary focus of this

work. The second part concerns advancing methods of uncertainty quantification across

general applications. In Appendix A7.1, we show that our proposed approach can still benefit

non-time-series problems in spite of it being designed to deal with a series of data points

indexed in time order and exhibiting volatility clustering.

3For illustrative purposes, we have stated that the sequence only contains returns rt. However, as discussed
in Section 5.3.2, we also include squared returns r2t as part of the input sequence.

4Note that at each portfolio selection period t, the training set can at most contain data up to t− 1 as we
have not yet observed rt+1.

5For clarity, the case of a single asset is shown. At each t, there are N assets and the dataset is typically
in a t×N layout. It is easy to see the generalisation of Equation 5.2 over N assets, where the average loss is
calculated over (t−K − 1)×N instances.

5.2 PRELIMINARIES 127

5.2.2 Related work

Recent advances in neural network uncertainty quantification, such as Ensemble and Eviden-

tial, have focused on outputting parameters of the assumed data distribution. As these works

were originally proposed for non-time-series problems, in discussing these works, we have

left out time index t but note that in our motivating application, variables are indexed by t

(e.g., the assumed DGP in Equation (5.1)). The neural networks are trained using procedures

similar to maximum likelihood estimation. In Ensemble (Lakshminarayanan et al., 2017),

regression target y is assumed to be drawn from y ∼ N(µ, σ2), where µ is the forecast of y

and σ2 models aleatoric uncertainty. The output layer of the neural network is modified to

output ζ = (µ, σ2), and the network is trained using the Gaussian NLL. As this formulation

is incapable of quantifying epistemic uncertainty, Lakshminarayanan et al. (2017) used an en-

semble of neural networks with randomly initialised weights to provide an empirical estimate

of epistemic uncertainty. Addressing this, Amini et al. (2020) proposed to place an evidential

prior, the NIG distribution, on the model parameters µ, σ2 of the Normal data distribution:

Data : y ∼ N(µ, σ2)

NIG prior : µ ∼ N(γ, σ2ν−1), σ2 ∼ InvGam(α, β), (5.3)

where µ is assumed to be drawn from a Normal prior distribution with unknown mean γ

and scaled variance σ2ν−1, ν is a scaling factor for σ2, and shape α > 1 and scale β > 0

parameterise the Inverse-Normal (IG) distribution6. We require α > 1 to ensure the mean of

the marginal distribution is finite.

In this construct, parameters of the posterior distribution of y is ζ = (γ, ν, α, β). Epistemic

uncertainty is reflected by the uncertainty in µ, which is assumed be a fraction of σ2 and is

itself assumed to be drawn from an IG distribution. This fraction is controlled by ν, which is

learnt from the data and, in an abstract sense, varies according to the amount of information

in the data. Parameter ν is interpreted as the number of virtual observations for the mean

6Time index t has been omitted for brevity and legibility. Note that variables in this section are indexed by
time for each asset: {yt, rt, µt, σ

2
t , γt, νt, αt, βt}.

128 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

parameter µ. In other words, ν virtual instances of µ are assumed to have been observed in

determining the prior variance of µ (Jordan, 2009; Amini et al., 2020).

For the NIG prior in 5.3, the marginal distribution of µ after integrating out σ2 is a non-

standardised Student’s t-distribution (denoted St; Bernardo and Smith, 2000),

p(µ|γ, ν, α, β) =
∫ ∞

σ2=0

p
N
(µ|γ, σ2ν−1)p

IG
(σ2|α, β) dσ2

= St

(
γ,

β

να
, 2α

)
, (5.4)

using the fact that σ2 ∼ InvGam(α, β) corresponds to σ−2 ∼ Gam(α, β). Hence, assigning

a Gam(α, β) prior to precision σ−2 in (Equation (5.3)) gives the Normal-Gamma (NG) prior

and is equivalent to assigning InvGam(α, β) to σ2 which gives the NIG prior. The variance

of this t-distribution is β
ν(α−1)

. Predictions based on the NIG prior can be computed as (Amini

et al., 2020),

Prediction : E[µ] = γ

Aleatoric uncertainty : E[σ2] = β
α−1

Epistemic uncertainty : Var[µ] = β
ν(α−1)

. (5.5)

The marginal variance Var[µ] refers to the variance of the marginal t-distribution in (Equa-

tion (5.4)) for the NIG prior. We note that ν can also be interpreted as a factor that attributes

uncertainty between aleatoric uncertainty (β
α−1

) and epistemic uncertainty (β
ν(α−1)

). If ν = 1,

then total uncertainty is evenly split between aleatoric and epistemic uncertainties.

Whilst not the focus of Amini et al. (2020), we note that epistemic uncertainty can be

further decomposed approximately into uncertainties attributable to parameters µ and σ2.

Parameter µ|σ2 is normally distributed with Var[µ|σ2] = σ2/ν (from Equation (5.3)), and

E[σ−2] = E[1
σ−2] ≈ 1

E[σ−2]
= α/β (from the Gamma distribution of σ−2). This leads to

Var[µ|σ2] ≈ β
να

,

Model µ uncertainty : Var[µ|σ2] ≈ β
να

Model σ2 uncertainty : Var[µ]− Var[µ|σ2] ≈ β
να(α−1)

, (5.6)

5.2 PRELIMINARIES 129

where the difference between the marginal and conditional variances of µ gives the uncertainty

of σ2.

In this construct, the marginal distribution of y after integrating out µ and σ2 is a non-

standardised Student’s t-distribution (Amini et al., 2020),

p(y|γ, ν, α, β) =
∫ ∞

σ2=0

∫ ∞

µ=−∞
p

N
(y|µ, σ2)p

NIG
(µ, σ2|γ, ν, α, β) dµ dσ2

= St

(
y; γ,

β(1 + ν)

να
, 2α

)
. (5.7)

Variance of this t-distribution is β(1+ν)
ν(α−1)

, which corresponds to the sum of epistemic and

aleatoric uncertainties,

Var[y] =
β

α− 1
+

β

ν(α− 1)
=
β(1 + ν)

ν(α− 1)
. (5.8)

The corresponding NLL of Equation (5.7) is (Amini et al., 2020),

LNIG(y|ζ) = 1
2
log
[
π
ν

]
− α log [2β(1 + ν)]

+ (α + 1
2
) log

[
(y − γ)2ν + 2β(1 + ν)

]
+ log

[
Γ(α)

Γ(α+
1
2
)

]
. (5.9)

Equation (5.9) mimics a Bayesian setup, granting classical neural networks the ability to

estimate both epistemic and aleatoric uncertainty, and offers an intuitive interpretation of the

model mechanics — due to uncertainty in the model parameters, the tails of the marginal

likelihood are heavier than a Normal distribution. This has the effect of regularising the

network and provides an avenue of estimating epistemic uncertainty. As the distribution

of asset returns has heavy tails (Cont, 2001), we argue that the marginal t-distribution also

provides a better fit of the data. The implementation is remarkably simple — Equation (5.9)

replaces MSE as the loss function (for a regression problem) and the final layer of the

network is replaced with a layer that simultaneously outputs four parameters of the marginal

distribution. Clearly, modelling of γ and ν by the neural network is direct as they correspond

to mean and degrees of freedom of the t-distribution. By contrast, scale of the t-distribution in

Equation (5.7) is modelled through a more complex structure (β(1+ν)
να

), which reflects the two

sources of uncertainty in Equation (5.6) with two additional neural network outputs: α and β.

130 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

They are the shape and scale parameters of the prior Gamma distribution for precision σ−2

which describe distinct characteristics of epistemic uncertainty.

As discussed in Section 5.1, aleatoric and epistemic uncertainties are difficult to disentangle.

More recent works have questioned the accuracy of methods, such as Evidential, that directly

estimate epistemic uncertainty through minimising the NLL of an assumed marginal distri-

bution. Bengs et al. (2023) argues that a strictly proper loss function for Evidential involves

scoring against the distribution around each observation, which cannot possibly exist. Thus,

there is no theoretical guarantee that the estimated epistemic uncertainty by Evidential is

reliable. Moreover, Meinert et al. (2022) notes that Equation (5.7) is overparameterised, as

it is possible to minimise Equation (5.9) irrespective of ν, by: ∂
∂ν
LNIG = 0, if βν = 1

1+ν−1

and sending ν → 0. This is because Equation (5.7) is, by definition, a projection of the NIG

distribution, and thus is unable to unfold all of its degrees of freedom unambiguously (Meinert

et al., 2022). Through simulation data, Meinert et al. (2022) showed that over the course

of neural network training, the estimated ν was related to speed of convergence. Thus, the

estimated ν, which controls the ratio of epistemic uncertainty to aleatoric uncertainty, may

not be accurate. We note that this is also evident in Equation (5.7), as ν appears in both the

numerator and denominator of the scale parameter of the t-distribution in the form of 1 + 1
ν
.

Thus, ν relates ambiguously to the the scale parameter of the t-distribution. Motivated by this

observation, we propose a simpler formulation, which we detail in Section 5.3.1.

5.3 Uncertainty quantification under volatility clustering

5.3.1 Modelling forecast uncertainty using a scale mixture distribution

As discussed in Section 5.2.2, Evidential provides the ability to perform granular attribution

of uncertainty to various parts of the model (e.g., Equation (5.5) and (5.6)). However, this

ability comes at the cost of model complexity and the estimated epistemic uncertainty may

not be reliable (as discussed in Section 5.2.2). We sought to propose a simpler formulation

of the problem than Evidential while offering the ability to quantify predictive uncertainty,

5.3 UNCERTAINTY QUANTIFICATION UNDER VOLATILITY CLUSTERING 131

which is the type of forecast uncertainty that we are most concerned about in our motivating

application.

We propose to simplify the model by formulating the problem as a SMD7 (Andrews and

Mallows, 1974),

y ∼ N(γ, σ2ν−1), ν ∼ Gam(α, β), (5.10)

where ν > 0 is the scaling factor, Gam is the Gamma distribution, and α > 1 and β > 0

are the shape and scale parameters of the Gamma distribution, respectively. Our proposed

formulation effectively omits the prior on µ and places a prior on ν, the scaling factor of σ2. We

argue that uncertainty of variance can be modelled through either σ2 or ν. In here, y is assumed

to be drawn from N(γ, σ2ν−1), with mean γ and unknown variance σ2ν−1 where ν is a latent

variable that introduces uncertainty into the variance of the assumed Normal distribution of

y. This allows flexibility to inflate the variance (by minimising ν without inflating σ2) so as

to capture the extremities of the distribution. Relative to Equation (5.7), σ2 replaces ν in the

parameter set when taking the SMD approach as σ2 has a richer interpretation — it directly

indicates the scale of the conditional data distribution. Note that in Equation (5.10), placing a

Gamma prior on ν is equivalent to σ−2 ∼ Gam(α, β) as ν and σ−2 are indistinguishable in

σ2ν−1. However, this is distinct from using a NG prior as there is no Normal prior on µ in

Equation (5.10).

The marginal distribution of a Normal distribution with unknown variance (Equation (5.10))

is a non-standardised t-distribution (derivation is provided in Appendix A6),

p(y|γ, σ2, α, β) =

∫ ∞

ν=0

p
N
(y|γ, σ2ν−1)p

G
(ν|α, β) dν

= St

(
y; γ,

σ2β

α
, 2α

)
. (5.11)

Analogous to Equation (5.7), the shape parameter of this marginal Student’s t-distribution is

2α. Equation (5.11) is similar to Equation (5.4) with y replacing µ, and can be interpreted

7Time index t has been omitted for brevity and legibility. Note that variables in this section are indexed
by time for each asset: {yt, γt, σ2

t , νt, αt, βt}. We use the same notations in Equation (5.10) as Equation (5.3)
where the symbols have the same meaning to improve comparability.

132 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

as the Normal distribution being “stretched out” into a heavier tailed distribution due to the

uncertainty in its variance. Jointly, ζ = (γ, σ2, α, β) are parameters of the SMD distribution

and are outputs of the neural network. This has the effect of regularising the mean estimate

(γ) and, similar to NIG, provides the ability to handle heavy tails of the distribution that

characterise asset returns.

The corresponding NLL of Equation (5.11) (derivation is provided in Appendix A6) is,

LSMD(y|ζ) = log

[
Γ(α)

Γ(α + 1
2
)

]
+ 1

2
log[2πσ2β] + (α + 1

2
) log

[
(y − γ)2

2σ2β
+ 1

]
. (5.12)

Then, LSMD is used in place of the marginal likelihood function in Equation (5.2), in which the

neural network learns to output parameters in ζ. In Equation (5.10), conditional on the scaling

factor ν, the data is normal with variance given by the scale of the marginal t-distribution

(σ
2β
α

). This variance gives the uncertainty of the data. Since the predictive uncertainty given by

the variance of the marginal t-distribution contains both epistemic and aleatoric uncertainties,

the difference between predictive and data uncertainties gives the epistemic uncertainty. This

is illustrated in Equation (5.13) below:

Prediction : E[y] = γ

Aleatoric uncertainty : E[σ
2

ν
] ≈ σ2β

α

Predictive uncertainty : Var[y] = σ2β
α
· 2α
2α−2

= σ2β
α−1

Epistemic uncertainty : Var[y]− E[σ
2

ν
] ≈ σ2β

α−1
− σ2β

α
= σ2β

α(α−1)
. (5.13)

Recall that the result in Equation (5.11) can be interpreted as a Normal distribution being

stretched out into a heavier tailed t-distribution when variance is unknown. Kurtosis of

the t-distribution is controlled by the shape parameter (2α). In analysing Equation (5.11)

and (5.13), we argue that α is analogous to “virtual observations” (ν) in NIG. Epistemic

uncertainty σ2β
α(α−1)

is smaller than aleatoric uncertainty σ2β
α

by a factor of 1
α−1

, when α > 2.

Thus, as α increases, both epistemic uncertainty and scale of the marginal t-distribution

monotonically decrease. Importantly, epistemic uncertainty also drops relative to aleatoric

uncertainty, as the t-distribution converges to the Normal distribution on increasing α. This

5.3 UNCERTAINTY QUANTIFICATION UNDER VOLATILITY CLUSTERING 133

stands in contrast to the model with NIG prior (Equation (5.7)), where increasing evidence ν

does not monotonically lead to a decrease in scale of the t-distribution.

Our proposed SMD formulation addresses some of the concerns of Meinert et al. (2022)

and Bengs et al. (2023). There are essentially three free parameters in Equation (5.11) as

σ2β together should be treated as one. Parameter β is a redundant parameter as it exists

as a product together with σ2 in both the marginal NLL (Equation (5.12)) and in all three

uncertainty measures (Equation (5.13)). Parameters σ2 and β indicate scales of the Normal

and Gamma distributions, respectively. Together, they contribute to the scale of the marginal

t-distribution. The number of parameters can be reduced by either reparameterising σ2β as a

single parameter, or by setting α = β, which we consider as the more intuitive choice. SMD

encapsulates several well-known distributions as special cases. According to Andrews and

Mallows (1974) and Choy and Chan (2008), in the case of α = β, then Equation (5.10) is a

Student’s t-distribution with 2α degrees of freedom, and is Cauchy if α = β = 1. If α ̸= β,

Equation (5.10) gives the Pearson Type VII (PTVII) distribution which can be re-expressed

as a Student’s t-distribution in Equation (5.11). As epistemic uncertainty is estimated by the

heavy tails of the t-distribution, we can, without loss of generality, set α = β and reformulate

Equation (5.11) as,

p(y|γ, σ2, α) = St
(
y; γ, σ2, 2α

)
, (5.14)

and the marginal NLL (Equation (5.12)) as,

LPTVII(y|γ, σ2, α, α) = log

[
Γ(α)

Γ(α + 1
2
)

]
+ 1

2
log[2πσ2α] + (α + 1

2
) log

[
(y − γ)2

2σ2α
+ 1

]
.

(5.15)

Comparing Equation (5.14) to the marginal t-distribution of using a NIG prior (Equation 5.7),

parameters of this model relate directly to parameters of the t-distribution instead of hyper-

parameters of the prior distribution. Hence, mitigating the concerns of Bengs et al. (2023)

on hierarchical models and Meinert et al. (2022) on unresolved degrees of freedom. Thus,

we argue that SMD offers an attractive trade-off between model complexity and granularity,

occupying the middle ground between Ensemble (no prior) and Evidential (prior on both

mean and variance).

134 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

5.3.2 Architecture of the neural network

For the main application of this work, uncertainty quantification of financial time-series

forecasts, we propose a novel architecture for the modelling of distribution parameters, as

illustrated in Figure 5.1. To predict ŷt, time-series inputs of both returns (rt−K+1, . . . , rt) and

log-transformed squared returns (log[r2t−K+1], . . . , log[r
2
t]) are fed into one or more LSTM

layers (Hochreiter and Schmidhuber, 1997). We log-transform squared returns to reduce

skewness. The LSTM layers convert each time-series into a latent representation. The latent

representation is then fed into four subnetworks, where each subnetwork is comprised of one or

more fully connected layers and applies non-linear transformations on the latent representation.

This allows the network to model complex relationships between the parameters in ζ and the

sequence. During training, the four parameters outputted by the network and the observed y

are fed into the loss function (Equation (5.12)) to compute loss value and gradients, which

are backpropagated through the network for weight updates. As noted in Section 5.3.1,

we can set α = β and reduce the number of subnetworks to three. In other words, the

rt−K+1

log[r2t−K+1]
rt−K+2

log[r2t−K+2] · · · rt−1

log[r2t−1]
rt

log[r2t]

LSTM

Fully connected Fully connected Fully connected Fully connected

γ σ2 α β

LSMD(y|γ, σ2, α, β)

FIGURE 5.1: Input sequence (shaded in red) is passed into one or more LSTM
layers. Output from the LSTM layers is then fed into four subnetworks of
one or more fully connected layers with ReLU activation. The final layer of
each subnetwork is a fully-connected layer with linear activation. Softplus is
applied to σ2, α and β to ensure positivity. During training, the four output
values of the neural network together with the observation y are fed into the
loss function (Equation (5.12)) to compute loss and gradients.

5.3 UNCERTAINTY QUANTIFICATION UNDER VOLATILITY CLUSTERING 135

network architecture illustrated in Figure 5.1 can be modified to output three parameters:

ζ = (γ, σ2, α). We have kept β to be comparable to Evidential but provide empirical results in

Appendix A8 using the UCI dataset (the same benchmark dataset used in Lakshminarayanan

et al., 2017 and Amini et al., 2020, and discussed in Appendix A7.1) to show that the two

networks are indeed equivalent. In the following, we explore the proposed design of the

architecture in detail.

Lakshminarayanan et al. (2017) and Amini et al. (2020) introduced the Gaussian and

NormalInverseGamma layers as the final layer of a neural network. These final layers

output parameters of the posterior distribution. Let a ∈ RH(I)

be the input vector of the final

layer with H(I) dimensions and H(O) be the dimension of the output layer. In the case of the

NormalInverseGamma layer, H(O) = 4. The NormalInverseGamma layer outputs,

ζ = O(a;θ) = aT ·W (O) + b(O)

γ = ζ1, ν = ζ2, α = ζ3, β = ζ4, (5.16)

where O denotes the NormalInverseGamma output layer, {ζ1,...,4} are 1st, ..., 4th elements

of vector ζ, W (O) ∈ RH(I)×H(O)

and b(O) ∈ RH(O)

are weights and bias of the output layer,

respectively. Each dimension of ζ corresponds to each of γ, ν, α and β.

Outputs of the NormalInverseGamma layer are linear transformations of a common input

a (Equation (5.16)). We argue that this construct is too restrictive for complex applications,

such as in quantifying uncertainty of financial time-series forecasts, as detailed in Section 5.4.1.

We propose to model each of the four parameters of SMD with its own subnetwork of one or

more fully connected layers. This allows for a more expressive modelling of ζ, where each

parameter may have complex, non-linear relationships with the input.

Additionally, we enforce constraints on σ2 > 0, α > 1 and β > 0 by applying softplus

transformation with a constant term, z′ = log(1 + exp(z)) + c, where z ∈ {σ2, α, β} and

c is the minimum value of the respective parameters. The transformed values constitute

the final output of the network: ζ ′ = {γ, (σ2)′, α′, β′}. In Section 5.4.1, we show that this

modification vastly improves quantification of forecast uncertainty of financial time-series.

136 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

For other network architectures, we argue that the same approach can be applied. In the case

of a feedforward network, we recommend having at least one common hidden layer that

reduces the input to a single latent representation. The latent representation is then passed to

individual subnetworks for specialisation. We argue that the common hidden layer allows

information sharing across the four parameters, while having no common hidden layer (i.e., if

the input is fed into the four disjoint stacks of hidden layers directly) will prevent sharing of

information across the stacks.

Machine learning models are typically trained using pooled dataset of historical observations.

As such, they learn the average uncertainty within the historical data. However, as noted in

Section 5.1, asset returns exhibit time-varying volatility clustering patterns. Thus, we expect

predictive uncertainty to be correlated with time-varying variance of the DGP. In other words,

predictive uncertainty is high when σ2
t of the DGP is high and the model is “surprised” by the

volatility. To inform the neural network of the prevailing volatility environment, we propose

to include the log of squared returns {log(r2t−K+1), . . . , log(r
2
t)} as part of the input matrix.

This follows from the use of squared returns in volatility forecasting literature (Brownlees

et al., 2011) and allows the neural network to infer the prevailing volatility environment.

Model averaging, as a special case of ensembling, is a well studied statistical method for

improving predictive power of estimators (Breiman, 1996; Goodfellow et al., 2016), and

has previously been shown to improve accuracy of financial time-series forecasting (in

Chapter 4) and sequential predictions (Raftery et al., 2010). As accuracy of both return

forecast accuracy and predictive uncertainty are important in our motivating application, we

propose to incorporate model averaging to improve return forecasts at the cost of higher

predictive uncertainty estimates. For an ensemble of M models, we compute the ensemble

forecast ỹ and predictive variance Var[ỹ] as,

ỹ =
1

M

M∑
i=1

ŷi, Var[ỹ] =
1

M

M∑
i=1

(ŷ2i +Var[ŷi])− ỹ2, (5.17)

where ŷi and Var[ŷi] are mean and predictive variance of model i, respectively. In Equa-

tion (5.17), E[ŷ2] > E[ŷ]2 (by Jensen’s inequality). Thus, predictive uncertainty of the

5.3 UNCERTAINTY QUANTIFICATION UNDER VOLATILITY CLUSTERING 137

ensemble will be higher than estimated using the marginal t-distribution alone. In Sec-

tion 5.4.3, we show that model averaging resulted in significant predictive performance

improvement and, despite the higher uncertainty estimates, resulted in the lowest NLL.

Popular tools for modelling time-varying volatility are Autoregressive Conditional Hetero-

skedasticity (ARCH) (Engle, 1982) and GARCH models. GARCH, when applied to stock

returns, assumes the same DGP as Equation (5.1). Time-varying variance σ2
t is modelled

using an ARMA model (Box et al., 1994). Parameter µt can assume a fixed value (e.g.,

sample mean or 0) or modelled using time-series models such as ARMA (leading to the

ARMA-GARCH formulation). In our proposed framework, squared returns are provided as

inputs to LSTM in similar spirit to the autoregressive terms of squared returns in GARCH.

However, our proposed framework also has few differences to ARMA-GARCH. A neural

network offers greater flexibility in modelling and can automatically discover interaction

effects between returns and volatility. For example, higher volatility is negatively correlated

with future asset returns (known as the leverage effect; Cont, 2001). By contrast, modelling of

interaction effects in additive models (such as GARCH) requires explicit specification by the

user. LSTM can also be interpreted as having dynamic autoregressive orders (as opposed to

fixed orders in GARCH). The input and forget gates of LSTM allow the network to control the

extent of long-memory depending on features of the time-series. Multi-step ahead forecasting

is an iterative process for ARMA-GARCH and forecast errors may compound. LSTM is able

to predict multi-step ahead directly. In Section 5.4.1, we apply our framework to forecast

forward 1-month U.S. stock returns using daily returns. Nonetheless, we do not directly

compare against ARMA-GARCH models for two reasons. First, in this work, we are focused

on advancing uncertainty quantification methodologies for neural networks. We argue that

several of our advances can be beneficial to both time-series and non-time-series datasets (as

demonstrated in Appendix A7.1). Second, we lean on the plethora of literature in comparing

LSTM to ARMA-variants (e.g., Siami-Namini et al., 2018) and ARCH-variants (e.g., Liu

et al., 2019).

For ease of comparison, we outline the differences of our method to Ensemble (Lakshmin-

arayanan et al., 2017) and Evidential (Amini et al., 2020) in Table 5.1.

138 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

TABLE 5.1: A comparison of Combined to Deep Ensemble and Deep Eviden-
tial regressions. Output layer refers to the structure of output layer(s) of the
network that outputs the parameters of the likelihood function.

Method Ensemble Evidential Combined
Prior None NIG Gamma
Ensemble Yes No Yes
Likelihood Gaussian Student’s t Student’s t
Output layer Single layer µ, σ2 Single layer γ, ν, α, β Multi-layer γ, σ2, α, β

5.4 Experiments

Our proposed framework is primarily focused on advancing uncertainty quantification in

time-series exhibiting volatility clustering. In this chapter, we detail experiment results in our

motivating application — time-series forecasting and uncertainty quantification on cryptocur-

rency and U.S. equities time-series datasets, to illustrate the benefits of our proposed method.

Nonetheless, SMD parameterisation, modelling distribution parameters using subnetworks

and ensemble predictions can also be applied to general applications of prediction uncertainty

quantification. In Appendix A7.1, we also compare our method to Ensemble and Evidential

using the UCI benchmark dataset. This is intended to provide readers with a direct com-

parison to the results published in Lakshminarayanan et al. (2017) and Amini et al. (2020),

demonstrating the benefits of our proposed improvements in non-time-series datasets.

5.4.1 Uncertainty quantification in cryptocurrency time-series

forecasting

In this section, we will first describe the cryptocurrency dataset, then present empirical results

on cryptocurrencies. Further confirmatory experiments on more conventional financial time-

series (U.S. equities) is presented in Section 5.4.2. The same neural network architectures are

used in the two datasets, with hyperparameters tuned independently. The hyperparameters

used are recorded in Appendix A5.

5.4 EXPERIMENTS 139

Our cryptocurrency dataset consists of hourly returns downloaded from Binance over July

2018 to December 2021, for 10 of the most liquid, non-stablecoin8 cryptocurrencies. Tickers

for these cryptocurrencies are BTC, ETH, BNB, NEO, LTC, ADA, XRP, EOS, TRX and

ETC, denominated in USDT9. Following Chapter 3 and 4, we use IC (Equation (3.2); cross-

sectionally computed for each t for all 10 cryptocurrencies, then averaged over time) as

a measure of predictive accuracy, in addition to RMSE and NLL. Data from July 2018 to

June 2019 are used for hyperparameter tuning, chronologically split into 70% training and

30% validation. Data from July 2019 to December 2021 are used for out-of-sample testing.

Networks are trained every 30 days using an expanding window of data from July 2018,

which is preferred over a rolling window approach used in Chapter 4 due to the small sample

size of the cryptocurrency dataset. Each input sequence consists of 10 days of hourly returns

r and squared returns log(r2) (i.e., each input sequence is a matrix with dimensions 240× 2),

and are used to predict forward one hour return (i.e., units of analysis and observation are

both hourly). Network topology consists of LSTM layers, followed by fully connected layers

with ReLU activation and the corresponding output layers of Ensemble and Evidential. For

Combined, we use four subnetworks as illustrated in Figure 5.1. As discussed in Section 5.1,

we consider uncertainty quantification in cryptocurrencies to be especially challenging due to

their high volatility. Note that in this section and Section 5.4.2, “forecast uncertainty” and

“uncertainty forecast” refer to estimated predictive uncertainty (i.e., sum of epistemic and

aleatoric uncertainties) for simplicity.

At this point, it is useful to remind readers that prior literature have found both datasets

to exhibit time-varying variance (e.g., Cont, 2001; Hafner, 2018), which is also visible in

Figure 5.2. We start with the main empirical results on cryptocurrency time-series forecasting,

recorded in Table 5.2. We observe that Combined has the highest average IC, lowest RMSE

and NLL in the cryptocurrency dataset. This indicates that Combined has higher cross-

sectional predictive efficacy (as measured by IC) and is able to better forecast uncertainty of

8Stablecoins are cryptocurrencies that are pegged to real world assets (e.g., U.S. Dollar). As such, they
exhibit lower volatility than other non-pegged cryptocurrencies.

9Tether (USDT) is a stablecoin that is pegged to USD. It has the highest market capitalisation amongst the
USD-linked stablecoins (Lipton, 2021).

140 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

the time-series prediction. Evidential has better (higher) IC and (lower) RMSE but worse

(higher) NLL than Ensemble.

Next, Figure 5.2, compares predicted uncertainty and actual prediction error of the three

methods to actual volatility of Bitcoin (BTC/USDT), the cryptocurrency with the highest

market capitalisation, and Cardano Ada (ADA/USDT), a cryptocurrency with relatively

smaller market capitalisation and higher volatility. Volatility forecasts are often compared

with observed volatility (typically computed over a look back window) to evaluate forecast

performance. However, the true instantaneous volatility of an asset (i.e., σ2 in Equation (5.1))

is unobservable (Ge et al., 2022). Thus, in the top row of Figure 5.2, we use the standard

deviation of hourly returns computed over each day as a proxy for σ2. In rows 2–4, for

Bitcoin, we aggregate hourly forecasts to daily data points by computing the daily RMSE of

return forecasts
√

1
24

∑23
k=0(yt−k − ŷt−k)2 (denoted

√
(y − ŷ)2) computed from hourly return

forecasts, and the daily root mean predictive uncertainty
√

1
24

∑23
k=0 Var(ŷt−k) (denoted√

Var(ŷ)), for each t = 24, 48, 72, . . . , T (note that t for cryptocurrency is in hourly units).

Comparing the top row of Figure 5.2 to the root return forecast error of row 2-4 (blue line),

we observe that forecast error spikes when volatility of the asset spikes. This is expected,

as the spike in volatility leads to large forecast errors. Comparing the bottom three rows

of Figure 5.2, which correspond to Combined, Ensemble and Evidential, respectively. We

observe that Combined’s predicted uncertainty of µ̂ tracks actual forecast error much more

closely than Evidential and Ensemble. This appears to be especially true during periods of

elevated volatility (e.g., during March 2020), which are important to investors. Overestimation

TABLE 5.2: Comparing Ensemble, Evidential and Combined on average IC,
RMSE and NLL for cryptocurrencies time-series forecasts. Average result
and standard deviation over 10 trials for each method. Best method for each
dataset is highlighted in bold.

Metric Ensemble Evidential Combined

IC (%) 2.78± 1.09 3.94± 1.84 9.87± 3.17
RMSE (%) 0.874± 0.022 0.874± 0.003 0.867± 0.001
NLL −3.74± 0.10 −3.24± 0.02 −4.14± 0.01

5.4 EXPERIMENTS 141

0.00

0.02

0.04

0.06

Standard deviation of BTC/USDT hourly returns on each day Standard deviation of ADA hourly returns on each day

0.00

0.02

0.04

0.06

Combined: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

Combined: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

0.00

0.02

0.04

0.06

Ensemble: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

Ensemble: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

20
19

-0
7

20
19

-1
0

20
20

-0
1

20
20

-0
4

20
20

-0
7

20
20

-1
0

20
21

-0
1

20
21

-0
4

20
21

-0
7

20
21

-1
0

0.00

0.02

0.04

0.06

Evidential: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

20
19

-0
7

20
19

-1
0

20
20

-0
1

20
20

-0
4

20
20

-0
7

20
20

-1
0

20
21

-0
1

20
21

-0
4

20
21

-0
7

20
21

-1
0

Evidential: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

FIGURE 5.2: First row: Standard deviation of hourly return of BTC/USDT
and ADA/USDT on each day. Second–fourth rows: Actual prediction error
and predicted uncertainty Var(ŷ) of Combined, Ensemble and Evidential
for BTC/USDT (left column) and ADA/USDT (right column), respectively.
Square root of the average squared error and uncertainty over each day shown.

of predictive uncertainty is severe for Ensemble in Bitcoin, where predictive uncertainty can

sometimes be significantly higher than observed forecast error.

Note that the “block-like” appearances of uncertainty forecasts of both Ensemble and Eviden-

tial are due to periodic training (monthly for cryptocurrencies and yearly for U.S. equities) and

the failure to generalise the prevailing volatility environment. During training, the optimiser

updates network weights W and bias b (which is analogous to the intercept in linear models).

When the network fails to generalise, it minimises the loss function by updating the bias rather

than the weights. Thus, outputting the same constant that do not vary with the input, until the

network is re-trained in the following month. This produces the block-like appearances of

Ensemble and Evidential, and is indicative of the network setup (e.g., no separate modelling of

142 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

hyperparameters) being unsuitable to this class of problems. Lastly, Evidential underestimates

forecast error during heightened volatility (e.g., March 2020) and overestimates forecast error

under periods of low volatility (e.g., July 2020). In Appendix A9, we investigate the addition

of separate modelling of distribution hyperparameters for Evidential, and conclude that both

squared returns and separate hyperparameter modelling are required to achieve uncertainty

forecasts that closely tracks time-varying volatility. We observe similar visual characteristics

in the predicted uncertainty of other cryptocurrencies for all three methods.

5.4.2 Further results on U.S. equities

In this section, we provide empirical results of a further study on a conventional financial

time-series dataset, quantifying forecast uncertainty in U.S. equities. Mimicking the S&P 500

index universe, the dataset consists of daily returns downloaded from CRSP over 1984 to 2020,

for the 500 largest stocks10 listed on NASDAQ, NYSE and NYSE American. Data from 1984

to 1993 are used for hyperparameter tuning, while 1994 to 2020 are used for out-of-sample

testing. The network is refitted every January using a rolling 10-year window. We retain the

same hyperparameter tuning setup to the cryptocurrency dataset, each input sequence consists

of 240 trading days (approximately one-year) of daily returns r and squared returns log(r2)

(rather than 250 trading days in Chapter 4), forecasting forward 20-day (approximately one-

month) return and its uncertainty. Given that 240 days cover 95% of the 252 trading days per

year, we do not expect this choice to have a material impact on the experiment results when

compared to Chapter 4. Note that the unit of analysis is monthly and unit of observation is

daily. One-month is a popular forecast horizon for U.S. equities in literature (e.g., Gu et al.,

2020 and is used in Chapter 3 and 4), which motivated our choice of forecast horizon. The

basic setup is similar to the financial time-series forecasting experiment in Chapter 4. The

same models as the cryptocurrency experiment are used with separate hyperparameter tuning.

Further details on hyperparameters are provided in Appendix A5.

Table 5.3 records the empirical results on U.S. equities. Again, we observe that Combined

has the highest IC, and lowest RMSE and NLL out of the three methods. This demonstrates

10The list of stocks is refreshed every June, keeping the same stocks until the next rebalance.

5.4 EXPERIMENTS 143

TABLE 5.3: Comparing Ensemble, Evidential and Combined on average IC,
RMSE and NLL for U.S. equities. Average result and standard deviation over
10 trials for each method. Best method for each dataset is highlighted in bold.

Metric Ensemble Evidential Combined

IC (%) 0.40± 0.66 0.09± 0.93 1.22± 0.65
RMSE (%) 9.426± 0.044 9.433± 0.033 9.379± 0.020
NLL −1.65± 0.17 −0.82± 0.03 −1.71± 0.01

the usefulness of Combined in quantifying forecast uncertainty in both time-series with

extreme volatility (e.g., cryptocurrencies) and in conventional financial time-series. IC in U.S.

equities are materially lower for all three methods compared to the cryptocurrency dataset.

We hypothesise that this is due to both the difference in forecast horizon and maturity of the

U.S. market.

Figure 5.3 compares the predicted uncertainty and actual prediction error of the three methods

to actual volatility of Chevron Corp., a major U.S. oil producer, and IBM, a major U.S.

technology company. As the unit of analysis is monthly, we plot the absolute error between

observed monthly returns and predicted returns (denoted |y − ŷ|) in the top row of Figure 5.3,

and square-root of forecast uncertainty (denoted
√
Var(ŷ)) in rows 2–4 for Combined,

Ensemble and Evidential, respectively. We observe similar results as the cryptocurrency

experiment in the bottom three rows of Figure 5.3. Predicted uncertainty of Combined is

observed to track actual forecast error more closely than Ensemble, especially during the

three market crashes — the Dot-com bubble (2000–01), U.S. recession over 2008–09 and the

2020 pandemic. For Chevron, we observe an additional spike of volatility during the 2015 oil

shock. Evidential produced uncertainty forecasts that are visually similar to Combined, but

block-like features can still be seen in 1999 and 2012. Ensemble’s predicted uncertainty for

IBM jumped cover 2000–01, coinciding with a period of elevated volatility for the stock. In

Figure 5.3, Ensemble exhibited less block-like appearance than in Figure 5.2. This indicates

that Ensemble achieved better generalisation performance on the U.S. equities dataset than

on the cryptocurrency dataset. However, Ensemble’s predicted uncertainty for Chevron saw

the same block-like jump which did not coincide with higher volatility of the stock. We

hypothesise that generalisation for Ensemble is still problematic on the U.S. equities dataset

144 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

0.0

0.1

0.2

0.3
Absolute Value of Chevron Monthly Return Absolute Value of IBM Monthly Return

0.0

0.1

0.2

0.3
Combined: Forecast Error and Forecast Uncertainty

|y y|

Var(y)

Combined: Forecast Error and Forecast Uncertainty
|y y|

Var(y)

0.0

0.1

0.2

0.3
Ensemble: Forecast Error and Forecast Uncertainty

|y y|

Var(y)

Ensemble: Forecast Error and Forecast Uncertainty
|y y|

Var(y)

1996
2000

2004
2008

2012
2016

2020
0.0

0.1

0.2

0.3
Evidential: Forecast Error and Forecast Uncertainty

|y y|

Var(y)

1996
2000

2004
2008

2012
2016

2020

Evidential: Forecast Error and Forecast Uncertainty
|y y|

Var(y)

FIGURE 5.3: First row: Absolute monthly returns of Chevron (left) and
IBM (right). Second–fourth rows: Actual prediction error and predicted
uncertainty Var(ŷ) of Combined, Ensemble and Evidential for Chevron and
IBM, respectively. Square root of the monthly forecast error and forecast
uncertainty shown.

and that Ensemble failed to generalise the impact of heightened volatility environment on

different stocks.

5.4.3 Ablation study

Next, we test the effects of removing each of the following for Combined: 1) model averaging;

2) single output layer for all distribution parameters (same as Evidential); 3) using return time-

series only (i.e., no squared returns). The results are recorded in Table 5.4 and in Figure 5.4.

As discussed in Section 5.3.2, model averaging (Equation (5.17)) will lead to higher predictive

uncertainty estimates. Comparing results in Table 5.4 to the main results in Table 5.2 and

Table 5.3, we observe that model averaging has a large negative impact on IC and NLL. IC

5.4 EXPERIMENTS 145

TABLE 5.4: Ablation studies: In each column, we remove model averaging
(No Averaging), separate modelling of distribution parameters (Single Output)
and using return time-series only (Returns-only) from Combined for crypto-
currencies (left) and U.S. equities (right), respectively. Average result and
standard deviation over 10 trials are reported for each method. Note that
cryptocurrency returns are hourly and U.S. stock returns are monthly.

Cryptocurrency U.S. equities

Metric No Averaging
Single
Output

Returns
Only No Averaging

Single
Output

Returns
Only

IC (%) 4.48± 2.80 8.23± 2.91 10.46± 2.04 0.92± 0.65 1.87± 1.06 1.21± 0.73
RMSE (%) 0.868± 0.001 0.872± 0.002 0.866± 0.002 9.392± 0.020 9.398± 0.029 9.384± 0.046
NLL −3.35± 0.01 −4.04± 0.02 −3.95± 0.02 −0.88± 0.01 −1.63± 0.04 −1.34± 0.04

0.005

0.010

0.015

0.020

0.025

0.030

Forecast Uncertainty of BTC/USDT (square-root)
Combined
No Averaging
Single Output
Returns-only

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07
2021-10

2022-01

0.01

0.02

0.03

0.04

0.05
Forecast Uncertainty of ADA/USDT (square-root)

Combined
No Averaging
Single Output
Returns-only

(a) Uncertainty of BTC/USDT and ADA/USDT

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Forecast Uncertainty of Chevron (square-root)
Combined
No Averaging
Single Output
Returns-only

1996
2000

2004
2008

2012
2016

2020

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Forecast Uncertainty of IBM (square-root)
Combined
No Averaging
Single Output
Returns-only

(b) Uncertainty of Chevron and IBM

FIGURE 5.4: Square-root of predicted uncertainty Var(ŷ) of Combined,
without model averaging (No Averaging), single output layer (Single Out-
put) and using returns only (Returns-only).

is 55% and 25% lower for cryptocurrencies and U.S. equities, respectively. While NLL

is higher by 0.8 in both cases (lower is better), indicating a worse overall fit. However, it

146 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

does not appear to impede the network’s ability to model time-series forecast uncertainty

(as observed in Figure 5.4). Moreover, comparing Combined (with model averaging) to

No Averaging (without model averaging) in Figure 5.4, we observe very similar estimated

predictive uncertainties with and without model averaging (as the orange and blue lines track

each other closely). This indicates a favorable trade-off between significantly improved

forecast performance and practically the same predictive uncertainty estimates. Using a single

output layer for all distribution parameters leads to marginally worse NLL. IC is lower in

cryptocurrencies but marginally higher in U.S. equities. While using returns only leads to

marginally higher IC but marginally lower on NLL in cryptocurrency, and lower IC and NLL

in U.S. equities. From Figure 5.4, the block-like appearances indicate that both using single

output layer and using returns only result in the network failing to closely track time-varying

variance of the DGP. This suggests that both squared returns and separate modelling of

distribution parameters are required to model time-varying forecast uncertainty.

5.5 Conclusions

Our motivating application of portfolio selection depends on both forecasts and forecast

uncertainties. This is a challenging problem due to both the low signal-to-noise ratio in

financial markets (Gu et al., 2020) and the presence of volatility clustering. To this end, we

present a method for the simultaneous forecasting asset returns and modelling of forecast

uncertainty in presence of volatility clustering. Our proposed method extends and simplifies

the work of Lakshminarayanan et al. (2017) and Amini et al. (2020). We propose to use a

SMD (which uses a Gamma prior for scale uncertainty ν) as a simpler alternative to a NIG

prior, in which a Normal prior is placed on µ and an Inverse-Gamma prior on σ2). Parameters

of SMD are modelled using separate subnetworks. Together with ensembling and the use

of second order of returns as inputs, we show that our proposed method can successfully

model time-varying variance of the DGP, while providing superior forecasting performance

than two state-of-the-art neural network uncertainty quantification methods — Evidential and

Ensemble. This is illustrated through the successful quantification of forecast uncertainty

of two financial time-series datasets: cryptocurrency and U.S. equities. Our proposed SMD

5.5 CONCLUSIONS 147

formulation offers an avenue to resolve some of the criticisms of Meinert et al. (2022) and

Bengs et al. (2023). In particular, our SMD parameterisation has three effective parameters

and thus does not have any unresolved degrees of freedom. We can set α = β, which

leads to a marginal t-distribution where the three distributional parameters (γ, σ2, α) relate

directly to the location, scale and shape of the t-distribution, without the need of a hierarchical

model. In this formulation, epistemic uncertainty is assumed to be the difference between the

predictive (t-distributed) and aleatoric (Normal-distributed) uncertainties. This assumption

provides for a simpler model but lacks the granular attribution between aleatoric and epistemic

uncertainties afforded by the NIG prior in Evidential. However, as Meinert et al. (2022)

has pointed out, the granular control comes at the cost of an unresolved degree of freedom.

Thus, users are encouraged to weigh the trade-offs in choosing a method to deploy. This

also makes for a potential future research direction. We show empirically that our method

is able to accurately predict forecast errors, similar to the success Evidential demonstrated

in other real world applications (e.g., see Liu et al., 2021; Soleimany et al., 2021; Cai et al.,

2021; Singh et al., 2022; Li and Liu, 2022). From a finance application perspective, forecast

uncertainty can be used to size bets, or as advanced warning to protect the portfolio from

downside risk. For example, if forecast uncertainty reaches a certain threshold, an investor

could purchase portfolio insurance (e.g., put options) or liquidate positions to reduce risk. The

ability to attribute epistemic and aleatoric uncertainties may also allow for more advanced

portfolio optimisation techniques to be developed in future research (e.g., place different risk

aversions on the two sources of uncertainties). Lastly, uncertainty quantification in time-series

applications is a relatively under-explored area of literature. We believe this work can lead to

further advancements of uncertainty quantification in complex time-series.

CHAPTER 6

Conclusion

Neural networks have made tremendous strides across many domains over the past decade,

from mastering the game of Go1, self-driving cars, medical diagnosis, to the personal assistant

in smart phones carried by millions of people worldwide. Financial markets have proved to

be a challenging problem for econometricians and statisticians. As discussed in Section 1.5,

financial markets can suffer from endogenous and exogenous shocks, the distribution of

asset returns has heavy tails, signal-to-noise ratio is low and, most inconveniently, the data

generation process changes over time. Given the success neural networks have achieved in

other domains, this begs the question — can neural networks advance the state-of-the-art in

financial market applications? At the conclusion of this thesis, we believe we are a step closer

to the opening of the floodgates but with much more still to be done. In the rest of this chapter,

we will first outline our contributions to literature, then discuss future research directions on

this topic.

6.1 Contributions to machine learning in portfolio

management

In this thesis, we have provided an overview of the mechanics of a quantitative investment

process, outlined the relevant finance theory that underpins stock return predictability (or the

lack of), discussed a number of challenges in applying conventional statistical and machine

learning tools in financial markets, identified several potential ways machine learning can be

1Go is an abstract board game and is considered as the most challenging of classic games for artificial
intelligence (Silver et al., 2016).

148

6.1 CONTRIBUTIONS TO MACHINE LEARNING IN PORTFOLIO MANAGEMENT 149

used to improve the quantitative investment process, and proposed three distinct advances to

deep learning that covers three related applications in financial market predictions.

In Chapter 3, we address the time-varying DGP problem in fnancial markets in a cross-

sectional prediction application of neural networks. We proposed the Online Early Stopping

algorithm for training neural networks online. Online training of a neural network is an

online optimisation problem. In classical online optimisation literature, online optimisation

algorithms are analysed in terms of regret — a measure of performance loss compared to

a theoretical (but unattainable) optimum. We provide a worst-case performance bound that

conforms with the notion of regret in a non-convex optimisation context, by showing that the

OES algorithm can achieve tracking performance no worse than a function of the variance

of the DGP. This provides an intuitive interpretation of the worst-case performance of the

algorithm, where its ability to track a moving DGP is bounded by the variance of the DGP

(i.e., the higher the time variability of the DGP, the more difficult it is to track and the

higher the expected loss). We compare OES to a static neural network2 and the DTS-SGD,

a state-of-the-art non-convex online optimisation algorithm, in simulated data and showed

superior performance in tracking a time-varying DGP. We highlight the usefulness of OES

to practitioners by comparing OES to the static neural network used in Gu et al. (2020),

demonstrating competitive performance and the ability to track changes in financial markets

over time. In particular, we show that the OES-trained network reacts quicker (relative to the

static network) to market downturns and recoveries, such as the global financial crisis and

the 2015 oil shock. Finally, we show that the ensemble prediction of the static network and

OES-trained network delivered the best prediction performance. Thus, we argue that OES

can be a useful tool for practitioners in predicting cross-sectional stock returns.

In Chapter 4, we address the low signal-to-noise problem in financial markets in a time-series

prediction application of neural networks. We propose the Supervised Temporal Autoencoder

architecture, using a supervised autoencoder to regularise a temporal convolutional network.

We argue that due to the low signal-to-noise in financial markets, machine learning should fo-

cus on “robust” learning as opposed to “deep” learning. The proposed supervised autoencoder
2In this context, a static neural network refers to a network that is trained using all available data and does

not vary with time.

150 6 CONCLUSION

imposes a non-parametric functional form on the latent representation of the input sequence.

We argue that this is more flexible than a fixed parametric functional form (e.g., a linear

time trend). The reconstruction task provides interpretability, allowing users to inspect the

smoothed reconstructed sequence to visualise the features retained by the neural network. We

provide a template for financial time-series forecasting directly using price series, alleviating

the need for handcrafted features. In the application test, we compare STAE to momentum,

a prominent stock return predictor documented in finance literature, and showed material

improvement in predictive performance — a finding that is economically meaningful to

practitioners. We establish a benchmark of sequential neural network architectures in financial

time-series forecasting, demonstrating superior predictive performance of STAE over TCN,

LSTM and transformers. We show that the addition of the auxiliary task, even at a small

weight, is beneficial to the prediction task. We document declining predictive performance of

momentum, an asset pricing anomaly in finance literature, and predictions of neural networks.

We conjecture that markets are becoming increasingly efficient and that information content

of stock prices has decreased over time.

In Chapter 5, we advance the state-of-the-art in incorporating risk, in the form of predictive

uncertainty, into neural network forecasts. Risk forecasting is of paramount importance in

portfolio optimisation and can influence optimal bet sizes. We combine and extend two

state-of-the-art methods, Ensemble (Lakshminarayanan et al., 2017) and Evidential (Amini

et al., 2020), into a unified framework for quantifying time-series forecast uncertainty of

neural networks. The unified framework consists of four improvements. Firstly, we propose

to use the SMD instead of the NIG prior used in Evidential, arguing that SMD is simpler

and offers superior numerical properties than the NIG prior, which would allow a first-order

optimiser (such as SGD) to more easily traverse the loss landscape3. Secondly, we argue that

in cases where the input has complex relations with the distribution hyperparameters (such

as in financial time-series forecasting), it is beneficial to afford the neural network of the

flexibility to non-linearly transform the common latent representation of the input sequence

generated by the hidden layers (i.e., convolutional or recurrent layers). This is in contrary
3Loss landscape refers to the hyperplane spanned by network parameters (Li et al., 2018). A smooth and

convex loss landscape can be easily traversed by a first-order optimiser. Conversely, a highly non-convex loss
landscape with saddle points and many local minima will be difficult to traverse.

6.2 FUTURE RESEARCH 151

to the output layers used in Ensemble and Evidential, which compute hyperparameters of

the distribution as linear combinations of the latent representation. Thirdly, we propose

to incorporate ensembling, which was shown to significantly improve forecast accuracy in

Chapter 4. Lastly, we propose to incorporate the second moment of returns to inform the

network of the prevailing volatility environment, which will directly affect forecast uncertainty.

We provide evidence of the benefits of the framework and each of the four improvements

using the UCI benchmark datasets, and in cryptocurrencies and U.S. equities forecasts. In

particular, using the UCI dataset and an identical network topology, we show that SMD

delivers superior uncertainty quantification performance compared to the NIG prior. We

believe forecast uncertainty will be a useful input into the portfolio optimisation process, such

as for determining optimal bet size (high forecast uncertainty attracts a lower limit) or for

scaling the risk model (Equation (1.4)).

6.2 Future research

As discussed in Chapter 1, financial markets represent one of the most challenging areas for

the application of machine learning. In this section, we detail several potential advances of

machine learning in future research.

Financial markets are endogenous. That is, one’s own trading leaves a trail of footprints on

asset prices (by incurring market impact and perturbing the share price). The same patterns

may also be discovered by other investors which leave the same footprints. Financial markets

are also impacted by exogenous shocks such as pandemics, wars and recessions. Thus,

time-varying models have an important role in portfolio management. In Chapter 3, we have

introduced OES and shown that, in theory, it offers superior predictive performance over

a stationary model. We have not investigated realistic performance in a portfolio setting,

after accounting for transaction costs and portfolio constraints (e.g., limits on how much the

portfolio can bet on any single stock or industry). It is conceivable that actual realisable

benefits of a time-varying model are concave with respect to the time-variability of the model

due to higher trading. A model with moderate time-variability is likely better than a stationary

152 6 CONCLUSION

model after transaction costs. However, a highly time-varying model may not be better than a

moderately time-varying model if transaction costs outstrip further improvements in tracking

the time-varying DGP more closely. Thus, future research on this topic can investigate

portfolio-level impacts of time-varying models and consider regularisations of OES, such as

smoothing of regret in Hazan et al. (2017).

Efficient trading has been discussed in Section 1.6.4. Whilst not addressed in this thesis, this

is a worthy topic within the broader domain of machine learning in portfolio management and

is an essential component of autonomous trading systems. Stocks exhibit various intraday

patterns, such as U-shaped volume distribution (higher at the beginning and end) throughout

the trading day (Wood et al., 1985; Jain and Joh, 1988; McInish and Wood, 1992; Eaves

and Williams, 2010), which is also associated with similar U-shaped intraday volatility

(Lockwood and Linn, 1990; Eaves and Williams, 2010). Volume and volatility patterns form

useful inputs to any model that aims to minimise market impact by predicting expected volume

during the day. Future work can leverage recent advances in deep reinforcement learning4

(François-Lavet et al., 2018), combining with new features to extend the work by Nevmyvaka

et al. (2006) on using reinforcement learning for optimal trade execution. Another potential

direction is to extend the work by Webber (2017), in incorporating concept drifts (Gama et al.,

2014) into deep reinforcement learning to address time-varying financial markets (similar to

our work in Chapter 3).

Extracting information from text has been discussed in Section 1.6.4. There is a large swathe of

text information about companies, such as management’s discussion of business performance

in the annual report, may contain useful information for predicting future return. A significant

portion of a financial analyst’s job is to transform textual information about a company, such

as the company’s strategy and the competitive landscape, into future revenue and earnings

expectations (Damodaran, 2006). For example, a biotechnology company developing a life-

saving drug may see significant revenue in the future but is currently loss-making. Recently,

4Reinforcement learning is the task of learning a policy (i.e., sequence of actions) in an environment in
order to maximise cumulative rewards (Bishop, 2006; Murphy, 2012; François-Lavet et al., 2018). This requires
estimating future expected reward for each action. Deep reinforcement learning is to use neural networks to
estimate future reward.

6.2 FUTURE RESEARCH 153

Araci (2019) used the BERT model (which was trained using the Wikipedia corpus, Devlin

et al., 2019) and retrained the final layers using financial news articles to learn a finance-

specific language model. I argue that the resultant model understands the grammar used in

financial text, but is intrinsically devoid of understanding of the context. In the biotechnology

firm example, an article may discuss the drug that the company is developing, but not the

financial implications. Such second order effect is inferred from the context. Advances in this

domain may combine natural language progressing and concept learning (Mitchell, 1997) in

the context of financial markets.

In Chapter 4, we show that it is possible to learn predictive patterns directly from the share

price time-series. Potential improvements to both the application of financial time-series

forecasting and the method of learning in noisy environments are discussed in Section 4.4.

A natural extension of this work is to combine cross-sectional forecasting and time-series

forecasting, where the neural network is provided with time-series of all features relating to

the company, such as stock prices, company financials and social media sentiment. Learning

weak signals from such a large and diverse feature set will pose a significant challenge.

However, I am convinced that if the financial industry were to advance towards highly tailored,

stock-specific models, the advances will be reminiscent of the model described above. Such

model can leverage methods of supervised autoencoding as described in Chapter 4, where the

autoencoder performs dimensionality reduction which may assists with processing from a

large feature set.

In Chapter 5, we have proposed a framework for quantifying uncertainty in financial time-

series predictions. We suggest that forecast uncertainty can be used to determine bet sizes

and serves as an input into the portfolio construction process. The quantified uncertainty is

a scalar value that is specific to the stock. However, uncertainty may be correlated between

stocks. Thus, a natural extension is to produce variance-covariance-style uncertainty that

captures uncertainty covariance between a cohort of stocks. The uncertainty covariance

matrix can then substitute or supplement the conventional variance-covariance matrix of asset

returns used in mean-variance optimisation, as the latter neglects parameter uncertainty in

return forecasts. Variance-covariance matrices are subject to the curse of dimensionality. For

154 6 CONCLUSION

example, consider the Russell 3000 index used in Chapter 4. Estimating a variance-covariance

matrix for this universe involves estimating 3000× 3000 = 9million values. As discussed in

Section 2.5.2, one of the advantages of CNN over fully connected neural network in image

recognition problems is parameter sharing, which greatly reduces the number of parameters

required by representing common patterns with a small number of parameters organised in a

kernel. This property of convolution layers may offer a viable avenue to solve the curse of

dimensionality problem in uncertainty covariance estimation.

The three advances introduced in this thesis relates to: online learning in a cross-sectional

prediction context (Chapter 3), noise-robust learning in a time-series prediction context

(Chapter 4), and forecast uncertainty quantification (Chapter 5). All three topics play important

roles in quantitative investing. We argue that the three advances can be combined into a

unified framework to simultaneously forecast returns, provide predictive uncertainty, and

adapt to changes in the DGP of financial markets. We propose the following neural network

architecture which can be evaluated in future work. The network is comprised of eight

subnetworks:

• Subnetwork 1: Fully connected layers to process cross-sectional firm features (as

per Chapter 3).

• Subnetwork 2: An encoder of LSTM layers to process daily stock returns (as per

Chapter 5).

• Subnetwork 3: A decoder with fully connected layers which reconstruct all firm

features using the latent representation outputted by Subnetwork 1.

• Subnetwork 4: A decoder of LSTM layers which reconstruct the daily return se-

quence using the latent representation outputted by Subnetwork 2.

• Subnetwork 5: Fully connected layers which combine the output of Subnetwork 1

and 2.

• Subnetwork 6-8: Outputs parameters γ, σ2 and α of the SMD to simultaneously

estimate both returns and predictive uncertainty.

6.2 FUTURE RESEARCH 155

The loss function is the NLL of the marginal t-distribution of SMD, plus reconstruction

error of both firm features (output of Subnetwork 3) and time-series of returns (output of

Subnetwork 4). To adapt to time-varying DGP, the network can be trained using OES.

However, we envisage three potential challenges with this approach. First, as the network

is quite large, one may encounter difficulties in training the entire network simultaneously.

To solve this, one may employ transfer learning in training the two autoencoders for firm

features (Subnetwork 1 and 3) and return series (Subnetwork 2 and 4). Transfer learning has

been successfully applied in natural language processing, where a language model (typically

an encoder-decoder) is trained on a large corpus of text to predict the next word, given the

preceding words. The pre-trained language model is then fine tuned on downstream tasks

such as sentiment analysis and question-answering (Ruder et al., 2019; Han et al., 2021). In

a similar vein, we can first pre-train each encoder-decoder pair (Subnetwork 1 and 3, and

Subnetwork 2 and 4) on encoding and decoding firm features and return series, respectively.

The pre-trained encoder-decoder pairs can then be used in the final amalgamated network

to perform return prediction. Second, the OES algorithm involves training on a the t − 2

cross-section and validating on the t− 1 cross-section. For such a large network, one may

find that one cross-section contains insufficient data to train the network. To solve this, one

may expand the number of periods used to train the network. However, we caution that

expanding the look back window will lead to the algorithm to fit the average DGP in the look

back window. Thus, losing its ability to closing track the time-varying DGP. Third, the scales

of the three components of the loss function are different. Thus, care must be taken during

hyperparameter search to determine the optimal weight given reconstructing firm features

and return series. The proposed network architecture outputs both the return forecast and

predictive uncertainty, which can then be used in downstream portfolio optimisation tasks.

Finally, in this thesis, we have proposed three advances that address various subtopics of

applying deep learning to portfolio management, with much more still to be done. Deep

learning has contributed to the advances of numerous fields of science. One particular

advancement is DeepMind’s AlphaFold5, a machine learning system that can predict the

5DeepMind is a subsidiary of Alphabet Inc. that focuses on machine learning research. https://www.
deepmind.com/research/highlighted-research/alphafold.

https://www.deepmind.com/research/highlighted-research/alphafold
https://www.deepmind.com/research/highlighted-research/alphafold

156 6 CONCLUSION

structure of over 200 million proteins and promises to speed up drug development. As a

trained bioinformatician, I find this development exciting for the field of medical research and

sobering for the finance industry. The main impediments to leaps in applying deep learning to

financial markets are well discussed in Section 1.5. We, as finance practitioners, can dream

that one day deep learning will shine some light on this dark corner of social science.

Bibliography

Balaji Lakshminarayanan, AlexanderPritzel, and Charles Blundell. Simple and scalable

predictive uncertainty estimation using deep ensembles. In Guyon et al. (2017), pages

6405–6416. ISBN 9781510860964.

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential

regression. In Larochelle et al. (2020), pages 14927–14937.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.

Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Information

Processing Systems 25, pages 1097–1105, Lake Tahoe, NV, USA, 2012. Curran Associates,

Inc.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. In Bengio and LeCun (2015). URL http://arxiv.org/abs/

1409.1556.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-

tions. In Grauman et al. (2015), pages 1–9. doi: 10.1109/CVPR.2015.7298594.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding

for face recognition and clustering. In Grauman et al. (2015), pages 815–823. doi:

10.1109/CVPR.2015.7298682.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Lourdes Agapito, Tamara Berg, Jana Kosecka, and Lihi Zelnik-

Manor, editors, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, pages 770–778, Las Vegas, NV, USA, 2016. IEEE.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recognition with

deep recurrent neural networks. In IEEE International Conference on Acoustics, Speech

157

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

158 BIBLIOGRAPHY

and Signal Processing, ICASSP 2013, pages 6645–6649. IEEE, 2013. doi: 10.1109/

ICASSP.2013.6638947.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural

network acoustic models. In Sanjoy Dasgupta and David McAllester, editors, Proceedings

of the 30th International Conference on Machine Learning, ICML’13. JMLR.org, 2013.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Proceedings of the 25th Interna-

tional Conference on Machine Learning, ICML’08, pages 160–167. ACM, 2008. ISBN

9781605582054. doi: 10.1145/1390156.1390177.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. In Ghahramani et al. (2014), pages 3104–3112.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,

Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Timothy Lillicrap,

Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering

the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,

2016. ISSN 1476-4687.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,

Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin

Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. In arXiv,

2016.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex-

ander Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A

generative model for raw audio. In arXiv, 2016. URL https://arxiv.org/abs/

1609.03499.

Eunhee Kang, Junhong Min, and Jong Chul Ye. Wavenet: a deep convolutional neural

network using directional wavelets for low-dose x-ray ct reconstruction. Medical Physics,

44:360–375, 10 2017. doi: 10.1002/mp.12344.

Othmane Mounjid and Charles-Albert Lehalle. Improving reinforcement learning algorithms:

towards optimal learning rate policies. In arXiv, 2021.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499

BIBLIOGRAPHY 159

Jeremy D. Turiel and Tomaso Aste. Peer-to-peer loan acceptance and default prediction

with artificial intelligence. Royal Society Open Science, 7(6):191649, 2020. doi: 10.

1098/rsos.191649. URL https://royalsocietypublishing.org/doi/abs/

10.1098/rsos.191649.

Richard Grinold and Ronald Kahn. Active Portfolio Management: A Quantitative Approach

for Producing Superior Returns and Controlling Risk. McGraw-Hill Education, 1999.

Nga Pham. The australian superannuation system. Technical report, Monash University,

Victoria, Australia, 2019. URL https://www.monash.edu/__data/assets/

pdf_file/0016/2010553/The-Australian-superannuation-system_

v3.pdf.

Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical asset pricing via machine learning.

The Review of Financial Studies, 33(5):2223–2273, 02 2020. ISSN 0893-9454. doi:

10.1093/rfs/hhaa009.

Pamela Peterson Drake and Frank J. Fabozzi. Financial Instruments, Markets, and Intermedi-

aries, chapter 2, pages 13–35. John Wiley & Sons, Inc., 2010.

Frank J. Fabozzi, Frank J. Jones, Robert R. Johnson, and Pamela P. Drake. Fundamentals of

Common Stock, chapter 8, pages 207–227. Volume 1 of Fabozzi and Markowitz (2011),

2011a. ISBN 9781118267028.

Yakov Amihud. Illiquidity and stock returns: cross-section and time-series effects. Journal of

Financial Markets, 5(1):31–56, 2002. ISSN 1386-4181.

Aswath Damodaran. Lecture notes in corporate finance, Feb 2022.

Eugene F. Fama. Efficient capital markets: A review of theory and empirical work. The

Journal of Finance, 25(2):383–417, 1970.

Harry Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952. ISSN 00221082,

15406261.

William F. Sharpe. Capital asset prices: A theory of market equilibrium under conditions of

risk. Journal of Finance, 19(3):425–442, 1964. ISSN 00221082, 15406261.

Michael C. Jensen. The performance of mutual funds in the period 1945-1964. Journal of

Finance, 23(2):389–416, 1968. ISSN 00221082, 15406261. URL http://www.jstor.

org/stable/2325404.

https://royalsocietypublishing.org/doi/abs/10.1098/rsos.191649
https://royalsocietypublishing.org/doi/abs/10.1098/rsos.191649
https://www.monash.edu/__data/assets/pdf_file/0016/2010553/The-Australian-superannuation-system_v3.pdf
https://www.monash.edu/__data/assets/pdf_file/0016/2010553/The-Australian-superannuation-system_v3.pdf
https://www.monash.edu/__data/assets/pdf_file/0016/2010553/The-Australian-superannuation-system_v3.pdf
http://www.jstor.org/stable/2325404
http://www.jstor.org/stable/2325404

160 BIBLIOGRAPHY

Robert Oerter. The Theory of Almost Everything: The Standard Model, the Unsung Triumph

of Modern Physics. Plume, 1 edition, 2006.

The Nobel Foundation. The sveriges riksbank prize in economic sciences in memory of

alfred nobel 1990, Oct 1990. URL https://www.nobelprize.org/prizes/

economic-sciences/1990/summary/. 2022-09-01.

Rolf W. Banz. The relationship between return and market value of common stocks. Journal

of Financial Economics, 9(1):3–18, 1981.

Dennis Stattman. Book values and stock returns. In The Chicago MBA: A Journal of Selected

Papers, volume 4, pages 25–45, 1980.

Barr Rosenberg, Kenneth Reid, and Ronald Lanstein. Persuasive evidence of

market inefficiency. Journal of Portfolio Management, 11(3):9–16, Spring

1985. URL http://ezproxy.lib.uts.edu.au/login?url=https:

//search-proquest-com.ezproxy.lib.uts.edu.au/docview/

195568751?accountid=17095. Name - New York Stock Exchange; Copy-

right - Copyright Euromoney Institutional Investor PLC Spring 1985; Last updated -

2015-05-25.

Campbell R. Harvey, Yan Liu, and Heqing Zhu. ... and the cross-section of expected returns.

The Review of Financial Studies, 29(1):5–68, 2016.

Eugene F. Fama and James D. MacBeth. Risk, return, and equilibrium: Empirical tests.

Journal of Political Economy, 81(3):607–637, 1973. doi: 10.1086/260061.

Andrew Alford, Robert Jones, and Terence Lim. Quantitative Equity Portfolio Management,

chapter 11, pages 287–306. Volume 1 of Fabozzi and Markowitz (2011), 2011. ISBN

9781118267028.

Guofu Zhou and Frank J. Fabozzi. Factor Models, chapter 5, pages 103–124. Volume 1 of

Fabozzi and Markowitz (2011), 2011. ISBN 9781118267028.

Jeffrey Marc Wooldridge. Introductory Econometrics: A Modern Approach. South-Western,

4th edition, 2008. ISBN 9780324581621.

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quant-

itative Finance, 1:223–236, 2001.

https://www.nobelprize.org/prizes/economic-sciences/1990/summary/
https://www.nobelprize.org/prizes/economic-sciences/1990/summary/
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/195568751?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/195568751?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/195568751?accountid=17095

BIBLIOGRAPHY 161

Sara Salinas and Michelle Castillo. Facebook just suffered its worst day

ever. CNBC, 2018. URL https://www.cnbc.com/2018/07/26/

facebook-is-on-pace-for-its-worst-day-ever.html.

Mohamed A. El-Erian. Facebook just suffered its worst day ever. Bloomberg, 2021.

URL https://www.bloomberg.com/opinion/articles/2021-01-30/

gamestop-gme-short-squeeze-who-will-surrender-first.

Anders Johansen and Didier Sornette. Endogenous versus exogenous crashes in financial mar-

kets. In SSRN, 2002. URL https://papers.ssrn.com/sol3/papers.cfm?

abstract_id=344980.

Yahoo! Finance. Gamestop corp. (gme) stock historical prices & data – yahoo finance,

Mar 2022a. URL https://au.finance.yahoo.com/quote/GME/history?

p=GME. 2022-03-07.

Ruiqiang Song, Min Shu, and Wei Zhu. The 2020 global stock market crash: Endogenous

or exogenous? Physica A: Statistical Mechanics and its Applications, 585:126425, 2022.

ISSN 0378-4371. doi: https://doi.org/10.1016/j.physa.2021.126425.

Yahoo! Finance. Devon energy corporation (dvn) stock historical prices & data – ya-

hoo finance, Mar 2022b. URL https://au.finance.yahoo.com/quote/DVN/

history?p=DVN. 2022-03-07.

Guy P. Nason. Stationary and non-stationary time-series. Statistics in Volcanology, 1:129–142,

2006.

João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.

A survey on concept drift adaptation. ACM Computing Surveys, 46(4):44:1–44:37, March

2014. ISSN 0360-0300. doi: 10.1145/2523813.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

Jeffrey C. Schlimmer and Richard H. Granger. Incremental learning from noisy data. Machine

Learning, 1(3):317–354, 1986. doi: 10.1007/BF00116895.

Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden

contexts. Machine Learning, 23(1):69–101, 1996. doi: 10.1007/BF00116900.

https://www.cnbc.com/2018/07/26/facebook-is-on-pace-for-its-worst-day-ever.html
https://www.cnbc.com/2018/07/26/facebook-is-on-pace-for-its-worst-day-ever.html
https://www.bloomberg.com/opinion/articles/2021-01-30/gamestop-gme-short-squeeze-who-will-surrender-first
https://www.bloomberg.com/opinion/articles/2021-01-30/gamestop-gme-short-squeeze-who-will-surrender-first
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=344980
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=344980
https://au.finance.yahoo.com/quote/GME/history?p=GME
https://au.finance.yahoo.com/quote/GME/history?p=GME
https://au.finance.yahoo.com/quote/DVN/history?p=DVN
https://au.finance.yahoo.com/quote/DVN/history?p=DVN
http://www.deeplearningbook.org

162 BIBLIOGRAPHY

M. Hashem Pesaran and Allan Timmermann. Predictability of stock returns: Robustness and

economic significance. Journal of Finance, 50:1201–1228, 1995.

Peter Bossaerts and Pierre Hillion. Implementing statistical criteria to select return forecasting

models: What do we learn? Review of Financial Studies, 12(2):405–428, 06 1999. ISSN

0893-9454. doi: 10.1093/rfs/12.2.405. URL https://doi.org/10.1093/rfs/12.

2.405.

Timotheos Angelidis, Athanasios Sakkas, and Nikolaos Tessaromatis. Stock market disper-

sion, the business cycle and expected factor returns. Journal of Banking & Finance, 59:

265–279, 2015. ISSN 0378-4266. doi: https://doi.org/10.1016/j.jbankfin.2015.04.025.

R. David McLean and Jeffrey Pontiff. Does academic research destroy stock return predictab-

ility? Journal of Finance, 71(1):5–32, 2016. doi: 10.1111/jofi.12365.

Xi Dong, Qi Liu, Lei Lu, Bo Sun, and Hongjun Yan. Anomaly discovery and arbitrage trading.

In SSRN working paper, 2020. URL https://papers.ssrn.com/sol3/papers.

cfm?abstract_id=2431498.

Narasimhan Jegadeesh and Sheridan Titman. Returns to buying winners and selling losers:

Implications for stock market efficiency. Journal of Finance, 48(1):65–91, 1993.

Clifford S. Asness, Tobias J. Moskowitz, and Lasse Heje Pedersen. Value and momentum

everywhere. Journal of Finance, 68(3):929–985, 2013. ISSN 00221082, 15406261.

Melody Y. Huang, Randall R. Rojas, and Patrick D. Convery. Forecasting stock market

movements using google trend searches. Empirical Economics, 59:2821–2839, 2020. ISSN

1435-8921. doi: https://doi.org/10.1007/s00181-019-01725-1.

Lily Fang and Joel Peress. Media coverage and the cross-section of stock returns. Journal of

Finance, 64(5):2023–2052, 2009.

Alois Weigand. Machine learning in empirical asset pricing. Financial Markets and Portfolio

Management, 33:93–104, 2019.

Marcial Messmer. Deep learning and the cross-section of expected returns. In SSRN,

2017. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3081555.

Masaya Abe and Hideki Nakayama. Deep learning for forecasting stock returns in the

cross-section. In arXiv, 2018. URL https://arxiv.org/abs/1801.01777.

https://doi.org/10.1093/rfs/12.2.405
https://doi.org/10.1093/rfs/12.2.405
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2431498
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2431498
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3081555
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3081555
https://arxiv.org/abs/1801.01777

BIBLIOGRAPHY 163

Baruch Lev and Anup Srivastava. Explaining the recent failure of value investing. In SSRN,

2019. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3442539.

Eugene F. Fama and Kenneth R. French. The cross-section of expected stock returns. Journal

of Finance, 47(2):427–465, 1992. ISSN 00221082, 15406261. URL http://www.

jstor.org/stable/2329112.

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

Jonathan Brogaard and Abalfazl Zareei. Machine learning and the stock market. In SSRN,

2022. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3233119.

Shihao Gu, Bryan Kelly, and Dacheng Xiu. Autoencoder asset pricing models. Journal of Eco-

nometrics, 222(1):429–450, 2021. ISSN 0304-4076. Annals Issue:Financial Econometrics

in the Age of the Digital Economy.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.

Springer, 2 edition, 2020.

Luyang Chen, Markus Pelger, and Jason Zhu. Deep learning in asset pricing. In arXiv, 2021.

URL https://arxiv.org/abs/1904.00745.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Ghahramani

et al. (2014), pages 2672–2680.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Anomaly discovery and

arbitrage trading. In arXiv, 2021. URL https://arxiv.org/abs/2106.04560.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive

power of neural networks: A view from the width. In Guyon et al. (2017), pages 6232–6240.

ISBN 9781510860964.

John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets: The Difficulty of

Learning LongTerm Dependencies, pages 237–243. Wiley-IEEE Press, 2001.

David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to

massive label noise. In arXiv, 2018. URL https://arxiv.org/abs/1705.10694.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3442539
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3442539
http://www.jstor.org/stable/2329112
http://www.jstor.org/stable/2329112
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3233119
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3233119
https://arxiv.org/abs/1904.00745
https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/1705.10694

164 BIBLIOGRAPHY

Milad Moradi, Kathrin Blagec, and Matthias Samwald. Deep learning models are not robust

against noise in clinical text. In arXiv, 2021. URL https://arxiv.org/abs/2108.

12242.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, January 2014. ISSN 1532-4435.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu.

Making deep neural networks robust to label noise: A loss correction approach. In Yanxi

Liu, James M. Rehg, Camillo J. Taylor, and Ying Wu, editors, Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017, pages 2233–2241,

Honolulu, HI, USA, 2017. IEEE.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection

by deep multi-task learning. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne

Tuytelaars, editors, Proceedings of the 13th European Conference on Computer Vision,

ECCV 2014, pages 94–108. Springer International Publishing, 2014. ISBN 978-3-319-

10599-4.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and

Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine

Learning Research, 12(76):2493–2537, 2011.

Omer Sezer, Ugur Gudelek, and Murat Ozbayoglu. Financial time series forecasting with

deep learning : A systematic literature review: 2005—2019. Applied Soft Computing, 90:

106–181, 02 2020. doi: 10.1016/j.asoc.2020.106181.

Kai Chen, Yi Zhou, and Fangyan Dai. A lstm-based method for stock returns prediction: A

case study of china stock market. In Maria Prandini, editor, Proceedings of the 2015 IEEE

International Conference on Big Data, Big Data ’15’, pages 2823–2824, Santa Clara, CA,

USA, 2015. IEEE.

Rosa Altilio, Giorgio Andreasi, and Massimo Panella. A Classification Approach to Modeling

Financial Time Series, pages 97–106. Springer International Publishing, Cham, Switzerland,

2019.

https://arxiv.org/abs/2108.12242
https://arxiv.org/abs/2108.12242

BIBLIOGRAPHY 165

Yves Meyer. Wavelets and Operators, volume 1 of Cambridge Studies in Advanced Mathem-

atics. Cambridge University Press, 1993.

Hongju Yan and Hongbing Ouyang. Financial time series prediction based on deep learning.

Wireless personal communications, 102(2):683–700, 2017.

Zhixi Li and Vincent Tam. Combining the real-time wavelet denoising and long-short-term-

memory neural network for predicting stock indexes. In 2017 IEEE Symposium Series on

Computational Intelligence, SSCI, pages 1–8, Honolulu, HI, USA, 2017. IEEE.

John L. Kelly. A new interpretation of information rate. Bell System Technical Journal, 35(4):

917–926, 1956.

Tim Byrnes and Tristan Barnett. Generalized framework for applying the kelly criterion to

stock markets. International Journal of Theoretical and Applied Finance, 21(05):1–13,

2018. doi: 10.1142/S0219024918500334.

Fischer Black and Robert Litterman. Global portfolio optimization. Financial Analysts

Journal, 48(5):28–43, Sep 1992.

John Mitros and Brian Mac Namee. On the validity of bayesian neural networks for uncertainty

estimation. In arXiv, 2019. URL https://arxiv.org/abs/1912.01530.

Matias Quiroz, Robert Kohn, Mattias Villani, and Minh-Ngoc Tran. Speeding up MCMC

by efficient data subsampling. Journal of the American Statistical Association, 114(526):

831–843, 2019. doi: 10.1080/01621459.2018.1448827.

Gabriele Ranco, Darko Aleksovski, Guido Caldarelli, Miha Grčar, and Igor Mozetič. The

effects of twitter sentiment on stock price returns. PloS one, 10:1–21, 09 2015. doi:

10.1371/journal.pone.0138441.

Wataru Souma, Irena Vodenska, and Hideaki Aoyama. Enhanced news sentiment analysis

using deep learning methods. Journal of Computational Social Science, 2:33–46, 01 2019.

doi: 10.1007/s42001-019-00035-x.

Ran El-Yaniv, Amos Fiat, Richard M. Karp, and G. Turpin. Optimal search and one-

way trading online algorithms. Algorithmica, 30(1):101–139, 05 2001. doi: 10.1007/

s00453-001-0003-0.

Lili Dworkin, Michael Kearns, and Yuriy Nevmyvaka. Pursuit-evasion without regret, with

an application to trading. In Eric P. Xing and Tony Jebara, editors, Proceedings of the

https://arxiv.org/abs/1912.01530

166 BIBLIOGRAPHY

31st International Conference on Machine Learning, volume 37, pages 1521–1529, Bejing,

China, 2014. JMLR.org.

Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized

trade execution. In William Cohen and Andrew Moore, editors, Proceedings of the

23rd International Conference on Machine Learning, volume 2006 of ACM International

Conference Proceeding Series, pages 673–680, Pittsburgh, PA, USA, 06 2006. ACM.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and Joelle

Pineau. An introduction to deep reinforcement learning. Foundations and Trends in

Machine Learning, 11(3–4):1–156, 2018. doi: 10.1561/2200000071.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5):359—-366, jul 1989. ISSN 0893-6080.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals and Systems, 2(4):303–314, 1989. ISSN 1435-568X. doi: 10.1007/

BF02551274. URL https://doi.org/10.1007/BF02551274.

Alexander Bain. Mind and Body: The Theories of their Relation. D. Appleton and Company,

New York, NY, USA, 1873.

William James. The Principles of Psychology. H. Holt and Company, New York, NY, USA,

1890.

Frank Rosenblatt. The perceptron: A probalistic model for information storage and organiza-

tion in the brain. Psychological Review, 65(6):386–408, 1958.

Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan Books, Washington D.C., USA, 1961.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by

Error Propagation, pages 318–362. MIT Press, Cambridge, MA, USA, 1986a. ISBN

026268053X.

Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. The connection

between approximation, depth separation and learnability in neural networks. In Mikhail

Belkin and Samory Kpotufe, editors, Conference on Learning Theory, COLT 2021, pages

3265–3295, Boulder, CO, USA, 2021. PMLR.

https://doi.org/10.1007/BF02551274

BIBLIOGRAPHY 167

Shan Sung Liew, Mohamed Khalil-Hani, and Rabia Bakhteri. Bounded activation functions for

enhanced training stability of deep neural networks on visual pattern recognition problems.

Neurocomputing, 216:718–734, 2016. ISSN 0925-2312. doi: https://doi.org/10.1016/j.

neucom.2016.08.037.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the

best multi-stage architecture for object recognition? In 2009 IEEE 12th International

Conference on Computer Vision, ICCV 2009, pages 2146–2153, Kyoto, Japan, 2009. IEEE.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-

chines. In Francis R. Bach and David M. Blei, editors, Proceedings of the 27th International

Conference on Machine Learning, ICML’10, pages 807–814. JMLR.org, 2010.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. In

6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,

Canada, 2018. OpenReview.net.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep

network learning by exponential linear units (elus). In Yoshua Bengio and Yann LeCun,

editors, 4th International Conference on Learning Representations, ICLR 2016, 2016.

Solomon Kullback and Richard Leibler. On information and sufficiency. The Annals of

Mathematical Statistics, 22(1):79–86, 1951. doi: 10.1214/aoms/1177729694.

Kevin Wainwright and Alpha C. Chiang. Fundamental Methods of Mathematical Economics.

McGraw Hill, fourth edition, 2005.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points - online

stochastic gradient for tensor decomposition. In Peter Grünwald, Elad Hazan, and Satyen

Kale, editors, Proceedings of The 28th Conference on Learning Theory, COLT 2015, pages

797–842, Paris, France, 2015. JMLR.org.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to

escape saddle points efficiently. In Precup and Teh (2017), pages 1724–1732.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD escape

local minima? In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th

International Conference on Machine Learning (ICML), volume 80, pages 2698–2707,

Stockholm, Sweden, 2018. PMLR.

168 BIBLIOGRAPHY

Nelson Morgan and Hervé A. Bourlard. Generalization and parameter estimation in feedfor-

ward nets: Some experiments. In D. S. Touretzky, editor, Advances in Neural Information

Processing Systems 2, pages 630–637. Morgan-Kaufmann, 1990.

Russell Deryl Reed. Pruning algorithms-a survey. Transactions on Neural Networks, 4(5):

740–747, 1993. ISSN 1045-9227. doi: 10.1109/72.248452.

Lutz Prechelt. Early Stopping - But When? Springer-Verlag, London, UK, 1998. ISBN

3-540-65311-2.

Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stopping

without a validation set. CoRR, abs/1703.09580, 2017.

Jonas Sjöberg and Lennart Ljung. Overtraining, regularization and searching for a minimum,

with application to neural networks. International Journal of Control, 62(6):1391–1407,

1995. doi: 10.1080/00207179508921605.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

ISSN 1532-4435.

Geoffrey Hinton and Tijmen Tieleman. Lecture 6.5 - rmsprop, coursera: Neural networks

for machine learning, 2012. URL http://www.cs.toronto.edu/~tijmen/

csc321/slides/lecture_slides_lec6.pdf.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Bengio

and LeCun (2015).

Timothy Dozat. Incorporating nesterov momentum into adam. In Yoshua Bengio and Yann

LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016,

2016.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate

o(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of

initialization and momentum in deep learning. In Dasgupta and McAllester (2013), pages

1139–1147.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the 13th

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

BIBLIOGRAPHY 169

International Conference on Artificial Intelligence and Statistics, volume 9 of AISTATS

2010, pages 249–256. PMLR, 2010.

David M. Bradley. Learning in Modular Systems. PhD thesis, The Robotics Institute, Carnegie

Mellon University, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In 2015 IEEE Inter-

national Conference on Computer Vision, ICCV, pages 1026–1034. IEEE, 2015. doi:

10.1109/ICCV.2015.123.

Siddharth Krishna Kumar. On weight initialization in deep neural networks. In arXiv, 2017.

URL https://arxiv.org/abs/1704.08863.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In Bach and Blei (2015), pages 448–456.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch

normalization help optimization? In Bengio et al. (2018).

Jonas Moritz Kohler, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann, Ming Zhou,

and Klaus Neymeyr. Exponential convergence rates for batch normalization: The power

of length-direction decoupling in non-convex optimization. In Kamalika Chaudhuri and

Masashi Sugiyama, editors, Proceedings of the 22nd International Conference on Artificial

Intelligence and Statistics, volume 89 of AISTATS 2019, pages 806–815. PMLR, 2019.

Tim Salimans and Durk P. Kingma. Weight normalization: A simple reparameterization to

accelerate training of deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29,

pages 901–909, Red Hook, NY, USA, 2016. Curran Associates, Inc.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by

Error Propagation, chapter 8, pages 318—-362. MIT Press, Cambridge, MA, USA, 1986b.

ISBN 026268053X.

Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen,

Zhifeng Chen, Anjuli Kannan, Ron J. Weiss, Kanishka Rao, Ekaterina Gonina, Navdeep

Jaitly, Bo Li, Jan Chorowski, and Michiel Bacchiani. State-of-the-art speech recognition

https://arxiv.org/abs/1704.08863

170 BIBLIOGRAPHY

with sequence-to-sequence models. In Dan Schonfeld, Pascale Fung, and Nam Ik Cho, edit-

ors, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 4774–4778, Calgary, AB, Canada, 2018. IEEE. doi: 10.1109/ICASSP.2018.8462105.

Yunus Emre Cebeci. A recurrent neural network model for weather forecasting. In 2019 4th

International Conference on Computer Science and Engineering, UBMK, pages 591–595.

IEEE, 2019. doi: 10.1109/UBMK.2019.8907196.

Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck. Generating music by

fine-tuning recurrent neural networks with reinforcement learning. In 5th International

Conference on Learning Representations, ICLR 2017. OpenReview.net, 2017.

Xiumin Li, Lin Yang, Fangzheng Xue, and Hongjun Zhou. Time series prediction of stock

price using deep belief networks with intrinsic plasticity. In Proceedings of the 29th

Chinese Control And Decision Conference, CCDC 2017, pages 1237–1242. IEEE, 2017.

doi: 10.1109/CCDC.2017.7978707.

Arzoo Katiyar and Claire Cardie. Nested named entity recognition revisited. In Marilyn A.

Walker, Heng Ji, and Amanda Stent, editors, Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT 2018, pages 861–871, New Orleans, LA, USA,

2018. Association for Computational Linguistics. doi: 10.18653/v1/n18-1079.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks. In Dasgupta and McAllester (2013), pages 1310–1318.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. In arXiv, 2018. URL

https://arxiv.org/abs/1803.01271.

Yoshua Bengio, Patrice Simard, , and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

doi: 10.1109/72.279181.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9

(8):1735—-1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and Jür-

gen Schmidhuber. A novel connectionist system for unconstrained handwriting recognition.

https://arxiv.org/abs/1803.01271

BIBLIOGRAPHY 171

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5):855–868, 2009.

doi: 10.1109/TPAMI.2008.137.

Nal Kalchbrenner, Lasse Espeholt, Aäron van den Oord, Alex Graves, and Koray Kavuk-

cuoglu. Neural machine translation in linear time. In arXiv, 2016. URL https:

//arxiv.org/abs/1609.03499.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient

object localization using convolutional networks. In Grauman et al. (2015), pages 648–656.

Yann LeCun. Modeles connexionnistes de l’apprentissage. Université de Paris VI, June 1987.

PhD thesis.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value

decomposition. Biological Cybernetics, 59(4–5):291–294, September 1988. ISSN 0340-

1200. doi: 10.1007/BF00332918.

Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, minimum description length and

helmholtz free energy. In Proceedings of the 6th International Conference on Neural

Information Processing Systems, NIPS’93, pages 3–10, San Francisco, CA, USA, 1993.

Morgan Kaufmann Publishers Inc.

Pierre Baldi and K. Hornik. Neural networks and principal component analysis: Learning

from examples without local minima. Neural Networks, 2(1):53–58, January 1989. ISSN

0893-6080. doi: 10.1016/0893-6080(89)90014-2.

Lei Le, Andrew Patterson, and Martha White. Supervised autoencoders: Improving gen-

eralization performance with unsupervised regularizers. In Bengio et al. (2018), pages

107–117.

Brecht Evens, Puya Latafat, Andreas Themelis, Johan Suykens, and Panagiotis Patrinos.

Neural network training as an optimal control problem: An augmented lagrangian approach.

In Maria Prandini, editor, Proceedings of the 60th IEEE Conference on Decision and

Control, CDC, pages 5136–5143, Fairmont, TX, USA, 2021. IEEE.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and

Trends® in Machine Learning, 4(2):107–194, 2012. ISSN 1935-8237. doi: 10.1561/

2200000018.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499

172 BIBLIOGRAPHY

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?”: Ex-

plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 1135–1144,

New York, NY, USA, 2016. ACM.

Keith Ambachtsheer. Profit potential in an almost efficient market. Journal of Portfolio

Management, 1(1):84, FALL 1974.

Frank J. Fabozzi, James L. Grant, and Raman Vardharaj. Common Stock Portfolio Manage-

ment Strategies, chapter 9, pages 229–270. Volume 1 of Fabozzi and Markowitz (2011),

2011b. ISBN 9781118267028.

Sergul Aydore, Tianhao Zhu, and Dean P. Foster. Dynamic local regret for non-convex online

forecasting. In Wallach et al. (2019), pages 7980–7989.

Barbara Rossi and Atsushi Inoue. Out-of-sample forecast tests robust to the choice of window

size. Journal of Business & Economic Statistics, 30(3):432–453, 2012.

Christoph Bergmeir, Rob Hyndman, and Bonsoo Koo. A note on the validity of cross-

validation for evaluating autoregressive time series prediction. Computational Statistics &

Data Analysis, 120:70–83, 4 2018. doi: 10.1016/j.csda.2017.11.003.

Yujie Liu, Hongbin Dong, Xingmei Wang, and Shuang Han. Time series prediction based on

temporal convolutional network. In Simon Xu, Yongbin Wang, Mingyong Shi, Wenqiang

Shang, Jiefeng Liu, and Kailong Zhang, editors, 2019 IEEE/ACIS 18th International

Conference on Computer and Information Science, ICIS 2019, pages 300–305, Beijing,

China, 2019. IEEE.

Subhrajit Samanta, Mahardhika Pratama, Suresh Sundaram, and Narasimalu Srikanth. Learn-

ing elastic memory online for fast time series forecasting. Neurocomputing, 390:315–326,

2020. ISSN 0925-2312.

Nicolò Cesa-Bianchi, Pierre Gaillard, Gábor Lugosi, and Gilles Stoltz. A new look at shifting

regret. In arXiv, 2012.

Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991. doi:

10.1111/j.1467-9965.1991.tb00002.x.

Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex

games. In Precup and Teh (2017), pages 1433–1441.

BIBLIOGRAPHY 173

Jeremiah Green, John R. M. Hand, and X. Frank Zhang. The characteristics that provide

independent information about average U.S. monthly stock returns. The Review of Financial

Studies, 30(12):4389–4436, 03 2017. ISSN 0893-9454. doi: 10.1093/rfs/hhx019.

Ivo Welch and Amit Goyal. A comprehensive look at the empirical performance of equity

premium prediction. The Review of Financial Studies, 21(4):1455–1508, 03 2008. ISSN

0893-9454. doi: 10.1093/rfs/hhm014.

Joel L. Horowitz, Tim Loughran, and N.E. Savin. The disappearing size effect. Research in

Economics, 54(1):83–100, 2000. ISSN 1090-9443.

U.S. Securities and Exchange Commission. Microcap stock: A guide for in-

vestors. https://www.sec.gov/reportspubs/investor-publications/

investorpubsmicrocapstockhtm.html, Sep 2013. Accessed: 2021-01-03.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient BackProp,

pages 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

Kent Daniel and Tobias J. Moskowitz. Momentum crashes. Journal of Financial Economics,

122(2):221–247, 2016. ISSN 0304-405X.

Spyros Makridakis and Michèle Hibon. The M3-competition: results, conclusions and

implications. International Journal of Forecasting, 16(4):451–476, 2000. ISSN 0169-2070.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Statistical and

machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3):

1–26, 03 2018. doi: 10.1371/journal.pone.0194889.

Rob J. Hyndman. A brief history of forecasting competitions. International Journal of

Forecasting, 36(1):7–14, 2020. ISSN 0169-2070. M4 Competition.

George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series Analysis:

Forecasting and Control. Prentice Hall, Englewood Cliffs, N.J., USA, 3 edition, 1994.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: neural

basis expansion analysis for interpretable time series forecasting. In 8th International

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 2020.

OpenReview.net.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Guyon et al. (2017),

https://www.sec.gov/reportspubs/investor-publications/investorpubsmicrocapstockhtm.html
https://www.sec.gov/reportspubs/investor-publications/investorpubsmicrocapstockhtm.html

174 BIBLIOGRAPHY

pages 6000–6010.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of

deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,

and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

NAACL 2019, pages 4171–4186, Online, 2019. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam

McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are

few-shot learners. In Larochelle et al. (2020), pages 1877–1901.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series

forecasting? In arXiv, 2022. URL https://arxiv.org/abs/2205.13504.

J.B. Heaton, Nick Polson, and Jan Hendrik Witte. Deep learning in finance. In arXiv, 2016.

URL https://arxiv.org/abs/1602.06561.

Jerzy Korczak and Marcin Hemes. Deep learning for financial time series forecasting in

a-trader system. In 2017 Federated Conference on Computer Science and Information

Systems, FedCSIS, pages 905–912, Prague, Czech Republic, 2017. IEEE.

Eugene F. Fama. Random walks in stock market prices. Financial Analysts Journal, 21(5):

55–59, 1965. ISSN 0015198X.

Amado Peiró. The distribution of stock returns: international evidence. Applied Financial

Economics, 4(6):431–439, 1994. doi: 10.1080/758518675.

Michael Isichenko. Quantitative Portfolio Management: The Art and Science of Statistical

Arbitrage. Wiley, 2021.

Jining Yan, Lin Mu, Lizhe Wang, Rajiv Ranjan, and Albert Y. Zomaya. Temporal convolu-

tional networks for the advance prediction of enso. Scientific Reports, 10(1), 2020.

Rui Dai, Shenkun Xu, Qian Gu, Chenguang Ji, and Kaikui Liu. Hybrid spatio-temporal graph

convolutional network: Improving traffic prediction with navigation data. In Proceedings

https://arxiv.org/abs/2205.13504
https://arxiv.org/abs/1602.06561

BIBLIOGRAPHY 175

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 3074–3082, Virtual Event, CA, USA, 2020. ACM.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva

Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,

Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff

Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff

Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap

between human and machine translation. In arXiv, 2016. URL https://arxiv.org/

abs/1609.08144.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE

transactions on signal processing, 45(11):2673–2681, 1997.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-

based neural machine translation. In Lluís Màrquez, Chris Callison-Burch, and Jian Su,

editors, Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2015, pages 1412–1421, Lisbon, Portugal, 2015. Association for

Computational Linguistics.

S. C. Suddarth and Y. L. Kergosien. Rule-injection hints as a means of improving network

performance and learning time. In Proceedings of the EURASIP Workshop 1990 on Neural

Networks, pages 120–129, Berlin, Heidelberg, 1990. Springer-Verlag. ISBN 3540522557.

Baruch Epstein and Ron Meir. Generalization bounds for unsupervised and semi-supervised

learning with autoencoders. In arXiv, 2019. URL https://arxiv.org/abs/1902.

01449.

Patrick Thiam, Hans A. Kestler, and Friedhelm Schwenker. Multimodal deep denoising

convolutional autoencoders for pain intensity classification based on physiological signals.

In Maria De Marsico, Gabriella Sanniti di Baja, and Ana L. N. Fred, editors, Proceedings

of the 9th International Conference on Pattern Recognition Applications and Methods,

ICPRAM 2020, pages 289–296. SCITEPRESS, 2020.

Michel Barlaud and Frederic Guyard. A non-parametric supervised autoencoder for

discriminative and generative modeling. In HAL, September 2020. URL https:

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1902.01449
https://arxiv.org/abs/1902.01449
https://hal.archives-ouvertes.fr/hal-02937643

176 BIBLIOGRAPHY

//hal.archives-ouvertes.fr/hal-02937643. working paper or preprint.

Shantipriya Parida, Esau Villatoro-Tello, Sajit Kumar, Mael Fabien, and Petr Motlicek.

Detection of similar languages and dialects using deep supervised autoencoders. In Pushpak

Bhattacharyya, Dipti Misra Sharma, and Rajeev Sangal, editors, Proceedings of the 17th

International Conference on Natural Language Processing, ICON 2020. SCITEPRESS,

2020.

M. Hiransha, E. A. Gopalakrishnan, Vijay Krishna Menon, and K. P. Soman. Nse stock

market prediction using deep-learning models. Procedia Computer Science, 132:1351–

1362, 2018. ISSN 1877-0509. International Conference on Computational Intelligence and

Data Science.

Rohitash Chandra and Shelvin Chand. Evaluation of co-evolutionary neural network architec-

tures for time series prediction with mobile application in finance. Applied Soft Computing,

49:462–473, 2016. ISSN 1568-4946.

Bryan Lim, Stefan Zohren, and Stephen Roberts. Enhancing time-series momentum strategies

using deep neural networks. Journal of Financial Data Science, 2019. ISSN 2405-9188.

doi: 10.3905/jfds.2019.1.015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for

semantic segmentation. In Grauman et al. (2015), pages 3431–3440.

Steven Y. K. Wong, Jennifer Chan, Lamiae Azizi, and Richard Y. D. Xu. Supervised temporal

autoencoder for stock return time-series forecasting. In Wing Kwong Chan, Bill Claycomb,

and Hiroki Takakura, editors, Proceedings of the IEEE 45th Annual Computer Software

and Applications Conference (COMPSAC’21), Madrid, Spain, 2021. IEEE.

George E. P. Box and Gwilym M. Jenkins. Time series analysis: forecasting and con-

trol. Holden-Day series in time series analysis and digital processing. Holden-Day, San

Francisco, rev. ed. edition, 1976. ISBN 0816211043.

Helmut Lütkepohl and Fang Xu. The role of the log transformation in forecasting economic

variables. Empirical Economics, 42(3):619–638, 2012.

Thomas Fischer and Christopher Krauss. Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational Research, 270

(2):654–669, 2018. ISSN 0377-2217.

https://hal.archives-ouvertes.fr/hal-02937643
https://hal.archives-ouvertes.fr/hal-02937643

BIBLIOGRAPHY 177

Fischer Black and Robert B Litterman. Asset allocation: Combining investor views with

market equilibrium. Journal of Fixed Income, 1(2):7–18, 1991.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseo Lee, Matthias

Humt, Jianxiang Feng, Anna M. Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher,

M. Shahzad, Wen Yang, Richard Bamler, and Xiaoxiang Zhu. A survey of uncertainty

in deep neural networks. In arXiv, 2021. URL https://arxiv.org/abs/2107.

03342.

Cornelia Gruber, Patrick Oliver Schenk, Malte Schierholz, Frauke Kreuter, and Göran Kauer-

man. Sources of uncertainty in machine learning – a statisticians’ view. In arXiv, 2023.

URL https://arxiv.org/abs/2305.16703.

Nis Meinert, Jakob Gawlikowski, and Alexander Lavin. The unreasonable effectiveness of

deep evidential regression. In arXiv, 2022. URL https://arxiv.org/abs/2205.

10060.

T.J. Sullivan. Introduction to Uncertainty Quantification. Number 63 in Texts in Applied

Mathematics. Springer International Publishing, Cham, Germany, 1st edition, 2015. ISBN

3-319-23395-5.

S. C. Hora. Aleatory and epistemic uncertainty in probability elicitation with an example from

hazardous waste management: Treatment of aleatory and epistemic uncertainty. Reliability

engineering & system safety, 54(2–3):217–223, 1996. ISSN 0951-8320.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural

Computation, 4(3):448–472, 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.448.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidel-

berg, 1996. ISBN 0387947248.

Yarin Gal. Uncertainty in Deep Learning. University of Cambridge, 2016. PhD thesis.

Wilfred Keith Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed

Bennamoun. Hands-on bayesian neural networks — a tutorial for deep learning users.

IEEE computational intelligence magazine, 17(2):29–48, 2022.

https://arxiv.org/abs/2107.03342
https://arxiv.org/abs/2107.03342
https://arxiv.org/abs/2305.16703
https://arxiv.org/abs/2205.10060
https://arxiv.org/abs/2205.10060

178 BIBLIOGRAPHY

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes

overconfidence in relu networks. In arXiv, 2020. URL https://arxiv.org/abs/

2002.10118.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V.

Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncer-

tainty? evaluating predictive uncertainty under dataset shift. In Wallach et al. (2019), pages

14003–14014.

José M. Bernardo and Adrian F. M. Smith. Bayesian theory. John Wiley & Sons Ltd., 2000.

Zhijian Liu, Alexander Amini, Sibo Zhu, Sertac Karaman, Song Han, and Daniela L. Rus.

Efficient and robust lidar-based end-to-end navigation. In Yu Sun, editor, 2021 IEEE

International Conference on Robotics and Automation, ICRA, pages 13247–13254, Xi’an,

China, 2021. IEEE.

Peide Cai, Hengli Wang, Huaiyang Huang, Yuxuan Liu, and Ming Liu. Vision-based autonom-

ous car racing using deep imitative reinforcement learning. IEEE Robotics and Automation

Letters, 6(4):7262–7269, 2021. doi: 10.1109/LRA.2021.3097345.

Sandeep Kumar Singh, Jaya Shradha Fowdur, Jakob Gawlikowski, and Daniel Medina.

Leveraging graph and deep learning uncertainties to detect anomalous maritime trajectories.

IEEE Transactions on Intelligent Transportation Systems, 23(12):23488–23502, 2022. doi:

10.1109/TITS.2022.3190834.

Ava P. Soleimany, Alexander Amini, Samuel Goldman, Daniela Rus, Sangeeta N. Bhatia, and

Connor W. Coley. Evidential deep learning for guided molecular property prediction and

discovery. ACS central science, 7(8):1356–1367, 2021. ISSN 2374-7943.

Hao Li and Jianan Liu. 3D high-quality magnetic resonance image restoration in clinics using

deep learning. In arXiv, 2022. URL https://arxiv.org/abs/2111.14259.

Dongpin Oh and Bonggun Shin. Improving evidential deep learning via multi-task learning.

In Thirty-Sixth AAAI Conference on Artificial Intelligence, pages 7895–7903. AAAI Press,

2022.

Bertrand Charpentier, Oliver Borchert, Daniel Zügner, Simon Geisler, and Stephan Gün-

nemann. Natural posterior network: Deep bayesian predictive uncertainty for exponential

family distributions. In 9th International Conference on Learning Representations (ICLR),

https://arxiv.org/abs/2002.10118
https://arxiv.org/abs/2002.10118
https://arxiv.org/abs/2111.14259

BIBLIOGRAPHY 179

online, 2021. OpenReview.net.

Andrey Malinin, Sergey Chervontsev, Ivan Provilkov, and Mark Gales. Regression prior

networks. In arXiv, 2020. URL https://arxiv.org/abs/2006.11590.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and

estimation. Journal of the American Statistical Association, 102(477):359–378, 2007.

Viktor Bengs, Eyke Hüllermeier, and Willem Waegeman. On second-order scoring rules

for epistemic uncertainty quantification. In arXiv, 2023. URL https://arxiv.org/

abs/2301.12736.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics, 31(3):307–327, 1986. ISSN 0304-4076. doi: https://doi.org/10.1016/

0304-4076(86)90063-1.

Rachael Carroll and Colm Kearney. GARCH Modeling of Stock Market Volatility, pages

71–90. Chapman & Hall/CRC finance series. CRC Press, New York, NY, USA, 1st edition,

2009.

John Fry and Eng-Tuck Cheah. Negative bubbles and shocks in cryptocurrency markets.

International Review of Financial Analysis, 47:343–352, 2016. ISSN 1057-5219.

Christian M. Hafner. Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility.

Journal of Financial Econometrics, 18(2):233–249, 10 2018. ISSN 1479-8409. doi:

10.1093/jjfinec/nby023.

Cathy Yi-Hsuan Chen and Christian M. Hafner. Sentiment-induced bubbles in the crypto-

currency market. Journal of Risk and Financial Management, 12(2):1–12, 2019. ISSN

1911-8074.

José Antonio Núñez, Mario I. Contreras-Valdez, and Carlos A. Franco-Ruiz. Statistical

analysis of bitcoin during explosive behavior periods. PLOS ONE, 14(3):1–22, 03 2019.

doi: 10.1371/journal.pone.0213919.

Alla Petukhina, Simon Trimborn, Wolfgang Karl Härdle, and Hermann Elendner. Invest-

ing with cryptocurrencies – evaluating their potential for portfolio allocation strategies.

Quantitative Finance, 21(11):1825–1853, 2021.

José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for

scalable learning of bayesian neural networks. In Bach and Blei (2015), pages 1861–1869.

https://arxiv.org/abs/2006.11590
https://arxiv.org/abs/2301.12736
https://arxiv.org/abs/2301.12736

180 BIBLIOGRAPHY

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In Maria-Florina Balcan and Kilian Q. Weinberger,

editors, Proceedings of the 33rd International Conference on Machine Learning (ICML),

volume 48, pages 1050–1059. JMLR.org, 2016.

Michael Jordan. The exponential family: Conjugate priors, 2009.

David F. Andrews and Colin L. Mallows. Scale mixtures of normal distributions. Journal of

the Royal Statistical Society: Series B (Methodological), 36(1):99–102, 1974.

S.T. Boris Choy and Jennifer S.K. Chan. Scale mixtures distributions in statistical modelling.

Australian & New Zealand Journal of Statistics, 50(2):135–146, 2008. ISSN 1369-1473.

Christian Brownlees, Robert Engle, and Bryan Kelly. A practical guide to volatility forecasting

through calm and storm. Journal of Risk, 14(2):3–22, 2011.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996. ISSN 1573-0565.

Adrian E. Raftery, Miroslav Kárný, and Pavel Ettler. Online prediction under model uncer-

tainty via dynamic model averaging: Application to a cold rolling mill. Technometrics, 52

(1):52–66, 2010. doi: 10.1198/TECH.2009.08104. PMID: 20607102.

Robert F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance

of united kingdom inflation. Econometrica, 50(4):987–1007, 1982.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A comparison of arima

and lstm in forecasting time series. In M. Arif Wani, editor, Proceedings of the 17th

IEEE International Conference on Machine Learning and Applications, pages 1394–1401,

Orlando, FL, USA, 2018. IEEE.

Alexander Lipton. Cryptocurrencies change everything. Quantitative Finance, 21(8):1257–

1262, 2021. doi: 10.1080/14697688.2021.1944490.

Wenbo Ge, Pooia Lalbakhsh, Leigh Isai, Artem Lenskiy, and Hanna Suominen. Neural

network–based financial volatility forecasting: A systematic review. ACM Computing

Surveys, 55(1), 2022.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss

landscape of neural nets. In Bengio et al. (2018).

Robert A. Wood, Thomas H. McInish, and J. Keith Ord. An investigation of transactions data

for nyse stocks. Journal of Finance, 40(3):723–739, 1985.

BIBLIOGRAPHY 181

Prem C. Jain and Gun-Ho Joh. The dependence between hourly prices and trading volume.

Journal of Financial and Quantitative Analysis, 23(3):269–283, 1988.

Thomas H. McInish and Robert A. Wood. An analysis of intraday patterns in bid/ask spreads

for nyse stocks. Journal of Finance, 47(2):753–764, 1992.

James Eaves and Jeffrey Williams. Are intraday volume and volatility u-shaped after account-

ing for public information? American Journal of Agricultural Economics, 92(1):212–227,

2010.

Larry J. Lockwood and Scott C. Linn. An examination of stock market return volatility during

overnight and intraday periods, 1964-1989. Journal of Finance, 45(2):591–601, 1990.

ISSN 00221082, 15406261. URL http://www.jstor.org/stable/2328672.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Frederick C. Webber. Multi-Objective Reinforcement Learning with Concept Drift. PhD

thesis, Air Force Institute of Technology, 2017.

Aswath Damodaran. Damodaran on Valuation: Security Analysis for Investment and Corpor-

ate Finance. Wiley, 2 edition, 2006.

Dogu Araci. Finbert: Financial sentiment analysis with pre-trained language models. In

arXiv, 2019. URL https://arxiv.org/abs/1908.10063.

Tom M. Mitchell. Machine Learning. McGraw-Hill Education, 1 edition, 1997.

Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta, and Thomas Wolf. Transfer

learning in natural language processing. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Tutorials, pages

15–18, Minneapolis, MN, USA, 2019. Association for Computational Linguistics.

Wenjuan Han, Bo Pang, and Ying Nian Wu. Robust transfer learning with pretrained language

models through adapters. In Proceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 2: Short Papers), pages 854–861, Online, 2021. Association

for Computational Linguistics.

Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett, editors. Advances in Neural Information Processing

http://www.jstor.org/stable/2328672
https://arxiv.org/abs/1908.10063

182 BIBLIOGRAPHY

Systems 30, Long Beach, CA, USA, 2017. Curran Associates, Inc.

Hugo Larochelle, Marc’Aurelio Ranzato, Raia, Hadsell, Maria-Florina Balcan, and Hui Lin,

editors. Advances in Neural Information Processing Systems 33, NIPS 2020, Vancouver,

BC, Canada, 2020. Curran Associates, Inc.

Yoshua Bengio and Yann LeCun, editors. 3rd International Conference on Learning Repres-

entations, ICLR 2015, San Diego, CA, USA, 2015.

Kristen Grauman, Erik Learned-Miller, Antonio Torralba, and Andrew Zisserman, editors.

Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, 2015. IEEE.

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors.

Advances in Neural Information Processing Systems 27, NIPS, 2014. Curran Associates,

Inc.

Frank J. Fabozzi and Harry M. Markowitz, editors. The Theory and Practice of Investment

Management, volume 1. John Wiley & Sons, Ltd, 2011. ISBN 9781118267028.

Doina Precup and Yee Whye Teh, editors. Proceedings of the 34th International Conference

on Machine Learning (ICML), volume 70, Sydney, NSW, Australia, 2017. JMLR.org.

Sanjoy Dasgupta and David McAllester, editors. Proceedings of the 30th International

Conference on Machine Learning, ICML’13, 2013. JMLR.org.

Francis R. Bach and David M. Blei, editors. Proceedings of the 32nd International Conference

on Machine Learning (ICML), volume 37, 2015. JMLR.org.

Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,

and Roman Garnett, editors. Advances in Neural Information Processing Systems 31,

NIPS’18, Montréal, QC, Canada, 2018. Curran Associates, Inc.

Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.

Fox, and Roman Garnett, editors. Advances in Neural Information Processing Systems 32,

Vancouver, BC, Canada, 2019. Curran Associates, Inc.

John Lintner. The valuation of risk assets and the selection of risky investments in stock

portfolios and capital budgets. Review of Economics & Statistics, 47(1):13–37, 1965. ISSN

00346535.

BIBLIOGRAPHY 183

Fischer Black. Capital market equilibrium with restricted borrowing. Journal of Business, 45

(3):444–455, 1972. ISSN 00219398, 15375374.

Malcolm Baker, Brendan Bradley, and Jeffrey Wurgler. Benchmarks as limits to arbitrage:

Understanding the low-volatility anomaly. Financial Analysts Journal, 67(1):40–54, 2011.

Richard Roll. A critique of the asset pricing theory’s tests part i: On past and potential

testability of the theory. Journal of Financial Economics, 4(2):129–176, 1977. ISSN

0304-405X. doi: https://doi.org/10.1016/0304-405X(77)90009-5.

Eugene F. Fama and Kenneth R. French. The capital asset pricing model: Theory and

evidence. Journal of Economic Perspectives, 18(3):25–46, September 2004. doi: 10.1257/

0895330042162430. URL http://www.aeaweb.org/articles?id=10.1257/

0895330042162430.

John H. Cochrane. Asset Pricing. Princeton University Press, 2005. ISBN 0691121370.

Richard G. Sloan. Do stock prices fully reflect information in accruals and cash flows about

future earnings? Accounting Review, 71(3):289–315, 1996.

Michael J. Cooper, Huseyin Gulen, and J. Schill Michael. Asset growth and the cross-section

of stock returns. Journal of Finance, 63(4):1609–1651, 2008.

Andrew Ang, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang. The cross-section of

volatility and expected returns. Journal of Finance, 61(1):259–299, 2006. doi: 10.1111/j.

1540-6261.2006.00836.x.

Robert Novy-Marx. The other side of value: The gross profitability premium. Journal of

Financial Economics, 108(1):1–28, 2013. ISSN 0304-405X. doi: https://doi.org/10.1016/j.

jfineco.2013.01.003.

Stephen A. Ross. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13

(3):341–360, 1976. ISSN 0022-0531. doi: https://doi.org/10.1016/0022-0531(76)90046-6.

Frank J. Fabozzi, Raman Vardharaj, , and Frank J. Jones. Multifactor Equity Risk Models,

chapter 13, pages 327–343. Volume 1 of Fabozzi and Markowitz (2011), 2011c. ISBN

9781118267028.

CFA Institute. A practitioner’s guide to factor models. Technical report, The Research

Foundation of The Institute of Chartered Financial Analysts, Charlottesville, VA, USA,

1994. URL https://www.cfainstitute.org/-/media/documents/book/

http://www.aeaweb.org/articles?id=10.1257/0895330042162430
http://www.aeaweb.org/articles?id=10.1257/0895330042162430
https://www.cfainstitute.org/-/media/documents/book/rf-publication/1994/rf-v1994-n4-4445-pdf.ashx

184 BIBLIOGRAPHY

rf-publication/1994/rf-v1994-n4-4445-pdf.ashx.

Victor Dheur and Souhaib Ben Taieb. A large-scale study of probabilistic calibration in

neural network regression. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-

bara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th

International Conference on Machine Learning (ICML), volume 202, pages 7813–7836.

JMLR.org, 2023.

https://www.cfainstitute.org/-/media/documents/book/rf-publication/1994/rf-v1994-n4-4445-pdf.ashx
https://www.cfainstitute.org/-/media/documents/book/rf-publication/1994/rf-v1994-n4-4445-pdf.ashx

APPENDIX A

Appendix

A1 Supplementary review of asset pricing

A supplementary review of the finance theory relevant for predictions in financial markets

is provided in this section. Readers are encouraged to this read this section as preface to

Section 1.3. However, this is not a prerequisite to understanding the rest of this thesis.

Consider the following scenario, an investor is making an investment decision between two

assets: 1) a government bond that pays a guaranteed coupon; and 2) a highly risky stock.

Assuming that the investor is risk averse, it is clear that the stock must offer a higher return

than the government bond to compensate for the higher risk. Given an asset that earns an

uncertain return, how much should an investor expect in return for holding this asset? In

financial theory, this problem is known as asset pricing. The seminal work by Markowitz

(1952) led to the development of the MPT, proposing to model the first two moments of stock

returns. Suppose asset i has expected return E[ri] and risk measured as variance of expected

return σ2
i . Investors are assumed to be risk averse and seek to select portfolios that maximise

expected portfolio return,

E[rp] =
∑
i

wi E[ri], (A.1)

where rp is portfolio return, wi is portfolio holdings of asset i (for simplicity, it is assumed

that
∑

i wi = 1), and minimise portfolio return variance,

σ2
p =

∑
i

w2
i σ

2
i +

∑
i

∑
j ̸=i

wiwj σiσjρij, (A.2)

185

186 A APPENDIX

where σ2
p is portfolio return variance, ρij is correlation between expected return of asset i and

j. This led to the development of the first asset pricing model, called the CAPM (Sharpe,

1964; Lintner, 1965; Black, 1972). The CAPM offered the first stock return prediction model

with a theoretical underpinning,

E[ri] = r∗ + βi(E[r
′]− r∗), (A.3)

where r∗ is the risk-free rate (e.g., return on government bonds which are assumed to be

risk-free), E[r′] is the expected return of the market1, and βi =
Cov(ri,r

′)
Var(r′)

is the sensitivity

of expected return of asset i to the market. Exclusive to this section, we denote statistics

related to the risk free rate with asterisk ∗ and the market with dash ′. In CAPM, E[r′] can be

interpreted as factor m in Equation 1.3. However, it is typically assumed to be the long-term

average market return. The intuition for CAPM is as follows. Suppose there are two stocks,

both have expected return of 8% and return standard deviation of 10%. Correlation between

the two stocks is 50%. Then, from Equation (A.1) and (A.2), a portfolio with 50% weight

in each stock has portfolio expected return of 8% and standard deviation of 7.9%. Thus,

the diversified portfolio offers a better return/risk trade-off than either of the two stocks on

its own. Generalising, there exists a well-diversified portfolio that offers the same level of

expected return with equal or less level of risk (due to imperfect correlation between assets),

as illustrated on the left of Figure A.1. The red curve on the left of Figure A.1 illustrates the

Efficient Frontier, which represents the portfolio with the lowest possible risk (x-axis) for each

level of expected return (y-axis). Note that all individual stocks (e.g., C and D) must lie on or

within the interior of the efficient frontier. MPT assumes that there exists a well-diversified

portfolio which offers the optimal mean-variance trade-off. This portfolio is called the market

portfolio. The tangent to the red curve which crosses the y-axis at the risk-free rate is called

the Security Market Line (SML). Note that SML intersects the Efficient Frontier at the market

portfolio and is above the Efficient Frontier for all other levels of risk. Portfolios on this line

represent allocations between the risk-free rate and the market portfolio. For example, if the

desired level of risk is point A in Figure A.1, the level of risk is lower than the market portfolio

1The market portfolio is the portfolio of all assets weighted by their respective market value. Market value
(also called market capitalisation) is the price of each stock multiplied by the number of shares on issue. Excess
return of the market E[r′]− r∗ is known as market risk premium.

A1 SUPPLEMENTARY REVIEW OF ASSET PRICING 187

0 σ′ σB

r∗
rA

r′

rB

σ

E[r]

A

B

C

D

Mean Variance
Efficient Porfolio

Standard Deviation

E
xp

ec
te

d
R

et
ur

n

0 1βA βB

E[r] SML
Market Porfolio

Systematic Risk β

FIGURE A.1: Illustration of the Capital Asset Pricing Model. Left: Expected
return of assets relative to standard deviation of returns. The red curve is
known as the Efficient Frontier, where every point on the curve represents a
possible portfolio combination. The tangent that passes through r∗ (risk free
rate) is the Security Market Line. Right: Expected return relative to systematic
risk β. The market portfolio has β′ = 1. A stock that has β < 1 (point C)
is expected to earn a lower return than the market, while a stock with β > 1
(point D) is expected to earn a higher return than the market.

(or any risky portfolios on the Efficient Frontier). Point A represents a partial allocation to

the risk-free rate (i.e., invest in government bonds) with the balance invested in the market

portfolio. Conversely, if the desired level of risk is point B, the investor borrows at risk-free

rate and invests the entire amount in the market portfolio (in MPT, borrowing at the risk-free

rate is assumed to be accessible by all investors). In either case, the investor can achieve a

better return/risk trade-off by allocating between the risk-free rate and the market portfolio

than any of the portfolios on the Efficient Frontier or individual assets. Thus, a corollary of

CAPM is that all investors hold the market portfolio and vary their allocation to the risk-free

rate to arrive at their risk preference.

Due to the diversification benefits of the market portfolio, CAPM stipulates that the expected

return of an individual asset is determined by its correlation to the market portfolio, known as

systematic risk2, and not by the total risk (i.e., variance) of the asset. In other words, only

risk that arises due to correlation with the market portfolio is compensated (in the form of

higher expected return), as this cannot be further diversified away by holding the market

2Denoted as βi or beta in finance literature. Systematic risk is assumed to be non-diversifiable (Sharpe,
1964).

188 A APPENDIX

portfolio. Idiosyncratic risk that is specific to the asset is not compensated as there exists a

well-diversified portfolio that offers the same level of expected return at a lower risk. Expected

return as determined by correlation to the market is illustrated on the right of Figure A.1. In

here, the market portfolio has β′ = 1, while stock A (B) with βA < 1 (βB > 1) is expected to

earn return E[rA] < E[r′] (E[rB] > E[r′]), respectively. Underpinning both MPT and CAPM

is the efficient market hypothesis (Fama, 1970). In the weak form, the hypothesis postulates

that investors cannot outperform the market using publicly known information.

Therefore, one may arrive at the conclusions: 1) predicting stock returns is just a matter of

estimating β; and 2) portfolio selection is of little value given that the market portfolio offers

the optimal return/risk trade-off. However, empirical evidence proved otherwise. Jensen

(1968) was the first to note that CAPM implied a time-series regression,

ri,t − r∗ = αi + βi(r
′
t − r∗) + ϵi,t, (A.4)

where ri,t is return of stock i at time t (at a given frequency, e.g. monthly), r′t is market return

at t and ϵi,t is stochastic noise. The empirical evidence suggested that α was statistically

significantly above zero, which contradicted the predictions of CAPM. A positive α indicates

that low β stocks earn a return that is higher than fair compensation for bearing market risk,

an anomaly known as the low beta effect (Baker et al., 2011). Roll (1977) provided a renown

critique of CAPM, noting the that a test of the validity of CAPM is a joint test together with

the validity of the market portfolio proxy, and that the true market portfolio is unobservable (as

it emcompasses all assets in the world, including private assets). A more recent discussion on

CAPM was provided by Fama and French (2004). The authors reviewed published empirical

tests of CAPM and concluded that “CAPM’s empirical problems probably invalidate its use

in applications.”

Since the publication of CAPM, numerous other firm features (also known as risk factors or

asset pricing anomalies3) were found to predict cross-sectional stock returns. These include

3A variable that is predictive of stock returns is called an anomaly as its occurrence contradicted the
prediction of CAPM (Cochrane, 2005).

A1 SUPPLEMENTARY REVIEW OF ASSET PRICING 189

the size effect4 (Banz, 1981), the value effect5 (Stattman, 1980; Rosenberg et al., 1985)),

accruals6 (Sloan, 1996), asset growth7 (Cooper et al., 2008), momentum8 (Jegadeesh and

Titman, 1993), low volatility effect9 (Ang et al., 2006) and gross profitability10 (Novy-Marx,

2013). Hundreds of firm characteristics are said to contain information on future stock returns

— a survey by Harvey et al. (2016) contained 313 published asset pricing anomalies. The true

DGP or stock returns is likely to be significantly more complex than originally suggested by

CAPM.

Alternative asset pricing theories have been proposed. One alternative is the APT (Ross,

1976), formally,

E[ri,t+1] = r∗ + si,1ξ1,t + si,2ξ2,t + ...+ si,MξM,t, (A.5)

where si,m is sensitivity (also called exposures in finance literature, e.g., Grinold and Kahn,

1999) of stock i to returns of systematic risk factor11 ξm (also called factor returns). APT is

a generalisation of CAPM, where systematic risk to the market in CAPM is replaced with

any number of factors that determine stock returns. The intuition of the model lies in the

assumption that given M non-diversifiable risk factors, one can replicate risk exposures of

any stock (i.e., sensitivities of the stock to M predictors) with a portfolio of stocks that offer

the same return. If the two do not offer the same return, an investor can buy the asset with a

higher return and short12 the asset with a lower expected return and generate a risk-free profit.

Such activity is called arbitrage (hence the name Arbitrage Pricing Theory) and leads to the

no arbitrage condition under efficient markets. This model forms the basis of quantitative

investing methods used by practitioners, as described in Grinold and Kahn (1999). However,
4Stocks with low market capitalisation tend to outperform stocks with high market capitalisation.
5Stocks with high book value to market value ratio (known as value stocks) tend to outperform stocks with

low book-to-market ratio (known as growth stocks).
6Firms with low operating accruals tend to outperform firms with high accruals. Operating accrual refers to

the difference between accrued earnings and cash earnings.
7Firms with low year-on-year change in total assets tend to outperform firms with high growth.
8Past winners tend to continue to outperform past losers.
9Stocks with low idiosyncratic volatility tend to outperform stocks with high idiosyncratic volatility.

10Stocks with high gross profit to total assets tend to outperform stocks with low gross profit to total assets.
11Systematic risk factors are factors that contribute to expected return. An example is the market portfolio in

CAPM. For the purposes of this thesis, this can be interpreted as firm features (e.g., firm profitability, social
media sentiment), to the extent that such features are predictive of stock returns.

12Shorting refers to the borrowing and selling of an asset that the investor do not own. If the price of the
asset falls, the investor can buy it back at a later date and generate a profit.

190 A APPENDIX

APT does not stipulate what the risk factors are. The risk factors used are up to the user to

define. As concluding remarks on asset pricing theory, the debate on the correct model is one

between a highly prescriptive model that specifies a theory-derived return predictor (CAPM

β), and a loosely defined model where there could be any number of predictors (APT). The

empirical failings of CAPM and the vast number of “anomalies” discovered is providing

evidence to the latter.

A2 Supplementary review of forecasting models

A supplementary review of the quantitative investment process is provided in this section.

Readers are encouraged to review this section for a better understanding of the quantitative

investment process. However, this is not a prerequisite to understanding the rest of this thesis.

A2.1 Forecasting returns

Return forecasting (as illustrated in Figure A.2) requires converting raw data into features.

Raw data can comprise of stock price history, company financials, social media sentiment,

Raw data Signals Return
forecasts

Feature engineering Model

FIGURE A.2: Illustrative steps in converting raw data into forecasts. Raw
data (e.g., share price and company financials) are first converted into features,
typically crafted using domain knowledge. A forecasting model (e.g., OLS or
machine learning models) then combines features into an expected return.

media reports, commodity prices, currency exchange rates or any other information that is

predictive of returns. Through feature engineering, these raw data are transformed into signals.

For example, the Earnings/Price ratio is calculated as a firm’s earnings per share divided

by the prevailing share price (Alford et al., 2011). This signal constitutes one of the many

features that are used as inputs to the forecasting model. A linear regression, such as the

A2 SUPPLEMENTARY REVIEW OF FORECASTING MODELS 191

Fama-MacBeth regression, is a popular choice of F in Equation (1.2) (Zhou and Fabozzi,

2011)). However, as shown by Gu et al. (2020) and through this thesis, machine learning

models can improve forecast accuracy and offer alternative approaches to forecasting.

A2.2 Forecasting risk

In the pioneering work of Markowitz (1952), a portfolio is viewed in terms of its first two

moments of portfolio returns (mean and variance). This is the industry accepted general

measure of risk (for example, see Grinold and Kahn, 1999; and Fabozzi and Markowitz,

2011). However, estimating a full variance-covariance matrix of a large universe of stocks

could be onerous. For instance, there are more than 5,000 listed stocks in the U.S. alone.

A variance-covariance matrix for the U.S. market could have 5000 × 5000 = 25million

entries. Therefore, the variance-covariance matrix is typically estimated using a factor

risk model (Fabozzi et al., 2011c). A factor risk model takes the same form as the return

forecasting model (Equation (1.3)) and may include factors that are assumed to explain

riskiness of a stock, such as its company size and debt burden. Suppose M = 10, the variance-

covariance matrix only has 10× 10 = 100 entries — a significantly simpler computation than

operating over 25 million entries. The factor risk model is estimated using the Fama-MacBeth

procedure as described in the preceding section. At time t, we perform t− 1 cross-sectional

multivariate regressions for every time period. This generates m time-series of factor returns

ξ̂t−1,m = {ξ̂1,m, ξ̂2,m, . . . , ξ̂t−1,m}, where each value ξ̂t,m in the series is the coefficient of

factor13 m in the multivariate cross-sectional regression at t. The factor covariance matrix is

simply the sample variance-covariance matrix of the time-series of factor returns,

V̂
(f)
t =

Cov(ξ̂t−1,1, ξ̂t−1,1) Cov(ξ̂t−1,1, ξ̂t−1,2) · · · Cov(ξ̂t−1,1, ξ̂t−1,M)

Cov(ξ̂t−1,2, ξ̂t−1,1) Cov(ξ̂t−1,2, ξ̂t−1,2) · · · Cov(ξ̂t−1,2, ξ̂t−1,M)
...

...

Cov(ξ̂t−1,M , ξ̂t−1,1) Cov(ξ̂t−1,M , ξ̂t−1,2) · · · Cov(ξ̂t−1,M , ξ̂t−1,M)

 , (A.6)

13As a reminder to readers, signals, factors and firm features are used interchangeably in this thesis.

192 A APPENDIX

where Cov(ξ̂t−1,i, ξ̂t−1,j) is the covariance function applied to returns of factor i and j over

t = {1, . . . , t− 1}. Covariance matrix of stocks is then estimated as the sum of factor risk

and specific risk (Fabozzi et al., 2011c),

V ′
t = XtV

(f)
t XT

t + dt ◦ IN , (A.7)

where dt ◦ IN is the Hadamard product of specific variance and the identity matrix of size N .

dt is the element-wise variance of the time-series of regression residuals ϵt in Equation (1.3)

(CFA Institute, 1994). This allows newly listed stocks to have reasonable risk forecasts,

provided that they have the relevant inputs to the risk model.

A2.3 Forecasting transaction costs

As noted in Section 1.2, the stock market employs a limit order book system. In the example

illustrated in Table 1.1, the last traded price is $1.00/share. Suppose the buyer would like to

transact 10,000 shares immediately, pushing the last traded price to $1.02 (second row of the

ask queue). The buyer’s average price is 5,000×1.01+5,000×1.02
10,000

= 1.015. In this scenario, the

buyer has incurred a market impact cost of 1.5%. Market impact comprises of the bid-ask

spread14 and a cost for pushing the traded price higher than the last traded price before the

trade. Market impact depends on the size of the trade and tends to be higher for low-price and

small capitalisation stocks (Zhou and Fabozzi, 2011). Larger trades will consume more of

the available volume (termed liquidity) and have a higher price impact. Forecasting market

impact is difficult, as market participants only observe completed trades and not intended

orders. For example, in the example illustrated in Table 1.1, suppose a buyer wants to trade

100,000 shares at $1.01. Seeing the limited shares on offer and concerned about potential

price impact, the buyer decides to not place the order. However, there could be other potential

sellers wanting to sell large parcels but face the same problem. Thus, liquidity can potentially

be more than actual traded volumes. Transaction cost forecasting is also an important topic as

it determines the economics of a trade. For instance, suppose the expected return of a stock

over a week is 2% and this opportunity is available every week. This results in an attractive
14Crossing the spread is when a buyer pays the ask price or a seller takes the bid price for a trade. Bid-ask

spread is typically measured relative to the mid price and is calculated as 2×(1.01−1)
1.01+1 = 1%.

A3 HYPERPARAMETERS USED IN CHAPTER 3 193

compounded pre-cost return of 180% in one year. However, suppose transaction cost is 1%

each way (i.e., 1% is paid on acquisition and on disposal). Then, this seemingly profitable

strategy is no longer profitable. Additionally, each trade incurs a commission to the broker

(facilitator of the trade, usually a brokerage firm).

A3 Hyperparameters used in Chapter 3

In this section, we provide a list of hyperparameter search ranges and mean hyperparameters

used to train the neural networks in Section 3.5. Hyperparameter search was performed on all

combinations of hyperparameters. Table A.2 records mean hyperparameters over 10 network

trainings.

TABLE A.1: Disclosed model parameters in Gu et al. (2020) and in our
replication. We fill missing values with the cross-sectional median or zero
if median is unavailable. ‘H’ is hidden layer activation. ‘O’ is output layer
activation. ADAM is the optimiser proposed by Kingma and Ba (2015).

Parameter Gu et al. (2020) Chapter 3

Preprocessing Rank [-1, 1]; Fill median Rank [-1, 1]; Fill median/0
Hidden layers 32-16-8 32-16-8
Activation H: ReLU / O: Linear H: ReLU / O: Linear
Batch size 10,000 DNN 10,000 / OES 1,000
Batch normalisation Yes Yes
L1 penalty [10−5, 10−3] {10−5, 10−4, 10−3}
Early stopping Patience 5 Patience 5 / Tolerance 0.001
Learning rate η [0.001, 0.01] {0.001, 0.01}
Optimiser ADAM ADAM
Loss function MSE MSE
Ensemble Average over 10 Average over 10

TABLE A.2: Mean hyperparameters are calculated over the ensemble of 10
networks and across all periods.

With Interactions W/O Interactions

% DNN OES DNN OES

Mean L1 penalty 0.0012 0.0154 0.0024 0.0028
Mean η 0.77 0.10 0.67 0.10

194 A APPENDIX

A4 Hyperparameters used in Chapter 4

In this section, we provide a list of hyperparameter search ranges and mean hyperparameters

used to train the neural networks in Section 4.3.2. Hyperparameter search was performed on

all combinations of hyperparameters. Table A.3 records common hyperparameters used in

all models. Table A.4, A.5, A.6 and A.7 record hyperparameter search range and average

hyperparameters of 10 networks for STAE & TCN, N-BEATS, LSTM and transformer,

respectively.

TABLE A.3: Common hyperparameters for all networks used in Section 4.3.2.
These are fixed values and are not subject to hyperparameter tuning. ADAM
is the optimiser proposed by Kingma and Ba (2015).

Parameter Common hyperparameters

Hidden layers 8
Activation ReLU
Batch size 5,000
Batch normalisation Yes
Early stopping Patience 5 / Tolerance 0.0001
Learning rate η 0.01
Optimiser ADAM

TABLE A.4: STAE and TCN specific hyperparameter ranges used in Sec-
tion 4.3.2. Values enclosed by {·} are choices within the set. Values enclosed
by [·] are a single list where each value indicates a layer. Mean hyperparamet-
ers are average chosen hyperparameters in an ensemble of 10.

Parameter STAE TCN

Search range
Convolutional filters {8, 16, 32} {8, 16, 32}
Encoder kernel size {2, 5, 10} {2, 5, 10}
Decoder kernel size [2, 5, 5, 5]
Spatial dropout {0.2, 0.4} {0.2, 0.4}
Auxiliary loss ω {0.2, 0.4}

Mean hyperparameters
Convolutional filters 27.2 18.4
Encoder kernel size 2.9 6.9
Spatial dropout 0.28 0.34
Auxiliary loss ω 0.34

A4 HYPERPARAMETERS USED IN CHAPTER 4 195

TABLE A.5: N-BEATS specific hyperparameter ranges used in Section 4.3.2.
Values enclosed by {·} are choices within the set. Values enclosed by [·] are
a single list where each value indicates a layer. Mean hyperparameters are
average chosen hyperparameters in an ensemble of 10.

Parameter N-BEATS

Search range
Stacks [Trend, Generic]
Blocks per stack {2, 3, 4}
θ dimenions {[4, 8], [8, 16], [16, 32]}

Mean hyperparameters
Blocks per stack 2.6
Mean θ dimenions 13.8

TABLE A.6: LSTM specific hyperparameter ranges used in Section 4.3.2.
Values enclosed by {·} are choices within the set. Values enclosed by [·] are
a single list where each value indicates a layer. Mean hyperparameters are
average chosen hyperparameters in an ensemble of 10.

Parameter LSTM

Search range
LSTM layers {[8], [16], [32], [16, 8], [32, 16], [32, 16, 8]}

Mean hyperparameters
Mean total LSTM units 32.8
Mean no. LSTM layers 1.7

TABLE A.7: Transformer specific hyperparameter ranges used in Sec-
tion 4.3.2. Values enclosed by {·} are choices within the set. Values enclosed
by [·] are a single list where each value indicates a layer. Mean hyperparamet-
ers are average chosen hyperparameters in an ensemble of 10.

Parameter Transformer

Search range
Key size {4, 8}
No. heads {1, 2}
No. transformer blocks 1
Dropout rate {0.2, 0.4}

Mean hyperparameters
Key size {4, 8}
No. heads {1, 2}
No. transformer blocks 1
Dropout rate {0.2, 0.4}

196 A APPENDIX

A5 Hyperparameters used in Chapter 5

In this section, we provide a list of hyperparameter search ranges and mean hyperparameters

used to train the neural networks in Section 5.4.1 and 5.4.2. Hyperparameter search was

performed on all combinations of hyperparameters. Both cryptocurrency and U.S. equities

datasets share the same hyperparameter ranges but with hyperparameter search performed

separately. Table A.9 records mean hyperparameters over 10 network trainings for each

network architecture.

TABLE A.8: Hyperparameter ranges used in Section 5.4.1 and 5.4.2. The
‘LSTM layers’ hyperparameter is a list, with the length of the list indicating
how many LSTM layers were used and each element of the list indicating the
number of units of each LSTM layer. Similarly, ‘Hidden layers’ indicate the
number of fully connected hidden layers. Each element of the list indicate the
dimension of that hidden layer. ADAM is the optimiser proposed by Kingma
and Ba (2015).

Parameter Search range

LSTM layers {[16, 8], [32, 16, 8], [32, 16], [64, 32, 16]}
Hidden layers {[8], [16, 8]}
Dropout rate {0.2, 0.3, 0.4}
Activation ReLU
Batch size 1,000
Batch normalisation Yes
Early stopping Patience 5 / Tolerance 0.0001
Learning rate η 0.01
Optimiser ADAM

TABLE A.9: Mean hyperparameters are calculated over the ensemble of 10
networks for Ensemble, Evidential and Combined. Mean LSTM and hidden
units is the average number of LSTM or hidden units in the network. ‘no.’
indicate number of layers.

% Ensemble Evidential Combined

Mean dropout rate 33 26 25
Mean total LSTM units 56 41.6 61.6
Mean no. LSTM layers 2.5 2.4 2.5
Mean total hidden units 19.2 11.2 12.8
Mean no. hidden layers 1.7 1.2 1.3

A6 MARGINAL DISTRIBUTION OF A SCALE MIXTURE 197

A6 Marginal distribution of a Scale Mixture

From Equation (5.10), we have N(y|γ, σ2

λ
)Gam(λ|α, β). Marginalising over λ produces the

data likelihood,

p(y|γ, σ2, α, β) =

∫ ∞

λ

pN(y|γ, σ2λ−1)pG(λ|α, β) dλ

=

∫ ∞

λ

[√
λ

2πσ2
exp

{
−λ(y − γ)

2

2σ2

}][
βα

Γ(α)
λα−1 exp−βλ

]
dλ

=
βα

Γ(α)
√
2πσ2

∫ ∞

λ=0

λα−
1
2 exp

{
−λ(y − γ)

2

2σ2
− βλ

}
dλ

=
βα

Γ(α)
√
2πσ2

[
(y − γ)2

2σ2
+ β

]−(α+
1
2
) ∫ ∞

λ=0

{
λ

[
(y − γ)2

2σ2
+ β

]}α−1
2

exp

{
−λ
[
(y − γ)2

2σ2
+ β

]}
d

{
λ

[
(y − γ)2

2σ2
+ β

]}
,

since
∫∞
0
xα−1 exp(−x) dx = Γ(α),

=
βα

√
2πσ2

Γ(α + 1
2
)

Γ(α)

[
(y − γ)2

2σ2
+ β

]−(α+
1
2
)

and re-arranging βα = (1
β
)−α = (1

β
)−(α+

1
2
)+

1
2 ,

=
Γ(α + 1

2
)

Γ(α)

1√
2πσ2β

[
(y − γ)2

2σ2β
+ 1

]−(α+
1
2
)

p(y|γ, σ2, α, β) = St

(
y; γ,

σ2β

α
, 2α

)
. (A.8)

To show that the last step of Equation (A.8) is true, we start with the probability density

function of the t-distribution parameterised in terms of precision St(y|γ, b−1, a) (Bishop,

2006),

St(y|γ, b−1, a) =
Γ(a+1

2
)

Γ(a
2
)

[
b

πa

]1
2
[
1 +

b(y − γ)2

a

]−(
a+1
2

)

,

198 A APPENDIX

where γ is location, b is inverse of scale and a is shape15. Substituting in b−1 = σ2β
α

and

a = 2α,

St

(
y|γ, σ

2β

α
, 2α

)
=

Γ(α + 1
2
)

Γ(α)

[
(α
σ2β

)

2πα

]1
2 [

1 +
α(y − γ)2

2σ2αβ

]−(α+
1
2
)

=
Γ(α + 1

2
)

Γ(α)

1√
2πσ2β

[
(y − γ)2

2σ2β
+ 1

]−(α+
1
2
)

.

A7 Negative log-likelihood of marginal distribution of a

Scale Mixture

From Equation (A.8), the NLL of the marginal t-distribution is,

p(y|γ, σ2, α, β) =
Γ(α + 1

2
)

Γ(α)

1√
2πσ2β

[
(y − γ)2

2σ2β
+ 1

]−(α+
1
2
)

− log[p(y|γ, σ2, α, β)] = log

[
Γ(α)

Γ(α + 1
2
)

]
+ 1

2
log[2πσ2β] + (α + 1

2
) log

[
(y − γ)2

2σ2β
+ 1

]
.

A7.1 Benchmarking on UCI dataset

In this section, we compare our method to Ensemble and Evidential using the UCI benchmark

dataset. This is intended to provide readers with a direct comparison to Lakshminarayanan

et al. (2017) and Amini et al. (2020) on the same dataset used in both works. The collection

consists of nine real world regression problems, each with 10–20 features and hundreds to tens

of thousands of observations. We note the Wine dataset within UCI contains discrete values

(ratings of wine characteristics, such as color and taste) which may render the assumption

of a continuous, symmetrical data distribution less appropriate if these values are skewed.

More recently, larger uncertainty quantification datasets have been published in Dheur and

Ben Taieb (2023), which may be useful in assessing the state-of-the-art in non-time-series

uncertainty quantification methods. We follow Lakshminarayanan et al. (2017) and Amini

15Note that the definition of scale b and shape a is used exclusively in this section. Not to be confused with
network bias b and activation vector a used in the rest of this thesis.

A7 NEGATIVE LOG-LIKELIHOOD OF MARGINAL DISTRIBUTION OF A SCALE MIXTURE 199

TABLE A.10: Comparing Ensemble (Lakshminarayanan et al., 2017), Evid-
ential (Amini et al., 2020) and Combined (this work) on RMSE and NLL
using the UCI benchmark datasets. Average result and standard deviation over
5 trials for each method. The best method for each dataset and metric are
highlighted in bold.

RMSE NLL
Dataset Ensemble Evidential Combined Ensemble Evidential Combined
Boston 2.66± 0.20 2.95± 0.29 2.89± 0.31 2.28± 0.05 2.30± 0.05 2.23± 0.05
Concrete 5.79± 0.16 5.98± 0.23 5.40± 0.18 3.07± 0.02 3.11± 0.04 2.98± 0.03
Energy 1.86± 0.04 1.84± 0.06 1.71± 0.20 1.36± 0.02 1.41± 0.04 1.35± 0.05
Kin8nm 0.06± 0.00 0.06± 0.00 0.06± 0.00 −1.39± 0.02 −1.28± 0.03 −1.35± 0.02
Naval 0.00± 0.00 0.00± 0.00 0.00± 0.00 −6.10± 0.05 −5.99± 0.09 −5.89± 0.35
Power 3.02± 0.09 3.02± 0.08 2.95± 0.08 2.57± 0.01 2.56± 0.03 2.53± 0.02
Protein 3.71± 0.10 4.28± 0.23 3.67± 0.13 2.61± 0.03 2.73± 0.08 2.70± 0.05
Wine 0.60± 0.03 0.56± 0.02 0.59± 0.03 0.94± 0.04 0.92± 0.04 1.00± 0.03
Yacht 1.22± 0.22 1.48± 0.47 3.97± 1.06 1.06± 0.08 0.96± 0.19 1.17± 0.11

et al. (2020) in evaluating our method on root mean squared error (RMSE, which assesses

forecast accuracy) and NLL (which assesses overall distributional fit), and compare against

Ensemble and Evidential. While we do not explicitly compare inference speed, as our

Combined method also uses ensembling, inference speed is expected to be comparable to

Ensemble while being slower than Evidential. We use the source code provided by Amini et al.

(2020), with the default topology of a single hidden layer with 50 units for both Ensemble and

Evidential16. For Combined, as individual modelling of distribution parameters (Section 5.3.2)

requires a network with two or more hidden layers, we have used a single hidden layer with 24

units, followed by 4 separate stacks of a single hidden layer with 6 units each. Thus, the total

number of non-linear units is 48 (compared to 50 for Ensemble and Evidential). Note that

even though the total number of units are similar across the three models, learning capacity

may differ due to different topologies.

Table A.10 records experiment results on the UCI dataset. On RMSE, we find that both

Ensemble and Combined have performed well, having the best RMSE in four datasets

each. In two of the sets (Kin8nm and Naval), all three methods produced highly accurate

results that are not separable to two decimal points. Turning to NLL, we observe a trend

towards Combined having lower NLL than the other two methods for four sets, followed
16Source code for Amini et al. (2020) is available on Github: https://github.com/aamini/

evidential-deep-learning

https://github.com/aamini/evidential-deep-learning
https://github.com/aamini/evidential-deep-learning

200 A APPENDIX

by Ensemble with three sets. Comparing Combined to Evidential, we find that Combined

generally has lower RMSE (7 of 9 sets) and NLL (6 of 9 sets). Although our method is

designed for uncertainty quantification of complex time-series and all 9 datasets are pooled

(non-time-series) datasets, we still observe some improvements in both RMSE and NLL.

Next, we present further ablation studies on the UCI dataset. Table A.11 records results of

Alternative, which utilizes ensembling and SMD parameterisation but not separate modelling

of hyperparameters. Alternative has the same network topology as Ensemble and Evidential (a

single hidden layer with 50 units), as opposed to Combined which has two hidden layers with a

total of 48 units. We observe that Ensemble has the lowest RMSE in 5 (of 9) datasets, followed

by Alternative (3 of 9), while Alternative has the best NLL in 6 (of 9) datasets and Ensemble

has 3 (of 9). On both metrics, Evidential has the least favourable performance. Comparing

Combined in Table A.10 and Alternative in Table A.11, Combined has lower RMSE and NLL

in 5 of 9 datasets. Thus, we conclude that separate modelling of hyperparameters provided an

incremental benefit on the UCI datasets.

TABLE A.11: Comparing Ensemble, Evidential and Alternative (without
separate modelling of the four parameters of SMD) on RMSE and NLL using
the UCI benchmark datasets. Average result and standard deviation over
5 trials for each method. The best method for each dataset and metric is
highlighted in bold.

RMSE NLL
Dataset Ensemble Evidential Alternative Ensemble Evidential Alternative
Boston 2.66± 0.20 2.95± 0.29 2.87± 0.18 2.28± 0.05 2.30± 0.05 2.29± 0.04
Concrete 5.79± 0.16 5.98± 0.23 5.72± 0.15 3.07± 0.02 3.11± 0.04 3.03± 0.02
Energy 1.86± 0.04 1.84± 0.06 1.88± 0.04 1.36± 0.02 1.41± 0.04 1.35± 0.03
Kin8nm 0.06± 0.00 0.06± 0.00 0.06± 0.00 −1.39± 0.02 −1.28± 0.03 −1.38± 0.02
Naval 0.00± 0.00 0.00± 0.00 0.00± 0.00 −6.10± 0.05 −5.99± 0.09 −6.12± 0.06
Power 3.02± 0.09 3.02± 0.08 2.97± 0.10 2.57± 0.01 2.56± 0.03 2.54± 0.02
Protein 3.71± 0.10 4.28± 0.23 3.75± 0.11 2.61± 0.03 2.73± 0.08 2.72± 0.02
Wine 0.60± 0.03 0.56± 0.02 0.55± 0.02 0.94± 0.04 0.92± 0.04 0.92± 0.02
Yacht 1.22± 0.22 1.48± 0.47 1.45± 0.33 1.06± 0.08 0.96± 0.19 0.93± 0.09

In Table A.12, we further remove model averaging. The network used is identical to Evid-

ential but trained using the SMD parameterisation (i.e., we simply change the loss function

in Evidential to Equation (5.12)). We observe that the network trained using the SMD para-

meterisation has lower RMSE in 6 of 9 and lower NLL in 8 out 9 datasets. We argue that the

improved performance of the SMD parameterisation is due to its simplicity.

A8 FURTHER ANALYSIS OF PARAMETERS IN A SCALE MIXTURE 201

TABLE A.12: Comparing Normal-Inverse-Gamma and Normal-Gamma on
RMSE and NLL using the UCI benchmark datasets. Average result and
standard deviation over 5 trials for each method. The best method for each
dataset and loss function is highlighted in bold.

RMSE NLL
Dataset NIG SMD NIG SMD
Boston 2.95± 0.29 2.97± 0.20 2.30± 0.05 2.31± 0.05
Concrete 5.98± 0.23 5.78± 0.23 3.11± 0.04 3.05± 0.04
Energy 1.84± 0.06 1.87± 0.16 1.41± 0.04 1.33± 0.05
Kin8nm 0.06± 0.00 0.06± 0.00 −1.28± 0.03 −1.37± 0.01
Naval 0.00± 0.00 0.00± 0.00 −5.99± 0.09 −6.27± 0.09
Power 3.02± 0.08 2.98± 0.12 2.56± 0.03 2.53± 0.02
Protein 4.28± 0.23 3.72± 0.16 2.73± 0.08 2.39± 0.05
Wine 0.56± 0.02 0.56± 0.03 0.92± 0.04 0.87± 0.04
Yacht 1.48± 0.47 1.44± 0.49 0.96± 0.19 0.91± 0.18

A8 Further analysis of parameters in a Scale Mixture

In the network architecture proposed in Section 5.3, output of the network is ζ = (γ, σ2, α, β),

which parameterises the SMD (Equation (5.10)). However, as noted in Section 5.3, we can set

α = β and reduce the number of parameters to three (Equation (5.14)). Thus, an alternative

specification of the network is to output ζ = (γ, σ2, α) (i.e., three parameters instead of four

and are computed through three subnetworks, instead of four in Figure 5.1). We label this

network A=B. In Table A.13, we compare Combined (4 parameters) with S2B (3 parameters)

using the UCI dataset (as introduced in Section A7.1). We observe that A=B is better than

Combined on 8 (of 9) datasets on RMSE, while Combined is better than A=B on 1 (of 9). On

NLL, A=B is better than Combined on 5 (of 9) datasets, while Combined is better than A=B

on 4 (of 9). Even though A=B has a higher number of datasets with lower RMSE and NLL,

we note that the differences are very small and are within margin of error (due to randomness

in neural network training). Thus, we conclude that the two methods provide near identical

results but note that A=B is simpler and more interpretable. However, we choose Combined

with four subnetworks to conduct our analysis so that parameters can also be compared with

those from Evidential and Extended Evidential in Appendix A9.

202 A APPENDIX

TABLE A.13: Comparing A=B (3 parameters) to Combined (4 parameters)
on RMSE and NLL using the UCI benchmark datasets. Results are averaged
over 5 trials and the best method for each dataset and metric are highlighted in
bold.

RMSE NLL

Dataset A=B Combined A=B Combined

Boston 2.91± 0.17 2.89± 0.31 2.27± 0.04 2.23± 0.05
Concrete 5.39± 0.19 5.40± 0.18 2.99± 0.03 2.98± 0.03
Energy 1.56± 0.16 1.71± 0.20 1.30± 0.05 1.35± 0.05
Kin8nm 0.06± 0.00 0.06± 0.00 −1.36± 0.02 −1.35± 0.02
Naval 0.00± 0.00 0.00± 0.00 −5.87± 0.12 −5.89± 0.35
Power 2.93± 0.08 2.95± 0.08 2.53± 0.02 2.53± 0.02
Protein 3.60± 0.10 3.67± 0.13 2.83± 0.04 2.70± 0.05
Wine 0.57± 0.02 0.59± 0.03 0.96± 0.03 1.00± 0.03
Yacht 2.31± 0.43 3.97± 1.06 1.11± 0.09 1.17± 0.11

A9 Further analysis of Evidential on uncertainty

quantification in cryptocurencies

The Evidential method utilises NormalInverseGamma output layer (no separate subnetworks

for distribution hyperparameters) and a t-distributed NLL derived from the NIG distribution

(Equation (5.9)). In Section 5.4.1, we have observed that Evidential fails to provide uncer-

tainty forecasts that track time-varying volatility. However, this was not observed in our

proposed Combined method. In here, we test the effects of separate modelling of distribution

hyperparameters in the output layer for Evidential. We label this as the Extended Evidential

method. Square-root of average squared forecast error and square-root of forecast uncertainty

for BTC/USDT for Extended Evidential and Combined are shown in Figure A.3. We find that

separate modelling of distribution hyperparameters significantly improved accuracy of un-

certainty forecasts of Extended Evidential. Forecast uncertainty of both Extended Evidential

and Combined are generally similar, with the exception of still some block-like features for

Extended Evidential in 2019. Comparing cryptocurrency experimental results of Extended

Evidential to Combined, we find that Combined is better than Extended Evidential on both IC

and NLL, and is better than Extended Evidential on RMSE at higher decimal places.

A9 FURTHER ANALYSIS OF EVIDENTIAL ON UNCERTAINTY QUANTIFICATION IN CRYPTOCURENCIES 203

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07
2021-10

2022-01
0.00

0.01

0.02

0.03

0.04

0.05

0.06

BTC/USDT Uncertainty

(y y)2

Var(y)

(a) Extended Evidential

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07
2021-10

2022-01
0.00

0.01

0.02

0.03

0.04

0.05

0.06

BTC/USDT Uncertainty

(y y)2

Var(y)

(b) Combined

FIGURE A.3: Actual prediction error and predicted uncertainty of Extended
Evidential and Combined for BTC/USDT. Square root of the average forecast
error and forecast uncertainty on each day shown.

TABLE A.14: Ablation study comparing Extended Evidential to Combined
on average IC, RMSE and NLL for cryptocurrencies time-series forecasts.
Average result and standard deviation over 10 trials for each method. Best
method for each dataset is highlighted in bold.

Metric Extended Evidential Combined

IC (%) 6.39± 2.56 9.87± 3.17
RMSE (%) 0.867± 0.001 0.867± 0.001
NLL −3.35± 0.01 −4.14± 0.01

EXAMINER 1

Comment
This thesis focuses on the innovation and applications of deep learning (DL) techniques to address

open problems associated with forecasting tasks in financial markets, e.g., stock return prediction, in

the context of quantitative portfolio management, with a particular attention on solving the issues of

the time-varying data generation process (DGP), low signal-to-noise ratio, heavy tail, and volatility

clustering. There are three chapters (Chapters 3-5) dedicated to relevant contributions, which

correspond to two published papers and one manuscript in preparation. Overall, this thesis is well-

structured, easy-to-follow, and makes valuable impacts on the applications of machine learning (ML)

techniques to financial applications. Some detailed comments and suggestions are given below.

Response
Thank you very much for your positive comments and your time in reviewing my thesis. Please find

below my responses to your comments.

Chapter 1
Comment: In Chapter 1, Eq. (1.3) (1.4 in updated thesis) and (1.4) (1.6 in updated thesis) should be

explained in a clearer way. It is difficult from the current description to understand how to obtain

input X and define function F with respect to risk and cost.

Response: In p.10, we have added a description of the cross-sectional regression problem. At time 𝑡,

we regress stock returns observed at 𝑡 on features observed at 𝑡 − 1 for the cross-section of 𝑁 stocks.

This is known as a cross-sectional regression. Eq. (1.4) is an abstraction of the risk model, which can

be machine learning based. We have provided an example of a linear regression-based risk model on

p.11 to illustrate how risk is estimated by practitioners. Cross-sectional regressions are repeated for

every cross-section in 1, … , 𝑡 − 1, resulting in 𝑀 time-series of cross-sectional regression coefficients

{𝜉1, … , 𝜉𝑀} (known as factor returns), where 𝑀 is the number of features and each time-series is 𝑡 −

1 long. Factor risk is estimated by computing the variance-covariance matrix (𝑽𝑡
′ ∈ 𝑅𝑀×𝑀) of the

factor returns. 𝑽𝑡
′ measures risk at the factor level and is converted back to stock-level variance-

covariance by: �̂�𝑡 = 𝑿𝑡𝑽𝑡
′ 𝑿𝑡

𝑇, where 𝑿𝑡 ∈ 𝑅𝑁×𝑀 is the matrix of stock-level features used in the cross-

sectional regressions. Note that features used in the return forecasting model (Eq. 1.2) can also be

used to estimate risk. More details on this are provided in p.11. Similarly, Eq. (1.6) is an abstraction of

the transaction cost model, which can be based on machine learning methods. We have added the

transaction cost model proposed in Grinold & Khan (1999) (Eq. 1.7, end of p.11 to beginning of p.12)

as an example of transaction cost model. In Eq. (1.7), expected transaction cost is assumed to consist

of three components: 1) a percentage commission payable to brokers (e.g., banks); 2) bid-ask spread

(e.g., if the best bid is $1.00 and best ask is $1.01, rather than waiting in the bid queue and pay

$1.00/sh, a buy order can immediately execute if it is willing to pay the asking price of $1.01); 3) a

market impact component (introduced in Section 1.2 and further explained in Appendix A2.3). Market

impact relates to buying (selling) pressure that causes the price to move up (down). In Grinold & Khan

(1999), this is assumed to be proportional to the square-root of the ratio between value of the trade

and daily average traded value in the stock. To illustrate, suppose that the average daily traded value

of a stock is $1million. A trade worth

Comment: The same applies to the explanation of Eq. (1.5) (1.8 in updated thesis), where the

meanings of each term should be better explained. For example, it is difficult to understand the

meaning of the 3rd term, based on the current description, for readers like me who are not familiar

with mean-variance optimisation.

Response: We have added a discussion on mean-variance optimisation (Eq. 1.8, p.12-14), including an

example to explain the intuition of mean-variance optimisation, and an explanation of the three terms

in Eq. 1.8. Specifically, Eq. 1.8 is a generalisation of various portfolio optimisation objectives. This is

controlled by the risk aversion parameter 𝜆, which serves to control the trade-off between maximising

return (by setting 𝜆 = 0) and minimising risk (by setting 𝜆 → ∞). Let’s first consider the case of 𝜆 = 0

and �̂�𝑡 = 0 (i.e., no transaction cost). The risk penalty (2nd term in Eq. 1.8) becomes 0. Thus, the

optimiser maximises return by placing 100% of the portfolio into the stock with the highest return.

Next, consider 𝜆 = 1000 , a large number that dominates the 1st term of Eq. 1.8 such that the

optimiser focuses on minimising risk. In this case, the optimiser will place 100% of the portfolio into

the stock with the lowest risk. A value in between (e.g., 𝜆 = 5) will simultaneously maximise return

and minimise risk, where the risk term acts like a regulariser. In practice, 𝜆 is subjectively chosen by

the investor based on their risk tolerance. The cost term comes into play when 𝑡 > 1 and the portfolio

must transition from existing weights to new optimal weights (e.g., by selling one stock and buying

another). Transaction costs discourage the optimiser from deviating from existing weights, as it is

costly to do so. Any deviation must be offset by an increase in expected return that more than

compensates for transaction cost. This in turn acts as a regulariser that reduces the difference

between the existing portfolio and the new portfolio (as it is costly to change).

Comment: In pages 16-17, it would be more helpful to provide a categorised summary of the factors

that may influence a stock’s price. In Section 1.6.1, there lacks a clear (mathematical) definition of

cross-section prediction tasks, which influences the understanding of the subsequent relevant

contents.

Response: We have summarised the discussion on drivers of stock returns in Section 1.5 into a list

(beginning of p.20). Namely, these include price-derived features (e.g., past returns, known as the

momentum effect), financial statement-derived features (e.g., valuation metrics), social media

activity, web searches and media reports. In Chapter 3, we have used the same dataset as Gu et al.

(2020) which mainly contains price and financial statement features. We have added a comment on

this in the updated thesis. As noted in our first response, a formal definition of cross-section prediction

has been added in Section 1.3 (p.10).

Comment: In page 19 (p.21 in updated thesis), it is better to mention (if possible) whether the features

(factors) used by those prediction models in comparison are same or different.

Response: We’ve added a comment (p.21) on the respective datasets. Gu et al. (2020) is the largest,

containing 94 firm-level features. Messmer (2017) contains 61 which are all contained within Gu et al.

(2020). Abe & Nakayama (2018) contains the least, at 25. However, due to different naming

conventions, we were not able to ascertain how many of Abe & Nakayama (2018) are contained within

Gu et al. (2020).

Comment: In Section 1.6.2, more approaches suitable for noisy environments, instead of basic time-

series prediction methods, should be included.

Response: In Section 1.6.2 (p.23), we have shortened the discussion on time-series prediction in

financial markets and added a discussion (p.23) on robustness of neural networks in presence of noise.

To the best of our knowledge, there is no prior work on testing the robustness of neural networks in

financial markets. Drawing on findings in other applications, Rolnick et al. (2018) find that effective

batch size decreases as the level of white noise increases (in image recognition applications). Thus,

noisy environments require larger batch sizes. We have expanded the discussion on regularisation

techniques for neural networks (p.24). In general, ways to combat noise are using more training data,

L1 and L2 penalties, early-stopping and dropout. More recently, multi-task learning (MTL) has been

shown to improve generalisation of neural networks. MTL involves the addition of an auxiliary learning

task that is related to the primary learning task and is thought to encourage representation sharing

between the primary and auxiliary tasks. In Chapter 4, we introduce the Supervised Temporal

Autoencoder, where the auxiliary task is to reconstruction the original input sequence and showed

that this improved generalisation of the neural network in out-of-sample data. Towards the end of

Section 1.6.2 (p.25), we have also discussed ways of combating noise in financial time-series, including

treating the problem as a classification task (which mitigates the heavy tails of asset returns) and

applying wavelet transforms, both of which are deficient.

Comment: In Section 1.6.3, it would be helpful to provide more details on how the forecasted

uncertainty may be utilised to facilitate portfolio management.

Response: At the end of Section 1.6.3 (p.26), we have added a discussion on how forecast uncertainty

can be used in portfolio optimisation (made consistent with the potential applications in the

conclusion of Chapter 5). Specifically, forecast uncertainty can be used to size bets, or as advanced

warning to protect the portfolio from increasing risk. For example, if forecast uncertainty reaches a

certain threshold, an investor could purchase portfolio insurance (e.g., put options which allow the

investor to sell stocks to the issuer of the options at a pre-agreed price) or liquidate positions to reduce

risk.

Comment: In page 26 (p.30 in updated thesis), the term “sequential neural networks” is confusing.

Response: We have also added a footnote (p.30) to clarify the meaning of “sequential neural

network”. In this context, we are referring to network architectures that are applicable for time-series

applications, such as recurrent neural network (RNN), LSTM and CNN.

Chapter 2
Comment: In Chapter 2, it is mentioned in pages 45-46 (p.52 in updated thesis) that f (F) and g (G)

denote input and kernel, respectively, which, I think, should be opposite. Please have a check.

Response: In Chapter 2, we have cross-checked against the source (Goodfellow, et al., 2016) and

confirm that 𝐹 (input) and 𝐺 (kernel) are correct designations in p.52. Goodfellow et al. (2016) used 𝑥

as input and 𝑤 as kernel, which carries a different meaning in this thesis.

Comment: The core technique used in Chapter 4, i.e., temporal convolutional networks (TCN) should

be explained in more detail. The current description in page 49 is overly simple.

Response: We have expanded the explanation of causal convolutions (p. 53-54) and residual block (p.

54-55). On causal convolutions, we have added Fig. 2.8 (p.54) to demonstrate the mechanics causal

padding. In normal convolution, the kernel convolves with values to both sides of the centre of the

kernel. However, in a time-series, if we take the centre of the kernel as 𝑡, then the right of the centre

of the kernel is 𝑡 + 1. Thus, the kernel will be looking ahead in time. In causal convolution, 𝑑 × (𝑘 −

1) number of zeros is padding to the left of the sequence (where 𝑑 is dilation rate and 𝑘 is kernel size).

This causes the sequence to shift to the right and thus, the kernel no longer looks ahead in time (as

depicted in Fig. 2.8). On residual block, we have added Fig. 2.10 to demonstrate the architecture of

each block. In essence, each residual block is comprised of a dilated causal convolution layer, followed

by batch normalisation, dropout and ReLU. A skip connection is added to each residual block, such

that the input into each residual block is the sum of both input and output of the preceding block. This

is motivated by ResNet (He et al., 2016), which showed that this construction allows the network to

efficiently pass through the identity (i.e., the original sequence) and each residual block learns

modifications to the original sequence.

Chapter 3
Comment: In Chapter 3, the motivation behind the proposed online early stopping (OES) strategy is

reasonable. However, although early stopping may prevent overfitting (and thus help adapt to the

time-varying DGP), it may also possibly lead to underfitting (if the #epochs is insufficient). There lacks

explanation/discussion in this regard.

Response: In Chapter 3, we have added a discussion on the best- and worst-case scenarios for the OES

algorithm (from the last paragraph of p.71-72). Specifically, the best case scenario is if the DGP is

stationary and 𝜏 = 0. The worst case scenario has already been discussed at the beginning of Section

3.3.1 (first paragraph of p.68) and has been expanded. It is the case where 𝜃0 = 0 and the sequence

of optimal theta alternates between {1, −1, 1, −1, … }. In this case, estimated steps 𝜏 = 0 (as it is

best to never update network weights) and regret scales linearly with time and average regret

converges to a constant. This means that the network is always underfitting the data. However, as

discussed in Section 3.2.3 (beginning of p.67), regret for non-convex online optimisation problems is

measured in terms of sum of gradients, which is why our worst-case regret scales linearly with 𝑇 in

the worst case. For the problem to be tractable, regret for convex problems is typically measured

against a benchmark. For example, suppose that the user is asked to come up with an algorithm to

compute the mean of a streaming sequence of numbers. Suppose that the user proposed the running

average algorithm:

𝑢𝑡 =
((𝑡 − 1) 𝑢𝑡−1 + 𝑥𝑡)

𝑡
,

where 𝑥𝑡 is observation at 𝑡 and 𝑢𝑡 is the estimated mean at 𝑡, 𝑢0 = 0, and for all 0 < 𝑡 ≤ 𝑇. The

“best minimiser in hindsight” in this scenario would be the average after 𝑇 observations are made.

The mean computed by this algorithm does in fact converge to the benchmark as 𝑡 → ∞. Thus, the

average regret converges to 0 (we have added an introduction to average regret in the beginning of

p.67). With this example in mind, in our worst case, our algorithm also converges to the best hindsight

minimiser. This provides users with a worst-case performance guarantee, that the algorithm will

perform as well as if all the data is made available beforehand and a single neural network is trained

on the entire dataset. We consider this a strong performance guarantee and is one that is useful to

practitioners.

Comment: The expanding window approach, as a key compared method, should better be explained

in more detail. Also, I am curious whether there exist other techniques except the only one selected

to compare in this work, i.e., Gu et al. 2020 (named as DNN in page 56 (p.61 in updated thesis) – which

is a bit confusing naming), which have been proposed to address the same/similar issue.

Response: We have added explanations for the expanding window approach on p.60. In essence, for

every year, the network is trained using all training data. The same network is then used for monthly

prediction over the next 12 months, upon which an additional 12 months of data is added to the

training set and training is repeated. We have replaced the label “DNN” for Gu et al. (2020) with

“EWNN” for expanding window neural network, to reflect the fact that it was trained using an

expanding window approach (see Table 3.1, p.75 and Table 3.3 in p.79).

Comment: Comparison to a single method to validate the superiority of the proposed method is a bit

risky in terms of the reliability of conclusions.

Response: On alternative benchmarks for time-varying problems, we have discussed the DTS-SGD

algorithm proposed by Aydore et al. (2019) in Section 3.2.3 (p.66-67). To our knowledge, this is the

state-of-the-art online learning algorithm for non-convex problems and was used for neural network

training in Aydore et al. (2019). In Section 3.4, we compared OES against EWNN and DTS-SGD on a

synthetic dataset in Table 3.1 (p.75), and demonstrated superior performance. We have not compared

against DTS-SGD on the U.S. equities dataset due to exploding gradient. This is discussed at the

beginning of Section 3.5.2 (p.78).

Comment: The meanings of decile 10 and decile 1 in Eq. 3.4 lack a clear explanation. It is difficult to

understand the sentence “A pooled regression with window size w effectively assumes data at t +1 is

drawn from the average of the past w observations” in page 59 (p.65 in updated thesis).

Response: We have added further explanations on “decile return spread” on p.64. Decile return

spread is computed as following. For every month, we sort stocks based on the return forecast �̂�𝑡. We

then place stocks into 10 equally sized deciles and compute average realised return of each decile in

𝑡 + 1. The decile return spread is the difference in average return of decile 10 (top decile) and decile

1 (bottom decile). Formally, definition of decile return spread is defined in Eq. 3.4 (p.64). We have

reworded the sentence “A pooled regression…” to “A regression that is fitted on a sliding window of

size 𝑤 effectively assumes that data at 𝑡 + 1 is drawn from the average DGP of the past 𝑡 − 𝑤, … , 𝑡

cross-sections” on p.65.

Chapter 4
Comment: In Chapter 4, the proposed technique is a reasonable idea which has been successfully

applied in other applications. However, it is unclear why the input sequence length has been chosen

to be that long, i.e, K = 250. Any justifications?

Response: In Chapter 4, we assume 𝐾 = 250, as there are approximately 252 business days per year

and is motivated by the momentum effect documented in finance literature (one-year change in price

predicts next month’s return). We have added commentary to reflect this in Section 4.2.1 (last

paragraph of p.96). In the original work of Jegadeesh & Titman (1993), the momentum effect was

observed in all 3-, 6-, 9- and 12-month look back windows. Thus, we do not expect the choice of 𝐾 to

have a material impact on the efficacy of our time-series predictions. In empirical results (Table 4.1 in

p.108), we compare against 12-month momentum (MOM12, the standard definition of the

momentum effect in finance literature) and show that a pattern recognition approach using neural

networks (STAE) provides significantly better performance.

Comment: Also, it seems that the OES strategy proposed in Chapter 3 is not applied herein, and

instead a basic early stopping method is employed. Any reasons?

Response: In this chapter, we focus solely on advancing techniques for training neural networks in

noisy environments as we believe that our contribution (regularising a neural network using a

supervised autoencoder) has general applicability in other noisy learning environments. We have

noted this in the conclusion of Chapter 4 (Section 4.4, p.117) to highlight this and have added a

discussion on combining OES, STAE and uncertainty quantification (contribution of Chapter 5) into a

unified framework in the Future Research section (Section 6.2, p.154-155) of this thesis. This is further

discussed in our response to comments on Chapter 6.

Comment: The results shown in Table 4.1 among some other tables do not demonstrate consistent

superiority of the proposed method. Some discussion should be provided around this.

Response: In Table 4.1 (p.108), our primary performance measure is information coefficient (IC, Eq.

3.2, p.64, computed by taking the mean of cross-sectional correlation across time and is a frequently

used performance measure in the finance industry (introduced in Section 3.2.1, p.64). On this metric

(Mean IC and Ens. IC in Table 4.1), STAE is superior to all other compared methods. On MSE (Mean

MSE and Ens. MSE), TCN has the lowest MSE but they are virtually indistinguishable. We have added

additional commentary (reproduced below) on correlation and decile returns on p.109 to highlight

the fact that decile returns are based solely on the top and bottom 10% of the cross-section, which

ignores the forecast accuracy in the middle 80% of the distribution. By contrast, correlation is based

on the entire cross-section and is a more holistic measure of performance. “For practitioners, IC, decile

returns and Sharpe ratio are important performance metrics (Sharpe ratio and decile returns are

related as Sharpe ratios are derived from decile returns, and are used by Gu et al., 2020). However,

decile returns focus on top and bottom 10% of forecasts without accounting for the middle 80% of the

distribution of forecasts. There are investment strategies that rely on less extreme return forecasts. In

general, IC provides a more complete pictures of prediction performance by incorporating all forecasts.

The higher IC of STAE reflects better ranking of stocks across the whole distribution, despite having

similar decile returns.”

Chapter 5
Comment: In Chapter 5, the uncertainty of the prediction outcome is modelled to follow some

distribution which is learnt (in terms of its parameters) together with the prediction outcome itself via

neural networks. I suggest that the architectural description in Section 5.3.2 and Fig. 5.1 should depict

how the overall training loss is constructed.

Response: We have modified Fig 5.1 (p.134) and first paragraph of Section 5.3.2 (p.134) to show that

the four hyperparameters outputted by the network are fed into the SMD marginal NLL (Eq. 5.12,

p.132) during training.

Comment: Further, I am curious whether the prediction outcome’ distribution assumption can be

guaranteed, i.e., what if the actual distribution deviates much from that assumed and formulated in

this work.

Response: We can measure the difference between the predicted distribution and empirical

distribution of 𝑦 via negative log-likelihood (used in this work) or KL-divergence. However, these are

not “guarantees”. Normality of returns is a common assumption when modelling returns in finance

literature. However, asset returns are known to exhibit heavy tails (Cont, 2001). Our SMD formulation

effectively fits a t-distribution on the data which is a more appropriate data distributional assumption

for asset returns given the heavy tails. We have shown that the predictive uncertainty of our proposed

Combined method can closely track actual forecast error in real world financial datasets (Fig. 5.2,

p.141). Thus, demonstrating its potential usefulness in return forecasting. In the case where the actual

distribution is very different from Normal or t-distribution (e.g., bimodal), then we expect predictive

uncertainties to be high. Furthermore, they will not closely track actual forecast errors, unlike what

we have observed with our method in Fig. 5.2. However, there is no test for t-distributed residuals

currently with varying degrees of freedom.

Comment: Also, it would be much helpful to explain how to make use of the predicted uncertainty to

help the downstream portfolio optimisation.

Response: We have added a discussion in the introduction (Section 5.1, end of p.119 to first paragraph

of p.120) on potential applications of predictive uncertainty. Further potential applications are also

provided in the conclusion (Section 5.5, end of p.147). We have reproduced the potential applications

here for reference: 1) in Kelly criterion (computed as 𝑦𝑡/𝑉𝑎𝑟[𝑦𝑡] , where 𝑉𝑎𝑟[𝑦𝑡] is predictive

uncertainty) to determine optimal bet size; 2) as “early warning”, where if forecast uncertainty of the

portfolio reaches a certain level, the investor can liquidate the portfolio to reduce risk or purchase

portfolio insurance (e.g., put options).

Comment: In Chapter 6, the authors may consider a discussion on how to unify the three works

proposed in Chapter 4-6. Currently, they are independent, but intrinsically could be combined.

Response: In Chapter 6 (p.154-155), we have added a discussion on how the three methods discussed

in this thesis can be combined into a single method for forecasting stock returns. We propose to

combine all three methods into a single network (consisting of 8 subnetworks), using autoencoders to

process both firm features and return sequence, and output three parameters (𝛼 = 𝛽, 𝜎2, 𝛾) of the

SMD distribution . We envisage three potential challenges with this approach, being size of the

network, sufficiency of data in the OES algorithm and weight given to the reconstruction tasks in the

loss function. We also suggest some potential ways of solving these problems. First, on training the

proposed network. We propose to utilise transfer learning, a popular technique in training large

language models (LLMs), where a component of the network is pre-trained using simpler (but related)

tasks. We propose to pre-train Subnetwork 1 & 2 (processes firm features and stock returns) using

autoencoders, where the subnetworks learn to encode and decode firm features and stock returns.

Pre-training using autoencoders can be considered as a way of initialising network weights, such that

they can be fine-tuned for the prediction task. After pre-training, the encoder subnetwork learns to

encode the input (e.g., firm features and return series) into latent representations that summarises

the input. We have shown in Chapter 4 (using STAE) that this regularises the network and improves

prediction performance. Second, on sufficiency of data in the OES algorithm, one may find that a single

cross-section contains insufficient data to train such a large network. To solve this, we may expand

the size of look back window. However, as the size of the look back window increases, the ability of

the network to track the time varying DGP decreases, until it converges to the expanding window

approach. Size of the look back window may be found using hyperparameter search. Third, in our

proposed network architecture, there are two reconstruction tasks (compared to one in STAE). Scales

of the reconstruction loss of these autoencoders are likely different to the main prediction task and

require further hyperparameter search. More details on this are given in p.154-155.

EXAMINER 2

Comment
The Author attribution statement declares that the thesis is based on 3 published papers. However, it

seems that there are only two published papers while the last one is a working paper. Thus, a

clarification on this is required. If the last paper is published, the published version should be cited in

the thesis. Otherwise, the statement has to be revised.

I think that the candidate may have to comment for the computational burden in the optimization of

(3.6) as it may add computational burden to the overall algorithm.

Response
Thank you very much for your positive comments and your time in reviewing my thesis.

We have amended the attribution statement to reflect the two published papers. Computational

speed is discussed in the conclusion (Section 3.6, p.89) and is one of the advantages of this algorithm.

Our method took 44.25mins for a single pass over the data compared to the method used in Gu et al.

(2020) of 5.5 hours. This is because the training dataset is much smaller for our algorithm, which only

includes data of the last 2 periods (complexity of OES is 𝑂(𝑇)), compared to Gu et al. (2020) which is

an expanding window of all past data (complexity is 𝑂(𝑇2)). The machine used is an AMD Ryzen 7

3700X, running Python 3.7.3, Tensorflow 1.12.0 and Keras 2.2.4. Due to the small size of the

feedforward network used in Chapter 3, we have found training on the CPU to be faster than the GPU

(Nvidia Geforce RTX 3060).

Machine Learning in Portfolio
Management

STEVEN Y. K. WONG

BE (Hons), BCom, MFin

Supervisor: A/Prof. Jennifer S. K. Chan
Associate Supervisor: Dr. Lamiae Azizi

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Mathematics and Statistics
Faculty of Science

The University of Sydney
Australia

19 September 2023

Abstract

Financial markets are difficult learning environments. The data generation process is time-

varying, returns exhibit heavy tails and signal-to-noise ratio tends to be low. These contribute

to the challenge of applying sophisticated, high capacity learning models in financial markets.

Driven by recent advances of deep learning in other fields, we focus on applying deep learning

in a portfolio management context. This thesis contains three distinct but related contributions

to literature. First, we consider the problem of neural network training in a time-varying

context. Conventional batch training methods assume a stationary data generation process,

where training and out-of-sample data are assumed to be drawn from the same distribution.

This is suboptimal for applications where the data generation process changes over time, such

as in financial markets. To address this, we extend the early stopping algorithm into the online

context, which we term the Online Early Stopping algorithm. We show that a neural network

trained using this algorithm can track a function changing with unknown dynamics. We

provide a regret-bound for the algorithm and show that the worst-case tracking performance

of the algorithm is bound by the time-variance of the data generation process. We compare

the proposed algorithm to current approaches in predicting monthly U.S. stock returns and

show its superiority. Second, we consider the problem of learning in noisy environments.

Noisy learning environments such as financial markets are characterised by low noise-to-

signal ratio. This differs to information-rich applications such as image recognition. We

propose an approach that regularises the temporal convolutional network using a supervised

autoencoder, which we term the Supervised Temporal Autoencoder. We show that the addition

of the auxiliary reconstruction task is beneficial to the primary supervised learning task in

the context of stock return time-series forecasting. The supervised autoencoder denoises

the input and encourages the main network to retain features that are beneficial to both

prediction and reconstruction tasks. We also show that the supervised temporal autoencoder

is able to learn features directly from the transformed price series, alleviating the need for

ii

ABSTRACT iii

handcrafted features. The autoencoder also improves interpretability as users can observe the

output of the decoder and inspect features retained by the network. Third, we consider the

problem of quantifying forecast uncertainty in time-series with complex structures. Time-

varying variance, such as volatility clustering as seen in financial time-series, can lead to

large mismatch between predicted uncertainty and realised forecast error. We propose a novel

framework to deal with uncertainty quantification under the presence of volatility clustering,

building and extending the recent methodological advances in uncertainty quantification for

non-time-series data. We outline several methodological advancements, including the use

of scale mixture distribution and separate modelling of distribution hyperparameters. To

illustrate the performance of our proposed approach, we apply it onto cryptocurrency and

U.S. equities time-series forecasting for the designed use-case. We demonstrate superior

performance to the current state-of-the-art in both data sets. We further provide an evaluation

using a non-time-series benchmark data set (Appendix) to show the general applicability of

our framework. Finally, potential future research directions in advancing machine learning in

portfolio management is discussed.

Acknowledgements

After 5 arduous years, here I am, putting the final touches to my thesis. Looking back, I

am glad that I have spent 5 years of my life (albeit part time) to learn something new about

machine learning, and to give back my knowledge to science, however trivial my contributions

may be. I would like to start by thanking my supervisors, A/Prof. Jennifer Chan and Dr.

Lamiae Azizi, for whom I am forever grateful to have been mentored by. Without their

patience, support and knowledge, I would not have made it this far. I would like to thank Prof.

Richard Xu for initially accepting me into his PhD cohort. Even though we had to part ways,

his machine learning classes were immensely helpful to my PhD. A special thanks to Prof.

Maurice Pagnucco for supervising my Honours and leading the UNSW RoboCup team —

an unforgetable journey through artificial intelligence that I still cherish today. I would also

like to thank the many past and present colleagues who have shaped my understanding of

quantitative investing. All of these experiences culminated in this thesis.

Finally, I would like to thank my family for their support and patience. They are the

reason for my perseverance.

iv

Contents

Abstract ii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

Acronyms xiii

List of Notations xv

Author attribution statement 2

Declaration 3

Chapter 1 Introduction 4

1.1 Motivation . 4

1.2 Mechanics of financial markets . 5

1.3 Return expectations in financial markets . 7

1.4 A primer on quantitative portfolio management . 8

1.5 Challenges of forecasting in financial markets . 16

1.6 Potential applications of machine learning in portfolio management 21

1.6.1 Cross-sectional prediction using online deep learning 21

1.6.2 Time-series pattern recognition in noisy environments 23

1.6.3 Forecast uncertainty quantification . 25

1.6.4 Other possible directions . 27

1.7 Contributions and structure of the thesis . 29

v

vi CONTENTS

Chapter 2 Deep learning 32

2.1 Feedforward neural networks . 32

2.2 Neural network training . 37

2.3 Network weight initialisation . 43

2.4 Other network architectural considerations . 45

2.5 Specialised network architectures . 46

2.5.1 Recurrent neural networks . 46

2.5.2 Temporal convolutional networks . 51

2.5.3 Autoencoders . 56

Chapter 3 Time-varying neural network for stock return prediction 58

3.1 Introduction . 58

3.2 Preliminaries . 62

3.2.1 Problem setup . 62

3.2.2 Neural network training under concept drift . 65

3.2.3 Online optimisation . 66

3.3 The proposed Online Early Stopping algorithm . 68

3.3.1 Tracking a restricted optimum . 68

3.3.2 Proposed algorithm . 72

3.4 Simulation study. 73

3.4.1 Simulation data . 73

3.4.2 Simulation results . 74

3.5 Predicting U.S. stock returns . 75

3.5.1 U.S. equities data and model . 75

3.5.2 Predicting U.S. stock returns . 78

3.5.3 Time-varying feature importance . 80

3.5.4 Investable simulation . 85

3.6 Conclusions . 88

Chapter 4 Supervised temporal autoencoder for stock return time-series

forecasting 92

CONTENTS vii

4.1 Introduction . 92

4.2 Preliminaries . 96

4.2.1 Problem setup . 96

4.2.2 Neural networks for time-series applications . 97

4.2.3 Supervised autoencoders . 99

4.2.4 Deep learning in financial time-series prediction . 100

4.3 Proposed STAE and application to stock return forecasting 101

4.3.1 Data and experimental setup . 104

4.3.2 Main empirical results . 107

4.3.3 Explaining the predictions of STAE. 111

4.3.4 Further analysis of the reconstruction task . 113

4.4 Conclusion . 116

Chapter 5 Quantifying neural network uncertainty under volatility clustering 119

5.1 Introduction . 119

5.2 Preliminaries . 125

5.2.1 Problem setup . 125

5.2.2 Related work . 127

5.3 Uncertainty quantification under volatility clustering . 130

5.3.1 Modelling forecast uncertainty using a scale mixture distribution 130

5.3.2 Architecture of the neural network . 134

5.4 Experiments . 138

5.4.1 Uncertainty quantification in cryptocurrency time-series forecasting 138

5.4.2 Further results on U.S. equities . 142

5.4.3 Ablation study . 144

5.5 Conclusions . 146

Chapter 6 Conclusion 148

6.1 Contributions to machine learning in portfolio management 148

6.2 Future research . 151

Bibliography 157

viii CONTENTS

Appendix A Appendix 185

A1 Supplementary review of asset pricing . 185

A2 Supplementary review of forecasting models . 190

A2.1 Forecasting returns . 190

A2.2 Forecasting risk . 191

A2.3 Forecasting transaction costs . 192

A3 Hyperparameters used in Chapter 3 . 193

A4 Hyperparameters used in Chapter 4 . 194

A5 Hyperparameters used in Chapter 5 . 196

A6 Marginal distribution of a Scale Mixture . 197

A7 Negative log-likelihood of marginal distribution of a Scale Mixture 198

A7.1 Benchmarking on UCI dataset . 198

A8 Further analysis of parameters in a Scale Mixture . 201

A9 Further analysis of Evidential on uncertainty quantification in cryptocurencies . 202

List of Figures

1.1 Illustrative stages of a quantitative investment process 9

1.2 Share price of Facebook Inc. over 2017–18. 17

1.3 Share price of GameStop Inc. over 2020–21. 17

1.4 Share price of Devon Energy Corp. over 2017–21. 18

2.1 Diagram of a fully connected neural network 33

2.2 Function values of common activation functions 36

2.3 Function values and first derivatives of rectified linear unit (ReLU), sigmoid and

tanh 43

2.4 Diagram of recurrent neural network 47

2.5 Illustration of types of recurrent architectures 48

2.6 Diagram of long short-term memory cell 49

2.7 Illustration of convolution operation 52

2.8 Convolution types 54

2.9 Illustration of causal dilated convolution 55

2.10 Diagram of temporal convolution network 55

2.11 Illustration of an autoencoder 57

3.1 Weight movement along gradient 69

3.2 Average optimisation iterations as regulariser 72

3.3 Cumulative mean decile returns of EWNN and OES 81

3.4 Top 5 features based on rolling 12-month average feature importance over

1987-1991 82

3.5 Yearly average R2 to baseline predictions 83

3.6 Rolling 12-month average R2 to baseline prediction of oil & gas, banks and

technology companies 85

3.7 Optimal and estimated number of optimisation iterations computed by OES 86

ix

x LIST OF FIGURES

3.8 Monthly and rolling 12-month correlation between predictions of OES and EWNN 88

3.9 Cumulative mean decile returns of EWNN and OES on the investable set 89

4.1 The Supervised Temporal Autoencoder architecture 101

4.2 Diagram of encoder and decoder of STAE 102

4.3 Schema of training dataset used for time-series forecasting 105

4.4 Standardised log TRI of Facebook Inc. and reconstructed time-series at various ω.108

4.5 Cumulative decile returns based on ensemble forecasts of sequential neural

networks 110

4.6 Illustration of momentum and reversal patterns 111

4.7 Cross-sectional correlations of the ensemble prediction of STAE to MOM12 and

MOM1 112

4.8 R2 of regressing STAE predictions on momentum and reversals 112

4.9 Mean cross-correlation of models in ensemble of sequential neural networks 114

4.10 IC and cross-correlations of TCN and STAE at various ω 115

5.1 Illustration of separate modelling of distribution hyperparameters 134

5.2 Volatility and predicted uncertainty of Ensemble, Evidential and Combined for

BTC/USDT and ADA/USDT 141

5.3 Absolute monthly returns and predicted uncertainty of Ensemble, Evidential and

Combined for Chevron and IBM 144

5.4 Predicted uncertainties in ablation studies 145

A.1 Illustration of the Capital Asset Pricing Model 187

A.2 Steps in return forecasting 190

A.3 Prediction error and predicted uncertainty of Extended Evidential and Combined 203

List of Tables

1.1 An illustrative order book for a hypothetical stock 6

1.2 Mean-variance optimisation example 13

3.1 Simulation results of EWNN, OES and DTS-SGD 75

3.2 Descriptive statistics of monthly excess returns of U.S. equities from April 1957 to

December 2016 76

3.3 Predictive performance of EWNN and OES on U.S. equities 79

3.4 Decile returns of EWNN and OES 80

3.5 Predictive performance of EWNN and OES on the investable set 87

4.1 Benchmark results of sequential neural networks and momentum effect (MOM12) on

time-series forecasts of U.S. equities 108

4.2 Forecasting performance of sequential neural networks in validation set. 110

5.1 Comparison of Combined to Deep Ensemble and Deep Evidential regressions 138

5.2 Empirical results of Ensemble, Evidential and Combined on cryptocurrencies 140

5.3 Empirical results of Ensemble, Evidential and Combined on U.S. equities 143

5.4 Ablation studies on cryptocurrencies and U.S. equities 145

A.1Hyperparameter search range in Section 3.5 193

A.2Mean hyperparameters used in Section 3.5 193

A.3Common hyperparameters used in Section 4.3.2 194

A.4STAE and TCN hyperparameter search ranges used in Section 4.3.2 194

A.5N-BEATS hyperparameter search ranges used in Section 4.3.2 195

A.6LSTM hyperparameter search ranges used in Section 4.3.2 195

xi

xii LIST OF TABLES

A.7Transformer hyperparameter search ranges used in Section 4.3.2 195

A.8Hyperparameter search ranges used in Section 5.4.1 and 5.4.2 196

A.9Mean hyperparameters used in Section 5.4.1 and 5.4.2 196

A.10Comparing Ensemble (Lakshminarayanan et al., 2017), Evidential (Amini et al.,

2020) and Combined (this work) on root mean squared error (RMSE) and negative

log-likelihood (NLL) using the University of California Irvine Machine Learning

Repository (UCI) benchmark datasets. Average result and standard deviation over 5

trials for each method. The best method for each dataset and metric are highlighted in

bold. 199

A.11Comparing Ensemble, Evidential and Alternative (without separate modelling of the

four parameters of scale mixture distribution (SMD)) on RMSE and NLL using the

UCI benchmark datasets. Average result and standard deviation over 5 trials for each

method. The best method for each dataset and metric is highlighted in bold. 200

A.12Comparing Normal-Inverse-Gamma and Normal-Gamma on RMSE and NLL using

the UCI benchmark datasets. Average result and standard deviation over 5 trials for

each method. The best method for each dataset and loss function is highlighted in

bold. 201

A.13Empirical results of combining σ2 and β on UCI dataset 202

A.14Ablation study comparing Extended Evidential to Combined on cryptocurrencies 203

Acronyms

APT: Arbitrage Pricing Theory

ARCH: Autoregressive Conditional Heteroskedasticity

ARMA: autoregressive-moving-average

BNN: Bayesian neural network

CAPM: Capital Asset Pricing Model

CNN: convolutional neural network

CRSP: Center for Research in Security Prices

DGP: data generation process

DTS-SGD: Dynamic Exponentially Time-Smoothed Stochastic Gradient Descent

ELU: exponential linear unit

EWNN: expanding window neural network

GARCH: Generalised Autoregressive Conditional Heteroskedasticity

IC: information coefficient

IG: Inverse-Normal

KL divergence: Kullback-Leibler divergence

LSTM: long short-term memory

MCMC: Monte Carlo Markov Chain

MLP: multilayer perceptrons

MOM1: reversal effect

MOM12: momentum effect

MPT: Modern Portfolio Theory

MSE: mean squared error

MTL: multi-task learning

N-BEATS: Neural Basis Expansion Analysis for interpretable Time Series

NG: Normal-Gamma

xiii

xiv List of Notations

NIG: Normal-Inverse-Gamma

NLL: negative log-likelihood

NLP: natural language processing

OES: Online Early Stopping

OLS: ordinary least squares

PCA: principal component analysis

PTVII: Pearson Type VII

ReLU: rectified linear unit

RMSE: root mean squared error

RNN: recurrent neural network

SAE: supervised autoencoder

SGD: stochastic gradient descent

SIC: Standard Industrial Classification code

SMD: scale mixture distribution

SML: Security Market Line

STAE: Supervised Temporal Autoencoder

SVM: Support Vector Machine

TCN: temporal convolutional network

TRI: total return index

UCI: University of California Irvine Machine Learning Repository

UQ: uncertainty quantification

List of Notations

Symbol Description

X Uppercase bold font denotes matrix

x Lowercase bold font denotes vector

xi i-th row of X

xi,j Element in the i-th row and j-th column of X

xi i-th element of x

(X,y) ∼ D Input X and output y (or r) drawn from dataset D

p Probability density function

y Dependent variable of a regression (e.g., forward returns)

r Contemporaneous returns (t− 1 to t)

F Model (e.g., neural network)

f Activation function or a single network layer

ξ Factor return

B Batch size

b b-th batch

M Number of features or independent variables

N Number of stocks

T Number of periods

L Number of layers in a neural network

ℓ ℓ-th layer

W (ℓ) Network weights of layer ℓ

b(ℓ) Network bias of layer ℓ

θ(ℓ) (W (ℓ), b(ℓ)) weight set of layer ℓ

θ
⋃L

ℓ=1 θ
(ℓ) (all weight sets of neural network)

xv

Glossary 1

Symbol Description

a Activation values

τ Number of optimisation epochs

k Kernel size (of convolutional layer)

K Sequence length

L(y, ŷ) Loss between true y and predicted ŷ

J(θ) Abbreviation for L(F (X;θ),y)

∇̂J(θ) Stochastic gradient of J(θ)

η Learning rate

Author attribution statement

The proceeding thesis (with publications) is based on the following two published papers and

one working paper:

(1) Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu, “Time-

varying neural network for stock return prediction,” Intelligent Systems in Accounting,

Finance and Management, 29(1), 3–18, 2022. This work is presented in Chapter 3.

(2) Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu, “Super-

vised Temporal Autoencoder for Stock Return Time-series Forecasting,” Proceedings

of the IEEE 45th Annual Computer Software and Applications Conference, Madrid,

Spain, 2021. This work is presented in Chapter 4.

(3) Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, “Quantifying neural network

uncertainty under volatility clustering,” working paper, 2022. This work is presented

in Chapter 5.

Steven Wong was responsible for developing new methods, implementation, and writing the

3 papers. Steven Wong was responsible for at least 50% of the contribution, and was the first

and corresponding author in all aforementioned papers.

2

Declaration

This is to certify that to the best of my knowledge, the content of this thesis is my own work.

This thesis has not been submitted for any degree or other purposes, except where specified

for publication.

I certify that the intellectual content of this thesis is the product of my own work, except

where acknowledged with others, and that all the assistance received in preparing this thesis

and sources have been acknowledged.

Signed: STEVEN Y. K. WONG

1st February 2023

As supervisor for the candidature upon which this thesis is based, I can confirm that the

authorship attribution statements are correct.

Signed: JENNIFER S. K. CHAN

1st February 2023

3

CHAPTER 1

Introduction

Forecasting in financial markets is one of the most difficult problems in machine learning.

The prediction problem is time-varying and plagued by low signal-to-noise in the data. It

is markedly different to traditional applications of machine learning which have observed

tremendous success. To truly appreciate the unique challenges in applying machine learning

to financial markets, the reader has to first develop at least a cursory understanding of financial

markets. This chapter will first outline the motivations of this thesis, provide a primer on

quantitative portfolio management, discuss the challenges of forecasting in financial markets

and provide potential applications of machine learning in portfolio management.

1.1 Motivation

Machine learning has made significant advances across a wide range of applications, such as

achieving human-like accuracy in image recognition (e.g. Krizhevsky et al., 2012; Simonyan

and Zisserman, 2015; Szegedy et al., 2015; Schroff et al., 2015; He et al., 2016), speech

recognition (Graves et al., 2013; Maas et al., 2013), natural language processing (NLP)

(Collobert and Weston, 2008; Sutskever et al., 2014), win against a human champion in the

game of Go (Silver et al., 2016), fully autonomous driving (Bojarski et al., 2016), synthesis of

high quality speech from text (van den Oord et al., 2016), and medical image reconstruction

(Kang et al., 2017). By contrast, machine learning applied to financial applications is still

in its infancy. There have been some adoption of machine learning in financial applications,

such as reinforcement learning for optimal trade execution (Mounjid and Lehalle, 2021) and

loan default prediction (Turiel and Aste, 2020). However, linear regression is still a staple of

4

1.2 MECHANICS OF FINANCIAL MARKETS 5

the financial forecasting toolkit1. This begs the question — can machine learning techniques

revolutionise financial forecasting, as they have done in many other fields? This question is

an important one. Australia has the fastest growing pension market in the world, which ranks

as the 4th largest globally (Pham, 2019). Employing forecasting techniques, practitioners

manage this pool of capital with the aim of generating higher returns for their clients. Any

improvements to forecasting and portfolio management using machine learning could benefit

the lives of many future retirees.

Recently, Gu et al. (2020) compared a suite of machine learning models on stock return

forecasting and offered a glimpse of the potential of machine learning in financial applications.

However, for machine learning models to be truly successful in financial applications, they

must first overcome some characteristics of asset returns that complicate the forecasting

problem, such as heavy tails, low signal-to-noise ratio and time-varying data generation

process (DGP). Guided by this, in this thesis, we review and extend the machine learning

literature to tackle some of the challenges as highlighted in Section 1.5. We focus on deep

learning2 techniques due to their successes in Gu et al. (2020) and in many other fields, such

as image recognition and speech.

1.2 Mechanics of financial markets

In the simplest terms, a financial market (or capital market) is a place where investors (buyers

and sellers) exchange financial assets, such as stocks, bonds and foreign currencies3 at an

agreed price (Drake and Fabozzi, 2010). Such activity is fundamental to a well-functioning

financial market, which facilitates the transfer of capital4 from savers (as providers of capital)

to companies (as users of capital) and allows savers to earn a return on excess capital (Drake

1For example, see Grinold and Kahn (1999) for a discussion on forecasting models used by practitioners for
stock return forecasting. The models are predominately linear.

2Deep learning is a subfield of machine learning. Details are outlined in Section 2.
3Common stocks are equity instruments which entitle the holder to fractional ownership of a company. An

instrument where the company has agreed to repay the amount borrowed plus interest to the holder is called debt
(Drake and Fabozzi, 2010).

4In the context of this thesis, capital refers to money that is available for investment. In financial theory,
capital has a more philosophical meaning.

6 1 INTRODUCTION

and Fabozzi, 2010). On any given trading day, buyers and sellers offer to buy or sell quoted

quantities of assets. The stock market employs a limit order book system (Fabozzi et al.,

2011a). Two queues are maintained, bid and ask queues, as illustrated in Table 1.1. In the

illustrated state, there is no transaction. Suppose the last transaction occurred at $1.00/share.

A new buyer is willing to pay $1.01/share for 10,000 shares. The buyer would have executed

an order of 5,000 shares at $1.01 and exhausted the first row of the ask queue. The remaining

5,000 shares are added to the top of the bid queue at $1.01. Now, suppose this buyer is willing

to buy 10,000 stocks at any price (as opposed to $1.01 in the original example). Then the

buyer would have pushed the price up to $1.02 (second row of the ask queue). This buying

(selling) pressure pushing the price up (down) is called market impact Each change in last

traded price is called a tick. The amount of trading activity in a stock is called liquidity. A

highly liquid stock allows a high volume of trading with a relatively small change in price

(Amihud, 2002). In our hypothetical example in Table 1.1, the buyer may value the stock at

more than $1.00/share (based on the information they have access to). Thus, they are willing

to pay a higher price than the previous traded price of $1.00. Conversely, if a seller decides to

sell 20,000 shares at $0.99, they are expecting the stock to be worth less than $0.99. Over the

course of trading, buyers and sellers continuously impound information into the price, pushing

the price higher if information is positive and lower if information is negative. A bad product

review that dissuades would-be customers from purchasing the company’s products may have

a minuscule impact on the share price. On the contrary, some exogenous shocks, such as a

company’s profit for the quarter, can have a large impact on the share price. It is important to

note that the last traded price reflects information of only the marginal investor. A marginal

TABLE 1.1: An illustrative order book for a hypothetical stock. The bid
queue reflects potential buyers willing to buy the stock at the specified price.
Similarly, the ask queue reflects potential sellers at the specified price.

Bid ($/share) Quantity # Ask ($/share) Quantity

1 1.00 10,000 1 1.01 5,000
2 0.99 3,000 2 1.02 11,000
3 0.98 24,000 3 1.03 2,500
4 0.95 23,000 4 1.05 51,000
5 0.90 2,000 5 1.07 4,000

1.3 RETURN EXPECTATIONS IN FINANCIAL MARKETS 7

investor is the investor making the trade at any point-in-time and determining the next traded

price (Damodaran, 2022). In the example described at the beginning of this section, the

marginal investors are the buyer and seller executing a trade at $1.01. If a potential buyer

values the stock at only $0.40/sh, the buyer will sit deep in the bid queue and the order is

unlikely to be executed. Thus, the price reflects only the information of the marginal investor

and not the average information of all (potential) buyers and sellers. Now, suppose that the

investor purchased the stock at $1.00. One month later, the stock rose to $1.10 and paid a

$0.10 dividend, the stock’s total return for the month is 1.1+0.1
1
− 1 = 20%, price return is

1.1
1
− 1 = 10% and dividend yield is 0.1

1
− 1 = 10%. Unless specified otherwise, “return”

refers to total return the investor received for holding the asset over the said period. In this

thesis, we denote contemporaneous return (i.e., at time t, total return from t− 1 to t) as rt and

future return (i.e., total return over t to t+1) as yt. We will often use the term cross-sectional,

which refers to computing certain quantities on a per period basis.

1.3 Return expectations in financial markets

Before we attempt to predict financial markets using machine learning, we have to first ask

the question — are financial markets predictable? If so, what does the finance literature

say about how are financial markets predictable? In finance literature, the study of return

expectations (in other words, the prediction of returns) is known as asset pricing. In this

section, we provide a brief discussion of asset pricing models and empirical findings. For

interested readers, more details on this topic is provided in Appendix A1.

Underpinning mainstream financial theories is the efficient market hypothesis (Fama, 1970).

In the weak form, the hypothesis postulates that investors cannot outperform the market

(i.e., achieve higher return than the market at the same level of risk) using publicly known

information. This assumption forms the basis of well-known theories such as the Modern

Portfolio Theory (MPT) (Markowitz, 1952) and Capital Asset Pricing Model (CAPM) (Sharpe,

1964). CAPM is a theoretically grounded asset pricing model, which stipulates that sensitivity

to market return is the only factor that is predictive of asset returns. This sensitivity measure

8 1 INTRODUCTION

is known as beta or CAPM β. CAPM β can be found by regressing a stock’s returns on

returns of the market (as stipulated by Equation (A.4); Jensen, 1968). To readers familiar

with physics, in my view, the importance of CAPM to finance is akin to the Standard Model

(Oerter, 2006) to quantum physics — it provided a return forecasting model with strong

theoretical underpinning and won the joint discoverers the Nobel Prize in Economics (The

Nobel Foundation, 1990).

However, unlike the Standard Model, CAPM did not withstand the empirical test. Jensen

(1968) was the first to note that CAPM did not align with empirical observations of asset

returns. Since the publication of CAPM, numerous anomalies are found to be predictive of

stock returns, such as the size effect (small capitalisation stocks outperform large capitalisation

stocks; Banz, 1981) and value premium (cheap stocks outperform expensive stocks; Stattman,

1980; Rosenberg et al., 1985). Hundreds of firm characteristics are said to contain information

on future stock returns — a survey by Harvey et al. (2016) contained 313 published asset

pricing anomalies. The true DGP is likely to be significantly more complex than originally

suggested by CAPM and that there may be a large set of factors that drive stock returns. A

sufficiently large predictor set that could overwhelm linear regression models. The functional

forms of predictors are also unknown. For instance, Fama and MacBeth (1973) tested CAPM

β and β2 and found that both were statistically significant in predicting returns and thus,

opening the door to the potential use of machine learning in predicting returns.

1.4 A primer on quantitative portfolio management

Investors provide practitioners (investment managers) with capital, either through the pension

system or through excess savings. In doing so, investors expect a positive return on their

capital. Grinold and Kahn (1999) stated the objective of an investment manager is to achieve

higher risk-adjusted returns than the market. More formally, the objective can be stated as,

max
rp

E[rp − rb]
σ[rp − rb]

, (1.1)

1.4 A PRIMER ON QUANTITATIVE PORTFOLIO MANAGEMENT 9

where rp is return of the portfolio, rb is return of the benchmark5 and σ[rp − rb] is standard

deviation of portfolio return in excess of the benchmark. From Equation (1.1), it is immedi-

ately obvious that rp > rb is required in order for the ratio to be positive. For the rest of this

section, we provide a high-level overview of quantitative portfolio management as described

in Alford et al. (2011) and Grinold and Kahn (1999). We have intentionally left out details

of forecasting models in this section, deferring discussions to Appendix A2 for interested

readers.

Quantitative portfolio management involves the use of empirical, systematic and mathematical

methods to achieve the objective of the investment manager. The process of conducting

quantitative portfolio management (a quantitative investment process) is comprised of four

stages, as illustrated in Figure 1.1.

Forecasting Portfolio
Construction

Trading Evaluation

FIGURE 1.1: Illustrative stages of a quantitative investment process. Based
on the process described in Alford et al. (2011).

Forecasting is comprised of three components: 1) return forecasts; 2) risk forecasts; and, 3)

transaction cost forecasts. Practitioners select stocks based on their return forecasts. Thus,

rp is driven by the predictive power of the practitioner’s models. For this reason, return

forecasting is described by Alford et al. (2011) as the first and most critical step of an

investment process. We start with some features of each stock (also known as signals in

Grinold and Kahn, 1999; or factors and anomalies in Section 1.3). Feature examples include

market capitalisation, earnings-to-price ratio, and past 12-month return of the stock. Each

feature is the result of feature engineering from raw data by practitioners, either by applying

domain knowledge or through machine learning (e.g., in Chapter 4, we use time-series neural

networks to extract information from stock prices). Let X̃t ∼ RN×M be a matrix of M

features of N stocks at time t. Raw feature values are typically converted into scores. Popular

5A stock index that the portfolio is benchmarked against, e.g., S&P 500 and S&P/ASX 200.

10 1 INTRODUCTION

methods include converting raw values into a [0, 1] rank interval (e.g., in Gu et al., 2020) or

by standardisation (Grinold and Kahn, 1999),

xt,m =
x̃t,m − x̄t,m
σ(x̃t,m)

,

where x̃t,m is the m-th column of feature matrix X̃t and x̄t,m is the mean of the m column.

Practitioners estimates model F to forecast returns ŷt ∈ RN ,

ŷt = F (Xt). (1.2)

A popular choice of F amongst practitioners is the cross-sectional linear regression (Zhou

and Fabozzi, 2011), while neural networks are used in Gu et al. (2020) and Chapter 3. As

cross-sectional regression problems are discussed extensively in this thesis, using the example

of a linear model as F , we formally introduce the concept of cross-sectional prediction in

here. Suppose there are N stocks in the market, each with M features, forming input matrix

Xt ∈ RN×M at time t = 1, . . . , T . The i-th row in Xt is score vector xt,i ∈ RM of stock

i and the m-th column in Xt is score vector x(m)
t ∈ RN of feature m. We define return

of stock i as the percentage change in price plus dividends, rt,i = (pt,i + dt,i)/pt−1,i − 1,

where pt,i is price at time t and dt,i is dividend at t if a dividend is paid, and zero otherwise.

Regression target at t is return vector yt, where entry i is next period’s return yt,i = rt+1,i of

stock i. The input-output pair (Xt,yt) forms a cross-section which contains all features at t

and realised returns at t + 1. The time-series of cross-sections (1, . . . , t − 1) form a panel

dataset (Wooldridge, 2008): Dt−1 =
⋃t−1

t=1{Xt,yt}. Given the time-series of cross-sections

Dt−1, a popular estimation procedure used in finance literature is the Fama-MacBeth two-step

regression procedure (Fama and MacBeth, 1973). For each t ∈ {1, ..., t− 1}, estimate the

linear model on the cross-section {Xt,yt},

yt = ξ̂t,1xt,1 + · · ·+ ξ̂t,Mxt,M + ϵt, (1.3)

where {xt,m ∈ R |m = 1, ...,M} are scores of M features at time t, ξ̂t,m are regression coeffi-

cients (in finance literature, also known as factor returns), and ϵ are regression residuals. This

results in M time-series estimates of factor returns {ξ̂1,m, ξ̂2,m, . . . , ξ̂t−1,m},m = 1, . . . ,M .

1.4 A PRIMER ON QUANTITATIVE PORTFOLIO MANAGEMENT 11

Then, for prediction purposes, the expected return of factor m at t is the average of the

time-series of observed factor returns over 1, . . . , t− 1: ξ′t,m = 1
t−1

∑t−1
j=1 ξ̂j,m.

The pioneering work by Markowitz (1952) led to the use of variance as a measure of risk and

mean-variance optimisation as a method for portfolio construction. Let V̂t ∈ RN×N be the

estimated variance-covariance matrix,

V̂t = F (risk)(Xt), (1.4)

where F (risk) is the model for forecasting risk. For simplicity, we assume that the risk model

uses the same features as the return forecasting model (in practice, they do not have to share

the same features). The diagonal of V̂t are variance of each stock and off-diagonals are

covariance between the row-th and column-th stocks. A linear-regression-based F (risk) is

simply an extension of the Fama-MacBeth regression. t − 1 cross-sectional regressions

produces M time-series of factor returns {ξ̂1, . . . , ξ̂M}. Computing the variance-covariance

matrix using the factor returns produces a matrix of factor risks V ′
t ∈ RM×M . If a factor

variance-covariance matrix is used, then the matrix must be expanded back into a stock-level

variance-covariance matrix of N ×N dimensions, by multiplying by the feature scores,

V̂t = XtV
′
t X

T
t . (1.5)

As this thesis is mainly focused on return forecasting, we provide further details on risk

estimation in Appendix A2.2.

We further define ĉt ∈ RN to be estimated transaction costs,

ĉt = F (cost)(X
(cost)
t), (1.6)

where F (cost) and X
(cost)
t are transaction cost model and inputs into transaction cost model,

respectively. An example of transaction cost model used by practitioners is the square root

model (Grinold and Kahn, 1999),

ĉi,t = commission +
bid-ask spreadi,t

pi,t
+ κ(cost)

√√√√p
(trade)
i,t

p
(daily)
i,t

, (1.7)

12 1 INTRODUCTION

where commission is payable to facilitators of the trade (e.g., 0.1% payable to brokers),

bid-ask spread is the difference between the top bid and ask prices in the order book (e.g.,

bid-ask spread in Table 1.1 is $0.01), pi,t is price of stock i at t, κ(cost) is a scaling factor and

is the sole parameter of the model, and p
(trade)
i,t and p

(daily)
i,t are dollar value of the hypothetical

trade and average daily traded value (e.g., 12-month average daily traded value, where daily

traded value is the day’s share price × number of shares traded on the day) of stock i at t,

respectively. Computation of the hypothetical trade p
(trade)
i,t is described later in this section.

Equation (1.7) indicates that transaction cost is comprised of three components: 1) a fixed

percentage commission; 2) bid-ask spread (represents the cost of buying (selling) at the lowest

asking (highest bidding) price rather than waiting in the bid (ask) queue); 3) a market impact

component that is proportional to the relative sizes of our trade and liquidity in the stock.

Both bid-ask spread and market impact have been introduced in Section 1.2 and are further

explained in Appendix A2.3 For example, if the average daily traded value in Stock A is $1

million, a $100 trade is unlikely to cause any market impact. However, a $100,000 buy (sell)

is likely to cause the price to move higher (lower). Thus, the investor may pay a higher (or

lower) price than the last traded price. In Equation (1.7), this is assumed to be proportional

to the square-root of the ratio between value of the trade and daily average traded value in

the stock. A further description of the transaction cost forecasting model is also provided in

Appendix A2.3.

Combining return, risk and transaction cost forecasts, the portfolio is constructed using

mean-variance optimisation (Markowitz, 1952; Grinold and Kahn, 1999),

w′
t =argmax

w
ŷT
t w−λwT V̂t w−ĉTt (w−wt−1)

subject to
∑
i

wi = 1, (1.8)

where wi is the weight of the i-th stock in w, w′
t are optimal portfolio weights6 and λ is

investor’s risk aversion parameter. Note that ŷT
t w and ĉTt (w−wt−1) are both in units of

6Note that the vector of portfolio weights w (upright) differs from neural network weights W (introduced
in Chapter 2) and auxiliary loss weight ω (introduced in Chapter 4).

1.4 A PRIMER ON QUANTITATIVE PORTFOLIO MANAGEMENT 13

returns, but wT V̂t w is in unit of return variance. Thus, λ also serves as a scaling factor to

bring the risk penalty into the same scale as portfolio returns.

We use the following basic example to motivate the discussion on mean-variance optimisation

(Equation (1.8)). Suppose that are two stocks with characteristics listed in Table 1.2. The

TABLE 1.2: Hypothetical risks and returns of Stock A and B. Std Dev stands
for standard deviation of expected return. ρ is correlation between the expected
return of Stock A and B. Optimal Portfolio is solved by maximising the
Return/Risk of the portfolio by allocating to both Stock A and B.

Stock A Stock B Optimal Portfolio

Expected Return (%) 10.0 8.0 8.7
Std Dev (%) 12.0 9.0 9.2
Return/Risk 0.83 0.89 0.95

ρA,B 0.65 0.65

goal of the investor is to find the optimal wealth allocation within a set of assets (in this

basic example, between Stock A and B). Clearly, if the investor seeks the highest expected

return, the investor should allocate 100% of their wealth into Stock A. If the investor seeks

the lowest risk, then the investor should allocate their wealth into Stock B. Markowitz (1952)

showed that the portfolio optimisation problem can be generalised into Equation (1.8), a

convex optimisation problem, and that various portfolio objectives (e.g., maximising return,

minimising risk, or the simultaneous trade-off of both) can be achieved by varying level of λ.

Markowitz (1952) also showed that a better return/risk can be achieved (compared to investing

into a single asset) by diversifying across assets with expected returns that are not perfectly

correlated (theoretical background on Modern Portfolio Theory is given in Appendix A1). In

our two-stock basic example, expected return of the portfolio is,

E[rp] = wA E[rA] + wB E[rB],

where E[r{p,A,B}] and w{p,A,B} are expected return and weights of portfolio, Stock A and

Stock B, respectively. Expected risk (when measured in variance) of the portfolio is,

σ2
p = w2

Aσ
2
A + w2

Bσ
2
B + 2wAwbσAσBρA,B,

14 1 INTRODUCTION

where σ2
{p,A,B} is expected risk of portfolio, Stock A and Stock B, respectively. Continuing

with our basic example, for illustrative purposes, suppose the investor is seeking the maximum
E[rp]

σp
(this is known as the Sharpe ratio when computed on realised portfolio returns and

is introduced in Section 3.2). Then, using a solver, we find that the optimal allocation is

wA = 0.36 and wB = 0.64, which results in E[rp] = 0.087, σp = 0.092, E[rp]
σp

= 0.95 (also

shown in the last column of Table 1.2). Thus, by diversifying across two stocks, the portfolio

has higher expected return and lower risk than investing in Stock B and Stock A alone,

respectively. Solving Equation (1.8) using a solver and assuming transaction cost is zero, we

find that the maximum E[rp]

σp
objective is equivalent to λ = 5 in Equation (1.8). Other special

cases include maximum return (λ = 0) and minimum risk (λ→∞). In general, risk aversion

parameter λ is subjectively chosen by the investor depending on their risk appetite.

So far, our basic example involves a single period optimisation. Suppose the investor rebal-

ances their portfolio at the end of every month and that the weights immediately prior to

rebalancing are wA = 0.3 and wB = 0.7. Changing from wA = 0.3 to wA = 0.36 (wB = 0.7

to wA = 0.64) incurs transaction costs. Thus, the expected after cost return of Stock A (B) is

likely less than 15% (8%), and the optimal portfolio in the presence of transaction costs will

differ to the theoretical frictionless optimal portfolio. Suppose that the portfolio is $1 million

in value and transaction costs are assumed to be ĉt = [0.002, 0.002]T. Then, the hypothetical

trade of Stock A is computed as p(trade)
i,t = 1, 000, 000× (0.36− 0.3) = 60, 000, which incurs

cost of 60, 000× 0.002 = 120.

In analysing Equation (1.8), it can be seen that the objective is maximised if the portfolio

places 100% weight onto the stock with the highest expected return, if risk and costs are

ignored. However, with a covariance matrix where the entries v̂t,i,j < v̂t,i,i, i ̸= j, the risk

penalty wT V̂tw encourages diversification and prevents the portfolio from being fully aligned

with return forecasts. The portfolio is further constrained by the cost to trade ĉTt (w−wt−1),

which only allows the portfolio to switch between stocks if the increase in expected return

is greater than the two-way cost to trade (i.e., the cost of a buy and a sell). A stock position

can become “stale” if its return forecast no longer ranks highly but no other stock offers

a sufficiently high return forecast to cover transaction costs. In this case, a portfolio can

1.4 A PRIMER ON QUANTITATIVE PORTFOLIO MANAGEMENT 15

continue to hold a suboptimal stock even if better (theoretical) options are available. Thus,

over time, portfolio weights reflect the weighted averages of past return forecasts, rather than

the latest return forecasts. In sum, mean-variance optimisation is a balancing act between

maximising return (forecasts), while minimising risk penalty and transaction costs.

Next, the desired portfolio is then implemented by trading the difference between the desired

portfolio and the existing portfolio,

wt = f (trade)(w′
t−wt−1),

where f (trade) denotes the trading function that produces the actual portfolio wt (i.e., an

abstract function that involves sending orders to the market and observing actual execution of

the order) and the trades are given by w′
t−wt−1. Actual transaction costs incurred by trading

is given by,

ct = f (tcost)(w′
t−wt−1),

where f (tcost) is the actual market impact (as discussed in Section 1.2) and commissions paid

for the trades. For example, if inputs into f (tcost) are $1 million worth of trades, and costs are

comprised of 0.15% of market impact and 0.05% of commission, then actual transaction cost

is ct = $1million× (0.0015 + 0.0005) = $1000. To minimise market impact, a practitioner

may choose to trade patiently7. In doing so, the practitioner incurs opportunity cost (if return

forecasts are predictive of returns, waiting for a favourable trade price will lead to foregone

returns) and risk around the eventual execution price (Alford et al., 2011). The resultant

portfolio may differ from the desired portfolio, due to adverse price movements or prevailing

liquidity of the stocks.

Finally, performance of the portfolio is computed as the sum of actual realised stock returns

less actual transaction costs,

rp,t+1 = wT
t rt+1 − cTt (w

′
t−wt−1). (1.9)

7Using the example in Section 1.2 to illustrate, suppose the maximum price the investor is willing to pay
is $1.00/share. Then, the investor’s bid will sit in the bid queue, waiting for a seller who is willing to sell at
$1.00/share. The investor is guaranteed that the price paid is $1.00 but there is uncertainty as to when the
trade will occur (if at all). Conversely, if the investor is willing to pay any price, then the investor can trade
immediately but will consume the ask queue and thus “move” the market price with the trade.

16 1 INTRODUCTION

This completes the link from return forecasts (the most important step of the investment

process) to the outcome of the portfolio (objective of the investment manager).

1.5 Challenges of forecasting in financial markets

So far, we have introduced quantitative portfolio management, basic financial theory and the

vast potential feature set. We have also briefly discussed the importance of forecasting. In

this section, we start by providing several stylised facts on financial markets before formally

describing the challenges of forecasting in financial markets.

Fact 1: Asset returns have heavier tails than stipulated by the Normal distribution (Cont,

2001).

For example, on 26th July 2018, Facebook Inc. reported lower than expected second quarter

revenue and daily active user count (Salinas and Castillo, 2018). The stock fell 18.96% on

the day, as illustrated in Figure 1.2. This event is so rare that assuming daily returns are

normally distributed and using observations from initial public offering8 to 25th July 2018,

the probability of observing such an event is 6e−17.

Fact 2: Financial markets can exhibit endogeneity.

Literature and media outlets have documented some evidence of endogenous factors driving

stock returns. Over December 2020 to January 2021, social media users coordinated trading

activity in GameStop Inc., causing its share price to rise 1998% in two months. The dramatic

rise in value of GameStop shares was partly driven by a phenomenon known as a short

squeeze (El-Erian, 2021), where investors betting against a rising stock are forced to unwind

their bet, causing further buying pressure on the stock. This caused cascading buying pressure

on the stock and an escalating stock price, as shown in Figure 1.3. Endogeneity is also said to

have caused some stock market crashes, such as the crash of October 1929 and the “Dot-com”

crash of April 2000 (Johansen and Sornette, 2002).

8Initial public offering (IPO) is when a private company sell shares to the public for the first time. After
IPO, the stock becomes a publicly traded stock on the stock exchange.

1.5 CHALLENGES OF FORECASTING IN FINANCIAL MARKETS 17

2017-01
2017-04

2017-07
2017-10

2018-01
2018-04

2018-07
2018-10

2019-01

120

140

160

180

200

220

US
$/

sh
ar

e

Share price of Facebook Inc.

FIGURE 1.2: Share price of Facebook Inc. over 2017–18. The share price of
Facebook is observed to be on an upward trajectory prior to July 26, 2018 and
a downward trajectory afterwards. Source: Center for Research in Security
Prices (CRSP) database.

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07
2021-10

2022-01
0

50

100

150

200

250

300

350

US
$/

sh
ar

e

Share price of GameStop Inc.

FIGURE 1.3: Share price of GameStop Inc. over 2020–21. The share price of
GameStop peaked on January 27, 2021. Source: Yahoo! Finance (2022a).

Fact 3: Asset returns exhibit volatility clustering, where returns display irregular bursts of

volatility that are localised in time (Cont, 2001).

18 1 INTRODUCTION

Stock market crashes can also be caused by an exogenous shock, such as the 2020 global

stock market crash due to an emerging pandemic (Song et al., 2022). For example, the price of

Devon Energy, a U.S. oil and gas producer, plummeted during the March 2020 stock market

crash, as shown in Figure 1.4. The square of daily returns jumped to 0.14 during the height

of the crash, compared to a mean of 0.001 over 2017–2021. Volatility is also seen to cluster

in time. Following the peak in March 2020, volatility remains elevated over the next 6–12

months.

10

20

30

40

US
$/

sh
ar

e

Share price of Devon Energy Corp.

2017
2018

2019
2020

2021
2022

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Squared daily returns of Devon Energy Corp.

FIGURE 1.4: Share price of Devon Energy Corp. over 2019–21. Daily return
volatility spiked to 14% during the height of the crash. Source: Yahoo!
Finance (2022b).

In addition to heavy tails and volatility clustering, Cont (2001) has documented other asset

return characteristics such as absence of autocorrelation, aggregational Gaussianity, skewness

and conditional heavy tails.

1.5 CHALLENGES OF FORECASTING IN FINANCIAL MARKETS 19

There is one major distinction between the setup of conventional machine learning applications

and financial applications — stationarity of the DGP. In time-series analysis, non-stationarity

typically refers to properties (e.g., mean and variance) of a time-series changing over time

(Nason, 2006). In machine learning literature, non-stationarity refers to the DGP changing

over time, such as changes in the conditional distribution of the output given the input (Gama

et al., 2014). To avoid ambiguity, we use the terms time-varying or time-variability of the

DGP to refer to non-stationary DGP. However, we continue to use the term stationary to

describe DGP that do not change over time.

Conventional machine learning models are trained offline, using a historical set of training

data and are deployed after batch training (Gama et al., 2014). This training scheme is suitable

for stationary problems where the training set is assumed to be drawn from the same DGP as

out-of-sample data. As out-of-sample data are drawn from the same distribution as training

data, the generalisation gap9 is expected to be relatively small and the model is expected to

perform well after deployment. Examples of stationary problems include image recognition

(Schroff et al., 2015) and text translation (Sutskever et al., 2014). However, some prediction

problems are time-varying, yielding a phenomenon known as concept drift (Schlimmer and

Granger, 1986; Widmer and Kubat, 1996; Gama et al., 2014). For example, predicting a

user’s interests when following an online news stream is likely time-varying (Gama et al.,

2014). Finance literature has also documented evidence of time-variation of the DGP. Pesaran

and Timmermann (1995) estimated linear models with permutations of firm characteristics

over time, and performing model selection using both statistical and financial measures on

U.S. stocks. Both the selected variables and their coefficients of the best model change over

time. Bossaerts and Hillion (1999) reported similar findings in international stocks. There is

no consensus on the cause of time-varying predictability in the academic discourse. Some

argued that this time-variability is driven by macroeconomic conditions (e.g., Angelidis et al.,

2015). While explanations offered by McLean and Pontiff (2016) relate to data-mining bias

and effects of arbitrage by investors (which the authors referred to as publication-informed

trading). In other words, investors taking advantage of this effect causes its “mispricing” to

9Generalisation gap is defined as the difference between out-of-sample loss and training loss (Goodfellow
et al., 2016).

20 1 INTRODUCTION

disappear (for example, see Dong et al., 2020 for a proposed mechanism with which this

occurs). Thus, it is unsatisfactory for a practitioner to learn a static model as out-of-sample

performance can vary.

As noted in Section 1.3, there are hundreds or more factors that exhibit predictive power over

stock returns. These include (but are not limited to):

• Price-derived features, such as a stock’s past performance (Jegadeesh and Titman,

1993).

• Financial statement-derived features, such as valuation metrics (Asness et al., 2013).

• Social media (as illustrated by the GameStop example) and web searches (Huang

et al., 2020).

• Media reports (Fang and Peress, 2009).

The dataset in Gu et al. (2020) contains mainly price and financial statement features and

is the same dataset used in Chapter 3. In Chapter 4 and 5, only price features are used as

these chapters focuses on time-series predictions and uncertainty quantification (of time-series

predictions). Such a vast feature set has the potential of overwhelming conventional regression

techniques such as ordinary least squares (OLS), due to multi-collinearity (Gu et al., 2020).

Thus, any proposed machine learning alternatives to linear models must be able to handle a

large feature set.

In sum, stock return prediction poses a unique challenge for machine learning research. Stock

returns exhibit difficult to handle statistical characteristics such as heavy tails and volatility

clustering, and suffer from low signal-to-noise ratio and time-variability of the DGP. These

challenges are distinct from conventional applications of machine learning which have seen

significant advances.

1.6 POTENTIAL APPLICATIONS OF MACHINE LEARNING IN PORTFOLIO MANAGEMENT 21

1.6 Potential applications of machine learning in portfolio

management

As discussed in Section 1.4 and 1.5, machine learning in portfolio management presents some

unique challenges and requires new approaches that differ from conventional applications. In

this section, we discuss gaps in literature and identify ways in which machine learning can be

advanced or applied in financial markets.

1.6.1 Cross-sectional prediction using online deep learning

As noted in Section 1.5, return forecasting is an arduous task. Stock returns are not well-

behaved, plagued with heavy tails, low signal-to-noise ratio and time-varying cross-sectional

relationships. However, it is also the most important step of an investment process.

Much of the finance industry still relies on linear models. By contrast, machine learning has

achieved significant progress in other fields and could similarly offer prediction performance

improvements to empirical finance. Weigand (2019) provided a recent survey of machine

learning applied to empirical finance and noted that machine learning algorithms show

promise in addressing shortcomings of conventional linear models (such as the inability

to model non-linearities and handle large number of covariates). Notable works applying

neural networks to cross-sectional stock return prediction using a large feature set include

Messmer (2017), Abe and Nakayama (2018) and Gu et al. (2020). Both Messmer (2017)

and Abe and Nakayama (2018) are straightforward applications of feedforward networks10

on stock returns, where the input consists of tens of features, predicting U.S. and Japan

stock returns, respectively. Gu et al. (2020) compared a set of well-known machine learning

models on forecasting U.S. stock returns and found neural networks to provide the best

performance. Potential time-variability is assumed to be driven by macroeconomic conditions

and is modelled by interacting firm level features with macroeconomic indicators. Arguably,

this is an inefficient way of modelling interaction effects, as the 94 firm-level features are

10Feedforward neural networks are discussed in Section 2.1.

22 1 INTRODUCTION

interacted with 8 macroeconomic variables, resulting in 920 features (together with dummy

variables of 74 industries, 94× (8 + 1) + 74 = 920). Of the firm-level features used in the

three works, Gu et al. (2020) contains the most firm-level features (94). Messmer (2017)

contains 61 and are all contained within Gu et al. (2020). Abe and Nakayama (2018) contains

the least, at 25. However, due to different naming conventions, we cannot ascertain how many

are contained with Gu et al. (2020). Moreover, they do not consider all possible avenues

of time-variability of asset pricing models, such as the effects of investors’ own trading, as

highlighted by McLean and Pontiff (2016), and exogenous shocks. For instance, Lev and

Srivastava (2019) noted that the prominent value factor11 (Rosenberg et al., 1985; Fama and

French, 1992) has been unprofitable for almost 30 years — a period that includes multiple

business cycles and thus cannot be explained by macroeconomic conditions alone. The

authors noted that returns to the value factor have been negative since 2007, suggesting a

change in the underlying relationship. There are further empirical evidence of changes in

DGP. Employing genetic algorithms12 (Mitchell, 1996) to predict U.S. stock returns, Brogaard

and Zareei (2022) also found stock return predictability to have declined over time, which

implies that markets have become increasingly more efficient. Other works have sought to

incorporate finance theory directly into the network architecture and have used more advanced

network architectures. Gu et al. (2021) used an autoencoder to form “latent factors” and factor

exposures, in similar spirit as principal component analysis (PCA) (Hastie et al., 2020). The

resultant model is analogous to the Arbitrage Pricing Theory (APT) model but with latent

factors constructed by the autoencoder from a large feature set. Chen et al. (2021) used a

generative adversarial network (Goodfellow et al., 2014) to enforce the no arbitrage condition

in APT and reported strong performance in predicting U.S. stock returns. Changing DGP is

modelled with 178 macroeconomic indices. The authors reported declining performance over

time, and that using a small number of macroeconomic indices is only marginally better than

no macroeconomic data (i.e., a fixed DGP), and that including all 178 indices led to severely

11Suppose the share price is $1.00 and the firm’s asset value (net of debt) is $2.00 per share. Then the
book-to-market score is 2/1 = 2. A high score is interpreted as the stock trading cheaply relative to value of its
assets. This factor has been profitable since 1920s but its profitability has greatly diminished since its discovery
in 1986. Lev and Srivastava (2019) argue that this is due to deficiencies in accounting standards and economic
development.

12Genetic algorithms randomly search through candidate model specifications through simulated evolution.

1.6 POTENTIAL APPLICATIONS OF MACHINE LEARNING IN PORTFOLIO MANAGEMENT 23

worse performance. Financial markets have also observed plenty of exogenous shocks over

time, some of which do not have a parallel in history (e.g., the COVID-19 pandemic).

These empirical evidence suggest changes in the DGP may be unpredictable (e.g., due to

investors’ own arbitrage and exogenous shocks). Thus, there exists a gap in literature for deep

learning models that can track changes in the DGP of financial markets driven by unknown

dynamics.

1.6.2 Time-series pattern recognition in noisy environments

Stock returns are notoriously noisy. The best performing model in Gu et al. (2020) had R2 of

0.4%13. In practice, cross-sectional correlation between expected return and actual realised

return of 5% can be considered as “good” and 10% is “great” (Grinold and Kahn, 1999). By

contrast, state-of-the-art image recognition models can achieve image classification accuracy

of over 90% (for example, see Zhai et al., 2021). Thus, from a signal-to-noise perspective,

financial markets are vastly different from fields where deep learning has excelled, such as

image recognition.

In neural network architectural design, a network with greater depth is thought to be more

efficient than a shallow but wide network (i.e., a network with only a few layers but each

layer has many nodes) in approximating an arbitrary function (Lu et al., 2017). Training

very deep neural networks (over 100 layers deep) for image classification problems saw a

breakthrough in the form of ResNet (He et al., 2016), where skip connections that “jump” over

one or more layers are added to allow uninterrupted information flow between connecting

layers. This alleviates the problem of vanishing gradient, where the magnitude of the gradient

diminishes as training error is backpropagated through the network (Kolen and Kremer, 2001).

However, in very noisy environments such as financial markets, focus of training should be

on robustness rather than expressiveness, as highly expressive networks may overfit on noise,

leading to poor out-of-sample performance. To this end, there is no conclusive evidence in

literature regarding the robustness of neural networks in noisy environments. Drawing on

13Gu et al. (2020) used a non-standard definition of R2. Further details are provided in Section 3.2.1 and
Section 3.5.

24 1 INTRODUCTION

findings in other applications, Rolnick et al. (2018) finds that neural networks are robust

to high levels of artificially injected mis-classified labels in simple image recognition tasks.

The authors note that effective batch size (a concept that we will introduce in Section 3.2.2)

decreases as the level of white noise increases. Thus, highly noisy environments require larger

batch sizes. On the contrary, Moradi et al. (2021) finds that neural networks are not robust to

noise in clinical text. The authors inject character-level and word-level perturbations to reflect

realistic typographic errors encountered in the real world and find three different language

models trained specifically on clinical texts to have experienced material accuracy declines in

medical diagnostic tasks.

Ways to combat noisy data include increasing the amount of data used in training (Rolnick

et al., 2018)), which may not be readily available, and regularising the model. Popular

regularisation techniques for neural networks are L1 and L2 penalties (Goodfellow et al.,

2016), early-stopping (Goodfellow et al., 2016) and dropouts (Srivastava et al., 2014). L1

and L2 penalties in neural networks are analogous to their counterparts in linear models and

shrink network weights toward zero. Early-stopping can be interpreted as L2 penalties, and

dropout can be interpreted as ensembling using subnetworks. Both of these techniques are

introduced in Section 2.4. For classification problems, Patrini et al. (2017) propose to estimate

noise rates in class labels and introducing a correction term in the loss function which negates

the probability that a label is assigned due to noise. Multi-task learning (MTL) has also

been shown to improve generalisation performance across a range of classification tasks,

such as facial landmark recognition (Zhang et al., 2014) and natural language processing

(Collobert et al., 2011). MTL involves the addition of an auxiliary learning task that is

related to the primary learning task. The auxiliary learning task is thought to encourage

representation sharing and is introduced more formally in Section 4.1. There remains a need

for regularisation techniques specifically designed for regression noisy environments that may

potentially have broader applications outside of finance.

In Section 1.6.1, we have introduced the cross-sectional prediction problem in finance. An

alternative to cross-sectional prediction that is applicable in financial markets is time-series

forecasting. This can be interpreted as pattern recognition on past stock price or return

1.6 POTENTIAL APPLICATIONS OF MACHINE LEARNING IN PORTFOLIO MANAGEMENT 25

patterns to forecast future returns. Convolutional neural networks (CNNs) have proved to be

invaluable in image recognition tasks (e.g., Krizhevsky et al., 2012) and could extract more

patterns from share prices beyond anecdotal patterns documented in technical analysis. Sezer

et al. (2020) provided a recent survey on financial time-series forecasting with deep learning

and noted long short-term memory (LSTM) was the most popular method, followed by CNN.

Most works are straightforward applications of different neural network architectures on

stock returns (e.g., Chen et al., 2015), and are on 1–3 days ahead forecasts. This differs to

the 1-month ahead forecast of the momentum effect which, we argue, is more relevant for

investment managers due to constraints of transaction costs. There are two approaches to

dealing with noise in financial time-series forecasting in literature, both of which we see as

being deficient. First is to treat the time-series forecasting problem as a classification problem

(i.e., 1 if the stock rose over the next day, 0 otherwise; see Chen et al., 2015; Altilio et al.,

2019). This neglects the magnitudes of expected returns which will help practitioners in

differentiating relative performance of stocks. Second is to first apply wavelet transform

(Meyer, 1993) to denoise the sequence, then fit the denoised trend using a neural network (e.g.,

Yan and Ouyang, 2017; Li and Tam, 2017). Wavelet transform treats share price oscillation

around a trend as “waves” which are then removed. This relies on fitting parametric waves

onto the sequence and may inadvertently remove useful features from the sequence. Gap

exists in existing literature for an end-to-end neural pattern recognition technique that is

robust to noisy patterns in stock prices.

1.6.3 Forecast uncertainty quantification

Consider the following thought experiment. Suppose a practitioner has a model that can

perfectly forecast next day’s asset returns and that the practitioner’s goal is to maximise

terminal wealth. Then, on each day, the most rational decision would be to place all of the

investor’s wealth into the asset with the highest expected return on the next day. Next, suppose

that the investor’s model is a noisy estimator of future asset returns. Then, the investor

may choose to diversify across multiple assets and not place all their wealth on a single

bet. Based on this thought experiment, we would expect forecast certainty to have a role in

26 1 INTRODUCTION

the portfolio optimisation process. Various bet allocation models have been developed. In

wagering, where bets are independent and have well-defined binary outcomes, the optimal bet

allocation strategy is the Kelly criterion (Kelly, 1956). Forecast certainty is incorporated into

the Kelly criterion via expected probabilities of discrete outcomes. The Kelly criterion has

been extended to the case of Gaussian distributed outcome, where the optimal bet size is scaled

by the inverse of variance (Byrnes and Barnett, 2018). Mean-variance portfolio optimisation

(Markowitz, 1952) assumes that asset returns are described by mean and variance of their

expected returns. The resultant portfolio is extremely sensitive to expected returns which

are difficult to forecast. Black-Litterman portfolio optimisation was proposed to address this

shortcoming (Black and Litterman, 1992). In Black-Litterman, practitioners provide both their

“views” (expected returns) and “strength” of their views (forecast certainty). These views are

then incorporated into portfolio optimisation as priors in a Bayesian manner. Thus, it is useful

for a neural network to provide both the conditional mean (forecast) and conditional variance

(forecast uncertainty) which can then be used downstream in portfolio optimisation, such as

in determining optimal bet size.

Bayesian neural networks offer both forecasts and forecast uncertainties through imposing

a full Bayesian treatment over the entire network (Mitros and Namee, 2019). This involves

placing priors on network weights and training the network using Monte Carlo Markov Chain

(MCMC). However, a full Bayesian treatment incurs a high computational cost (Quiroz et al.,

2019). Recent advances focus on generating parameters of a distribution that is assumed to

have generated the data, (e.g., Lakshminarayanan et al., 2017; Amini et al., 2020). These

works provide an interesting way of quantifying forecast uncertainty, without the cost penalty

of a full Bayesian approach. However, both Lakshminarayanan et al. (2017) and Amini et al.

(2020) were developed for non-time-series applications and do not consider the possibility

of variance changing over time. In the context of financial time-series forecasting, stock

returns are known to exhibit volatility clustering (as discussed in Section 1.5). Gaps exist in

literature for neural network forecast uncertainty quantification techniques that can handle

time-varying uncertainty, particularly in the context of financial time-series. From a finance

application perspective, forecast uncertainty can be used to size bets, or as advanced warning

to protect the portfolio from increasing risk. For example, if forecast uncertainty reaches

1.6 POTENTIAL APPLICATIONS OF MACHINE LEARNING IN PORTFOLIO MANAGEMENT 27

a certain threshold, an investor could purchase portfolio insurance (e.g., put options which

allow the investor to sell stocks to the issuer of the options at a pre-agreed price) or liquidate

positions to reduce risk.

1.6.4 Other possible directions

In addition to the aforementioned applications of machine learning in portfolio management,

machine learning can also be used to extract useful information from unstructured data and

for efficient trading (in cost minimisation). These two topics are not addressed in this thesis.

Nonetheless, we provide a discussion on the two topics as future research directions.

Inputs form the bedrock of any prediction model. Pre-existing feature sets used in literature

and in practice typically evolve around price, company financial information and other eco-

nomic variables. Recently, there is an emerging trend towards incorporating alternative data

in the investment process. These datasets comprise of unconventional and often unstructured

information about a company or industry. For instance, Ranco et al. (2015) used Support

Vector Machine (SVM) to classify 1.5million tweets on Twitter14 on 30 stocks in the Dow

Jones Industrial Average index (Dow Jones) into positive, neutral and negative sentiment over

15 months. The authors found that polarity of tweet sentiment was associated with 1% of

cumulative excess return in the three days following the peak. Souma et al. (2019) used a

LSTM to classify Reuters15 news articles into positive and negative sentiment. The authors

reported positive prediction accuracy when applied to high frequency intraday tick data on

stocks in the Dow Jones index. Other potentially useful unstructured data include job listing

websites, product reviews, website traffic, satellite imagery of factories and car parks, and

product internet search trends. Techniques such as deep learning can be used to convert these

unstructured data into quantifiable data and incorporated in a prediction model.

After a portfolio has been selected, investors would implement the portfolio in the most cost

efficient manner. As introduced in Section 1.2 and discussed in Appendix A2.3, market

14Twitter is a social media platform where users can post short messages (called tweets) of any topic. URL:
twitter.com

15Reuters is a global news outlet. URL: www.reuters.com

twitter.com
www.reuters.com

28 1 INTRODUCTION

impact could substantially reduce realised returns. Therefore, the goal is to design a trading

policy (e.g., when and how to split a trade into parcels) that minimises costs incurred. This is

related to the one-way trading problem in computer science (El-Yaniv et al., 2001), where

a player observes a price sequence and decides whether or not to accept the current price.

The game ends when the required amount has been traded. There are two approaches to this

problem — online learning and reinforcement learning. Online learning (also called no-regret

learning, a concept to be introduced in Section 3.2.3) approaches the optimal trading problem

through the lens of game theoretics. The problem is set as a game against an adversary (also

called the nature) and the goal is to compare favourably to the best expert in hindsight (e.g.,

the best model parameters trained using all observations up to t). Dworkin et al. (2014)

proposed the Pursuit-Evasion Without Regret algorithm for optimal trading, which extends

online learning to incorporate a state16. The authors showed that the proposed algorithm

outperformed the constrained follow-the-lazy-leader algorithm on inventory management.

Distinct features of no-regret learning are the assumption of adversarial outcome and the

focus on worst-case performance (as nature can arbitrarily choose an outcome that is to the

worst detriment of the player). Possible extensions to this line of literature is to allow for some

predictability in intraday returns, such as the reversal pattern. Another possible approach

is reinforcement learning, which focuses on learning the optimal policy itself. Nevmyvaka

et al. (2006) was the first to apply reinforcement learning on the optimal trading problem and

reported substantial reduction in trading costs. Optimal policy learnt was based on time left

to trade and quantity remaining. One potential advancement is to use deep reinforcement

learning (e.g., see François-Lavet et al., 2018) to learn a more complex Q-value function,

beyond simply using the time and quantity dimensions. For instance, other variables such as

market capitalisation and recent share price performance may contain useful information for

optimal trade execution.

16The application of Dworkin et al. (2014) is in algorithmic trading, where an algorithm is used to autonom-
ously trade stocks in order to achieve an objective (e.g., minimise cost). In this context, state refers to the
inventory position in a given stock. Conventional no-regret learning algorithms are stateless. This stateful
augmentation blends reinforcement learning with no-regret learning (Dworkin et al., 2014).

1.7 CONTRIBUTIONS AND STRUCTURE OF THE THESIS 29

1.7 Contributions and structure of the thesis

At this point, the reader has been introduced to the portfolio management problem and relevant

financial theory. As discussed in Section 1.5 and 1.6, there are several gaps in literature on

applying deep learning in a portfolio management context.

This thesis provides three significant advances in deep learning techniques applicable to

financial markets. Each contribution details a methodological improvement to deep learning

that addresses a challenge in financial markets (e.g., time-varying DGP, low signal-to-noise

and volatility clustering), combined with a demonstration of the contribution in a financial

market application. As deep learning is featured in all three main contributions of this thesis, a

comprehensive review of neural networks is provided in Chapter 2, covering common network

architectures (Section 2.1, 2.5.1, 2.5.2), network training and optimisation (Section 2.2),

weight initialisation (Section 2.3), activation functions (Section 2.1), and neural network

regularisation techniques (Section 2.4). This chapter provides readers with an essential

understanding of neural networks which is required to fully grasp the advances proposed in

the rest of this thesis.

In Chapter 3, we address the time-varying cross-sectional prediction problem (as described in

Section 1.6.1) by introducing the Online Early Stopping (OES) algorithm for training neural

networks online. The neural network trained using OES is able to adapt to changes in the

DGP over time. We provide an optimality guarantee, where the performance of the algorithm

is lower bound by a multiple of the variance of the DGP. We compare OES to a stationary

network (i.e., a network that is trained offline and does not vary with time) and Dynamic

Exponentially Time-Smoothed Stochastic Gradient Descent (DTS-SGD), a state-of-the-art

online non-convex optimisation algorithm (introduced in Section 3.2.3). We demonstrate

the benefits of OES on a synthetic dataset and in predicting U.S. stock returns as a direct

comparison to Gu et al. (2020). This application tackles both the cross-sectional stock return

forecasting problem (as discussed in Section 1.6.1) and time-variability problem of financial

markets (as discussed in Section 1.5). We show that a neural network trained using OES

outperformed the state-of-the-art on the aforementioned problems. We also demonstrate that

30 1 INTRODUCTION

the network is able to track changes in the market, such as turning points of markets, with

compelling results that are likely to be useful to practitioners.

In Chapter 4, we simultaneously tackle the time-series pattern recognition and noise-robust

learning problems (as discussed in Section 1.6.2) by introducing a supervised autoencoder17

into a temporal convolutional network. We name this network the Supervised Temporal

Autoencoder (STAE). We argue that the supervised autoencoder imposes a nonparametric

functional form on the model, encouraging the network to retain features that are beneficial to

both the primary forecasting task and the auxiliary reconstruction task. The reconstruction task

also improves the interpretability of the model, as users can visualise features retained by the

network by inspecting the reconstructed sequence. We show that the proposed STAE provides

economically meaningful improvements over the momentum effect, a known predictor of

stock returns in finance literature. We also provide a precedence on applying sequential

neural networks18 to financial time-series at a large scale and is investable through forecasting

1-month ahead returns. We provide a benchmark against popular sequential neural networks,

namely temporal convolutional network (TCN), LSTM, Neural Basis Expansion Analysis for

interpretable Time Series (N-BEATS) and transformer (both N-BEATS and transformer are

state-of-the-art architectures for time-series/sequential applications), and demonstrate class-

leading performance. We hypothesise that supervised autoencoder is a potent regularisation

technique for neural networks that may find applications in other noisy environments.

In Chapter 5, we combine and extend two state-of-the-art methods, Ensemble and Evidential,

into a unified framework for the quantification of uncertainty in financial time-series (as

discussed in Section 1.6.3). The framework comprises of four improvements, namely the

use of SMD, separate modelling of distribution hyperparameters, ensembling and use of

second order return information. We propose a simplified parameterisation of the problem

as a scale mixture, which leads to the use of a Gamma prior on a variance scaling variable.

Using the UCI benchmark dataset, we demonstrate uncertainty quantification performance

that is overwhelmingly in favour of SMD over Normal-Inverse-Gamma (NIG). Comparing to

17A network architecture introduced in Section 2.5.3.
18In this context, sequential neural network refers to neural networks that are applicable for time-series

applications, such as recurrent neural network (RNN), LSTM and CNN.

1.7 CONTRIBUTIONS AND STRUCTURE OF THE THESIS 31

Ensemble and Evidential on the UCI dataset, cryptocurrency and U.S. equities time-series

forecasts, we demonstrate class-leading performance on all three datasets in terms of widely

used prediction performance measures. We show that only our proposed framework can

provide uncertainty estimates that track realised forecast errors. On the UCI benchmark

dataset, we show that our proposed framework benefits uncertainty quantification in non-time-

series applications. Thus, we conjecture that some or all of our proposed improvements may

benefit applications in other areas of machine learning.

In Chapter 6, we summarise the contributions provided in this thesis and discuss future

research directions. In particular, we highlight several potential improvements to our work.

CHAPTER 2

Deep learning

This thesis introduces several advances to deep learning models for applications in financial

markets. As deep learning is the main apparatus of this thesis, a literature review is provided

in this chapter.

Neural networks are a broad class of high capacity models which were inspired by the bio-

logical brain and can theoretically learn any function (a property known as the Universal

Approximation Theorem; see Hornik et al., 1989; Cybenko, 1989; Goodfellow et al., 2016). In

the 19th century, studies of brain activity led to the discovery of neurons that “fire an activation”

in response to some activity or stimulus (Bain, 1873; James, 1890). The introduction of the

perceptron (Rosenblatt, 1958), multilayer perceptron (Rosenblatt, 1961) and the backpropaga-

tion training algorithm (Rumelhart et al., 1986a) heralded the beginning of neural networks.

However, it is the increase in computing power and advances in training deeper networks that

led to the development of modern neural networks. The term deep learning refers to learning

with a neural network with many hidden layers, a property that is thought to contribute to

the approximation capacity of the network (Malach et al., 2021). Further advances in neural

network design and training led to the success of deep learning across multiple domains. The

rest of this section presents neural network architectures used in this dissertation.

2.1 Feedforward neural networks

The simplest form of neural network, the feedforward network, also known as multilayer

perceptrons (MLP), is a subset of neural networks which forms a finite acyclic graph (Good-

fellow et al., 2016). There are no loop connections and values are fed forward, from the

32

2.1 FEEDFORWARD NEURAL NETWORKS 33

...
...

...

x1

x2

x3

xM

h
(1)
1

h
(1)
2

h
(1)
H1

h
(2)
1

h
(2)
H2

O1

Input
layer

Hidden
layer 1

Hidden
layer 2

Ouput
layer

(a) Feedforward network

...

x1

x2

xM

Σ f a

b

w1

w2

wM

(b) A neuron

FIGURE 2.1: In Figure 2.1(a), an illustration of a fully connected network
with two hidden layers. Red, green and blue nodes signify input, hidden and
output neurons, respectively. Hℓ refers to the number of units in ℓ-th layer.
Arrows indicate direction of flow for the output value of the respective node.
Input to the network has M dimensions. In Figure 2.1(b), a single neuron
(depicted as h(ℓ)j in Figure 2.1(a)). Input to the neuron ({x1, x2, . . . , xM}) are
first linearly transformed and aggregated (depicted as Σ in the centre node).
Then, a non-linear activation f is applied, leading to activation value a. More
formally, the output of the neuron is a = f(w1x1 +w2x2 + · · ·+wMxM + b),
where wM ∈ R is network weight corresponding to input dimension M and
b ∈ R is bias.

input layer to hidden layers, and to the output layer. Each layer contains one or more neurons

(also called perceptrons). The operation of a neuron involves two steps. First, the input is

34 2 DEEP LEARNING

linearly combined with layer weights. Then, a non-linear activation function is applied on the

result, as depicted in Figure 2.1(b). A feedforward network is also called a fully connected

network if every node has every node in the preceding layer connected to it, as illustrated in

Figure 2.1(a).

Each layer (denoted ℓ ∈ {1, 2, ..., L}) consists of Hℓ units (i.e., dimension of the output of the

layer), activation function f (ℓ), network weights W (ℓ) ∈ Rnℓ−1×nℓ and bias b(ℓ) ∈ Rnℓ . This

includes the output layer (denoted ℓ = L). Input to the ℓ-th layer is the output of the previous

layer a(ℓ−1). Output of the layer is computed as (in matrix form),

z(ℓ) = (a(ℓ−1))TW (ℓ) + b(ℓ)

a(ℓ) = f (ℓ)
(
a(ℓ−1);W (ℓ), b(ℓ)

)
= f (ℓ)

(
z(ℓ)
)
. (2.1)

where a(ℓ) = (h
(ℓ)
1 , . . . , h

(ℓ)
Hℓ
), and z(ℓ) is termed weighted input. In other words, each layer of

the feedforward network performs a transformation of the input (output of the previous layer)

using the specified activation function. The Universal Approximation Theorem stipulates that

activation functions have the following properties (Liew et al., 2016):

(1) The output is non-constant for all ranges of inputs;

(2) Bounded within a range;

(3) Continuous over all values of point c of its domain, where limx→c f(x) = f(c);

(4) Monotonically increasing;

(5) Differentiable everywhere, where limc→0
f(x+c)−f(x)

c
exists for all x.

The fifth property is not a requirement of universal approximation but is required for back-

propagation learning algorithms. Popular choices of activation functions include (Goodfellow

et al., 2016):

• ReLU: f(x) = max(0, x);

• Sigmoid (σ): f(x) = 1
1+e−x ;

• Hyperbolic tangent (tanh): f(x) = tanh(x) = ex−e−x

ex+e−x .

2.1 FEEDFORWARD NEURAL NETWORKS 35

Sigmoid and tanh are closely related activation functions, as tanh(x) = 2 σ(2x) − 1. tanh

resembles the identity function near 0, as the gradient is close to 1 and tanh(0) = 0. Thus,

when training a neural network with small activation values (i.e., close to zero), a feedforward

network with tanh activation functions behaves like a linear model (Goodfellow et al., 2016).

Both sigmoid and tanh are used in recurrent networks, an architecture type that we will

discuss in Section 2.5.1. ReLU is a simple piece-wise activation function, where non-linearity

is provided by the max function. Owing to its simplicity, unimpeded gradient flow (when

the input value is positive) and ease of computation, ReLU (Jarrett et al., 2009; Nair and

Hinton, 2010) quickly became the activation function of choice for many applications and has

enabled the breakthrough in training state-of-the-art deep networks (Krizhevsky et al., 2012;

Ramachandran et al., 2018). However, ReLU also has several weaknesses (Goodfellow et al.,

2016). First, due to the max function, ReLU is discontinuous at zero. Thus, the derivative is

undefined when output is exactly zero. Second, its second derivative is zero almost everywhere

and there is no information pass through if the input value is negative. The zeroing out of

negative values has led to a phenomenon known as “dead neurons”, where a neuron can be

“stuck” in a non-active state (either by random initialisation or subsequent gradient updates)

as negative bias can cause the affine transformation of the input to be negative. As the neuron

is always outputting 0, its weights are not updated by gradient-based learning algorithms

(Maas et al., 2013). Note that both sigmoid and tanh suffer from the same problem when

input is extremely positive or negative, leading to gradient that is close to zero. Third, a ReLU

layer that has non-zero mean activation acts as bias for the next layer (Clevert et al., 2016). A

network with many ReLU layers will thus have accumulating biases. This phenomenon is

known as bias shift which slows down training. Various improvements to ReLU have been

proposed, such as exponential linear unit (ELU) (Clevert et al., 2016),

f(x) =

x if x > 0

α(ex − 1) Otherwise
, (2.2)

36 2 DEEP LEARNING

and Leaky ReLU (Maas et al., 2013),

f(x) =

x if x > 0

0.01x Otherwise
. (2.3)

At the time of writing, a potential candidate for the state-of-the-art in activation function

is the Swish function (Ramachandran et al., 2018), defined as f(x) = x · sigmoid(x). The

Swish function is a smooth convex function that dips as it approaches 0 from the negative

end, turning positive at 0 and asymptotically approaches ReLU at the infinity. The authors

have reported improved performance over other variants of ReLU in image recognition tasks.

Illustrative activation of each activation functions is shown in Figure 2.2.

Recall that a(0) is the input layer (input data in the form of vector or matrix). For regression

problems, the output layer typically has linear activation, where the output is a linear combina-

tion of the input and layer weights, and no non-linearity is applied. For classification problems,

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

Common activation functions
ReLU
sigmoid
tanh
ELU
Leaky ReLU
Swish

FIGURE 2.2: lllustration of ReLU, sigmoid, tanh, ELU, leaky ReLU and Swish.
For ELU, α = 1 is used. Note that Leaky ReLU is the same as ReLU where
x > 0 and marginally negative x < 0. ELU and ReLU are also the same when
x > 0. Region with f(x) < 0 is shaded in grey.

2.2 NEURAL NETWORK TRAINING 37

popular choices for output layer activation are the sigmoid function sigmoid : R → (0, 1)

(which can be used to model probability of observing a single class), or softmax,

softmaxi(x) =
exi∑C
j=1 e

xj

,

where softmaxi(x) is the predicted probability of observing class i = 1, . . . , C, normalised

by the probability of observing every other class.

2.2 Neural network training

In this section, we discuss the learning objective, backpropagation and optimisation methods

for neural networks.

Learning, in a theoretical context, involves finding a useful approximation Ĝ(x) to the function

G(x) (Hastie et al., 2020), whereG is function of interest and x is input to the function. In this

dissertation, we are concerned with finding approximations to Ĝ(x) using a neural network.

For brevity, we drop the layer designation and denote the entire network by F and weight

vector set θ =
⋃L

ℓ=1{W (ℓ), b(ℓ)}, where L is the number of layers and θ(ℓ) = {W (ℓ), b(ℓ)}

is the weight set of layer ℓ. We further denote a training instance of a supervised learning

problem1 as (x, y) ∼ D, where D is the training set. For regression problems, both inputs

x ∈ RM and outputs y ∈ R are real values, where M is the dimension of the input (i.e., the

number of features). A popular choice of loss function is the mean squared error (MSE)

(Goodfellow et al., 2016),

L(F (X;θ),y) =
1

N

N∑
j=1

(yj − F (xj;θ))
2, (2.4)

where N = |D| is number of observations in training set. For classification problems, loss

is measured as terms of relative entropy between the data distribution pD and distribution

1Supervised learning refers to a learning problem where the goal is to predict values of the outputs given
some values of inputs, which may be measured or preset (Hastie et al., 2020).

38 2 DEEP LEARNING

provided by the network pmodel,

DKL(pD||pmodel) =

∫
y

pD(y) log

(
pD(y)

pmodel(y)

)
dy,

and is typically implemented as the sum over all training instances,

DKL(pD||F) =
N∑
i=1

yi log

(
yi

F (xi)

)
,

where the neural network F (xi) is assumed to output an approximation to the empirical

distribution pD. This loss function is called Kullback-Leibler divergence (KL divergence)

(Kullback and Leibler, 1951; Goodfellow et al., 2016). A related loss function for classification

is cross-entropy (Goodfellow et al., 2016),

H(pD, pmodel) = H(pD) + DKL(pD||pmodel) (2.5)

H(pD) = −
∫
y

pD(y) log pD(y) dy,

where H(x, y) is cross-entropy between the distributions of x and y and H(x) is the entropy

of the distribution of x. Cross-entropy can be interpreted as the difference between two

distributions (the observed data and output of the model). For the purposes of neural network

training, it can be seen that cross-entropy and KL divergence are equivalent as the entropy of

the data is a constant.

Neural networks are trained using stochastic gradient descent (SGD). SGD is an iterative

optimisation algorithm. The algorithm begins with a set of starting weights (weight initial-

isation is discussed in Section 2.3) and a randomly sampled batch of observations (termed

minibatch). There are two reasons why a stochastic gradient is used as opposed to the full

gradient over the entire training set (in which case it is simply referred to as gradient descent

or batch gradient descent). First, SGD is the main way to train linear models on very large

datasets (Goodfellow et al., 2016). Large training sets are typically required to achieve good

generalisation2. Suppose the training set consists of N = 1billion observations. A single

2Generalisation refers to prediction or classification performance on unseen data (Goodfellow et al., 2016).
For a model to have good generalisation performance, the difference in performance of the model on training
and out-of-sample data is minimised.

2.2 NEURAL NETWORK TRAINING 39

gradient step that utilises the entire training set will be very computationally expensive. If

one minibatch consists of B = 100 observations, a single pass through the data will result in
1 billion

100
= 10million gradients steps. SGD relies on updating weights by the expected gradient,

calculated over a small batch and is thus computationally inexpensive. This greatly reduces

the computational cost per weight update (Goodfellow et al., 2016). Secondly, noisy gradients

can help the optimiser escape saddle points3 (Ge et al., 2015; Jin et al., 2017; Kleinberg et al.,

2018). For highly non-convex functions with many local minima and saddle points, stochastic

gradient can be interpreted as working on a smoothed, convolved version of the loss function

(Kleinberg et al., 2018). Thus, SGD has greater capacity to traverse the loss surface of highly

non-convex loss functions than batch gradient descent.

Next, we formally describe the SGD algorithm. Let D be the training set and (X̃b, ỹb) ∼ D

be the b-th randomly-drawn minibatch (where ·̃ signifies a minibatch; not to be confused with

network bias b). The basic stochastic gradient update equation is (Goodfellow et al., 2016),

θb+1 = θb − η∇̂J(θb) (2.6)

J(θb) = L(F (X̃b;θb), ỹb),

where the gradient of J(θb) at θb is ∇J(θb), θb is weight vector set at minibatch b, η is step

size (also called learning rate), ∇̂ is stochastic gradient and L is the loss function. The J(θb)

notation is used for brevity. Equation (2.6) describes gradient update at the network level. A

forward pass of information through the network, from the input layer, through hidden layers

and to the output layer is called forward propagation. Once training loss of the minibatch is

computed, the backpropagation algorithm (Rumelhart et al., 1986a) is used to attribute the

loss to weights and bias of each layer by computing the partial derivatives of each layer. Let

cb = J(θb) be the scalar loss for batch b. Then, the partial derivatives with respect to the

weights and bias of the output layer are (dropping the batch subscript for clarity),

∇̂(ℓ) =
∂c

∂a(ℓ)

∂a(ℓ)

∂θ(ℓ)
. (2.7)

3A saddle point is a point on the surface of the graph of a function where derivatives in orthogonal directions
are all zero, but is not a local extremum of the function (Wainwright and Chiang, 2005).

40 2 DEEP LEARNING

We denote the gradient vector set attributable to the ℓ-th layer as ∇̂(ℓ). The first partial

derivative ∂c
∂a(ℓ) is the rate of change of loss with respect to output of the final layer (i.e., ℓ = L,

the derivative of the loss function). For a regression problem where the output is a scalar,
∂c

∂a(ℓ) is also a scalar. If the output of the network is multi-dimensional, then ∂c
∂a(ℓ) is a vector

of gradients. The second partial derivative ∂a(ℓ)

∂θ(ℓ) is a gradient vector of the ℓ-th layer’s output

w.r.t. its weights. For squared loss (Equation (2.4)), the derivative is (a single instance of

observation shown),
∂c

∂a
(ℓ)
i

=
2

B
(a

(ℓ)
i − yi),

where B is the size of a minibatch. Similarly, loss attributable to the ℓ − 1-th layer can be

computed using the chain rule,

∇̂(ℓ−1) =
∂c

∂a(ℓ)

∂a(ℓ)

∂a(ℓ−1)

∂a(ℓ−1)

∂θ(ℓ−1)
.

Gradient of the network in Equation (2.6) is the collection of gradients of weights and biases

of all layers,

∇̂J(θ) = {∇̂(1), ∇̂(2), . . . , ∇̂(ℓ−1), ∇̂(ℓ)}. (2.8)

A single gradient update step is the simultaneous update of all layers by the gradient collection

scaled by the learning rate, computed using backpropagation.

Equation (2.6) is a recursive algorithm. The network is trained iteratively using each minibatch.

Minibatches are drawn from the training set without replacement until the exhaustion of the

training set. One cycle through the training set is called an epoch. The optimal number of

epochs (denoted τ) to train the network is found by monitoring loss on the validation set4.

Training is stopped when the validation loss decreases by less than a predefined amount,

called tolerance. This procedure is called early stopping (Morgan and Bourlard, 1990; Reed,

1993; Prechelt, 1998; Mahsereci et al., 2017). Algorithm 1 contains the schematics of an

early stopping algorithm, adapted from Algorithm 7.1 and Algorithm 7.2 in Goodfellow

et al. (2016). Early stopping can be seen as a regularisation technique which limits the

optimiser to search in the parameter space near the starting parameters (Sjöberg and Ljung,

1995; Goodfellow et al., 2016), as training is terminated when training no longer decreases

4A validation set is a portion of data that is withheld from training and is used for hyperparameter tuning.

2.2 NEURAL NETWORK TRAINING 41

validation loss. The early termination of training restricts network weights to be closer to the

initial values. In particular, given τ , the product ητ can be interpreted as the effective capacity

which bounds reachable parameter space from θ0 (network weights at the start of training),

thus early stopping behaves in a similar way to L2 regularisation (Goodfellow et al., 2016). In

Chapter 3, we propose an online version of early stopping that allows the network to learn

“online”.

Algorithm 1 Early stopping procedure. Training stops when validation loss does not improve
by at least ε for Q iterations.

Require: Maximum iterations {T ∈ N |T > 0}; tolerance {ε ∈ R |ε > 0}; patience
{Q ∈ N |Q > 0}; step size {η ∈ R |η > 0}, training set {Xtrain,ytrain}, validation set
Xtest,ytest

1: function EARLYSTOPPING(θ,Xtrain,ytrain,Xtest,ytest)
2: θbest ← θ
3: q ← 0
4: Jbest ←∞
5: for k = 1, ..., T do
6: θ ← θ − η∇̂J(ytrain, F (Xtrain;θ))
7: J ′ ← J(ytest, F (Xtest;θ))
8: if J ′ < Jbest then
9: τbest ← k

10: θbest ← θ
11: Jbest ← J ′

12: end if
13: if J ′ did not improve by at least ε then
14: q ← q + 1
15: if q ≥ Q then
16: break ▷ Assume convergence
17: end if
18: else
19: q ← 0
20: end if
21: end for
22: return τbest, θbest

23: end function

Advances in optimisation have allowed deeper and more sophisticated neural networks to be

trained. In the rest of this section, we will describe, at a high level, improvements to neural

network optimisation.

42 2 DEEP LEARNING

SGD uses a universal learning rate for all parameters of the network. However, some parts of

the network may require less updates than others (e.g., if they learn rarely seen but are highly

predictive features). A universal learning rate may lead to over-learning (under-learning) in

parts of the network that are frequently (infrequently) updated. Parameter-specific learning

rate was introduced in AdaGrad (Duchi et al., 2011), where learning rate for each parameter is

scaled by the cumulative sum of the square of past gradients. This has the effect of decreasing

learning rate for parameters that are frequently updated.

It was also observed that the magnitude of gradients can be very different across different

parts of the network. Hinton and Tieleman (2012) proposed RMSProp, which deals with

this problem by dividing the gradients by the square root of the moving average of squared

gradients for each weight. This effectively standardises the gradients. Adam (Kingma and

Ba, 2015) extends AdaGrad and RMSProp, computing adaptive learning rates based on

estimates of first and second moments of the gradients. Rather than updating by the actual

gradient ∇̂J(θk), Adam updates by the exponentially weighted average of past gradients

(thereby creating a momentum effect) scaled by the square root of the exponentially weighted

average of squared gradients. The exponentially weighted estimates are updated recursively

on each iteration, multiplied by a fixed decay rate. Kingma and Ba (2015) demonstrated faster

learning (faster decrease in training loss) on benchmark datasets. This was further extended by

Dozat (2016), incorporating Nesterov’s accelerated gradient (also called Nesterov momentum;

Nesterov, 1983) into Adam, named NAdam. The addition of Nesterov momentum has

previously been shown to improve regular SGD in hard to optimise problems (Sutskever et al.,

2013). At each update step, regular momentum (as used in Adam) is the weighted average

between the latest gradient and the weighted average of gradients of the previous step. It

was observed that a better quality gradient can be obtained by computing the latest gradient

using weights updated by the previous step’s weighted average gradients. This was shown

to further improve optimisation speed and, at the time of writing, can be considered as the

state-of-the-art in neural network optimisation.

2.3 NETWORK WEIGHT INITIALISATION 43

2.3 Network weight initialisation

Weight initialisation is an area of active research and is thought to play crucial roles in

enabling deeper networks and speeding up network training (Glorot and Bengio, 2010). Early

neural networks used sigmoid activation with randomly initialised network weights. This

type of network architecture was not conducive to training deep neural networks. Randomly

initialised weights are typically drawn from a zero mean distribution (e.g., U[1√
Hℓ
, 1√

Hℓ
],

where Hℓ is the number of units in the layer and is also called dimension of the layer) (Glorot

and Bengio, 2010). Note that dimension of the first layer of a neural network (i.e., the input

layer) has the same dimension of the input (i.e., H0 = M). A neural network that uses

sigmoid as activation function is prone to an accumulation of bias in a deep network. This

is due to mean activation of 0.5 for the sigmoid function. Shift in the distribution of inputs

to each hidden layer will cause the sigmoid function to become saturated5, as illustrated in

Figure 2.3. In here, it can be seen that if the expected value of inputs to a sigmoid function

is very high or very low, its derivative asymptotically approaches 0. For this reason, Glorot

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

ReLU
f(x)
f/ x

3 2 1 0 1 2 3
x

sigmoid
f(x)
f/ x

3 2 1 0 1 2 3
x

tanh
f(x)
f/ x

FIGURE 2.3: Illustration of ReLU, sigmoid and tanh, and their respective first
derivatives. ReLU has a discontinuity at 0, while both sigmoid and tanh suffer
from saturation at extreme values as gradient approaches 0.

and Bengio (2010) recommended against initialising network weights with small random

values if the sigmoid function is used — an issue that is partially alleviated with the advent of

ReLU, where gradient does not saturate for positive input values. ReLU expedited training
5Saturated sigmoid occurs when the input to the sigmoid function is close to zero. The sigmoid function

outputs values that asymptotically approach zero. Thus, as gradient vanishes, training is impeded.

44 2 DEEP LEARNING

and allowed deeper networks to be trained6. Another contributing factor to slow learning

is the decrease in variance of backpropagated gradient as one moves from the output layer

backwards (Bradley, 2010; Glorot and Bengio, 2010). This is a deficiency of backpropagation,

where loss is progressively attributed to each layer starting from the output. Variance of

the gradient diminishes as loss is backpropagated through a deep network. To minimise the

decrease in gradient variance attributable to weight initialisation, Glorot and Bengio (2010)

proposed normalised initialisation (also called Glorot initialisation or Xavier initialisation),

where initial weights are drawn from U
(
−
√

6
Hℓ−1+Hℓ

,
√

6
Hℓ−1+Hℓ

)
or N

(
0, 2

Hℓ−1+Hℓ

)
(note

that Hℓ−1 is the input dimension and M (ℓ) is the output dimension of the layer). Variance of

the distribution with which weights are drawn accounts for the change in dimension between

layers. This ensures that variance is constant throughout the network at the initial stage of

training7. Derivation for the variance parameter was based on linear activation. However, the

authors showed that normalised initialisation is still beneficial for networks with sigmoid or

tanh activations. He et al. (2015) argued that the assumption of linear activation is invalid

for a network with ReLU activation, and proposed an alternative activation (also called

He initialisation), where weights are drawn from N
(
0, 2

M(ℓ−1)

)
. The authors demonstrated

superior image classification performance using ReLU activation. In sum, weight initialisation

strategy can have profound influence on network convergence and the ability to successfully

train deep neural networks. Kumar (2017), Glorot and Bengio (2010) and He et al. (2015)

have demonstrated the importance of maintaining stable variance of gradient across the layers.

To this end, He initialisation is shown to be superior for networks with ReLU activation, while

Xavier initialisation can be used for networks with sigmoid and tanh activations.

6However, as noted earlier in Section 2.1, this was until network architecture hit the bottleneck of ReLU.
ReLU has positive expected activation. This leads to bias shift which slows down training and is addressed by
ELU (Clevert et al., 2016) and other variants of ReLU that allow negative activation.

7However, it is not until the advent of residual connections that “depth barrier” of deep neural network is
truly broken.

2.4 OTHER NETWORK ARCHITECTURAL CONSIDERATIONS 45

2.4 Other network architectural considerations

In addition to the aforementioned architectural considerations, modern neural networks

typically also use batch normalisation (Ioffe and Szegedy, 2015) and dropout (Srivastava

et al., 2014).

Batch normalisation is the transformation of the output of each hidden layer. For each

minibatch with batch size B, input to the batch normalisation layer X ∈ RB×M (i.e., output

of the preceding hidden layer a(ℓ−1)), each instance of the batch is standardised along each

dimension,

x̃i,m =
xi,m − E[xm]√

Var[xm]
,

where xi,m is input dimension m = 1, . . . ,M of instance i of the batch and xm ∈ RB×1 is

the column vector of the m-th dimension (batch subscript dropped for legibility). Note that

mean and variance are computed per batch, not over the entire training set. The standardised

values are then linearly transformed,

am = αx̃m + β,

where α and β are learnable parameters of the batch normalisation layer that shift and scale

the standardised input. Note that a batch normalisation layer is added after a hidden layer

and is thus a transformation of the output of the preceding hidden layer. Ioffe and Szegedy

(2015) argued that batch normalisation reduced internal covariate shift, a phenomenon where

the distribution of network activations changes as network parameters are updated during

training. The authors argued that by fixing the distribution of activation of each hidden layer,

both training speed and accuracy of classifiers improved (in benchmark image classification

datasets).

However, subsequent works have disputed the working mechanism of batch normalisation.

Various alternative explanations have been proposed. Santurkar et al. (2018) found that batch

normalisation induces a smoother loss function surface and gradients. This surface is easier

to traverse by the optimiser, allowing for faster training. Approaching the problem from

a classical optimisation perspective, Kohler et al. (2019) argued that batch normalisation

46 2 DEEP LEARNING

works by splitting the optimisation task into optimising length and direction of the parameters

separately. This was motivated by a related technique, weight normalisation, which normalises

neural network weights to separate lengths from their directions (Salimans and Kingma, 2016).

Kohler et al. (2019) demonstrated that this reparameterisation provided faster convergence. In

sum, both alternative explanations relate batch normalisation to aspects of optimisation.

Dropout (Srivastava et al., 2014) involves randomly dropping out units (along with their

connections) throughout the network during training. Implementation is straightforward. Each

forward pass through the dropout layer (typically placed after a hidden layer) is multiplied by

a 1-and-0 mask, where the zeros are randomly drawn according to the pre-specified dropout

rate. Each time random dropout is applied, the masked network is a subnetwork of the full

network. At inference time, the full network is used (without masking) where the weights are

the result of averaging over many different subnetworks. Thus, dropout can be interpreted as

an inexpensive way of ensembling within the network. Dropout was shown to improve neural

network performance across a range of vision, speech recognition, document classification

and computational biology tasks (Srivastava et al., 2014).

2.5 Specialised network architectures

2.5.1 Recurrent neural networks

RNN (Rumelhart et al., 1986b; Goodfellow et al., 2016) and its variants have been the

workhorses of speech and languages (Chiu et al., 2018) and other sequential applications.

RNNs differ from feedforward networks in that they are (directed or undirected) graphs along

a temporal dimension. RNNs maintain a vector of hidden states that encode the observed

sequence and are recursively updated as new observations become available. Thus, recurrent

networks can be thought of as sharing parameters for each temporal step. A recurrent network

can be configured to have different feedback connections, with the most basic being recurrence

of the hidden state, as illustrated in Figure 2.4. In here, the hidden state of each temporal step

is recursively updated. Input xt is first combined with the hidden state of the previous step,

2.5 SPECIALISED NETWORK ARCHITECTURES 47

h0 h1 h3 ht=ht

y0

x0

y1

x1

y2

x2

yt

xt

yt

xt . . .
FIGURE 2.4: Left: An illustration of a recurrent layer with cyclical connection
back to itself for each temporal step. After each activation, the hidden state is
carried forward to the next temporal step. Right: The unfolded computational
graph of the recurrent layer for each temporal step. In here, x, h and y signify
input, hidden state and output, respectively.

resulting in an updated hidden state,

ht = f(xT
t Wx + hT

t−1Wh + bh),

where Wx are weights for the input, and Wh and bh are weights and bias for the previous

hidden state. The updated hidden state is then used to compute output of the layer,

yt = g(hT
t Wo + bo),

where g, Wo and bo are activation function, weights and bias for converting the hidden state

to output.

In the example presented in Figure 2.4, the recurrent connection is hidden-to-hidden. The

recurrent connection can also be output-to-hidden. However, such recurrence is less powerful

as it requires that the output units capture all past information that the network uses to make

predictions (Goodfellow et al., 2016). There are advantages in using specialised network

architectures for sequential problems (Goodfellow et al., 2016). First, the same recurrent

network can be used to model sequences of varying length, a type of input that is common

in NLP problems where sentences and texts are of arbitrary length. A feedforward network

requires a fixed structure and can only model sequences of pre-defined length. Second,

consider a classification problem where sequences of arbitrary length K map to C different

classes. If one were to model such a problem using feedforward networks, the number of

48 2 DEEP LEARNING

parameters in the model will scale by O(CK). However, as parameters are shared across

temporal steps in a recurrent network, the number of parameters in a RNN is O(1) with

respect to sequence length (Goodfellow et al., 2016). This is also implicitly assuming that the

conditional distribution of yt+1 is stationary given yt.

Due to its flexibility in modelling sequences (both input and output) of arbitrary length, recur-

rent network architectures can be designed to suit many different applications. The different

architecture types are illustrated in Figure 2.5. The one-to-one architecture corresponds to a

One-to-one One-to-many Many-to-one Many-to-many Many-to-many

FIGURE 2.5: Types of recurrent architectures. Red, green and blue nodes
signify input, hidden (recurrent) and output neurons, respectively. Each type
differs by the type of association between input, recurrence and output.

conventional use of recurrent networks, such as weather forecasting (Cebeci, 2019). Similar

to a pooled regression, the RNN is presented with one observation of input and makes a

forecast in a one-to-one manner on each time step. The one-to-many architecture receives an

encoding of a task and generates a sequence. This type of architecture have been used for

music synthesis (Jaques et al., 2017). Many conventional time-series forecasting applications

can be classified as many-to-one, where the network observes a sequence of inputs and makes

a classification or prediction. Financial time series forecasting problems such as Li et al.

(2017) and those in Chapter 4 are examples of many-to-one networks. There are two types

of many-to-many architectures — one where inputs and outputs are in sync along the time

dimension; and where outputs lag inputs by an offset. The former is used in applications such

as named entity recognition (Katiyar and Cardie, 2018), while the latter is used in machine

translation, such as the Seq2seq model (Sutskever et al., 2014). In Seq2seq, the encoder part

of the recurrent network converts the sentence to be translated into a latent representation,

which is then re-generated by the decoder portion of the network in the target language.

2.5 SPECIALISED NETWORK ARCHITECTURES 49

However, despite their success, recurrent networks are notoriously difficult to train (Pascanu

et al., 2013; Bai et al., 2018). In an unrolled computational graph, recurrent networks can be

considered as neural networks with unlimited depth. Modelling long term dependencies is

especially challenging as gradients propagated through many layers tend to explode or vanish

(Bengio et al., 1994; Pascanu et al., 2013). Even if we assume that gradients remain stable,

long-term dependencies are difficult to maintain as recursively multiplied Jacobians lead to

exponentially smaller weights given to long-term interactions (Goodfellow et al., 2016). To

address this, LSTM networks (Hochreiter and Schmidhuber, 1997; Goodfellow et al., 2016)

were introduced with a memory cell containing a self-loop that allows gradients to flow over

long durations. The basic schematics of a LSTM is illustrated in Figure 2.6. Gating is central

σ

Forget
Gate

σ tanh σ

× +

×

Input
Gate

×

tanh
Output
Gate

ct−1

Memory
Cell

ht−1

Hidden
State

xtInput

ct

ht

htOutput

FIGURE 2.6: An illustration of a long short-term memory “cell”. The forget
gate controls whether information stored in the memory cell is retained. The
input gate controls whether the new input is stored into the memory cell. The
output gate incorporates information in the memory cell into the output.

to the LSTM, which consists of three gates: the forget gate, the input gate (also called update

gate) and the output gate. The forget gate controls how much memory from the previous time

50 2 DEEP LEARNING

step is retained8,

ft = σ(W (f)xt +U (f)ht−1 + b(f)),

where ft is the forget gate unit at time step t, σ denotes the sigmoid function, W , U and b

are network weights applied the input and hidden state, and bias, respectively. The forget gate

combines the input and hidden state into a ft ∈ (0, 1)H vector, where H is the dimension of

the LSTM unit. The input gate it ∈ (0, 1)H controls how much information is incorporated

into the memory cell,

it = σ(W (i)xt +U (i)ht−1 + b(i)).

The input and hidden state are transformed into a cell input vector c̃t ∈ (−1, 1)H ,

c̃t = tanh(W (c)xt +U (c)ht−1 + b(c)).

Memory carried forward from t− 1 is modulated by the forget gate and the cell input vector

is modulated by the input gate. The two are then combined to form the updated memory cell

state,

ct = ft ⊗ ct−1 + it ⊗ c̃t,

where ⊗ is the Hadmard product (i.e., element-wise multiplication). The output gate ot ∈

(0, 1)H controls the amount of information from the memory cell that is incorporated into the

hidden state,

ot = σ(W (o)xt +U (o)ht−1 + b(o))

ht = ot ⊗ tanh(ct). (2.9)

The updated hidden state ht is the output of the LSTM cell at t. Advances in LSTM (and

other recurrent networks) had enabled major breakthroughs in machine translation (Sutskever

et al., 2014), speech recognition (Graves et al., 2013) and handwriting recognition (Graves

et al., 2009).

8In this section, f is used to denote the forget gate, not to be confused with activation function f used
throughout this dissertation.

2.5 SPECIALISED NETWORK ARCHITECTURES 51

2.5.2 Temporal convolutional networks

CNNs are specialist networks for data that has a known, grid-like topology (Goodfellow

et al., 2016). Examples include time-series of fixed length (a 1-D grid) or images (2-D

grid). CNN has achieved human-like accuracy in image recognition tasks (Krizhevsky et al.,

2012; Szegedy et al., 2015; Schroff et al., 2015). In this section, the mathematical operation

convolution and a CNN-derived network achitecture known as temporal convolutional network

(TCN)9 are discussed. We refer readers to Goodfellow et al. (2016) for a comprehensive

discussion on general CNNs.

Convolution is the modification of one function by another, producing a third function. More

formally, the convolution of functions10 f and g results in function o indexed by i (Goodfellow

et al., 2016),

o(i) =

∫
f(j) g(i− j) dj (2.10)

o(i) = (f ∗ g)(i),

where ∗ is the convolution operator. To put it more concretely, suppose g(·) in Equation (2.10)

is a weighting function (e.g., a probability density function). Then, f ∗ g results in a function

that returns the weighted average of f by g. In this case, f is the input and g is the kernel

(also known as filter). In image recognition, the input is typically 2-D with discrete index

(Goodfellow et al., 2016),

O(i, j) =
∑
m

∑
n

F(m,n)G(i−m, j − n).

An example of convolution is illustrated in Figure 2.7. This example uses one 2-D kernel, with

kernel size of 2. Size of the kernel relates to how much local information is used each time the

kernel is convolved with the input. Each value in output O is the result of a sum-product of

four adjacent values (2× 2) of input F and kernel G. For time-series input, a 1-D kernel (e.g.,

with dimensions 2× 1) is used which slides along the sequence during convolution. Number

9Also known as dilated convolutional networks.
10Note that in this section, we use (upright) f and g symbols and their capitalised counterparts to illustrate the

workings of convolution. Not to be confused with the meaning of f (activation function) in the rest of the thesis.

52 2 DEEP LEARNING

of kernels11 is analogous to number of units of a hidden layer in a feedforward network, and

dictates the output dimension of the convolution layer. Suppose that number of kernels is 3.

Then, G has dimensions 2× 2× 3 (three 2× 2 kernels stacked together) and convolution is

performed three times, resulting in O ∈ R3×3×3. In Figure 2.7, size of the resultant matrix

shrank by 1. Various zero-padding strategies exist if the desire is to maintain the dimensions

of the output, such as by padding the surroundings of the input with 0.

F

1 2 3×1 4×0

5 6 7×0 8×1

9 1 2 3

4 5 6 7

∗

G

1 0

0 1
=

O

7 9 11

6 8 10

14 7 9

FIGURE 2.7: An illustration of a convolution operation. Input F is convolved
with kernel G, producing O. The highlighted cells is a single convolution
operation, yielding 3× 1 + 4× 0 + 7× 0 + 8× 1 = 11. The same operation
is repeated horizontally and vertically.

Given that regular feedforward networks are underpinned by universal approximation prop-

erties, one may wonder why CNNs are required for image recognition problems. Suppose

an image has dimensions of 1000 × 1000 pixels and three colour channels per pixel. The

resulting input tensor contains 3 million values. Next, suppose a feedforward network is

used for this problem and the first hidden layer contains 500 units. The resultant number of

connections at the first hidden layer is 3million× 500 = 1.5 billion. Such a parameter space

is likely infeasibly large to be trained efficiently. CNN solves this problem by utilising three

important concepts: sparse interactions, parameter sharing and equivariant representations

(Goodfellow et al., 2016). Sparse interactions (also known as sparse connectivity) is achieved

by using a kernel that is much smaller than the input dimensions. Memory requirement and

efficiency can be significantly improved if small, meaningful features can be detected out

11Also called number of filters or number of channels. The latter due to it being analogous to colour channels
in image applications.

2.5 SPECIALISED NETWORK ARCHITECTURES 53

of thousands of pixels. The same small (in dimensions) kernel is used throughout the layer,

leading to parameter sharing. This encourages the network to learn a kernel that can extract

useful features that are common across the input and greatly reduces the parameter space.

This also leads to equivariance, where the same feature appearing in different location in

an image (or at different times in a time-series) will lead to the exact same output, just at a

different location (different point in time). Thus, only one representation needs to be learned

and can detect the same feature anywhere in the input.

As noted in Section 2.5.1, recurrent neural networks are difficult to train and suffer from

exploding/vanishing gradient that renders modelling long term dependencies challenging.

Sequential processing also makes scaling up computation to take advantage of recent advances

in parallel hardware acceleration difficult (Bai et al., 2018). Recently, convolutional networks

have been shown to be competitive against recurrent network-based architectures in a range of

sequence learning tasks (van den Oord et al., 2016; Kalchbrenner et al., 2016; Bai et al., 2018).

van den Oord et al. (2016) proposed a novel CNN architecture, known as WaveNet (also known

as dilated convolutional network), and showed that it generated more naturally sounding

speech than LSTM. The main components of WaveNet consist of dilated convolution layers

with causal padding (termed causal convolutions in van den Oord et al., 2016) and residual

connections (He et al., 2016). In standard convolution, the filter convolves with a symmetrical

number of values to the left and right of the centre of the filter (as depicted in Figure 2.7).

This is problematic in time-series as values on the right represent future observations that

would not have been known at the centre. This is mitigated with causal padding which shifts

the sequence such that the rightmost value of each convolution corresponds to the centre of

the original sequence. Causal padding refers to appending d× (k − 1) zeros to the beginning

of the sequence, where d is dilation rate and k is kernel size. This is illustrated in Figure 2.8.

In standard convolution (Figure 2.8(a)), the illustration depicts the first convolution of a kernel

of size 3 with the first 3 elements of the input sequence. The first output value uses up to the

third value from the input sequence and is thus “looking ahead in time.” In causal convolution

(Figure 2.8(b)) and assuming a dilation rate of 1, 1 × (3 − 1) = 2 zeros are padded to the

beginning (left) of the input sequence. The kernel is convolved with the first three elements

of the padded sequence (two leading zeros and the first element of the original sequence),

54 2 DEEP LEARNING

1 2 3 4 5

1 2 3

(a) Standard convolution

0 0 1 2 3 4 5

1 2 3 4 5

(b) Causal convolution

FIGURE 2.8: In the top row, green nodes denote outputs after convolution
with a kernel of size 3, numbered by the n-th convolution operation (striding
from left to right). In the bottom row, red nodes denote the input sequence,
numbered by the n-th element in the sequence. White nodes denote zero pad-
ding. Darker colours denote nodes undergoing convolution. In Figure 2.8(a),
the 3rd convolution operation will access the 4th element in the input.

producing the first output value. Thus, the output contains no look ahead information. Note

that due to the two padded zeros, causal convolutions produce a longer output sequence than

standard convolution with no padding. Standard convolution can also have zeros padded

to both beginning and end of the sequence to maintain length of the sequence if required.

Dilated convolution (also called à trous convolution) expands the receptive field of the node by

skipping input nodes (i.e., inserting zeros to the kernel). For example, suppose that a network

with dilation rates are multiples of 2 and kernel size of k = 3, as depicted in Figure 2.9. The

first convolution layer in Figure 2.9 has dilation rate of 20 = 1, the second is 21 = 2, third

is 22 = 4, and so on. In each dilated convolution layer, d − 1 zeros are added in between

each value in the kernel (dilation rate of 1 equates to no dilation). For example, the third

convolution layer in Figure 2.9 has 22−1 = 3 zeros inserted between each value of the kernel,

with receptive field that spans the entire sequence of 15 elements. Values that are multiplied

by 0 in the kernel (depicted using dashed grey connections) do not contribute to the final

result. Thus, the network can cover sequences of arbitrary length by stacking multiple dilated

convolution layers and having d ≥ 2.

Bai et al. (2018) proposed the TCN as a generalisation of WaveNet — without conditioning,

context stacking or gated activation. However, it retains the key ingredient of dilated causal

convolution layers organised into residual blocks, first introduced in ResNet (He et al., 2016)

and is Illustrated in Figure 2.10. Each residual block in Figure 2.10 consists of four layers —

dilated causal convolution, batch normalisation, spatial dropout (Tompson et al., 2015) and

2.5 SPECIALISED NETWORK ARCHITECTURES 55

FIGURE 2.9: Causal dilated convolutions with kernel size of 3 and dilation
rate of multiples of 2. Red nodes represent the input sequence and the two
green layers represent convolution layers. Nodes without a connection or are
connected with a dashed grey line are multiplied by zeros in the kernel. The
top (output) node reaches the entire input sequence without using every node
in the intermediate layer. The receptive field can be varied by increasing or
decreasing the number of dilated convolutional layers.

Input Sequence

DCConv
BN/DO/ReLU

...

DCConv
BN/DO/ReLU

Output Sequence

FIGURE 2.10: Illustration of a TCN. Residual blocks correspond to green
layers in Figure 2.9 and consist of skip connection, dilated causal convolution
(abbrev. DCConv), batch normalisation , spatial dropout and rectified linear
unit activation layers (abbrev. BN/DO/ReLU).

ReLU. Spatial dropout is similar to the regular dropout (introduced in Section 2.4). However,

instead of randomly dropping out observations, spatial dropout randomly drops an entire

dimension. The output sequence of a residual block is first added to the input sequence

(of the said residual block) via skip connection, then feed into the next residual block as

56 2 DEEP LEARNING

input sequence. Bai et al. (2018) showed that TCN was superior to LSTM across a range

of sequence modelling tasks. The authors also noted five advantages of TCN (along with

two disadvantages) over recurrent networks, most notably, parallelism and stable gradients.

Stable gradients allow convolutional networks to access longer history (one year of daily

prices is over 250 observations) than recurrent networks. TCN provides another useful tool

for modelling time-series data.

2.5.3 Autoencoders

An autoencoder is an unsupervised neural network that learns a latent representation of the

input (Goodfellow et al., 2016). First introduced in LeCun (1987); Bourlard and Kamp (1988);

Hinton and Zemel (1993), the autoencoder consists of two parts, an encoder that encodes

the input into a latent representation h = f(x) and a decoder that reconstructs the input

x̂ = g(h). Each of encoder and decoder contains one or more hidden layers. Typically,

dimensions of h is chosen to be significantly smaller than the dimension of x such that

the autoencoder learns a useful representation that summarises the input, as illustrated in

Figure 2.11. Autoencoder learns the latent representation of input via hidden layers, and is

equivalent to PCA when it has precisely one linear hidden layer (Baldi and Hornik, 1989; Le

et al., 2018). Thus, traditional applications of autoencoders are in dimensionality reduction

and generative modelling.

2.5 SPECIALISED NETWORK ARCHITECTURES 57

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Ouput
layer

FIGURE 2.11: An illustration of an autoencoder. The input x ∈ R5 is con-
verted into a latent representation h ∈ R2 using 2 hidden layers. h is then
converted back into the (reconstructed) input.

CHAPTER 3

Time-varying neural network for stock return prediction

The motivating application of this chapter is in predicting cross-sectional stock returns in a

portfolio context and has been discussed in Section 1.6.1. We propose the OES algorithm

and show that a neural network trained using this algorithm can track a function changing

with unknown dynamics. We provide a regret-bound for the algorithm and show that the

worst-case tracking performance of the algorithm is bound by the time-variations of the DGP.

We compare the proposed algorithm to current approaches on predicting monthly U.S. stock

returns and show its superiority. Using this algorithm, we also provide evidence that supports

recent findings in finance literature that suggest financial markets are time-varying. These

contributions have resulted in the following publication:

Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu, “Time-varying

neural network for stock return prediction,” Intelligent Systems in Accounting, Finance and

Management, 29(1), 3–18, 2022.

3.1 Introduction

At every interval, an investor forecasts expected return of assets and performs security

selection. This problem is closely related to asset pricing (as discussed in Section 1.3 and

Appendix A1), cross-sectional predictions and time-varying DGP. To reiterate, literature has

found hundreds of factors (Harvey et al., 2016) that can predict stock returns. Literature has

also documented evidence of time-variability of the DGP (e.g., Pesaran and Timmermann,

1995; Bossaerts and Hillion, 1999). Both the true functional-form of the DGP and its time-

varying dynamics are not known.

58

3.1 INTRODUCTION 59

To address this, we simultaneously address both challenges by proposing the Online Early

Stopping (OES) algorithm, which allows neural networks to adapt to a time-varying function.

Our problem is characterised by information release over time and iterative decision making.

This shares a remarkably similar setup with online optimisation1. Optimisation in this context

is called online as decisions are made with past information but not the future. As noted in

Section 2.2, one of the hyperparameters in batch (offline) neural network training is the number

of optimisation epochs τ . In OES, we propose to treat τ as a learnable parameter that varies

over time (t), as τt, and is recursively estimated over time. We provide τt with a new meaning

— a regularisation parameter that controls the amount of update neural network weights

receive as new observations are revealed. Thus, if consecutive cross-sectional observations

are very different then we would expect τt to be relatively small and the neural network is

prevented from overfitting to any one period. Conversely, a slowly changing function will

have a high degree of continuity and we would expect the network to fit more tightly to each

new observation. Using this training algorithm, a neural network can adapt to changes in the

DGP over time. For practitioners, we show that a neural network trained with OES can be a

powerful prediction model and a useful tool for understanding the time-varying drivers of

returns.

Neural network training is an optimisation problem (Evens et al., 2021). We draw on concepts

in online optimisation to provide a performance bound that is related to the variability of

each period. We do not assume any time-varying dynamics of the underlying function, a

typical approach in online optimisation2. The benefit of this approach is that it can track any

source of variability in the underlying function, including macroeconomic, arbitrage-induced,

market condition-induced, or other unknown sources. For instance, Lev and Srivastava (2019)

suggested that the negative return to the value factor was related to diminishing relevance of

book equity as an accounting measure. Such drivers would not have been captured by the

macroeconomic approach in Gu et al. (2020). Nonetheless, we acknowledge that a limitation

of our approach is the difficulty in explaining the source of variability. Attributing the source

1We formally describe the context in Section 3.2.1.
2Online convex optimisation is typically formulated as a game against an adversary, where solutions are

designed to provide worst-case performance guarantees. See (Shalev-Shwartz, 2012) for an overview.

60 3 TIME-VARYING NEURAL NETWORK

requires measuring interactions between features and sources, of which some may be difficult

to quantify. Existing model explanation methods (e.g., Local Interpretable Model-Agnostic

Explanations; Ribeiro et al., 2016) attribute model output to input through approximations.

Thus, the addition of interaction terms between each feature to each source could lead to a

substantial increase in dimensionality.

We provide two evaluations of OES: 1) a simulation study based on a dataset simulated from

a non-linear function evolving under a random-walk; 2) an empirical study of U.S. stock

returns. The empirical study is based on Gu et al. (2020), who compared several machine

learning algorithms for predicting monthly returns of all U.S. stocks. The best performing

machine learning model in Gu et al. (2020) as measured by R2 (this measure is discussed in

more detail in Section 3.2.1) was a three-layer fully connected neural network with ReLU

activation, dropouts and batch normalisation. The network was trained annually using all

available data up to t. The same network is then used for monthly prediction over the next

12 months, upon which an additional 12 months of new data is added to the training set

and training is repeated. The majority of the dataset were made available to the public and

are used in this chapter. We note that the setup in Gu et al. (2020) is suboptimal for our

portfolio selection problem for three reasons. Firstly, (raw) monthly stock returns contain

characteristics that complicate the forecasting problem, such as outliers, heavy tails, and

volatility clustering (Cont, 2001). These characteristics are likely to impede a predictor’s

ability to learn. Secondly, the dataset in Gu et al. (2020) contains stocks with very low

market capitalisation, are illiquid, and are unlikely to be accessible by institutional investors.

Thirdly, at the individual stock level, forecasting stocks’ excess returns over risk free rate also

encompasses forecasting market excess returns. As practitioners are typically concerned with

relative performance between stocks3, the market return component adds unnecessary noise

to the problem of relative performance forecasting. Thus, in addition to comparison with

Gu et al. (2020), we also present results based on a more likely use case by practitioners, by

excluding stocks with very low capitalisation and forecasting cross-sectionally standardised

excess returns. We show that forecasting performance significantly improved based on this
3In the simplest form, a long-only investor will hold a portfolio of the top ranked stocks and a long-short

investor will buy top ranked stocks and sell short bottom ranked stocks. Thus, relative performance is relevant to
practitioners.

3.1 INTRODUCTION 61

re-formulation. We propose to measure performance using the information coefficient (IC),

a widely applied performance measure in investment management (Ambachtsheer, 1974;

Grinold and Kahn, 1999; Fabozzi et al., 2011b). OES achieves an IC of 4.58% on the U.S.

equities dataset, compared to 3.82% under an expanding window approach in Gu et al. (2020).

For context, an IC of 5% in predicting cross-sectional returns is considered as “good” by

practitioners (Grinold and Kahn, 1999).

A summary of our contributions in this chapter is as follows:

• We propose the OES algorithm which allows a neural network to track a time-

varying function. OES can be applied to existing network architectures and requires

significantly less time to train than the expanding window approach in Gu et al.

(2020). In our tests, OES took 1/7 the time to train and predict as compared to the

expanding window approach of expanding window neural network (EWNN)4. This

finding has a practical implication as practitioners wishing to employ deep learning

models have limited time between market close and next day’s open to generate

features and train new models, which is made worse if an ensemble is required.

• We show that firm features exhibit time-varying importance and that the model

changes over time. We find that some prominent features, such as market capit-

alisation (the size effect) display declining importance over time. This finding is

consistent with McLean and Pontiff (2016) and highlights the importance to consider

time-varying models.

• We find that firm features, in aggregate, experience a fall in importance in predicting

cross-sectional returns during market distress (e.g. Dot-com bubble in 2000–01).

The importance of sector dummy variables (e.g., technology and oil stocks) rose

over the same period, suggesting the importance of sectors is also time-varying. Our

analysis indicates that sectors have an important role in predicting stock returns

during market distress. We expect this to be especially true if market stress impacts

certain sectors more than others, such as travel and leisure stocks during a pandemic.

4Training performed on AMD Ryzen™ 7 3700X, Python 3.7.3, Tensorflow 1.12.0 and Keras 2.2.4.

62 3 TIME-VARYING NEURAL NETWORK

• Using a subuniverse that is more accessible to institutional investors (by excluding

microcap stocks), we show that OES exhibits superior predictive performance. We

find that the mean correlation between predictions of OES and EWNN is only 35.9%

and the monthly correlation is lowest immediately after a shock (e.g., recession). We

attribute this to OES adapting to the recovery which manifests as lower drawdown

post the Global Financial Crisis.

• We show that an ensemble formed by averaging the standardised predictions of

the two models exhibits the highest IC, decile spread and Sharpe ratio. Thus,

practitioners may choose to deploy both models in a complementary manner.

In the rest of this chapter, we denote the algorithm of Gu et al. (2020) as expanding window

neural network (EWNN) and our proposed Online Early Stopping algorithm as OES. This

chapter is organised as follows. Section 3.2 defines our cross-disciplinary problem and

provides an overview of online optimisation. Section 3.3 outlines our main contribution of

this chapter — the proposed OES algorithm which introduces time-variations to the neural

network. Simulation results are presented in Section 3.4, which demonstrates the effectiveness

of OES in tracking a time-varying function. An empirical study on U.S. stock returns is

outlined in Section 3.5. Finally, Section 3.6 discusses the empirical finance problem and

concludes the chapter with some remarks.

3.2 Preliminaries

3.2.1 Problem setup

The setup of the problem in this Chapter largely follows that of the cross-sectional prediction

problem defined in Section 1.6.1 and is repeated in here for convenience.

Similar to a classical online learning setup, a player iteratively makes portfolio selection

decisions at each period. We call this iterative process per interval training. There are N

stocks in the market, each with M features, forming input matrix Xt ∈ RN×M at time t =

1, . . . , T . The i-th row in Xt is feature vector xt,i of stock i. To simplify notations, we define

3.2 PRELIMINARIES 63

return of stock i as the percentage return over the next period, i.e., yt,i = (pt+1,i+dt+1,i)/pt,i−

1, where pt,i is price at time t and dt,i is dividend at t if a dividend is paid, and zero otherwise.

In other words, the player uses information up to time t (e.g., earnings-to-price ratio at t) to

predict a stock’s return over t to t + 1. Player predicts stock returns ŷt ∈ RN by choosing

θt ∈ Θ, which parameterises prediction function {F : RN×M 7→ RN ; ŷt = F (Xt;θt)}.

Market reveals yt and, for regression purposes, player incurs squared loss,

Jt(θt) =
1

N

N∑
i=1

(yt,i − ŷt,i)2.

This general iterative portfolio selection setup is shared across Chapter 4, 5 and this chapter.

The true function Φt : RN×M 7→ Rn drifts over time and is approximated by F with time-

varying θt. Player’s objective is to minimise loss incurred by choosing the best θt at time t

using observed history up to t− 1. Both the functional form and time-varying dynamics of

Φt are not known Hence a neural network is used to model the cross-sectional relationship at

each t and the time-variability is formulated as a network weights tracking problem. The loss

function Jt verifies the same assumptions adopted in Aydore et al. (2019), which are:

• Jt is bounded: |Jt| ≤ D;D > 0,

• Jt is L-Lipschitz: |Jt(a)− Jt(b)| ≤ L ∥a− b∥ ;L > 0,

• Jt is β-smooth: ∥∇Jt(a)−∇Jt(b)∥ ≤ β ∥a− b∥ ; β > 0.

We denote the gradient of Jt at θt as∇Jt(θt) and stochastic gradient as ∇̂Jt(θt) = E[∇Jt(θt)],

or where the context is obvious,∇t and ∇̂t respectively.

As performance measure, Gu et al. (2020) used pooled R2
oos without mean adjustment in the

denominator,

R2
oos = 1−

∑
(t,i)∈Doos

(yt,i − ŷt,i)2∑
(t,i)∈Doos

y2t,i
, (3.1)

where Doos is the pooled out-of-sample dataset covering January 1987 to December 2016

in the empirical study. There are several shortcomings with this performance measure. The

number of stocks in the U.S. equities dataset starts from 1,060 in March 1957, peaks at over

9,100 in 1997 and falls to 5,708 at the end of 2016. A pooled performance metric will place

more weight on periods with a higher number of stocks. An investor making iterative portfolio

64 3 TIME-VARYING NEURAL NETWORK

allocation decisions would be concerned with accuracy on average over time. Moreover, asset

returns are known to exhibit non-Gaussian characteristics (Cont, 2001). Summary statistics

of monthly U.S. stock returns are provided in Table 3.2 (in Section 3.5), which confirms

the existence of considerable skewness and time-varying variance. Therefore, we provide

three additional metrics. The first metric is the IC, defined as the cross-sectional Pearson’s

correlation5 between predictions and actual returns:

IC =
1

T

T∑
t=1

ICt, ICt = ρ(yt, ŷt). (3.2)

The time-series of IC is averaged to give the final score, which we refer to as mean IC

(Equation (3.2)). Note that even though correlation is a score rather than a percentage, IC is

typically expressed as a percentage by practitioners. IC was first proposed by Ambachtsheer

(1974) and is widely applied in investment management for measuring predictive power of a

forecaster or an investment strategy (Grinold and Kahn, 1999; Fabozzi et al., 2011b). The

second metric is the annualised Sharpe ratio, calculated as,

SR =
12× E[Pt∈Doos]√
12× Var[Pt∈Doos]

, (3.3)

where Pt∈Doos is the decile return spread. Decile return spread is computed by first sorting

stocks into deciles based on their predicted return at t, where decile 10 (decile 1) contains

stocks with the highest (lowest) preducted return. The average return for each decile is then

computed. Decile return spread is the difference between monthly returns of decile 10 and

decile 1 at t,

Pt =
10

N

[
N∑
i=1

yt,iδ
(10)
t,i −

N∑
i=1

yt,iδ
(1)
t,i

]
, (3.4)

where δ(d)t,i is the decile indicator and ŷ(d)t is the boundary of the d-th decile of all ŷt,i sorted in

ascending order,

δ
(d)
t,i =

1 if ŷ(d−1)
t < ŷt,i ≤ ŷ

(d)
t ,

0 otherwise.

Note that in the experiment results in Section 3.5, we use the label P10-1 for the average

decile return spread computed over all t, rather than for a single t in Equation (3.4). The
5Rank IC, which uses Spearman’s rank correlation instead of Pearson’s, is also used in practice.

3.2 PRELIMINARIES 65

decile return spread and its associated Sharpe ratio are commonly used to measure economic

performance of an investment strategy and are used in Gu et al. (2020). The third metric is

the average monthly R2, where denominator is adjusted by the cross-sectional mean, as a

conventional complement to R2
oos.

3.2.2 Neural network training under concept drift

A detailed description of neural networks is provided in Chapter 2, including a description of

the standard early stopping algorithm in Section 2.2. In the classical early stopping algorithm,

a randomly drawn portion of data is used for validation. Training is stopped when validation

loss decreases by lower than a predefined amount. Given optimisation steps τ , the product ητ

can be interpreted as the effective capacity which bounds reachable parameter space from

starting weights, thus behaving like L2 regularisation (Goodfellow et al., 2016). A discussion

of aspects of neural network training that is relevant to online problems is presented in this

section.

For time series problems where chronological ordering is important, popular approaches

include expanding window (each new time slice is added to the panel dataset) and rolling

window (the oldest time slice is removed as a new time slice is added, Rossi and Inoue,

2012). Instead of randomly splitting training and validation sets, the out-of-sample procedure6

can be used where the end of the series is withheld for evaluation. This is unsatisfactory

in the context of stock return prediction for two reasons. First, each period is drawn from

a different data distribution D (hereon denoted by Dt for dataset drawn at time t, or Doos

for all periods in the out-of-sample dataset). A regression that is fitted on a sliding window

of size w effectively assumes that data at t + 1 is drawn from the average DGP of the past

t − w, . . . , t cross-sections. Secondly, if data is scarce in terms of time periods, estimates

for optimal optimisation steps τ̂t can have large stochastic error. For instance, monthly data

with a window size of 12 months and 3:1 training-validation split. τ̂ is estimated using only

3 months of data. To the best of our knowledge, there is no procedure for adapting early

stopping in an online context with time-varying dynamics.

6As described in Bergmeir et al. (2018).

66 3 TIME-VARYING NEURAL NETWORK

Note that even though the problem studied in this chapter contains a time-dimension, the

problem itself concerns cross-sectional predictions. Thus, conventional sequential neural

networks such as recurrent neural networks (Rumelhart et al., 1986b) and long-short term

memory networks (Hochreiter and Schmidhuber, 1997) are not well suited to this problem.

However, there have been some recent advances in dealing with concept drifts in time-series

problems, such as Liu et al. (2019) who proposed to explicitly model concept drift in a

discriminative manner inside an extreme learning machine, and Samanta et al. (2020) who

proposed to model time-varying temporality of time-series using a Bayesian approach.

3.2.3 Online optimisation

Optimising network weights to track a function evolving under unknown dynamics is an

online optimisation problem. A discussion on relevant concepts in online optimisation is

provided in this section. Interested readers are encouraged to read Shalev-Shwartz (2012) for

a comprehensive review. In online optimisation literature, iterate is often denoted by xt and

loss function by ft. We have used θt as iterate to be consistent with our parameter of interest

and Jt as loss function to avoid conflict with our use of f as activation function.

Optimality of online optimisation and its variants for this class of problems under various

assumptions have been well documented in literature (e.g., Shalev-Shwartz, 2012; Cesa-

Bianchi et al., 2012; Dworkin et al., 2014). Thus, online optimisation is also well suited

to our iterative portfolio selection problem due to their similarities. Applications of online

optimisation in finance first came in the form of the Universal Portfolios by Cover (1991).

However, most of the early works in online optimisation are focused on the convex case and

assume each draw of Jt is from the same distribution (in other words, Jt is stationary). These

assumptions are not consistent with our problem. Recently, Hazan et al. (2017) extended

online convex optimisation to the non-convex and stationary case. This was further extended

by Aydore et al. (2019) to the non-convex and non-stationary7 case, with the proposed DTS-

SGD algorithm. Non-convex optimisation is NP-Hard8. Therefore, existing non-convex

7Non-stationarity in online optimisation literature refers to time-variability of loss function Jt.
8In computer science, NP-Hard refers a class of problems where no known polynomial run-time algorithm

exists.

3.2 PRELIMINARIES 67

optimisation algorithms focus on finding local minima (Hazan et al., 2017). For this reason,

one difference between online convex optimisation and online non-convex optimisation is

that the former focuses on minimising sum of losses relative to a benchmark (for instance,

the minimiser over all time intervals θ∗ = argminθ∈Θ
∑

t Jt(θ) is one of the most basic

benchmarks), and the latter focuses on minimising sum of gradients (e.g.,
∑

t∇Jt(θt)),

without comparison to a benchmark. This sum is called regret and the optimisation objective

is called regret minimisation. In online optimisation, it is desirable to design algorithms that

minimises average regret over time (e.g.,
∑

t Jt(θ)

T
), as this guarantees that as T →∞, average

regret suffered by the algorithm converges to zero (Shalev-Shwartz, 2012). Readers familiar

with time-series analysis might be taken aback by the lack of parameters in a typical online

optimisation algorithm. This is due to the game theoretic approach of online optimisation and

the focus on worst case performance guarantees, as opposed to the average case performance

in statistical learning. Regret bounds are typically functions of properties of the loss function

(e.g., convexity and smoothness) and are dependent on environmental assumptions.

At each interval t, DTS-SGD updates network weights using a time-weighted sum of past

observed gradients. Time weighting is controlled by a forget factor κ. In analysing DTS-SGD,

we note two potential weaknesses. Firstly, neural networks are notoriously difficult to train.

Geometry of the loss function is plagued by an abundance of local minima and saddle points

(see Chapter 8.2 of Goodfellow et al., 2016). Momentum and learning rate decay strategies

(for instance, Sutskever et al., 2013; Kingma and Ba, 2015) have been introduced which

require multiple passes over training data, adjusting learning rate each time to better traverse

the loss surface. DTS-SGD performs a single weight update at each period which may have

difficulties in traversing highly non-convex loss surfaces. Secondly, during our simulation

tests, we observed that loss can increase after a weight update. One possibility is that a past

gradient is taking the weights further away from the current local minima. This is particularly

problematic for our problem as stock returns are very noisy.

68 3 TIME-VARYING NEURAL NETWORK

3.3 The proposed Online Early Stopping algorithm

3.3.1 Tracking a restricted optimum

We start by providing an informal discussion of the algorithm. Neural networks are universal

approximators (Cybenko, 1989; Goodfellow et al., 2016). That is, it can approximate any

function up to an arbitrary accuracy. Thus, given a network structure and a time-varying

function, network weights trained with data from a single time interval (i.e., a cross-sectional

slice of time) neatly summarise the function at that interval. The Euclidean distance between

consecutive sets of weights can be interpreted as the amount of variations in the underlying

function expressed in weight space. Simply using θt−1 to predict on t will lead to an

overfitted result. To illustrate, suppose θt ∈ R, θ0 = 0 and θ{t>0} alternates in a sequence

of {1,−1, 1,−1, ...}9. Then, it is clear that using θ1 to predict on t = 2 will lead to a worse

outcome than using θ0. In this scenario, the optimal strategy is to never update weights (or

scale updates by zero). Generally, the optimal policy is to regularise updates such that the

network is not overfitted to any single period.

In the rest of this section, we present our main theoretical results. Formally, our goal is to track

the unobserved minimiser of Jt, a proxy for the true asset pricing model, as closely as possible.

In regret analysis, it is desirable to have regret that scales sub-linearly to number of periods

T , which leads to asymptotic convergence to the optimal solution10. Hazan et al. (2017)

demonstrated that in the non-convex case, a sequence of adversarially chosen loss functions

can force any algorithm to suffer regret that scales with T as Ω
(

T
w2

)
11. Locally smoothed

gradients (over a rolling window of w loss functions) were used to improve smoothed regret,

with a larger w advocated by Hazan et al. (2017). Aydore et al. (2019) extended this to use

rolling weighted average of past gradients which give recent gradients a higher weight to

track a dynamic function. Inevitably, smoothing will track a time-varying minimiser with a

tracking error that is proportionate to w and the forget factor κ.

9This is the worst case scenario for OES which we will revisit at the end of this section.
10The sum of regret increases sub-linearly to T . Thus, as T →∞, average regret→ 0.
11In computer science, Ω notation refers to the lower bound complexity.

3.3 THE PROPOSED ONLINE EARLY STOPPING ALGORITHM 69

(1)
−∇Jt−1(θ

′)

−∇Jt(θ′)

(2)
−∇Jt−1(θ

′)

−∇Jt(θ′)

FIGURE 3.1: At each optimisation iteration, weights can be visualised as
moving along the direction of −∇Jt−1(θ

′). On the left, optimisation should
continue until −∇Jt(θ′) is perpendicular to −∇Jt−1(θ

′). On the right, optim-
isation should terminate.

To address this, we propose a restricted optimum (denoted by θ∗
t at time t) as the tracking target

of our algorithm. At time t, the online player selects θt based on observed {∇1, . . . ,∇t−1}.

As the network is trained using gradient descent, we propose to restrict the admissible weight

set to the path formed from θ∗
t−1 and extending along the gradient vector −∇t−1 (in other

words, the path traversed by gradient descent). The point θ′ along this path with the minimum

∥∇Jt(θ′)∥ is the restricted optimum. We argue that the trade-off between restricting the

admissible weight space and solving the simplified problem is justified as other points in the

weight space are not attainable via gradient descent and is thus unnecessary to consider all

possible weight sets in Θ. Without assuming any time-varying dynamics, updating weights

using an average of past gradients (similar to Hazan et al., 2017) will induce a tracking error

to the time-varying function. To illustrate the restricted optimum concept, let θ′ = θ∗
t−1 be our

starting point of optimisation, g = −∇Jt−1(θ
′) and g′ = −∇Jt(θ′). The possible scenarios

during training are (also illustrated in Figure 3.1):

(1) If
∣∣∣cos−1 [⟨g,g′⟩]

∥g∥∥g′∥

∣∣∣ < π/2, then moving along g will also improve Jt(θ′) until g is

perpendicular to g′ or θ′ has reached a local minima of Jt−1.

70 3 TIME-VARYING NEURAL NETWORK

(2) If
∣∣∣cos−1 [⟨g,g′⟩]

∥g∥∥g′∥

∣∣∣ ≥ π/2, then following g will not improve Jt(θ′) and training

should terminate.

This observation motivates our OES algorithm. In this section, we will use θ∗
t to denote

restricted optimal weights at t and θt to denote the online player’s choice of weights. Suppose

θ∗
t evolves under the dynamics of,

θ∗
t = θ∗

t−1 − vt−1∇Jt−1(θ
∗
t−1), (3.5)

where vt−1 is sampled from an unknown distribution. vt−1 can be interpreted as a regulariser

which provides the optimal prediction weights on Jt if we are restricted to travelling along

the direction of −∇Jt−1(θ
∗
t−1). In this context, ∥∇Jt(θ∗

t)∥ is the minimum gradient suffered

by the player. Solution to the iterative portfolio selection problem described in Section 3.2.1

contains two loops (one nested within the other). The outer loop recursively updates θ∗
t for

each portfolio selection interval t = 1, . . . , T (each θ∗
t in Equation (3.5)). The inner loop

relates to the transition between each t, where SGD iteratively updates θ∗
t−1 to arrive at θ∗

t by

approximating vt−1 in (3.5). In here, let τ ∗t be the optimal number of optimisation steps at

time t, τt be the estimated number of optimisation steps and k be the k-th SGD optimisation

step. At iteration t, we solve optimal optimisation steps τ ∗t−2,

τ ∗t−2 = argmin
τ ′≥0

Jt−1

[
θ∗
t−2 − η

τ ′∑
k=1

∇Jt−2(θ
∗
t−2,k)

]
. (3.6)

We start from t − 2 as solving τ ∗t−1 requires Jt which we are yet to observe. This leads to

optimal weights (the restricted optimum) trained on Jt−2 for prediction on Jt−1,

θ∗
t−1 = θ∗

t−2 − η
τ∗t−2∑
k=1

∇Jt−2(θ
∗
t−2,k), (3.7)

and can be approximated by,

θ∗
t−2 − η

τ∗t−2∑
k=1

∇Jt−2(θ
∗
t−2,k) ≈ θ∗

t−2 − ητ ∗t−2∇Jt−2(θ
∗
t−2),

which implies vt−2 ≈ ητ ∗t−2. To predict r̂t, we choose τt−1 = 1
t−2

∑t−1
q=2 τ

∗
t−q and train

prediction weights on Jt−1 by substituting in ⌊τt−1 + 0.5⌋ (the rounded up estimate of

3.3 THE PROPOSED ONLINE EARLY STOPPING ALGORITHM 71

optimisation steps),

θt = θ∗
t−1 − η

⌊τt−1+0.5⌋∑
k=1

∇Jt−1(θ
∗
t−1,k) ≈ θ∗

t−1 − ητt−1∇Jt−1(θ
∗
t−1). (3.8)

As η is a constant chosen by hyperparameter search, τt−1 can be interpreted as a proxy to

the regulariser vt−1. Using our β-smooth assumption (in Section 3.2.1) and substituting in

definitions of θt and θ∗
t (in Equation 3.8), we obtain total regret,

∥∇Jt(θt)−∇Jt(θ∗
t)∥ ≤ β ∥θt − θ∗

t ∥ ,
T∑
t=2

∥∇Jt(θt)−∇Jt(θ∗
t)∥ ≤

T∑
t=2

β ∥θt − θ∗
t ∥ ,

≤
T∑
t=2

β
∥∥ητ ∗t−1∇Jt−1(θ

∗
t−1)− ητt−1∇Jt−1(θ

∗
t−1)

∥∥ , (3.9)

where we start from t = 2 as our algorithm requires at least 2 cross-sectional observations.

The elegance of Equation 3.9 is that it conforms with the conventional notion of regret,

with cumulative gradient deficit against an optimal outcome in place of cumulative loss. As

τt−1 is the unbiased estimator of τ ∗t−1, Equation 3.9 indicates that the cumulative deficit is

asymptotically bounded by the variance of τ ∗t−1. This concept is illustrated in Figure 3.2.

If τ ∗t−1 is constant, then τt−1 will converge to τ ∗t−1 and the optimal weights are achieved.

Conversely, if τ ∗t−1 has high variance, then the player will suffer a larger cumulative gradient

deficit.

Finally, we discuss the best and worst case scenarios of OES. The best case scenario is if

θt is stationary, such that τ ∗t = 0. In this case, from Equation (3.2), regret is 0. The worst

case scenario is the example discussed at the beginning of this section. Suppose that θt ∈ R,

θ0 = 0 and θ{t>0} alternates in a sequence of {1,−1, 1,−1, ...}. In this case, estimated steps

τt = 0 and θt never updates. Thus, the upper bound on regret is (from Equation (3.2)),

T∑
t=2

∥∇Jt(θt)−∇Jt(θ∗
t)∥ ≤

T∑
t=2

β
∥∥ητ ∗t−1∇Jt−1(θ

∗
t−1)− 0

∥∥ ,
and total regret scales linearly with time, average regret (total regret divided by T) converges

a constant and the network always underfit the data. However, as discussed in Section 3.2.3,

72 3 TIME-VARYING NEURAL NETWORK

θ∗1,t − θ∗1,t−1

θ∗2,t − θ∗2,t−1

E
[∥∥θ∗t − θ∗t−1

∥∥]
FIGURE 3.2: Illustration of estimating E

[∥∥θ∗
t − θ∗

t−1

∥∥]. Suppose θ∗
t =

[θ∗1,t θ∗2,t] is a row vector with two elements. Twenty one random θ∗
t vectors

were drawn with each θ∗
t − θ∗

t−1 pair represented as an arrow. The circle has
radius 1

20

∑21
t=2

∥∥θ∗
t − θ∗

t−1

∥∥. θt is regularised by limiting how far it can travel
from θ∗

t−1 which is E
[∥∥θ∗

t − θ∗
t−1

∥∥].
regret in convex problems is typically compared to a benchmark (e.g., loss suffered by the

best hindsight minimiser). In our worst case scenario, the best hindsight minimiser is also

θ = 0. Thus, regret suffered by OES converges to the best hindsight minimiser in our worst

case. In other words, in the worst case, loss suffered by OES converges to a neural network

that is trained on the entire pooled dataset. In Section 3.5, we demonstrate the real world

performance of OES on U.S. equities dataset.

3.3.2 Proposed algorithm

Our strategy is to modify the early stopping algorithm to recursively estimate τt. An outline

is provided below as an introduction to the pseudocode in Algorithm 2:

(1) At t, solve τ ∗t−2 (Equation 3.6) and θ∗
t−1 (Equation 3.7) by training on Jt−2 and

validating against Jt−1 (step 3 of Algorithm 2).

(2) Recursively estimate τt−1 as the mean of observed {τ ∗1 , ..., τ ∗t−2} (line 4).

3.4 SIMULATION STUDY 73

(3) Start from θ∗
t−1 and perform gradient descent for ⌊τt−1+0.5⌋ iterations (Equation 3.8).

The new weights are θt (line 5–9).

(4) Predict using θt (line 11).

EarlyStopping on line 3 is the classical early stopping procedure as outlined in Algorithm 1

(in Section 2.2). In our implementation of the algorithm, we have used stochastic gradient

∇̂t−1 instead of the full gradient∇t−1. Validation is performed before the first training step to

allow for the case where τbest = 0 (i.e., we start from the optimal weights).

Algorithm 2 General framework for online early stopping. The outer loop recursively
estimates τt−1. See Algorithm 1 for the EarlyStopping function.
Require: data Xt,yt ∼ pt at interval t; θ∗

0 initialized randomly
1: τ ′ ← 0
2: for t = 2, ..., T do
3: τ ′,θ∗

t−1 ← EARLYSTOPPING(θ∗
t−2,Xt−2,yt−2,Xt−1,yt−1)

4: τ ← τ (̇t−2)+τ ′

t−1

5: θ ← θ∗
t−1

6: for i = 1, ..., ⌊τ + 0.5⌋ do
7: θ ← θ − η∇̂t−1(θ)
8: end for
9: θt ← θ

10: Receive input Xt

11: Predict r̂t ← F (Xt;θt)
12: Receive output yt

13: end for

In the next two sections, we conduct two empirical studies. First is based on simulation data

which highlights the use of OES, and the second on predicting U.S. stock returns based on

the dataset in Gu et al. (2020) and is presented in Section 3.5.

3.4 Simulation study

3.4.1 Simulation data

For the simulation study, we create the following synthetic dataset:

• T = 180 months, each month consists of N = 200 stocks.

74 3 TIME-VARYING NEURAL NETWORK

• Each stock has M = 100 features, forming input matrix of X ∈ R180×200×100 and

output vector r ∈ R180×200.

• Let xt,i,j be the value of feature j of stock i at time t. Each feature value is randomly

set to xt,i,j ∼ N(0, 1).

• Each feature is associated with a latent factor ψt,j = 0.95ψt−1,j + 0.05δt,j , where

δt,j ∼ N(0, 1) and ψ0,j ∼ N(0, 1). ψt,j follows a Wiener process and drifts over

time.

• Each output value is yt,i =
∑M

j=1 tanh(xt,i,j × ψt,j) + ϵt,i, where ϵt,i ∼ N(0, 1).

Thus, yt is non-linear with respect to Xt and the relationship changes over time.

We have used the same network setup and hyperparameter ranges as the empirical study on

U.S. equities (outlined in Table A.1) but with a batch size of 50. EWNN has the same setup

but is re-fitted at every 10-th time intervals. The dataset is split into three 60 interval blocks.

Hyperparameters for OES are chosen using a grid search, a procedure called hyperparameter

tuning. For each hyperparameter combination, the network is trained on the first 60 intervals

and validated on the next 60 intervals. Hyperparameters with the minimum MSE in the

validation set is used in the remaining 60 intervals as out-of-sample data. Performance

metrics are calculated using the out-of-sample set. DGP of the synthetic dataset is designed

to be non-linear and time-varying. We expect a slower decay rate to benefit EWNN and a

faster decay rate to benefit OES. Size of train, validate and test sets are chosen arbitrarily

and is not expected to change the results. DTS-SGD follows the same training scheme as

OES, with additional hyperparameters: window period w ∈ {5, 10, 20} and forget factor

κ ∈ {0.9, 0.8, 0.7}. These hyperparameters relate to speed of change of the DGP. A faster

changing DGP will lead to smaller window period and forget factor.

3.4.2 Simulation results

Our synthetic data requires the network to adapt to time-varying dynamics. Table 3.1 records

results of the simulation. EWNN struggles to learn the time-varying relationships, with mean

R2 of −8.26% and mean rank correlation of −4.07%. This is expected as the expanding

window approach used in EWNN assumes the relationships at t are best approximated by

3.5 PREDICTING U.S. STOCK RETURNS 75

TABLE 3.1: Simulation results and selected hyperparameters by hyperpara-
meter search averaged over time and ensemble networks. Values are in per-
centages unless specified (w refers to number of periods).

% EWNN OES DTS-SGD

Metrics
Pooled R2

oos -7.12 50.22 0.13
Mean R2 -7.77 49.64 -0.33
IC -4.21 71.24 6.29

Hyperparameters
Mean L1 penalty 0.01 0.09 0.04
Mean η 0.55 1.00 0.10
Mean w (periods) 14
Mean κ 83.00

the average relationships in the observed past. OES significantly outperforms the other two

methods in this simple simulation, achieving mean R2 of 49.64% and mean rank correlation

of 69.63%. These results demonstrate OES’s ability to track a non-linear, time-varying

function reasonably closely. There is a preference for higher L1 regularisation and learning

rate. In Aydore et al. (2019), the authors reported issues of exploding gradient with the static

time-smoothed stochastic gradient descent in Hazan et al. (2017) and that DTS-SGD provided

greater stability. In our simulation test, we observe gradient instability with DTS-SGD as

well. During training, loss can increase after a weight update. We hypothesise that a past

gradient is taking network weights away from the direction of the current local minima and

could be an issue with this general class of optimisers. Lastly, we find that mean R2 tends

to be slightly lower than R2
oos (which is reasonable with a smaller denominator of a negative

term, see Equation (3.1)).

3.5 Predicting U.S. stock returns

3.5.1 U.S. equities data and model

The U.S. equities dataset in Gu et al. (2020) consists of all stocks listed on NYSE, AMEX,

and NASDAQ from March 1957 to December 2016. The average number of stocks exceeds

76 3 TIME-VARYING NEURAL NETWORK

5,200. Excess returns over risk-free rate are calculated as forward one-month stock returns

over Treasury-bill rates. As noted in Section 3.2.1, stock returns exhibit non-Gaussian

characteristics. Table 3.2 presents descriptive statistics of excess returns. Monthly excess

returns are positively skewed and contain possible outliers that may influence the regression.

We follow Gu et al. (2020) in using MSE but note that MSE is not robust against outliers. As

noted in Section 3.1, we also provide an alternative setup that excludes microcap stocks. The

alternative setup and empirical results are presented in Section 3.5.4.

The feature set includes 94 firm level features, 74 industry dummy variables (based on the

first two digits of Standard Industrial Classification code (SIC)), and interaction terms with

8 macroeconomic indicators. The firm features and macroeconomic indicators used in Gu

et al. (2020) are based on Green et al. (2017) and Welch and Goyal (2008), respectively. Firm-

level features include price-based measures, valuation metrics and accounting ratios. These

features are also highlighted in Section 1.5. The purpose of interacting firm-level features

with macroeconomic indicators is to capture any time-varying dynamics that are related

to (common across all stocks) macroeconomic indicators. For instance, suppose valuation

metrics have a stronger relationship with stock returns during periods of high inflation. Then,

TABLE 3.2: Descriptive statistics of monthly excess returns of U.S. equities
from April 1957 to December 2016, grouped into 10-Year periods. The
numbers in the left column indicate percentiles. Monthly excess returns appear
to contain some extreme values, particularly on the positive end. Variance of
monthly excess returns varied over time.

% 1957-1966 1967-1976 1977-1986 1987-1996 1997-2006 2007-2016

Mean 0.95 0.25 0.95 0.64 0.90 0.50
Std Dev 9.98 14.89 15.84 18.44 19.93 16.26
Skew 212.44 184.21 365.98 1059.88 502.41 783.70
Min -76.38 -91.88 -90.14 -99.13 -98.30 -99.90
1 -20.27 -31.41 -33.82 -40.39 -44.61 -38.96
10 -9.26 -14.99 -14.38 -15.61 -17.08 -14.25
25 -4.42 -7.78 -6.54 -6.64 -6.91 -5.76
50 -0.10 -0.65 -0.52 -0.41 0.00 0.24
75 5.14 6.21 6.67 6.18 6.67 5.84
90 11.62 16.23 16.43 16.11 17.57 14.06
99 33.04 49.60 51.99 56.92 65.43 48.08
Max 255.29 432.89 1019.47 2399.66 1266.36 1598.45

3.5 PREDICTING U.S. STOCK RETURNS 77

this information will be encoded in the interaction term. The aggregated dataset therefore

contains 94 × (8 + 1) + 74 = 920 features. Each feature has been appropriately lagged to

avoid look-forward bias and is cross-sectionally ranked and scaled to [−1, 1]. Table A.6 in

the Internet Appendix of Gu et al. (2020) contains the full list of firm features.

A subset of the data is available on Dacheng Xiu’s website12 which contains 94 firm-level

characteristics and 74 industry classification. Our main result uses 94 + 74 = 168 firm-level

features but results with the full 920 features are also provided as a comparison. At this

point, it is useful to remind readers that our goal is to track a time-varying function when the

time-varying dynamics are unknown. In other words, we assume that time-varying dynamics

between stock returns and features are not well understood or are unobservable. As such,

the subset of data without interaction terms is sufficient for our problem. If macroeconomic

indicators do encode time-varying dynamics, our network will track changing macroeconomic

conditions automatically.

Data is divided into 18 years of training (from 1957 to 1974), 12 years of validation (1975–

1986), and 30 years of out-of-sample tests (1987–2016). We use monthly total returns of

individual stocks from CRSP. Where stock price is unavailable at the end of month, we use the

last available price during the month. Table A.1 (Appendix A3) records test configurations as

outlined in Gu et al. (2020) and in our replication. A total of six hyperparameter combinations

(L1 penalty and η in Table A.1) are tested. We use the same training scheme as Gu et al.

(2020) to train EWNN. Once hyperparameters are tuned, the same network is used to make

predictions in the out-of-sample set for 12 months. Training and validation sets are rolled

forward by 12 months at the end of every December and the model is re-fitted. An ensemble

of 10 networks is used, where each prediction ŷt,i is the average prediction of 10 networks.

To train OES, we keep the first 18 years (to 1974) as training data, and next 12 years (to 1986)

as validation data. For each permutation of hyperparameter set, we have trained an online

learner up to 1986. Hyperparameter tuning is only performed once on this period, as opposed

to every year in Gu et al. (2020). As the algorithm does not depend on a separate set of data

for validation, we simply take the hyperparameter set with the lowest monthly average MSE

12Dacheng Xiu’s website https://dachxiu.chicagobooth.edu/

https://dachxiu.chicagobooth.edu/

78 3 TIME-VARYING NEURAL NETWORK

over 1975–1986 as the best configuration to use for rest of the dataset. Batch size of 1,000 for

OES was chosen arbitrarily.

3.5.2 Predicting U.S. stock returns

In this section, we present our U.S. stock return prediction results. DTS-SGD did not complete

training with a reasonable range of hyperparameters due to exploding gradient and is omitted

from this section. As an overarching comment, R2 for both EWNN and OES on U.S. stock

returns are very low and are consistent with the findings of Gu et al. (2020). First, results with

and without interaction terms are presented in Table 3.3, keeping in mind that our method

should be compared against EWNN without interaction terms. Without interaction terms, OES

and EWNN achieve IC of 4.53% and 3.82%, respectively. The relatively high correlation of

OES (compared to EWNN) indicates that it is better at differentiating relative performance

between stocks. This is particularly important in our use case as practitioners build portfolios

based on expected relative performance of stocks. For instance, a long-short investor will buy

top-ranked stocks and short sell bottom-ranked stocks and earn the difference in relative return

between the two baskets of stocks. Mean R2 are−12.14% and−9.68% for OES and EWNN,

respectively. Note that the denominator of mean R2 is adjusted by the cross-sectional mean of

excess returns. Therefore, negative means R2 of both OES and EWNN indicate that neither

method can accurately predict the magnitude of cross-sectional returns. Finally, OES scores

−2.48% on R2
oos and EWNN scores 0.22%. The low values of both methods underscore

the difficulty in return forecasting. EWNN achieves higher Sharpe ratio (Equation (3.3))

than OES, at 1.63 and 0.83, respectively. As we will point out in Section 3.5.4, the high

Sharpe ratio of EWNN is driven by microcap stocks. Despite the very low R2, both methods

can generate economically meaningful returns. This underscores our argument that R2 is

not the best measure of performance and verifies practitioners’ choice of correlation as the

preferred measure. We observe similar performance with interaction terms, suggesting that

the 8 macroeconomic time series have little interaction effect with the 94 features. In the

subsequent results in this section, we only report statistics without interaction terms.

3.5 PREDICTING U.S. STOCK RETURNS 79

TABLE 3.3: Predictive performance on U.S. equities. Pooled R2
oos is calcu-

lated across the entire out-of-sample period as a whole. Mean R2 and IC
are calculated cross-sectionally for each month then averaged across time.
P10-1 is the average monthly spread between top and bottom deciles. Sharpe
ratio is based on P10-1 return spread and annualised. Mean hyperparameters
are calculated over the ensemble of 10 networks and across all periods. As
reported are results in Gu et al. (2020).

With Interactions W/O Interactions

% As reported EWNN OES EWNN OES

Metrics
Pooled R2

oos 0.4 0.13 -1.93 0.22 -2.48
Mean R2 -9.89 -11.93 -9.68 -12.17
IC 3.51 4.22 3.82 4.53
P10-1 3.27 1.83 2.10 2.39 2.41
Sharpe ratio 2.36 0.94 0.72 1.63 0.83

Hyperparameters
Mean L1 penalty 0.0012 0.0154 0.0024 0.0028
Mean η 0.77 0.10 0.67 0.10

So why do IC and R2
oos diverge? The answer lies in Table 3.4 and Figure 3.3. Here, we form

decile portfolios based on predicted returns over the next month and track their respective

realised returns. OES predicted values span a wider range than EWNN. This has contributed

to a lower R2, even though OES can better differentiate relative performance between stocks.

EWNN used a pooled dataset which will average out time-varying effects. As a result, the

average gradient will likely be smaller in magnitude. This is evident from the lower mean

L1 penalty and higher learning rate η chosen by validation. By contrast, OES trains on

each time period individually and the norm of the gradient presented to the network at each

period is likely to be larger. This led to a lower learning rate chosen by validation. Hence,

variance of OES predicted values is higher and potentially requires higher or different forms

of regularisation.

In Table 3.4 and Figure 3.3, we observe that the prediction performance of EWNN is con-

centrated on the extremities, namely P1 and P10, with realised mean returns of −0.47% and

1.92% respectively. Stocks between P3 and P7 are not well differentiated. By contrast, OES

is better at ranking stocks across the entire spectrum. Realised mean returns of OES are more

80 3 TIME-VARYING NEURAL NETWORK

evenly spread across the deciles, resulting in higher correlation than EWNN. P10-1 realised

portfolio returns are similar across EWNN and OES at 2.39% and 2.41%, respectively. How-

ever, the difference in mean return spread increases when calculated on a quintile basis (mean

return of top 20% of stocks minus bottom 20%), to 1.75% and 1.90% for EWNN and OES,

respectively. This reflects better predictiveness in the middle of the spectrum of OES. An

investor holding a well diversified portfolio is more likely to utilise predictions closer to the

center of the distribution and experience relative returns that are reminiscent of the quintile

spreads (and even tertile spreads) rather than decile spreads. Lastly, forecast dispersion of

OES is relatively high compared to EWNN and realised decile returns. We hypothesise that

this is due to the small training dataset used by OES on each iteration (consisting of only the

cross-section) and suggests additional regularisation may be required.

3.5.3 Time-varying feature importance

So far, our forecasts are predicated on time-varying relationships between features and stock

returns. How do features’ importance change over time? To examine this, we train the OES

TABLE 3.4: Predicted and realised mean returns by decile where each row
represents a decile. P1 is the mean excess returns of the first decile (0-10%
of bottom ranked stocks) and P10-1 is P10 less P1 showing the return spread
between the best decile relative to the worst decile. As reported are original
results from Table A.9 in Gu et al. (2020).

As reported EWNN OES

% Predicted realised Predicted realised Predicted realised

P1 -0.31 -0.92 -0.59 -0.47 -3.53 -0.50
P2 0.22 0.16 0.09 0.15 -1.96 0.03
P3 0.45 0.44 0.37 0.54 -1.07 0.27
P4 0.60 0.66 0.55 0.64 -0.34 0.48
P5 0.73 0.77 0.70 0.73 0.30 0.67
P6 0.85 0.81 0.84 0.78 0.88 0.85
P7 0.97 0.86 0.99 0.85 1.46 1.04
P8 1.12 0.93 1.17 0.96 2.10 1.18
P9 1.38 1.18 1.43 1.26 2.89 1.42
P10 2.28 2.35 2.33 1.92 4.25 1.91
P10-1 2.58 3.27 2.92 2.39 7.78 2.41

3.5 PREDICTING U.S. STOCK RETURNS 81

1988 1992 1996 2000 2004 2008 2012 2016

2

0

2

4

6

8

EWNN
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P10-1

1988 1992 1996 2000 2004 2008 2012 2016

OES

FIGURE 3.3: Cumulative mean excess returns by decile sorted based on
predictions by EWNN and OES. Each portfolio follows the same construction
as described in Table 3.4. However, cumulative mean excess returns of each
portfolio is presented in the chart.

model at every period and make a baseline prediction. For each feature j = 1, ...,M , all

values of j are set to zero and a new prediction is made. A new R2 is calculated between the

new prediction and the baseline prediction, denoted as R2
t,j . The importance of feature j at

time t is calculated as FIt,j = 1−R2
t,j . Our measure tracks features that the network is using.

This is different from the procedure in Gu et al. (2020) where R2 is calculated against actual

stock returns, rather than a baseline prediction.

To illustrate the inadequacy of a non-time-varying model, we first track feature importance

over January 1987 to December 1991. The top 10 features with the highest feature importance

are (in order of decreasing importance): idiovol (CAPM residual volatility), mvel1 (log market

capitalisation), dolvol (monthly traded value), retvol (return volatility), beta (CAPM beta),

mom12m (12-month minus 1-month price momentum), betasq (CAPM beta squared), mom6m

(6-month minus 1-month month price momentum), ill (illiquidity), and maxret (30-day max

daily return). Rolling 12-month averages were calculated to provide a more discernible

trend, with the top 5 shown in Figure 3.4. Feature importance exhibits strong time-variability.

82 3 TIME-VARYING NEURAL NETWORK

1988
1992

1996
2000

2004
2008

2012
2016

Date

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ro
llin

g
12

-m
on

th
 F

ea
tu

re
 Im

po
rta

nc
e

(R
2)

beta
retvol
dolvol
mvel1
idiovol

FIGURE 3.4: Top 5 features based on rolling 12-month average feature import-
ance over 1987-1991. Three rapid falls can be seen which coincide with the
1990–91 U.S. recession, Dot-com bubble (2000–03) and the Global Financial
Crisis (2007–09). These periods are shaded for reference.

Rolling 12-month average feature importance fell from 14% to 16% at the start of the out-of-

sample period to a trough of 2% to 6% before rebounding. This indicates that the network

would have changed considerably over time. Rapid falls in feature importance can be seen

in Figure 3.4, over 1990–91, 2000–01 and 2008–09. These periods correspond to the U.S.

recession in early 1990s, the Dot-com bubble and the Global Financial Crisis, respectively.

Thus, market distress may explain rapid changes in feature importance.

Next, we examine changes in importance for all features on a yearly basis. Figure 3.5

displays considerable year-to-year variations in feature importance. As there are just a few

clusters of features with relatively higher feature importance, the network’s predictions can

be attributed to a small set of features. This is likely due to the use of L1 regularisation

which encourages sparsity. There is an overall trend towards lower importance over time,

consistent with the publication-informed trading hypothesis of McLean and Pontiff (2016).

For instance, the importance of market capitalisation (mvel1) has decreased over time, as

documented in Horowitz et al. (2000). There are periods of visibly lower importance for all

features, over 2000–02 and 2008–09, and to a lesser extent 1990 and 1997 (Asian financial

3.5 PREDICTING U.S. STOCK RETURNS 83

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

absacc
acc

aeavol
age
agr

baspread
beta

betasq
bm

bm_ia
cash

cashdebt
cashpr

cfp
cfp_ia

chatoia
chcsho

chempia
chinv

chmom
chpmia

chtx
cinvest

convind
currat

depr
divi

divo
dolvol

dy
ear
egr
ep

gma
grcapx
grltnoa

herf
hire

idiovol
ill

indmom
invest

lev
lgr

maxret
mom12m
mom1m

mom36m
mom6m

ms
mve_ia
mvel1
nincr

operprof
orgcap

pchcapx_ia
pchcurrat

pchdepr
pchgm_pchsale

pchquick
pchsale_pchinvt
pchsale_pchrect

pchsale_pchxsga
pchsaleinv

pctacc
pricedelay

ps
quick

rd
rd_mve
rd_sale

realestate
retvol
roaq

roavol
roeq
roic

rsup
salecash

saleinv
salerec

secured
securedind

sgr
sin
sp

std_dolvol
std_turn

stdacc
stdcf
tang

tb
turn

zerotrade

0.02

0.04

0.06

0.08

0.10

0.12

0.14

FIGURE 3.5: Yearly average R2 to baseline predictions (in decimal). The
OES network appeared to use only a handful of features. Shades of feature
importance are distinctly lighter over 2000–02, 2008–09, and to a lesser extent
in 1990 and 1997. Importance of some features have eroded over time (e.g.,
dolvol, maxret and turn).

84 3 TIME-VARYING NEURAL NETWORK

crisis). If all features have lower importance during market distress, then what explains stock

returns during these periods? To answer this question, we turn to importance of sectors, using

SIC 13 (Oil and Gas), 60 (Depository Institutions) and 73 (Business Services) as proxies

for oil companies, banks and technology companies, respectively. Figure 3.6 records the

rolling 12-month average R2 to baseline prediction of banks, oil and technology companies.

The peak of importance of SIC 73 overlaps with the Dot-com bubble and peak of SIC 60

occurs just after the Global Financial Crisis (which started as a sub-prime mortgage crisis).

Importance of SIC 13 peaked in 2016, coinciding with the 2014–16 oil glut which saw oil

prices fell from over US$100 per barrel to below US$30 per barrel. This is an example of how

an exogenous event that is confined to a specific industry impacts on predictability of stock

returns. Thus, a plausible explanation for the observed results is that firm features explain less

of cross-sectional returns during market shocks, which becomes increasingly explained by

industry groups. This is particularly true if the market shock is industry related. For instance,

technology companies during the Dot-com bubble, oil companies during an oil crisis and

lodging companies during a pandemic. This underscores the importance to have a dynamic

model that adapts to changes in the true model.

In this chapter, we argue that τ ∗t can be interpreted as a measure of variations between

consecutive months. Recall that to solve τ ∗t , we train on Dt and validate on Dt+1. Thus,

τ ∗t is low if training on Dt is not beneficial for prediction on Dt+1 and τ ∗t is high if Dt and

Dt+1 are relatively similar and there is a lot of room to update the network before early

stopping terminates training. An example of such scenario is when the market is at a turning

point, transiting from a risk-averse (risk-seeking) environment to a risk-seeking (risk-averse)

environment. Optimal number of iterations τ ∗t is specific to month t and using it to train

a network to predict for the next month will lead to overfitting. However, it is still useful

to analyse τ ∗t as it provides information on the time-variability of the market as a whole.

Figure 3.7 records both τ ∗t and τt of OES, including the hyperparameter tuning period (from

1957 to 1986). τt converges quickly to approximately 4 iterations and stays relatively stable

throughout the approximately 60-year history. Most of the time, τ ∗t fluctuates between 1 and

7, and occasionally jumps to over 10. Periods of U.S. recession and the 2014–16 oil glut

have been shaded in grey. Additionally, we have also shaded two market events in green, the

3.5 PREDICTING U.S. STOCK RETURNS 85

1988
1992

1996
2000

2004
2008

2012
2016

Date

0.000

0.002

0.004

0.006

0.008

0.010

Ro
llin

g
12

-m
on

th
 S

IC
 Im

po
rta

nc
e

(R
2)

sic.13
sic.60
sic.73

FIGURE 3.6: Rolling 12-month average R2 to baseline prediction of SIC
code 13, 60 and 73, as proxies for oil & gas companies, banks and technology
companies, respectively. R2 of technology companies peaks over 2001–02,
banks over 2008–10, and oil companies over 2015–16. Duration of 1990–91
U.S. recession, Dot-com bubble, Global Financial Crisis and the 2014–16 oil
glut have been shaded in grey.

Black Monday stock market crash in October 1987, and the collapse of Long-Term Capital

Management in August 1998. These events have caused τ ∗t to spike, indicating a sudden

change in the underlying DGP. The month with the highest τ ∗t is March 2009, which coincides

with the start of a broad market rebound during the depth of the Global Financial Crisis.

During these periods (τt < τ ∗t), OES stops training early and prevents overfitting to the large

change in DGP.

3.5.4 Investable simulation

As noted in Section 3.1, the dataset in Gu et al. (2020) contains many stocks that are small and

illiquid. The U.S. Securities and Exchange Commission (2013) defines “microcap” stocks as

companies with market capitalisation below US$250–300 million and “nanocap” stocks as

companies with market capitalisation below US$50 million. At the end of 2016, there are

over 1,300 stocks with market capitalisation below US$50 million and over 1,800 stocks with

86 3 TIME-VARYING NEURAL NETWORK

1960
1970

1980
1990

2000
2010

Date

0

5

10

15

20

25

Op
tim

iza
tio

n
Ite

ra
tio

ns

Optimal steps *
t

Estimated steps t

FIGURE 3.7: Optimal and estimated number of optimisation iterations. U.S.
recessions and the oil glut (2014–16) have been shaded in grey. Two market
shocks — the Black Monday stock market crash in October 1987 and the
collapse of Long-Term Capital Management in August 1998, have been shaded
in green.

market capitalisation between US$50 million and US$300 million. Together, microcap and

nanocap stocks constitute close to half of the dataset as of 2016. Thus, we also provide results

excluding these stocks. At the end of every June, we calculate breakpoint based on the 5-th

percentile of NYSE listed stocks and exclude stocks with market capitalisation below this

value. Once rebalanced, the same set of stocks are carried forward until the next rebalance

(unless the stock ceases to exist). This cutoff is chosen to approximately include the larger

half of U.S.-listed stocks, with the average number of stocks exceeding 2,600. We label this

dataset as the investable set. To mitigate the impact of outliers, we also winsorise excess

returns at 1% and 99% for each month (separately). Winsorised returns are then standardised

by subtracting the cross-sectional mean and dividing by cross-sectional standard deviation.

Standardisation is a common procedure in machine learning and can assist in network training

(LeCun et al., 2012). Predicting a dependent variable with zero mean also removes the need

to predict market returns which are embedded in stocks’ excess returns (over risk-free rate).

3.5 PREDICTING U.S. STOCK RETURNS 87

This transformation allows the neural network to more easily learn the relationships between

relative returns and firm characteristics.

Results based on this investable set are presented in Table 3.5. BothR2
oos and IC improved once

microcaps are excluded, with OES scoring 6.05% on IC and EWNN on 5.74%. However,

EWNN experienced a significant drop in mean decile spread (to 1.69% per month) and

Sharpe ratio (0.69), suggesting that microcaps are significant contributors to the results using

the full dataset. By contrast, mean decile spread and Sharpe ratio remain stable for OES, at

2.41% and 0.82, respectively. This indicates that the predictive performance of OES was

not driven by microcap stocks. We believe this is a meaningful result for practitioners as

this subset represents a relatively accessible segment of the market for institutional investors.

An ensemble based on the average of cross-sectionally standardised predictions of the two

models achieved the best IC, decile spread and Sharpe ratio relative to OES and EWNN.

Mean monthly correlation between OES and EWNN is only 35.9%. Thus, an ensemble based

on the two methods can effectively reduce variance of the predictions. Monthly correlations

between the two models are presented in Figure 3.8. We observe that correlation tends to be

TABLE 3.5: Predictive performance on the investable set. Ensemble is the
average of standardised predictions of the two methods. Pooled R2

oos is calcu-
lated across the entire out-of-sample period as a whole. Mean R2 and IC are
calculated cross-sectionally for each month then averaged across time. Pt is
the average monthly spread between top and bottom deciles. Sharpe ratio is
based on Pt and annualised by multiplying

√
12. Mean hyperparameters are

calculated over the ensemble of 10 networks and across all periods.

% EWNN OES Ensemble

Metrics
Pooled R2

oos 0.35 -1.37
Mean R2 0.35 -1.37
IC 5.74 6.05 6.29
P10-1 1.69 2.41 2.60
Sharpe ratio 0.69 0.82 0.96

Hyperparameters
Mean L1 penalty 0.0211 0.0046
Mean η 0.87 0.10

88 3 TIME-VARYING NEURAL NETWORK

lowest immediately after a recession or crisis. We hypothesise that OES is quicker to react to

economic recovery.

1988
1992

1996
2000

2004
2008

2012
2016

Date

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Co
rre

la
tio

n

Correlation
Rolling 12m Average

FIGURE 3.8: Monthly and rolling 12-month correlation between predictions
of OES and EWNN. Duration of 1990–91 U.S. recession, Dot-com bubble,
Global Financial Crisis and the 2014–16 oil glut have been shaded in grey.

Turning to cumulative decile returns presented in Figure 3.9, we observe significant draw-

downs for EWNN during recovery phases of the Dot-com bubble and Global Financial Crisis.

P1 of EWNN bounced back sharply during these episodes, causing sharp drops in decile

spreads and are consistent with momentum crashes (Daniel and Moskowitz, 2016). By con-

trast, decile spreads of OES appear to react to the recovery more quickly. Consistent with

prior findings, the spreads between decile 3 to 7 are also better under OES than EWNN in the

investable set. Given these favourable characteristics, practitioners are likely to find OES a

useful tool to add to the armoury of prediction models.

3.6 Conclusions

Stock return prediction is an arduous task. The true model is noisy, complex and time-varying.

Mainstream deep learning research has focused on problems that do not vary over time and,

3.6 CONCLUSIONS 89

1988 1992 1996 2000 2004 2008 2012 2016
4

2

0

2

4

6

8

EWNN
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P10-1

1988 1992 1996 2000 2004 2008 2012 2016

OES

FIGURE 3.9: Cumulative mean excess returns by decile sorted based on
predictions by EWNN and OES in the investable set.

arguably, time-varying applications have seen less advancements. In this chapter, we propose

an Online Early Stopping algorithm that is easy to implement and can be applied to an existing

network setup. We show that a network trained with OES can track a time-varying function

and achieve superior performance to DTS-SGD, a recently proposed online non-convex

optimisation technique. Our method is also significantly faster, as only two periods of training

data are required at each iteration, compared to the pooled method used in Gu et al. (2020)

which re-trains the network on the entire dataset annually. In our tests, the pooled method

took 5.5 hours to iterate through the entire dataset (an ensemble of ten networks therefore

takes 55 hours)13. By contrast, our method took 44.25mins for a single pass over the entire

dataset (an ensemble of ten networks took 7.4 hours).

Gu et al. (2020) suggested that a small dataset and low signal-to-noise ratio were reasons for

the lack of improvement with a deeper network. To this end, we show that only a handful

of features contribute to predictive performance. This may be due to correlation between

features and the use of L1 regularisation which encourages sparsity. We also find evidence of

13Tests performed on AMD Ryzen™ 7 3700X, Python 3.7.3, Tensorflow 1.12.0 and Keras 2.2.4. Hyperpara-
meter grid search was performed concurrently.

90 3 TIME-VARYING NEURAL NETWORK

time-varying feature importance. In particular, features such as log market capitalisation (the

size effect) and 12-month minus 1-month momentum have seen a gradual decrease to their

importance towards the end of our test period, consistent with the publication-informed trading

hypothesis of McLean and Pontiff (2016). We find that sectors can also exhibit time-varying

importance (for instance, technology stocks during the Dot-com bubble). These results have

strong implications for practitioners forecasting stock returns using well known asset pricing

anomalies. Excluding microcaps, we find that OES offers superior predictive performance in

a subuniverse that is accessible to institutional investors. We find that correlation between

OES and EWNN is at its lowest after a recession or crisis. We argue that this is driven by

faster reactions of OES in tracking the recovery. An ensemble based on the average prediction

of the two models achieves the best IC and Sharpe ratio, suggesting that the two methods may

be complementary.

From an academic perspective, recent advances in deep learning such as dropout and residual

connections (He et al., 2016) may allow deeper networks to be trained, enabling more

expressive asset pricing models. Given the higher variance of predictions produced by OES,

future work should explore alternative methods of regularisation including dropouts, L2

penalty or a mixture of regularisation techniques.

In Section 3.3.1, we have discussed the worst case regret of OES which, under adversarial

assumptions, can lead to regret that scales linearly with time. We note that our worst case

regret converges to the best hindsight minimiser (i.e., the best choice of θ if the investor is

only allowed to pick one θ for all time periods in hindsight). Thus, this provides users with a

guarantee on worst case performance that is no worse than the best hindsight minimiser. The

interpretation of this performance guarantee is as follows. In the worst case, our proposed

OES algorithm will converge to the performance of a single neural network that is fitted on

the entire dataset, as if the problem is stationary. However, this opens up an avenue for future

research in advancing online non-convex optimisation algorithms that achieve regret that

scales sublinearly with time, such that average regret converges to zero as T →∞.

In this chapter, we have applied neural networks in a cross-sectional prediction context —

inputs into the network are point-in-time attributes of a stock and the problem is treated as a

3.6 CONCLUSIONS 91

conventional panel regression problem (with a neural network in place of a linear regression

model). The network itself does not learn time-series features of the raw time-series. In

Chapter 4, we explore neural networks that can learn from time-series directly.

CHAPTER 4

Supervised temporal autoencoder for stock return time-series forecasting

Financial markets are noisy learning environments. We propose an approach that regularises

the TCN using a supervised autoencoder, which we term the STAE. We show that the addition

of the auxiliary reconstruction task is beneficial to the primary supervised learning task in

the context of stock return time-series forecasting. The supervised autoencoder denoises the

input and encourages the main network to retain features that are beneficial to both prediction

and reconstruction tasks. We show that the supervised temporal autoencoder is able to learn

features directly from noisy stock price series, alleviating the need for handcrafted features.

These contributions have resulted in the following publication:

Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi, Richard Y. D. Xu, “Supervised

Temporal Autoencoder for Stock Return Time-series Forecasting,” Proceedings of the IEEE

45th Annual Computer Software and Applications Conference, Madrid, Spain, 2021.

4.1 Introduction

The motivating application of this chapter is in time-series stock return predictions — a

problem that can be cast as a pattern recognition task. Using financial time-series forecasting

as the motivating application, we focus solely on advancing the existing state-of-the-art deep

learning techniques to deal with noise in a regression setting, as discussed in Section 1.6.2. In

particular, the noisiness of financial markets exacerbates the difficulty in recognising patterns

in stock prices/returns.

92

4.1 INTRODUCTION 93

Deep learning has become the state-of-the-art in many time-series applications, such as

machine translation (Sutskever et al., 2014) and audio generation (van den Oord et al., 2016).

Whilst deep learning has achieved tremendous success in sequential applications such as

speech and languages, advances in their applications in economics and finance have been

relatively modest. Historically, sophisticated machine learning methods have not fared well

in forecasting competitions such as the M-competitions1 (Makridakis and Hibon, 2000;

Makridakis et al., 2018; Hyndman, 2020). Empirical results suggest that simpler statistical

methods are at least as accurate as sophisticated methods, and models that best fitted training

data do not necessarily lead to higher forecasting performance out-of-sample (Makridakis

et al., 2018). We argue that time-series in linguistics and speech are information rich — where

preceding words or sound waves have high information content for the learning task and

are naturally well-suited to neural networks with their rich parameterisation. In contrast,

time-series in finance and economics are information deprived — where signal-to-noise tends

to be low (Gu et al., 2020). Thus, good generalisation performance in high-noise environments

requires regularisation and certain “scaffolds” to guide the model through the noisy data.

Classical statistical models such as autoregressive-moving-average (ARMA) (Box et al.,

1994) models have strong scaffolds. The user picks the orders of autoregressive and moving

average terms (through hyperparameter tuning). The two components additively contribute to

the forecast in a linear manner. The scaffold “guides” the model to look for autoregressive

relationships in the input sequence and residuals, and can be interpreted as a constraint

on the functional form of the sequential DGP. However, statistical models such as ARMA

are less able to capture more complex or non-linear patterns embedded in the time-series.

Recently, Oreshkin et al. (2020) proposed Neural Basis Expansion Analysis for interpretable

Time Series (N-BEATS), a hybrid model where basis functions are parameterised by fully-

connected blocks. The authors reported state-of-the-art performance on the M4 competition

dataset. Users are able to apply domain knowledge when choosing which basis function

to use. For instance, if the user knows, a priori, that the data exhibits seasonality, then a

cyclical basis function can be used. Basis functions provide a “strong form” of scaffold for

1M-competitions are forecasting competitions with datasets consisting of mainly business, economics,
finance and demographics time-series.

94 4 SUPERVISED AUTOENCODER

the model. As the overall structure of the model is imposed by the user, the model only needs

to fill in the intricacies during learning. This hybrid model approach aids interpretability and

generalisation (by preventing an unconstrained neural network from overfitting on noise), but

ultimately sacrifices the prized expressiveness of neural networks and requires assumptions on

the data generation process. This restrictiveness may be undesirable to some users who want to

take a more data-driven approach. At the other end of the spectrum, sequential neural network

architectures have taken full advantage of the expressiveness on offer for information-rich

applications. LSTM has been a popular choice of neural network architecture for sequential

applications (as discussed in Section 2.5.1). More recently, transformer models (Vaswani

et al., 2017) have achieved breakthrough advances in natural language processing (e.g., Devlin

et al., 2019; Brown et al., 2020). The use of “direction-agnostic” attention mechanism allows

transformers to perform paired associations in any part of the sequence, and thus solving

a limitation of LSTM for language applications (Vaswani et al., 2017; Zeng et al., 2022).

However, it remains to be seen if this flexibility afforded by transformers can benefit highly

noisy financial time-series. In this chapter, we propose the Supervised Temporal Autoencoder

(STAE) as an extension of the TCN (Bai et al., 2018). STAE augments TCN with an auxiliary

learning task which acts as a regulariser. We show that STAE improved generalisation of TCN

in time-series prediction of monthly returns of a broad set of U.S. stocks. In our proposed

dual-objective network, interpretability is achieved through examining the replicated sequence

produced by the autoencoder. We show in Section 4.3.2 that the autoencoder has a denoising

effect on stock prices. We note that there have been previous attempts in combining an

autoencoder with other network architectures (e.g., with LSTM in Heaton et al., 2016 and

with CNN in Korczak and Hemes, 2017). However, in these works, the autoencoder is used

for dimensionality reduction rather than as a regulariser as proposed in this chapter.

Methods of forecasting stock returns can be classified into two types, by cross-sectional pre-

diction using firm-level features (as described in Section 1.6.1 and Chapter 3); and time-series

forecasting2 (as described in Section 1.6.2 and this chapter). Time-series forecasting implicitly

assumes a stock’s history contains information about its own future. This assumption stands

2Typically, features include a stock’s own closing price history and related time-series data such as open,
high, low and traded volume.

4.1 INTRODUCTION 95

in contrast to the popular hypothesis within the finance discipline that stock prices evolve

under a random walk (Fama, 1965). However, empirical evidence suggests at least a low level

of predictability in stock returns. Finance literature has documented one aspect of stock return

predictability, termed the MOM12 (Jegadeesh and Titman, 1993), defined as the change in

price (adjusted for splits/dividends) from 12 months ago to 1 month ago. MOM12 was found

to predict stock returns 1 month ahead. The momentum effect is pervasive and has been

found to occur across many asset classes (Asness et al., 2013). Momentum has an intuitive

interpretation — stocks that have increased (decreased) in value over (approx.) one year will

continue to increase (decrease) in value over the next month. In other words, momentum

describes the medium-term trending behaviour of stocks. In this chapter, we show that neural

networks can learn this pattern directly from price data. As we will show in this chapter, this

simple pattern is in fact very difficult to learn using conventional deep learning models. We

argue that this is due to characteristics of stock returns that impedes learning, namely outliers,

low signal-to-noise ratio, heavy tails and volatility clustering, as discussed in Section 1.5. Our

contributions in this chapter are as follows:

• We propose STAE, a supervised autoencoder augmentation to TCN, a powerful

convolutional network for sequential learning. The autoencoder regularises the

network and provides a scaffold that can be interpreted as a nonparametric functional-

form. This encourages the latent representation to retain information about the input

sequence.

• We show that STAE materially improves forecasting performance of TCN and

provides an economically meaningful improvement over MOM12, a well-known

predictor of returns in financial literature.

• We show that the addition of autoencoder aids interpretability, by allowing the user

to inspect the reconstructed input and visualise the features of the original sequence

that are retained by the network.

• We establish a benchmark of neural network-based time-series forecasting perform-

ance in a large and investable set of U.S. stocks, comparing STAE to TCN, N-BEATS,

LSTM and transformer. We show that STAE commands class-leading performance

96 4 SUPERVISED AUTOENCODER

in this challenging application, and that the reconstruction task is beneficial to

forecasting performance even if added at a small weight.

• We provide a precedence on a set of transformations for augmenting raw price series

into inputs for neural networks. We show that the network can learn useful features

from this transformed series directly, eliminating the need for handcrafted features.

The rest of this chapter is organised as follows. In Section 4.2.1, we outline the problem

setup. Section 4.2.2, 4.2.3 and 4.2.4 introduce existing literatures on convolutional neural

networks, supervised autoencoders and financial time-series forecasting using deep learning.

In Section 4.3, we describe our proposed STAE. Data and experimental setup of our empirical

test is outlined in Section 4.3.1 and results in Section 4.3.2. Finally, we provide concluding

remarks in Section 4.4

4.2 Preliminaries

4.2.1 Problem setup

We start with the familiar iterative asset return forecasting process of an investor. At every

period t ∈ {1, . . . , T}, there are N stocks. We define total return index (TRI)3 ut,i > 0 of

each stock i at t as the accumulation index, computed as the compounded change in price

adjusted by dividends ut,i = ut−1,i(pt,i + dt,i)/pt−1,i, where u0,i = 1, pt,i is price4 at time

t and dt,i is dividend at t if a dividend is paid, and zero otherwise. The input sequence is

the log-transformed total return index xt,i = {log ut−K+1,i, log ut−K+2,i, . . . , log ut,i}, where

K = 250 is chosen to be the approximate number of trading days per year and is motivated by

the momentum effect (i.e., the one-year change in share price exhibiting predictive power on

stock returns over the subsequent month). Further pre-processing of the sequence is outlined

in Section 4.3.1

3As noted in Section 1.2, total return includes both change in price and dividends. TRI is the compounded
accumulation index of total returns. On the day a stock pays a dividend, its share price typically falls by roughly
the dividend amount. TRI adds back dividends onto the price series such that stocks that pay dividends are not
unfairly penalised.

4For simplicity, we assume that price is already adjusted for stock splits.

4.2 PRELIMINARIES 97

The dependent variable is forward 1-month return (proxied by 20 trading days), computed

as the log-difference in TRI yt,i = log ut+20,i − log ut,i. Note that this differs from the use

of percentage returns in Chapter 3 (chosen to be comparable to Gu et al., 2020). Percentage

returns are not normally distributed as the left tail is limited to −100%, while the right tail

is unlimited. Log-difference of the TRI (also known as continuously compounded return

or logarithmic return) is also not normally distributed due to heavy tails (Peiró, 1994) but

is often assumed to be Normal for modelling purposes (Isichenko, 2021). These choices

allow our time-series model to be directly compared to the momentum and reversal effects, as

documented in Jegadeesh and Titman (1993). Finally, the investor’s objective is to find the

model F (x;θ) that best forecasts forward 1-month returns, by minimising the expected loss,

min
F,θ∈Ω

Ex,y∈D [L(F (x;θ), y)] .

In Section 4.3, we further define the model F and parameterisation θ.

4.2.2 Neural networks for time-series applications

In this section, we provide a discussion on neural network architectures that can be applied to

time-series applications.

There are three broad categories of sequential neural network architectures: RNN (and its

variants, as discussed in Section 2.5.1), TCN (as discussed in Section 2.5.2) and, more

recently, transformer models (Vaswani et al., 2017). Bai et al. (2018) argued that RNN suffers

from several shortcomings, namely exploding and vanishing gradients, lack of parallelism

and difficulty in retaining long term memory. TCN, utilising dilated convolutions, is able to

model sequence of arbitrary length by increasing the kernel size and stacking multiple dilated

convolution layers. Dilated convolutions provide the network with direct gradient flow to

any part of the sequence while still preserving the temporal ordering of the sequence, thereby

alleviating the problem of unstable gradients in recurrent networks. Using a benchmark dataset,

Bai et al. (2018) demonstrated TCN’s superior performance against other popular recurrent

networks, including the LSTM. TCN is further validated in other sequential applications, such

as speech synthesis (van den Oord et al., 2016), weather forecasting (Yan et al., 2020) and

98 4 SUPERVISED AUTOENCODER

traffic prediction (Dai et al., 2020). Moreoever, CNNs have achieved tremendous success in

conventional image recognition tasks (Krizhevsky et al., 2012; Szegedy et al., 2015; Schroff

et al., 2015). Thus, TCN makes for an ideal candidate for pattern recognition in time-series

applications.

Sequential neural networks are often used for natural language processing applications.

Sentence structure plays an important role in languages. For example, “the cat is brown”

and “a brown cat” both have the same semantic meaning and differs in ordering of words.

However, “the dog barked at the car because it was scared” and “the dog barked at the car

because it was fast” contain a simple change of words and the subject association is completely

different (dog with scared and car with fast). This context dependency proved challenging for

conventional recurrent networks where temporal ordering is preserved and information flow is

directional. More advanced LSTM-based language models, such as the model underpinning

Google Translate5 (Wu et al., 2016), employ bidirectional recurrence (Schuster and Paliwal,

1997) and attention (Luong et al., 2015). Bidrectional recurrence utilises separate LSTMs

in both directions, while attention allows a word in the sentence to be associated with any

other word in the sentence, regardless of adjacency. Both of these features increase flexibility

and reduce scaffolding (i.e., information flow is no longer unidirectional). Transformers take

this paradigm one step further by dropping recurrence and relying solely on self-attention

(Vaswani et al., 2017). For each element of the sequence, self-attention computes association

scores with every other element in the sequence. Thus, allowing gradients to flow between any

pair of elements within the sequence and is permutation-invariant (Zeng et al., 2022). This

flexibility proved vital in recent breakthroughs in machine translation applications (Vaswani

et al., 2017; Devlin et al., 2019; Brown et al., 2020). However, Zeng et al. (2022) argued

that time-series modelling involves extracting information from an ordered set of data points,

which runs contrary to the permutation-invariant flexibility that is emblematic of transformers.

Thus, transformers are unsuitable for long-term time-series forecasting. Whilst acknowledging

that transformers are designed to solve different applications than time-series forecasting,

driven by their compelling performance in NLP problems, we include transformers in our

benchmark of neural network models for financial time-series forecasting.

5https://translate.google.com

https://translate.google.com

4.2 PRELIMINARIES 99

Lastly, as discussed in Section 4.1, some recent advances focus on combining statistical

constructs with neural networks, such as N-BEATS, which have also shown promising

results in time-series applications. Rather than taking a data-driven approach (e.g., LSTM,

transformers), N-BEATS allows the user to pre-specify basis functions which form the

backbone of the model. The basis functions are parameterised by the outputs of fully

connected layers. The choice of basis functions can be interpreted as placing a prior on

the functional-form of the time-series. In this chapter, we compare time-series forecasting

performance of our proposed STAE architecture, to TCN, LSTM, transformers, N-BEATS and

MOM12. The selected models represent two distinct approaches to time-series forecasting

— one which emphasises on flexibility and “letting the data speak”, and one which imposes

functional-form restrictions and thus regularises the model.

4.2.3 Supervised autoencoders

Owing to its vast learning capacity, neural networks can also easily overfit. This is particularly

problematic for noisy environments such as financial markets. Advances in improving

generalisation of neural networks include dropouts (Srivastava et al., 2014), early stopping

(Morgan and Bourlard, 1990) and norm regularisation. Suddarth and Kergosien (1990) first

proposed using an auxiliary learning task to assist with network training. More generally,

MTL has been shown to improve generalisation performance across a range of tasks, such as

facial landmark recognition (Zhang et al., 2014) and natural language processing (Collobert

et al., 2011). Simultaneously learning multiple tasks can reduce overfitting through shared

representations and by leveraging auxiliary information in secondary tasks. Supervised

autoencoder (SAE), first proposed by Le et al. (2018), are a special case of MTL where

the auxiliary task is to reconstruct the input used for the supervised learning task via an

autoencoder (as discussed in Section 2.5.3; LeCun, 1987; Bourlard and Kamp, 1988; Hinton

and Zemel, 1993). Le et al. (2018) and Epstein and Meir (2019) provided the theoretical

generalisation bounds of autoencoders and showed that the addition of reconstruction error

can improve generalisation of a classifier. The reconstruction task exhibit similar stability to l2

regularisation but without the negative bias from shrinkage. The SAE learns two contradictory

100 4 SUPERVISED AUTOENCODER

tasks. The supervised learner only wants to retain features that are relevant for the supervised

task, while autoencoder wants to retain all features that are relevant for reconstruction of the

original input (Epstein and Meir, 2019). Thus, the autoencoder prevents the supervised learner

from discarding too many features of the original sequence. We argue that this is beneficial to

learning in a noisy environment (such as financial markets) as the supervised learner may be

overfitting on spurious correlations. To date, SAEs have been applied to specific tasks such

as classifying biological signals (Thiam et al., 2020; Barlaud and Guyard, 2020) and dialect

detection (Parida et al., 2020). In this work, we show that SAE can improve generalisation in

financial time-series prediction.

4.2.4 Deep learning in financial time-series prediction

Time-series forecasting using deep learning methods have been an active area of research and

has been discussed in Section 1.6.2. Sezer et al. (2020) provided a recent survey of financial

time-series forecasting using deep learning. In summary, majority of existing works focus on

very short horizon forecasting, such as daily return or next day’s closing price, using short

sequences (e.g., Li et al., 2017 used previous day’s close, high, low and open prices to predict

next day’s closing price). Very short term strategies are typically difficult to implement in

practice due to high turnover, transaction costs (commissions, bid-ask spread and market

impact) and overnight slippage6. Many existing works are also based on a small set of stocks

(e.g., Hiransha et al., 2018 is based on 5 stocks) and/or over a short history (e.g., Chandra and

Chand, 2016 used 3 stocks over 2006-10). Some previous methods use neural networks to

tune parameters of handcrafted features (e.g., Lim et al., 2019). Our work differs from existing

works in three ways. Firstly, we forecast forward 1-month return (proxied by 20 trading days,

as opposed to daily returns in many existing works) and compare forecasting performance of

our proposed network to a known predictor (the momentum effect) in finance literature. We

only consider “pattern recognition on stock prices” a success if the neural network can learn

additional patterns from stock prices that is above and beyond the momentum effect (which is
6Generally, predicted daily returns (based on the expected change in closing prices of today and tomorrow)

are not achievable as the positions can only be initiated at market open the follow day at the earliest. If a stock’s
price is expected to increase tomorrow, the opening price is also likely to be higher than today’s closing price.
This close-to-open slippage is the overnight slippage.

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 101

based on just two data points — start and end stock prices). Secondly, in keeping with the

spirit of deep learning, our approach performs feature selection automatically and without

the need of any feature engineering (apart from log-transform and standardising daily prices).

A common transformation of time-series is to take the first difference. If this is beneficial

to the forecasting task, we expect the network to learn this directly from the data. Thirdly,

we provide empirical results on the largest 3,000 stocks listed in the U.S. over 1984-2020, a

dataset in which existing works have not being tested in.

4.3 Proposed STAE and application to stock return

forecasting

We propose to augment TCN by adding a decoder which regularises the predictor subnetwork

(convolutional encoder and fully connected predictor, as depicted in Figure 4.1). We term

this network the Supervised Temporal Autoencoder (STAE). As per TCN, the convolutional

Input

Encoder

Latent

Decoder

Reconstructed

Flatten

Fully connected

Prediction

FIGURE 4.1: The Supervised Temporal Autoencoder architecture. A convolu-
tional encoder converts input sequence into a latent representation which is
used as input into one or more fully connected layers. Prediction produces
output for the primary supervised learning task and Reconstructed is the re-
constructed input sequence, as the auxiliary learning task.

102 4 SUPERVISED AUTOENCODER

Input (250× 1)

DCConv (250× k(e))
BN/DO/ReLU

...

DCConv (250× k(e))
BN/DO/ReLU

Latent (1× k(e))
(a) Encoder

Latent (1× k(e))

ConvTrans (2× k(d))
BN/DO/ReLU

ConvTrans (10× k(d))
BN/DO/ReLU

...

ConvTrans (250× k(d))
BN/DO/ReLU

ConvTrans (250× 1)

(b) Decoder

FIGURE 4.2: In 4.2(a), the encoder contains stacks of residual blocks. Each
residual block consists of skip connection, dilated causal convolution (abbrev.
DCConv), batch normalization (Ioffe and Szegedy, 2015), spatial dropout
(Tompson et al., 2015) and rectified linear unit activation layers (abbrev.
BN/DO/ReLU). In 4.2(b), the decoder uses transposed convolution layers
(abbrev. ConvTrans) to reproduce the original sequence from latent representa-
tion. k(e) and k(d) are number of filters in convolutional layers of encoder and
decoder, respectively. Each convolutional layer may have a different number
of filters.

encoder (as depicted in Figure 4.2(a)) is organised into residual blocks (each containing dilated

causal convolution, batch normalisation, dropout and ReLU layers) with skip connections

between blocks. As the input are time-series, we use 1-D kernels in both the encoder and

decoder. We use dilation rates of powers of 2 and allow hyperparameter search to choose

between 8, 16 and 32 kernels, and kernel size of 2, 5 and 10, corresponding to daily7, weekly

and fortnightly features, respectively. For each output sequence of the last residual block,

we take the last cell of the sequence as the latent representation of the entire sequence (as

illustrated in Figure 2.9). The decoder uses transposed convolutions (also called deconvolution,

Long et al., 2015) to recreate the original sequence from the latent representation, as illustrated

in Figure 4.2(b). To reduce the hyperparameter search space, both encoder and decoder share

the same number of kernels which is kept constant for all dilated convolution layers. In sum,

7For kernel size of 2, if the kernel learns values of {−1, 1}, then the sum product of this kernel with the
input corresponds to the difference between the two data points.

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 103

STAE differs from conventional autoencoders in using temporal convolutions (as explained in

Section 2.5.2 and Figure 2.9), as opposed to variants of recurrent networks such as Seq2Seq

in (as discussed in Section 2.5.1; Sutskever et al., 2014) and letting reconstruction to serve

only as a secondary task (rather than primary objective).

Next, we define the composite loss used to train STAE. The composite loss is the weighted

sum of the prediction loss and reconstruction loss. As preliminaries, B is the size of each

minibatch and K = 250 is the input sequence length (as defined in Section 4.2.1). Input

X ∈ RB×K is a matrix of B price sequences and y ∈ RB×1 is vector of forward 1-month

stock returns. F (X;θ) is comprised of three sub-networks, encoder F (e)(X;θ(e)), decoder

F (d)(h;θ(d)) and predictor F (p)(h;θ(p)), where h is the latent representation produced by

F (e), as depicted in Figure 4.1. For brevity, we use θ = {θ(e),θ(d),θ(p)} to denote weights

and bias of all three sub-networks as a whole and θ{(e),(d),(p)} to denote weights and biases of

encoder, decoder and predictor, respectively. We train network F (X;θ(e),θ(d),θ(p)) at each

t using 10 years of daily prices preceding t. Further details on construction of the training set

is provided in Section 4.3.1. The network is trained with composite loss:

L(X,y;θ(e),θ(d),θ(p)) = ℓ(p)(X,y;θ(e),θ(p)) + ωℓ(r)(X;θ(e),θ(d)),

where ℓ(p) is prediction loss (primary learning objective), ℓ(r) is reconstruction loss (auxiliary

learning objective), ω ∈ [0, 1] is the weight on ℓ(r), and θ(p),θ(e),θ(d) are weights for

predictor-, encoder- and decoder-part of the network, respectively. For brevity, we denote

composite loss, prediction loss and reconstruction loss as simply L, ℓ(p) and ℓ(r). We use

quadratic loss for both prediction and reconstruction losses:

ℓ(p) =
1

B

B∑
i=1

[
yi − F (p)(F (e)(xi;θ

(e));θ(p)))
]2

ℓ(r) =
1

B

1

K

B∑
i=1

K∑
j=1

[xi,j − x̂i,j]
2 ,

where xi is the i-th row of matrix X , xi,j is the j-th entry in the sequence xi, and,

x̂i,j = F (d)(F (e)(xi;θ
(e));θ(d)).

104 4 SUPERVISED AUTOENCODER

Thus, θ(e) is influenced by both the prediction loss and reconstruction loss. With the loss

function defined, the network is trained using SGD and early stopping (as discussed in

Section 2.2). We use ℓ(p) as the early stopping criterion rather than the composite loss as we

are concerned with the best prediction performance. As the primary and auxiliary tasks have

different convergence rates, using the composite loss as early stopping criterion may cause

our predictor to under or overfit. We choose optimal ω as part of the hyperparameter search

and expect ω to have similar behaviour to other regularisation techniques. A low ω will lead

to under-regularisation and STAE will converge to TCN. A high ω will force the network to

place too much focus on reproducing the input sequence and thus the prediction performance

will deteriorate.

There are two distinct advantages of STAE in this context. Firstly, STAE can improve

generalisation without resorting to function-form constraints in N-BEATS (as discussed in

Section 4.1, function-form constraints are introduced into N-BEATS via user-defined basis

functions). Secondly, by inspecting the reconstructed input from the decoder, the user can

make sense of the features retained by the network and thus provide interpretability.

4.3.1 Data and experimental setup

Our empirical results are based on U.S. stock prices from CRSP. We construct TRI for each

stock, adjusted by stock splits/consolidations and inclusive of dividends. We create a proxy of

the Russell 3000 index by taking the 3,000 largest stocks in the U.S. at the end of every June.

The same set of stocks are tracked for twelve months until the next rebalance (unless they are

delisted). This broad universe ensures that there is sufficient breadth for the network to learn

from but also excludes stocks with very low capitalisation that are unlikely to be investable

by institutional investors. To the best of our knowledge, this universe is also broader than

existing literature on time-series stock return prediction. Our dataset spans from 1984 to

2020. We use the initial 10 years, split into 7 years of training and 3 years of validation, for

hyperparameter tuning. Then, for every January, we train a new network using 10 years of

prices for stocks within the index in every month. The 10-year rolling window provides the

network with sufficient data for training and ensures timeliness of the training set (in contrast

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 105

to an expanding window approach). The same network is used for prediction throughout the

year. This provides us with 26 years of out-of-sample predictions for evaluation. Note that

the results presented in this chapter differs to the published paper Wong et al. (2021) as the

dataset is extended from 2018 to 2020, the models are re-trained with the addition of LSTM

and transformers for comparison.

250 trading days
20 days

250 trading days

...
250 trading days

20 days

10 years

FIGURE 4.3: Training data is created by taking blocks of 250 + 20 days of TRI.

Next, we will first describe pre-processing procedures for sequences X , then expected return

y. Recall that in Section 4.3, we have defined sequence length K = 250 and y is forward

20-day return. In the 10-year rolling window, there are ⌊(252 × 10 − 270)/20⌋ = 112

cross-sections8. Let T = {t− 20× (i− 1)|i = 1, . . . , 112}, t ∈ T be period counter and,

x∗
t−20,i = {log ut−K−19,i, log ut−K−18,i, . . . , log ut−20,i}, (4.1)

be a K-length price sequence for stock i. Log-transformation is performed in Equation (4.1)

to stabilise variance (a common procedure for compounding economic time-series, Box and

Jenkins, 1976; Lütkepohl and Xu, 2012). The median value of each sequence is then removed

to centre the sequence9,

µ
(med)
t−20,i = med(x∗

t−20,i)

x′
t−20,i = x∗

t−20,i − µ
(med)
t−20,i,

8Assuming an average of 252 trading days per year.
9Otherwise, stocks with high TRI values will denominate the training dataset once the training set is

standardised.

106 4 SUPERVISED AUTOENCODER

where med is the median function. Values of all sequences X ′
t = {xt−20,i|(i ∈ N : i ≤

N) ∧ (t ∈ T)} are standardised10,

Xt =
X ′

t − X̄ ′
t

σ(X ′
t)

,

where X̄ ′
t and σ(X ′

t) are mean and standard deviation computed over all values of X ′
t,

respectively. Standardised sequences Xt are then used as input into the network. Expected

return is the forward 20-day return and cross-sectionally standardised,

y′t,i = log ut − log ut−20

y′
t = {y′t,i}Ni=1

yt =
y′
t − ȳ′

t

σ(y′
t)
.

The training dataset is the pooled dataset, comprising of Dt = {(xt−20,i, yt,i)|i = 1, . . . , N ∧

t ∈ T} standardised input-output pairs. This description is illustrated in Figure 4.3. Xt is

standardised as a whole (i.e., elementwise) to preserve relative volatility of sequences11. For

yt, the mean return of the cross-section represents the market return which may be difficult to

forecast. yt is standardised cross-sectionally to remove the market return12. This treatment of

yt is consistent with prior works (e.g., Fischer and Krauss, 2018). In effect, the neural network

learns to predict a score drawn from N(0, 1). Predictions of the network ŷt are transformed

10Note that before standardisation, values are first winsorised at 1% to remove outliers. This is applied to
both X ′

t and y′
t.

11Consider two sequences, one where daily returns have standard deviation of 10% and another has standard
deviation of 1%. Standardising X ′

t as a whole preserves both the shape of the sequence (e.g., upward or
downward trending) and relative volatility, while standardising each sequence individually does not preserve
relative volatility and standardising by date does not preserve shape of the sequence.

12In our portfolio selection problem, we are only concerned with relative performance between stocks. Thus,
it is safe to remove the market return (i.e., the cross-sectional mean). In Section 3.5.4, we have shown that this
formulation improves the neural network’s ability to predict stock returns.

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 107

back into the original distribution (in units of return) by,

µ
(D)
t =

1

|T |
∑
t∈T

ȳ′
t

σ
(D)
t =

1

|T |
∑
t∈T

σ(y′
t)

ŷ′
t = ŷtσ

(D)
t + µ

(D)
t .

As noted in Section 4.2.2, we compare STAE to MOM1213, TCN, LSTM, transformers and

N-BEATS. TCN and STAE use mostly identical hyperparameter ranges. For N-BEATS,

we use trend and generic models, and search over a range of polynomial dimensions. For

LSTM, we search over the number of LSTM layers, followed by a fully-connected layer.

For transformers, we search over the complexity of the multi-head attention block, followed

by a fully-connected layer. Appendix A4 outlines the full sets of hyperparameters of each

model. We train 10 networks for each model and compare the average performance. To gauge

performance, we compare average cross-sectional MSE (Equation (2.4)), IC (Equation (3.2)),

mean decile return (Equation (3.4)) and Sharpe ratio (Equation (3.3)).

4.3.2 Main empirical results

We start by discussing what the STAE “sees”. Figure 4.4 records the input to the models

(standardised log TRI of Facebook Inc.) and the reconstructed sequences at various recon-

struction loss weights. Note that auxiliary loss weight ω = 1 means both prediction and

reconstruction have equal weight and will thus be influenced by what the predictor sees as

important. There is a bias towards zero at the beginning of the sequence. This is due to causal

padding which appends zeros to the start of the sequence. Thus, with a kernel size of 5, the

first convolution involves 4 zeros and the first value of the sequence. Across the various ω,

the reconstructed sequence tracks the overall shape of the true sequence reasonably well, with

the exception of the local minima during 2018. Based on Figure 4.4, we interpret that STAE

sees a general upward sloping trend.

13MOM12 is return over 11 months. We convert it into a monthly forecast by dividing by 11.

108 4 SUPERVISED AUTOENCODER

FIGURE 4.4: Standardised log TRI of Facebook Inc. and reconstructed time-
series at various ω.

TABLE 4.1: Main results: Mean forecasting performance (of 10 networks
scored individually) and performance of the ensemble (abbrev. Ens.) over
the out-of-sample period (1994–2020). Decile return is mean difference in
monthly returns of top and bottom deciles based on ensemble forecasts. Sharpe
ratio is calculated as annualised decile returns divided by annualised standard
deviation of decile returns. Best values in bold.

Metric MOM12 N-BEATS LSTM Transformer TCN STAE

Mean IC (%) 1.77 1.76 2.11 2.25 1.74 2.76
Std Dev of IC (%) 0.32 0.41 0.28 0.91 0.25
Mean MSE 0.0205 0.0176 0.0176 0.0176 0.0175 0.0176
Ens. IC (%) 1.77 2.20 3.20 2.61 2.92 3.36
Ens. MSE 0.0205 0.0176 0.0175 0.0176 0.0175 0.0176
Decile Return (%) 0.67 0.57 1.11 0.57 0.92 1.05
Sharpe Ratio 0.25 0.25 0.58 0.22 0.40 0.45

Next, we turn to forecast accuracy. IC (introduced in Section 3.2.1) is our primary performance

measure and is a widely used performance metric in investment management (Grinold and

Kahn, 1999; Fabozzi et al., 2011b). We present two types of IC to illustrate the effects of

ensembling. First, mean IC, given as the average IC of the 10 networks in the ensemble

(computed for each network individually, then average is taken). Second, ensemble IC

(denoted Ens. IC), given as the IC of the ensemble forecasts of the 10 networks (forecasts of

the 10 networks are first averaged to produce the ensemble forecasts, then IC is computed).

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 109

The IC measure in Chapter 3 corresponds to ensemble IC. Similarly, we also report mean and

ensemble MSE for the average of the 10 networks and the ensemble, respective. Consistent

with Chapter 3, we also report decile return spread (Equation (3.4)) of the ensemble forecasts

and Sharpe ratio of the decile return spread (Equation (3.3)). Table 4.1 records out-of-sample

performance over 1994 to 2020. Overall, STAE achieved the highest IC for both the ensemble

forecast (3.36%) and each individual network (on average, at 2.76%). LSTM is ranked second

on IC, at 3.20% for the ensemble and 2.11% for the average over 10 networks. Transformer

scored second on mean IC at 2.25% (over 10 networks) but IC of the ensemble is only ranked

fourth, at 2.61%. Mean monthly decile return for LSTM is 1.11%, marginally higher than

STAE at 1.05%. Sharpe ratio is also marginally higher at 0.58, compared to STAE at 0.45. For

practitioners, IC, decile returns and Sharpe ratio are important performance metrics (Sharpe

ratio and decile returns are related as Sharpe ratios are derived from decile returns, and are

used by Gu et al., 2020). However, decile returns focus on top and bottom 10% of forecasts

without accounting for the middle 80% of the distribution of forecasts. There are investment

strategies that rely on less extreme return forecasts. In general, IC provides a more complete

pictures of prediction performance by incorporating all forecasts. The higher IC of STAE

reflects better ranking of stocks across the whole distribution, despite having similar decile

returns. Both STAE and LSTM are economically meaningfully better than MOM12, with

IC of 1.77%, mean decile return of 0.67% and Sharpe ratio 0.25. Comparing STAE to TCN,

STAE is better on IC, mean decile return and Sharpe ratio. All 5 machine learning models

achieve similar MSE of 0.0175–0.0176. Both TCN and LSTM appear to benefit more from

ensembling, with IC of the ensemble forecast being 50% to 60% higher than the average IC

of the individual models. This is compared to an increase of only 22% for STAE and 16%

for transformer. In the case of STAE, we speculate that by regularising the network using an

autoencoder, the networks are slightly more correlated to each other and thus reducing the

benefits of ensembling. This is explored in more details in Section 4.3.4. Finally, N-BEATS

has not performed well in our test. Due to the complexity of hyperparameter combinations, it

is possible that the optimal hyperparameters lie outside of the search range.

Figure 4.5 records cumulative decile returns of MOM12, STAE, TCN, LSTM, transformer

and N-BEATS. Cumulative returns of STAE, TCN and LSTM are significantly higher than

110 4 SUPERVISED AUTOENCODER

1996
2000

2004
2008

2012
2016

2020

0

1

2

3

4
MOM12
STAE
TCN
N-BEATS
LSTM
Transformer

FIGURE 4.5: Cumulative decile returns based on ensemble forecasts of each
model. Decile returns are calculated as mean top decile returns less mean
bottom decile returns.

MOM12, transformer and N-BEATS. All 6 strategies experienced a “crash” in March 2009,

as the U.S. market rebound from the depth of the global financial crisis. This is to be expected,

as the input into the models are stocks’ own price history and does not include information

about the prevailing economic environment. A similar but smaller crash is noted at the end of

the Dot-com bubble in 2003. One notable feature is the lower forecast efficacy of all models

after the Dot-com bubble14 We hypothesise that market efficacy has improved following the

wide spread adoption of computers since the early 2000s. This constitutes concept drift and is

discussed in Section 1.5.

TABLE 4.2: Validation results: Mean forecasting performance (of 10 net-
works) over the validation period (1991–1993). MSE is based for standardised
returns and are not comparable to Table 4.1. Best values in bold.

Metric MOM12 N-BEATS LSTM Transformer TCN STAE

Mean IC (%) 5.45 7.07 6.38 7.15 6.99 8.50
Mean MSE 0.9953 0.9963 0.9951 0.9955 0.9929

Next, we examine forecasting performance on the validation set, recorded in Table 4.2. STAE

leads other models on mean IC (over 10 networks) by a large margin, scoring 8.50%. TCN,
14Cumulative returns in Figure 4.5 show relatively steeper inclines until 2003, then a more benign profile

after 2003.

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 111

LSTM, transformer, N-BEATS and MOM12 scored 6.99%, 6.38%, 7.15%, 6.99% and

5.45%, respectively. MSE is also the lowest for STAE compared to other models. Note

that MSE here is computed using cross-sectionally standardised monthly returns (as used in

network training and validation), not raw returns in Table 4.1. Comparing IC of MOM12 in

the validation set to the out-of-sample set, IC fell from 5.45% to 1.77%. Similarly for STAE,

mean IC fell from 8.50% to 2.76%. This indicates a general decline in return predictability

and is consistent with our observations in Figure 4.5.

4.3.3 Explaining the predictions of STAE

In this section, we examine the predictions of STAE in relations to two well-known anomalies

in finance literature — the momentum and reversal effects.

Jegadeesh and Titman (1993) found two patterns in U.S. stock prices — a medium term

trending effect (termed momentum, as discussed in Section 4.1), and a short term reversal

effect (MOM1) where stocks that rose (fell) the most over the current month tend to reverse in

the subsequent month. If the only pattern that exists in prices is momentum, then we expect

predictions produced by the neural network to be highly correlated with MOM12. Conversely,

if the only pattern that exists in stock prices is reversal (i.e., stock prices are oscillating within

a range), then neural network predictions will be correlated with MOM1. We conjecture that

the two patterns can be conceptualised as alternating periods of trending and reversal patterns,

as illustrated in Figure 4.6.

Price

Time

FIGURE 4.6: A hypothetical illustration of momentum and reversal patterns in stocks.

112 4 SUPERVISED AUTOENCODER

1996
2000

2004
2008

2012
2016

2020

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Co

rre
la

tio
n

MOM12
MOM1

FIGURE 4.7: Cross-sectional correlations of the ensemble prediction of STAE
to MOM12 and MOM1.

1996
2000

2004
2008

2012
2016

2020

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
2

FIGURE 4.8: R2 of the cross-sectional regression: ŷ
(STAE)
i = β0 +

β1MOM12i + β2MOM1i. Mean R2 is 28%.

Momentum and reversal patterns are simple 12-month and 1-month change in price, respect-

ively. We argue that if a neural network were to learn complex, non-linear patterns from stock

prices directly, the resultant predictions will be correlated with both MOM12 and MOM1.

Moreover, when regressing ensemble predictions of STAE (ŷ(STAE)
i) on MOM12 and MOM1

scores,

ŷ
(STAE)
i = β0 + β1MOM12i + β2MOM1i,

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 113

we would expect theR2 to be relatively low. Figure 4.7 records the cross-sectional correlations

of ensemble predictions of STAE to MOM12 and MOM1. Mean correlations to MOM12

and MOM1 are 0.46 and 0.07, respectively. This suggests that STAE’s predictions tend to

be driven by trends, as shown by the relatively higher correlation to MOM12 than MOM1.

Correlations to both momentum and reversal patterns are highly variable over time. Maximum

(minimum) correlations to MOM12 and MOM1 are 0.81 (-0.28) and 0.66 (-0.61), respectively.

We note that correlation to MOM12 tends to be lower after a market downturn, namely the end

of 2003 (right after the Dot-com bubble) and 2011-12 (after global financial crisis). However,

we do not observe a fall in correlation in 2020 during the pandemic. This may be because the

10-year rolling window is chronologically split into 7 years of training data and 3 years of

validation data (used for early stopping). Patterns observed during a crisis are only visible to

the network 3 years after they occurred. This underlies the reason we are yet to observe a

divergence in correlation to MOM12 in 2020. Figure 4.8 records R2 of regressing ensemble

predictions of STAE on MOM12 and MOM1. Mean R2 is relatively low, at 28%, indicating

that STAE is extracting non-trivial patterns from stock prices that cannot be explained by

simple trend and reversal patterns.

4.3.4 Further analysis of the reconstruction task

In this section, we provide further analysis on the regularisation effects of the reconstruction

task.

The benefit of ensembling can be illustrated by analysing the expected loss of the ensemble

predictor (Goodfellow et al., 2016),

E

(1

U

U∑
i=1

ϵi

)2
 =

1

U2
E

[
U∑
i=1

(
ϵ2i +

∑
j ̸=i

ϵiϵj

)]

=
v

U
+
U − 1

U
c. (4.2)

where U is number of predictors in the ensemble, ϵi ∼ N(0, v) is the error incurred by

model i, which is assumed to be drawn from a N(0, v) distribution, and c is the expected

114 4 SUPERVISED AUTOENCODER

N-
BE

AT
S

LS
TM

Tr
an

sf
or

m
er

TC
N

ST
AE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Cr

os
s-

co
rre

la
tio

n

48%
41%

68%

29%

64%
Cross-correlation

FIGURE 4.9: Mean cross-correlation of every network to every other network
in the ensemble (of 10) for each model used in Section 4.3.2.

covariance between any two models of the ensemble. Equation (4.2) shows that expected

loss of the ensemble predictor is lower bound by the variance of individual models scaled

by size of the ensemble. That is, if each model of the ensemble is independent of all other

models, then expected loss of the ensemble predictor decreases logarithmically by size of the

ensemble. This “diversification” benefit is offsetted by positive correlations between models

in the ensemble. The higher the correlation between models of the ensemble, the higher the

expected loss of the ensemble. Due to random weight initialisation and non-convexity, every

neural network will be different, even though they are trained on the training set. In Table 4.1,

we observe that ensembling has a greater positive impact on TCN and LSTM than STAE and

transformer. This is due to higher cross-correlation between networks within each ensemble

for STAE and transformer, as shown in Figure 4.9. The mean cross-correlations for STAE and

transformer are 0.64 and 0.68, respectively. These are significantly higher than LSTM and

TCN, at 0.41 and 0.29. In the case of STAE, we hypothesise that the auxiliary learning task is

imposing a non-parametric structure on the representation of the sequence. Thus, predictions

by different networks are more correlated.

Next, we investigate whether higher weight assigned to the auxiliary task increases correlation

and its impact on forecast accuracy. In this experiment, we fix the encoder kernel size to 2 with

4.3 PROPOSED STAE AND APPLICATION TO STOCK RETURN FORECASTING 115

TCN = 0.10 = 0.20 = 0.30 = 0.40 = 0.50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IC

Validation: Distribution of IC

TCN = 0.1 = 0.2 = 0.3 = 0.4 = 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IC

Out-of-sample: Distribution of IC

TCN = 0.1 = 0.2 = 0.3 = 0.4 = 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IC

0.065

0.074
0.079 0.078 0.075

0.082
Validation: IC of ensemble

TCN = 0.1 = 0.2 = 0.3 = 0.4 = 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

IC

0.032 0.033 0.031 0.031 0.034 0.032

Out-of-sample: IC of ensemble

TCN = 0.1 = 0.2 = 0.3 = 0.4 = 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Cr
os

s-
co

rre
la

tio
n

0.41

0.79 0.79 0.76 0.75
0.81

Validation: Mean cross-correlation over 10 networks

TCN w=0.1 w=0.2 w=0.3 w=0.4 w=0.5
0.0

0.2

0.4

0.6

0.8

1.0

Cr
os

s-
co

rre
la

tio
n

0.32

0.66 0.65 0.67 0.65 0.65

Out-of-sample: Mean cross-correlation over 10 networks

FIGURE 4.10: Top row: Distribution of IC for each network of the ensemble
for TCN and STAE at different auxiliary loss weights (ω). Middle row: IC
of the ensemble predictor for TCN and STAE. Bottom row: Mean cross-
correlation between the predictions of each network of the ensemble.

16 filters, and only vary auxiliary loss weight ω ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We compare STAE

at various ω against TCN (i.e., ω = 0) on IC of each network (in an ensemble of 10), IC of the

ensemble predictor (i.e., mean prediction of the 10 networks), and average cross-correlation

of each network to every other network in the ensemble. This experiment is performed on the

validation set and in the out-of-sample set. Figure 4.10 records results of the experiment. In

116 4 SUPERVISED AUTOENCODER

the top row, we observe that even a small weight to the auxiliary task (at 0.1) is beneficial

to IC. All values of ω achieved better median IC (over ensemble of 10) than TCN but the

trend between IC and ω is not monotonic. The range of IC varies widely for TCN in both

the validation set and the out-of-sample set. As all networks use the same hyperparameters,

this indicates that TCN is prone to being stuck in unfavourable local minimas. In the middle

row, we observe that all values of ω achieved better mean IC for the ensemble prediction

than TCN in the validation set. All models achieved similar IC in the out-of-sample set. As

discussed in Section 4.3.2, we conjecture that increasing market efficiency has placed an

upper bound on the information content of a stock’s own price history. Finally, in the bottom

row, we observe that STAE has materially higher cross-correlation between networks in the

ensemble than TCN, even at low ω. Cross-correlation does not appear to escalate with ω.

Based on these observations, we conclude that the auxiliary task is beneficial to the prediction

task, even at a low weight. Finance literature has documented evidence of declining stock

return predictability (e.g., Brogaard and Zareei, 2022) — an empirical finding we have also

confirmed in Chapter 3 and this chapter. Main stream finance theory (the efficient market

hypothesis, as discussed in Section 1.3) relates stock return predictability to the market’s

information processing efficiency. Hypothesising that market efficiency is improving over

time, information content of price history is higher in the validation set (1991–1993) than

out-of-sample set (1994–2020), a higher ω appears to be more beneficial when information

content is high.

4.4 Conclusion

In this chapter, we propose to use an autoencoder to regularise a TCN for time-series stock

return forecasting. We argue that this is beneficial to the supervised learning task as the

convolutional filters are constrained to learn features that are useful for reconstruction of the

original input and for prediction. Thus, representation sharing will reduce the likelihood of

the filters learning spurious features and improve generalisation in noisy environments such

as financial markets. We propose STAE, by augmenting TCN with a convolutional decoder

for the auxiliary task and show that STAE provides better forecasting performance than TCN

4.4 CONCLUSION 117

in predicting U.S. stock returns using a time-series of TRI. The reconstructed input by the

decoder also assists the user in interpreting the features learnt by the network. We show that

neural networks can learn features from (transformed) price series directly, eliminating the

need for handcrafted features.

There are two potential extensions to this work. On the topic of improving financial time-

series forecasting, in this work, we have demonstrated that STAE outperforms other neural

network architectures in forecasting stock returns relying solely on a stock’s own price history.

We observe a degradation in predictability over time, which we attribute to improving market

efficiency and declining information content of prices. Future work can investigate providing

the neural network with more information about the stock, such as its size, OHLCV (opening

price, day’s high, day’s low, closing price and traded volume), CAPM beta (as discussed

in Section 1.3) and measures of business performance15. In particular, we observe a sharp

fall in decile returns when the market turns (e.g., in March 2009 and April 2020). This is

an example of exogenous shock. Informing the neural network with the prevailing market

condition may potentially improve its ability to anticipate turning points. To combat concept

drift, observations can be time-weighted, or models can be trained in an online manner (such

as using the OES algorithm as introduced in Chapter 3). For clarity, in this chapter, we have

focused solely on the time-series forecasting in noisy environment problem. We hypothesise

that regularising a neural network using an autoencoder has general applicability in other

noisy learning environments, outside of financial time-series forecasting. In Section 6.2, we

discuss ways of combining the STAE introduced in this chapter with the OES algorithm to

train neural networks that can adapt to time-varying DGP and remain robust to noise.

On the topic of improving neural network forecasting in general noisy environments, we

have demonstrated that the addition of an auxiliary reconstruction task helped regularise

a neural network. We observe that the auxiliary task increased cross-correlation between

networks in the ensemble, which decreased the effectiveness of ensembling. Potential ways

to decrease cross-correlation are to use bagging (Hastie et al., 2020), where both features and

time periods are randomly dropped to increase diversity within the ensemble, or different look
15Similar to the inputs used in Chapter 3, such as accounting measures of profitability and firm valuation.

However, differing to Chapter 3, we can provide a time-series of these metrics instead of just the cross-section.

118 4 SUPERVISED AUTOENCODER

back windows. The auxiliary task enforces a non-parametric functional form on the latent

representation of the sequence, similar to imposing a linear trend shape constraint in linear

models. A potential improvement is to combine STAE with attention (Vaswani et al., 2017),

where the auxiliary task provides the non-parametric overall trend and attention is applied on

deviations from the trend. This decomposition combines a “noise-robust” component with an

attention-component that focuses on small intricacies. We also hypothesise that the auxiliary

task would also benefit LSTM and transformers. Thus, a positive finding in using a supervised

LSTM autoencoder would add to the body of evidence that an auxiliary reconstructon task is

beneficial to learning in financial markets.

So far in this thesis, we have examined both cross-sectional and time-series forecasting of

stock returns using neural networks. In both applications, outputs of the neural network are

point estimates conditional on the input. However, if we were to “bet” on the predictions of

a neural network, we need to ask — how confident are we in the predictions? In Chapter 5,

we will examine methods of incorporating elements of statistical models to provide both the

conditional mean and conditional variance of the predictions.

CHAPTER 5

Quantifying neural network uncertainty under volatility clustering

Time-series with time-varying variance pose a unique challenge to uncertainty quantification

methods. Time-varying variance, such as volatility clustering as seen in financial time-

series, can lead to large mismatch between predicted uncertainty and forecast error. Building

on recent advances in neural network uncertainty quantification literature, we extend and

simplify Deep Evidential Regression and Deep Ensembles into a unified framework to deal

with uncertainty quantification under the presence of volatility clustering. We show that

a Scale Mixture Distribution is a simpler alternative to the Normal-Inverse-Gamma prior

that provides favorable complexity-accuracy trade-off. To illustrate the performance of our

proposed approach, we apply it to two sets of financial time-series exhibiting volatility

clustering: cryptocurrencies and U.S. equities.

5.1 Introduction

Asset returns are known to exhibit irregular bursts of high volatility that cluster in time (termed

volatility clustering; Cont, 2001). This poses a challenge to practitioners during portfolio

construction which involves the trade-off of return and risk. To motivate the discussion,

consider the following simple thought experiment. Suppose an investor has a model that

can perfectly forecast next day’s asset returns and that the investor’s goal is to maximise

terminal wealth. Then, on each day, the most rational decision would be to place all of

the investor’s wealth into the asset with the highest expected return on the next day. Next,

suppose that the investor’s model is a noisy estimator of future asset returns. Then, the

investor may choose to diversify across multiple assets. This intuition serves as the basis

119

120 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

of mean-variance portfolio optimisation (Equation (1.8)) discussed in Section 1.4 and has

led to the development of various models for optimal bet allocation that depend on some

measures of risk, such as Kelly criterion (where optimal bet size is proportional to expected

return divided by variance of expected return1 which can be replaced by forecast uncertainty;

Kelly, 1956; Byrnes and Barnett, 2018) and Bayesian-based portfolio optimisation (Black

and Litterman, 1991). Forecast uncertainty can also serve as advanced warning to protect the

portfolio from increasing risk. For example, if forecast uncertainty reaches a certain threshold,

an investor could purchase portfolio insurance (e.g., put options which allow the investor to

sell stocks to the issuer of the options at a pre-agreed price) or liquidate positions to reduce

risk.

Forecast uncertainty has an important role in many applications. Such quantity is easy to

obtain for statistical models such as linear regression. However, classical neural networks

for regression problems are typically trained using MSE and provide point estimates for the

mean prediction conditional on the input without regards for the conditional variance (see

Goodfellow et al., 2016). As a modeller (in our case, an investor), one is concerned with

predictive uncertainty (Gawlikowski et al., 2021). This is the total uncertainty around a point

estimate. Predictive uncertainty can be decomposed into (Gruber et al., 2023): aleatoric

uncertainty, and epistemic uncertainty. Aleatoric uncertainty originates from the stochastic

relationship between input variable X taking value x and output variable Y (Gruber et al.,

2023). As long as the conditional distribution of Y |x is not degenerate (i.e., Y cannot be

perfectly predicted), there will always be aleatoric uncertainty. Aleatoric uncertainty does

not typically depend on sample size. By contrast, epistemic uncertainty is attributable to

the model and typically scales inversely with sample size (Meinert et al., 2022). Epistemic

uncertainty can be further decomposed into model uncertainty, which relates to the correct

specification of the model, and parametric uncertainty, which relates to the correct estimation

of model parameters (Sullivan, 2015; Gruber et al., 2023). Epistemic uncertainty refers to

the part of predictive uncertainty that is reducible through additional information (e.g., more

observations and additional variables). In practice, a clear separation between aleatoric and

1Note that this differs to Sharpe ratio, which is return divided by standard deviation of return. Kelly criterion
is scaled by variance.

5.1 INTRODUCTION 121

epistemic uncertainties is often impossible. To illustrate, consider the (fair) dice rolling

experiment, commonly considered to be a process of pure randomness. However, if the initial

position and each rotation of the dice can be measured, then it is possible to predict the

outcome of each dice roll (Hora, 1996; Gruber et al., 2023). Thus, what is truly aleatoric

(i.e., unpredictability of dice roll) and what is epistemic (i.e., initial position and rotation of

the dice are merely missing variables) may be difficult to disentangle from a philosophical

perspective.

Traditionally, neural network uncertainty quantification requires the use of Bayesian methods

or evaluation of the model in unseen data (Meinert et al., 2022). A Bayesian neural network

(BNN) is a full probabilistic interpretation of neural network, by placing priors on network

weights and inducing a distribution over a parametric set of functions (MacKay, 1992; Neal,

1996; Gal, 2016). Modern BNNs can be trained using MCMC (e.g., the Metropolis-Hastings

algorithm; Hastings, 1970) and Variational Inference techniques (Jospin et al., 2022). Jospin

et al. (2022) notes four advantages of using BNNs over classical neural networks, with

two being relevant to uncertainty quantification. First, Bayesian methods provide a natural

approach to uncertainty quantification and are better calibrated than classical neural networks

(Mitros and Namee, 2019; Kristiadi et al., 2020; Ovadia et al., 2019; Jospin et al., 2022).

Second, BNN allows distinguishing between epistemic uncertainty and aleatoric uncertainty.

However, despite their advantages, MCMC-based methods are computationally expensive

(Quiroz et al., 2019). Thus, limiting the applicability of BNNs.

Recent advances (see Gawlikowski et al., 2021 for a recent survey) have focused on predicting

the conditional distribution that is most likely to have generated the data and thus bridging

the gap between BNNs and classical neural networks. In particular, using a neural network to

generate parameters of a conditional distribution that is assumed to have generated the data

(Lakshminarayanan et al., 2017; Amini et al., 2020) offers an attractive trade-off between

adequately quantifying uncertainty and avoiding the computational cost of a full Bayesian

treatment. In Lakshminarayanan et al. (2017) (the Ensemble method, also know as Deep

Ensembles), regression target y is assumed to be drawn from y ∼ N(µ, σ2), where N is the

Normal distribution, µ is the expectation of y and σ2 models aleatoric uncertainty. In this

122 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

setup, σ2 is incapable of quantifying epistemic uncertainty. Lakshminarayanan et al. (2017)

addressed this by using an ensemble of neural networks with randomly initialised weights.

Each network settles in a different local minima and produces different µ and σ2 for the

same input. The variance of µ across the ensemble thus provides an estimate of epistemic

uncertainty. Addressing this shortcoming, Amini et al. (2020) (the Evidential method, also

know as Deep Evidential Regression) proposed to place an evidential prior2, the NIG, on µ, σ2.

In this construct, prediction µ is assumed to be drawn from the priors: µ ∼ N(γ, σ2ν−1) and

σ2 ∼ InvGam(α, β), where σ2 remains as an estimate of aleatoric uncertainty, InvGam (or

IG) is the Inverse-Gamma distribution and σ2ν−1 (with σ2 ∼ InvGam(α, β)) is estimated

epistemic uncertainty. Epistemic uncertainty is linked to aleatoric uncertainty via ν, which

is learnt from the data. The marginal distribution of a Normal likelihood with NIG prior

is the Student’s t-distribution. This mimics a Bayesian setup and circumvents the costly

computational burden of MCMC methods by analytically integrating out unobserved variables.

Ensemble and Evidential require only minimal modifications to a conventional neural network

architecture — requiring only the NLL function of the marginal distribution as loss function

and a new output layer. Evidential has been applied to navigation (Liu et al., 2021; Cai et al.,

2021; Singh et al., 2022) and medical fields (Soleimany et al., 2021; Li and Liu, 2022), and has

been extended into the multi-task learning domain (Oh and Shin, 2022). Multivariate models

related to Evidential include the Natural Posterior Network which also uses a conjugate

prior (NIG for regression problems and Dirichlet for categorical classification problems;

Charpentier et al., 2021), and Regression Prior Networks which uses a Normal-Wishart prior

(Malinin et al., 2020).

However, more recent works have highlighted weaknesses of the Evidential method. Scoring

rules are a class of loss functions that measure the discrepancy between a predicted distribution

and the observed distribution (Gneiting and Raftery, 2007). A scoring rule is proper if the

score is maximised when the discrepancy is minimised, and is strictly proper if the maximum

is unique. Thus, strictly proper scoring rules provide attractive loss functions for scoring

probabilistic forecasts. Evidential can be interpreted as a hierarchical method with a prior
2In contrast to conventional priors in Bayesian inference where the modeller has to specify the parameters

of the prior distribution, the evidential prior (e.g., NIG in Evidential) learns these hyperparameters from the data.
Note that NIG is a conjugate prior to the Normal distribution (Bernardo and Smith, 2000).

5.1 INTRODUCTION 123

distribution that controls the data distribution. Bengs et al. (2023) argues that in order for

hierarchical methods such as Evidential to comply with the requirements of proper scoring

rules, rather than training on observable values of y, the predictor must be trained on the

imaginary distribution around each observation that depicts its uncertainty, which cannot

possibly exist. This requirement stems from the definition of proper scoring, which requires

the learner be scored against the “ground truth”. As α and β relate to the prior distribution in

Evidential, they are not directly observed as data. Thus, hierarchical methods that estimate

both the prior and likelihood parameters lack theoretical guarantees on the robustness of

their estimated distributions. Similarly, Meinert et al. (2022) argued that unlike aleatoric

uncertainty, epistemic uncertainty has no “ground truth” and is difficult to estimate objectively.

To motivate this argument, Meinert et al. (2022) used the example of points lined up perfectly

in a straight line. If one point is perturbed such that the points no longer form a straight line.

Without relying on a-priori assumptions, it is impossible to perform point-wise separation

of aleatoric and epistemic uncertainties (i.e., whether the single deviation is due to noise or

the correctness of the linear model and its estimated slope). The marginal t-distribution of

NIG is overparameterised, which leads to the finding that it is possible to minimise the NLL

irrespective of ν (interpreted as “strength of the data” in Amini et al., 2020). As a further

critique of the network architecture, we note that all four hyperparameters of Evidential are

derived from the same latent representation outputted by the last hidden layer. The four

hyperparameters can have vastly different scales (e.g., in our motivating application, γ is

in scale of 0.01, while ν is in scale of 10). We consider this feature to be a weakness of

these approaches as the latent representation has to provide a sufficiently rich encoding to

linearly derive all hyperparameters of the distribution. Nonetheless, successful applications

of Evidential on real world datasets has led Meinert et al. (2022) to conclude that Evidential

is a heuristic to Bayesian methods and may be appropriate for applications that aim to capture

both aleatoric and epistemic uncertainties but do not demand an accurate distinction between

them, such as our motivating application.

In this work, we are concerned with neural network uncertainty quantification for time-series

that exhibit time-varying variance, such as time-series of asset returns. We combine and

extend Ensemble and Evidential into a framework (the Combined method) for quantifying

124 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

predictive uncertainty of this class of time-series. We propose to formulate the problem

using the SMD, a simpler alternative to the NIG prior, to address some of the shortcomings

highlighted by Meinert et al. (2022) and Bengs et al. (2023). In SMD, a sole Gamma prior

is placed on the scaling factor of variance of the Normal distribution, rather than both the

mean and variance in Evidential. This is motivated by our asset return forecasting application,

where the mean is typically close to zero (in scale of 0.01) and thus uncertainty is negligible,

and volatility is significantly larger (standard deviation in scale of 0.1). This is consistent

with fitting a return series with models such as Generalised Autoregressive Conditional

Heteroskedasticity (GARCH) (Bollerslev, 1986) in which the mean process is typically

assumed zero or first order autoregressive (Carroll and Kearney, 2009). Integrating out the

scaling factor of SMD results in a marginal t-distribution, of which its variance indicates

the predictive uncertainty. Epistemic uncertainty is assumed to be the difference between

variance of the marginal t-distribution and variance of the assumed Normal data distribution.

This simplification trades off granular attribution of aleatoric and epistemic uncertainties

afforded by the NIG prior but allows the reduction of the number of effective parameters by

one and resolves the overparameterisation of NIG, as highlighted by Meinert et al. (2022).

We also propose a novel architecture to model parameters of the marginal distribution using

disjoint subnetworks, rather than a single output layer as in Ensemble and Evidential. We

show through an ablation study in Section 5.4.3 that this is crucial to forecasting predictive

uncertainty that closely tracks forecast error when the time-series exhibit volatility clustering.

As both forecast accuracy and estimation of predictive uncertainty are important to our

motivating application, we incorporate model averaging into our Combined method and show

that it significantly improves forecast accuracy without significantly changing the estimated

predictive uncertainty. This work also provides a template for uncertainty quantification in

time-series that exhibit volatility clustering, such as time-series of asset returns.

To illustrate our contributions, we apply our proposed method to cryptocurrency and U.S.

equities time-series forecasting. Cryptocurrencies are an emerging class of digital assets.

They are highly volatile and frequently exhibit price bubbles (Fry and Cheah, 2016; Hafner,

2018; Chen and Hafner, 2019; Núñez et al., 2019; Petukhina et al., 2021), with large volumes

of high frequency data (e.g., prices in hourly intervals) freely available from major exchanges.

5.2 PRELIMINARIES 125

This makes cryptocurrencies an ideal testbed for uncertainty quantification methodologies

in financial applications. Given the extreme levels of volatility, we view cryptocurrencies

as one of the most challenging datasets for this type of application. A comparison in U.S.

equities is also provided which illustrates performance in conventional financial time-series.

In the rest of this paper, we first describe the setup of our motivating application (asset return

forecasting) in Section 5.2.1 and review of related works in Section 5.2.2. We describe

our proposed framework in Section 5.3. Data description and empirical results of applying

Ensemble, Evidential and Combined on cryptocurrency are presented in Section 5.4.1 and U.S.

equities in Section 5.4.2. An ablation study analysing the benefits of each of our proposed

enhancements is presented in Section 5.4.3. Whilst this paper is focused on uncertainty

quantification in time-series that exhibit volatility clustering, in Appendix A7.1, we also

provide a direct comparison to Evidential and Ensemble using the UCI benchmark datasets

(non-time-series), as previously analysed in Hernández-Lobato and Adams (2015), Gal and

Ghahramani (2016), Lakshminarayanan et al. (2017), and Amini et al. (2020). Finally,

concluding remarks are provided in Section 5.5.

5.2 Preliminaries

5.2.1 Problem setup

The basic setup of the problem in this chapter follows that of Chapter 4. At every period

t ∈ {1, . . . , T}, an investor observes price history up to t and uses the preceding {K ∈ Z |0 <

K < t} period returns to forecast one-step ahead returns. Similar to Chapter 4, we define

an asset’s return at time t as the log difference in price rt = log pt − log pt−1 and, consistent

with empirical findings in finance literature (Pesaran and Timmermann, 1995; Cont, 2001),

we assume that the DGP is time-varying:

rt ∼ N(µt, σ
2
t). (5.1)

126 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

Let ζt = (µt, σ
2
t) be parameters of the assumed DGP, xt−1 = {rt−K , rt−K+1, . . . , rt−1} be

a K-length input sequence3 using returns up to t − 1 and yt−1 = rt be forward one period

return. The training dataset is comprised of Dt = {(xq−1, yq−1)|q ∈ N : q ≤ t} input-output

pairs4 and is essentially a set of sequences formed with a K-length sliding window and their

corresponding regression targets. Our goal is to forecast yt (which corresponds to rt+1). At

each t, the investor’s goal is to solve the optimisation problem5,

θt = argmin
θ∗

−
t−1∑
q=K

log p(yq|F (xq;θ
∗)), (5.2)

where F (x;θ) is a neural network with input x and parameters θ, θ =
⋃L

ℓ=1{W (ℓ), b(ℓ)}

is the set of network weights and biases and, in this context, p(y|F (x;θ)) is the likelihood

of observing y based on the outputs of neural network F (·; ·) and the assumed marginal

distribution. In other words, the investor is concerned with recovering the parameters ζ̂t =

(µ̂t, σ̂
2
t) := F (xt;θt) that are most likely to have generated the observed data. In this

setup, σ̂2
t can be interpreted as an estimate of aleatoric uncertainty and is an estimate of the

contemporaneous variance of the DGP at time t.

There are two parts to this problem. The first part concerns uncertainty quantification

specifically for time-series that exhibit volatility clustering and is the primary focus of this

work. The second part concerns advancing methods of uncertainty quantification across

general applications. In Appendix A7.1, we show that our proposed approach can still benefit

non-time-series problems in spite of it being designed to deal with a series of data points

indexed in time order and exhibiting volatility clustering.

3For illustrative purposes, we have stated that the sequence only contains returns rt. However, as discussed
in Section 5.3.2, we also include squared returns r2t as part of the input sequence.

4Note that at each portfolio selection period t, the training set can at most contain data up to t− 1 as we
have not yet observed rt+1.

5For clarity, the case of a single asset is shown. At each t, there are N assets and the dataset is typically
in a t×N layout. It is easy to see the generalisation of Equation 5.2 over N assets, where the average loss is
calculated over (t−K − 1)×N instances.

5.2 PRELIMINARIES 127

5.2.2 Related work

Recent advances in neural network uncertainty quantification, such as Ensemble and Eviden-

tial, have focused on outputting parameters of the assumed data distribution. As these works

were originally proposed for non-time-series problems, in discussing these works, we have

left out time index t but note that in our motivating application, variables are indexed by t

(e.g., the assumed DGP in Equation (5.1)). The neural networks are trained using procedures

similar to maximum likelihood estimation. In Ensemble (Lakshminarayanan et al., 2017),

regression target y is assumed to be drawn from y ∼ N(µ, σ2), where µ is the forecast of y

and σ2 models aleatoric uncertainty. The output layer of the neural network is modified to

output ζ = (µ, σ2), and the network is trained using the Gaussian NLL. As this formulation

is incapable of quantifying epistemic uncertainty, Lakshminarayanan et al. (2017) used an en-

semble of neural networks with randomly initialised weights to provide an empirical estimate

of epistemic uncertainty. Addressing this, Amini et al. (2020) proposed to place an evidential

prior, the NIG distribution, on the model parameters µ, σ2 of the Normal data distribution:

Data : y ∼ N(µ, σ2)

NIG prior : µ ∼ N(γ, σ2ν−1), σ2 ∼ InvGam(α, β), (5.3)

where µ is assumed to be drawn from a Normal prior distribution with unknown mean γ

and scaled variance σ2ν−1, ν is a scaling factor for σ2, and shape α > 1 and scale β > 0

parameterise the Inverse-Normal (IG) distribution6. We require α > 1 to ensure the mean of

the marginal distribution is finite.

In this construct, parameters of the posterior distribution of y is ζ = (γ, ν, α, β). Epistemic

uncertainty is reflected by the uncertainty in µ, which is assumed be a fraction of σ2 and is

itself assumed to be drawn from an IG distribution. This fraction is controlled by ν, which is

learnt from the data and, in an abstract sense, varies according to the amount of information

in the data. Parameter ν is interpreted as the number of virtual observations for the mean

6Time index t has been omitted for brevity and legibility. Note that variables in this section are indexed by
time for each asset: {yt, rt, µt, σ

2
t , γt, νt, αt, βt}.

128 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

parameter µ. In other words, ν virtual instances of µ are assumed to have been observed in

determining the prior variance of µ (Jordan, 2009; Amini et al., 2020).

For the NIG prior in 5.3, the marginal distribution of µ after integrating out σ2 is a non-

standardised Student’s t-distribution (denoted St; Bernardo and Smith, 2000),

p(µ|γ, ν, α, β) =
∫ ∞

σ2=0

p
N
(µ|γ, σ2ν−1)p

IG
(σ2|α, β) dσ2

= St

(
γ,

β

να
, 2α

)
, (5.4)

using the fact that σ2 ∼ InvGam(α, β) corresponds to σ−2 ∼ Gam(α, β). Hence, assigning

a Gam(α, β) prior to precision σ−2 in (Equation (5.3)) gives the Normal-Gamma (NG) prior

and is equivalent to assigning InvGam(α, β) to σ2 which gives the NIG prior. The variance

of this t-distribution is β
ν(α−1)

. Predictions based on the NIG prior can be computed as (Amini

et al., 2020),

Prediction : E[µ] = γ

Aleatoric uncertainty : E[σ2] = β
α−1

Epistemic uncertainty : Var[µ] = β
ν(α−1)

. (5.5)

The marginal variance Var[µ] refers to the variance of the marginal t-distribution in (Equa-

tion (5.4)) for the NIG prior. We note that ν can also be interpreted as a factor that attributes

uncertainty between aleatoric uncertainty (β
α−1

) and epistemic uncertainty (β
ν(α−1)

). If ν = 1,

then total uncertainty is evenly split between aleatoric and epistemic uncertainties.

Whilst not the focus of Amini et al. (2020), we note that epistemic uncertainty can be

further decomposed approximately into uncertainties attributable to parameters µ and σ2.

Parameter µ|σ2 is normally distributed with Var[µ|σ2] = σ2/ν (from Equation (5.3)), and

E[σ−2] = E[1
σ−2] ≈ 1

E[σ−2]
= α/β (from the Gamma distribution of σ−2). This leads to

Var[µ|σ2] ≈ β
να

,

Model µ uncertainty : Var[µ|σ2] ≈ β
να

Model σ2 uncertainty : Var[µ]− Var[µ|σ2] ≈ β
να(α−1)

, (5.6)

5.2 PRELIMINARIES 129

where the difference between the marginal and conditional variances of µ gives the uncertainty

of σ2.

In this construct, the marginal distribution of y after integrating out µ and σ2 is a non-

standardised Student’s t-distribution (Amini et al., 2020),

p(y|γ, ν, α, β) =
∫ ∞

σ2=0

∫ ∞

µ=−∞
p

N
(y|µ, σ2)p

NIG
(µ, σ2|γ, ν, α, β) dµ dσ2

= St

(
y; γ,

β(1 + ν)

να
, 2α

)
. (5.7)

Variance of this t-distribution is β(1+ν)
ν(α−1)

, which corresponds to the sum of epistemic and

aleatoric uncertainties,

Var[y] =
β

α− 1
+

β

ν(α− 1)
=
β(1 + ν)

ν(α− 1)
. (5.8)

The corresponding NLL of Equation (5.7) is (Amini et al., 2020),

LNIG(y|ζ) = 1
2
log
[
π
ν

]
− α log [2β(1 + ν)]

+ (α + 1
2
) log

[
(y − γ)2ν + 2β(1 + ν)

]
+ log

[
Γ(α)

Γ(α+
1
2
)

]
. (5.9)

Equation (5.9) mimics a Bayesian setup, granting classical neural networks the ability to

estimate both epistemic and aleatoric uncertainty, and offers an intuitive interpretation of the

model mechanics — due to uncertainty in the model parameters, the tails of the marginal

likelihood are heavier than a Normal distribution. This has the effect of regularising the

network and provides an avenue of estimating epistemic uncertainty. As the distribution

of asset returns has heavy tails (Cont, 2001), we argue that the marginal t-distribution also

provides a better fit of the data. The implementation is remarkably simple — Equation (5.9)

replaces MSE as the loss function (for a regression problem) and the final layer of the

network is replaced with a layer that simultaneously outputs four parameters of the marginal

distribution. Clearly, modelling of γ and ν by the neural network is direct as they correspond

to mean and degrees of freedom of the t-distribution. By contrast, scale of the t-distribution in

Equation (5.7) is modelled through a more complex structure (β(1+ν)
να

), which reflects the two

sources of uncertainty in Equation (5.6) with two additional neural network outputs: α and β.

130 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

They are the shape and scale parameters of the prior Gamma distribution for precision σ−2

which describe distinct characteristics of epistemic uncertainty.

As discussed in Section 5.1, aleatoric and epistemic uncertainties are difficult to disentangle.

More recent works have questioned the accuracy of methods, such as Evidential, that directly

estimate epistemic uncertainty through minimising the NLL of an assumed marginal distri-

bution. Bengs et al. (2023) argues that a strictly proper loss function for Evidential involves

scoring against the distribution around each observation, which cannot possibly exist. Thus,

there is no theoretical guarantee that the estimated epistemic uncertainty by Evidential is

reliable. Moreover, Meinert et al. (2022) notes that Equation (5.7) is overparameterised, as

it is possible to minimise Equation (5.9) irrespective of ν, by: ∂
∂ν
LNIG = 0, if βν = 1

1+ν−1

and sending ν → 0. This is because Equation (5.7) is, by definition, a projection of the NIG

distribution, and thus is unable to unfold all of its degrees of freedom unambiguously (Meinert

et al., 2022). Through simulation data, Meinert et al. (2022) showed that over the course

of neural network training, the estimated ν was related to speed of convergence. Thus, the

estimated ν, which controls the ratio of epistemic uncertainty to aleatoric uncertainty, may

not be accurate. We note that this is also evident in Equation (5.7), as ν appears in both the

numerator and denominator of the scale parameter of the t-distribution in the form of 1 + 1
ν
.

Thus, ν relates ambiguously to the the scale parameter of the t-distribution. Motivated by this

observation, we propose a simpler formulation, which we detail in Section 5.3.1.

5.3 Uncertainty quantification under volatility clustering

5.3.1 Modelling forecast uncertainty using a scale mixture distribution

As discussed in Section 5.2.2, Evidential provides the ability to perform granular attribution

of uncertainty to various parts of the model (e.g., Equation (5.5) and (5.6)). However, this

ability comes at the cost of model complexity and the estimated epistemic uncertainty may

not be reliable (as discussed in Section 5.2.2). We sought to propose a simpler formulation

of the problem than Evidential while offering the ability to quantify predictive uncertainty,

5.3 UNCERTAINTY QUANTIFICATION UNDER VOLATILITY CLUSTERING 131

which is the type of forecast uncertainty that we are most concerned about in our motivating

application.

We propose to simplify the model by formulating the problem as a SMD7 (Andrews and

Mallows, 1974),

y ∼ N(γ, σ2ν−1), ν ∼ Gam(α, β), (5.10)

where ν > 0 is the scaling factor, Gam is the Gamma distribution, and α > 1 and β > 0

are the shape and scale parameters of the Gamma distribution, respectively. Our proposed

formulation effectively omits the prior on µ and places a prior on ν, the scaling factor of σ2. We

argue that uncertainty of variance can be modelled through either σ2 or ν. In here, y is assumed

to be drawn from N(γ, σ2ν−1), with mean γ and unknown variance σ2ν−1 where ν is a latent

variable that introduces uncertainty into the variance of the assumed Normal distribution of

y. This allows flexibility to inflate the variance (by minimising ν without inflating σ2) so as

to capture the extremities of the distribution. Relative to Equation (5.7), σ2 replaces ν in the

parameter set when taking the SMD approach as σ2 has a richer interpretation — it directly

indicates the scale of the conditional data distribution. Note that in Equation (5.10), placing a

Gamma prior on ν is equivalent to σ−2 ∼ Gam(α, β) as ν and σ−2 are indistinguishable in

σ2ν−1. However, this is distinct from using a NG prior as there is no Normal prior on µ in

Equation (5.10).

The marginal distribution of a Normal distribution with unknown variance (Equation (5.10))

is a non-standardised t-distribution (derivation is provided in Appendix A6),

p(y|γ, σ2, α, β) =

∫ ∞

ν=0

p
N
(y|γ, σ2ν−1)p

G
(ν|α, β) dν

= St

(
y; γ,

σ2β

α
, 2α

)
. (5.11)

Analogous to Equation (5.7), the shape parameter of this marginal Student’s t-distribution is

2α. Equation (5.11) is similar to Equation (5.4) with y replacing µ, and can be interpreted

7Time index t has been omitted for brevity and legibility. Note that variables in this section are indexed
by time for each asset: {yt, γt, σ2

t , νt, αt, βt}. We use the same notations in Equation (5.10) as Equation (5.3)
where the symbols have the same meaning to improve comparability.

132 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

as the Normal distribution being “stretched out” into a heavier tailed distribution due to the

uncertainty in its variance. Jointly, ζ = (γ, σ2, α, β) are parameters of the SMD distribution

and are outputs of the neural network. This has the effect of regularising the mean estimate

(γ) and, similar to NIG, provides the ability to handle heavy tails of the distribution that

characterise asset returns.

The corresponding NLL of Equation (5.11) (derivation is provided in Appendix A6) is,

LSMD(y|ζ) = log

[
Γ(α)

Γ(α + 1
2
)

]
+ 1

2
log[2πσ2β] + (α + 1

2
) log

[
(y − γ)2

2σ2β
+ 1

]
. (5.12)

Then, LSMD is used in place of the marginal likelihood function in Equation (5.2), in which the

neural network learns to output parameters in ζ. In Equation (5.10), conditional on the scaling

factor ν, the data is normal with variance given by the scale of the marginal t-distribution

(σ
2β
α

). This variance gives the uncertainty of the data. Since the predictive uncertainty given by

the variance of the marginal t-distribution contains both epistemic and aleatoric uncertainties,

the difference between predictive and data uncertainties gives the epistemic uncertainty. This

is illustrated in Equation (5.13) below:

Prediction : E[y] = γ

Aleatoric uncertainty : E[σ
2

ν
] ≈ σ2β

α

Predictive uncertainty : Var[y] = σ2β
α
· 2α
2α−2

= σ2β
α−1

Epistemic uncertainty : Var[y]− E[σ
2

ν
] ≈ σ2β

α−1
− σ2β

α
= σ2β

α(α−1)
. (5.13)

Recall that the result in Equation (5.11) can be interpreted as a Normal distribution being

stretched out into a heavier tailed t-distribution when variance is unknown. Kurtosis of

the t-distribution is controlled by the shape parameter (2α). In analysing Equation (5.11)

and (5.13), we argue that α is analogous to “virtual observations” (ν) in NIG. Epistemic

uncertainty σ2β
α(α−1)

is smaller than aleatoric uncertainty σ2β
α

by a factor of 1
α−1

, when α > 2.

Thus, as α increases, both epistemic uncertainty and scale of the marginal t-distribution

monotonically decrease. Importantly, epistemic uncertainty also drops relative to aleatoric

uncertainty, as the t-distribution converges to the Normal distribution on increasing α. This

5.3 UNCERTAINTY QUANTIFICATION UNDER VOLATILITY CLUSTERING 133

stands in contrast to the model with NIG prior (Equation (5.7)), where increasing evidence ν

does not monotonically lead to a decrease in scale of the t-distribution.

Our proposed SMD formulation addresses some of the concerns of Meinert et al. (2022)

and Bengs et al. (2023). There are essentially three free parameters in Equation (5.11) as

σ2β together should be treated as one. Parameter β is a redundant parameter as it exists

as a product together with σ2 in both the marginal NLL (Equation (5.12)) and in all three

uncertainty measures (Equation (5.13)). Parameters σ2 and β indicate scales of the Normal

and Gamma distributions, respectively. Together, they contribute to the scale of the marginal

t-distribution. The number of parameters can be reduced by either reparameterising σ2β as a

single parameter, or by setting α = β, which we consider as the more intuitive choice. SMD

encapsulates several well-known distributions as special cases. According to Andrews and

Mallows (1974) and Choy and Chan (2008), in the case of α = β, then Equation (5.10) is a

Student’s t-distribution with 2α degrees of freedom, and is Cauchy if α = β = 1. If α ̸= β,

Equation (5.10) gives the Pearson Type VII (PTVII) distribution which can be re-expressed

as a Student’s t-distribution in Equation (5.11). As epistemic uncertainty is estimated by the

heavy tails of the t-distribution, we can, without loss of generality, set α = β and reformulate

Equation (5.11) as,

p(y|γ, σ2, α) = St
(
y; γ, σ2, 2α

)
, (5.14)

and the marginal NLL (Equation (5.12)) as,

LPTVII(y|γ, σ2, α, α) = log

[
Γ(α)

Γ(α + 1
2
)

]
+ 1

2
log[2πσ2α] + (α + 1

2
) log

[
(y − γ)2

2σ2α
+ 1

]
.

(5.15)

Comparing Equation (5.14) to the marginal t-distribution of using a NIG prior (Equation 5.7),

parameters of this model relate directly to parameters of the t-distribution instead of hyper-

parameters of the prior distribution. Hence, mitigating the concerns of Bengs et al. (2023)

on hierarchical models and Meinert et al. (2022) on unresolved degrees of freedom. Thus,

we argue that SMD offers an attractive trade-off between model complexity and granularity,

occupying the middle ground between Ensemble (no prior) and Evidential (prior on both

mean and variance).

134 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

5.3.2 Architecture of the neural network

For the main application of this work, uncertainty quantification of financial time-series

forecasts, we propose a novel architecture for the modelling of distribution parameters, as

illustrated in Figure 5.1. To predict ŷt, time-series inputs of both returns (rt−K+1, . . . , rt) and

log-transformed squared returns (log[r2t−K+1], . . . , log[r
2
t]) are fed into one or more LSTM

layers (Hochreiter and Schmidhuber, 1997). We log-transform squared returns to reduce

skewness. The LSTM layers convert each time-series into a latent representation. The latent

representation is then fed into four subnetworks, where each subnetwork is comprised of one or

more fully connected layers and applies non-linear transformations on the latent representation.

This allows the network to model complex relationships between the parameters in ζ and the

sequence. During training, the four parameters outputted by the network and the observed y

are fed into the loss function (Equation (5.12)) to compute loss value and gradients, which

are backpropagated through the network for weight updates. As noted in Section 5.3.1,

we can set α = β and reduce the number of subnetworks to three. In other words, the

rt−K+1

log[r2t−K+1]
rt−K+2

log[r2t−K+2] · · · rt−1

log[r2t−1]
rt

log[r2t]

LSTM

Fully connected Fully connected Fully connected Fully connected

γ σ2 α β

LSMD(y|γ, σ2, α, β)

FIGURE 5.1: Input sequence (shaded in red) is passed into one or more LSTM
layers. Output from the LSTM layers is then fed into four subnetworks of
one or more fully connected layers with ReLU activation. The final layer of
each subnetwork is a fully-connected layer with linear activation. Softplus is
applied to σ2, α and β to ensure positivity. During training, the four output
values of the neural network together with the observation y are fed into the
loss function (Equation (5.12)) to compute loss and gradients.

5.3 UNCERTAINTY QUANTIFICATION UNDER VOLATILITY CLUSTERING 135

network architecture illustrated in Figure 5.1 can be modified to output three parameters:

ζ = (γ, σ2, α). We have kept β to be comparable to Evidential but provide empirical results in

Appendix A8 using the UCI dataset (the same benchmark dataset used in Lakshminarayanan

et al., 2017 and Amini et al., 2020, and discussed in Appendix A7.1) to show that the two

networks are indeed equivalent. In the following, we explore the proposed design of the

architecture in detail.

Lakshminarayanan et al. (2017) and Amini et al. (2020) introduced the Gaussian and

NormalInverseGamma layers as the final layer of a neural network. These final layers

output parameters of the posterior distribution. Let a ∈ RH(I)

be the input vector of the final

layer with H(I) dimensions and H(O) be the dimension of the output layer. In the case of the

NormalInverseGamma layer, H(O) = 4. The NormalInverseGamma layer outputs,

ζ = O(a;θ) = aT ·W (O) + b(O)

γ = ζ1, ν = ζ2, α = ζ3, β = ζ4, (5.16)

where O denotes the NormalInverseGamma output layer, {ζ1,...,4} are 1st, ..., 4th elements

of vector ζ, W (O) ∈ RH(I)×H(O)

and b(O) ∈ RH(O)

are weights and bias of the output layer,

respectively. Each dimension of ζ corresponds to each of γ, ν, α and β.

Outputs of the NormalInverseGamma layer are linear transformations of a common input

a (Equation (5.16)). We argue that this construct is too restrictive for complex applications,

such as in quantifying uncertainty of financial time-series forecasts, as detailed in Section 5.4.1.

We propose to model each of the four parameters of SMD with its own subnetwork of one or

more fully connected layers. This allows for a more expressive modelling of ζ, where each

parameter may have complex, non-linear relationships with the input.

Additionally, we enforce constraints on σ2 > 0, α > 1 and β > 0 by applying softplus

transformation with a constant term, z′ = log(1 + exp(z)) + c, where z ∈ {σ2, α, β} and

c is the minimum value of the respective parameters. The transformed values constitute

the final output of the network: ζ ′ = {γ, (σ2)′, α′, β′}. In Section 5.4.1, we show that this

modification vastly improves quantification of forecast uncertainty of financial time-series.

136 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

For other network architectures, we argue that the same approach can be applied. In the case

of a feedforward network, we recommend having at least one common hidden layer that

reduces the input to a single latent representation. The latent representation is then passed to

individual subnetworks for specialisation. We argue that the common hidden layer allows

information sharing across the four parameters, while having no common hidden layer (i.e., if

the input is fed into the four disjoint stacks of hidden layers directly) will prevent sharing of

information across the stacks.

Machine learning models are typically trained using pooled dataset of historical observations.

As such, they learn the average uncertainty within the historical data. However, as noted in

Section 5.1, asset returns exhibit time-varying volatility clustering patterns. Thus, we expect

predictive uncertainty to be correlated with time-varying variance of the DGP. In other words,

predictive uncertainty is high when σ2
t of the DGP is high and the model is “surprised” by the

volatility. To inform the neural network of the prevailing volatility environment, we propose

to include the log of squared returns {log(r2t−K+1), . . . , log(r
2
t)} as part of the input matrix.

This follows from the use of squared returns in volatility forecasting literature (Brownlees

et al., 2011) and allows the neural network to infer the prevailing volatility environment.

Model averaging, as a special case of ensembling, is a well studied statistical method for

improving predictive power of estimators (Breiman, 1996; Goodfellow et al., 2016), and

has previously been shown to improve accuracy of financial time-series forecasting (in

Chapter 4) and sequential predictions (Raftery et al., 2010). As accuracy of both return

forecast accuracy and predictive uncertainty are important in our motivating application, we

propose to incorporate model averaging to improve return forecasts at the cost of higher

predictive uncertainty estimates. For an ensemble of M models, we compute the ensemble

forecast ỹ and predictive variance Var[ỹ] as,

ỹ =
1

M

M∑
i=1

ŷi, Var[ỹ] =
1

M

M∑
i=1

(ŷ2i +Var[ŷi])− ỹ2, (5.17)

where ŷi and Var[ŷi] are mean and predictive variance of model i, respectively. In Equa-

tion (5.17), E[ŷ2] > E[ŷ]2 (by Jensen’s inequality). Thus, predictive uncertainty of the

5.3 UNCERTAINTY QUANTIFICATION UNDER VOLATILITY CLUSTERING 137

ensemble will be higher than estimated using the marginal t-distribution alone. In Sec-

tion 5.4.3, we show that model averaging resulted in significant predictive performance

improvement and, despite the higher uncertainty estimates, resulted in the lowest NLL.

Popular tools for modelling time-varying volatility are Autoregressive Conditional Hetero-

skedasticity (ARCH) (Engle, 1982) and GARCH models. GARCH, when applied to stock

returns, assumes the same DGP as Equation (5.1). Time-varying variance σ2
t is modelled

using an ARMA model (Box et al., 1994). Parameter µt can assume a fixed value (e.g.,

sample mean or 0) or modelled using time-series models such as ARMA (leading to the

ARMA-GARCH formulation). In our proposed framework, squared returns are provided as

inputs to LSTM in similar spirit to the autoregressive terms of squared returns in GARCH.

However, our proposed framework also has few differences to ARMA-GARCH. A neural

network offers greater flexibility in modelling and can automatically discover interaction

effects between returns and volatility. For example, higher volatility is negatively correlated

with future asset returns (known as the leverage effect; Cont, 2001). By contrast, modelling of

interaction effects in additive models (such as GARCH) requires explicit specification by the

user. LSTM can also be interpreted as having dynamic autoregressive orders (as opposed to

fixed orders in GARCH). The input and forget gates of LSTM allow the network to control the

extent of long-memory depending on features of the time-series. Multi-step ahead forecasting

is an iterative process for ARMA-GARCH and forecast errors may compound. LSTM is able

to predict multi-step ahead directly. In Section 5.4.1, we apply our framework to forecast

forward 1-month U.S. stock returns using daily returns. Nonetheless, we do not directly

compare against ARMA-GARCH models for two reasons. First, in this work, we are focused

on advancing uncertainty quantification methodologies for neural networks. We argue that

several of our advances can be beneficial to both time-series and non-time-series datasets (as

demonstrated in Appendix A7.1). Second, we lean on the plethora of literature in comparing

LSTM to ARMA-variants (e.g., Siami-Namini et al., 2018) and ARCH-variants (e.g., Liu

et al., 2019).

For ease of comparison, we outline the differences of our method to Ensemble (Lakshmin-

arayanan et al., 2017) and Evidential (Amini et al., 2020) in Table 5.1.

138 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

TABLE 5.1: A comparison of Combined to Deep Ensemble and Deep Eviden-
tial regressions. Output layer refers to the structure of output layer(s) of the
network that outputs the parameters of the likelihood function.

Method Ensemble Evidential Combined
Prior None NIG Gamma
Ensemble Yes No Yes
Likelihood Gaussian Student’s t Student’s t
Output layer Single layer µ, σ2 Single layer γ, ν, α, β Multi-layer γ, σ2, α, β

5.4 Experiments

Our proposed framework is primarily focused on advancing uncertainty quantification in

time-series exhibiting volatility clustering. In this chapter, we detail experiment results in our

motivating application — time-series forecasting and uncertainty quantification on cryptocur-

rency and U.S. equities time-series datasets, to illustrate the benefits of our proposed method.

Nonetheless, SMD parameterisation, modelling distribution parameters using subnetworks

and ensemble predictions can also be applied to general applications of prediction uncertainty

quantification. In Appendix A7.1, we also compare our method to Ensemble and Evidential

using the UCI benchmark dataset. This is intended to provide readers with a direct com-

parison to the results published in Lakshminarayanan et al. (2017) and Amini et al. (2020),

demonstrating the benefits of our proposed improvements in non-time-series datasets.

5.4.1 Uncertainty quantification in cryptocurrency time-series

forecasting

In this section, we will first describe the cryptocurrency dataset, then present empirical results

on cryptocurrencies. Further confirmatory experiments on more conventional financial time-

series (U.S. equities) is presented in Section 5.4.2. The same neural network architectures are

used in the two datasets, with hyperparameters tuned independently. The hyperparameters

used are recorded in Appendix A5.

5.4 EXPERIMENTS 139

Our cryptocurrency dataset consists of hourly returns downloaded from Binance over July

2018 to December 2021, for 10 of the most liquid, non-stablecoin8 cryptocurrencies. Tickers

for these cryptocurrencies are BTC, ETH, BNB, NEO, LTC, ADA, XRP, EOS, TRX and

ETC, denominated in USDT9. Following Chapter 3 and 4, we use IC (Equation (3.2); cross-

sectionally computed for each t for all 10 cryptocurrencies, then averaged over time) as

a measure of predictive accuracy, in addition to RMSE and NLL. Data from July 2018 to

June 2019 are used for hyperparameter tuning, chronologically split into 70% training and

30% validation. Data from July 2019 to December 2021 are used for out-of-sample testing.

Networks are trained every 30 days using an expanding window of data from July 2018,

which is preferred over a rolling window approach used in Chapter 4 due to the small sample

size of the cryptocurrency dataset. Each input sequence consists of 10 days of hourly returns

r and squared returns log(r2) (i.e., each input sequence is a matrix with dimensions 240× 2),

and are used to predict forward one hour return (i.e., units of analysis and observation are

both hourly). Network topology consists of LSTM layers, followed by fully connected layers

with ReLU activation and the corresponding output layers of Ensemble and Evidential. For

Combined, we use four subnetworks as illustrated in Figure 5.1. As discussed in Section 5.1,

we consider uncertainty quantification in cryptocurrencies to be especially challenging due to

their high volatility. Note that in this section and Section 5.4.2, “forecast uncertainty” and

“uncertainty forecast” refer to estimated predictive uncertainty (i.e., sum of epistemic and

aleatoric uncertainties) for simplicity.

At this point, it is useful to remind readers that prior literature have found both datasets

to exhibit time-varying variance (e.g., Cont, 2001; Hafner, 2018), which is also visible in

Figure 5.2. We start with the main empirical results on cryptocurrency time-series forecasting,

recorded in Table 5.2. We observe that Combined has the highest average IC, lowest RMSE

and NLL in the cryptocurrency dataset. This indicates that Combined has higher cross-

sectional predictive efficacy (as measured by IC) and is able to better forecast uncertainty of

8Stablecoins are cryptocurrencies that are pegged to real world assets (e.g., U.S. Dollar). As such, they
exhibit lower volatility than other non-pegged cryptocurrencies.

9Tether (USDT) is a stablecoin that is pegged to USD. It has the highest market capitalisation amongst the
USD-linked stablecoins (Lipton, 2021).

140 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

the time-series prediction. Evidential has better (higher) IC and (lower) RMSE but worse

(higher) NLL than Ensemble.

Next, Figure 5.2, compares predicted uncertainty and actual prediction error of the three

methods to actual volatility of Bitcoin (BTC/USDT), the cryptocurrency with the highest

market capitalisation, and Cardano Ada (ADA/USDT), a cryptocurrency with relatively

smaller market capitalisation and higher volatility. Volatility forecasts are often compared

with observed volatility (typically computed over a look back window) to evaluate forecast

performance. However, the true instantaneous volatility of an asset (i.e., σ2 in Equation (5.1))

is unobservable (Ge et al., 2022). Thus, in the top row of Figure 5.2, we use the standard

deviation of hourly returns computed over each day as a proxy for σ2. In rows 2–4, for

Bitcoin, we aggregate hourly forecasts to daily data points by computing the daily RMSE of

return forecasts
√

1
24

∑23
k=0(yt−k − ŷt−k)2 (denoted

√
(y − ŷ)2) computed from hourly return

forecasts, and the daily root mean predictive uncertainty
√

1
24

∑23
k=0 Var(ŷt−k) (denoted√

Var(ŷ)), for each t = 24, 48, 72, . . . , T (note that t for cryptocurrency is in hourly units).

Comparing the top row of Figure 5.2 to the root return forecast error of row 2-4 (blue line),

we observe that forecast error spikes when volatility of the asset spikes. This is expected,

as the spike in volatility leads to large forecast errors. Comparing the bottom three rows

of Figure 5.2, which correspond to Combined, Ensemble and Evidential, respectively. We

observe that Combined’s predicted uncertainty of µ̂ tracks actual forecast error much more

closely than Evidential and Ensemble. This appears to be especially true during periods of

elevated volatility (e.g., during March 2020), which are important to investors. Overestimation

TABLE 5.2: Comparing Ensemble, Evidential and Combined on average IC,
RMSE and NLL for cryptocurrencies time-series forecasts. Average result
and standard deviation over 10 trials for each method. Best method for each
dataset is highlighted in bold.

Metric Ensemble Evidential Combined

IC (%) 2.78± 1.09 3.94± 1.84 9.87± 3.17
RMSE (%) 0.874± 0.022 0.874± 0.003 0.867± 0.001
NLL −3.74± 0.10 −3.24± 0.02 −4.14± 0.01

5.4 EXPERIMENTS 141

0.00

0.02

0.04

0.06

Standard deviation of BTC/USDT hourly returns on each day Standard deviation of ADA hourly returns on each day

0.00

0.02

0.04

0.06

Combined: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

Combined: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

0.00

0.02

0.04

0.06

Ensemble: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

Ensemble: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

20
19

-0
7

20
19

-1
0

20
20

-0
1

20
20

-0
4

20
20

-0
7

20
20

-1
0

20
21

-0
1

20
21

-0
4

20
21

-0
7

20
21

-1
0

0.00

0.02

0.04

0.06

Evidential: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

20
19

-0
7

20
19

-1
0

20
20

-0
1

20
20

-0
4

20
20

-0
7

20
20

-1
0

20
21

-0
1

20
21

-0
4

20
21

-0
7

20
21

-1
0

Evidential: Forecast Error and Forecast Uncertainty

(y y)2

Var(y)

FIGURE 5.2: First row: Standard deviation of hourly return of BTC/USDT
and ADA/USDT on each day. Second–fourth rows: Actual prediction error
and predicted uncertainty Var(ŷ) of Combined, Ensemble and Evidential
for BTC/USDT (left column) and ADA/USDT (right column), respectively.
Square root of the average squared error and uncertainty over each day shown.

of predictive uncertainty is severe for Ensemble in Bitcoin, where predictive uncertainty can

sometimes be significantly higher than observed forecast error.

Note that the “block-like” appearances of uncertainty forecasts of both Ensemble and Eviden-

tial are due to periodic training (monthly for cryptocurrencies and yearly for U.S. equities) and

the failure to generalise the prevailing volatility environment. During training, the optimiser

updates network weights W and bias b (which is analogous to the intercept in linear models).

When the network fails to generalise, it minimises the loss function by updating the bias rather

than the weights. Thus, outputting the same constant that do not vary with the input, until the

network is re-trained in the following month. This produces the block-like appearances of

Ensemble and Evidential, and is indicative of the network setup (e.g., no separate modelling of

142 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

hyperparameters) being unsuitable to this class of problems. Lastly, Evidential underestimates

forecast error during heightened volatility (e.g., March 2020) and overestimates forecast error

under periods of low volatility (e.g., July 2020). In Appendix A9, we investigate the addition

of separate modelling of distribution hyperparameters for Evidential, and conclude that both

squared returns and separate hyperparameter modelling are required to achieve uncertainty

forecasts that closely tracks time-varying volatility. We observe similar visual characteristics

in the predicted uncertainty of other cryptocurrencies for all three methods.

5.4.2 Further results on U.S. equities

In this section, we provide empirical results of a further study on a conventional financial

time-series dataset, quantifying forecast uncertainty in U.S. equities. Mimicking the S&P 500

index universe, the dataset consists of daily returns downloaded from CRSP over 1984 to 2020,

for the 500 largest stocks10 listed on NASDAQ, NYSE and NYSE American. Data from 1984

to 1993 are used for hyperparameter tuning, while 1994 to 2020 are used for out-of-sample

testing. The network is refitted every January using a rolling 10-year window. We retain the

same hyperparameter tuning setup to the cryptocurrency dataset, each input sequence consists

of 240 trading days (approximately one-year) of daily returns r and squared returns log(r2)

(rather than 250 trading days in Chapter 4), forecasting forward 20-day (approximately one-

month) return and its uncertainty. Given that 240 days cover 95% of the 252 trading days per

year, we do not expect this choice to have a material impact on the experiment results when

compared to Chapter 4. Note that the unit of analysis is monthly and unit of observation is

daily. One-month is a popular forecast horizon for U.S. equities in literature (e.g., Gu et al.,

2020 and is used in Chapter 3 and 4), which motivated our choice of forecast horizon. The

basic setup is similar to the financial time-series forecasting experiment in Chapter 4. The

same models as the cryptocurrency experiment are used with separate hyperparameter tuning.

Further details on hyperparameters are provided in Appendix A5.

Table 5.3 records the empirical results on U.S. equities. Again, we observe that Combined

has the highest IC, and lowest RMSE and NLL out of the three methods. This demonstrates

10The list of stocks is refreshed every June, keeping the same stocks until the next rebalance.

5.4 EXPERIMENTS 143

TABLE 5.3: Comparing Ensemble, Evidential and Combined on average IC,
RMSE and NLL for U.S. equities. Average result and standard deviation over
10 trials for each method. Best method for each dataset is highlighted in bold.

Metric Ensemble Evidential Combined

IC (%) 0.40± 0.66 0.09± 0.93 1.22± 0.65
RMSE (%) 9.426± 0.044 9.433± 0.033 9.379± 0.020
NLL −1.65± 0.17 −0.82± 0.03 −1.71± 0.01

the usefulness of Combined in quantifying forecast uncertainty in both time-series with

extreme volatility (e.g., cryptocurrencies) and in conventional financial time-series. IC in U.S.

equities are materially lower for all three methods compared to the cryptocurrency dataset.

We hypothesise that this is due to both the difference in forecast horizon and maturity of the

U.S. market.

Figure 5.3 compares the predicted uncertainty and actual prediction error of the three methods

to actual volatility of Chevron Corp., a major U.S. oil producer, and IBM, a major U.S.

technology company. As the unit of analysis is monthly, we plot the absolute error between

observed monthly returns and predicted returns (denoted |y − ŷ|) in the top row of Figure 5.3,

and square-root of forecast uncertainty (denoted
√
Var(ŷ)) in rows 2–4 for Combined,

Ensemble and Evidential, respectively. We observe similar results as the cryptocurrency

experiment in the bottom three rows of Figure 5.3. Predicted uncertainty of Combined is

observed to track actual forecast error more closely than Ensemble, especially during the

three market crashes — the Dot-com bubble (2000–01), U.S. recession over 2008–09 and the

2020 pandemic. For Chevron, we observe an additional spike of volatility during the 2015 oil

shock. Evidential produced uncertainty forecasts that are visually similar to Combined, but

block-like features can still be seen in 1999 and 2012. Ensemble’s predicted uncertainty for

IBM jumped cover 2000–01, coinciding with a period of elevated volatility for the stock. In

Figure 5.3, Ensemble exhibited less block-like appearance than in Figure 5.2. This indicates

that Ensemble achieved better generalisation performance on the U.S. equities dataset than

on the cryptocurrency dataset. However, Ensemble’s predicted uncertainty for Chevron saw

the same block-like jump which did not coincide with higher volatility of the stock. We

hypothesise that generalisation for Ensemble is still problematic on the U.S. equities dataset

144 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

0.0

0.1

0.2

0.3
Absolute Value of Chevron Monthly Return Absolute Value of IBM Monthly Return

0.0

0.1

0.2

0.3
Combined: Forecast Error and Forecast Uncertainty

|y y|

Var(y)

Combined: Forecast Error and Forecast Uncertainty
|y y|

Var(y)

0.0

0.1

0.2

0.3
Ensemble: Forecast Error and Forecast Uncertainty

|y y|

Var(y)

Ensemble: Forecast Error and Forecast Uncertainty
|y y|

Var(y)

1996
2000

2004
2008

2012
2016

2020
0.0

0.1

0.2

0.3
Evidential: Forecast Error and Forecast Uncertainty

|y y|

Var(y)

1996
2000

2004
2008

2012
2016

2020

Evidential: Forecast Error and Forecast Uncertainty
|y y|

Var(y)

FIGURE 5.3: First row: Absolute monthly returns of Chevron (left) and
IBM (right). Second–fourth rows: Actual prediction error and predicted
uncertainty Var(ŷ) of Combined, Ensemble and Evidential for Chevron and
IBM, respectively. Square root of the monthly forecast error and forecast
uncertainty shown.

and that Ensemble failed to generalise the impact of heightened volatility environment on

different stocks.

5.4.3 Ablation study

Next, we test the effects of removing each of the following for Combined: 1) model averaging;

2) single output layer for all distribution parameters (same as Evidential); 3) using return time-

series only (i.e., no squared returns). The results are recorded in Table 5.4 and in Figure 5.4.

As discussed in Section 5.3.2, model averaging (Equation (5.17)) will lead to higher predictive

uncertainty estimates. Comparing results in Table 5.4 to the main results in Table 5.2 and

Table 5.3, we observe that model averaging has a large negative impact on IC and NLL. IC

5.4 EXPERIMENTS 145

TABLE 5.4: Ablation studies: In each column, we remove model averaging
(No Averaging), separate modelling of distribution parameters (Single Output)
and using return time-series only (Returns-only) from Combined for crypto-
currencies (left) and U.S. equities (right), respectively. Average result and
standard deviation over 10 trials are reported for each method. Note that
cryptocurrency returns are hourly and U.S. stock returns are monthly.

Cryptocurrency U.S. equities

Metric No Averaging
Single
Output

Returns
Only No Averaging

Single
Output

Returns
Only

IC (%) 4.48± 2.80 8.23± 2.91 10.46± 2.04 0.92± 0.65 1.87± 1.06 1.21± 0.73
RMSE (%) 0.868± 0.001 0.872± 0.002 0.866± 0.002 9.392± 0.020 9.398± 0.029 9.384± 0.046
NLL −3.35± 0.01 −4.04± 0.02 −3.95± 0.02 −0.88± 0.01 −1.63± 0.04 −1.34± 0.04

0.005

0.010

0.015

0.020

0.025

0.030

Forecast Uncertainty of BTC/USDT (square-root)
Combined
No Averaging
Single Output
Returns-only

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07
2021-10

2022-01

0.01

0.02

0.03

0.04

0.05
Forecast Uncertainty of ADA/USDT (square-root)

Combined
No Averaging
Single Output
Returns-only

(a) Uncertainty of BTC/USDT and ADA/USDT

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Forecast Uncertainty of Chevron (square-root)
Combined
No Averaging
Single Output
Returns-only

1996
2000

2004
2008

2012
2016

2020

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Forecast Uncertainty of IBM (square-root)
Combined
No Averaging
Single Output
Returns-only

(b) Uncertainty of Chevron and IBM

FIGURE 5.4: Square-root of predicted uncertainty Var(ŷ) of Combined,
without model averaging (No Averaging), single output layer (Single Out-
put) and using returns only (Returns-only).

is 55% and 25% lower for cryptocurrencies and U.S. equities, respectively. While NLL

is higher by 0.8 in both cases (lower is better), indicating a worse overall fit. However, it

146 5 UNCERTAINTY UNDER VOLATILITY CLUSTERING

does not appear to impede the network’s ability to model time-series forecast uncertainty

(as observed in Figure 5.4). Moreover, comparing Combined (with model averaging) to

No Averaging (without model averaging) in Figure 5.4, we observe very similar estimated

predictive uncertainties with and without model averaging (as the orange and blue lines track

each other closely). This indicates a favorable trade-off between significantly improved

forecast performance and practically the same predictive uncertainty estimates. Using a single

output layer for all distribution parameters leads to marginally worse NLL. IC is lower in

cryptocurrencies but marginally higher in U.S. equities. While using returns only leads to

marginally higher IC but marginally lower on NLL in cryptocurrency, and lower IC and NLL

in U.S. equities. From Figure 5.4, the block-like appearances indicate that both using single

output layer and using returns only result in the network failing to closely track time-varying

variance of the DGP. This suggests that both squared returns and separate modelling of

distribution parameters are required to model time-varying forecast uncertainty.

5.5 Conclusions

Our motivating application of portfolio selection depends on both forecasts and forecast

uncertainties. This is a challenging problem due to both the low signal-to-noise ratio in

financial markets (Gu et al., 2020) and the presence of volatility clustering. To this end, we

present a method for the simultaneous forecasting asset returns and modelling of forecast

uncertainty in presence of volatility clustering. Our proposed method extends and simplifies

the work of Lakshminarayanan et al. (2017) and Amini et al. (2020). We propose to use a

SMD (which uses a Gamma prior for scale uncertainty ν) as a simpler alternative to a NIG

prior, in which a Normal prior is placed on µ and an Inverse-Gamma prior on σ2). Parameters

of SMD are modelled using separate subnetworks. Together with ensembling and the use

of second order of returns as inputs, we show that our proposed method can successfully

model time-varying variance of the DGP, while providing superior forecasting performance

than two state-of-the-art neural network uncertainty quantification methods — Evidential and

Ensemble. This is illustrated through the successful quantification of forecast uncertainty

of two financial time-series datasets: cryptocurrency and U.S. equities. Our proposed SMD

5.5 CONCLUSIONS 147

formulation offers an avenue to resolve some of the criticisms of Meinert et al. (2022) and

Bengs et al. (2023). In particular, our SMD parameterisation has three effective parameters

and thus does not have any unresolved degrees of freedom. We can set α = β, which

leads to a marginal t-distribution where the three distributional parameters (γ, σ2, α) relate

directly to the location, scale and shape of the t-distribution, without the need of a hierarchical

model. In this formulation, epistemic uncertainty is assumed to be the difference between the

predictive (t-distributed) and aleatoric (Normal-distributed) uncertainties. This assumption

provides for a simpler model but lacks the granular attribution between aleatoric and epistemic

uncertainties afforded by the NIG prior in Evidential. However, as Meinert et al. (2022)

has pointed out, the granular control comes at the cost of an unresolved degree of freedom.

Thus, users are encouraged to weigh the trade-offs in choosing a method to deploy. This

also makes for a potential future research direction. We show empirically that our method

is able to accurately predict forecast errors, similar to the success Evidential demonstrated

in other real world applications (e.g., see Liu et al., 2021; Soleimany et al., 2021; Cai et al.,

2021; Singh et al., 2022; Li and Liu, 2022). From a finance application perspective, forecast

uncertainty can be used to size bets, or as advanced warning to protect the portfolio from

downside risk. For example, if forecast uncertainty reaches a certain threshold, an investor

could purchase portfolio insurance (e.g., put options) or liquidate positions to reduce risk. The

ability to attribute epistemic and aleatoric uncertainties may also allow for more advanced

portfolio optimisation techniques to be developed in future research (e.g., place different risk

aversions on the two sources of uncertainties). Lastly, uncertainty quantification in time-series

applications is a relatively under-explored area of literature. We believe this work can lead to

further advancements of uncertainty quantification in complex time-series.

CHAPTER 6

Conclusion

Neural networks have made tremendous strides across many domains over the past decade,

from mastering the game of Go1, self-driving cars, medical diagnosis, to the personal assistant

in smart phones carried by millions of people worldwide. Financial markets have proved to

be a challenging problem for econometricians and statisticians. As discussed in Section 1.5,

financial markets can suffer from endogenous and exogenous shocks, the distribution of

asset returns has heavy tails, signal-to-noise ratio is low and, most inconveniently, the data

generation process changes over time. Given the success neural networks have achieved in

other domains, this begs the question — can neural networks advance the state-of-the-art in

financial market applications? At the conclusion of this thesis, we believe we are a step closer

to the opening of the floodgates but with much more still to be done. In the rest of this chapter,

we will first outline our contributions to literature, then discuss future research directions on

this topic.

6.1 Contributions to machine learning in portfolio

management

In this thesis, we have provided an overview of the mechanics of a quantitative investment

process, outlined the relevant finance theory that underpins stock return predictability (or the

lack of), discussed a number of challenges in applying conventional statistical and machine

learning tools in financial markets, identified several potential ways machine learning can be

1Go is an abstract board game and is considered as the most challenging of classic games for artificial
intelligence (Silver et al., 2016).

148

6.1 CONTRIBUTIONS TO MACHINE LEARNING IN PORTFOLIO MANAGEMENT 149

used to improve the quantitative investment process, and proposed three distinct advances to

deep learning that covers three related applications in financial market predictions.

In Chapter 3, we address the time-varying DGP problem in fnancial markets in a cross-

sectional prediction application of neural networks. We proposed the Online Early Stopping

algorithm for training neural networks online. Online training of a neural network is an

online optimisation problem. In classical online optimisation literature, online optimisation

algorithms are analysed in terms of regret — a measure of performance loss compared to

a theoretical (but unattainable) optimum. We provide a worst-case performance bound that

conforms with the notion of regret in a non-convex optimisation context, by showing that the

OES algorithm can achieve tracking performance no worse than a function of the variance

of the DGP. This provides an intuitive interpretation of the worst-case performance of the

algorithm, where its ability to track a moving DGP is bounded by the variance of the DGP

(i.e., the higher the time variability of the DGP, the more difficult it is to track and the

higher the expected loss). We compare OES to a static neural network2 and the DTS-SGD,

a state-of-the-art non-convex online optimisation algorithm, in simulated data and showed

superior performance in tracking a time-varying DGP. We highlight the usefulness of OES

to practitioners by comparing OES to the static neural network used in Gu et al. (2020),

demonstrating competitive performance and the ability to track changes in financial markets

over time. In particular, we show that the OES-trained network reacts quicker (relative to the

static network) to market downturns and recoveries, such as the global financial crisis and

the 2015 oil shock. Finally, we show that the ensemble prediction of the static network and

OES-trained network delivered the best prediction performance. Thus, we argue that OES

can be a useful tool for practitioners in predicting cross-sectional stock returns.

In Chapter 4, we address the low signal-to-noise problem in financial markets in a time-series

prediction application of neural networks. We propose the Supervised Temporal Autoencoder

architecture, using a supervised autoencoder to regularise a temporal convolutional network.

We argue that due to the low signal-to-noise in financial markets, machine learning should fo-

cus on “robust” learning as opposed to “deep” learning. The proposed supervised autoencoder
2In this context, a static neural network refers to a network that is trained using all available data and does

not vary with time.

150 6 CONCLUSION

imposes a non-parametric functional form on the latent representation of the input sequence.

We argue that this is more flexible than a fixed parametric functional form (e.g., a linear

time trend). The reconstruction task provides interpretability, allowing users to inspect the

smoothed reconstructed sequence to visualise the features retained by the neural network. We

provide a template for financial time-series forecasting directly using price series, alleviating

the need for handcrafted features. In the application test, we compare STAE to momentum,

a prominent stock return predictor documented in finance literature, and showed material

improvement in predictive performance — a finding that is economically meaningful to

practitioners. We establish a benchmark of sequential neural network architectures in financial

time-series forecasting, demonstrating superior predictive performance of STAE over TCN,

LSTM and transformers. We show that the addition of the auxiliary task, even at a small

weight, is beneficial to the prediction task. We document declining predictive performance of

momentum, an asset pricing anomaly in finance literature, and predictions of neural networks.

We conjecture that markets are becoming increasingly efficient and that information content

of stock prices has decreased over time.

In Chapter 5, we advance the state-of-the-art in incorporating risk, in the form of predictive

uncertainty, into neural network forecasts. Risk forecasting is of paramount importance in

portfolio optimisation and can influence optimal bet sizes. We combine and extend two

state-of-the-art methods, Ensemble (Lakshminarayanan et al., 2017) and Evidential (Amini

et al., 2020), into a unified framework for quantifying time-series forecast uncertainty of

neural networks. The unified framework consists of four improvements. Firstly, we propose

to use the SMD instead of the NIG prior used in Evidential, arguing that SMD is simpler

and offers superior numerical properties than the NIG prior, which would allow a first-order

optimiser (such as SGD) to more easily traverse the loss landscape3. Secondly, we argue that

in cases where the input has complex relations with the distribution hyperparameters (such

as in financial time-series forecasting), it is beneficial to afford the neural network of the

flexibility to non-linearly transform the common latent representation of the input sequence

generated by the hidden layers (i.e., convolutional or recurrent layers). This is in contrary
3Loss landscape refers to the hyperplane spanned by network parameters (Li et al., 2018). A smooth and

convex loss landscape can be easily traversed by a first-order optimiser. Conversely, a highly non-convex loss
landscape with saddle points and many local minima will be difficult to traverse.

6.2 FUTURE RESEARCH 151

to the output layers used in Ensemble and Evidential, which compute hyperparameters of

the distribution as linear combinations of the latent representation. Thirdly, we propose

to incorporate ensembling, which was shown to significantly improve forecast accuracy in

Chapter 4. Lastly, we propose to incorporate the second moment of returns to inform the

network of the prevailing volatility environment, which will directly affect forecast uncertainty.

We provide evidence of the benefits of the framework and each of the four improvements

using the UCI benchmark datasets, and in cryptocurrencies and U.S. equities forecasts. In

particular, using the UCI dataset and an identical network topology, we show that SMD

delivers superior uncertainty quantification performance compared to the NIG prior. We

believe forecast uncertainty will be a useful input into the portfolio optimisation process, such

as for determining optimal bet size (high forecast uncertainty attracts a lower limit) or for

scaling the risk model (Equation (1.4)).

6.2 Future research

As discussed in Chapter 1, financial markets represent one of the most challenging areas for

the application of machine learning. In this section, we detail several potential advances of

machine learning in future research.

Financial markets are endogenous. That is, one’s own trading leaves a trail of footprints on

asset prices (by incurring market impact and perturbing the share price). The same patterns

may also be discovered by other investors which leave the same footprints. Financial markets

are also impacted by exogenous shocks such as pandemics, wars and recessions. Thus,

time-varying models have an important role in portfolio management. In Chapter 3, we have

introduced OES and shown that, in theory, it offers superior predictive performance over

a stationary model. We have not investigated realistic performance in a portfolio setting,

after accounting for transaction costs and portfolio constraints (e.g., limits on how much the

portfolio can bet on any single stock or industry). It is conceivable that actual realisable

benefits of a time-varying model are concave with respect to the time-variability of the model

due to higher trading. A model with moderate time-variability is likely better than a stationary

152 6 CONCLUSION

model after transaction costs. However, a highly time-varying model may not be better than a

moderately time-varying model if transaction costs outstrip further improvements in tracking

the time-varying DGP more closely. Thus, future research on this topic can investigate

portfolio-level impacts of time-varying models and consider regularisations of OES, such as

smoothing of regret in Hazan et al. (2017).

Efficient trading has been discussed in Section 1.6.4. Whilst not addressed in this thesis, this

is a worthy topic within the broader domain of machine learning in portfolio management and

is an essential component of autonomous trading systems. Stocks exhibit various intraday

patterns, such as U-shaped volume distribution (higher at the beginning and end) throughout

the trading day (Wood et al., 1985; Jain and Joh, 1988; McInish and Wood, 1992; Eaves

and Williams, 2010), which is also associated with similar U-shaped intraday volatility

(Lockwood and Linn, 1990; Eaves and Williams, 2010). Volume and volatility patterns form

useful inputs to any model that aims to minimise market impact by predicting expected volume

during the day. Future work can leverage recent advances in deep reinforcement learning4

(François-Lavet et al., 2018), combining with new features to extend the work by Nevmyvaka

et al. (2006) on using reinforcement learning for optimal trade execution. Another potential

direction is to extend the work by Webber (2017), in incorporating concept drifts (Gama et al.,

2014) into deep reinforcement learning to address time-varying financial markets (similar to

our work in Chapter 3).

Extracting information from text has been discussed in Section 1.6.4. There is a large swathe of

text information about companies, such as management’s discussion of business performance

in the annual report, may contain useful information for predicting future return. A significant

portion of a financial analyst’s job is to transform textual information about a company, such

as the company’s strategy and the competitive landscape, into future revenue and earnings

expectations (Damodaran, 2006). For example, a biotechnology company developing a life-

saving drug may see significant revenue in the future but is currently loss-making. Recently,

4Reinforcement learning is the task of learning a policy (i.e., sequence of actions) in an environment in
order to maximise cumulative rewards (Bishop, 2006; Murphy, 2012; François-Lavet et al., 2018). This requires
estimating future expected reward for each action. Deep reinforcement learning is to use neural networks to
estimate future reward.

6.2 FUTURE RESEARCH 153

Araci (2019) used the BERT model (which was trained using the Wikipedia corpus, Devlin

et al., 2019) and retrained the final layers using financial news articles to learn a finance-

specific language model. I argue that the resultant model understands the grammar used in

financial text, but is intrinsically devoid of understanding of the context. In the biotechnology

firm example, an article may discuss the drug that the company is developing, but not the

financial implications. Such second order effect is inferred from the context. Advances in this

domain may combine natural language progressing and concept learning (Mitchell, 1997) in

the context of financial markets.

In Chapter 4, we show that it is possible to learn predictive patterns directly from the share

price time-series. Potential improvements to both the application of financial time-series

forecasting and the method of learning in noisy environments are discussed in Section 4.4.

A natural extension of this work is to combine cross-sectional forecasting and time-series

forecasting, where the neural network is provided with time-series of all features relating to

the company, such as stock prices, company financials and social media sentiment. Learning

weak signals from such a large and diverse feature set will pose a significant challenge.

However, I am convinced that if the financial industry were to advance towards highly tailored,

stock-specific models, the advances will be reminiscent of the model described above. Such

model can leverage methods of supervised autoencoding as described in Chapter 4, where the

autoencoder performs dimensionality reduction which may assists with processing from a

large feature set.

In Chapter 5, we have proposed a framework for quantifying uncertainty in financial time-

series predictions. We suggest that forecast uncertainty can be used to determine bet sizes

and serves as an input into the portfolio construction process. The quantified uncertainty is

a scalar value that is specific to the stock. However, uncertainty may be correlated between

stocks. Thus, a natural extension is to produce variance-covariance-style uncertainty that

captures uncertainty covariance between a cohort of stocks. The uncertainty covariance

matrix can then substitute or supplement the conventional variance-covariance matrix of asset

returns used in mean-variance optimisation, as the latter neglects parameter uncertainty in

return forecasts. Variance-covariance matrices are subject to the curse of dimensionality. For

154 6 CONCLUSION

example, consider the Russell 3000 index used in Chapter 4. Estimating a variance-covariance

matrix for this universe involves estimating 3000× 3000 = 9million values. As discussed in

Section 2.5.2, one of the advantages of CNN over fully connected neural network in image

recognition problems is parameter sharing, which greatly reduces the number of parameters

required by representing common patterns with a small number of parameters organised in a

kernel. This property of convolution layers may offer a viable avenue to solve the curse of

dimensionality problem in uncertainty covariance estimation.

The three advances introduced in this thesis relates to: online learning in a cross-sectional

prediction context (Chapter 3), noise-robust learning in a time-series prediction context

(Chapter 4), and forecast uncertainty quantification (Chapter 5). All three topics play important

roles in quantitative investing. We argue that the three advances can be combined into a

unified framework to simultaneously forecast returns, provide predictive uncertainty, and

adapt to changes in the DGP of financial markets. We propose the following neural network

architecture which can be evaluated in future work. The network is comprised of eight

subnetworks:

• Subnetwork 1: Fully connected layers to process cross-sectional firm features (as

per Chapter 3).

• Subnetwork 2: An encoder of LSTM layers to process daily stock returns (as per

Chapter 5).

• Subnetwork 3: A decoder with fully connected layers which reconstruct all firm

features using the latent representation outputted by Subnetwork 1.

• Subnetwork 4: A decoder of LSTM layers which reconstruct the daily return se-

quence using the latent representation outputted by Subnetwork 2.

• Subnetwork 5: Fully connected layers which combine the output of Subnetwork 1

and 2.

• Subnetwork 6-8: Outputs parameters γ, σ2 and α of the SMD to simultaneously

estimate both returns and predictive uncertainty.

6.2 FUTURE RESEARCH 155

The loss function is the NLL of the marginal t-distribution of SMD, plus reconstruction

error of both firm features (output of Subnetwork 3) and time-series of returns (output of

Subnetwork 4). To adapt to time-varying DGP, the network can be trained using OES.

However, we envisage three potential challenges with this approach. First, as the network

is quite large, one may encounter difficulties in training the entire network simultaneously.

To solve this, one may employ transfer learning in training the two autoencoders for firm

features (Subnetwork 1 and 3) and return series (Subnetwork 2 and 4). Transfer learning has

been successfully applied in natural language processing, where a language model (typically

an encoder-decoder) is trained on a large corpus of text to predict the next word, given the

preceding words. The pre-trained language model is then fine tuned on downstream tasks

such as sentiment analysis and question-answering (Ruder et al., 2019; Han et al., 2021). In

a similar vein, we can first pre-train each encoder-decoder pair (Subnetwork 1 and 3, and

Subnetwork 2 and 4) on encoding and decoding firm features and return series, respectively.

The pre-trained encoder-decoder pairs can then be used in the final amalgamated network

to perform return prediction. Second, the OES algorithm involves training on a the t − 2

cross-section and validating on the t− 1 cross-section. For such a large network, one may

find that one cross-section contains insufficient data to train the network. To solve this, one

may expand the number of periods used to train the network. However, we caution that

expanding the look back window will lead to the algorithm to fit the average DGP in the look

back window. Thus, losing its ability to closing track the time-varying DGP. Third, the scales

of the three components of the loss function are different. Thus, care must be taken during

hyperparameter search to determine the optimal weight given reconstructing firm features

and return series. The proposed network architecture outputs both the return forecast and

predictive uncertainty, which can then be used in downstream portfolio optimisation tasks.

Finally, in this thesis, we have proposed three advances that address various subtopics of

applying deep learning to portfolio management, with much more still to be done. Deep

learning has contributed to the advances of numerous fields of science. One particular

advancement is DeepMind’s AlphaFold5, a machine learning system that can predict the

5DeepMind is a subsidiary of Alphabet Inc. that focuses on machine learning research. https://www.
deepmind.com/research/highlighted-research/alphafold.

https://www.deepmind.com/research/highlighted-research/alphafold
https://www.deepmind.com/research/highlighted-research/alphafold

156 6 CONCLUSION

structure of over 200 million proteins and promises to speed up drug development. As a

trained bioinformatician, I find this development exciting for the field of medical research and

sobering for the finance industry. The main impediments to leaps in applying deep learning to

financial markets are well discussed in Section 1.5. We, as finance practitioners, can dream

that one day deep learning will shine some light on this dark corner of social science.

Bibliography

Balaji Lakshminarayanan, AlexanderPritzel, and Charles Blundell. Simple and scalable

predictive uncertainty estimation using deep ensembles. In Guyon et al. (2017), pages

6405–6416. ISBN 9781510860964.

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential

regression. In Larochelle et al. (2020), pages 14927–14937.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.

Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Information

Processing Systems 25, pages 1097–1105, Lake Tahoe, NV, USA, 2012. Curran Associates,

Inc.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. In Bengio and LeCun (2015). URL http://arxiv.org/abs/

1409.1556.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-

tions. In Grauman et al. (2015), pages 1–9. doi: 10.1109/CVPR.2015.7298594.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding

for face recognition and clustering. In Grauman et al. (2015), pages 815–823. doi:

10.1109/CVPR.2015.7298682.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Lourdes Agapito, Tamara Berg, Jana Kosecka, and Lihi Zelnik-

Manor, editors, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, pages 770–778, Las Vegas, NV, USA, 2016. IEEE.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recognition with

deep recurrent neural networks. In IEEE International Conference on Acoustics, Speech

157

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

158 BIBLIOGRAPHY

and Signal Processing, ICASSP 2013, pages 6645–6649. IEEE, 2013. doi: 10.1109/

ICASSP.2013.6638947.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural

network acoustic models. In Sanjoy Dasgupta and David McAllester, editors, Proceedings

of the 30th International Conference on Machine Learning, ICML’13. JMLR.org, 2013.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Proceedings of the 25th Interna-

tional Conference on Machine Learning, ICML’08, pages 160–167. ACM, 2008. ISBN

9781605582054. doi: 10.1145/1390156.1390177.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. In Ghahramani et al. (2014), pages 3104–3112.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,

Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Timothy Lillicrap,

Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering

the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,

2016. ISSN 1476-4687.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,

Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin

Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. In arXiv,

2016.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex-

ander Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A

generative model for raw audio. In arXiv, 2016. URL https://arxiv.org/abs/

1609.03499.

Eunhee Kang, Junhong Min, and Jong Chul Ye. Wavenet: a deep convolutional neural

network using directional wavelets for low-dose x-ray ct reconstruction. Medical Physics,

44:360–375, 10 2017. doi: 10.1002/mp.12344.

Othmane Mounjid and Charles-Albert Lehalle. Improving reinforcement learning algorithms:

towards optimal learning rate policies. In arXiv, 2021.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499

BIBLIOGRAPHY 159

Jeremy D. Turiel and Tomaso Aste. Peer-to-peer loan acceptance and default prediction

with artificial intelligence. Royal Society Open Science, 7(6):191649, 2020. doi: 10.

1098/rsos.191649. URL https://royalsocietypublishing.org/doi/abs/

10.1098/rsos.191649.

Richard Grinold and Ronald Kahn. Active Portfolio Management: A Quantitative Approach

for Producing Superior Returns and Controlling Risk. McGraw-Hill Education, 1999.

Nga Pham. The australian superannuation system. Technical report, Monash University,

Victoria, Australia, 2019. URL https://www.monash.edu/__data/assets/

pdf_file/0016/2010553/The-Australian-superannuation-system_

v3.pdf.

Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical asset pricing via machine learning.

The Review of Financial Studies, 33(5):2223–2273, 02 2020. ISSN 0893-9454. doi:

10.1093/rfs/hhaa009.

Pamela Peterson Drake and Frank J. Fabozzi. Financial Instruments, Markets, and Intermedi-

aries, chapter 2, pages 13–35. John Wiley & Sons, Inc., 2010.

Frank J. Fabozzi, Frank J. Jones, Robert R. Johnson, and Pamela P. Drake. Fundamentals of

Common Stock, chapter 8, pages 207–227. Volume 1 of Fabozzi and Markowitz (2011),

2011a. ISBN 9781118267028.

Yakov Amihud. Illiquidity and stock returns: cross-section and time-series effects. Journal of

Financial Markets, 5(1):31–56, 2002. ISSN 1386-4181.

Aswath Damodaran. Lecture notes in corporate finance, Feb 2022.

Eugene F. Fama. Efficient capital markets: A review of theory and empirical work. The

Journal of Finance, 25(2):383–417, 1970.

Harry Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952. ISSN 00221082,

15406261.

William F. Sharpe. Capital asset prices: A theory of market equilibrium under conditions of

risk. Journal of Finance, 19(3):425–442, 1964. ISSN 00221082, 15406261.

Michael C. Jensen. The performance of mutual funds in the period 1945-1964. Journal of

Finance, 23(2):389–416, 1968. ISSN 00221082, 15406261. URL http://www.jstor.

org/stable/2325404.

https://royalsocietypublishing.org/doi/abs/10.1098/rsos.191649
https://royalsocietypublishing.org/doi/abs/10.1098/rsos.191649
https://www.monash.edu/__data/assets/pdf_file/0016/2010553/The-Australian-superannuation-system_v3.pdf
https://www.monash.edu/__data/assets/pdf_file/0016/2010553/The-Australian-superannuation-system_v3.pdf
https://www.monash.edu/__data/assets/pdf_file/0016/2010553/The-Australian-superannuation-system_v3.pdf
http://www.jstor.org/stable/2325404
http://www.jstor.org/stable/2325404

160 BIBLIOGRAPHY

Robert Oerter. The Theory of Almost Everything: The Standard Model, the Unsung Triumph

of Modern Physics. Plume, 1 edition, 2006.

The Nobel Foundation. The sveriges riksbank prize in economic sciences in memory of

alfred nobel 1990, Oct 1990. URL https://www.nobelprize.org/prizes/

economic-sciences/1990/summary/. 2022-09-01.

Rolf W. Banz. The relationship between return and market value of common stocks. Journal

of Financial Economics, 9(1):3–18, 1981.

Dennis Stattman. Book values and stock returns. In The Chicago MBA: A Journal of Selected

Papers, volume 4, pages 25–45, 1980.

Barr Rosenberg, Kenneth Reid, and Ronald Lanstein. Persuasive evidence of

market inefficiency. Journal of Portfolio Management, 11(3):9–16, Spring

1985. URL http://ezproxy.lib.uts.edu.au/login?url=https:

//search-proquest-com.ezproxy.lib.uts.edu.au/docview/

195568751?accountid=17095. Name - New York Stock Exchange; Copy-

right - Copyright Euromoney Institutional Investor PLC Spring 1985; Last updated -

2015-05-25.

Campbell R. Harvey, Yan Liu, and Heqing Zhu. ... and the cross-section of expected returns.

The Review of Financial Studies, 29(1):5–68, 2016.

Eugene F. Fama and James D. MacBeth. Risk, return, and equilibrium: Empirical tests.

Journal of Political Economy, 81(3):607–637, 1973. doi: 10.1086/260061.

Andrew Alford, Robert Jones, and Terence Lim. Quantitative Equity Portfolio Management,

chapter 11, pages 287–306. Volume 1 of Fabozzi and Markowitz (2011), 2011. ISBN

9781118267028.

Guofu Zhou and Frank J. Fabozzi. Factor Models, chapter 5, pages 103–124. Volume 1 of

Fabozzi and Markowitz (2011), 2011. ISBN 9781118267028.

Jeffrey Marc Wooldridge. Introductory Econometrics: A Modern Approach. South-Western,

4th edition, 2008. ISBN 9780324581621.

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quant-

itative Finance, 1:223–236, 2001.

https://www.nobelprize.org/prizes/economic-sciences/1990/summary/
https://www.nobelprize.org/prizes/economic-sciences/1990/summary/
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/195568751?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/195568751?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/195568751?accountid=17095

BIBLIOGRAPHY 161

Sara Salinas and Michelle Castillo. Facebook just suffered its worst day

ever. CNBC, 2018. URL https://www.cnbc.com/2018/07/26/

facebook-is-on-pace-for-its-worst-day-ever.html.

Mohamed A. El-Erian. Facebook just suffered its worst day ever. Bloomberg, 2021.

URL https://www.bloomberg.com/opinion/articles/2021-01-30/

gamestop-gme-short-squeeze-who-will-surrender-first.

Anders Johansen and Didier Sornette. Endogenous versus exogenous crashes in financial mar-

kets. In SSRN, 2002. URL https://papers.ssrn.com/sol3/papers.cfm?

abstract_id=344980.

Yahoo! Finance. Gamestop corp. (gme) stock historical prices & data – yahoo finance,

Mar 2022a. URL https://au.finance.yahoo.com/quote/GME/history?

p=GME. 2022-03-07.

Ruiqiang Song, Min Shu, and Wei Zhu. The 2020 global stock market crash: Endogenous

or exogenous? Physica A: Statistical Mechanics and its Applications, 585:126425, 2022.

ISSN 0378-4371. doi: https://doi.org/10.1016/j.physa.2021.126425.

Yahoo! Finance. Devon energy corporation (dvn) stock historical prices & data – ya-

hoo finance, Mar 2022b. URL https://au.finance.yahoo.com/quote/DVN/

history?p=DVN. 2022-03-07.

Guy P. Nason. Stationary and non-stationary time-series. Statistics in Volcanology, 1:129–142,

2006.

João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia.

A survey on concept drift adaptation. ACM Computing Surveys, 46(4):44:1–44:37, March

2014. ISSN 0360-0300. doi: 10.1145/2523813.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

Jeffrey C. Schlimmer and Richard H. Granger. Incremental learning from noisy data. Machine

Learning, 1(3):317–354, 1986. doi: 10.1007/BF00116895.

Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden

contexts. Machine Learning, 23(1):69–101, 1996. doi: 10.1007/BF00116900.

https://www.cnbc.com/2018/07/26/facebook-is-on-pace-for-its-worst-day-ever.html
https://www.cnbc.com/2018/07/26/facebook-is-on-pace-for-its-worst-day-ever.html
https://www.bloomberg.com/opinion/articles/2021-01-30/gamestop-gme-short-squeeze-who-will-surrender-first
https://www.bloomberg.com/opinion/articles/2021-01-30/gamestop-gme-short-squeeze-who-will-surrender-first
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=344980
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=344980
https://au.finance.yahoo.com/quote/GME/history?p=GME
https://au.finance.yahoo.com/quote/GME/history?p=GME
https://au.finance.yahoo.com/quote/DVN/history?p=DVN
https://au.finance.yahoo.com/quote/DVN/history?p=DVN
http://www.deeplearningbook.org

162 BIBLIOGRAPHY

M. Hashem Pesaran and Allan Timmermann. Predictability of stock returns: Robustness and

economic significance. Journal of Finance, 50:1201–1228, 1995.

Peter Bossaerts and Pierre Hillion. Implementing statistical criteria to select return forecasting

models: What do we learn? Review of Financial Studies, 12(2):405–428, 06 1999. ISSN

0893-9454. doi: 10.1093/rfs/12.2.405. URL https://doi.org/10.1093/rfs/12.

2.405.

Timotheos Angelidis, Athanasios Sakkas, and Nikolaos Tessaromatis. Stock market disper-

sion, the business cycle and expected factor returns. Journal of Banking & Finance, 59:

265–279, 2015. ISSN 0378-4266. doi: https://doi.org/10.1016/j.jbankfin.2015.04.025.

R. David McLean and Jeffrey Pontiff. Does academic research destroy stock return predictab-

ility? Journal of Finance, 71(1):5–32, 2016. doi: 10.1111/jofi.12365.

Xi Dong, Qi Liu, Lei Lu, Bo Sun, and Hongjun Yan. Anomaly discovery and arbitrage trading.

In SSRN working paper, 2020. URL https://papers.ssrn.com/sol3/papers.

cfm?abstract_id=2431498.

Narasimhan Jegadeesh and Sheridan Titman. Returns to buying winners and selling losers:

Implications for stock market efficiency. Journal of Finance, 48(1):65–91, 1993.

Clifford S. Asness, Tobias J. Moskowitz, and Lasse Heje Pedersen. Value and momentum

everywhere. Journal of Finance, 68(3):929–985, 2013. ISSN 00221082, 15406261.

Melody Y. Huang, Randall R. Rojas, and Patrick D. Convery. Forecasting stock market

movements using google trend searches. Empirical Economics, 59:2821–2839, 2020. ISSN

1435-8921. doi: https://doi.org/10.1007/s00181-019-01725-1.

Lily Fang and Joel Peress. Media coverage and the cross-section of stock returns. Journal of

Finance, 64(5):2023–2052, 2009.

Alois Weigand. Machine learning in empirical asset pricing. Financial Markets and Portfolio

Management, 33:93–104, 2019.

Marcial Messmer. Deep learning and the cross-section of expected returns. In SSRN,

2017. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3081555.

Masaya Abe and Hideki Nakayama. Deep learning for forecasting stock returns in the

cross-section. In arXiv, 2018. URL https://arxiv.org/abs/1801.01777.

https://doi.org/10.1093/rfs/12.2.405
https://doi.org/10.1093/rfs/12.2.405
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2431498
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2431498
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3081555
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3081555
https://arxiv.org/abs/1801.01777

BIBLIOGRAPHY 163

Baruch Lev and Anup Srivastava. Explaining the recent failure of value investing. In SSRN,

2019. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3442539.

Eugene F. Fama and Kenneth R. French. The cross-section of expected stock returns. Journal

of Finance, 47(2):427–465, 1992. ISSN 00221082, 15406261. URL http://www.

jstor.org/stable/2329112.

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

Jonathan Brogaard and Abalfazl Zareei. Machine learning and the stock market. In SSRN,

2022. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3233119.

Shihao Gu, Bryan Kelly, and Dacheng Xiu. Autoencoder asset pricing models. Journal of Eco-

nometrics, 222(1):429–450, 2021. ISSN 0304-4076. Annals Issue:Financial Econometrics

in the Age of the Digital Economy.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.

Springer, 2 edition, 2020.

Luyang Chen, Markus Pelger, and Jason Zhu. Deep learning in asset pricing. In arXiv, 2021.

URL https://arxiv.org/abs/1904.00745.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Ghahramani

et al. (2014), pages 2672–2680.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Anomaly discovery and

arbitrage trading. In arXiv, 2021. URL https://arxiv.org/abs/2106.04560.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive

power of neural networks: A view from the width. In Guyon et al. (2017), pages 6232–6240.

ISBN 9781510860964.

John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets: The Difficulty of

Learning LongTerm Dependencies, pages 237–243. Wiley-IEEE Press, 2001.

David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to

massive label noise. In arXiv, 2018. URL https://arxiv.org/abs/1705.10694.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3442539
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3442539
http://www.jstor.org/stable/2329112
http://www.jstor.org/stable/2329112
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3233119
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3233119
https://arxiv.org/abs/1904.00745
https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/1705.10694

164 BIBLIOGRAPHY

Milad Moradi, Kathrin Blagec, and Matthias Samwald. Deep learning models are not robust

against noise in clinical text. In arXiv, 2021. URL https://arxiv.org/abs/2108.

12242.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, January 2014. ISSN 1532-4435.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu.

Making deep neural networks robust to label noise: A loss correction approach. In Yanxi

Liu, James M. Rehg, Camillo J. Taylor, and Ying Wu, editors, Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017, pages 2233–2241,

Honolulu, HI, USA, 2017. IEEE.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection

by deep multi-task learning. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne

Tuytelaars, editors, Proceedings of the 13th European Conference on Computer Vision,

ECCV 2014, pages 94–108. Springer International Publishing, 2014. ISBN 978-3-319-

10599-4.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and

Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine

Learning Research, 12(76):2493–2537, 2011.

Omer Sezer, Ugur Gudelek, and Murat Ozbayoglu. Financial time series forecasting with

deep learning : A systematic literature review: 2005—2019. Applied Soft Computing, 90:

106–181, 02 2020. doi: 10.1016/j.asoc.2020.106181.

Kai Chen, Yi Zhou, and Fangyan Dai. A lstm-based method for stock returns prediction: A

case study of china stock market. In Maria Prandini, editor, Proceedings of the 2015 IEEE

International Conference on Big Data, Big Data ’15’, pages 2823–2824, Santa Clara, CA,

USA, 2015. IEEE.

Rosa Altilio, Giorgio Andreasi, and Massimo Panella. A Classification Approach to Modeling

Financial Time Series, pages 97–106. Springer International Publishing, Cham, Switzerland,

2019.

https://arxiv.org/abs/2108.12242
https://arxiv.org/abs/2108.12242

BIBLIOGRAPHY 165

Yves Meyer. Wavelets and Operators, volume 1 of Cambridge Studies in Advanced Mathem-

atics. Cambridge University Press, 1993.

Hongju Yan and Hongbing Ouyang. Financial time series prediction based on deep learning.

Wireless personal communications, 102(2):683–700, 2017.

Zhixi Li and Vincent Tam. Combining the real-time wavelet denoising and long-short-term-

memory neural network for predicting stock indexes. In 2017 IEEE Symposium Series on

Computational Intelligence, SSCI, pages 1–8, Honolulu, HI, USA, 2017. IEEE.

John L. Kelly. A new interpretation of information rate. Bell System Technical Journal, 35(4):

917–926, 1956.

Tim Byrnes and Tristan Barnett. Generalized framework for applying the kelly criterion to

stock markets. International Journal of Theoretical and Applied Finance, 21(05):1–13,

2018. doi: 10.1142/S0219024918500334.

Fischer Black and Robert Litterman. Global portfolio optimization. Financial Analysts

Journal, 48(5):28–43, Sep 1992.

John Mitros and Brian Mac Namee. On the validity of bayesian neural networks for uncertainty

estimation. In arXiv, 2019. URL https://arxiv.org/abs/1912.01530.

Matias Quiroz, Robert Kohn, Mattias Villani, and Minh-Ngoc Tran. Speeding up MCMC

by efficient data subsampling. Journal of the American Statistical Association, 114(526):

831–843, 2019. doi: 10.1080/01621459.2018.1448827.

Gabriele Ranco, Darko Aleksovski, Guido Caldarelli, Miha Grčar, and Igor Mozetič. The

effects of twitter sentiment on stock price returns. PloS one, 10:1–21, 09 2015. doi:

10.1371/journal.pone.0138441.

Wataru Souma, Irena Vodenska, and Hideaki Aoyama. Enhanced news sentiment analysis

using deep learning methods. Journal of Computational Social Science, 2:33–46, 01 2019.

doi: 10.1007/s42001-019-00035-x.

Ran El-Yaniv, Amos Fiat, Richard M. Karp, and G. Turpin. Optimal search and one-

way trading online algorithms. Algorithmica, 30(1):101–139, 05 2001. doi: 10.1007/

s00453-001-0003-0.

Lili Dworkin, Michael Kearns, and Yuriy Nevmyvaka. Pursuit-evasion without regret, with

an application to trading. In Eric P. Xing and Tony Jebara, editors, Proceedings of the

https://arxiv.org/abs/1912.01530

166 BIBLIOGRAPHY

31st International Conference on Machine Learning, volume 37, pages 1521–1529, Bejing,

China, 2014. JMLR.org.

Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized

trade execution. In William Cohen and Andrew Moore, editors, Proceedings of the

23rd International Conference on Machine Learning, volume 2006 of ACM International

Conference Proceeding Series, pages 673–680, Pittsburgh, PA, USA, 06 2006. ACM.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and Joelle

Pineau. An introduction to deep reinforcement learning. Foundations and Trends in

Machine Learning, 11(3–4):1–156, 2018. doi: 10.1561/2200000071.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5):359—-366, jul 1989. ISSN 0893-6080.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals and Systems, 2(4):303–314, 1989. ISSN 1435-568X. doi: 10.1007/

BF02551274. URL https://doi.org/10.1007/BF02551274.

Alexander Bain. Mind and Body: The Theories of their Relation. D. Appleton and Company,

New York, NY, USA, 1873.

William James. The Principles of Psychology. H. Holt and Company, New York, NY, USA,

1890.

Frank Rosenblatt. The perceptron: A probalistic model for information storage and organiza-

tion in the brain. Psychological Review, 65(6):386–408, 1958.

Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan Books, Washington D.C., USA, 1961.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by

Error Propagation, pages 318–362. MIT Press, Cambridge, MA, USA, 1986a. ISBN

026268053X.

Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. The connection

between approximation, depth separation and learnability in neural networks. In Mikhail

Belkin and Samory Kpotufe, editors, Conference on Learning Theory, COLT 2021, pages

3265–3295, Boulder, CO, USA, 2021. PMLR.

https://doi.org/10.1007/BF02551274

BIBLIOGRAPHY 167

Shan Sung Liew, Mohamed Khalil-Hani, and Rabia Bakhteri. Bounded activation functions for

enhanced training stability of deep neural networks on visual pattern recognition problems.

Neurocomputing, 216:718–734, 2016. ISSN 0925-2312. doi: https://doi.org/10.1016/j.

neucom.2016.08.037.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the

best multi-stage architecture for object recognition? In 2009 IEEE 12th International

Conference on Computer Vision, ICCV 2009, pages 2146–2153, Kyoto, Japan, 2009. IEEE.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-

chines. In Francis R. Bach and David M. Blei, editors, Proceedings of the 27th International

Conference on Machine Learning, ICML’10, pages 807–814. JMLR.org, 2010.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. In

6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,

Canada, 2018. OpenReview.net.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep

network learning by exponential linear units (elus). In Yoshua Bengio and Yann LeCun,

editors, 4th International Conference on Learning Representations, ICLR 2016, 2016.

Solomon Kullback and Richard Leibler. On information and sufficiency. The Annals of

Mathematical Statistics, 22(1):79–86, 1951. doi: 10.1214/aoms/1177729694.

Kevin Wainwright and Alpha C. Chiang. Fundamental Methods of Mathematical Economics.

McGraw Hill, fourth edition, 2005.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points - online

stochastic gradient for tensor decomposition. In Peter Grünwald, Elad Hazan, and Satyen

Kale, editors, Proceedings of The 28th Conference on Learning Theory, COLT 2015, pages

797–842, Paris, France, 2015. JMLR.org.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to

escape saddle points efficiently. In Precup and Teh (2017), pages 1724–1732.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD escape

local minima? In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th

International Conference on Machine Learning (ICML), volume 80, pages 2698–2707,

Stockholm, Sweden, 2018. PMLR.

168 BIBLIOGRAPHY

Nelson Morgan and Hervé A. Bourlard. Generalization and parameter estimation in feedfor-

ward nets: Some experiments. In D. S. Touretzky, editor, Advances in Neural Information

Processing Systems 2, pages 630–637. Morgan-Kaufmann, 1990.

Russell Deryl Reed. Pruning algorithms-a survey. Transactions on Neural Networks, 4(5):

740–747, 1993. ISSN 1045-9227. doi: 10.1109/72.248452.

Lutz Prechelt. Early Stopping - But When? Springer-Verlag, London, UK, 1998. ISBN

3-540-65311-2.

Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stopping

without a validation set. CoRR, abs/1703.09580, 2017.

Jonas Sjöberg and Lennart Ljung. Overtraining, regularization and searching for a minimum,

with application to neural networks. International Journal of Control, 62(6):1391–1407,

1995. doi: 10.1080/00207179508921605.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

ISSN 1532-4435.

Geoffrey Hinton and Tijmen Tieleman. Lecture 6.5 - rmsprop, coursera: Neural networks

for machine learning, 2012. URL http://www.cs.toronto.edu/~tijmen/

csc321/slides/lecture_slides_lec6.pdf.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Bengio

and LeCun (2015).

Timothy Dozat. Incorporating nesterov momentum into adam. In Yoshua Bengio and Yann

LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016,

2016.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate

o(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of

initialization and momentum in deep learning. In Dasgupta and McAllester (2013), pages

1139–1147.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the 13th

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

BIBLIOGRAPHY 169

International Conference on Artificial Intelligence and Statistics, volume 9 of AISTATS

2010, pages 249–256. PMLR, 2010.

David M. Bradley. Learning in Modular Systems. PhD thesis, The Robotics Institute, Carnegie

Mellon University, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In 2015 IEEE Inter-

national Conference on Computer Vision, ICCV, pages 1026–1034. IEEE, 2015. doi:

10.1109/ICCV.2015.123.

Siddharth Krishna Kumar. On weight initialization in deep neural networks. In arXiv, 2017.

URL https://arxiv.org/abs/1704.08863.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In Bach and Blei (2015), pages 448–456.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch

normalization help optimization? In Bengio et al. (2018).

Jonas Moritz Kohler, Hadi Daneshmand, Aurélien Lucchi, Thomas Hofmann, Ming Zhou,

and Klaus Neymeyr. Exponential convergence rates for batch normalization: The power

of length-direction decoupling in non-convex optimization. In Kamalika Chaudhuri and

Masashi Sugiyama, editors, Proceedings of the 22nd International Conference on Artificial

Intelligence and Statistics, volume 89 of AISTATS 2019, pages 806–815. PMLR, 2019.

Tim Salimans and Durk P. Kingma. Weight normalization: A simple reparameterization to

accelerate training of deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29,

pages 901–909, Red Hook, NY, USA, 2016. Curran Associates, Inc.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by

Error Propagation, chapter 8, pages 318—-362. MIT Press, Cambridge, MA, USA, 1986b.

ISBN 026268053X.

Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen,

Zhifeng Chen, Anjuli Kannan, Ron J. Weiss, Kanishka Rao, Ekaterina Gonina, Navdeep

Jaitly, Bo Li, Jan Chorowski, and Michiel Bacchiani. State-of-the-art speech recognition

https://arxiv.org/abs/1704.08863

170 BIBLIOGRAPHY

with sequence-to-sequence models. In Dan Schonfeld, Pascale Fung, and Nam Ik Cho, edit-

ors, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 4774–4778, Calgary, AB, Canada, 2018. IEEE. doi: 10.1109/ICASSP.2018.8462105.

Yunus Emre Cebeci. A recurrent neural network model for weather forecasting. In 2019 4th

International Conference on Computer Science and Engineering, UBMK, pages 591–595.

IEEE, 2019. doi: 10.1109/UBMK.2019.8907196.

Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck. Generating music by

fine-tuning recurrent neural networks with reinforcement learning. In 5th International

Conference on Learning Representations, ICLR 2017. OpenReview.net, 2017.

Xiumin Li, Lin Yang, Fangzheng Xue, and Hongjun Zhou. Time series prediction of stock

price using deep belief networks with intrinsic plasticity. In Proceedings of the 29th

Chinese Control And Decision Conference, CCDC 2017, pages 1237–1242. IEEE, 2017.

doi: 10.1109/CCDC.2017.7978707.

Arzoo Katiyar and Claire Cardie. Nested named entity recognition revisited. In Marilyn A.

Walker, Heng Ji, and Amanda Stent, editors, Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT 2018, pages 861–871, New Orleans, LA, USA,

2018. Association for Computational Linguistics. doi: 10.18653/v1/n18-1079.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks. In Dasgupta and McAllester (2013), pages 1310–1318.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. In arXiv, 2018. URL

https://arxiv.org/abs/1803.01271.

Yoshua Bengio, Patrice Simard, , and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

doi: 10.1109/72.279181.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9

(8):1735—-1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and Jür-

gen Schmidhuber. A novel connectionist system for unconstrained handwriting recognition.

https://arxiv.org/abs/1803.01271

BIBLIOGRAPHY 171

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5):855–868, 2009.

doi: 10.1109/TPAMI.2008.137.

Nal Kalchbrenner, Lasse Espeholt, Aäron van den Oord, Alex Graves, and Koray Kavuk-

cuoglu. Neural machine translation in linear time. In arXiv, 2016. URL https:

//arxiv.org/abs/1609.03499.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient

object localization using convolutional networks. In Grauman et al. (2015), pages 648–656.

Yann LeCun. Modeles connexionnistes de l’apprentissage. Université de Paris VI, June 1987.

PhD thesis.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value

decomposition. Biological Cybernetics, 59(4–5):291–294, September 1988. ISSN 0340-

1200. doi: 10.1007/BF00332918.

Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, minimum description length and

helmholtz free energy. In Proceedings of the 6th International Conference on Neural

Information Processing Systems, NIPS’93, pages 3–10, San Francisco, CA, USA, 1993.

Morgan Kaufmann Publishers Inc.

Pierre Baldi and K. Hornik. Neural networks and principal component analysis: Learning

from examples without local minima. Neural Networks, 2(1):53–58, January 1989. ISSN

0893-6080. doi: 10.1016/0893-6080(89)90014-2.

Lei Le, Andrew Patterson, and Martha White. Supervised autoencoders: Improving gen-

eralization performance with unsupervised regularizers. In Bengio et al. (2018), pages

107–117.

Brecht Evens, Puya Latafat, Andreas Themelis, Johan Suykens, and Panagiotis Patrinos.

Neural network training as an optimal control problem: An augmented lagrangian approach.

In Maria Prandini, editor, Proceedings of the 60th IEEE Conference on Decision and

Control, CDC, pages 5136–5143, Fairmont, TX, USA, 2021. IEEE.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and

Trends® in Machine Learning, 4(2):107–194, 2012. ISSN 1935-8237. doi: 10.1561/

2200000018.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499

172 BIBLIOGRAPHY

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?”: Ex-

plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 1135–1144,

New York, NY, USA, 2016. ACM.

Keith Ambachtsheer. Profit potential in an almost efficient market. Journal of Portfolio

Management, 1(1):84, FALL 1974.

Frank J. Fabozzi, James L. Grant, and Raman Vardharaj. Common Stock Portfolio Manage-

ment Strategies, chapter 9, pages 229–270. Volume 1 of Fabozzi and Markowitz (2011),

2011b. ISBN 9781118267028.

Sergul Aydore, Tianhao Zhu, and Dean P. Foster. Dynamic local regret for non-convex online

forecasting. In Wallach et al. (2019), pages 7980–7989.

Barbara Rossi and Atsushi Inoue. Out-of-sample forecast tests robust to the choice of window

size. Journal of Business & Economic Statistics, 30(3):432–453, 2012.

Christoph Bergmeir, Rob Hyndman, and Bonsoo Koo. A note on the validity of cross-

validation for evaluating autoregressive time series prediction. Computational Statistics &

Data Analysis, 120:70–83, 4 2018. doi: 10.1016/j.csda.2017.11.003.

Yujie Liu, Hongbin Dong, Xingmei Wang, and Shuang Han. Time series prediction based on

temporal convolutional network. In Simon Xu, Yongbin Wang, Mingyong Shi, Wenqiang

Shang, Jiefeng Liu, and Kailong Zhang, editors, 2019 IEEE/ACIS 18th International

Conference on Computer and Information Science, ICIS 2019, pages 300–305, Beijing,

China, 2019. IEEE.

Subhrajit Samanta, Mahardhika Pratama, Suresh Sundaram, and Narasimalu Srikanth. Learn-

ing elastic memory online for fast time series forecasting. Neurocomputing, 390:315–326,

2020. ISSN 0925-2312.

Nicolò Cesa-Bianchi, Pierre Gaillard, Gábor Lugosi, and Gilles Stoltz. A new look at shifting

regret. In arXiv, 2012.

Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991. doi:

10.1111/j.1467-9965.1991.tb00002.x.

Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex

games. In Precup and Teh (2017), pages 1433–1441.

BIBLIOGRAPHY 173

Jeremiah Green, John R. M. Hand, and X. Frank Zhang. The characteristics that provide

independent information about average U.S. monthly stock returns. The Review of Financial

Studies, 30(12):4389–4436, 03 2017. ISSN 0893-9454. doi: 10.1093/rfs/hhx019.

Ivo Welch and Amit Goyal. A comprehensive look at the empirical performance of equity

premium prediction. The Review of Financial Studies, 21(4):1455–1508, 03 2008. ISSN

0893-9454. doi: 10.1093/rfs/hhm014.

Joel L. Horowitz, Tim Loughran, and N.E. Savin. The disappearing size effect. Research in

Economics, 54(1):83–100, 2000. ISSN 1090-9443.

U.S. Securities and Exchange Commission. Microcap stock: A guide for in-

vestors. https://www.sec.gov/reportspubs/investor-publications/

investorpubsmicrocapstockhtm.html, Sep 2013. Accessed: 2021-01-03.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient BackProp,

pages 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

Kent Daniel and Tobias J. Moskowitz. Momentum crashes. Journal of Financial Economics,

122(2):221–247, 2016. ISSN 0304-405X.

Spyros Makridakis and Michèle Hibon. The M3-competition: results, conclusions and

implications. International Journal of Forecasting, 16(4):451–476, 2000. ISSN 0169-2070.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Statistical and

machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3):

1–26, 03 2018. doi: 10.1371/journal.pone.0194889.

Rob J. Hyndman. A brief history of forecasting competitions. International Journal of

Forecasting, 36(1):7–14, 2020. ISSN 0169-2070. M4 Competition.

George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series Analysis:

Forecasting and Control. Prentice Hall, Englewood Cliffs, N.J., USA, 3 edition, 1994.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: neural

basis expansion analysis for interpretable time series forecasting. In 8th International

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 2020.

OpenReview.net.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Guyon et al. (2017),

https://www.sec.gov/reportspubs/investor-publications/investorpubsmicrocapstockhtm.html
https://www.sec.gov/reportspubs/investor-publications/investorpubsmicrocapstockhtm.html

174 BIBLIOGRAPHY

pages 6000–6010.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of

deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,

and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

NAACL 2019, pages 4171–4186, Online, 2019. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam

McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are

few-shot learners. In Larochelle et al. (2020), pages 1877–1901.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series

forecasting? In arXiv, 2022. URL https://arxiv.org/abs/2205.13504.

J.B. Heaton, Nick Polson, and Jan Hendrik Witte. Deep learning in finance. In arXiv, 2016.

URL https://arxiv.org/abs/1602.06561.

Jerzy Korczak and Marcin Hemes. Deep learning for financial time series forecasting in

a-trader system. In 2017 Federated Conference on Computer Science and Information

Systems, FedCSIS, pages 905–912, Prague, Czech Republic, 2017. IEEE.

Eugene F. Fama. Random walks in stock market prices. Financial Analysts Journal, 21(5):

55–59, 1965. ISSN 0015198X.

Amado Peiró. The distribution of stock returns: international evidence. Applied Financial

Economics, 4(6):431–439, 1994. doi: 10.1080/758518675.

Michael Isichenko. Quantitative Portfolio Management: The Art and Science of Statistical

Arbitrage. Wiley, 2021.

Jining Yan, Lin Mu, Lizhe Wang, Rajiv Ranjan, and Albert Y. Zomaya. Temporal convolu-

tional networks for the advance prediction of enso. Scientific Reports, 10(1), 2020.

Rui Dai, Shenkun Xu, Qian Gu, Chenguang Ji, and Kaikui Liu. Hybrid spatio-temporal graph

convolutional network: Improving traffic prediction with navigation data. In Proceedings

https://arxiv.org/abs/2205.13504
https://arxiv.org/abs/1602.06561

BIBLIOGRAPHY 175

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 3074–3082, Virtual Event, CA, USA, 2020. ACM.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva

Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,

Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff

Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff

Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap

between human and machine translation. In arXiv, 2016. URL https://arxiv.org/

abs/1609.08144.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE

transactions on signal processing, 45(11):2673–2681, 1997.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-

based neural machine translation. In Lluís Màrquez, Chris Callison-Burch, and Jian Su,

editors, Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2015, pages 1412–1421, Lisbon, Portugal, 2015. Association for

Computational Linguistics.

S. C. Suddarth and Y. L. Kergosien. Rule-injection hints as a means of improving network

performance and learning time. In Proceedings of the EURASIP Workshop 1990 on Neural

Networks, pages 120–129, Berlin, Heidelberg, 1990. Springer-Verlag. ISBN 3540522557.

Baruch Epstein and Ron Meir. Generalization bounds for unsupervised and semi-supervised

learning with autoencoders. In arXiv, 2019. URL https://arxiv.org/abs/1902.

01449.

Patrick Thiam, Hans A. Kestler, and Friedhelm Schwenker. Multimodal deep denoising

convolutional autoencoders for pain intensity classification based on physiological signals.

In Maria De Marsico, Gabriella Sanniti di Baja, and Ana L. N. Fred, editors, Proceedings

of the 9th International Conference on Pattern Recognition Applications and Methods,

ICPRAM 2020, pages 289–296. SCITEPRESS, 2020.

Michel Barlaud and Frederic Guyard. A non-parametric supervised autoencoder for

discriminative and generative modeling. In HAL, September 2020. URL https:

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1902.01449
https://arxiv.org/abs/1902.01449
https://hal.archives-ouvertes.fr/hal-02937643

176 BIBLIOGRAPHY

//hal.archives-ouvertes.fr/hal-02937643. working paper or preprint.

Shantipriya Parida, Esau Villatoro-Tello, Sajit Kumar, Mael Fabien, and Petr Motlicek.

Detection of similar languages and dialects using deep supervised autoencoders. In Pushpak

Bhattacharyya, Dipti Misra Sharma, and Rajeev Sangal, editors, Proceedings of the 17th

International Conference on Natural Language Processing, ICON 2020. SCITEPRESS,

2020.

M. Hiransha, E. A. Gopalakrishnan, Vijay Krishna Menon, and K. P. Soman. Nse stock

market prediction using deep-learning models. Procedia Computer Science, 132:1351–

1362, 2018. ISSN 1877-0509. International Conference on Computational Intelligence and

Data Science.

Rohitash Chandra and Shelvin Chand. Evaluation of co-evolutionary neural network architec-

tures for time series prediction with mobile application in finance. Applied Soft Computing,

49:462–473, 2016. ISSN 1568-4946.

Bryan Lim, Stefan Zohren, and Stephen Roberts. Enhancing time-series momentum strategies

using deep neural networks. Journal of Financial Data Science, 2019. ISSN 2405-9188.

doi: 10.3905/jfds.2019.1.015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for

semantic segmentation. In Grauman et al. (2015), pages 3431–3440.

Steven Y. K. Wong, Jennifer Chan, Lamiae Azizi, and Richard Y. D. Xu. Supervised temporal

autoencoder for stock return time-series forecasting. In Wing Kwong Chan, Bill Claycomb,

and Hiroki Takakura, editors, Proceedings of the IEEE 45th Annual Computer Software

and Applications Conference (COMPSAC’21), Madrid, Spain, 2021. IEEE.

George E. P. Box and Gwilym M. Jenkins. Time series analysis: forecasting and con-

trol. Holden-Day series in time series analysis and digital processing. Holden-Day, San

Francisco, rev. ed. edition, 1976. ISBN 0816211043.

Helmut Lütkepohl and Fang Xu. The role of the log transformation in forecasting economic

variables. Empirical Economics, 42(3):619–638, 2012.

Thomas Fischer and Christopher Krauss. Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational Research, 270

(2):654–669, 2018. ISSN 0377-2217.

https://hal.archives-ouvertes.fr/hal-02937643
https://hal.archives-ouvertes.fr/hal-02937643

BIBLIOGRAPHY 177

Fischer Black and Robert B Litterman. Asset allocation: Combining investor views with

market equilibrium. Journal of Fixed Income, 1(2):7–18, 1991.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseo Lee, Matthias

Humt, Jianxiang Feng, Anna M. Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher,

M. Shahzad, Wen Yang, Richard Bamler, and Xiaoxiang Zhu. A survey of uncertainty

in deep neural networks. In arXiv, 2021. URL https://arxiv.org/abs/2107.

03342.

Cornelia Gruber, Patrick Oliver Schenk, Malte Schierholz, Frauke Kreuter, and Göran Kauer-

man. Sources of uncertainty in machine learning – a statisticians’ view. In arXiv, 2023.

URL https://arxiv.org/abs/2305.16703.

Nis Meinert, Jakob Gawlikowski, and Alexander Lavin. The unreasonable effectiveness of

deep evidential regression. In arXiv, 2022. URL https://arxiv.org/abs/2205.

10060.

T.J. Sullivan. Introduction to Uncertainty Quantification. Number 63 in Texts in Applied

Mathematics. Springer International Publishing, Cham, Germany, 1st edition, 2015. ISBN

3-319-23395-5.

S. C. Hora. Aleatory and epistemic uncertainty in probability elicitation with an example from

hazardous waste management: Treatment of aleatory and epistemic uncertainty. Reliability

engineering & system safety, 54(2–3):217–223, 1996. ISSN 0951-8320.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural

Computation, 4(3):448–472, 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.448.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidel-

berg, 1996. ISBN 0387947248.

Yarin Gal. Uncertainty in Deep Learning. University of Cambridge, 2016. PhD thesis.

Wilfred Keith Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed

Bennamoun. Hands-on bayesian neural networks — a tutorial for deep learning users.

IEEE computational intelligence magazine, 17(2):29–48, 2022.

https://arxiv.org/abs/2107.03342
https://arxiv.org/abs/2107.03342
https://arxiv.org/abs/2305.16703
https://arxiv.org/abs/2205.10060
https://arxiv.org/abs/2205.10060

178 BIBLIOGRAPHY

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes

overconfidence in relu networks. In arXiv, 2020. URL https://arxiv.org/abs/

2002.10118.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V.

Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncer-

tainty? evaluating predictive uncertainty under dataset shift. In Wallach et al. (2019), pages

14003–14014.

José M. Bernardo and Adrian F. M. Smith. Bayesian theory. John Wiley & Sons Ltd., 2000.

Zhijian Liu, Alexander Amini, Sibo Zhu, Sertac Karaman, Song Han, and Daniela L. Rus.

Efficient and robust lidar-based end-to-end navigation. In Yu Sun, editor, 2021 IEEE

International Conference on Robotics and Automation, ICRA, pages 13247–13254, Xi’an,

China, 2021. IEEE.

Peide Cai, Hengli Wang, Huaiyang Huang, Yuxuan Liu, and Ming Liu. Vision-based autonom-

ous car racing using deep imitative reinforcement learning. IEEE Robotics and Automation

Letters, 6(4):7262–7269, 2021. doi: 10.1109/LRA.2021.3097345.

Sandeep Kumar Singh, Jaya Shradha Fowdur, Jakob Gawlikowski, and Daniel Medina.

Leveraging graph and deep learning uncertainties to detect anomalous maritime trajectories.

IEEE Transactions on Intelligent Transportation Systems, 23(12):23488–23502, 2022. doi:

10.1109/TITS.2022.3190834.

Ava P. Soleimany, Alexander Amini, Samuel Goldman, Daniela Rus, Sangeeta N. Bhatia, and

Connor W. Coley. Evidential deep learning for guided molecular property prediction and

discovery. ACS central science, 7(8):1356–1367, 2021. ISSN 2374-7943.

Hao Li and Jianan Liu. 3D high-quality magnetic resonance image restoration in clinics using

deep learning. In arXiv, 2022. URL https://arxiv.org/abs/2111.14259.

Dongpin Oh and Bonggun Shin. Improving evidential deep learning via multi-task learning.

In Thirty-Sixth AAAI Conference on Artificial Intelligence, pages 7895–7903. AAAI Press,

2022.

Bertrand Charpentier, Oliver Borchert, Daniel Zügner, Simon Geisler, and Stephan Gün-

nemann. Natural posterior network: Deep bayesian predictive uncertainty for exponential

family distributions. In 9th International Conference on Learning Representations (ICLR),

https://arxiv.org/abs/2002.10118
https://arxiv.org/abs/2002.10118
https://arxiv.org/abs/2111.14259

BIBLIOGRAPHY 179

online, 2021. OpenReview.net.

Andrey Malinin, Sergey Chervontsev, Ivan Provilkov, and Mark Gales. Regression prior

networks. In arXiv, 2020. URL https://arxiv.org/abs/2006.11590.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and

estimation. Journal of the American Statistical Association, 102(477):359–378, 2007.

Viktor Bengs, Eyke Hüllermeier, and Willem Waegeman. On second-order scoring rules

for epistemic uncertainty quantification. In arXiv, 2023. URL https://arxiv.org/

abs/2301.12736.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics, 31(3):307–327, 1986. ISSN 0304-4076. doi: https://doi.org/10.1016/

0304-4076(86)90063-1.

Rachael Carroll and Colm Kearney. GARCH Modeling of Stock Market Volatility, pages

71–90. Chapman & Hall/CRC finance series. CRC Press, New York, NY, USA, 1st edition,

2009.

John Fry and Eng-Tuck Cheah. Negative bubbles and shocks in cryptocurrency markets.

International Review of Financial Analysis, 47:343–352, 2016. ISSN 1057-5219.

Christian M. Hafner. Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility.

Journal of Financial Econometrics, 18(2):233–249, 10 2018. ISSN 1479-8409. doi:

10.1093/jjfinec/nby023.

Cathy Yi-Hsuan Chen and Christian M. Hafner. Sentiment-induced bubbles in the crypto-

currency market. Journal of Risk and Financial Management, 12(2):1–12, 2019. ISSN

1911-8074.

José Antonio Núñez, Mario I. Contreras-Valdez, and Carlos A. Franco-Ruiz. Statistical

analysis of bitcoin during explosive behavior periods. PLOS ONE, 14(3):1–22, 03 2019.

doi: 10.1371/journal.pone.0213919.

Alla Petukhina, Simon Trimborn, Wolfgang Karl Härdle, and Hermann Elendner. Invest-

ing with cryptocurrencies – evaluating their potential for portfolio allocation strategies.

Quantitative Finance, 21(11):1825–1853, 2021.

José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for

scalable learning of bayesian neural networks. In Bach and Blei (2015), pages 1861–1869.

https://arxiv.org/abs/2006.11590
https://arxiv.org/abs/2301.12736
https://arxiv.org/abs/2301.12736

180 BIBLIOGRAPHY

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In Maria-Florina Balcan and Kilian Q. Weinberger,

editors, Proceedings of the 33rd International Conference on Machine Learning (ICML),

volume 48, pages 1050–1059. JMLR.org, 2016.

Michael Jordan. The exponential family: Conjugate priors, 2009.

David F. Andrews and Colin L. Mallows. Scale mixtures of normal distributions. Journal of

the Royal Statistical Society: Series B (Methodological), 36(1):99–102, 1974.

S.T. Boris Choy and Jennifer S.K. Chan. Scale mixtures distributions in statistical modelling.

Australian & New Zealand Journal of Statistics, 50(2):135–146, 2008. ISSN 1369-1473.

Christian Brownlees, Robert Engle, and Bryan Kelly. A practical guide to volatility forecasting

through calm and storm. Journal of Risk, 14(2):3–22, 2011.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996. ISSN 1573-0565.

Adrian E. Raftery, Miroslav Kárný, and Pavel Ettler. Online prediction under model uncer-

tainty via dynamic model averaging: Application to a cold rolling mill. Technometrics, 52

(1):52–66, 2010. doi: 10.1198/TECH.2009.08104. PMID: 20607102.

Robert F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance

of united kingdom inflation. Econometrica, 50(4):987–1007, 1982.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A comparison of arima

and lstm in forecasting time series. In M. Arif Wani, editor, Proceedings of the 17th

IEEE International Conference on Machine Learning and Applications, pages 1394–1401,

Orlando, FL, USA, 2018. IEEE.

Alexander Lipton. Cryptocurrencies change everything. Quantitative Finance, 21(8):1257–

1262, 2021. doi: 10.1080/14697688.2021.1944490.

Wenbo Ge, Pooia Lalbakhsh, Leigh Isai, Artem Lenskiy, and Hanna Suominen. Neural

network–based financial volatility forecasting: A systematic review. ACM Computing

Surveys, 55(1), 2022.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss

landscape of neural nets. In Bengio et al. (2018).

Robert A. Wood, Thomas H. McInish, and J. Keith Ord. An investigation of transactions data

for nyse stocks. Journal of Finance, 40(3):723–739, 1985.

BIBLIOGRAPHY 181

Prem C. Jain and Gun-Ho Joh. The dependence between hourly prices and trading volume.

Journal of Financial and Quantitative Analysis, 23(3):269–283, 1988.

Thomas H. McInish and Robert A. Wood. An analysis of intraday patterns in bid/ask spreads

for nyse stocks. Journal of Finance, 47(2):753–764, 1992.

James Eaves and Jeffrey Williams. Are intraday volume and volatility u-shaped after account-

ing for public information? American Journal of Agricultural Economics, 92(1):212–227,

2010.

Larry J. Lockwood and Scott C. Linn. An examination of stock market return volatility during

overnight and intraday periods, 1964-1989. Journal of Finance, 45(2):591–601, 1990.

ISSN 00221082, 15406261. URL http://www.jstor.org/stable/2328672.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Frederick C. Webber. Multi-Objective Reinforcement Learning with Concept Drift. PhD

thesis, Air Force Institute of Technology, 2017.

Aswath Damodaran. Damodaran on Valuation: Security Analysis for Investment and Corpor-

ate Finance. Wiley, 2 edition, 2006.

Dogu Araci. Finbert: Financial sentiment analysis with pre-trained language models. In

arXiv, 2019. URL https://arxiv.org/abs/1908.10063.

Tom M. Mitchell. Machine Learning. McGraw-Hill Education, 1 edition, 1997.

Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta, and Thomas Wolf. Transfer

learning in natural language processing. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Tutorials, pages

15–18, Minneapolis, MN, USA, 2019. Association for Computational Linguistics.

Wenjuan Han, Bo Pang, and Ying Nian Wu. Robust transfer learning with pretrained language

models through adapters. In Proceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 2: Short Papers), pages 854–861, Online, 2021. Association

for Computational Linguistics.

Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett, editors. Advances in Neural Information Processing

http://www.jstor.org/stable/2328672
https://arxiv.org/abs/1908.10063

182 BIBLIOGRAPHY

Systems 30, Long Beach, CA, USA, 2017. Curran Associates, Inc.

Hugo Larochelle, Marc’Aurelio Ranzato, Raia, Hadsell, Maria-Florina Balcan, and Hui Lin,

editors. Advances in Neural Information Processing Systems 33, NIPS 2020, Vancouver,

BC, Canada, 2020. Curran Associates, Inc.

Yoshua Bengio and Yann LeCun, editors. 3rd International Conference on Learning Repres-

entations, ICLR 2015, San Diego, CA, USA, 2015.

Kristen Grauman, Erik Learned-Miller, Antonio Torralba, and Andrew Zisserman, editors.

Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, 2015. IEEE.

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors.

Advances in Neural Information Processing Systems 27, NIPS, 2014. Curran Associates,

Inc.

Frank J. Fabozzi and Harry M. Markowitz, editors. The Theory and Practice of Investment

Management, volume 1. John Wiley & Sons, Ltd, 2011. ISBN 9781118267028.

Doina Precup and Yee Whye Teh, editors. Proceedings of the 34th International Conference

on Machine Learning (ICML), volume 70, Sydney, NSW, Australia, 2017. JMLR.org.

Sanjoy Dasgupta and David McAllester, editors. Proceedings of the 30th International

Conference on Machine Learning, ICML’13, 2013. JMLR.org.

Francis R. Bach and David M. Blei, editors. Proceedings of the 32nd International Conference

on Machine Learning (ICML), volume 37, 2015. JMLR.org.

Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,

and Roman Garnett, editors. Advances in Neural Information Processing Systems 31,

NIPS’18, Montréal, QC, Canada, 2018. Curran Associates, Inc.

Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.

Fox, and Roman Garnett, editors. Advances in Neural Information Processing Systems 32,

Vancouver, BC, Canada, 2019. Curran Associates, Inc.

John Lintner. The valuation of risk assets and the selection of risky investments in stock

portfolios and capital budgets. Review of Economics & Statistics, 47(1):13–37, 1965. ISSN

00346535.

BIBLIOGRAPHY 183

Fischer Black. Capital market equilibrium with restricted borrowing. Journal of Business, 45

(3):444–455, 1972. ISSN 00219398, 15375374.

Malcolm Baker, Brendan Bradley, and Jeffrey Wurgler. Benchmarks as limits to arbitrage:

Understanding the low-volatility anomaly. Financial Analysts Journal, 67(1):40–54, 2011.

Richard Roll. A critique of the asset pricing theory’s tests part i: On past and potential

testability of the theory. Journal of Financial Economics, 4(2):129–176, 1977. ISSN

0304-405X. doi: https://doi.org/10.1016/0304-405X(77)90009-5.

Eugene F. Fama and Kenneth R. French. The capital asset pricing model: Theory and

evidence. Journal of Economic Perspectives, 18(3):25–46, September 2004. doi: 10.1257/

0895330042162430. URL http://www.aeaweb.org/articles?id=10.1257/

0895330042162430.

John H. Cochrane. Asset Pricing. Princeton University Press, 2005. ISBN 0691121370.

Richard G. Sloan. Do stock prices fully reflect information in accruals and cash flows about

future earnings? Accounting Review, 71(3):289–315, 1996.

Michael J. Cooper, Huseyin Gulen, and J. Schill Michael. Asset growth and the cross-section

of stock returns. Journal of Finance, 63(4):1609–1651, 2008.

Andrew Ang, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang. The cross-section of

volatility and expected returns. Journal of Finance, 61(1):259–299, 2006. doi: 10.1111/j.

1540-6261.2006.00836.x.

Robert Novy-Marx. The other side of value: The gross profitability premium. Journal of

Financial Economics, 108(1):1–28, 2013. ISSN 0304-405X. doi: https://doi.org/10.1016/j.

jfineco.2013.01.003.

Stephen A. Ross. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13

(3):341–360, 1976. ISSN 0022-0531. doi: https://doi.org/10.1016/0022-0531(76)90046-6.

Frank J. Fabozzi, Raman Vardharaj, , and Frank J. Jones. Multifactor Equity Risk Models,

chapter 13, pages 327–343. Volume 1 of Fabozzi and Markowitz (2011), 2011c. ISBN

9781118267028.

CFA Institute. A practitioner’s guide to factor models. Technical report, The Research

Foundation of The Institute of Chartered Financial Analysts, Charlottesville, VA, USA,

1994. URL https://www.cfainstitute.org/-/media/documents/book/

http://www.aeaweb.org/articles?id=10.1257/0895330042162430
http://www.aeaweb.org/articles?id=10.1257/0895330042162430
https://www.cfainstitute.org/-/media/documents/book/rf-publication/1994/rf-v1994-n4-4445-pdf.ashx

184 BIBLIOGRAPHY

rf-publication/1994/rf-v1994-n4-4445-pdf.ashx.

Victor Dheur and Souhaib Ben Taieb. A large-scale study of probabilistic calibration in

neural network regression. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-

bara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th

International Conference on Machine Learning (ICML), volume 202, pages 7813–7836.

JMLR.org, 2023.

https://www.cfainstitute.org/-/media/documents/book/rf-publication/1994/rf-v1994-n4-4445-pdf.ashx
https://www.cfainstitute.org/-/media/documents/book/rf-publication/1994/rf-v1994-n4-4445-pdf.ashx

APPENDIX A

Appendix

A1 Supplementary review of asset pricing

A supplementary review of the finance theory relevant for predictions in financial markets

is provided in this section. Readers are encouraged to this read this section as preface to

Section 1.3. However, this is not a prerequisite to understanding the rest of this thesis.

Consider the following scenario, an investor is making an investment decision between two

assets: 1) a government bond that pays a guaranteed coupon; and 2) a highly risky stock.

Assuming that the investor is risk averse, it is clear that the stock must offer a higher return

than the government bond to compensate for the higher risk. Given an asset that earns an

uncertain return, how much should an investor expect in return for holding this asset? In

financial theory, this problem is known as asset pricing. The seminal work by Markowitz

(1952) led to the development of the MPT, proposing to model the first two moments of stock

returns. Suppose asset i has expected return E[ri] and risk measured as variance of expected

return σ2
i . Investors are assumed to be risk averse and seek to select portfolios that maximise

expected portfolio return,

E[rp] =
∑
i

wi E[ri], (A.1)

where rp is portfolio return, wi is portfolio holdings of asset i (for simplicity, it is assumed

that
∑

i wi = 1), and minimise portfolio return variance,

σ2
p =

∑
i

w2
i σ

2
i +

∑
i

∑
j ̸=i

wiwj σiσjρij, (A.2)

185

186 A APPENDIX

where σ2
p is portfolio return variance, ρij is correlation between expected return of asset i and

j. This led to the development of the first asset pricing model, called the CAPM (Sharpe,

1964; Lintner, 1965; Black, 1972). The CAPM offered the first stock return prediction model

with a theoretical underpinning,

E[ri] = r∗ + βi(E[r
′]− r∗), (A.3)

where r∗ is the risk-free rate (e.g., return on government bonds which are assumed to be

risk-free), E[r′] is the expected return of the market1, and βi =
Cov(ri,r

′)
Var(r′)

is the sensitivity

of expected return of asset i to the market. Exclusive to this section, we denote statistics

related to the risk free rate with asterisk ∗ and the market with dash ′. In CAPM, E[r′] can be

interpreted as factor m in Equation 1.3. However, it is typically assumed to be the long-term

average market return. The intuition for CAPM is as follows. Suppose there are two stocks,

both have expected return of 8% and return standard deviation of 10%. Correlation between

the two stocks is 50%. Then, from Equation (A.1) and (A.2), a portfolio with 50% weight

in each stock has portfolio expected return of 8% and standard deviation of 7.9%. Thus,

the diversified portfolio offers a better return/risk trade-off than either of the two stocks on

its own. Generalising, there exists a well-diversified portfolio that offers the same level of

expected return with equal or less level of risk (due to imperfect correlation between assets),

as illustrated on the left of Figure A.1. The red curve on the left of Figure A.1 illustrates the

Efficient Frontier, which represents the portfolio with the lowest possible risk (x-axis) for each

level of expected return (y-axis). Note that all individual stocks (e.g., C and D) must lie on or

within the interior of the efficient frontier. MPT assumes that there exists a well-diversified

portfolio which offers the optimal mean-variance trade-off. This portfolio is called the market

portfolio. The tangent to the red curve which crosses the y-axis at the risk-free rate is called

the Security Market Line (SML). Note that SML intersects the Efficient Frontier at the market

portfolio and is above the Efficient Frontier for all other levels of risk. Portfolios on this line

represent allocations between the risk-free rate and the market portfolio. For example, if the

desired level of risk is point A in Figure A.1, the level of risk is lower than the market portfolio

1The market portfolio is the portfolio of all assets weighted by their respective market value. Market value
(also called market capitalisation) is the price of each stock multiplied by the number of shares on issue. Excess
return of the market E[r′]− r∗ is known as market risk premium.

A1 SUPPLEMENTARY REVIEW OF ASSET PRICING 187

0 σ′ σB

r∗
rA

r′

rB

σ

E[r]

A

B

C

D

Mean Variance
Efficient Porfolio

Standard Deviation

E
xp

ec
te

d
R

et
ur

n

0 1βA βB

E[r] SML
Market Porfolio

Systematic Risk β

FIGURE A.1: Illustration of the Capital Asset Pricing Model. Left: Expected
return of assets relative to standard deviation of returns. The red curve is
known as the Efficient Frontier, where every point on the curve represents a
possible portfolio combination. The tangent that passes through r∗ (risk free
rate) is the Security Market Line. Right: Expected return relative to systematic
risk β. The market portfolio has β′ = 1. A stock that has β < 1 (point C)
is expected to earn a lower return than the market, while a stock with β > 1
(point D) is expected to earn a higher return than the market.

(or any risky portfolios on the Efficient Frontier). Point A represents a partial allocation to

the risk-free rate (i.e., invest in government bonds) with the balance invested in the market

portfolio. Conversely, if the desired level of risk is point B, the investor borrows at risk-free

rate and invests the entire amount in the market portfolio (in MPT, borrowing at the risk-free

rate is assumed to be accessible by all investors). In either case, the investor can achieve a

better return/risk trade-off by allocating between the risk-free rate and the market portfolio

than any of the portfolios on the Efficient Frontier or individual assets. Thus, a corollary of

CAPM is that all investors hold the market portfolio and vary their allocation to the risk-free

rate to arrive at their risk preference.

Due to the diversification benefits of the market portfolio, CAPM stipulates that the expected

return of an individual asset is determined by its correlation to the market portfolio, known as

systematic risk2, and not by the total risk (i.e., variance) of the asset. In other words, only

risk that arises due to correlation with the market portfolio is compensated (in the form of

higher expected return), as this cannot be further diversified away by holding the market

2Denoted as βi or beta in finance literature. Systematic risk is assumed to be non-diversifiable (Sharpe,
1964).

188 A APPENDIX

portfolio. Idiosyncratic risk that is specific to the asset is not compensated as there exists a

well-diversified portfolio that offers the same level of expected return at a lower risk. Expected

return as determined by correlation to the market is illustrated on the right of Figure A.1. In

here, the market portfolio has β′ = 1, while stock A (B) with βA < 1 (βB > 1) is expected to

earn return E[rA] < E[r′] (E[rB] > E[r′]), respectively. Underpinning both MPT and CAPM

is the efficient market hypothesis (Fama, 1970). In the weak form, the hypothesis postulates

that investors cannot outperform the market using publicly known information.

Therefore, one may arrive at the conclusions: 1) predicting stock returns is just a matter of

estimating β; and 2) portfolio selection is of little value given that the market portfolio offers

the optimal return/risk trade-off. However, empirical evidence proved otherwise. Jensen

(1968) was the first to note that CAPM implied a time-series regression,

ri,t − r∗ = αi + βi(r
′
t − r∗) + ϵi,t, (A.4)

where ri,t is return of stock i at time t (at a given frequency, e.g. monthly), r′t is market return

at t and ϵi,t is stochastic noise. The empirical evidence suggested that α was statistically

significantly above zero, which contradicted the predictions of CAPM. A positive α indicates

that low β stocks earn a return that is higher than fair compensation for bearing market risk,

an anomaly known as the low beta effect (Baker et al., 2011). Roll (1977) provided a renown

critique of CAPM, noting the that a test of the validity of CAPM is a joint test together with

the validity of the market portfolio proxy, and that the true market portfolio is unobservable (as

it emcompasses all assets in the world, including private assets). A more recent discussion on

CAPM was provided by Fama and French (2004). The authors reviewed published empirical

tests of CAPM and concluded that “CAPM’s empirical problems probably invalidate its use

in applications.”

Since the publication of CAPM, numerous other firm features (also known as risk factors or

asset pricing anomalies3) were found to predict cross-sectional stock returns. These include

3A variable that is predictive of stock returns is called an anomaly as its occurrence contradicted the
prediction of CAPM (Cochrane, 2005).

A1 SUPPLEMENTARY REVIEW OF ASSET PRICING 189

the size effect4 (Banz, 1981), the value effect5 (Stattman, 1980; Rosenberg et al., 1985)),

accruals6 (Sloan, 1996), asset growth7 (Cooper et al., 2008), momentum8 (Jegadeesh and

Titman, 1993), low volatility effect9 (Ang et al., 2006) and gross profitability10 (Novy-Marx,

2013). Hundreds of firm characteristics are said to contain information on future stock returns

— a survey by Harvey et al. (2016) contained 313 published asset pricing anomalies. The true

DGP or stock returns is likely to be significantly more complex than originally suggested by

CAPM.

Alternative asset pricing theories have been proposed. One alternative is the APT (Ross,

1976), formally,

E[ri,t+1] = r∗ + si,1ξ1,t + si,2ξ2,t + ...+ si,MξM,t, (A.5)

where si,m is sensitivity (also called exposures in finance literature, e.g., Grinold and Kahn,

1999) of stock i to returns of systematic risk factor11 ξm (also called factor returns). APT is

a generalisation of CAPM, where systematic risk to the market in CAPM is replaced with

any number of factors that determine stock returns. The intuition of the model lies in the

assumption that given M non-diversifiable risk factors, one can replicate risk exposures of

any stock (i.e., sensitivities of the stock to M predictors) with a portfolio of stocks that offer

the same return. If the two do not offer the same return, an investor can buy the asset with a

higher return and short12 the asset with a lower expected return and generate a risk-free profit.

Such activity is called arbitrage (hence the name Arbitrage Pricing Theory) and leads to the

no arbitrage condition under efficient markets. This model forms the basis of quantitative

investing methods used by practitioners, as described in Grinold and Kahn (1999). However,
4Stocks with low market capitalisation tend to outperform stocks with high market capitalisation.
5Stocks with high book value to market value ratio (known as value stocks) tend to outperform stocks with

low book-to-market ratio (known as growth stocks).
6Firms with low operating accruals tend to outperform firms with high accruals. Operating accrual refers to

the difference between accrued earnings and cash earnings.
7Firms with low year-on-year change in total assets tend to outperform firms with high growth.
8Past winners tend to continue to outperform past losers.
9Stocks with low idiosyncratic volatility tend to outperform stocks with high idiosyncratic volatility.

10Stocks with high gross profit to total assets tend to outperform stocks with low gross profit to total assets.
11Systematic risk factors are factors that contribute to expected return. An example is the market portfolio in

CAPM. For the purposes of this thesis, this can be interpreted as firm features (e.g., firm profitability, social
media sentiment), to the extent that such features are predictive of stock returns.

12Shorting refers to the borrowing and selling of an asset that the investor do not own. If the price of the
asset falls, the investor can buy it back at a later date and generate a profit.

190 A APPENDIX

APT does not stipulate what the risk factors are. The risk factors used are up to the user to

define. As concluding remarks on asset pricing theory, the debate on the correct model is one

between a highly prescriptive model that specifies a theory-derived return predictor (CAPM

β), and a loosely defined model where there could be any number of predictors (APT). The

empirical failings of CAPM and the vast number of “anomalies” discovered is providing

evidence to the latter.

A2 Supplementary review of forecasting models

A supplementary review of the quantitative investment process is provided in this section.

Readers are encouraged to review this section for a better understanding of the quantitative

investment process. However, this is not a prerequisite to understanding the rest of this thesis.

A2.1 Forecasting returns

Return forecasting (as illustrated in Figure A.2) requires converting raw data into features.

Raw data can comprise of stock price history, company financials, social media sentiment,

Raw data Signals Return
forecasts

Feature engineering Model

FIGURE A.2: Illustrative steps in converting raw data into forecasts. Raw
data (e.g., share price and company financials) are first converted into features,
typically crafted using domain knowledge. A forecasting model (e.g., OLS or
machine learning models) then combines features into an expected return.

media reports, commodity prices, currency exchange rates or any other information that is

predictive of returns. Through feature engineering, these raw data are transformed into signals.

For example, the Earnings/Price ratio is calculated as a firm’s earnings per share divided

by the prevailing share price (Alford et al., 2011). This signal constitutes one of the many

features that are used as inputs to the forecasting model. A linear regression, such as the

A2 SUPPLEMENTARY REVIEW OF FORECASTING MODELS 191

Fama-MacBeth regression, is a popular choice of F in Equation (1.2) (Zhou and Fabozzi,

2011)). However, as shown by Gu et al. (2020) and through this thesis, machine learning

models can improve forecast accuracy and offer alternative approaches to forecasting.

A2.2 Forecasting risk

In the pioneering work of Markowitz (1952), a portfolio is viewed in terms of its first two

moments of portfolio returns (mean and variance). This is the industry accepted general

measure of risk (for example, see Grinold and Kahn, 1999; and Fabozzi and Markowitz,

2011). However, estimating a full variance-covariance matrix of a large universe of stocks

could be onerous. For instance, there are more than 5,000 listed stocks in the U.S. alone.

A variance-covariance matrix for the U.S. market could have 5000 × 5000 = 25million

entries. Therefore, the variance-covariance matrix is typically estimated using a factor

risk model (Fabozzi et al., 2011c). A factor risk model takes the same form as the return

forecasting model (Equation (1.3)) and may include factors that are assumed to explain

riskiness of a stock, such as its company size and debt burden. Suppose M = 10, the variance-

covariance matrix only has 10× 10 = 100 entries — a significantly simpler computation than

operating over 25 million entries. The factor risk model is estimated using the Fama-MacBeth

procedure as described in the preceding section. At time t, we perform t− 1 cross-sectional

multivariate regressions for every time period. This generates m time-series of factor returns

ξ̂t−1,m = {ξ̂1,m, ξ̂2,m, . . . , ξ̂t−1,m}, where each value ξ̂t,m in the series is the coefficient of

factor13 m in the multivariate cross-sectional regression at t. The factor covariance matrix is

simply the sample variance-covariance matrix of the time-series of factor returns,

V̂
(f)
t =

Cov(ξ̂t−1,1, ξ̂t−1,1) Cov(ξ̂t−1,1, ξ̂t−1,2) · · · Cov(ξ̂t−1,1, ξ̂t−1,M)

Cov(ξ̂t−1,2, ξ̂t−1,1) Cov(ξ̂t−1,2, ξ̂t−1,2) · · · Cov(ξ̂t−1,2, ξ̂t−1,M)
...

...

Cov(ξ̂t−1,M , ξ̂t−1,1) Cov(ξ̂t−1,M , ξ̂t−1,2) · · · Cov(ξ̂t−1,M , ξ̂t−1,M)

 , (A.6)

13As a reminder to readers, signals, factors and firm features are used interchangeably in this thesis.

192 A APPENDIX

where Cov(ξ̂t−1,i, ξ̂t−1,j) is the covariance function applied to returns of factor i and j over

t = {1, . . . , t− 1}. Covariance matrix of stocks is then estimated as the sum of factor risk

and specific risk (Fabozzi et al., 2011c),

V ′
t = XtV

(f)
t XT

t + dt ◦ IN , (A.7)

where dt ◦ IN is the Hadamard product of specific variance and the identity matrix of size N .

dt is the element-wise variance of the time-series of regression residuals ϵt in Equation (1.3)

(CFA Institute, 1994). This allows newly listed stocks to have reasonable risk forecasts,

provided that they have the relevant inputs to the risk model.

A2.3 Forecasting transaction costs

As noted in Section 1.2, the stock market employs a limit order book system. In the example

illustrated in Table 1.1, the last traded price is $1.00/share. Suppose the buyer would like to

transact 10,000 shares immediately, pushing the last traded price to $1.02 (second row of the

ask queue). The buyer’s average price is 5,000×1.01+5,000×1.02
10,000

= 1.015. In this scenario, the

buyer has incurred a market impact cost of 1.5%. Market impact comprises of the bid-ask

spread14 and a cost for pushing the traded price higher than the last traded price before the

trade. Market impact depends on the size of the trade and tends to be higher for low-price and

small capitalisation stocks (Zhou and Fabozzi, 2011). Larger trades will consume more of

the available volume (termed liquidity) and have a higher price impact. Forecasting market

impact is difficult, as market participants only observe completed trades and not intended

orders. For example, in the example illustrated in Table 1.1, suppose a buyer wants to trade

100,000 shares at $1.01. Seeing the limited shares on offer and concerned about potential

price impact, the buyer decides to not place the order. However, there could be other potential

sellers wanting to sell large parcels but face the same problem. Thus, liquidity can potentially

be more than actual traded volumes. Transaction cost forecasting is also an important topic as

it determines the economics of a trade. For instance, suppose the expected return of a stock

over a week is 2% and this opportunity is available every week. This results in an attractive
14Crossing the spread is when a buyer pays the ask price or a seller takes the bid price for a trade. Bid-ask

spread is typically measured relative to the mid price and is calculated as 2×(1.01−1)
1.01+1 = 1%.

A3 HYPERPARAMETERS USED IN CHAPTER 3 193

compounded pre-cost return of 180% in one year. However, suppose transaction cost is 1%

each way (i.e., 1% is paid on acquisition and on disposal). Then, this seemingly profitable

strategy is no longer profitable. Additionally, each trade incurs a commission to the broker

(facilitator of the trade, usually a brokerage firm).

A3 Hyperparameters used in Chapter 3

In this section, we provide a list of hyperparameter search ranges and mean hyperparameters

used to train the neural networks in Section 3.5. Hyperparameter search was performed on all

combinations of hyperparameters. Table A.2 records mean hyperparameters over 10 network

trainings.

TABLE A.1: Disclosed model parameters in Gu et al. (2020) and in our
replication. We fill missing values with the cross-sectional median or zero
if median is unavailable. ‘H’ is hidden layer activation. ‘O’ is output layer
activation. ADAM is the optimiser proposed by Kingma and Ba (2015).

Parameter Gu et al. (2020) Chapter 3

Preprocessing Rank [-1, 1]; Fill median Rank [-1, 1]; Fill median/0
Hidden layers 32-16-8 32-16-8
Activation H: ReLU / O: Linear H: ReLU / O: Linear
Batch size 10,000 DNN 10,000 / OES 1,000
Batch normalisation Yes Yes
L1 penalty [10−5, 10−3] {10−5, 10−4, 10−3}
Early stopping Patience 5 Patience 5 / Tolerance 0.001
Learning rate η [0.001, 0.01] {0.001, 0.01}
Optimiser ADAM ADAM
Loss function MSE MSE
Ensemble Average over 10 Average over 10

TABLE A.2: Mean hyperparameters are calculated over the ensemble of 10
networks and across all periods.

With Interactions W/O Interactions

% DNN OES DNN OES

Mean L1 penalty 0.0012 0.0154 0.0024 0.0028
Mean η 0.77 0.10 0.67 0.10

194 A APPENDIX

A4 Hyperparameters used in Chapter 4

In this section, we provide a list of hyperparameter search ranges and mean hyperparameters

used to train the neural networks in Section 4.3.2. Hyperparameter search was performed on

all combinations of hyperparameters. Table A.3 records common hyperparameters used in

all models. Table A.4, A.5, A.6 and A.7 record hyperparameter search range and average

hyperparameters of 10 networks for STAE & TCN, N-BEATS, LSTM and transformer,

respectively.

TABLE A.3: Common hyperparameters for all networks used in Section 4.3.2.
These are fixed values and are not subject to hyperparameter tuning. ADAM
is the optimiser proposed by Kingma and Ba (2015).

Parameter Common hyperparameters

Hidden layers 8
Activation ReLU
Batch size 5,000
Batch normalisation Yes
Early stopping Patience 5 / Tolerance 0.0001
Learning rate η 0.01
Optimiser ADAM

TABLE A.4: STAE and TCN specific hyperparameter ranges used in Sec-
tion 4.3.2. Values enclosed by {·} are choices within the set. Values enclosed
by [·] are a single list where each value indicates a layer. Mean hyperparamet-
ers are average chosen hyperparameters in an ensemble of 10.

Parameter STAE TCN

Search range
Convolutional filters {8, 16, 32} {8, 16, 32}
Encoder kernel size {2, 5, 10} {2, 5, 10}
Decoder kernel size [2, 5, 5, 5]
Spatial dropout {0.2, 0.4} {0.2, 0.4}
Auxiliary loss ω {0.2, 0.4}

Mean hyperparameters
Convolutional filters 27.2 18.4
Encoder kernel size 2.9 6.9
Spatial dropout 0.28 0.34
Auxiliary loss ω 0.34

A4 HYPERPARAMETERS USED IN CHAPTER 4 195

TABLE A.5: N-BEATS specific hyperparameter ranges used in Section 4.3.2.
Values enclosed by {·} are choices within the set. Values enclosed by [·] are
a single list where each value indicates a layer. Mean hyperparameters are
average chosen hyperparameters in an ensemble of 10.

Parameter N-BEATS

Search range
Stacks [Trend, Generic]
Blocks per stack {2, 3, 4}
θ dimenions {[4, 8], [8, 16], [16, 32]}

Mean hyperparameters
Blocks per stack 2.6
Mean θ dimenions 13.8

TABLE A.6: LSTM specific hyperparameter ranges used in Section 4.3.2.
Values enclosed by {·} are choices within the set. Values enclosed by [·] are
a single list where each value indicates a layer. Mean hyperparameters are
average chosen hyperparameters in an ensemble of 10.

Parameter LSTM

Search range
LSTM layers {[8], [16], [32], [16, 8], [32, 16], [32, 16, 8]}

Mean hyperparameters
Mean total LSTM units 32.8
Mean no. LSTM layers 1.7

TABLE A.7: Transformer specific hyperparameter ranges used in Sec-
tion 4.3.2. Values enclosed by {·} are choices within the set. Values enclosed
by [·] are a single list where each value indicates a layer. Mean hyperparamet-
ers are average chosen hyperparameters in an ensemble of 10.

Parameter Transformer

Search range
Key size {4, 8}
No. heads {1, 2}
No. transformer blocks 1
Dropout rate {0.2, 0.4}

Mean hyperparameters
Key size {4, 8}
No. heads {1, 2}
No. transformer blocks 1
Dropout rate {0.2, 0.4}

196 A APPENDIX

A5 Hyperparameters used in Chapter 5

In this section, we provide a list of hyperparameter search ranges and mean hyperparameters

used to train the neural networks in Section 5.4.1 and 5.4.2. Hyperparameter search was

performed on all combinations of hyperparameters. Both cryptocurrency and U.S. equities

datasets share the same hyperparameter ranges but with hyperparameter search performed

separately. Table A.9 records mean hyperparameters over 10 network trainings for each

network architecture.

TABLE A.8: Hyperparameter ranges used in Section 5.4.1 and 5.4.2. The
‘LSTM layers’ hyperparameter is a list, with the length of the list indicating
how many LSTM layers were used and each element of the list indicating the
number of units of each LSTM layer. Similarly, ‘Hidden layers’ indicate the
number of fully connected hidden layers. Each element of the list indicate the
dimension of that hidden layer. ADAM is the optimiser proposed by Kingma
and Ba (2015).

Parameter Search range

LSTM layers {[16, 8], [32, 16, 8], [32, 16], [64, 32, 16]}
Hidden layers {[8], [16, 8]}
Dropout rate {0.2, 0.3, 0.4}
Activation ReLU
Batch size 1,000
Batch normalisation Yes
Early stopping Patience 5 / Tolerance 0.0001
Learning rate η 0.01
Optimiser ADAM

TABLE A.9: Mean hyperparameters are calculated over the ensemble of 10
networks for Ensemble, Evidential and Combined. Mean LSTM and hidden
units is the average number of LSTM or hidden units in the network. ‘no.’
indicate number of layers.

% Ensemble Evidential Combined

Mean dropout rate 33 26 25
Mean total LSTM units 56 41.6 61.6
Mean no. LSTM layers 2.5 2.4 2.5
Mean total hidden units 19.2 11.2 12.8
Mean no. hidden layers 1.7 1.2 1.3

A6 MARGINAL DISTRIBUTION OF A SCALE MIXTURE 197

A6 Marginal distribution of a Scale Mixture

From Equation (5.10), we have N(y|γ, σ2

λ
)Gam(λ|α, β). Marginalising over λ produces the

data likelihood,

p(y|γ, σ2, α, β) =

∫ ∞

λ

pN(y|γ, σ2λ−1)pG(λ|α, β) dλ

=

∫ ∞

λ

[√
λ

2πσ2
exp

{
−λ(y − γ)

2

2σ2

}][
βα

Γ(α)
λα−1 exp−βλ

]
dλ

=
βα

Γ(α)
√
2πσ2

∫ ∞

λ=0

λα−
1
2 exp

{
−λ(y − γ)

2

2σ2
− βλ

}
dλ

=
βα

Γ(α)
√
2πσ2

[
(y − γ)2

2σ2
+ β

]−(α+
1
2
) ∫ ∞

λ=0

{
λ

[
(y − γ)2

2σ2
+ β

]}α−1
2

exp

{
−λ
[
(y − γ)2

2σ2
+ β

]}
d

{
λ

[
(y − γ)2

2σ2
+ β

]}
,

since
∫∞
0
xα−1 exp(−x) dx = Γ(α),

=
βα

√
2πσ2

Γ(α + 1
2
)

Γ(α)

[
(y − γ)2

2σ2
+ β

]−(α+
1
2
)

and re-arranging βα = (1
β
)−α = (1

β
)−(α+

1
2
)+

1
2 ,

=
Γ(α + 1

2
)

Γ(α)

1√
2πσ2β

[
(y − γ)2

2σ2β
+ 1

]−(α+
1
2
)

p(y|γ, σ2, α, β) = St

(
y; γ,

σ2β

α
, 2α

)
. (A.8)

To show that the last step of Equation (A.8) is true, we start with the probability density

function of the t-distribution parameterised in terms of precision St(y|γ, b−1, a) (Bishop,

2006),

St(y|γ, b−1, a) =
Γ(a+1

2
)

Γ(a
2
)

[
b

πa

]1
2
[
1 +

b(y − γ)2

a

]−(
a+1
2

)

,

198 A APPENDIX

where γ is location, b is inverse of scale and a is shape15. Substituting in b−1 = σ2β
α

and

a = 2α,

St

(
y|γ, σ

2β

α
, 2α

)
=

Γ(α + 1
2
)

Γ(α)

[
(α
σ2β

)

2πα

]1
2 [

1 +
α(y − γ)2

2σ2αβ

]−(α+
1
2
)

=
Γ(α + 1

2
)

Γ(α)

1√
2πσ2β

[
(y − γ)2

2σ2β
+ 1

]−(α+
1
2
)

.

A7 Negative log-likelihood of marginal distribution of a

Scale Mixture

From Equation (A.8), the NLL of the marginal t-distribution is,

p(y|γ, σ2, α, β) =
Γ(α + 1

2
)

Γ(α)

1√
2πσ2β

[
(y − γ)2

2σ2β
+ 1

]−(α+
1
2
)

− log[p(y|γ, σ2, α, β)] = log

[
Γ(α)

Γ(α + 1
2
)

]
+ 1

2
log[2πσ2β] + (α + 1

2
) log

[
(y − γ)2

2σ2β
+ 1

]
.

A7.1 Benchmarking on UCI dataset

In this section, we compare our method to Ensemble and Evidential using the UCI benchmark

dataset. This is intended to provide readers with a direct comparison to Lakshminarayanan

et al. (2017) and Amini et al. (2020) on the same dataset used in both works. The collection

consists of nine real world regression problems, each with 10–20 features and hundreds to tens

of thousands of observations. We note the Wine dataset within UCI contains discrete values

(ratings of wine characteristics, such as color and taste) which may render the assumption

of a continuous, symmetrical data distribution less appropriate if these values are skewed.

More recently, larger uncertainty quantification datasets have been published in Dheur and

Ben Taieb (2023), which may be useful in assessing the state-of-the-art in non-time-series

uncertainty quantification methods. We follow Lakshminarayanan et al. (2017) and Amini

15Note that the definition of scale b and shape a is used exclusively in this section. Not to be confused with
network bias b and activation vector a used in the rest of this thesis.

A7 NEGATIVE LOG-LIKELIHOOD OF MARGINAL DISTRIBUTION OF A SCALE MIXTURE 199

TABLE A.10: Comparing Ensemble (Lakshminarayanan et al., 2017), Evid-
ential (Amini et al., 2020) and Combined (this work) on RMSE and NLL
using the UCI benchmark datasets. Average result and standard deviation over
5 trials for each method. The best method for each dataset and metric are
highlighted in bold.

RMSE NLL
Dataset Ensemble Evidential Combined Ensemble Evidential Combined
Boston 2.66± 0.20 2.95± 0.29 2.89± 0.31 2.28± 0.05 2.30± 0.05 2.23± 0.05
Concrete 5.79± 0.16 5.98± 0.23 5.40± 0.18 3.07± 0.02 3.11± 0.04 2.98± 0.03
Energy 1.86± 0.04 1.84± 0.06 1.71± 0.20 1.36± 0.02 1.41± 0.04 1.35± 0.05
Kin8nm 0.06± 0.00 0.06± 0.00 0.06± 0.00 −1.39± 0.02 −1.28± 0.03 −1.35± 0.02
Naval 0.00± 0.00 0.00± 0.00 0.00± 0.00 −6.10± 0.05 −5.99± 0.09 −5.89± 0.35
Power 3.02± 0.09 3.02± 0.08 2.95± 0.08 2.57± 0.01 2.56± 0.03 2.53± 0.02
Protein 3.71± 0.10 4.28± 0.23 3.67± 0.13 2.61± 0.03 2.73± 0.08 2.70± 0.05
Wine 0.60± 0.03 0.56± 0.02 0.59± 0.03 0.94± 0.04 0.92± 0.04 1.00± 0.03
Yacht 1.22± 0.22 1.48± 0.47 3.97± 1.06 1.06± 0.08 0.96± 0.19 1.17± 0.11

et al. (2020) in evaluating our method on root mean squared error (RMSE, which assesses

forecast accuracy) and NLL (which assesses overall distributional fit), and compare against

Ensemble and Evidential. While we do not explicitly compare inference speed, as our

Combined method also uses ensembling, inference speed is expected to be comparable to

Ensemble while being slower than Evidential. We use the source code provided by Amini et al.

(2020), with the default topology of a single hidden layer with 50 units for both Ensemble and

Evidential16. For Combined, as individual modelling of distribution parameters (Section 5.3.2)

requires a network with two or more hidden layers, we have used a single hidden layer with 24

units, followed by 4 separate stacks of a single hidden layer with 6 units each. Thus, the total

number of non-linear units is 48 (compared to 50 for Ensemble and Evidential). Note that

even though the total number of units are similar across the three models, learning capacity

may differ due to different topologies.

Table A.10 records experiment results on the UCI dataset. On RMSE, we find that both

Ensemble and Combined have performed well, having the best RMSE in four datasets

each. In two of the sets (Kin8nm and Naval), all three methods produced highly accurate

results that are not separable to two decimal points. Turning to NLL, we observe a trend

towards Combined having lower NLL than the other two methods for four sets, followed
16Source code for Amini et al. (2020) is available on Github: https://github.com/aamini/

evidential-deep-learning

https://github.com/aamini/evidential-deep-learning
https://github.com/aamini/evidential-deep-learning

200 A APPENDIX

by Ensemble with three sets. Comparing Combined to Evidential, we find that Combined

generally has lower RMSE (7 of 9 sets) and NLL (6 of 9 sets). Although our method is

designed for uncertainty quantification of complex time-series and all 9 datasets are pooled

(non-time-series) datasets, we still observe some improvements in both RMSE and NLL.

Next, we present further ablation studies on the UCI dataset. Table A.11 records results of

Alternative, which utilizes ensembling and SMD parameterisation but not separate modelling

of hyperparameters. Alternative has the same network topology as Ensemble and Evidential (a

single hidden layer with 50 units), as opposed to Combined which has two hidden layers with a

total of 48 units. We observe that Ensemble has the lowest RMSE in 5 (of 9) datasets, followed

by Alternative (3 of 9), while Alternative has the best NLL in 6 (of 9) datasets and Ensemble

has 3 (of 9). On both metrics, Evidential has the least favourable performance. Comparing

Combined in Table A.10 and Alternative in Table A.11, Combined has lower RMSE and NLL

in 5 of 9 datasets. Thus, we conclude that separate modelling of hyperparameters provided an

incremental benefit on the UCI datasets.

TABLE A.11: Comparing Ensemble, Evidential and Alternative (without
separate modelling of the four parameters of SMD) on RMSE and NLL using
the UCI benchmark datasets. Average result and standard deviation over
5 trials for each method. The best method for each dataset and metric is
highlighted in bold.

RMSE NLL
Dataset Ensemble Evidential Alternative Ensemble Evidential Alternative
Boston 2.66± 0.20 2.95± 0.29 2.87± 0.18 2.28± 0.05 2.30± 0.05 2.29± 0.04
Concrete 5.79± 0.16 5.98± 0.23 5.72± 0.15 3.07± 0.02 3.11± 0.04 3.03± 0.02
Energy 1.86± 0.04 1.84± 0.06 1.88± 0.04 1.36± 0.02 1.41± 0.04 1.35± 0.03
Kin8nm 0.06± 0.00 0.06± 0.00 0.06± 0.00 −1.39± 0.02 −1.28± 0.03 −1.38± 0.02
Naval 0.00± 0.00 0.00± 0.00 0.00± 0.00 −6.10± 0.05 −5.99± 0.09 −6.12± 0.06
Power 3.02± 0.09 3.02± 0.08 2.97± 0.10 2.57± 0.01 2.56± 0.03 2.54± 0.02
Protein 3.71± 0.10 4.28± 0.23 3.75± 0.11 2.61± 0.03 2.73± 0.08 2.72± 0.02
Wine 0.60± 0.03 0.56± 0.02 0.55± 0.02 0.94± 0.04 0.92± 0.04 0.92± 0.02
Yacht 1.22± 0.22 1.48± 0.47 1.45± 0.33 1.06± 0.08 0.96± 0.19 0.93± 0.09

In Table A.12, we further remove model averaging. The network used is identical to Evid-

ential but trained using the SMD parameterisation (i.e., we simply change the loss function

in Evidential to Equation (5.12)). We observe that the network trained using the SMD para-

meterisation has lower RMSE in 6 of 9 and lower NLL in 8 out 9 datasets. We argue that the

improved performance of the SMD parameterisation is due to its simplicity.

A8 FURTHER ANALYSIS OF PARAMETERS IN A SCALE MIXTURE 201

TABLE A.12: Comparing Normal-Inverse-Gamma and Normal-Gamma on
RMSE and NLL using the UCI benchmark datasets. Average result and
standard deviation over 5 trials for each method. The best method for each
dataset and loss function is highlighted in bold.

RMSE NLL
Dataset NIG SMD NIG SMD
Boston 2.95± 0.29 2.97± 0.20 2.30± 0.05 2.31± 0.05
Concrete 5.98± 0.23 5.78± 0.23 3.11± 0.04 3.05± 0.04
Energy 1.84± 0.06 1.87± 0.16 1.41± 0.04 1.33± 0.05
Kin8nm 0.06± 0.00 0.06± 0.00 −1.28± 0.03 −1.37± 0.01
Naval 0.00± 0.00 0.00± 0.00 −5.99± 0.09 −6.27± 0.09
Power 3.02± 0.08 2.98± 0.12 2.56± 0.03 2.53± 0.02
Protein 4.28± 0.23 3.72± 0.16 2.73± 0.08 2.39± 0.05
Wine 0.56± 0.02 0.56± 0.03 0.92± 0.04 0.87± 0.04
Yacht 1.48± 0.47 1.44± 0.49 0.96± 0.19 0.91± 0.18

A8 Further analysis of parameters in a Scale Mixture

In the network architecture proposed in Section 5.3, output of the network is ζ = (γ, σ2, α, β),

which parameterises the SMD (Equation (5.10)). However, as noted in Section 5.3, we can set

α = β and reduce the number of parameters to three (Equation (5.14)). Thus, an alternative

specification of the network is to output ζ = (γ, σ2, α) (i.e., three parameters instead of four

and are computed through three subnetworks, instead of four in Figure 5.1). We label this

network A=B. In Table A.13, we compare Combined (4 parameters) with S2B (3 parameters)

using the UCI dataset (as introduced in Section A7.1). We observe that A=B is better than

Combined on 8 (of 9) datasets on RMSE, while Combined is better than A=B on 1 (of 9). On

NLL, A=B is better than Combined on 5 (of 9) datasets, while Combined is better than A=B

on 4 (of 9). Even though A=B has a higher number of datasets with lower RMSE and NLL,

we note that the differences are very small and are within margin of error (due to randomness

in neural network training). Thus, we conclude that the two methods provide near identical

results but note that A=B is simpler and more interpretable. However, we choose Combined

with four subnetworks to conduct our analysis so that parameters can also be compared with

those from Evidential and Extended Evidential in Appendix A9.

202 A APPENDIX

TABLE A.13: Comparing A=B (3 parameters) to Combined (4 parameters)
on RMSE and NLL using the UCI benchmark datasets. Results are averaged
over 5 trials and the best method for each dataset and metric are highlighted in
bold.

RMSE NLL

Dataset A=B Combined A=B Combined

Boston 2.91± 0.17 2.89± 0.31 2.27± 0.04 2.23± 0.05
Concrete 5.39± 0.19 5.40± 0.18 2.99± 0.03 2.98± 0.03
Energy 1.56± 0.16 1.71± 0.20 1.30± 0.05 1.35± 0.05
Kin8nm 0.06± 0.00 0.06± 0.00 −1.36± 0.02 −1.35± 0.02
Naval 0.00± 0.00 0.00± 0.00 −5.87± 0.12 −5.89± 0.35
Power 2.93± 0.08 2.95± 0.08 2.53± 0.02 2.53± 0.02
Protein 3.60± 0.10 3.67± 0.13 2.83± 0.04 2.70± 0.05
Wine 0.57± 0.02 0.59± 0.03 0.96± 0.03 1.00± 0.03
Yacht 2.31± 0.43 3.97± 1.06 1.11± 0.09 1.17± 0.11

A9 Further analysis of Evidential on uncertainty

quantification in cryptocurencies

The Evidential method utilises NormalInverseGamma output layer (no separate subnetworks

for distribution hyperparameters) and a t-distributed NLL derived from the NIG distribution

(Equation (5.9)). In Section 5.4.1, we have observed that Evidential fails to provide uncer-

tainty forecasts that track time-varying volatility. However, this was not observed in our

proposed Combined method. In here, we test the effects of separate modelling of distribution

hyperparameters in the output layer for Evidential. We label this as the Extended Evidential

method. Square-root of average squared forecast error and square-root of forecast uncertainty

for BTC/USDT for Extended Evidential and Combined are shown in Figure A.3. We find that

separate modelling of distribution hyperparameters significantly improved accuracy of un-

certainty forecasts of Extended Evidential. Forecast uncertainty of both Extended Evidential

and Combined are generally similar, with the exception of still some block-like features for

Extended Evidential in 2019. Comparing cryptocurrency experimental results of Extended

Evidential to Combined, we find that Combined is better than Extended Evidential on both IC

and NLL, and is better than Extended Evidential on RMSE at higher decimal places.

A9 FURTHER ANALYSIS OF EVIDENTIAL ON UNCERTAINTY QUANTIFICATION IN CRYPTOCURENCIES 203

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07
2021-10

2022-01
0.00

0.01

0.02

0.03

0.04

0.05

0.06

BTC/USDT Uncertainty

(y y)2

Var(y)

(a) Extended Evidential

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07
2021-10

2022-01
0.00

0.01

0.02

0.03

0.04

0.05

0.06

BTC/USDT Uncertainty

(y y)2

Var(y)

(b) Combined

FIGURE A.3: Actual prediction error and predicted uncertainty of Extended
Evidential and Combined for BTC/USDT. Square root of the average forecast
error and forecast uncertainty on each day shown.

TABLE A.14: Ablation study comparing Extended Evidential to Combined
on average IC, RMSE and NLL for cryptocurrencies time-series forecasts.
Average result and standard deviation over 10 trials for each method. Best
method for each dataset is highlighted in bold.

Metric Extended Evidential Combined

IC (%) 6.39± 2.56 9.87± 3.17
RMSE (%) 0.867± 0.001 0.867± 0.001
NLL −3.35± 0.01 −4.14± 0.01

Can't attach Re_ Thesis submission.eml, please review file online.

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	pbs@ARFix@44:
	pbs@ARFix@45:
	pbs@ARFix@46:
	pbs@ARFix@47:
	pbs@ARFix@48:
	pbs@ARFix@49:
	pbs@ARFix@50:
	pbs@ARFix@51:
	pbs@ARFix@52:
	pbs@ARFix@53:
	pbs@ARFix@54:
	pbs@ARFix@55:
	pbs@ARFix@56:
	pbs@ARFix@57:
	pbs@ARFix@58:
	pbs@ARFix@59:
	pbs@ARFix@60:
	pbs@ARFix@61:
	pbs@ARFix@62:
	pbs@ARFix@63:
	pbs@ARFix@64:
	pbs@ARFix@65:
	pbs@ARFix@66:
	pbs@ARFix@67:
	pbs@ARFix@68:
	pbs@ARFix@69:
	pbs@ARFix@70:
	pbs@ARFix@71:
	pbs@ARFix@72:
	pbs@ARFix@73:
	pbs@ARFix@74:
	pbs@ARFix@75:
	pbs@ARFix@76:
	pbs@ARFix@77:
	pbs@ARFix@78:
	pbs@ARFix@79:
	pbs@ARFix@80:
	pbs@ARFix@81:
	pbs@ARFix@82:
	pbs@ARFix@83:
	pbs@ARFix@84:
	pbs@ARFix@85:
	pbs@ARFix@86:
	pbs@ARFix@87:
	pbs@ARFix@88:
	pbs@ARFix@89:
	pbs@ARFix@90:
	pbs@ARFix@91:
	pbs@ARFix@92:
	pbs@ARFix@93:
	pbs@ARFix@94:
	pbs@ARFix@95:
	pbs@ARFix@96:
	pbs@ARFix@97:
	pbs@ARFix@98:
	pbs@ARFix@99:
	pbs@ARFix@100:
	pbs@ARFix@101:
	pbs@ARFix@102:
	pbs@ARFix@103:
	pbs@ARFix@104:
	pbs@ARFix@105:
	pbs@ARFix@106:
	pbs@ARFix@107:
	pbs@ARFix@108:
	pbs@ARFix@109:
	pbs@ARFix@110:
	pbs@ARFix@111:
	pbs@ARFix@112:
	pbs@ARFix@113:
	pbs@ARFix@114:
	pbs@ARFix@115:
	pbs@ARFix@116:
	pbs@ARFix@117:
	pbs@ARFix@118:
	pbs@ARFix@119:
	pbs@ARFix@120:
	pbs@ARFix@121:
	pbs@ARFix@122:
	pbs@ARFix@123:
	pbs@ARFix@124:
	pbs@ARFix@125:
	pbs@ARFix@126:
	pbs@ARFix@127:
	pbs@ARFix@128:
	pbs@ARFix@129:
	pbs@ARFix@130:
	pbs@ARFix@131:
	pbs@ARFix@132:
	pbs@ARFix@133:
	pbs@ARFix@134:
	pbs@ARFix@135:
	pbs@ARFix@136:
	pbs@ARFix@137:
	pbs@ARFix@138:
	pbs@ARFix@139:
	pbs@ARFix@140:
	pbs@ARFix@141:
	pbs@ARFix@142:
	pbs@ARFix@143:
	pbs@ARFix@144:
	pbs@ARFix@145:
	pbs@ARFix@146:
	pbs@ARFix@147:
	pbs@ARFix@148:
	pbs@ARFix@149:
	pbs@ARFix@150:
	pbs@ARFix@151:
	pbs@ARFix@152:
	pbs@ARFix@153:
	pbs@ARFix@154:
	pbs@ARFix@155:
	pbs@ARFix@156:
	pbs@ARFix@157:
	pbs@ARFix@158:
	pbs@ARFix@159:
	pbs@ARFix@160:
	pbs@ARFix@161:
	pbs@ARFix@162:
	pbs@ARFix@163:
	pbs@ARFix@164:
	pbs@ARFix@165:
	pbs@ARFix@166:
	pbs@ARFix@167:
	pbs@ARFix@168:
	pbs@ARFix@169:
	pbs@ARFix@170:
	pbs@ARFix@171:
	pbs@ARFix@172:
	pbs@ARFix@173:
	pbs@ARFix@174:
	pbs@ARFix@175:
	pbs@ARFix@176:
	pbs@ARFix@177:
	pbs@ARFix@178:
	pbs@ARFix@179:
	pbs@ARFix@180:
	pbs@ARFix@181:
	pbs@ARFix@182:
	pbs@ARFix@183:
	pbs@ARFix@184:
	pbs@ARFix@185:
	pbs@ARFix@186:
	pbs@ARFix@187:
	pbs@ARFix@188:
	pbs@ARFix@189:
	pbs@ARFix@190:
	pbs@ARFix@191:
	pbs@ARFix@192:
	pbs@ARFix@193:
	pbs@ARFix@194:
	pbs@ARFix@195:
	pbs@ARFix@196:
	pbs@ARFix@197:
	pbs@ARFix@198:
	pbs@ARFix@199:
	pbs@ARFix@200:
	pbs@ARFix@201:
	pbs@ARFix@202:
	pbs@ARFix@203:
	pbs@ARFix@204:
	pbs@ARFix@205:
	pbs@ARFix@206:
	pbs@ARFix@207:
	pbs@ARFix@208:
	pbs@ARFix@209:
	pbs@ARFix@210:
	pbs@ARFix@211:
	pbs@ARFix@212:
	pbs@ARFix@213:
	pbs@ARFix@214:
	pbs@ARFix@215:
	pbs@ARFix@216:
	pbs@ARFix@217:
	pbs@ARFix@218:
	pbs@ARFix@1100:
	pbs@ARFix@219:
	pbs@ARFix@310:
	pbs@ARFix@410:
	pbs@ARFix@510:
	pbs@ARFix@610:
	pbs@ARFix@710:
	pbs@ARFix@810:
	pbs@ARFix@910:
	pbs@ARFix@1010:
	pbs@ARFix@1110:
	pbs@ARFix@1210:
	pbs@ARFix@1310:
	pbs@ARFix@1410:
	pbs@ARFix@1510:
	pbs@ARFix@1610:
	pbs@ARFix@1710:
	pbs@ARFix@1810:
	pbs@ARFix@1910:
	pbs@ARFix@2010:
	pbs@ARFix@2110:
	pbs@ARFix@221:
	pbs@ARFix@231:
	pbs@ARFix@241:
	pbs@ARFix@251:
	pbs@ARFix@261:
	pbs@ARFix@271:
	pbs@ARFix@281:
	pbs@ARFix@291:
	pbs@ARFix@301:
	pbs@ARFix@311:
	pbs@ARFix@321:
	pbs@ARFix@331:
	pbs@ARFix@341:
	pbs@ARFix@351:
	pbs@ARFix@361:
	pbs@ARFix@371:
	pbs@ARFix@381:
	pbs@ARFix@391:
	pbs@ARFix@401:
	pbs@ARFix@411:
	pbs@ARFix@421:
	pbs@ARFix@431:
	pbs@ARFix@441:
	pbs@ARFix@451:
	pbs@ARFix@461:
	pbs@ARFix@471:
	pbs@ARFix@481:
	pbs@ARFix@491:
	pbs@ARFix@501:
	pbs@ARFix@511:
	pbs@ARFix@521:
	pbs@ARFix@531:
	pbs@ARFix@541:
	pbs@ARFix@551:
	pbs@ARFix@561:
	pbs@ARFix@571:
	pbs@ARFix@581:
	pbs@ARFix@591:
	pbs@ARFix@601:
	pbs@ARFix@611:
	pbs@ARFix@621:
	pbs@ARFix@631:
	pbs@ARFix@641:
	pbs@ARFix@651:
	pbs@ARFix@661:
	pbs@ARFix@671:
	pbs@ARFix@681:
	pbs@ARFix@691:
	pbs@ARFix@701:
	pbs@ARFix@711:
	pbs@ARFix@721:
	pbs@ARFix@731:
	pbs@ARFix@741:
	pbs@ARFix@751:
	pbs@ARFix@761:
	pbs@ARFix@771:
	pbs@ARFix@781:
	pbs@ARFix@791:
	pbs@ARFix@801:
	pbs@ARFix@811:
	pbs@ARFix@821:
	pbs@ARFix@831:
	pbs@ARFix@841:
	pbs@ARFix@851:
	pbs@ARFix@861:
	pbs@ARFix@871:
	pbs@ARFix@881:
	pbs@ARFix@891:
	pbs@ARFix@901:
	pbs@ARFix@911:
	pbs@ARFix@921:
	pbs@ARFix@931:
	pbs@ARFix@941:
	pbs@ARFix@951:
	pbs@ARFix@961:
	pbs@ARFix@971:
	pbs@ARFix@981:
	pbs@ARFix@991:
	pbs@ARFix@1001:
	pbs@ARFix@1011:
	pbs@ARFix@1021:
	pbs@ARFix@1031:
	pbs@ARFix@1041:
	pbs@ARFix@1051:
	pbs@ARFix@1061:
	pbs@ARFix@1071:
	pbs@ARFix@1081:
	pbs@ARFix@1091:
	pbs@ARFix@1101:
	pbs@ARFix@1111:
	pbs@ARFix@1121:
	pbs@ARFix@1131:
	pbs@ARFix@1141:
	pbs@ARFix@1151:
	pbs@ARFix@1161:
	pbs@ARFix@1171:
	pbs@ARFix@1181:
	pbs@ARFix@1191:
	pbs@ARFix@1201:
	pbs@ARFix@1211:
	pbs@ARFix@1221:
	pbs@ARFix@1231:
	pbs@ARFix@1241:
	pbs@ARFix@1251:
	pbs@ARFix@1261:
	pbs@ARFix@1271:
	pbs@ARFix@1281:
	pbs@ARFix@1291:
	pbs@ARFix@1301:
	pbs@ARFix@1311:
	pbs@ARFix@1321:
	pbs@ARFix@1331:
	pbs@ARFix@1341:
	pbs@ARFix@1351:
	pbs@ARFix@1361:
	pbs@ARFix@1371:
	pbs@ARFix@1381:
	pbs@ARFix@1391:
	pbs@ARFix@1401:
	pbs@ARFix@1411:
	pbs@ARFix@1421:
	pbs@ARFix@1431:
	pbs@ARFix@1441:
	pbs@ARFix@1451:
	pbs@ARFix@1461:
	pbs@ARFix@1471:
	pbs@ARFix@1481:
	pbs@ARFix@1491:
	pbs@ARFix@1501:
	pbs@ARFix@1511:
	pbs@ARFix@1521:
	pbs@ARFix@1531:
	pbs@ARFix@1541:
	pbs@ARFix@1551:
	pbs@ARFix@1561:
	pbs@ARFix@1571:
	pbs@ARFix@1581:
	pbs@ARFix@1591:
	pbs@ARFix@1601:
	pbs@ARFix@1611:
	pbs@ARFix@1621:
	pbs@ARFix@1631:
	pbs@ARFix@1641:
	pbs@ARFix@1651:
	pbs@ARFix@1661:
	pbs@ARFix@1671:
	pbs@ARFix@1681:
	pbs@ARFix@1691:
	pbs@ARFix@1701:
	pbs@ARFix@1711:
	pbs@ARFix@1721:
	pbs@ARFix@1731:
	pbs@ARFix@1741:
	pbs@ARFix@1751:
	pbs@ARFix@1761:
	pbs@ARFix@1771:
	pbs@ARFix@1781:
	pbs@ARFix@1791:
	pbs@ARFix@1801:
	pbs@ARFix@1811:
	pbs@ARFix@1821:
	pbs@ARFix@1831:
	pbs@ARFix@1841:
	pbs@ARFix@1851:
	pbs@ARFix@1861:
	pbs@ARFix@1871:
	pbs@ARFix@1881:
	pbs@ARFix@1891:
	pbs@ARFix@1901:
	pbs@ARFix@1911:
	pbs@ARFix@1921:
	pbs@ARFix@1931:
	pbs@ARFix@1941:
	pbs@ARFix@1951:
	pbs@ARFix@1961:
	pbs@ARFix@1971:
	pbs@ARFix@1981:
	pbs@ARFix@1991:
	pbs@ARFix@2001:
	pbs@ARFix@2011:
	pbs@ARFix@2021:
	pbs@ARFix@2031:
	pbs@ARFix@2041:
	pbs@ARFix@2051:
	pbs@ARFix@2061:
	pbs@ARFix@2071:
	pbs@ARFix@2081:
	pbs@ARFix@2091:
	pbs@ARFix@2101:
	pbs@ARFix@2111:
	pbs@ARFix@2121:
	pbs@ARFix@2131:
	pbs@ARFix@2141:
	pbs@ARFix@2151:
	pbs@ARFix@2161:
	pbs@ARFix@2171:
	pbs@ARFix@2181:

