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Abstract

Traditional economic frameworks are built upon perfectly rational agents and equilibrium

outcomes. However, during times of crises, these frameworks prove insufficient. In this

thesis, we take an alternative perspective based on "Complexity Economics", relaxing the

assumption of perfectly rational agents and allowing for out-of-equilibrium dynamics. While

many contemporary approaches explain crises and non-equilibrium market phenomena as

the rational reaction to external news, the emergence of endogenous crises remains an open

question.

We begin addressing this question by demonstrating how a multi-agent model of heterogen-

eous boundedly rational agents acting according to heuristics can reproduce and forecast key

non-linear price movements in the Australian housing market, during boom and bust cycles.

In order to provide foundations for such heuristic-based reasoning, we then propose a novel

information-theoretic approach, Quantal Hierarchy, for modelling limitations in strategic

reasoning, demonstrating how this convincingly and generically captures the decision-making

of interacting agents in competitive markets outperforming existing approaches. In addition,

we demonstrate how a concise generalised market model can generate important stylised facts,

such as fat-tails and volatility clustering, and allow for the emergence of crises, purely endo-

genously. This thesis provides support to the interacting agent hypothesis, addressing a crucial

question of whether crisis emergence and various stylised facts can be seen as endogenous

phenomena, and provides a generic method for representing strategic agent reasoning.
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"The very complexity that has made a theory of the decision-making process essential

has made its construction exceedingly difficult... It seemed almost utopian to suppose that

we could put together a model of adaptive man that would compare in completeness with

the simple model of classical economic man... [Computational modelling] provides us with

a tool of research-for formulating and testing theories-whose power is commensurate with

the complexity of the phenomena we seek to understand... As economics finds it more and

more necessary to understand and explain disequilibrium as well as equilibrium, it will find

an increasing use for this new tool" - Visionary Computer Scientist and Economist, Herbert

Simon, 1959.
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CHAPTER 1

Introduction

1.1 Scope

The conventional theory for pricing in economic markets is the efficient-market hypothesis

(EMH), based on rational expectations and market equilibrium. EMH states that pricing

reflects all known information about an asset and, as such, reflects the fair value, e.g. "the

price is always right". Based on the EMH, it should be impossible to beat the market, as

pricing follows a purely "random walk" driven only by unpredictable external news (the link

between EMH and random walks is itself controversial). However, experimentally, substantial

deviations from this efficiency are observed, for example, with firms such as Renaissance

Technologies consistently outperforming the market, where the founder Jim Simons is quoted

as saying "[EMH] is just not true", leading Econophysicist Jean-Philippe Bouchaud remarking

"In reality, markets are not efficient... free markets are wild markets" (Bouchaud, 2008), and

with much empirical evidence "[eroding] the trust in a theory which denies the existence of

any systemic deviations of stock prices from their fundamental values" (Lux, 1995). The

occurrence of significant asset bubbles aid in eroding this trust, where pricing sees substantial

deviations from the fundamental asset value, for example, with housing market bubbles

(Axtell et al., 2014), casting doubts on the efficiency of such markets.

These substantial price deviations from the underlying value bring market modelling back

to the original beliefs of Keynes, who believed "animal spirits" (Nyman et al., 2021) played

a significant role in market dynamics. A similar opinion is shared by Shiller, who believes

many not necessarily perfectly rational factors (such as structural, cultural, and psychological

factors) help shape price dynamics (Shiller, 2015b), for example, irrational exuberance being
1



2 1 INTRODUCTION

the psychological basis of a speculative bubble (Shiller, 2015a), which the ex-Federal Reserve

Board chairman also supported as an explanation for the dot-com bubble. Such considerations

motivate the relaxation of rationality and efficiency when modelling various economic markets,

allowing for alternate concepts, such as the interactions among bounded rational agents (e.g.

market participants), to potentially explain market dynamics and understand the resulting

"wildness" (Bouchaud, 2008).

Under the EMH, such bubbles would only burst under significant external news. The 2008

Global Financial Crisis can be seen as an inflection point that helped trigger wider spread

doubts about the EMH, with the Federal Reserve chairman reflecting "it should be clear that

among the causes of the recent financial crisis was an unjustified faith in rational expectations,

market efficiencies, and the techniques of modern finance" (Volcker, 2011), the US Treasury

Secretary remarking the “the [traditional] economic models were worthless” during times of

crises, and the president of the European Central Bank stating they "felt abandoned by the

conventional tools" (Arthur et al., 2020). Under these rational expectations approaches, crises

can only arise due to the arrival of external news – meaning endogenous crises formation

can not be explained under such a hypothesis. These concerns highlighted the need for a

"revolution" in economic modelling (Bouchaud, 2008). These limitations in conventional

approaches for explaining out-of-equilibria economic phenomena were one of the early

motivations of work at the Santa Fe Institute, around a simple question: "What would

economics look like if we allowed nonequilibrium?" (Arthur et al., 2020).

In addressing this question, an alternate view on economics and financial markets began to

emerge, which did away with some of the traditional notions of perfect rationality, market

efficiency, and equilibrium, which would go on to be called "Complexity Economics", fol-

lowing Arthur, 1999. Under Complexity Economics, markets are seen as nonlinear complex

adaptive systems, evolving dynamically (Hommes, 2001). Rather than nonequilibrium states

being a temporary result of the rational reaction to external news, "from the complexity

economics perspective, change is largely an endogenous phenomenon, not simply the result of

unexplained shocks from outside the system" (Arthur et al., 2020). Throughout this thesis, we
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take a similar perspective – and look to explain various market phenomena as endogenously

occurring.

The interacting agent hypothesis (IAH) (Lux and Marchesi, 1999) is one approach leading

this revolution, driven by the fact many market phenomena are incompatible with the EMH,

instead appearing to arise due to "intrinsic dynamic forces of speculative markets not related

to fundamental factors" (Lux, 1995). Rather than various stylised facts arising due to a news

arrival process, this phenomenon can be explained as a result of interactions among agents

with various (not necessarily perfectly rational) factors influencing the decision-making (such

as psychological fears or processing constraints). For example, the IAH explains market

volatility and speculative bubbles and crashes based on crowd dynamics and herding among

agents (Gontis et al., 2016; Kaizoji, 2000). In contrast, under the EMH, such behaviour would

only occur as a reaction to external news arrival.

Throughout this work, we look to develop upon this idea, providing support to the IAH. During

"general" market times, in well-established professional markets, the EMH may serve as a fair

assumption, but crucially, for important turning points of markets, the EMH begins to diminish

in applicability. Throughout this thesis, we look to explain phenomena unexplainable by the

EMH, where rather than market dynamics being driven purely by underlying fundamental

changes, the endogenous interaction between market participants can drive various market

phenomena. Importantly, this provides an alternative tool to understand economic markets

both in and out of equilibrium, with an early focus on the Australian housing market, before

moving into more general economic markets.

1.2 Objectives

This thesis aims to explain pricing dynamics and out-of-equilibrium market phenomena (for

example, endogenous crises formation) as a result of the interaction among bounded rational

agents. The main objectives of this thesis are detailed below.
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I Demonstrate how interactions among inductive reasoning agents can

recreate key price dynamics

Human decision-making in economic markets is often comprised of heuristics, and the

resulting decisions effected by various structural, cultural, and psychological factors (Shiller,

2015a), such as emotion and social forces (Ackert and Deaves, 2009; Strahilevitz et al., 2011).

Therefore, when attempting to model economic decision-making, such observations motivate

the relaxation of homo economicus, the perfectly rational representative economic actor, who

can perform exact deductive reasoning (De Bondt and Thaler, 1995). Instead, suggesting

decision-makers perform inductive reasoning (Arthur, 1994), where such a reasoning process

may be heterogeneous among the market participants (Agliari et al., 2018), and influenced

by various social and psychological factors such as the choices of others (Garnier-Brun

et al., 2022). Representing these various factors in terms of behavioural heuristics and/or

information processing resources becomes a key task of this thesis.

Specifically, the first objective of this work is to demonstrate how interacting inductive-

reasoning agents, influenced by various social pressures and search processing constraints,

can generate key market phenomena, such as pricing dynamics, in accordance with actual

market conditions. In the first instance, we wish to a.) demonstrate this with hand-crafted

behavioural heuristics, to see how well they perform, before b.) generalising these heuristics

into information-processing terms to represent a more generic class of economic phenomena.

In both cases, we aim to place a particular focus on real data from the Australian housing

market.

II Model strategic higher-order reasoning to capture decision-making

under constraints

Rather than asset pricing being strictly driven by the underlying fundamentals (as is the case

with the EMH), it has often been said that instead, beliefs about other investors’ beliefs drive
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the price dynamics (Keynes, 1937; Casti, 1996). Representing this type of strategic decision-

making, where an agent reasons about another agent who themselves is reasoning about the

first agent, and so on, is difficult due to the self-referential nature of the recursive reasoning

process (e.g. the Holmes–Moriarty problem, Koppl and Barkley Rosser Jr, 2002). Through

relaxing this homo economicus assumption, and admitting agents may display bounded

rational behaviour, this self-reference can be seen as partial self reference (Löfgren, 1979),

due to the ability to break at various points of recursion when processing resources deplete.

Developing a generic model of this partial self-reference, becomes essential for capturing

agents’ strategic higher-order reasoning in economic markets. The key question here is: How

can we capture this higher-order reasoning in a generic (information-theoretic) sense?

Hence, our second objective is to develop an information-theoretic model quantifying

information-processing resources of strategically reasoning agents, and verify this model

against a set of representative canonical games and market settings.

III Demonstrate how interactions among bounded strategic reasoning

agents can lead to endogenous crisis emergence

To reiterate, the endogenous formation of crises and periods of heightened volatility can not

be explained by the efficient market hypothesis, without the arrival of external news. However,

frequently, such dynamics occur in actual economic markets, displaying endogenous crisis

formation, clustered volatility, and "fat-tails" (Hommes, 2002), which contradict the random-

walk explanation of the EMH (in the absence of news). Despite much effort, a simple

and concise explanation of crises emergence and these stylised facts (such as fat-tails and

volatility clustering) in terms of strategic reasoning between interacting agents has yet to be

given. A key question is, can endogenous crisis form out of the interaction among bounded

rational agents that reason recursively (and thus, strategically) about other agents. The specific

objective here is to show under a concise and general market settings how agent interactions

and bounded rational reasoning can lead to endogenous crises formation, in the absence of

any fundamental market changes. We aim to demonstrate applicability using a canonical

market entrance problem, and compare to existing solutions.
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1.3 Contributions and Main Findings

To address these objectives, we have produced four self-contained studies, each forming a

chapter in this thesis. In the first study, we focus specifically on housing markets before

moving into more general economic markets in the later studies.

1.3.1 Thesis Overview

The first study presents a fine-grained computational model of the Australian housing market.

The second study is more theoretically grounded, and helps infer decision-making factors

that had been hand-crafted in the first model. The third study moves into strategic reasoning

between interacting agents, developing a novel information-theoretic approach for quantifying

inductive strategic reasoning. Finally, the fourth study brings these key concepts together,

where we develop a concise and general multi-agent model of economic markets, where

interacting agents using inductive strategic reasoning recreate crucial market phenomena.

The impact of social influence in Australian real estate: market

forecasting with a spatial agent-based model

This study (Evans et al., 2023) presents a computational model of the Greater Sydney housing

market. Agent decision-making is driven by buy and sell heuristics, with decisions influenced

by psychological and economic factors, such as social influences and pressures, connecting

agent decision-making to the "Animal spirits" of Keynes. The bottom-up simulation provides

well-performing forecasting for overall market pricing and area-specific breakdowns arising

from these individual agent decisions (addressing Objective I.a). In addition, the simulation

results elucidate agent preferences in submarkets, highlighting differences in agent behaviour

and the importance of agent heterogeneity, for example, between first-time home buyers and

investors, and between local and overseas investors.

This study was published in the Journal of Economic Interaction and Coordination (Evans

et al., 2023), and is presented in Chapter 3.
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A Maximum Entropy Model of Bounded Rational Decision-Making with

Prior Beliefs and Market Feedback

This study (Evans and Prokopenko, 2021) proposes a principled approach to infer agent de-

cisions in competitive markets based on prior beliefs and observed macroeconomic outcomes.

We show how such a model can explain and reconstruct the distribution of price fluctuations

in the Greater Sydney housing market, based on the interactions between these inductive

reasoning agents (driven by the observed profit rates), addressing Objective I.b. Incorporating

prior beliefs into such a framework provided insights into potential leading indicators of

market state changes, allowed for analysis into the evolution of agent beliefs over time, and

improved the accuracy of the model in reproducing actual market data.

This study was published in Entropy (Evans and Prokopenko, 2021), in the special issue

"Three Risky Decades: A Time for Econophysics?", and is presented in Chapter 4.

Bounded rationality for relaxing best response and mutual consistency:

The Quantal Hierarchy model of decision-making

In this study (Evans and Prokopenko, 2023a), we provided a principled and generic way of

quantifying limitations in higher-order strategic reasoning, addressing Objective II. Bounds

in player processing abilities are expressed as information costs, where future chains of

reasoning are discounted, implying a hierarchy of players where lower-level players have

fewer processing resources. Specifically, the proposed model is based on a recursive form

of the variational free energy principle, representing higher-order reasoning as (pseudo)

sequential bottom-up decisions. We demonstrate the applicability of the proposed model to

several canonical economic games, showing the proposed model is a good fit for out-of-sample

human behaviour, outperforming existing state-of-the-art approaches.

This study was published in Theory and Decision (Evans and Prokopenko, 2023a), and is

presented in Chapter 5.
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Bounded strategic reasoning explains crisis emergence in multi-agent

market games

In this study (Evans and Prokopenko, 2023b), we propose a concise model that explains the

endogenous emergence of punctuated out-of-equilibrium dynamics based on the interactions

between bounded rational agents (addressing Objective III). In a market entrance game, we

show how inductive strategic reasoning can lead to endogenously emerging crises, exhibiting

fat tails in “returns”. We also show how other common stylised facts of markets, such as

clustered volatility, arise due to agent diversity (or lack thereof) and the varying learning

updates across the agents (addressing Objective I). This work explains various stylised facts

and crisis emergence in economic markets, in the absence of any external news, based on

agent interactions and bounded rational reasoning. This provides an alternative perspective

to the efficient market hypothesis, which can model periods of out-of-equilibrium dynamics

without external news arrival.

This study was published in Royal Society Open Science (Evans and Prokopenko, 2023b),

and is presented in Chapter 6.

1.3.2 Mapping Findings to Objectives

When analysing market outcomes, it seems improbable that market participants (agents)

are perfectly rational, which is also supported by various experimental economic studies.

Instead, market participants are subject to various factors influencing decision-making and

may exhibit bounded rational behaviour. Throughout this thesis, we have developed novel

techniques for modelling human behaviour and computational techniques for analysing the

resulting out-of-equilibria phenomena in economic markets composed of these agents. Thus,

we addressed our objectives as follows
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I Demonstrate how interactions among inductive reasoning agents can recreate key

price dynamics

Using Australian housing market data, we demonstrate how models of boundedly rational

agents acting according to heuristic rules can recreate and forecast key pricing movements

across the Greater Sydney region, capturing boom and bust cycles (Chapter 3), and how a

more generalised model can reconstruct the distribution of price fluctuations (Chapter 4).

Additionally, in a generic setting, we show how a concise model can generate key stylised facts

of economic markets such as volatility clustering (Chapter 6). This shows how accounting

for interactions among agents can explain key market phenomena and price dynamics from a

bottom-up perspective.

II Model strategic higher-order reasoning to capture decision-making in competitive

markets

We formally represent limitations in higher-order reasoning in an information-theoretic sense

by representing reasoning as an extensive form game tree and introducing processing costs

for exploring such a tree (Chapter 5). This provides a principled and generic approach for

modelling recursive agent reasoning in economic markets.

III Demonstrate how interactions among bounded strategic reasoning agents can lead

to endogenous crisis emergence

In a concise market entrance game, we show that boundedly rational strategic reasoning can

lead to endogenously emerging crises, exhibiting fat tails in “returns”, following actual market

conditions (Chapter 6). This confirms that crises can emerge endogenously in economic

markets without external news based on agent interactions and bounded rational reasoning.

1.3.3 Closing the loop

We begin this thesis by looking at how a population of inductive reasoning agents, acting

according to predefined heuristic rules, can recreate key price dynamics of an actual economic



10 1 INTRODUCTION

market (the Greater Sydney housing market). We then generalise some of these heuristics,

using the concept of Smithian competition to capture decision-making and the market feedback

loop, and formalise bounded reasoning through an information processing constraint. From

this foundation, we then move from basic inductive reasoning to inductive strategic reasoning,

where agents are again subject to information processing constraints but now characterising

more generalised strategic reasoning in competitive markets. Finally, we apply this generalised

strategic reasoning in a multi-agent system, "closing the loop", providing support to the

findings of the original computational model with behavioural heuristics. This thesis goes

from specific fine-grained examples to building a more generalised understanding at each

step.

This thesis demonstrates a fundamental idea: Market dynamics are endogenously driven

by the interactions among bounded rational agents. This bounded rational reasoning can

be captured with the usage of hand-crafted behavioural heuristics, but we also show how

more generally, an information-theoretic approach, the Quantal Hierarchy (QH) model,

can generically quantify limitations in strategic reasoning. By providing this principled

QH approach of modelling bounded rational strategic reasoning, we support the use of

heuristics in fine-grained ABMs for approximating such decision-making under processing

costs. The developed methods are verified with actual market data and underlying economic

decision-making data, outperforming a range of canonical approaches. This thesis supports

the interacting agent hypothesis, explaining the endogenous emergence of out-of-equilibria

phenomena through the interaction among bounded rational agents.

1.3.4 Thesis Structure

The remainder of the thesis is presented as follows. Chapter 2 provides a background to the

primary concepts used in this thesis, such as complexity economics, information theory, and

decision-making. Chapter 3-Chapter 6 are the main contribution chapters, each addressing

the outlined objectives and working towards a more generalised representation. Finally,

conclusions and future work are detailed in Chapter 7.



CHAPTER 2

Background

2.1 Complexity Economics

Complexity economics was pioneered at the Santa Fe Institute in the late 1980s, with an

interdisciplinary conference titled "The Economy as an Evolving Complex System" (Arthur

et al., 2020), with many notable attendees and organisers such as Phil Anderson (Nobel Prize

in Physics), Kenneth Arrow (Nobel Prize in Economics), Lawrence Summers (Secretary of

US Treasury), and John Holland (leading computer scientist) (Farmer, 2000).

While there have been many accomplishments in complexity economics (see Arthur et al.,

2020), here, we provide a brief background of some of the most relevant work for this thesis,

splitting the work into two broad (overlapping) categories: Computational Economics and

Econophysics. Due to the breadth of literature, we focus on one specific aspect from each

which is directly relevant to this thesis: agent-based modelling from computational economics

and statistical equilibrium models from econophysics. ABM are not necessarily separate from

econophysics (Abergel et al., 2013; Chakraborti et al., 2011b), however, we have made this

distinction for presentation and clarity, with "Complexity Economics" being the overarching

umbrella term.

2.1.1 Computational Economics

Computational economics makes use of the increasing availability of computing power to

address problems in economics that were previously considered intractable under traditional
11
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mathematical examination. Here, we focus on one technique, agent-based computational

economics (ACE), and more specifically, ACE approaches to market modelling.

2.1.1.1 Agent-based modelling

Well-documented failures in traditional rational expectation models highlighted the need for

alternative approaches for market modelling (Farmer and Foley, 2009; Bouchaud, 2008). One

tool in particular, agent-based modelling (ABM) has shown much promise in the modelling

of economic markets (Chen et al., 2012) due to the ability to represent realistic individual

behaviour, such as bounded rational decision-making, social influences, and heterogeneous

expectations among agents.

Rather than the top-down approach of assuming efficiency and rational expectations, ABM’s

view markets from the "bottom-up" (Tesfatsion, 2002). This bottom-up view explains market

phenomena as arising from individual (not necessarily perfectly rational) decision-making. In

this sense, ABMs can model macroeconomic dynamics from individual micro-level behaviour

(LeBaron and Tesfatsion, 2008), creating a bottom-up adaptive approach to macroeconomics

(Gatti et al., 2011), helping to address limitations of neoclassical approaches (Cincotti et al.,

2022).

Thus far, ABM have seen a variety of successes in modelling economic markets. Early

work notably showed how ABMs could create an artificial stock market (Palmer et al., 1999;

LeBaron, 2002; LeBaron et al., 1999). More recently, various methods have been proposed to

capture the dynamics of housing markets (Geanakoplos et al., 2012; Axtell et al., 2014), as

well as various other use cases, such as modelling risks and financial stability (Bookstaber,

2017), scenario-based exploration of economic recovery patterns (Sharma et al., 2021), and

beginning to show use for economic forecasting (Poledna et al., 2022). These works show the

usefulness and flexibility of ABM, and an extensive review of ABM in economics is presented

in Axtell and Farmer, 2022.
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2.1.2 Econophysics

Driven by the empirically observed statistical properties of financial time series (Chakraborti

et al., 2011a), during the 1990s, an influx of physicists began to enter the world of finance

(both in academia and industry) (Farmer, 2000), and research at the interplay of these two

areas (physics and markets) became more common. The term "econophysics" was coined by

Eugene Stanley in 1995 (Stanley et al., 1996), and sees economic and financial phenomena

through the "lens" of statistical physics (Schinckus, 2012). There have been many notable

works in this area, for example, explaining distributions of stock price variations (Cont and

Bouchaud, 2000), price fluctuations (Laloux et al., 1999), and risk management (Bouchaud,

Potters et al., 2003). A general background of econophysics is presented in Kutner et al.,

2019; Kutner et al., 2022. Similar to ABM, this area aims to provide an alternate perspective

on economic and financial markets, relaxing these traditional economic assumptions.

For this thesis, work involving statistical mechanics, specifically the concept of statistical

equilibrium, is most significant. A review of the influence of statistical mechanics and the

usefulness of entropy in economics is presented in (Rosser Jr, 2021).

2.1.2.1 Statistical Equilibrium

Statistical equilibrium approaches to economics (Foley, 2003; Kaizoji, 2006; Scharfenaker

and Yang, 2020b; Scharfenaker and Yang, 2020a) are most relevant to our work here. While

it may seem counterintuitive to consider statistical "equilibrium" approaches, statistical

mechanics provides an alternative equilibrium to the traditional (Walrasian) equilibrium

approaches to economics. Statistical equilibrium offers a more flexible definition that instead

represents a probability distribution of all possible states of the system (Ömer, 2020). This

line of thinking may be considered "post-Walrasian" (Foley et al., 2017).

For modelling markets, statistical equilibrium provides an interesting new perspective, which

can help relax some of the unrealistic ad-hoc assumptions, such as the perfect rationality of

particpants or the efficiency of market clearance (Ömer, 2020). The most relevant model

here is the Quantal Response Statistical Equilibrium (QRSE) model of Scharfenaker and
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Foley, 2017, which utilises the maximum entropy principle (detailed in later sections) to

infer individual decisions and statistical fluctuations of macroeconomic outcomes. Likewise,

Kaizoji, 2006 uses the maximum entropy principle to infer traders’ decision-making rules.

The statistical equilibrium models outlined utilising the principle of maximum entropy follow

from Jaynes’ work that shows the fundamental relationship between information theory and

statistical mechanics (Jaynes, 1957a; Jaynes, 1957b). Crucially, Jaynes showed that "the

maximisation of entropy is not an application of a law of physics, but merely a method of

reasoning which ensures that no unconscious arbitrary assumptions have been introduced",

which allows for the modelling of abstract phenomena not necessarily governed by physical

processes (Rosser Jr, 2021). We adopt this perspective throughout this thesis for the modelling

of decision-making and social phenomena in economic markets.

2.2 Information Theory

Agents are often limited in the amount of information they can process, for example, in a

market, it may be impossible for a human to consider all available information. Throughout

this thesis, we use information theory to formalise this information processing constraint.

Shannon pioneered information theory in his paper "A Mathematical Theory of Communica-

tion" (Shannon, 1948), as a method of representing information communication subject to a

noisy channel, building upon prior fundamental work of Nyquist, 1924; Hartley, 1928. Due to

the generality of the representation, information theory has found widespread usage, e.g., as a

method for constraining agent decision-making (Sims, 2003; Ortega and Braun, 2013; Foley,

2020; Harré, 2021), as an alternative to conventional equilibrium models in economics (Yang,

2018; Yang, 2022), and as a general explanatory framework for complex systems analysis

(Prokopenko et al., 2009).

This thesis adopts this perspective. In this section, we review some of the fundamental

information-theoretic concepts utilised throughout this thesis.
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2.2.1 Information-theoretic measures

2.2.1.1 Entropy

The central measure in information theory is the (Shannon) entropy H of a random variable

X , which quantifies the amount of "information" contained within X , or the amount of

"uncertainty" associated with the observations. Assuming a discrete distribution, the entropy

is defined as

H(X) = −
∑

x∈X
p(x) log p(x) (2.1)

The choice of the logarithm base is problem specific, however, throughout this thesis, we use

base 2 to quantify entropy in terms of bits (other common examples are e or 10).

As a simple example of the entropy measure, if we assume X is uniformly distributed, we

get H(U) = log k, i.e. the maximally uncertain distribution, where k is the number of items

in X , k = |X|. When observing an outcome from U , our expected "surprise" is maximised.

To see this connection with surprisal s, we can consider the logarithm of the inverse of the

probability, e.g.

s(x) = log
1

p(x)
(2.2)

We can rewrite entropy in terms of the expected surprisal as

H(X) =
∑

x∈X
p(x)s(x) (2.3)

which shows the connection between entropy, uncertainty, and surprise.

Enforcing a constraint on the entropy restricts the amount of "information" one can process

and is utilised to represent informationally-constrained decision-makers in later sections.
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2.2.1.2 Kullback Leibler Divergence (Relative Entropy)

The Relative Entropy, or the Kullback Leibler (KL) Divergence, DKL(P ∥ Q) quantifies the

amount of information gain from using probability distribution P over probability distribution

Q, and is given by:

DKL(P ∥ Q) =
∑

x∈X
P (x) log

(
P (x)

Q(x)

)
(2.4)

We can see when P = Q, we get DKL(P ∥ Q) = 0. That is, we receive no additional

information from using P . Alternatively, if we assume that Q is the uniform distribution U ,

we recover the definition of Shannon entropy from Eq. (2.1) (up to a constant term), as this is

the expected excess surprise from using U when the actual distribution is P . More generally,

KL divergence can serve as a measure of the divergence between two probability distributions.

In a similar manner to the entropy constraint, enforcing a constraint on DKL(P ∥ Q) limits the

divergence from a base "reference" distribution Q. We utilise this in later sections to limit the

divergence from an agent’s prior beliefs, i.e., to limit the amount of information acquisition

based on information processing abilities.

2.2.2 Principle of maximum entropy

One helpful concept building upon the information-theoretic measures outlined in the previous

section is the principle of maximum entropy (Jaynes, 1957a; Jaynes, 1957b) (MaxEnt), which

has seen success in economic applications (Scharfenaker and Yang, 2020b; Scharfenaker and

Yang, 2020a). When choosing among a set of probability distributions, MaxEnt speculates

one should choose the distribution with the maximum entropy, as this makes the fewest

assumptions. This specification is in accordance with Occam’s razor, which (overly simplified)

specifies, amongst all else being equal, the simplest explanation is the correct one. MaxEnt

provides a systematic information-theoretic approach to modelling inference (Golan and

Foley, 2022).
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For example, in the simplest case, we have the natural constraints that the probability distribu-

tion must sum to one
∑

x∈X p(x) = 1, and since it is probability distribution, all values must

be non-negative p(x) ≥ 0,∀x. Given this constraint, the distribution which should be chosen

is the uniform distribution, as this has the maximal entropy among all possible options.

However, what distribution would arise if we were to enforce additional constraints on the

first and second-order moments (mean and standard deviation)? MaxEnt can be used for

answering this question by maximising

max
p

H(p) = max
p

(
−
∑

x∈X
p(x) log p(x)

)
(2.5)

subject to the additional constraints that

∑

x∈X
p(x)x = µ (2.6)

√∑

x∈X
p(x)(x− µ)2 = σ (2.7)

which corresponds to a constrained optimisation problem. To treat this as an unconstrained

optimisation problem, we convert this to a Lagrangian function, where we get

L = −
∑

x∈X
p(x) log p(x) + λ0

(∑

x∈X
p(x)− 1

)
+ λ1

(∑

x∈X
p(x)x− µ

)

+ λ2



√∑

x∈X
p(x)(x− µ)2 − σ


 (2.8)

where λi are Lagrange multipliers. Taking the first order conditions of L with respect to p(x)

yields:
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p(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

(2.9)

i.e., the Gaussian distribution. This result shows that the distribution which maximises

the entropy subject to constraints on the first and second-order moments is Gaussian. The

usefulness of MaxEnt is that any arbitrary constraints can be added:

∑

x∈X
p(x)fk(x) ≥ Fk k = 1, . . . ,m. (2.10)

which take the form of additional Lagrange multipliers, and the appropriate distribution (i.e.

the maximally non-committal one) is of the form

p(x) =
1

Z(λ1, . . . , λm)
eλ1f1(x)+···+λmfm(x) (2.11)

i.e., the Boltzman distribution, where Z is the partition function. MaxEnt is very flexible,

and provides a general framework for rational inferences under incomplete information

(Scharfenaker and Yang, 2020b). MaxEnt is utilised in this thesis for representing agent de-

cisions based on information processing constraints, and also for inferring resulting statistical

equilibrium’s based on market feedback loops.

2.3 Decision Making

Throughout this thesis, we follow the expected utility hypothesis based upon the Von Neu-

mann–Morgenstern (VNM) utility theorem (Von Neumann and Morgenstern, 2007). The

expected utility hypothesis states that when faced with a decision, a perfectly rational agent

wishes to maximise their expected utility, and serves as a foundational assumption throughout

economics.

To define this utility, VNM-rationality requires four fundamental underlying axioms of the

decision-maker’s preferences: completeness, transitivity, continuity, and independence. If all
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axioms are satisfied, one can assign a numeric utility function U to measure these preferences.

The expected utility E[U ] is then the weighted likelihood of achieving each utility, with agents

trying to maximise this expected utility:

maxE[U ] = max
∑

a∈A
p(a)U(a) (2.12)

This framework represents a perfectly rational decision-maker who can consider all outcomes

and choose the option which maximises their expected utility. In experimental settings,

however, this is frequently violated (Kahneman, 2003).

2.3.1 Bounded Rationality

It is instead plausible that agents are attempting to maximise their expected utility, however,

they are subject to constraints when reasoning (for example, due to cognition, time, or money),

that is, they display bounded rationality (Simon, 1957) (also referred to as "computational

rationality", Gershman et al., 2015; Lewis et al., 2014). Following the information-theoretic

discussion in the previous section, these constraints can be quantified using an information-

processing constraint. Rather than an agent attempting to maximise their expected utility, e.g.

from Eq. (2.12), agents are instead maximising their expected utility subject to an information

processing (entropic) constraint:

max
∑

a∈A
p(a)U(a) (2.13)

subject to −
∑

a∈A
p(a) log p(a) = B (2.14)

and the usual constraint that the probabilities must sum to 1. Solving for p(a), again using the

method of Lagrangian multipliers, leads to the softmax (or logit) function:
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p(a) =
1

Z
eβU(a) (2.15)

which restricts information-processing abilities through the Lagrange multiplier β (which

serves as the resource parameter), and reconstructs the maximum expected utility principle

when β → ∞. This information-processing constraint has many benefits for modelling human

decision-making, most notably, it abstracts away any specific type of constraint, meaning

bounded rational reasoning can still be treated as an optimisation problem (Sims, 2003).

Ortega and Braun, 2013 extended this framework to account for a prior belief distribution p0

over actions, representing decision-making as state changes, showing that this follows from

the (negative) free-energy difference in thermodynamics:

−∆F (p) =
∑

a∈A
p(a)U(a)− 1

β

∑

a∈A
p(x) log

p(x)

p0(x)
(2.16)

where now, rather than the entropy constraint seen previously, this information processing

constraint naturally takes the form of the KL divergence. This is maximised by the equilibrium

distribution:

p(a) =
1

Z
p0(x)e

βU(a) (2.17)

which allows agents to trade off their expected utility gain with information-processing costs

from their prior beliefs. This foundational framework of Ortega and Braun, 2013 is utilised

and extended throughout this thesis for representing informationally-constrained reasoning.

2.3.2 Strategic Decision-making

Until now, we have considered a decision-maker choosing from a set of options with pre-

defined utilities and a fixed environment. Frequently, however, the decisions to be made
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depend on the choices of other agents. This configuration brings us to strategic decision-

making, where the decisions are made by considering the choices of other agents. Throughout

this thesis, we focus on non-cooperative games, where the agents compete with each other

(such as in economic markets).

2.3.2.1 Game Theory

In competitive (non-cooperative) games of two or more players, a fundamental solution

concept is Nash Equilibrium, where no player has any incentive to deviate from their chosen

strategy. For all finite games, a Nash Equilibrium solution exists (Nash, 1951).

These solutions can be split into pure strategy equilibria and mixed strategy equilibria. In

pure strategy equilibria, all players play according to a pure strategy. With mixed strategy

equilibria, at least one player is using a mixed strategy.

Pure Strategies. A pure strategy details an exact strategy a player will play. For example,

if faced with three strategies A1, A2, A3, a pure strategy is playing any one of these with

certainty, e.g. p(A1) = 1.

Mixed Strategies. Rather than playing one strategy with certainty, mixed strategies assign

probabilities to each strategy. With this in mind, pure strategies can be seen as a special case

where the selected strategy has p = 1, and all others p = 0. To see why mixed strategies are

required, consider the game of Rock Paper Scissors. If any player were to play a pure strategy

(A1=rock, A2=paper, A3=scissors), this would be easily exploitable. For an equilibrium to

arise, players must randomise amongst each strategy. If players weight each strategy equally

p(A1) = p(A2) = p(A3) =
1
3
, there is no incentive to deviate, as there there is no possibility

to exploit the move. This weighting is the unique mixed Nash equilibrium for this game.

While this is a simplistic example, it shows the need and use of mixed strategies.

Mixed strategies are used more generally throughout this thesis to represent uncertainty in

play and allow erroneous play from information-constrained decision-makers (e.g. an agent
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may not choose the best option with certainty). This representation better models human

behaviour and leads to behavioural game theory (Camerer, 2010).

2.3.2.2 Behavioural Game theory

While the game-theoretic concepts outlined above are based on perfect rationality, frequently

deviations from this perfect rationality are observed. Below we review the two most relevant

approaches for incorporating bounded rational play into game theory. A more comprehensive

analysis of behavioural game theory approaches is presented in (Camerer, 2003; Camerer

et al., 2004a; Camerer, 2010).

Quantal Response Equilibrium. Quantal Response Equilibrium (QRE) (McKelvey and

Palfrey, 1995; McKelvey and Palfrey, 1998) relaxes the notion of best-response, allowing for

erroneous play. Above, we have seen how enforcing an entropic constraint on the maximum

expected utility principle leads to an information-constrained decision-maker, which can

account for these errors in play. This same specification is frequently used in QRE:

Pi,j =
exp(β E[Ui,j(P−i)])∑
k exp(β E[Ui,k(P−i)])

(2.18)

where P is the probability of player i choosing strategy j, and P−i is the probability distribu-

tion of the other players taking each strategy. When β → ∞, the original Nash behaviour is

recovered, and β < ∞ represents bounded rational play. The key here is that to maintain an

equilibrium, we must calculate the fixed point solution (since P−i also depends on Pi,j). For

example, if we have a two-player (a and b) game with two outcomes (H or T ), we get the

following

Pa,H =
exp(β E[Ua,H(Pb)])

exp(β E[Ua,H(Pb)]) + exp(β E[Ua,T (Pb)])
, Pa,T = 1− (Pa,H) (2.19)

Pb,H =
exp(β E[Ub,H(Pa)])

exp(β E[Ub,H(Pa)]) + exp(β E[Ub,T (Pa)])
, Pb,T = 1− (Pb,H) (2.20)
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which can be solved with various approaches to find the resulting equilibrium (McKelvey

et al., 2016).

Level-k models. Level-k type models (Stahl and Wilson, 1995) relax the notion of mutual-

consistency, but maintain the notion of best-response. Unlike QRE, level-k type models do

not necessarily give rise to equilibrium. Instead, closer to ABM type rules, they progress

"bottom-up". A level-0 player acts according to some basic predetermined rule, a level-1

player then exploits this fact and best responds based on the other player being level-0.

Likewise a level-2 player for level-1, and so on, with level-k best responding to level-k − 1.

This representation has a number of benefits, for example, when computing equilibrium is

impractical, or when the resulting dynamics are out-of-equilibrium.

There are various extensions of level-k type models, most notably, Cognitive Hierarchy

(Camerer et al., 2004b), which fits a distribution of < k thinkers, rather than assuming all

opponents are at k − 1. Most commonly, a one-parameter Poisson distribution is utilised

(Chong et al., 2005).

This thesis builds upon these ideas, proposing an alternative integrated approach for modelling

bounded rational reasoning in strategic decision-making.

2.4 Summary

This section covered key relevant topics from complexity economics, information theory,

and behavioural game theory. We have outlined how techniques from complexity economics

can provide an alternate view of economic markets and how information theory can provide

a generalised framework for quantifying processing constraints and performing inference.

Additionally, we have shown that agent-based computational economics can be utilised

to analyse nonequilibrium emergent phenomena from a "bottom-up" perspective. This

background gives an important foundation for the thesis, which we build upon to model the

endogenous emergence of stylised facts and crises through information-constrained decision-

making.



CHAPTER 3

The impact of social influence in an agent-based model of the Australian

housing market

We begin with developing a computational agent-based model of the Australian housing

market able to explain and forecast key price movements. Importantly, the model makes no

assumptions about equilibrium, efficiency, or rationality. Instead, the interactions between

heterogeneous bounded rational agents acting according to simple behavioural heuristics

are enough to explain key market phenomena. We also demonstrate how various factors

such as social pressures better capture actual market dynamics than stricter assumptions, and

how agent heterogeneity can explain differences between buyer behaviour (e.g. investors vs

first-time-home-buyers).
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1 Introduction

Within economic markets, housing markets are unique for a variety of reasons.
The combination of durability, heterogeneity, and spatial fixity amplifies the role of
the dwellings’ perceived value and the buyers and sellers’ expectations (Alhashimi
and Dwyer 2004). The extremely high cost of entry and exit into the market (with
moving fees, agent fees, etc.) further complicates the decision-making of partici-
pating households (Huang and Ge 2009). There are long time delays in the market
response as houses cannot be erected instantaneously to accommodate an increase
in demand (Bahadir and Mykhaylova 2014). The fact that real estate can be seen as
both an investment asset and a consumption good (Piazzesi et al. 2007) [and even
a status good, Wei et al. (2012)] magnifies the impact of social influence on both
decision-making and resultant market dynamics and structure.

Consequently, housing markets are notoriously difficult to model as the ensuing
market dynamics generates volatility, with nonlinear responses, and “boom–bust”
cycles (Sinai 2012; Miles 2008; Burnside et al. 2016), making traditional time series
analysis insufficient. Nonlinear dynamics of housing markets are ubiquitous, being
observed throughout the world, from Tokyo (Shimizu et al. 2010) to Los Angeles
(Cheng et al. 2014).

Traditional economic modelling methods, such as dynamic stochastic general equi-
librium models (DSGE), typically use representative aggregated agents while making
strong assumptions about the behaviour of the markets (rational and perfect competi-
tion). Such representative agents may be limiting for economic models (Gallegati and
Kirman 1999). Furthermore, these assumptions (and many other traditional economic
assumptions) are known to be inadequate in housing markets, motivating a well-
recognised need for change in housing market modelling (McMaster and Watkins
1999). In addressing this need, a specific type of models, called agent-based models
(ABM) has been applied. ABMs aim to capture markets from the “bottom up” (Tesfat-
sion 2002), i.e. by focusing on the decision-making of individual agents in the market,
possibly influenced by non-economic factors. In this sense, ABMs are capable of
modelling macroeconomies from micro (i.e. agent-specific) behaviour (LeBaron and
Tesfatsion 2008) and analysing the economic decision-making in counterfactual set-
tings. While ABMs have shown promise in housing market modelling (Geanakoplos
et al. 2012) [and wider economic modelling, Poledna et al. (2019)], current ABMs
themselves are not exempt from some limitations.Many of the existing housingABMs
tend to introduce at least one of the following constraints: the spatial structure of mar-
kets is neglected (meaning submarkets are not considered), perfect information is still
assumed, and/or the impact of social influence on decision-making of individual agents
is underestimated.

Afine-resolutionmodel of spatiotemporal patternswithin suchmarkets is desirable:
it would give an understanding of how market dynamics shape within local areas,
explaining how the pricing structure directly affects the agents’ mobility over time
(i.e. by forcing households out of certain regions due to gentrification and higher cost
of living). Furthermore, within such housing markets [and in fact, many economic
markets, Conlisk (1996)], it is also known that agents do not act perfectly rational
(Wang et al. 2018, instead following bounded rationality Simon 1955, 1957). Firstly,
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humans are often influenced by social pressure (e.g. herdmentality), with the decisions
being made purely based on social pressure rather than a perfectly rational choice.
Secondly, it is difficult to process all the relevant information in the market (i.e. it is
impractical for an agent to be able to view every dwelling listing within the housing
market). Thus, it is unreasonable to assume that agents act in a perfectly rational
manner, yet this is what many current housing market models assume (despite ABMs
not intrinsically requiring these assumptions to be made).

To address these limitations, we introduce a spatial agent-based model, in which
the constraints imposed by various search and mobility costs create effective spatial
submarkets. These submarkets are modelled graph-theoretically, with a graph-based
component used in both representing imperfect information and modulating social
influences. The spatial ABM is then capable of capturing the “boom–bust” cycles
observed in Australia (in particular, Greater Sydney) over the last 15 years as arising
from individual agent decisions. That is, we show complex nonlinear market dynamics
as arising through individual buy and sell decisions in the market, with introduced
factorswhich affect and explain the decision-making behaviour. Themodel succeeds in
forecasting nonlinear pricing and mobility trends within specific submarkets and local
areas. In exploring the pricing dynamics, we focus on the influence of imperfect spatial
information and the role of social influence on agent decision-making. In doing so, we
identify the salient parameters which drive the overall dynamics and decision-making,
and pinpoint the parameter thresholds, beyond which the resultant dynamics exhibit
strong nonlinear responses. These thresholds allow us to distinguish between different
configurations of the market (e.g. markets with supply or demand dominating) and
differences in agent behaviour. In addition, we identify and trace specific interactions
of parameters, in particular the interplay of social influences, such as the fear ofmissing
out and the trend-following aptitude, in the presence of imperfect spatial information.

The remainder of the paper is organised as follows. In Sect. 2, we provide an
overview of agent-basedmodels of housingmarkets. In Sect. 3, we outline the baseline
model, while in Sect. 4 we outline the proposed spatial extensions and new parameters.
In Sect. 5, we analyse the sensitivity and parameters of the model, before presenting
the results and discussion in Sect. 6. In Sect. 7, we provide conclusions and highlight
future work.

2 Background

2.1 Agent-basedmodels of housingmarkets

One of the pioneering works for agent-basedmodelling (ABM) of the housingmarkets
was by Geanakoplos et al. (2012) [and extended further in Axtell et al. (2014), Gold-
stein (2017)], where the Washington DC market was modelled from 1997 to 2009 in
an attempt to understand the housing boom and crash. Macroeconomic experiments
were then conducted to see how changing underlying factors, such as interest rates or
leverage rates, would affect this pricing trend.

Baptista et al. (2016) model the UK housing market to see the effects that various
macroprudential policies have on price cycles and price volatility. Gilbert et al. (2009)
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also look at the English housing market, varying exogenous parameters and policies,
and tracking the effect these have onmedian house prices. Likewise, Carstensen (2015)
explores the Danish housing market and macroprudential regulations, such as income
and mortgage rate shocks.

Ge (2017) analyses howhousingmarket bubbles can form (and bust) purely endoge-
nouslywithout external shocks, due to leniency and speculation of agents.Kouwenberg
and Zwinkels (2015) also show an ABM can “endogenously produce boom-and-bust
cycles even in the absence of fundamental news”.

A recent ABM of the Australian housing market proposed by Glavatskiy et al.
(2020) explained the volatility of prices over three distinct historic periods, charac-
terised by either steady trends or trend reversals and price corrections. This model
highlighted the role of the agents’ trend-following aptitude in accurately generating
distinct price dynamics, as detailed in Sect. 3. In this paper, we further develop this
model by introducing several features directly capturing social influences and bounded
rationality in agent decision-making, as elaborated in Sect. 4.

Traditionally, the modelling goal is to explain the housing market pricing (rather
than predict its trajectory) and trace how possible macroeconomic policy changes
may have affected the dynamics. Here, instead, we focus on predicting the pricing
dynamics beyond the period covered by the current datasets (i.e. presenting out-of-
sample forecasting) as arising from individual buy and sell decision-making behaviour
in the market (as opposed to a black box technical analysis machine learning-based
approach), as well as illuminating agent preferences within specific housing submar-
kets. This motivation is aligned with the growing suggestions that agent-based models
should be predictive (Polhill 2018) [which has admittedly been met with some resis-
tance, Edmonds and ní Aodha (2018)]. Agent-based models have recently been shown
to outperform traditional economic models, such as vector autoregressive models and
DSGE models for out-of-sample forecasting of macrovariables (GDP, inflation, inter-
est rates, etc.) (Poledna et al. 2019). For example, it was demonstrated that an ABM
can outperform standard benchmarks for out-of-sample forecasting in the US housing
market (Kouwenberg and Zwinkels 2014), while successful out-of-sample forecasting
was carried out by Geanakoplos et al. (2012) as well.

2.1.1 Spatial models

Spatial distribution of houses and dependencies between market trends on spatial
patterns have been recognised as important and desirable features (Goldstein 2017).
For example, Baptista et al. (2016) describe the spatial component as one that is
“highly desirable”, yet “this approach greatly increases the complexity of the models
and hence most spatial ABMs in the field listed below make use of a highly simplified
representation of the environment, often in the shape of small grids”.

Spatial agent-based models have also shown to be useful in a variety of other
areas such as epidemic modelling (Chang et al. 2020; Cliff et al. 2018), cooperative
behaviour (Power 2009), and symbiotic processes (Raimbault et al. 2020). Despite
the promise shown by housing ABMs, there are currently only relatively few spa-
tial housing market models with the capacity to accurately forecast nonlinear price
dynamics.
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The seminal works in spatial housing ABMs are by Ge (2013) and Ustvedt
(2016). Both use a matrix-based approach, with the region being arranged on a two-
dimensional grid. In Ge (2013), each cell (row/column) in the grid is assigned a
neighbourhood quality (endogenous) and a nature quality (exogenous). The neigh-
bourhood quality is a measure of attractiveness which aims to capture concepts such
as safety, and is dependent on agents that live in that region (which can change in the
model, thus endogenous). In contrast, nature quality is based on outside factors not
changed by the model, such as distance to a beach or weather (thus exogenous). Data
used in this work are abstract; that is, it is not calibrated to a particular city, but rather
used to trace how these factors affect the trends.

Ustvedt (2016) also uses a two-dimensional grid for a NetLogo model. However,
an important additional spatial step is made: district borders are incorporated using
GIS data (somewhat similar to what we propose in our model with the graph-based
approach, however, there are important differences which we outline below), and the
model is calibrated based on Oslo, Norway.

Another work is Pangallo et al. (2019), which models theoretical (i.e. not calibrated
to any specific region) income segregation and inequality, using a spatial agent-based
model, and the effect this may have on house prices. Again, this approach uses a two-
dimensional grid for the spatial component. This model assumes a monocentric city,
and measures the “attractiveness” of a location, based on the distance to the (generic)
city centre. The main contribution of this work is a mathematically tractable spatial
model for capturing income segregation. The effects are related to the house prices,
where unequal income is shown to lower the house price globally.
Unexplored Extensions The spatial work outlined above provide strong models which
achieve their purpose of policy understanding and effect ofmarket shocks inGe (2013)
and Ustvedt (2016). However, the spatial component is often considered a secondary
point of the models, which means there are some key additional insights which have
yet been unexplored. Particularly, the presence of area-specific submarkets have not
been explicitly modelled, and analysis into the spatial preferences of agents within the
market (and submarkets) have not been explored.

For example, in studies of Ge (2013) and Ustvedt (2016) the spatial contribution
affects the initial price and the supply of dwellings for a given grid cell (location and
population). However, at every simulated step the effects of the spatial component do
not extend to varying search costs or probability of listing for agents. Furthermore,
the spatial component is not utilised to initialise agent characteristics (such as income,
wealth, etc.), based on the areas in which they reside. These area-specific agent char-
acteristics and behaviours become particularly important for capturing submarkets
across various areas, especially when real-world data are available.

Another assumption of existing spatialmodels is that of amonocentric city,meaning
a distance metric such as “distance to centre” is used for measuring attractiveness,
which becomes problematic for polycentric cities or with agents who have no desire
to live within the “centre” when analysing agent preferences. Furthermore, computing
these distances in a 2d grid can often be misinformative, as moving across a region
border (i.e. into a new zone) often incurs a far larger cost than moving a cell inward
into the same zone. To address this, we explicitly capture this feature in the proposed
graph-based spatial extension. Distances are measured as the shortest path through
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the graph, with nodes representing various regions (contained within boundaries).
The graph-based approach is particularly useful, as no monocentric assumption is
made.

Furthermore, as detailed area-specific analysis remains largely unexplored, the dis-
tributions of prices within individual areas is often not considered, instead, using a
representative mean or median rather than sampling from the actual underlying dis-
tributions for each area, which may fail to capture certain area trends. This is often
caused by the lack of underlying data. In our work, we use several contemporary
datasets, such as SIRCA–CoreLogic and the Australian Census datasets, constructing
the relevant pricing probability density functions for each area.

In summary, in contrast to the grid-based approach commonly used, in this work,
we propose an extensible graph-based approach which is described in Sect. 4. Such an
approach allows us to further exploit the spatial component by introducing submarkets
with graph-based search costs and initialisation of agent characteristics based on areas,
giving insights into area-specific submarkets which have not yet been explored. In
addition, the graph-based approach does not assume a monocentric region, allowing
for polycentric cities [which Greater Sydney is developing towards Greater Sydney
Commission (2018), Crosato et al. (2021)] to be modelled more effectively.

3 The Baselinemodel

This work extends the work of Glavatskiy et al. (2020), which we will refer to as the
“Baseline” method. In this section, we describe basic features of the baseline model,
which the present work carries over.

3.1 Agents

There are three key agent types in the model: dwellings, households, and the bank.
A dwelling is a “physical” property, e.g. a house, apartment or condo. Each dwelling

has an intrinsic quality, which reflects its hedonic value (e.g. large house or existence of
a pool). The quality is fixed during the simulation. The quality of a dwelling is used as
a reference for determining its listing price and dwelling payments. All dwellings have
an owner. Dwellings can be rented or sold. A rental contract is a binding agreement
between the owner and renting household. Dwellings may be vacant at any period
(which means that they are not rented out).

A household represents a person or group of people (i.e. a family), which reside
within Greater Sydney. Additionally, the model contains overseas agents, which can
participate in the market but do not reside in the Greater Sydney region. Households
have heterogeneous monthly incomes and liquid cash levels. Households can own
several dwellings, but can only reside in one (overseas agents do not reside in any
dwelling).When purchasing a dwelling, households always choose themost expensive
dwelling they can afford. If they can afford to buy a dwelling, they always attempt to
do so, putting a market bid (see below). Households that own more than one dwelling
attempt to rent the additional dwellings out, and, if successful, receive rental payments

123

30



The impact of social influence in Australian real estate: a spatial ABM 11

as a contribution to their liquid cash. Households that do not own a dwelling rent one.
Households pay tax based on their income and ownership.

The bank combines the functions of a commercial bank and the regulatory body,
controlling various financial characteristics, such as income tax rates, mortgage rates,
overseas approval rates, mortgage approvals, and mortgage amounts (how much can
be lent to a particular household).

3.2 Behavioural rules

The agents’ behaviour is governed by the price they are willing to sell their dwelling
for, the listing price, and the price they can afford to buy a new dwelling, the bid price.
The basis for the pricing equations comes from the pioneering housing market ABM
of Axtell et al. (2014).

The household bid price, i.e. their desired expenditure, is modulated by the house-
hold’s monthly income I [t] according to Eq. (3.1). Following Axtell et al. (2014),
the desired expenditure formulation is the result of an analysis into income dynamics,
motivated by the 1

3 of income on housing expenses heuristic, with modifications to
capture a wider range of heterogeneity and expenditures.

B[t] = H
Ub[t]φb I [t]φI

φM[t] + φH − h ∗ �HPI[t] (3.1)

H is a uniformly random value between 1 ± bh/2 for each bid, where bh = 0.1 is
the listing heterogeneity parameter. This allows variation in bid prices around a central
value (i.e. uniform prices within a range around the centre, in this case, ±5%). Ub[t]
is the urgency of a household to buy a dwelling, which is equal to 1 if the household
has recently not sold any dwelling, and is larger than 1 by a term proportional to the
number of months since the last sale otherwise. Furthermore, φI and φb are the income
modulating parameters, which are calibrated from themortgage-income regression for
that period of interest. The resulting expenditures are sublinear with income, meaning
high-income agents spend a lower percentage of their income on housing than their
lower-income counterparts. In addition, φM[t] is the mortgage rate at time t , while φH
is the annual household maintenance costs. Finally, h is the trend-following aptitude
and �HPI[t] is the change in house price index (HPI) over the previous year.

The bid price of the overseas investors is determined as an average, given the total
volume and quantity of the approved overseas investments by the Foreign Investment
Review Board. Several aspects of the overseas investments are detailed in “Appendix
K”.

The dwelling list price P[t] at time t is modulated by the quality of the dwelling
Q according to Eq. (3.2). Again, the basis for the listing price equation comes from
the estimation results of Axtell et al. (2014), where the formulation arose from a
comprehensive set of real estate transaction data.

P[t] = H
b�QhS[t]bs(1 + Dh[t])bd

U�[t] (3.2)
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H is again a uniformly random parameter that behaves the same as in Eq. (3.1).
b� = 1.75 is the listing price factor, showing the extent to which the seller tends to
increase the listing price. Furthermore, Qh is the average sale price of the 10 dwellings
with the most similar quality to the dwelling h for sale. In addition, S[t] is the market
average of the sold-to-list price ratio, bs = 0.22 is the sold to list exponent parameter,
Dh[t] is the number of months the dwelling has been on the market, and bd = −0.01
is the number of months exponent parameter. Finally, U�[t] is the urgency to sell the
dwelling, which is equal to 1 if the household is not in financial stress, and increases
proportionally to the number of months in financial stress otherwise.

Banks approve households desired expenditure based on the bank’s lending crite-
ria. The bank uses the households liquidity and monthly income for determining an
appropriate amount to lend and offers the corresponding loan to the household. If the
loan amount is greater than pd × B[t] (with pd = 0.6), then the household accepts
the loan; otherwise, the household skips this round of the market.

The parameters from the baseline method are presented in Table 2, and sensitivity
analysis around the default values of these parameters is given in “Appendix B”, and
more in-depth explanation is given in the study of Glavatskiy et al. (2020).

3.3 Market algorithm

An equilibration period is run at the start of the simulation to build up a “history”
of the market, allowing for sales etc. to take place before the true simulation begins.
Household and housing characteristics (such as income or construction) are smoothly
extrapolated in the equilibration period, to match the corresponding values at the
beginning of the actual simulation.

The model runs in sequential steps, with each step representing one month of actual
time. That is, one sequential step (or tick) in the simulation corresponds to one month
in the actual housing market. During every step, the model makes several market
updates:

1. The city demographics are updated (new dwellings and households created to
match the actual projected numbers for the Greater Sydney region).

2. Each household receives income and pays its living costs: non-housing expenses,
maintenance fees and taxes (if owning a dwelling), rent (if renting). The balance
is added to or subtracted from the household’s liquid cash.

3. Expiring rental contracts are renewed.
4. Dwellings are placed on sale.
5. Households put their bids for buying.
6. The buyers and sellers are matched (described below)
7. The households receive mortgages and mortgage contracts from the bank, and the

balance sheets of both buyers and sellers are updated.

To match buyers and sellers, bids and listings are sorted in descending order. Each
listed dwellings is then attempted tomatchwith the highest bid. If the bid price is higher
than the list price, then the deal is made with probability pm = 0.8. Otherwise, the
listing is considered unattended and the next one attempts to match. The pseudo-code
for the process is given in “Appendix C”.
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(a) LGA Boundary Map
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(b) LGA Network

Fig. 1 Greater Sydney LGAs. On the left, we see the raw GIS data. On the right, the processed graph (with
nodes scaled based on population size)

4 Model extension

In this section, we develop the spatial component of an ABM housing market, effec-
tively introducing submarkets into the model. Specifically, we investigate how social
aspects influence selling a dwelling, as well as account for the agents’ preferences to
buy in a nearby neighbourhood when purchasing a dwelling. In doing so, we inves-
tigate how pricing dynamics are driven by individual agent decisions. The spatial
component also affects how households are initialised (i.e. what neighbourhood they
should belong to), and how the prices of nearby dwellings may affect the listing price.

4.1 Spatial component

Greater Sydney is composed of 38 local government areas (LGAs), each of which
contains several suburbs (and postcode areas). The data provide sales at a postcode
level and the LGA level. However, the postcode datamay be too granular as the number
of listings in a given time period for small areas could be low or even zero. For this
reason, we analyse the data at the LGA level, but the proposed approach is general and
can be used at any level of granularity (i.e. over countries, states, cities, government
areas, postcodes, suburbs, or even individual streets) assuming the data are available.
The LGAs are visualised in Fig. 1a.

4.1.1 Graph-based topology

To incorporate the LGA areas into the ABM, the data must be converted to an appro-
priate data structure. This is achieved by converting the map (from Fig. 1a) into an
undirected graph G, with equal edge weights of 1 (i.e. unweighted, the weighted
extensions are discussed below) shown in Fig. 1b. In doing so, the topology of the
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spatial relationships of the suburbs is preserved but not the exact locations, i.e. the x ,
y coordinates of latitude and longitude are not needed.

Each of the N LGAs (shaded polygon) in Fig. 1a is converted into a vertex vi ,
i ∈ [1, . . . , N ]. The cardinality of the set of all vertices V is |V | = 38 corresponding
to the 38 LGAs. Two LGA areas vi and v j are adjacent to one another if they share
a border (darker lines in Fig. 1a) and these borders are converted to the set of edges
E all of weight one that form an adjacency matrix G for the LGAs. Formally there
is a 2-D spatial region for Sydney (the map of Sydney): M, composed of the N non-
overlapping LGAs that form a complete cover of Sydney and each LGA shares at least
one border with another LGA. LGA(x) associates a graph vertex x with an LGA, and
Adj(li ,l j ), defined for two LGAs li and l j , is a function measuring the length of their
common border in M:

V = {vi | i ∈ [1, . . . , N ], LGA(vi ) ∈ M}, (4.1)

E = {ei, j = 1 | vi , v j ∈ V , i �= j, Adj(LGA(vi ),LGA(v j )) > 0}. (4.2)

This definition implies G(E, V ) is a connected undirected graph, there are no discon-
nected subgraphs. An important edge is also added that represents the Sydney harbour
bridge connecting Northern Sydney with the City of Sydney.

To calculate the distance between vertices vi and v j , the minimum path length (i.e.
the path with the lowest number of edges) between the two vertices is used as edges
are equally weighted: δ(vi , v j ) denotes this shortest path. Because the edges have unit
weighting the shortest paths are found using a simple breadth-first search. However,
future extensions could consider edgeweightings basedonmetrics such as real distance
between centroids, travel time between centroids, or even adding additional edges for
public transport links. In cases of weighted edges, Dijkstra’s algorithm could be used
to compute δ(vi , v j ) instead.

4.1.2 Spatial submarkets

Dwellings are allocated initial prices based on the distribution of recent sales within
their LGA and also populated according to the census data for dwellings in each
LGA. A full description of the process is given in “Appendix I.2”. Households are
also distributed into LGAs based on census data, with renters then moving to LGAs
in which they can afford, as described in “Appendix D”.

The original dwelling list pricing equation from Eq. (3.2) is also now updated
to be based on each dwelling’s LGA. Rather than Qh being the average of the 10
most similar quality dwellings in the model, it is the average of the 10 most similar
within the LGA. Likewise, S[t] is the average sold-to-list price ratio for the dwelling’s
LGA (not overall). In this sense, spatial submarkets (LGAs) (Watkins 2001) capable of
exhibiting their owndynamics are introduced.Recent researchBangura andLee (2020)
has shown the importance of submarkets in the Greater Sydney market, so capturing
such microstructure is a key contribution of the proposed approach, as trends can be
localised to specific submarkets (a feature not prominent in existing ABMs of housing
markets).
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(a) Overview (b) Zoomed

Fig. 2 Probability of viewing a listing based on buyers location (in this case the City of Sydney). Dark red
indicates high probability, and light yellow indicates low probability (colour figure online)

4.2 Spatial outreach

In an actual housing market, a typical buyer does not review every listing in the
entire city due to the high search costs and desire to live in certain areas. Rather,
the buyer targets particular spatial submarkets, relating to a given area. In particular,
listings immediately around the buyer’s location are likely to be viewed with a higher
probability than listings which are further away.

Therefore, it is unrealistic to assume perfect knowledge in an ABM of the housing
market. To model this imperfect spatial information, we introduce an outreach term
O , which determines the likelihood for a buyer located at vi to view a listing located at
v j , as described by Eq. (4.3). According to this expression, the likelihood of viewing
the listing decreases with the distance between the buyer and the listed dwelling. The
outreach factor is illustrated in Fig. 2 for a buyer located in the LGA “City of Sydney”.

O(vi , v j ) = 1 − δ(vi , v j )

max
k∈V δ(vi , vk)

(4.3)

While the spatial outreach makes sense for first-time home buyers, for investors,
the outreach becomes uniform, as they do not necessarily desire rental properties near
where they reside. So for investors, we use O(vi , v j ) = 1,∀i, j .

To control the strength of the outreach, we introduce a new parameter α ∈ (0, 1),
so the probability of viewing a listing Pview(vi , v j ) is given in Eq. (4.4).

Pview(vi , v j ) = αO(vi , v j )
2 (4.4)

where α modulates the spatial information on dwelling listings: the higher the α, the
more the listings are viewed by a potential buyer. That is, α adjusts the likelihood of
viewing a listing, based on the distance to that listing. The effect α has on resulting
decisions is further discussed in “Appendix L”.
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4.3 Spatial FOMO

In the baseline model, dwellings have a fixed probability of being listed, pb = 0.01.
Here, we consider a spatial probability to list a dwelling located in a certain LGA li ,
which depends on the number of recent sales in li . For this, we introduce the “fear of
missing out” (FOMO) parameter, denoted by β, which modulates the probability of
listing a dwelling situated in li by the number of recent sales in li altering the agents’
decision-making behaviour. In particular, if a high number of dwellings in li have been
sold, then the owners of dwellings in li will be more likely to list their dwelling on the
market. This will account for the possibility that if a certain LGA becomes a popular
location for selling a dwelling, the owners of dwellings in this LGA would not want
to miss an opportunity to sell their dwelling.

The spatial listing probability plist(li ) is expressed by considering the difference in
the fraction of dwellings currently in li ’s submarket ( fli = listingsli /dwellingsli ) with
respect to the Greater Sydney average. A higher fli means dwellings in li have been
less likely to sell in the previous months (since all begin with a fixed probability of
selling pb) compared to the regions average. This spatial listing probability1 is given
by Eq. (4.5).

plist(li ) = pb + pbβ

[
fli∑

a∈V fa/|V | − 1

]
(4.5)

The magnitude of β controls the strength of li ’s spatial submarket contribution to
the listing probability. Rewriting Eq. (4.5) by denoting the term in the square brackets
as x , i.e.

pb + pbβx

we see that if both β and x are negative, then the listing probability will be higher than
the baseline level pb. Therefore, if the number of dwellings for sale in a particular
LGA is less than the average in the whole city, this means that this particular LGA’s
submarket has been clearing fast, and homeowners in this LGA will be more likely
to list their dwelling. In contrast, if x is positive, then dwellings in the current LGA
are not clearing as fast as in the other LGAs, so homeowners in this LGA will be
less likely to list. Conversely, a positive β results in an opposite effect. If an LGA has
comparatively few listings, the homeowner from this LGA will be less likely to list
a dwelling for sale, whereas if this LGA has many listings, the probability to list a
dwelling there increases. In this way, β has a direct effect on the supply of dwelling
listings and alters the decision-making behaviour of sellers.

5 Optimisation and sensitivity analysis

The selection of appropriate parameters is an important step in agent-basedmodelling,
and in most existing work, parameters are selected over the entire period of interest.

1 plist can technically be < 0 or > 1, so plist is capped to be between 0 and 1, in order to be a true
probability, although this is exceptionally rare and does not appear to occur in Fig. 4.
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Here, we instead adopt a machine learning approach whereby we split the time series
into a training and a testing portion; this ensures the model also performs well for the
unseen (i.e. the testing) portion of data, and avoids biasing the selection of parameters
by considering the entire time period.

We use Bayesian hyperparameter optimisation (Snoek et al. 2012) to find appro-
priate combinations of parameters. The training set is used for parameter selection,
whereas the test set is only used to evaluate the goodness of fit of the model after
the optimisation process is completed (in Sect. 6). We stress that the test set is never
seen by the optimisation process. This is an important distinction from previous work
(Glavatskiy et al. 2020), which constructs the models by considering all time points,
and as such cannot be considered true predictions, unlike here where the model can
be seen as a true predictor of future pricing trends. Optimisation details are given in
“Appendix E”.

5.1 Optimisation results

We run several optimisation processes in order to quantify the contribution of each
component on agent decision-making and the effect these decisions have on resulting
market dynamics. Each method follows the same optimisation process.

A “baseline” method is run, where there is only a single area (Greater Sydney),
and only h is optimised for (with perfect knowledge2 and no β optimisation). A
spatial version of the baseline, with the 38 Greater Sydney LGAs as areas. Again,
only h is optimised for (with perfect knowledge and no β). We then run pairwise
combinations, so h and α, and h and β. We never run without optimising h, as this was
the key decision-making parameter in the original model. Finally, we run the proposed
extensions in their entirety—that is, we optimise over all three parameters (h, β, and
α). We then apply a global constraint (on the result of the training optimisation) that
2006–2010 must exhibit a peak, with details outlined in “Appendix E.3”. The results
are presented visually in Fig. 3. We also provide additional analysis into the network
architecture itself in “Appendix G”.

Looking at the resulting plots, we can see that with the introduction of each new
component, the resulting values of the loss function � (see Eq. E.1) over the training
period is reduced at each step, with the proposed extensions achieving the minimal �,
indicating that the predictions arising from the resulting agent decisions follow more
closely to those in the actualmarket. From this point forward, we focus on the proposed
extension in its entirety, due to the improved performance in all three periods.

5.2 Resulting parameters

Exploring the entire parameter search space would be computationally prohibitive.
Bayesian optimisation intelligently explores this search space, balancing exploration
and exploitation with the use of an acquisition function allowing more emphasis to
be placed on well-performing or unexplored regions of the space (Shahriari et al.

2 Perfect knowledge in this paper is assumed to mean α = 1, O(vi , v j ) = 1, i.e. ability to view every
listing across all of Greater Sydney, i.e. M in 4.1.1.
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� = 45726) � = 187549) � = 459482)

Baseline. No spatial component. Optimising h only.

� = 41613) � = 100745)

(a) 2006–2010 ( (b) 2011–2015 ( (c) 2016–2019 (

(d) 2006–2010 ( (e) 2011–2015 ( (f) 2016–2019 (� = 392208)

Spatial. Optimising h only.

� = 37523) � = 81553) � = 236476)

Spatial. Optimising h and α.

� = 43459) � = 20321) � = 23674)

Spatial. Optimising h and β.

� = 39786) � = 20106) � = 22492)

Spatial. Optimising h, β and α.

� = 64334) � = 20106)

(g) 2006–2010 ( (h) 2011–2015 ( (i) 2016–2019 (

(j) 2006–2010 ( (k) 2011–2015 ( (l) 2016–2019 (

(m) 2006–2010 ( (n) 2011–2015 ( (o) 2016–2019 (

(p) 2006–2010 ( (q) 2011–2015 ( (r) 2016–2019 (� = 22492)

Spatial. Optimising h, β and α with global constraint in 2006–2010.

Fig. 3 Optimisation of the goodness of fit for dwelling prices across all models (for the training period).
The orange lines are from the SIRCA–CoreLogic data (the solid line represents the rolling median, and
the dotted line represents the month-to-month median). The black line shows the best fitted path from the
model
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(a) 2006–2010

(b) 2011–2015

(c) 2016–2019

Fig. 4 Univariate parameter analysis. The x-axis represents the parameter value, and the y-axis represents
the loss (with logarithmic colours for consistency across the various loss plots). The other parameters are
averaged over to provide the one-dimensional view (colour figure online)

2015). The resulting exploration is visualised in Fig. 12. From this, we can see the
regions of interest, with dark sections indicating areas with the lowest loss � (and more
sample points being present in such areas). We can see the search space is fairly well
explored in all cases, with obvious regions ofwell-performing parameter combinations
(pairwise combinations are visualised in Fig. 13). While the 3D plot gives a high-level
overview, it is difficult to visualise the contribution of each component. To facilitate
this, we present a flattened one-dimensional view of each parameter, where the results
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Table 1 Selected ABM
parameters from the training
period with Bayesian
optimisation, rounded to 2
decimal places

2006–2010 2011–2015 2016–2019

h − 0.80 − 0.11 − 0.005

β 0.08 − 1.03 − 2.73

α 0.28 0.59 0.24

are averaged over the other 2 parameters to view the loss for 1 parameter at a time.
This is shown in Fig. 4. From these plots, it can be seen how each parameter behaves
in isolation (noting that such plots do not capture the parameter interactions). The
selected ABM parameters (the ones which had the lowest �) are presented in Table 1.
A sensitivity analysis for the parameters is performed in “Appendix F”.

The parameter search space is uniform across the ranges given in Table 3, so an
uninformative parameter would be sampled uniformly as well (since there would be
no Bayesian preference the sampling would be approximately uniformly random);
instead, we see clear unimodal peaks in almost all cases in Fig. 13, with the h and β

parameters being normally distributed around the optimal value found, and α with a
clear peak but non-normally distributed. This indicates each parameter seems to have
a useful range, which is further verified in the sensitivity analysis in “Appendix F”.
h: Recall that the HPI aptitude h directly influences the agents’ bid price [given in
Eq. (3.1)] and serves as the key trend-following parameter in the original model. We
can see the value of h controls the contribution of the HPI over the previous year and
as such it affects the bid price based on the markets state. This relationship depends
on both the current HPI and the yearly difference in �HPI.

The absolute value of h controls the magnitude of the contribution, and we can
see 2006–2010 had the highest contribution indicating the largest market effect on
bidding. In the original model, h also had a large magnitude but the opposite sign. The
value for 2011–2015, h = −0.11, is very close to that chosen in the original model
h = −0.10, which reflects the relatively consistent price dynamics, with agentsmostly
ignoring the market trend.

Interestingly, in 2016–2019, the chosen h is near zero. This means the denominator
of Eq. (3.1) simplifies to:

φM[t] + φh − h ∗ �HPI[t] � φM[t] + φH

meaning the price is dependent on the mortgage rate and homeownership rate, as φH
is set based on the current value of HPI, this means the historical values are not being
used, and instead, a muchmore “forgetful” market based only on the previous month’s
HPI is used for setting the price, with agents paying less attention to historical trends.

TheHPI aptitude h also has clear optimal ranges for each period, with 2006–2010 in
the range [−0.75 . . . 0], 2011–2015 in the range [−0.5 . . . 0.25] (which are of similar
widths), and 2016–2019 in the much narrower range [−0.2 . . . 0.05]. We can see a
sharp transition occurring in 2016–2019 around 0.1, in which case the loss begins
increasing drastically for any higher values.
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β: This parameter (the right-hand column in Fig. 4) exhibits a very sharp transition
around 0 for all years. This is because β has a direct relation to the supply and demand
in the model, which drastically changes the dynamics based on the availability of
properties. We see increasing contributions of β throughout the years, with 2016–
2019 indicating the highest levels of β. This is perhaps reflective of the market, where
people are increasingly following trendswhen it comes to the decision to sell a dwelling
(perhaps an indicator of a “bursting” bubble, with a large cascading sell-off). This
indicates sharper peaks and dips are likely to occur in the future, with decision-making
being made increasingly under the pressure of social influence.

α: This parameter does not present as clear of a transition, or defined range of
optimal vales as h or β. This indicates the value of α has less of an impact on the results
when compared to h and β (as is confirmed in the sensitivity analysis in “Appendix
F”). The likely reason for this is since the buyer always attempts to purchase the most
expensive viewed dwelling, the varying levels of α do not have as large of an effect
on the outcome as the other parameters, since the most expensive dwellings still have
a higher preference. Discussion on the effect α has on agent utilities and decisions is
given in “Appendix L”.

We can see a general preference towards various α ranges for each period, based
on higher density of samples in these areas. The preference is never for “perfect”
information, i.e. α = 1, reinforcing that such agents often act in a boundedly rational
manner (with α < 1). In the 2006–2010 period, there is a general preference towards
sampling lower levels of α (within ≈ [0.05, . . . 0.3], with the optimal value being
0.28), resulting in buyers acting with less information. In 2011–2015, during the
economic recovery in Australia, buyers may have been more cautious and considering
a wider range of available dwellings when purchasing, reflected in higher values of α

(≈ [0.5, . . . 0.7], with the optimised value being 0.59). In 2016–2019, the cautiousness
of buyers appears to revert again (within ≈ [0.05, . . . 0.3], with optimised value of
0.24), showing buyers making less “informed” choices perhaps due to the rapidly
increasing dwelling prices and buyer’s desires to partake, at the expense of making
“optimal” choices with larger α values.

6 Results

In this section, we present results of ABM simulations in terms of (i) price forecasting
over three historic periods, aligned with the Australian Census years (2006, 2011 and
2016), and (ii) resultant agent preferences in terms of household mobility patterns.
We also identify market trends across the three periods. The considered periods 2006–
2010 and 2011–2015 include 48 months, while the contemporary period, 2016–2019,
covers 42 months (our SIRCA–CoreLogic dataset includes the market data until 31
December 2019). Each time period compromises a separate set of simulations (with
varying optimised parameters). Discussion on the chosen time periods is given in
“Appendix I.3”. For each period, we run 100Monte Carlo simulations, using themodel
parameters optimised for the corresponding training set, as described in Sect. 5, and
then obtain predictions for the remaining (testing) part of the data. For the first two
periods, the first 3

4 of the time series is the training part (e.g. 36 months from 1 July
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Fig. 5 Actual trends of Greater Sydney house prices from June 2006 to December 2019. Source: SIRCA–
CoreLogic. The orange line represents the rollingmean, and the red line the rollingmedian. The rawmonthly
data points are also visualised (dotted lines). We use the median price trend as a more robust measure in all
cases in this paper

2006 to 30 June 2009), and the remaining 1
4 is the testing portion not used by any

optimisation process (e.g. 12 months from 1 July 2009 to 30 June 2010). For the last
period, the training part includes 30 months (from 1 July 2016 to 31 December 2018),
with the remaining 12 months of 2019 used for testing.

6.1 Price forecasting

We visualise the forecasting results in Fig. 6. It is evident that the model can success-
fully capture the key trends across the entire time series as emerging from individual
buy and sell decisions, correctly identifying the peak and dip in 2006–2010, the steady
growth during 2011–2015, and the growth and slow decline in 2016–2019.

The time period beginning in 2006was a period of substantial uncertainty, triggered
by the Global Financial Crisis (GFC). Tracing predictions for the last quarter of the
period (i.e. the testing part of the dataset), shown in Fig. 6a, d, we observe that the
average market rebound pattern is not fully followed. However, when considering the
range of the simulations runs, i.e. the possibilistic regions of the simulation (as defined
by Edmonds and ní Aodha (2018), and visualised by the blue boundaries in Fig. 6),
we see that these contain the first segment of the fast rebound, and capture the market
recovery to a good degree. In other words, the model is able to show the possibility
of such a rebound. The discrepancy indicates that there was a catalyst underpinning a
significant price appreciation during 2010 thatwas not solely driven by social influence
and endogenous regulatory factors such as interest rates. It is well accepted that the
market was reignited in 2009–2010 by exogenous factors, most notably by post-GFC
government stimulus initiatives, such as the First HomeOwners Boost (Randolph et al.
2013).
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(a) Median: 2006–2010 (b) Median: 2011–2015 (c) Median: 2016–2019

(d) Mean: 2006–2010 (e) Mean: 2011–2015 (f) Mean: 2016–2019

Fig. 6 ABM simulation predictions. The top row shows the median of the simulations (black lines), every
individual run (blue lines), and the minimum and maximum of every run with the light blue fill. The bottom
row shows the mean of the simulations (black line), and ± 1 and 2 standard deviations (dark blue and light
blue respectively). The vertical dashed lines separate training and testing parts of the time series. The orange
lines show the actual trend obtained from SIRCA–CoreLogic data (colour figure online)

For the period beginning in 2011, the predicted time series correctly follows the
actual trend, while slightly underestimating the slope of the growth towards the end
of the period, as shown in Fig. 6b, e. It can be argued that the social influence factors,
estimated during the optimisation phase, continue to affect themarket dynamics during
the last quarter of the period. In other words, the influence of these factors on decision-
making, coupledwith endogenous factors (e.g. interest rates), results in a steady growth
of the market, predicted until the end of the period.

In the last considered period, starting in 2016, the model captures both the testing
and training portions very well, correctly predicting the dip from 2019 onward, as
shown in Fig. 6c, f. The notable decline occurs only in the testing period, and yet, the
model is able to accurately predict both the peak and the correction. This indicates
that the underlying reasons for the market reversal have developed during the first part
of the period, and have been adequately captured by the parameter optimisation.

Overall, in all three time periods, the possibilistic output of the model contains
most of the actual market dynamics. Specifically, during 2006–2010, 96% of the
actual monthly prices are within the possibilistic range boundaries of the simulation
(i.e. between the minimum and maximum output for each time period, the top row in
Fig. 6), for 2011–2015: 84%, and 2016–2019: 100%. When using the mean ± 1 (2)
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standard deviations (bottom row in Fig. 6) as possibilistic boundaries, we observed
the following probabilities of falling within the boundaries, during 2006–2010: 78%
(92%), 2011–2015: 27% (63%), and 2016–2019: 86% (100%).

6.2 Area-specific price forecasting

The model was not directly optimised for spatial submarkets. However, in this section,
we evaluate the predictive capacity of the model in terms of area-specific forecasting.
During initialisation, some area-specific information for LGAs is drawn from available
distributions, for example, the recent sale price of dwellings in that LGA. Likewise,
households are also distributed into LGAs based on the actual population sizes of the
LGAs. However, no additional optimisation is applied across different LGAs with
respect to actual area-specific trends. In other words, the spatial component is used
only for initialising relevant distributions, leaving the market dynamics to develop
through agent-to-agent interactions.

In Fig. 7, we visualise the predicted area-specific pricing at the end of the testing
period. We can see that these predictions closely follow actual data in general, despite
not being directly optimised for, with all predictions characterised by high R2 values.

For the period 2006–2010 (with the end of the testing period mapping to June
2010), the simulations slightly overestimate the final price of the cheaper LGAs, but
underestimate the resulting price of the most expensive LGAs, as shown in Fig. 7a.
However, the perfect model (orange line) tends to be within the error margin (standard
deviation) of the predictions of the simulation.

For 2011–2015 (with the end of the testing period being June 2015), the slopes of
both actual and predicted regressions are almost identical (m = 0.98), as shown in
Fig. 7b. However, the additive constant of the regression (i.e. y-axis intercept) for the
predicted line is greater than 0 (of the perfect model): as a result, we are predicting
slightly higher values across the LGAs on average. Considering the LGAs that were
most overpriced with respect to the spatial trend (such as Kuringai, Waverly, Northern
Beaches, and North Sydney), we can compare their resultant predicted prices in June
2015, Fig. 7b, with the actual prices depicted in Fig. 7c. The 2016–2019 plots show
that this growth did eventually happen, and so the simulations produced for 2011–2015
merely predicted this appreciation for an earlier time than the actual scenario.

The predictions for the period 2016–2019 (the end of the testing period: December
2019) produce a regression strongly aligned with the actual fit, particularly for the
higher-priced LGAs. Again, there is some overestimation in the cheaper LGAs, but
this seems to highlight the increasing popularity of these suburbs. Analogously to the
previous period, this may be indicative of some future price growth for these areas,
not yet reflected in the current actual pricing.

Overall, we observe that the resulting area-specific price predictions at the end of
each testing period fit closely to the actual resulting prices. This indicates that the
model successfully captured the spatial submarkets, despite having been optimised
for the overall market dynamics of the Greater Sydney region as a whole.
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Fig. 7 Predicted LGA pricing at
the end of the testing period.
The actual prices
(SIRCA–CoreLogic) are shown
on the x-axis, with the predicted
prices on the y-axis. Error bars
represent the standard deviation
of the prediction across
simulation runs. The orange line
shows the perfect model
(y = x), and the blue line shows
the least-squares line of best fit
for the predictions (equation
given on plot) (colour figure
online)

(a)

(b)

(c)

6.3 Agent preferences andmobility patterns

Analysing the households’ movements produced by the simulation is another key
insight the spatial agent-based model can provide. In this section, we consider various
agent movement patterns (which we refer to as household mobility), aiming to iden-
tify the salient trends in agent preferences. There are several key areas we focus on:
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(a) First-time home buyers (b) Overseas Investors (c) Local Investors

Fig. 8 Comparison of price influenced mobility between the three periods. The x-axis represents the afford-
ability (most affordable locations on the left). The y-axis represents the (smoothed) percentage ofmovements
to the area. Darker colours represent later years. A full breakdown of household mobility is provided in
“Appendix J”

first-time home buyers, investors, and new households (i.e. migrations or households
splitting). Again, no direct optimisationwas applied to themovements, and so the iden-
tified preferences are intrinsic results of the model, and not attributed to some actual
data. However, we show that such mobility preferences are supported by evidence,
thus arguing that the model is able to produce sensible local patterns for which it was
not explicitly optimised for, based only on the global calibration data and proposed
spatial structure.

The mechanisms shaping the process of settlement formation and generating intra-
urban mobility specifically include transitions driven by critical social dynamics,
transformations of labour markets, changes in transport networks, as well as other
infrastructural developments (Kim et al. 2005; Simini et al. 2012; Barthelemy et al.
2013; Louf and Barthelemy 2013; Arcaute et al. 2016; Barthelemy 2016; Crosato et al.
2018; Barbosa et al. 2018; Piovani et al. 2018; Slavko et al. 2019; Barthelemy 2019).
Types of homeownership, in particular, are known to affect mobility patterns (Crosato
et al. 2021). In this work, we focus solely on the movements resulting from the hous-
ing market dynamics, which in turn incorporate the imperfect spatial information and
other subjective factors such as the FOMO and trend-following aptitude. We do not
model any structural changes across the regions, i.e. the LGAs boundaries, transport
and other infrastructure topologies, remain fixed.

6.3.1 New households/migrations

New households are those which are added throughout the simulation based on the
projected household growth. New households can result from a variety of sources,
such as people moving to Greater Sydney (migration), or households from Greater
Sydney splitting, e.g. in the case of divorce or young adults moving out of home. We
make no distinction between the two types in the simulation, and for simplicity, refer
to both intercity and intra-city migration types as migrants.

The most common LGAs into which the new households move are shown in
Fig. 22.3 The simulation produces a clear trend for migration towards the cheaper

3 All movements are scaled by the population size to allow a fair comparison, as outlined in “Appendix J”.
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areas, as the price begins to increase throughout the Greater Sydney region over time.
This is most apparent for the 2016–2019 period, during which we can detect only a
minority of the new households that purchased a dwelling in the expensive areas upon
moving to the Greater Sydney. This is markedly different when in comparison with the
2006–2010 period. Furthermore, there is a clear peak in the more affordable LGAs,
comprising Western Sydney (such as Campbelltown, Penrith, Blacktown, Fairfield,
and Liverpool), and LGAs further away from the metropolitan area (such as Central
Coast, Lake Macquarie, and Hawkesbury). A similar trend can be seen with the new
renters. This agrees with the discussion in Bangura and Lee (2019), which names
Western Sydney as “the first port of call for new arrivals, immigrants and refugees”.
This observations also agree with the study of Slavko et al. (2020a), which shows the
outward sprawl from the densely populated Sydney metropolitan area.

6.3.2 First-time home buyers

Homeownership has longbeen a goal ofmanyAustralians (Bessant and Johnson2013),
so simulating the forecasted feasibility in Sydney—the largest and most expensive
(Yetsenga andEmmett 2020), Australian city—is essential. The first-time home buyers
are defined here as those who have resided in Sydney but have previously been renters,
and then purchased their own dwelling. This is in contrast to the analysis in Sect. 6.3.1,
where the new owners are defined as those that had just entered the simulation (by
moving to Sydney).

The first home purchases are visualised in Fig. 24. The main diagonal represents
an agent purchasing in the same LGA as the one where the household is currently
renting. The area below the main diagonal (which we refer to as lower triangle) shows
households purchasing in cheaper LGAs in comparison with those where they are
renting, and the area above the main diagonal (the upper triangle) shows the agents
purchasing in LGAsmore expensive than those where they are currently renting. In the
earlier years (i.e. the 2006–2010 period), we can see that the densities in the heatmaps
are relatively evenly distributed. Over time, however, the density of the upper triangle
begins to decrease, meaning that the agents are purchasing in the LGAs cheaper than
those where they are renting, as the expensive LGAs become increasingly out of reach.
This is also reflected in Fig. 8a: a comparison between the 2006–2010 and the 2016–
2019 periods clearly shows that many suburbs are simply becoming out of reach for
the first-time home buyers, with a larger percentage of them needing to purchase in
the more affordable areas.

This result is in linewith (Randolph et al. 2013)which shows the distribution of First
Home Owner Grants within Sydney statistical districts, over the period 2000–2010,
pointing out that such grants were increasingly likely in the lower-income housing
markets, such as Western and Southern Sydney. Likewise, in La Cava et al. (2017), it
is shown that the average distance to the CBD of dwellings that first-time home buyers
can afford has been increasing from 2006 through 2016. Furthermore, La Cava et al.
(2017) show that the purchasing capacity of first-time home buyers has been limited
to the bottom (i.e. most affordable) 10–30% of dwellings, where in 2016 the median
first-time home buyer could afford only around 10% of the available dwellings. A
similar conclusion is reached in Kupke and Rossini (2011) which find key workers
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being able to afford fewer dwellings and commute longer distances between 2001 and
2009, a trend which seems to have been followed ever since, as shown by the mobility
patterns here.

6.3.3 Investors

Investors are defined as households which own multiple dwellings, or households
which live overseas yet own a property in Greater Sydney.Wemake an explicit distinc-
tion between local (residing in Sydney) and overseas investors, since price increases
within Sydney are often attributed to the latter category (Rogers et al. 2015, 2017;
Wong 2017; Guest andRohde 2017). This distinction is visualised in Fig. 23. The over-
seas investment approvals are regulated by the Australian government, and details of
the approval data are provided in “Appendix K”.

During the 2006–2010 period, based on the overseas approvals granted, the simu-
lation produces a clear preference for the overseas buyers towards the most expensive
regions, purchasing properties almost exclusively in the highest priced regions. In
later periods, we begin to observe a relatively wider range of preference, although
still with a clear trend towards the mid-high-range areas. This is reflected in Fig. 8b.
A driving factor behind this is the higher average government approval for overseas
investment given during 2006–2007 years, in comparison with later years, reflected
in our simulation (as displayed in Fig. 25). While the foreign investment data in the
Greater Sydney housing market is sparse and not fine-grained, this purchasing pattern
is in concordance with the recent literature. For example, the study of (Gauder et al.
2014) mentions that foreign investors tend to prefer inner-city dwellings within Syd-
ney (which tend to correspond to higher-priced LGAs); however, recently “foreign
investment has started to broaden out into other areas of Sydney”.

These findings are in sharp contrast to mobility patterns of the local investors, for
which the simulation produces a far wider distribution across areas. For 2011–2015,
and 2016–2019 periods, the most expensive LGAs become out of reach for local
investors, which is most apparent during 2016–2019 (as shown in Fig. 8c). Local
investors can be seen buying properties in many of the cheaper LGAs, which also
falls in line with the simulation showing many renters in these areas. Due to the
affordability, these LGAs also exhibit higher population growth rates than other areas.
This also agrees with existing studies, for example (Pawson and Martin 2020), which
find that many high-income Australian landlords are investing in dwellings in lower
socioeconomically developed regions of Sydney.

7 Conclusions and future work

In thiswork,we have introduced a spatial element to amodel of a large, well-developed
housing market (the Greater Sydney region) using an adjacency matrix based on the
spatial composition of the city, and introduced several factors which affect agent
decision-making within the market. We have shown the model is capable of predicting
housing price dynamics as arising from individual buy and sell decisions in themarket.
The proposed model is capable of capturing a large variety of spatial topologies, for
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example, monocentric and polycentric cities. Furthermore, the graph-based approach
is flexible allowing for any level of granularity, for example, over the differing scales
of countries, cities, or suburbs, and extendable to weighted versions which could
incorporate transport times between areas.

Using this model, we have demonstrated the usefulness of spatial analysis when
it is calibrated to the Australian house price data for the Greater Sydney region. The
38 LGAs of Greater Sydney were simulated, and agents (households) were calibrated
based on the LGA inwhich they live.We have shown that the spatial component allows
an additional level of fine-tuning that results in better overall fitting of the model to
data, as well as producing strong out-of-sample predictions for each individual LGA
by optimising only for the overall trend. That is, spatial areas add an additional layer
of predictions, while also improving the overall aggregate trend.

We investigated the agent’s spatial awareness of themarket, where buyers only have
limited knowledge of the market, based on the area in which they reside (imperfect
spatial information). We demonstrated through varying α (a parameter that controls
howmuchof themarket each agent is able to perceive) that lower values ofα capture the
true trend better than perfect (whole of market) knowledge, indicating the usefulness
of modelling this imperfect spatial information in a housing market and showing that
agents often act in a boundedly rational manner.

The spatial component also allows for the analysis of agent preferences in terms
of movement patterns, where we have shown differences in mobility and purchase
locations between various agent types, for example differences between first-time
home buyers and investors, where first-time home buyers are limited to the more
affordable locations, with investors being able to purchase higher-priced properties,
and likewise between local and overseas investors, where overseas investors are shown
to have a strong preference towards mid to high valued areas. We also model new
migrations to the city, showing such agents becoming increasingly pushed towards
cheaper areas of the city.

We have also introduced a novel fear of missing out component which alters sellers
decision-making behaviour. With this parameter, we model how sellers become more
likely to sell a listing if many surrounding listings have recently sold, and show a
strongly localised fear of missing out occurring throughout the market. This indicates
agents’ decisions are often motivated by their neighbour’s decisions rather than by
strict optimisation of their own benefits, i.e. real households are only partially rational
in this regard.

While in this work we addressed some key concerns in a housing market, there
are still several areas of improvement we would like to focus on in future work. The
spatial component opens up a range of additional possibilities, such as overlaying
public transport maps on the network, allowing for the distance to key work areas,
schools, beaches, etc., and further modelling and capturing agent mobility within the
simulation. The demographics and household types could be sampled from actual data,
which would allow analysis into subgroups of people (i.e. young singles vs. retirees
vs. families), and allow us to model any spatial trends that arise between demographic
groups. The internal optimisation functions (for example, what neighbourhood to
move to, what kind of dwelling to choose) of agents could also be investigated further,
as currently, agents will purchase the most expensive dwelling they can afford based
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on their knowledge and outreach. There are also three key equations which drive the
model that could be further investigated: the bid prices, the listing prices, and the bank
approval process. These are currently predefined equations but they could be treated
as optimisation problems themselves, finding expressions that match most closely to
the training period.

A: Implementation

The model is written from scratch in Python3, based on the C++ code fromGlavatskiy
et al. (2020).

B: Baselinemodel parameters

The work extends the model of Glavatskiy et al. (2020) (the baseline). For complete-
ness, all parameters of the baseline method with explanations are given in Table 2.

Local sensitivity analysis of these parameters is presented in Fig. 9, where we vary
the internal values around their default ranges (within a range of ±20%) one at a
time while keeping the other parameters at their default values. The resulting analysis
shows the model is robust to small changes in the parameters. The only parameters
that stand out from the analysis deserving additional discussion are the listing price
factor, the expectation downshift ratio, and the amount quality reference.

The listing price factor b� has relatively large variation in prices, but as shown in
Eq. (3.2) this is because it acts as a linear scaler on the list prices, so scales the output
within the ±20% range too, which means the parameter is behaving as expected. The
expectation downshift ratio pd highlights the willingness of agents to downgrade the
pre-purchase expectation based on the amount offered by the bank. For higher values,
this indicates buyerswantingmore frombanks, andwe see this increases prices overall.
It is interesting to note, however, that higher values also increase the volatility of the
market, with larger fluctuations seen for example in late 2017 (at the peak of the
market). This confirms the discussion in the study of Glavatskiy et al. (2020) which
highlighted the propensity to borrow as a key explanatory factor of volatility. For
the amount quality reference Q̄h, this is an integer parameter which explains why
there are fewer comparison lines than the continuous parameters, but we still observe
well-behaved outputs in the ±20% range.

For all other parameters, the outputs only result in small variations from the default
value indicating the robustness of the model to variations around the internal param-
eters.

C: market matching

Themarket matching process where buyers and sellers arematched is relatively simple
and given in Algorithm 1. We can see the highest bidding buyer gets preference to
the listings, and every buyer attempts to purchase the most expensive listing they can
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Table 2 Baseline model parameters

Parameter Symbol Value

External paramaters

Mortgage rate φM 2006–2010: 7.3–9.45%

2011–2015: 5.53–7.79%

2016–2019: 4.95–5.35%

Tax rate 2006–2010: 0%, 15%, 30%, 40%, 45%

2011–2015: 0%, 15%, 30%, 37%, 45%

2016–2019: 0%, 19%, 32.5%, 37%, 45%

Tax brackets 2006–2010: $0, $6k, $25k, $75k, $150k

2011–2015: $0, $6k, $37k, $80k, $180k

2016–2019: $0, $18.2k, $37k, $87k, $180k

Income expenditure φI, φb 2006–2010: [49.37, 0.81]

2011–2015: [76.76, 0.75]

2016–2019: [81.75, 0.80]

Mortgage duration 30 years

Annual house tax and fees 1.7%

Stamp duty 2.5%

House care φH 2.5% ± 0.5%

Purchase fees 2.5%

Loan to value ratio 80% ± 10%

Income growth rate 1.002 ± 0.001

Income consumption 60%

Liquid consumption 2.5%

Internal paramaters

Listing probability pb 1%

Amount of houses for reference Qh 10

List price factor b� 1.75

Sold to list power bs 0.22

Months on market power bd − 0.01

Urgency stress 0.2

Urgency rental 0.02

Urgency cash 0.2

Probability of accepting highest bidder pm 80%

Expectation downshift ratio pd 60%

The external parameters are exogenous, sourced from, the Australian Bureau of Statistics, The Household,
Income and Labour Dynamics in Australia Survey (Wilkins and Lass 2015). The internal parameters are
endogenous, and the default values tend to come from the analysis of (Axtell et al. 2014). Sensitivity analysis
around the internal parameters is given in Fig. 9, and a full outline is given in Glavatskiy et al. (2020)
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Fig. 9 Local sensitivity analysis showing variation in output based on varying the baseline model input
parameters one at a time ±20% around their default value (with others fixed at their default). The red lines
represent the output for the default value, and the grey lines represent for the varying values (with shade
indicating the distance to the default, blackmeaning very near the default, and light grey being further away).
All show relatively small variations in the output based on the input parameters, indicating the robustness
of the parameters (colour figure online)
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afford. In certain cases, deals are rejected due to external influences (modelled by a
random 20% chance of rejection). This matching process is performed once every
simulation step, with bids and listings that did not clear persisting into the next step.

Algorithm 1Market Matching
1: procedure match(bids, listings)
2: sort bids � From highest bid price to lowest
3: sort listings � From highest list price to lowest
4: for bidder in bids do
5: best listing ← max listing buyer can afford
6: if no deal breaker then
7: Make deal between buyer and seller
8: listings − best listing � Remove this listing from the available listings
9: end if
10: end for
11: end procedure

D: Rental market

In the baseline model, there was no concept of rental matching. Households were
randomly assigned a rental, with no regard to the cost of the dwelling or income of
the household. Here, we add in an additional matching process based on the idea that
households should spend maximum 30% of their income on housing when possible
to avoid housing stress (Thomas and Hall 2016; Fernald 2020).

New households are randomly assigned a “local” area (weighted by the population
of each area), where they begin and have their characteristics (wealth, income, cash
flow, etc.) assigned. From there, every household attempts to find a vacant rental in
their price range (whichwill likely result in various householdsmoving out of financial
requirements). Households with extremely high incomes, where all dwellings are less
than 10% of their income, get the most expensive rental available. Households with
extremely low income, where all dwellings are at least 30% of their income, get the
cheapest one they can afford. All other households randomly choose a rental they can
afford (in the 10–30% of income range).

Households remain in their rentals for the duration of the simulation. In this work,
we do not attempt to capture the rental market in its entirety and leave this for future
work where we would like to model the relationship between renters and investors.
The changes were made to ensure the cash flow situations of each household match
closer to those seen in the real world, where in the previous model many households
would be in a poor cash flow situation due to the rental price. Other work such as Mc
Breen (2010) looks more in depth at modelling the rental market.
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E: Bayesian optimisation

E.1 Details

Bayesian optimisation is performed using the Tree of Parzen Estimators approach
with hyperopt from Bergstra et al. (2013). The optimisation process was run for 2000
iterations in all cases. The losswasmeasured as the average loss over several stochastic
runs for each set of parameters, to minimise the effect of randomisation in the model
and resulting loss.

E.2 Loss function

For measuring the goodness of fit, we use a loss function with two terms—a shape
and temporal term to try and capture the nonlinearities overtime when predicting
housing price trends. This loss function is a modification of DILATE (Vincent and
Thome 2019) which was introduced as a loss function for neural networks for time
series predictions, although DILATE has been simplified here (with the removal of
smoothing parameters) as Bayesian optimisation does not require the loss function to
be differentiable.

The loss function is given in Eq. (E.1).

� = λ ∗ shape + (1 − λ) ∗ temporal (E.1)

λ = 0.5 was used throughout since this was the most common in the original paper
of Vincent and Thome (2019). However, as the terms are not normalised, the two do
not have an equal contribution; instead, the temporal term serves more like a penalty
on the shape (with λ controlling the strength of the penalty).

The shape term is based on dynamic time warping (DTW) which has commonly
been used in speech recognition tasks (Sakoe and Chiba 1978; Myers et al. 1980)
and, however, has a wide range of applications in time series data (Berndt and Clifford
1994). Dynamic time warping can be expressed recursively as a minimisation problem
as in Eq. (E.2)

shape = DTW = d(x, y) + min

⎡
⎣ DTW(x − 1, y),
DTW(x − 1, y − 1),

DTW(x, y − 1)

⎤
⎦ (E.2)

This can be read as minimising the cumulative distance (using distance measure d,
in this case, euclidean distance) on some warped path between x and y, by taking the
distance between the current elements and the minimum of the cumulative distances
of neighbouring points.

Unlike the common applications in speech recognition, where words can be spo-
ken at varying speeds (so the peaks do not necessarily match up), in financial markets,
timing such peaks is important. This motivates the introduction of a temporal term,
for trying to align such peaks and dips. The temporal term is based on Time Distortion
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(a) Shifted Predictions (b) Linear Predictions

Fig. 10 Motivation of time series-based loss using a constructed example. We can see the line on the right
is a very poor predictor of the true trend, failing to capture any of the peaks or dips. However, the MSE is
significantly lower than the line on the left. DTW captures the shifts, and incorporating a penalty on time
can penalise these shifts. The light grey lines show how DTW matches points together, even if they do not
occur at the same time period

Index (TDI) (Frías-Paredes et al. 2016, 2017), which can be thought of as the nor-
malised area between the optimal path and the identity path (where the identify path
is (1, 1), (2, 2).., (N , N )) (Vallance et al. 2017) and aims to minimise the impact of
shifting and distortion in time series forecasting (Frías-Paredes et al. 2016).

Pl =
∫ il+1

il

(
x − (x − il)( jl+1 − jl)

(il+1 − il)
+ jl

)
dx (E.3)

temporal = TDI = 2
∑ |Pl
N 2 (E.4)

To see the usefulness over a more standard approach loss function such as MSE for
time series, consider the example in Fig. 10. We can see theMSE can be a problematic
approach, and in somecases (as in the examplewhere the linear lineFig. 10bhas a lower
loss) be a misleading measure of goodness of fit. DTW helps to match points in the
two time series, while TDI helps minimise the offset of the predictions. (Graphically,
in the example this corresponds to shortening the dotted grey lines.) For a full analysis,
we refer you to the original DILATE paper of Vincent and Thome (2019), noting that
all smoothing terms have been removed in the modification here.

E.3 Global constraints

We can see 2011–2015 and 2016–2019 fit the trend very closely, although despite
having a low loss, the 2006–2010 simulation path does not follow the dip well, as no
distinction is made about being above or below the trend in the loss function. Looking
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(a) Without Constraints (b) Red shows the paths

which will be removed.

(c) Paths matching con-

straint

Fig. 11 Global constraint process

at the individual paths from every run, we can see that a peak and dip is predicted in
many of the cases, although the distance is greater than the path with the lowest loss
which was perfectly matching across a large portion of the training data but missing
the dip.We apply a post-optimisation global constraint to 2006–2010, again only using
this training period, that the midpoint of the simulation must be higher than the start
and ending points (i.e. a peak must occur), and take the parameters with the lowest
loss matching this criterion. The process is shown in Fig. 11 and the result is shown in
Fig. 5p. We can see for 2006–2010, the � is higher than before the constraint, however,
clearly, the constraint allows for a closer overall trend following in the training period.
The visualisation in Fig. 11 can also begin to show the wide range of possible market
outcomes, for various combinations of the parameters. If a certain section occurs from
many parameter outcomes (i.e. with the peak), we can deduce that such dynamics
were likely to occur just due to the agent characteristics, regardless of the parameters
used. This shows many combinations lead to a peak and dip, perhaps due to mortgage
rates and worrying mortgage vs income ratios. This is more in line with suggestions
in Edmonds and ní Aodha (2018), which suggest ABMs be used to determine a range
of potential future outcomes, which in this case shows a variety of paths leading to a
peak and dip.

E.4 Parameter space

The parameter space is defined in Table 3.
Even though there are only three parameters to tune, the number of potential com-

binations exceeds 4 million (this is assuming values are discretised values, so the true
number is far greater), making a grid search impractical.

The three parameters are h, α, and β.

F: Sensitivity analysis

While in Sect. 5.1 we analysed the contribution of each new component by comparing
the resulting optimised time series after introducing the components one at a time,
here we verify and rank the importance of each of the contributions explicitly using
global sensitivity analysis (GSA).
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(a) 2006–2010 (b) 2011–2015 (c) 2016–2019

Fig. 12 Search space exploration. Colour indicates the loss

(a) (b) (c)

Fig. 13 Parameter interactions and parameter sampling

Table 4 Morris method for sensitivity analysis

2006–2010 2011–2015 2016–2019
μ∗ σ μ∗ σ μ∗ σ

h 692,019 708,678 1,390,890 1,693,784 871,388 882,436

β 434,626 843,830 714,507 961,618 623,839 650,213

α 317,806 573,236 467,376 729,330 325,056 475,900

Specifically, we analyse the importance of the trend-following aptitude (h), the
social contribution (β), and the role of α in minimising the loss function.

We use the Morris method (Morris 1991) for a GSA and present the revised μ∗ as
suggested in Saltelli et al. (2004) and σ . μ∗ represents the mean absolute elementary
effect and can be used to rank the contribution of each parameter, and this solves the
problem of μ where elementary effects can cancel out. We also analyse σ , i.e. the
standard deviation of the elementary effects, as a measure of the interactions.

For parameters for the Morris Method, we use r = 20 trajectories, p = 10 levels,
and step size � = p/[2(p − 1)], i.e. � ≈ 0.52 with p = 10. These are within the
range of commonly used parameters, e.g. in Campolongo et al. (2007).

The results are presented in Table 4, and visualised in Figs. 15 and 14.
Checking the importance of each parameter, or μ
, we can see h consistently ranks

the most important, showing its changes have the largest effect on �. This is followed
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(a) (b) (c)

Fig. 14 Importance plot showing μ
. Error bars are displayed at the 95% confidence level

(a) (b) (c)

Fig. 15 Global sensitivity analysis with Morris plots. Diagonal lines represent the ranges for σ/μ
. One
classification strategy proposed by Sanchez et al. (2014) says factors which are almost linear should be
below the 0.1 line, factors which are monotonic between 0.1 and 0.5 lines, or almost monotonic between
the 0.5 and 1 line, and factors with non-monotonic nonlinearities or interactions with other factors above
the 1 line

in importance by β, and then α each year. However, we see that confidence bars do
overlap in Fig. 14.

Viewing theMorris plots in Fig. 15,we can see all parameters are deemed important,
where unimportant parameters would show up in the bottom leftmost portion of the
plot. Using the classification strategy of Sanchez et al. (2014), all parameters are all
considered to be non-monotonic and/or with high levels of interaction, since σ

μ
 > 1
in all cases.

This analysis agrees with the preliminary parameter analysis in Sect. 5.2.
While theMorrismethod gives us the overall sensitivity across the parameter ranges

(in a global way) and allows us to rank the factors in terms of importance, we also
provide a fine-grained sensitivity analysis around the default values, i.e. a local sensi-
tivity analysis (LSA). For this, we use p = 100 levels, but vary only one parameter at
a time while keeping the others fixed at their default values. This is shown in Fig. 16.
This analysis shows how robust the resulting default values are to small perturba-
tions, but as this is a local method, the results should be interpreted with caution (and
only in conjunction with the GSA method above), since this does not account for any
parameter interactions as warned in Saltelli et al. (2019).

Viewing h (the left column), we can see all values surrounding the default have a
similar loss, showing the model is robust to small changes in the aptitude. Looking
across the entire search space,we can see choosing fromwithin an appropriate range for
the aptitude is important though, but the surrounding parameters are always relatively
smooth to the resulting loss. Viewing β (the middle column), we can see the sharp
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(a) (b) (c)

Fig. 16 Univariate LSA of default parameters, varying one factor at a time with others at their optimised
values. The plots give the change in parameter value (x-axis) versus � (y-axis). The dotted vertical black
line shows the optimised value

transition above zero. There is a clear optimal range for β, where the default lies.
However, again, the area surrounding the default values is smooth showing robustness
to the default parameters (assuming we do not vary past the sharp transition). Looking
at α (the final column), the plots initially seem somewhat jagged, although when
looking at the scale of the y-axis it becomes clear these are very small shifts in
loss (as verified by the plotted time series with varying α levels). α was deemed
the least important of the three parameters by the Morris method screening, but was
still important based on the positioning on the Morris plot. We can verify this here,
where changes in α do not have a huge impact on �.

GSA was performed using SALib from Herman and Usher (2017).
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Fig. 17 Various potential network architectures. The left represents a single node (i.e. no spatial component).
The middle is the proposed graph-based approach constructed from the topological layout of the region.
The right is a complete graph, with individual areas, but no concept of spatial neighbours (due to the fully
connected nature)

G: Network topology

In Sect. 4, we introduced a novel graph-based structure for representing the region,
at the same time introducing spatial submarkets into the simulation (based on nodes
in the graph). In Sect. 5.1 and “Appendix F”, we have validated the usefulness of the
newly introduced parameters and performed a sensitivity analysis of the parameters,
whereas in this section, we look to validate the usefulness of the network structure
itself.

To do this, we compare the newly proposed model (with all parameters included),
against an identical model with only a single node. We also compare to a fully con-
nected network, i.e. where the spatial element (in terms of neighbourhoods) is not
considered directly, but specific areas still exist. These structures are visualised in
Fig. 17.

G.1 Topologies

G.1.1 No spatial component

To remove submarkets and all spatial components, we use a graph composed of a single
node representing the overall Greater Sydney region. That is, agent characteristics and
dwelling prices are assigned based on the overall Greater Sydney distributions, rather
than specific area distributions. To implement this, rather than G being defined as
in Sect. 4.1.1, instead, G contains a single node (i.e. a singleton graph) where the
node represents the overall Greater Sydney region, i.e. it is the graph K1. With this
single-node configuration, the spatial outreach from Eq. (4.3) is removed, as there is
no concept of space. Likewise, β is no longer defined, as this is expressed in spatial
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Fig. 18 Various network architectures (visualised as the mean ± standard deviation range), the actual trend
is given in orange. We see the individual submarket methods perform well, whereas in this case the single
area (meaning no submarkets) method fails to adequately capture the overall trends

terms. However, α remains, which controls the boundedness of the agent as discussed
in “Appendix L”, and h keeps the same interpretation.

G.1.2 Fully connected graph

To represent the fully connected areas, we use a complete graph where every LGA
is connected to every other LGA, i.e. G = K38. Again, outreach [from Eq. (4.3)]
need not be considered, since now every area is directly connected to one another.
With this representation, the introduced parameters still remain (i.e α, β, h). Note that
α again directly corresponds to the boundedness (discussed in “Appendix L”) and
does not encompass outreach. β and h have no change to their original meanings
introduced in Sect. 4. This introduces individual submarkets (based on LGAs) into
the simulation, but does not enforce any spatial-based search costs within the market.
As in the proposed approach, agent calibration is also based on the area in which they
reside, so agent characteristics match that of their area.

G.1.3 Analysis

The resulting comparisons are visualised in Fig. 18 which shows the models which
include individual areas significantly outperforming the overall Greater Sydneymodel,
indicating the usefulness of area-specific submarkets. Between the two area models,
there was little difference in aggregate performance (as shown in Fig. 18) which shows
the performance improvements come mainly from the introduction of submarkets,
not necessarily on the overall spatial structure. This shows that β, which is based
on the individual areas, initialising agent characteristics based on location, and the
modification of price setting in terms of Qh based on the area are key for resulting
prices (more so than the spatial outreach costs).

However, when considering the resulting agent preferences (in terms of suburbs to
purchase in), the fully connected map had significantly more people moving to more
remote regions, whereas the LGA connected spatial topology prevented as drastic
movements (with the spatial outreach term), capturing the fact people are often tied
to specific areas (i.e. those who work in the CBD and currently reside near there, are
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(a) Spatial Structure Enforced (b) Fully Connected Structure

Fig. 19 Variations in agent preferences with the proposed spatial structure (left) and without a spatial struc-
ture enforced (right) from first-time home buyers situated in the Canterbury–Bankstown region (visualised
in pink and labelled). The colour indicates the percentage of purchases in those areas, with dark indicating
a high percentage of relative purchases (controlled for population sizes). Without a preserved spatial struc-
ture we see much higher rate of purchases on the outskirts of the Greater Sydney region, such as in Upper
Lachlan Shire and Lithgow (labelled). We verify the proposed movements are logical in Sect. 6.3 (colour
figure online)

unlikely to the outskirts of the Greater Sydney region). This is visualised in Fig. 19,
where we show the proposed movements follow a diffusive-like pattern (Slavko et al.
220b) compared to the fully connected topologywhich hadmovements tomore remote
regions of Greater Sydney. We further discuss the resulting movements Sect. 6.3,
where we show with the agent movement patterns with the proposed spatial structure
are logical and consistent with the actual reported movements in the Greater Sydney
region based on the observed trends reported in the recent literature.

In this section, we have shown the area-specific submarket extensions significantly
outperform an equivalent model which does not include individual areas, highlighting
the importance of capturing submarkets. Furthermore, the incorporation of area-
specific submarkets allows for additional insights (such as those in Sect. 6.3.1 which
would not otherwise be possible). We then further validated the choice of the network
topology by comparing resulting agent preferences, and showing the proposed archi-
tecture (with spatial-based search costs) prevents drastic movements by the agent (in
terms of relative distance from an agent’s current location), allowing the agents to act
based on their location (preferring closer areas) in a manner consistent with the actual
observed trends as discussed in Sect. 6.3.

H: Experiment settings

Due to the stochastic and non-deterministic nature of ABMs, we run 100Monte Carlo
simulations per run (unless otherwise stated) and report the aggregate results over all
runs to get a robust estimate.
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Fig. 20 Robustness of scale over the training phases (visualised as the mean ± standard deviation range
for varying scales). We see with varying scales similar results are recovered (with large areas of overlap),
indicating in-variance to the scales used (within acceptable bounds)

H.1 Scale

Experiments are run at a 1:100 scale of the true housing market, i.e. every one hundred
households in the Greater Sydney region are represented by one household in the
model. The 1:100 scale was chosen for efficiency, but results for 1:50, 1:100, and
1:200 are also presented in Fig. 20 to show robustness to scale. There is an upper limit
on the scale where the performance will begin to degrade, for example, the number
of overseas investments is given in Table 5, and by using a scale close to 1:1000, we
would lose the contribution of foreign investments (since the values would be < 1).
For lower scales (i.e. 1:1), the results may be more accurate but this comes at the
expense of increased computational power, so the 1:100 provided a good trade-off
between accuracy and efficiency.

I: Initialisation data

I.1 Data

All real estate listings and sales from 2006 to present (2020) were used from SIRCA–
CoreLogic, including the sale price, LGA, and sale date. These data are used as the
actual price, and to calibrate the ABM.

I.2 Spatial initialisation

I.2.1 Pricing distributions

BetweenLGAs, there is awide range of dwelling sale prices, and different distributions
of prices amongst the LGAs as well. To sample from this effectively, we use kernel
density estimation (KDE) to create a probability density function for each LGA for
each time period. The previous 3months of sales from the beginning of the time period
are used to generate the density function. Scott’s Rule (Scott 2015) is used to assign

the bandwidth, which sets the bandwidth to n
−1
d+4 , where n is the number of data points
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(a) 2006 (b) 2011 (c) 2015

Fig. 21 KDE plots for each LGA based on SIRCA–CoreLogic data. Dark red indicates the Greater Sydney
average, and this is assigned to LGAs without enough data to generate their own reliable KDE

(in this case dwelling sales in the LGA at the beginning of the time period), and d is
the number of dimensions (in this case d = 1). When new houses are created for an
area, they are set with an initial quality based on this distribution. The resulting KDEs
are shown in Fig. 21.

I.2.2 Positioning

Households are not assigned to an LGA directly, as households can freely move areas.
Instead, the households area is based on the residential dwelling of the household (and
thus can change over time). When we reference a households area, we are referring to
the LGA of the dwelling where the household currently resides.

At the beginning of the simulation, households which are homeowners are assigned
to dwellings to match the population distribution amongst LGAs. The income and
liquid wealth for the household are then assigned based on the brackets from the
dwellings LGA. Renters are assigned a random LGA to begin with (again weighted
by the population of each LGA) and income and wealth based on the distribution of
that LGA. Households then try and find a rental they can afford (on with a rental price
approximately 10–30% of the household’s income) which may mean some have to
move LGAs.

I.3 Time periods

In line with the previous work of Glavatskiy et al. (2020), and following the Australian
census timelines (which are performed every 5 years), we choose the three most recent
census periods for analysis. These are 2006–2010, 2011–2015, and 2016–2019. The
length was chosen such that upon new census information becoming available, a new
simulation is run.Meaning, a separatemodel (and optimisation process) is run for each
of the time periods to ensure the model is calibrated to the most recent data available.
In doing so, we ensure the agent characteristics of the model most closely match those
in the true Greater Sydney market. As each period corresponds to the census years,
there is a large array of available data for calibration to ensure the models begin in a
state as close to possible as the true populations state. Alternate (non-census) dates
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could be used; however, themodel may not begin with as accurate of a reflection on the
true underlying agent characteristics (depending on the data availability). While the
models are calibrated for the time periods outlined here, such calibrations would also
work well for surrounding dates (or alternate run duration’s), or the model could be
re-calibrated for alternative dates to provide additional forecasting—for example, after
the 2021 census, the agent characteristics could be reassigned and a new optimisation
process run to reflect updated agent behaviours, likewise for past market behaviour
such as with the 2001 census.

I.4 Household characteristics

I.4.1 Area

Agents are initialised into an area based on the Australian census data, meaning the
population of each area at the beginning of the simulations corresponds to the propor-
tions from the census data for that time period. For example, if there are three areas “A”,
“B”, “C”, and the true proportions in each are 60:25:15, the model will also populate
agents into the three areas according to this proportion. Throughout the simulation,
agents may move areas. They may be forced to move to a cheaper area if they cannot
afford their current area, or they may move to a more affluent area if they can afford a
dwelling there. So once the simulation begins, the movement dynamics are controlled
by the agents’ cash flow position (again from census data, outlined below). Initialising
agents into areas based on census data allows for correct agent characteristics (such as
income and net worth) that directly line up with those observed throughout the Greater
Sydney region.

I.4.2 Income

Income is assigned from thedistributionbasedon thehouseholds area.This distribution
comes from the census data. Income grows throughout the simulation. The income
brackets follow those specified in the census data.

I.4.3 Liquid wealth

Again, the liquid wealth (liquidity) of a household is based on the true distributions
from census data. However, in this case, liquidity is not available per LGA, only for
Greater Sydney as a whole. So to map a household to an appropriate liquidity bracket,
the households liquid is based on the income of the household. That is, if a household
is in the top X% of earners in an LGA, the liquidity will be in the top X% as well
(approximately, since liquidity is from brackets).

I.5 Population distribution

In this case, there are three measures of interest. The total number of dwellings, the
total number of households, and the distribution of these households amongst LGAs.
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The dwellings and households estimates from the census data are used for each year,
and simple linear projections used for forecasting the growth of these. The distribution
amongst LGAs is that recorded at the start of the simulation and is assumed to grow
linearly with the overall population size. Individual LGA future population projections
are available from 2016 onward, but as no projections existed before this date, we used
this simplified measure instead of all LGAs growing by a fixed percentage within a
given simulation period. As such, higher movements towards one particular LGA
throughout simulation could indicate the requirement of additional dwellings being
built here to cater for the growth, which is another contribution we consider in later
sections of this work.

J: Movement pattern visualisations

Over 10 million total movements were tracked across the simulations (approximately
3.3million per time period). All plots in this section represent the normalised heatmaps
of these movements. The total number of movements to a particular LGA is scaled by
the population size of this LGA, meaning the results can be interpreted as a preference
for certain areas rather than visualising the population size of the LGAs. Therefore,
movements are not just reflecting larger populations, instead, reflecting a larger portion
of people moving there relative to the size. All movements are then normalised such
that the summation of all cells in the plot is 1, meaning if a particular cell has a value
of 0.05, this means 5% of all matched movements moved to this LGA.

The rows and columns of the plots are always sorted in ascending order based on
median price, i.e. the most affordable LGAs first, and the most expensive LGA as the
final row or column.

K: Exogenous variables

There are two main external influences on the model, which are governed by govern-
ment approvals (in the case of overseas investments) and the central bank (in the case
of mortgage rates).

K.1 Overseas investors

Overseas investments are often cited as a key driver of price growth in the Australian
market (Rogers et al. 2017), and figures show the foreign investment has more than
tripled since the mid-1990s (Haylen 2014). However, actual data on foreign invest-
ments are difficult to find. ABS has described their own data on overseas investments
to parliament as “hit or miss” Iggulden (2014).

The purpose of this work is not a full investigation into overseas investments
[overviews are given in Gauder et al. (2014), House of Representatives Standing
Committee on Economics (2014)], but rather the contribution overseas might have in
relation to many other factors with the readily available data (be this complete or not).

123

67



48 B. P. Evans et al.

Fig. 22 Migrations. These plots
capture new households in
Greater Sydney throughout the
simulation period, due to either
migration or splitting of existing
households. The first row is the
2006–2010 period, the middle
row the 2011–2015 period, and
the final row the 2016–2019
period

(a)New Renters (b)New Owners
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Fig. 23 Investors. These plots
show the simulation difference
between local and overseas
investment patterns. The first
row is the 2006–2010 period, the
middle row the 2011–2015
period, and the final row the
2016–2019 period

(a)Local (b)Overseas
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(a) Renting LGA (rows), to Purchase LGA (columns) (b) Purchase LGAs

Fig. 24 First-time home buyers. The first row is the 2006–2010 period, the middle row the 2011–2015
period, and the final row the 2016–2019 period
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Fig. 25 Average overseas approval amount

Table 5 Overseas investment approval

Period Number approved Value approved Average per approval

2018–2019 1337 $3,100,000,000 $2,318,624

2017–2019 2340 $4,400,000,000 $1,880,342

2016–2017 4224 $6,580,000,000 $1,557,765

2014–2015 12349 $20,230,000,000 $1,638,189

2013–2014 7814 $13,220,000,000 $1,691,835

2012–2013 3580 $5,580,000,000 $1,558,659

2011–2012 3048 $6,920,000,000 $2,270,341

2010–2011 2598 $5,070,000,000 $1,951,501

2009–2010 910 $1,950,000,000 $2,142,857

2008–2009 956 $2,210,000,000 $2,311,715

2007–2008 1223 $4,230,000,000 $3,458,708

2006–2007 908 $2,890,000,000 $3,182,819

For this, we use the annual reports from the Foreign Investment Review Board
(FIRB) from June 2006 to June 2019. The June 2019–June 2020 report was not avail-
able at the time of this writing (in 2020), as reports are not made available until the
following year. Data are provided yearly at aNSW level, which is converted tomonthly
(simply dividing by 12). Again, data in this area are sparse, so this is the closest esti-
mate we could derive. These data are provided in Table 5, and the average approval
per year given in Fig. 25.

While the data are provided for the entirety of NSW, it has been shown that foreign
investors prefer the inner city over rural areas, and thus, the NSW levels have been
used for Greater Sydney. This is a fair assumption since the numbers are relatively
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Fig. 26 α’s effect on utility
maximising behaviour

conservative anyway. For the testing period, the most recent overseas approval value
from the training period is used.

K.2 Mortgage rates

Mortgage rates are those set by the RBA. The final training months mortgage rate is
used throughout the testing period since no real value can be read.

L: Utility function

Following Axtell et al. (2014), agents are assumed to choose the most expensive house
they can afford, that is, the house price directly corresponds to the utility for the agent.

However, the introduction of α alters this, such that there is some uncertainty or
error in the agents choice. When α = 1, the perfect utility maximisation behaviour
is recovered where the agent attempts to purchase the most expensive dwelling they
can afford. For α < 1, the agent buys the most expensive dwelling they can afford
with probability α, which then decreases for each subsequent listing in turn. This
is visualised in Fig. 26. For high α, we can see the probability mass is contained
only in the highest priced dwellings. For lower α, this probability mass becomes
more distributed, meaning less focus on utility, and potential for cheaper houses to be
purchased. For α = 0, the utility is not considered at all and a random house within
the agents budget is chosen (i.e. the probability mass is uniform across options). α,
therefore, corresponds to the boundedness of the agent.

The above description considers the case of uniform knowledge, i.e. for investors
where they are assumed to be invariant to the areas available. However, for first-time
home buyers, we propose a space-based knowledge where buyers are more likely to
consider listings close to where they are renting. The probability associated with the
distance to the agents’ location is visualised in Fig. 27. The uniform knowledge of
investors is given in green, and the spatial knowledge of first-time home buyers is
given as the dotted black line.

For first-time home buyers, the probability of viewing a listing is therefore con-
trolled by both the proximity of the listing to the agents current (rental) location, and
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Fig. 27 Probability of viewing
based on distance to agents
location

Fig. 28 First-time home buyers probability of viewing a listing for various α’s. Showing the relationship
between dwelling price (x-axis) and distance to dwelling (y-axis), and how α adjusts this distribution. Low
α’s correspond to higher dispersion, and less focus on utility maximising behaviour. High α’s focus the
agent on dwellings which maximise utility

the price of the listing. This is visualised in Fig. 28. For α = 0, the agent preference
is uniform across all choices, placing no emphasis on utility (from either price or dif-
ference). As α increases, the focus shifts to the more expensive dwellings, and does
so based on the distance to the listing. This is shown in Fig. 28, where with increasing
α the emphasis focuses on the top right corner, which is the optimal value for both
distance (closest) and price (most expensive in the agents budget). We can see that
price remains the most important term in the agents’ utility though, with close listings
with low prices having a low resulting probability, indicating the agent likely wants
to move to a more affluent area if they can afford to do so. However, given an equal
price, agents will prefer the closer listing.
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CHAPTER 4

A maximum entropy model for inference of agent decisions in economic

markets

In interacting social systems, such as markets, the negative feedback generated from actions

can be enough to (temporarily) stabilise resulting outcomes to a statistical equilibrium

(Scharfenaker and Foley, 2017). In contrast to typical notions of equilibrium, statistical

equilibrium represents a probability distribution of all possible states of the system. In this

section, we develop a method of inferring agent decisions in statistical equilibrium based on

prior beliefs and market feedback loops, and consider the temporal evolution of these beliefs.

The approach proposed here is complementary to the agent-based model developed in the

previous chapter (Yang and Carro, 2020). While the ABM provided a rich overall picture of

market dynamics, the behavioural rules, including when to buy and sell, and the feedback

effects, were hand-crafted. In contrast, the approach proposed in this section provides a

more generalised view, based on a least-biased method of inference for decision-making

and feedback loops in competitive markets, helping to provide support for this hand-crafted

element.
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Abstract: Bounded rationality is an important consideration stemming from the fact that agents often
have limits on their processing abilities, making the assumption of perfect rationality inapplicable to
many real tasks. We propose an information-theoretic approach to the inference of agent decisions
under Smithian competition. The model explicitly captures the boundedness of agents (limited in
their information-processing capacity) as the cost of information acquisition for expanding their
prior beliefs. The expansion is measured as the Kullblack–Leibler divergence between posterior
decisions and prior beliefs. When information acquisition is free, the homo economicus agent is
recovered, while in cases when information acquisition becomes costly, agents instead revert to their
prior beliefs. The maximum entropy principle is used to infer least biased decisions based upon
the notion of Smithian competition formalised within the Quantal Response Statistical Equilibrium
framework. The incorporation of prior beliefs into such a framework allowed us to systematically
explore the effects of prior beliefs on decision-making in the presence of market feedback, as well as
importantly adding a temporal interpretation to the framework. We verified the proposed model
using Australian housing market data, showing how the incorporation of prior knowledge alters
the resulting agent decisions. Specifically, it allowed for the separation of past beliefs and utility
maximisation behaviour of the agent as well as the analysis into the evolution of agent beliefs.

Keywords: decision-making; bounded rationality; complexity economics; information-theory; maxi-
mum entropy principle; quantal response statistical equilibrium

JEL Classification: D91; G41; D83; C61; C60; C50

1. Introduction

Economic agents are often faced with partial information and make decisions under
pressure, yet many canonical economic models assume perfect information and perfect
rationality. To address these challenges, Simon [1] introduced bounded rationality as
an alternate attribute of decision-making. Bounded rationality aims to represent partial
access to information, with possible acquisition costs, and limited computational cognitive
processing abilities of the decision-making agents.

Information theory offers several natural advantages in capturing bounded rationality,
interpreting the economic information as the source data to be delivered to the agent
(receiver) through a noisy communication channel (where the level of noise is related to the
“boundedness” of the agent). This representation has spurred the creation of information-
theoretic approaches to economics, such as Rational Inattention (R.I.) [2], and more recently,
the application of R.I. to discrete choice [3]. Another approach represents decision-making
as a thermodynamic process over state changes and employs the energy-minimisation
principle to derive suitable decisions [4].

These approaches have shown how one can incorporate a priori knowledge into
decision-making, but place no consideration to inferring these decisions based on observed

Entropy 2021, 23, 669. https://doi.org/10.3390/e23060669 https://www.mdpi.com/journal/entropy

79



Entropy 2021, 23, 669 2 of 30

macroeconomic outcomes (e.g., a distribution of profit rates within a financial market) and
market feedback loops. Independently, another recent information-theoretic framework,
Quantal Response Statistical Equilibrium (QRSE) [5], was developed aiming to infer least
biased (i.e., “maximally noncommittal with regard to missing information” [6]) decisions
through the maximum entropy principle, given only the macroeconomic outcomes (e.g.,
when the choice data is unobserved). However, the ways to incorporate prior knowledge
into such a system remain mostly unexplored.

In this work, we provide a unification of these approaches, showing how to incor-
porate prior beliefs into QRSE in a generic way. In doing so, we provide a least biased
inference of decision-making, given an agent’s prior belief. Specifically, we show how the
incorporation of prior beliefs affects the agent’s resulting decisions when their individ-
ual choices are unobserved (as is common in many real-world economic settings). The
proposed information-theoretic approach achieves this by considering a cost of informa-
tion acquisition (measured as the Kullback-Leibler divergence), where this cost controls
deviations from an agent’s prior knowledge on a discrete choice set. When the cost of
information acquisition is prohibitively high (i.e., when an agent is faced with limitations
through time, cognition, cost, or other constraints), the agent falls back to their prior be-
liefs. When information acquisition is free, the agent becomes a perfect utility maximiser.
The cost of information acquisition therefore measures the boundedness of the agent’s
decision-making.

The proposed approach is general, allowing the incorporation of any form of prior
belief, while separating the agents’ current expectations from their built-up beliefs. In
particular, we show how incorporating prior beliefs into the QRSE framework allows for
modelling decisions in a rolling way, when previous decisions “roll” into becoming the
latest beliefs. Furthermore, we place the original QRSE in the context of related formalisms,
and show that it is a special case of the general model proposed in our study, when the
prior preferences (beliefs) are assumed to be uniform across the agent choices. Finally,
we verify and demonstrate our approach using actual Australian housing market data, in
terms of agent buying and selling decisions.

The remainder of the paper is organised as follows. Section 2 provides a background
of information-theoretic approaches to economic decision-making, Section 3 describes
QRSE and relevant decision-making literature. Section 4 outlines the proposed model,
and Section 5 applies the developed model to the Australian housing market. Section 6
presents conclusions.

2. Background and Motivation

The use of statistical equilibrium (and more generally, information-theoretic) models
remains a relatively new concept in economics [7]. For example, Yakovenko [8] outlines the
use of statistical mechanics in economics. Scharfenaker and Semieniuk [9] detail the appli-
cability of maximum entropy for economic inference, Scharfenaker and Yang [10] give an
overview of maximum entropy and statistical mechanics in economics outlining the benefits
of utilising the maximum entropy principle for rational inference, and Wolpert et al. [11]
outline the use of maximum entropy for deriving equilibria with bounded rational players
in game theory. Earlier, Dragulescu and Yakovenko [12] showed how in a closed economic
system, the probability distribution of money should follow the Boltzmann-Gibbs law [13].
Foley [14] discusses Rational expectations and boundedly rational behaviour in economics.
Harré [15] gives an overview of information-theoretic decision-theory and applications in
economics, and Foley [16] analyses information-theory and results on economic behaviour.

Ömer [17] provides a comparison of “conventional” economic models and newly pro-
posed ideas from complex systems such as maximum entropy methods and Agent-based
models (ABM), which deviate from the assumption of homo economicus—a perfectly ra-
tional representative agent. Yang and Carro [18] discuss how a combination of agent-based
modelling and maximum entropy models can be complementary, leveraging the analytical
rigour of maximum entropy methods and the relative richness of agent-based modelling.80
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One of the key developments in this area is Quantal Response Statistical Equilibrium
(QRSE) proposed by Scharfenaker and Foley [5]. This approach enabled applications of
the maximum entropy method [6,19,20] to a broad class of economic decision-making.
The QRSE model was further explored in [21], arguing that “any system constrained by
negative feedbacks and boundedly rational individuals will tend to generate outcomes of
the QRSE form”. The QRSE approach is detailed in Section 3.1.

Ömer [22–24] applies QRSE to housing markets (which we also use as a validating
example), modelling the change in the U.S. house price indices over several distinct periods,
and explaining dynamics of growth and dips. Yang [25] applies QRSE to a technological
change, modelling the adoption of new technology for various countries over multiple
years and successfully recovering the macroeconomic distribution of rates of cost reduction.
Wiener [26–28] applies QRSE to labour markets, modelling the competition between groups
of workers (such as native and foreign-born workers in the U.S.), and capturing the
distribution of weekly wages. Blackwell [29] provides a simplified QRSE for understanding
the behavioural foundations. Blackwell further extends this in [30], introducing an alternate
explanation for skew, which arises due to the agents having different buy (enter) and sell
(exit) preferences. Scharfenaker [31] introduces Log-QRSE for income distribution, and
importantly, (briefly) mentions informational costs as a possible cause for asymmetries
in QRSE. This is captured by measuring utility U as a sum U[a, x] + C(a|x), allowing for
higher costs (C) of entrance or exit into a market, where a is an action and x is a rate. Such
a separation allows for an “alternative interpretation of unfulfilled expectations”.

These developments show the usefulness of maximum entropy methods, where
we have placed particular focus on QRSE, for inferring decisions from only macro-level
economic data. However, these approaches do not consider the contribution of a priori
knowledge to the resulting decision-making process. The key objective of our study is
to generalise the QRSE framework by the introduction of the prior beliefs, as well as the
information acquisition costs as a measure of deviation from such priors.

3. Underlying Concepts

Two main concepts form the basis for the proposed model. The first is the QRSE
approach developed by [5], and the second is a thermodynamics-based concept of decision-
making derived from minimising negative free energy, proposed by [4].

3.1. QRSE

The QRSE framework aims to explain macroeconomic regularities as arising from
social interactions between agents. There are two key assumptions stemming from the idea
of Smithian competition: Agents observe and respond to macroeconomic outcomes, and
agent actions affect the macroeconomic outcome, i.e., a feedback loop is assumed. It is this
feedback that is deemed to cause the macroeconomic outcome to have a distribution that
stabilises around an average value. Given only the macroeconomic outcome, QRSE infers
the least biased distribution of decisions, which result in the observed macroeconomic
distribution using the principle of maximum entropy. This makes QRSE particularly useful
for inferring decisions when the individual decision level data is unobserved. In the
following section, we outline the key notions behind QRSE [5].

3.1.1. Deriving Decisions

Agents are assumed to respond (i.e., make decisions) based on the macroeconomic
outcome, for example, based on profit rates x. This is captured by the agents’ utility U.
However, agents are assumed to act in a boundedly rational way, such that they may not
always choose the option with the highest U, for example, if it becomes impractical to
consider all outcomes. That is, agents are attempting to maximise their expected utility,
subject to an entropy constraint capturing the uncertainty:

max ∑
a∈A

f [a|x]U[a, x] (1)81
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subject to ∑
a∈A

f [a|x] = 1

− ∑
a∈A

f [a|x] log f [a|x] ≥ Hmin
(2)

where f [a|x] represents the probability of an agent choosing action a if rate x is observed.
The first constraint ensures the probabilities sum to 1, while the second is a constraint on
the minimum entropy. The minimum entropy constraint implies a level of boundedness
such that there is some limit to the agents’ processing abilities, which allows QRSE to
deviate from perfect rationality.

Lagrange multipliers can be used to turn the constrained optimization problem of
Equation (2) into an unconstrained one, which forms the following Lagrangian function:

L = − ∑
a∈A

f [a|x]U[a, x]− λ

(
∑

a∈A
f [a|x]− 1

)
+ T

(
− ∑

a∈A
f [a|x] log f [a|x]− Hmin

)
(3)

taking the first order conditions of Equation (3), and solving for f [a|x] yields:

f [a|x] = 1
Z

e
U[a,x]

T (4)

representing a choice of a mixed strategy by maximising the expected utility subject to
an entropy constraint. This problem is dual to maximising entropy of the mixed strategy,
subject to a constraint on the expected utility as detailed in Appendix A.1.

3.1.2. Deriving Statistical Equilibrium

From Section 3.1.1 we have a derivation for a decision function, where agents maximise
expected utility subject to an entropy constraint introducing bounds in the agents process-
ing abilities. In order to infer the statistical equilibrium based on observed macroeconomic
outcomes, the joint probability f [a, x] must be computed.

The joint distribution captures the resulting statistical equilibrium which arises from
the individual agent decisions. While there are many potential joint distributions, using the
principle of maximum entropy allows for inference of the least biased distribution. From an
observer perspective, maximising the entropy of the model accounts for model uncertainty,
by providing the maximally noncommittal joint distribution. To compute this, Scharfenaker
and Foley [5] maximise the joint entropy with respect to the marginal probabilities (since
individual action data is not available), by decomposing the joint entropy into a sum of the
marginal entropy and the (average) conditional entropy.

The solution for f [a|x], given by Equation (4), can be used to compute the joint
probability f [a, x], as long as marginal f [x] is determined (since f [a, x] = f [a|x] f [x]). In
order to derive f [x], the approach considers the state dependant conditional entropy,
represented as

H[A|x] = − ∑
a∈A

f [a|x] log f [a|x] (5)

Scharfenaker and Foley [5] then use the principle of maximum entropy to find the distribu-
tion of f [x] which maximises

max
f [x]≥0

H = −
∫

x
f [x] log f [x]dx +

∫

x
f [x]H[A|x]dx (6)

subject to
∫

x
f [x]dx = 1

∫

x
f [x]xdx = ξ

(7)

82
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The first constraint ensures the probabilities sum to 1, and the second constraint
applies to the mean outcome (with ξ being the mean from the actual observed data f̄ [x]).
Importantly, there is also an additional constraint which models Smithian competition [32]
in the market. Smithian competition models the feedback structure for competitive markets,
for example, entrance into a market tends to lower the profit rates, and exit tends to raise
the profit rates. This is captured as the difference between the expected returns conditioned
on entrance, and the expected returns conditioned on exiting. This competition constraint
can be represented as

subject to
∫

x
f [x]( f [a|x]− f [ā|x])xdx = δ (8)

The combination of the conditional probabilities of Equation (4), which stipulate
that the agents enter and exit based on profit rates, and the competition constraint of
Equation (8) models a negative feedback loop that results in a distribution of the profit
rates around an average (ξ).

Again, using the method of Lagrange multipliers, the associated Lagrangian becomes

L = −
∫

x
f [x] log f [x]dx +

∫

x
f [x]H[A|x]dx−

λ

(∫

x
f [x]dx− 1

)
− γ

(∫

x
f [x]xdx− ξ

)
− ρ

(∫

x
f [x]( f [a|x]− f [ā|x])xdx− δ

) (9)

where taking the first order conditions of Equation (9), and solving for f [x] yields

f [x] =
1

ZA
eH[A|x]−γx−ρx( f [a|x]− f [ā|x]) (10)

where ZA is the partition function ZA =
∫

x eH[A|x]−γx−ρx( f [a|x]− f [ā|x])dx. Note that in
Equation (9) we use ρ as the Lagrangian multiplier for the competition constraint. Parame-
ter ρ is referred to as β in [5], we have avoided this notation to avoid confusion with the
thermodynamic β (inverse temperature) discussed in later sections.

Equations (4) and (10) comprise a fully defined joint probability. Crucially, QRSE
allows for modelling the resultant statistical equilibrium even when the individual actions
are unobserved—by inferring these decisions based on the principle of maximum entropy.

3.1.3. Limitations of Logit Response

In Section 3.1.1 we have seen how the logit response function used for decision-making
in QRSE is derived from entropy maximisation. Following the Boltzmann distribution
well known in thermodynamics, this logit response has seen extensive use throughout the
literature arising in a variety of domains. For example, the logit function is used as sigmoid
or softmax in neural networks, logistic regression, and in many applications in economics
and game theory [33,34]. However, one important development not yet discussed is the
incorporation of prior knowledge into the formation of beliefs. Up until now, we have
considered a choice to be the result of expected utility maximisation based on entropy
constraints from which the logit models have arisen. However, from psychology [35], be-
havioural economics [36,37], and Bayesian methods [38,39] we know that the incorporation
of a priori information is often an important factor in decision-making. Thus, we explore
the incorporation of prior beliefs into agent decisions in more detail in the following section
(and the remainder of the paper).

Furthermore, one criticism of the logit response arises from the independence of
irrelevant alternatives (IIA) property of multinomial logit models (which would extend to
the conditional function used in QRSE in a multi-action case), which states that the ratio
between two choice probabilities should not change based on a third irrelevant alternative.
Initially, this may seem desirable, however, this can become problematic for correlated
outcomes (of which many real examples possess). This criticism has been proved correct in
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several thought experiment studies, showing violations of the IIA assumption [40]. The
classical example is the Red Bus/Blue Bus problem [41,42].

Consider a decision-maker who must choose between a car and a (blue) bus, A =
{car, blue bus}. The agent is indifferent to taking the car or bus, i.e., p(car) = p(blue bus) =
0.5. However, suppose a third option is added, a red bus which is equivalent to the blue
bus (in all but colour). The agent is indifferent to the colour of the bus, so when faced
with A1 = {blue bus, red bus} the agent would choose p(red bus) = p(blue bus) = 0.5.
Now suppose the agent is faced with a choice between A2 = {car, blue bus, red bus}. As
per the IIA property, the ratio p(blue bus)

p(car) (from A, 0.5
0.5 ) must remain constant. So adding in

a third option, the probability of taking any a becomes p(a) = 1
3 (for all a), maintaining

p(blue bus)
p(car) = 1. However, this has reduced the odds of taking the car from 0.5 to 0.33 based

on the addition of an irrelevant alternative (i.e., the red bus in which the agent does not
care about colour of the bus). In reality, the probability for taking the car should have
stayed fixed at p(car) = 0.5, and the probability of taking a bus reduced to 0.25 each.
This reduction in the probability of p(car) does not make sense for a decision-maker who
is indifferent to the colour of the bus and is the basis for the criticism. This may not be
immediately relevant for current QRSE models (especially binary ones), but with potential
future applications, for example, in portfolio allocation, this could become an important
consideration. For example, if adding an additional stock to a portfolio which is similar
to an existing stock, it may not be desriable to reduce the likelihood of selecting other
(unrelated) stocks.

3.2. Thermodynamics of Decision-Making

A thermodynamically inspired model of decision-making which explicitly considers
information costs, as well as the incorporation of prior knowledge, is proposed by [4]. The
proposed approach can be seen as a generalisation of the logit function, where the typical
logit function can be recovered as a special case, but in the more general case manages to
avoid the IIA property.

Ortega and Braun [4] represent changing probabilistic states as isothermal transforma-
tions. Given some initial state x ∈ X with initial energy potential φ0[x], the probability of

being in state x is p[x] = e−βφ0 [x]

∑x′∈X e−βφ0 [x
′ ] (from the Boltzmann distribution). Updating state

to f [x] corresponds to adding new potential ∆φ0[x]. The transformation requires physical
work, given by the free-energy difference ∆F[ f ]. The free energy difference between the
initial and resulting state is then

∆F[ f ] = F[ f ]− F[p]

= ∑
x∈X

f [x]∆φ(x) +
1
β ∑

x∈X
f [x] log

(
f [x]
p[x]

)
(11)

which allows the separation of the prior p[x] and the new potential ∆φ0[x]. In economic
sense, representing the negative of the new potential as the utility gain, i.e., U(x) =
−∆φ0[x], allows for reasoning about utility maximisation subject to an informational con-
straint, given here as the Kullback-Leibler (KL) divergence from the prior distribution [4].
Golan [43] shows how the KL-divergence naturally arises as a generalisation of Shannon
entropy (of Equation (2)) when considering prior information, and Hafner et al. [44] show
how various objective functions can be seen as functionally equivalent to minimising
a (joint) KL-divergence, even those not directly motivated by the free energy principle.
Such analysis makes the KL-divergence a logical and fundamentally grounded measure of
information acquisition costs, captured as the divergence from a prior distribution.
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Ortega and Stocker [45] then apply this formulation to discrete choice by introducing a
choice set A (space of actions), which leads to the following negative free energy difference,
for a given observation x:

− ∆F[ f [a|x]] = ∑
a∈A

f [a|x]U[a, x]− 1
β ∑

a∈A
f [a|x] log

(
f [a|x]
p[a]

)
(12)

where again a represents a choice (or action), and U the utility for the agent. The first term
of Equation (12) is maximising the expected utility, and the second term is a regularisation
on the cost of information acquisition. Again, in this representation, information cost is
measured as the KL-divergence from the prior distribution.

Taking the first order conditions of Equation (12) and solving for f [a|x] yields

f [a|x] = p[a]e
U[x,a]

T

∑a′∈A p[a′]e
U[a′ ,x]

T

(13)

where we have moved from inverse temperature β to temperature T for notational con-
venience, i.e., T = 1

β . The key formulation here is the separation of the prior probability
p from the utility gain (or the new potential from the initial potential). T then arises as
the Lagrange multiplier for the cost of information acquisition (as opposed to the entropy
constraint of QRSE, described in Section 3.1). We emphasise this aspect in later sections.

Revisiting the IIA property, the incorporation of the prior probabilities in Equation (A7)
can adjust the choices away from the logit equation, and thus managing to avoid IIA. How-
ever, if desired, the free energy model reverts to the typical logit function in the case of
uniform priors, and so this property can be recovered. In economic literature, a similar
model is given by Rational Inattention (R.I.) by [2]. The relationship between R.I. and the
free energy approach of [4,45] is detailed in Appendix C.

4. Model

In this section, we propose an information-theoretic model of decision-making with
prior beliefs in the presence of Smithian competition and market feedback. Given an agent’s
prior beliefs and an observed macroeconomic outcome (such as the distribution of returns),
the model can infer the least biased decisions that would result in such returns. Importantly,
the incorporation of prior beliefs allows for reasoning about the decision-making of the
agent based upon both their prior beliefs and their utility maximisation behaviour.

We develop upon the maximum-entropy model of inference from [5], and the thermo-
dynamic treatment of prior beliefs formalised by [4], as outlined in Section 3.

4.1. Maximum Entropy Component

The proposed approach can be seen as a generalisation of QRSE, allowing for the
incorporation of heterogeneous prior beliefs based on the free-energy principle. The key
element is the information acquisition cost, measured as the KL-divergence which arises
from the free-energy principle and has been shown to provide a fundamentally grounded
application of Bayesian inference [46]. In order to derive decisions f [a|x] for an action or
choice a (e.g., buy, hold or sell) given an observed return x (e.g., a return on investment),
we maximise the expected utility U subject to a constraint on the acquisition of information
measured as the maximal divergence d between the posterior decisions and prior beliefs
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p[a]. As mentioned, d is measured as the KL-divergence, which is the generalised extension
of the original (Shannon) entropy constraint [43] introduced in Equation (2)):

max ∑
a∈A

f [a|x]U[a, x]

subject to ∑
a∈A

f [a|x] log
(

f [a|x]
p[a]

)
≤ d

∑
a∈A

f [a|x] = 1

(14)

The Lagrangian for Equation (14) then becomes

L = ∑
a∈A

f [a|x]U[a, x]− λ

(
∑

a∈A
f [a|x]− 1

)
− T

(
∑

a∈A
f [a|x] log

(
f [a|x]
p[a]

)
− d

)
(15)

There are two distinct modelling views on such a formulation [47–50]. The first as-
sumes that specific constraints are known from the data, for example, a maximal divergence
d may be specified based on actual observations of agent behaviour. The second view,
instead, would consider the Lagrange multiplier T to be a free parameter of the model,
with the constraint d representing an arbitrary maximum value: Thus, this approach would
optimise T in finding the best fit. In this work, we take the second perspective since
underlying decision data is unavailable, and a specific restriction on divergent information
costs should not be enforced. In other words, T is considered to be a free model parameter
corresponding to different information acquisition costs, mapping to different (unknown)
cognitive and information-processing limits d.

Looking at the final term in Equation (15), in the case of homogeneous priors, log p[a]
is a constant which drops out of the solution, which is equivalent to the optimisation
problem of Equation (3), and thus, recovers the original QRSE model. In the general case,
the dependence on log(p[a]) means that T instead serves as the Lagrange multiplier for
the cost of information acquisition. Taking the first order conditions of Equation (15) and
solving for f [a|x] (as shown in Appendix A.2) yields

f [a|x] = 1
ZA|x

p[a]e
U[a,x]

T (16)

we see this as a generalisation of the logit function, which allows for the separation of the
prior beliefs and the agent’s utility function.

In the more general case, p[a] can be heterogeneous for all a. Parameter T therefore
controls the deviations from the prior (rather than from the base case of uniformity), that is,
it controls the cost of information acquisition. Following [4], we observe the following limits

lim
T→∞

f [a|x] = p[a]

lim
T→0,T≥0

f [a|x] = e
U[x,a]

T = max U[x, a]

lim
T→0,T<0

f [a|x] = e
U[x,a]

T = min U[x, a]

(17)

In the limit T → ∞ (i.e., infinite information acquisition costs), the agent just falls
back to their prior beliefs as it becomes impossible to obtain new information. In the
limit T → 0, the agent becomes a perfect utility maximiser (i.e., if information is free to
obtain, the agent could obtain it all and choose the option that best maximises payoff with
probability 1). In the T < 0 case, we see this corresponds to anti-rationality. For economic
decision-making, we can limit temperatures to be non-negative, T ≥ 0, although there
are specific cases where such anti-rationality may be useful (e.g., modelling a pessimistic86
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observer or adversarial environments [4]). The relationship between temperature and
utility is visualised in Figure 1.

0
Temperature

min(E(U))

0

max(E(U))

E
(U

)

(a) Temperate vs. Utility

0
Inverse Temperature

min(E(U))

0

max(E(U))

E
(U

)

(b) Inverse Temperate ( 1
T ) vs. Utility

Figure 1. The effect of decision temperature T on the resulting expected payoffs (a). for the limits
given by Equation (17). The inverse temperature 1

T (b) conveys the same information but may offer a
more useful visualisation due to the continuity.

Crucially, large temperatures (costly acquisition) do not revert to the uniform distribu-
tion (as in the typical QRSE case, unless the prior is uniform), instead reverting to prior
beliefs. This is visualised in Figure 2, and discussed in more detail in Section 4.3.

4.2. Feedback Between Observed Outcomes and Actions

Following [5], we use a joint distribution to model the interaction between the eco-
nomic outcome x, and the action of agents a.

To recover a joint probability, we need to determine f [x] (since f [a, x] = f [a|x] f [x])
which we do with the maximum entropy principle, as shown in Section 3.1. To do this, we
maximise the joint entropy with respect to the marginal probabilities. That is,

L = −
∫

x
f [x] log f [x]dx +

∫

x
f [x]H[A|x]dx− λ

(∫

x
f [x]dx− 1

)

−γ

(∫

x
f [x]xdx− ξ

)
− ρ



∫

x
f [x]

p[a]e
U[a,x]

T − p[ā]e
U[ā,x]

T

ZA|x
xdx− δ




(18)

with

H[A|x] = − ∑
a∈A

f [a|x] log f [a|x]

= − 1
ZA|x

∑
a∈A

p[a]e
U[a,x]

T

(
log p[a] +

U[a, x]
T

− log ZA|x

) (19)

An important point to be made here is that H[A|x] still measures (Shannon) entropy.
We have seen above how the new definition for f [a|x] uses the KL-divergence as a gener-
alised extension of entropy when incorporating prior information. In Equation (19), we
do not use this divergence for an important reason. In Equation (14) we are measuring
divergence from known prior beliefs, however, now when optimising Equation (18) we
wish to infer decisions from unobserved decision data. This is where the principle of
maximum entropy comes into play, i.e., we wish to maximise the entropy of our new
choice data (which was derived from KL-divergence of prior beliefs), but we do not wish to
perform cross-entropy minimisation as we do not have the true decisions f̄ [a|x]. With this
in mind, we still utilise the principle of maximum entropy as is done in QRSE for inference
to obtain the least biased resulting decisions. This keeps the proposed extensions in the
realm of QRSE, but comparisons to the principle of minimum cross-entropy [51,52] could be
considered in future work particularly when some target distributions are known directly.87
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Figure 2. Decision Functions. All cases have equivalent utility functions. Each row has equivalent
temperatures, showing how with matched parameters and utility, having an alternate prior can shift
the decision-makers preference. Each column has different priors, given along the top of the first row
to show how decision-makers decisions change based on their prior beliefs. On the left-hand side,
preference is shifted towards the buying case. Likewise, on the right-hand side, preference is given to
the selling case. The uniform case with equal preference is shown in the middle.

In Equation (18), ξ is known from the mean of the observed macroeconomic outcome,
and so this constraint is used explicitly. This is in contrast to d (and δ) which are unknown
as outlined in Section 4.1. The important distinction with Equation (18) is that the f [a|x]
functions (and H[A|x]) now use the updated expressions for f [a|x], which incorporate
the prior beliefs. Taking the partial derivative of L with respect to f [x], and solving for
f [x] gives

f [x] =
1

ZA
e

H[A|x]−γx−ρx


 p[a]e

U[a,x]
T −p[ā]e

U[ā,x]
T

ZA|x




(20)

Equation (20) expresses the information acquisition cost in the form of the Lagrange
multiplier T (from Equation (15)), and a competition cost in the form of the multiplier ρ.

As we have a solution for f [a|x] (Equation (16)) and f [x] (Equation (20)) in terms of
prior beliefs and information acquisition costs, we can then derive all other probability
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functions using the Bayes rule. That is, we can obtain f [a, x], f [x|a] and f [a] which in turn
incorporate these prior beliefs/acquisition costs:

f [a, x] = f [a|x] f [x]

=
p[a]e

U[a,x]
T +H[A|x]−γx−ρx


 p[a]e

U[a,x]
T −p[ā]e

U[ā,x]
T

ZA|x




ZA|xZA

(21)

We can obtain f [a] by marginalising out x from the joint distribution:

f [a] =
∫

x
f [a, x]

=
1

ZA

∫

x

1
ZA|x

p[a]e

U[a,x]
T +H[A|x]−γx−ρx


 p[a]e

U[a,x]
T −p[ā]e

U[ā,x]
T

ZA|x


 (22)

Finally, f [x|a] can then be computed by a direct application of the Bayes rule: f [x|a] =
f [a, x]/ f [a].

Given only an expected average value ξ (and the usual normalisation constraints),
we have derived a joint probability distribution, which maximises the entropy subject
to some information acquisition cost d, along with a competition cost δ. The resulting
distribution free parameters (the Lagrange multipliers) are those which fit most closely to
the true underlying distribution of returns. Thus, we have provided a generalisation of
QRSE, which is fully compatible with the incorporation of prior beliefs.

4.3. Priors and Decisions

The introduced priors affect the conditional probabilities of agent decisions by shifting
focus towards these preferred choices. The introduced priors allow the decision-maker to
place more focus on particular actions if they have been deemed important a priori.

In Section 3.2 we showed how to separate the initial energy potential and new energy
potential for distinguishing prior beliefs and utility functions. It is instructive to interpret
these again as potentials, by setting αa = T log p[a], which allows us to represent the choice
probability as

f [a|x] = 1
ZA|x

e
U[x,a]+αa

T . (23)

Equation (23) shows how α shifts the likelihood based on the prior preferences. An
example of these shifts is visualised in Figure 2. This can be interpreted as placing more
emphasis on actions deemed useful a priori as T increases. The information acquisition
cost component T then controls the sensitivity between the utility and a priori knowledge,
with a high T meaning higher dependence on prior information, and low T indicating a
stronger focus on the utility alone.

The majority of binary QRSE models use a simple linear payoff definition for utility:

U[x, a] = x− µ, U[x, ā] = −(x− µ) .

With this definition, a tunable shift parameter µ serves as the expected fundamental
rate of return. The relationship between µ and the real markets returns ξ (which was used
as a constraint in Equation (7)), serves then as a measure of fulfilled expectations (i.e., if
µ = ξ) or unfulfilled expectations (µ 6= ξ). This implies a symmetric shift parameter µ. As
a specific example, if a = sell and ā = buy, µ = 0.25 means that at x = 0.25, buyers and
sellers will be equally likely to participate in the market, i.e., f [sell|µ] = f [buy|µ] = 0.5.
In this sense, µ can be seen as the indifference point. The symmetry arises from the fact
that f [buy|x] + f [sell|x] = 1. Therefore, in the binary action case, it is possible to find a µ∗

with the uniform priors p = [0.5, 0.5] such that the decision functions will be equivalent
89
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to µ with any arbitrary priors p = [c, 1− c], with c ∈ [0, 1]. In this sense, µ can be seen as
encapsulating a prior belief.

However, explicit incorporation of prior beliefs on actions is useful here as it helps to
separate the agents’ expectations in relation to their prior belief (e.g., a higher µ resulted
from needing to change from their past behaviour) and choose the actions for which an
agent should emphasise acquiring more information. The introduced prior beliefs are
strictly known before any inference is performed, whereas µ is the result of the inference
process. The separation of prior beliefs and current expectations is important, as with µ
alone this can not capture an agent’s predisposition prior to performing any information
processing. In addition, this applies more generally to any arbitrary utility functions (as
QRSE is, of course, not limited to the linear shift utility function with µ outlined above), or
when any preference is known about decisions a priori.

Consider also the three action case, A = {buy, hold, sell}, with the same utility
functions as above but with the extra utility for holding being U[x, hold] = 0. We can see
that it would be desirable if buying and selling no longer required this symmetry. The
use of priors can introduce this asymmetry, by providing separate indifference points for
buy/hold and sell/hold. Such asymmetry alters the resulting frequency distribution of
transactions, and may help to explain various trading patterns [16]. The difference of
symmetric and asymmetric buy and sell curves is shown in Figure 3. Figure 3 shows
that such functions could be recovered by introducing a secondary shift parameter µ2.
Parameter µ1 (the original µ) then becomes the indifference point for buy and hold, and
µ2 for sell and hold. This is the method proposed in [30]. Introducing priors into this
case again allows for separation of expectation µ, from prior belief and follows the same
methodology as outlined above for the binary case. Furthermore, if we set p[hold] = 0, we
recover the binary case. This highlights that the standard QRSE with binary actions and
uniform priors is a special case of the ternary action case with heterogeneous priors.

min U(sell)
max U(buy)

max U(sell)
 min U(buy)
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Prior: [0.333, 0.333, 0.333]

min U(sell)
max U(buy)

max U(sell)
 min U(buy)

Prior: [0.025, 0.95, 0.025]

Sell
Buy
Hold

Figure 3. In the three-action case, the priors can introduce asymmetries by biasing the decision
functions. This allows for separate indifferent points (right) vs. the uniform priors implying a single
intersect (left).

From this, we can see how introducing priors alters the decision functions by allowing
agents to focus on suitable a priori candidate actions. We have also shown how the binary
case of a utility function with a shift parameter can be formalised to achieve equivalent
results with a uniform prior and altered shift parameter. However, in the multi-action case,
the priors allow for asymmetry, and in general, the priors may help with the optimisation
process (by providing an alternate initial configuration). This approach also allows for
the explicit separation of the two factors affecting an agent’s choice, by distinguishing the
contributions of prior beliefs and the utility maximisation.
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4.4. Rolling Prior Beliefs

The proposed extension is general and allows for the incorporation of any form of
prior beliefs, and in this section, we illustrate an example where the priors at time t are set
as the resulting marginal probabilities from the previous time t− 1:

pt[a] = ft−1[a]

i.e., the prior belief pt[a] is set as the previous marginal probability ft−1[a] for taking action
a (at t = 0, we use a uniform prior). Using the previous marginal probability as a prior
introduces an “information-switching” cost, where T relates to the divergence from the
previous actions, resulting in the following decision function:

ft[a|x] =
1

ZA|x
ft−1[a]e

U[x,a]
T

That is, acquiring information on top of the previous knowledge comes at a cost
(controlled by T). When the cost of information acquisition is high (large T), the agent
reverts to the previously learnt knowledge (i.e., the marginal probabilities from t− 1). In
contrast, when T is extremely small, the agent is able to acquire new information allowing
deviation from their prior knowledge at t− 1. In the special case of T = 0, information is
free, and the agent can become a perfect utility maximiser.

Given the expression for ft[a|x], we obtain the following solution for ft[x]:

ft[x] =
1

ZA
e

H[A|x]−γx−ρx


 ft−1 [a]e

U[a,x]
T − ft−1 [ā]e

U[ā,x]
T

ZA|x




from which we can derive the joint and other probabilities, as shown in Section 4.1. This is
exemplified in Section 5, in which we examine various priors for time-dependent applications.

5. Australian Housing Market

To exemplify the model, we use the Greater Sydney house price dataset provided by
SIRCA-CoreLogic and utilised in [53,54]. This dataset is outlined in Appendix B. In [54],
an agent-based model is used to explain and forecast house price trends and movement
patterns as arising from the individual agent’s buy and sell decisions. Furthermore, the
ABM implemented bounded rational agents driven by social influences (e.g., fear of missing
out) and partial information about submarkets. While the resulting dynamics produced by
the ABM accurately match the actual price trends, the decision-making mechanism and
the bounded rationality of the agents were not theoretically grounded. In the following
section, we aim to explain how the bounded rational behaviour of the agents operating in
the housing market can be aligned with the model proposed in this study based on prior
beliefs of agents and Smithian competition within the market. With this example, Smithian
competition can be seen as agent decisions (buying or selling) affecting returns for an area,
and agents decisions also being made based on returns for particular areas, i.e., a feedback
loop is assumed in the market.

In particular, we want to explore what role an agent’s prior beliefs play in their
resulting decisions. For example, given equivalent configurations (e.g., utility and returns)
and different prior knowledge, how would the agent’s behaviour differ? Furthermore,
we would like to explore the rationality of the agents, measured in terms of the cost
of information acquisition, in order to see how the agents behave. For example, are
agents predominantly reliant on past knowledge in times of market growth, resulting in
unexpected downturns from mismanaged agent expectations? Alternatively, in deciding if
it is a good time to buy or sell, the agents may balance their past knowledge with utility
and current returns (i.e., the past knowledge would not be a predominant factor). The
proposed model is particularly suited for answering such questions due to the low number
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of free (and microeconomically) interpretable parameters, as well as the explicit separation
of prior beliefs (as opposed to previous QRSE approaches). Our goal is not to infer the
“best” prior, but rather to explore and compare dynamics resulting from various priors.
In addition, we aim to verify the conjecture that during crises, and periods exhibiting
non-linear market dynamics, macroeconomic conditions may become more heterogeneous,
and thus, non-uniform priors may outperform uniform ones in such times.

5.1. Model

We use our model of binary actions with prior beliefs introduced in Section 4.1, with
actions A = {buy, sell}. The decision functions are then given by

ft[buy|x] = 1
Zt,x

pt[buy]e
U[x,buy]

T

ft[sell|x] = 1
Zt,x

pt[sell]e
U[x,sell]

T

Zt,x = ft[buy|x] + ft[sell|x]

(24)

where we explore a range of pt (prior at time t) functions, discussing their effects on
decision-making and resulting probability distributions.

5.1.1. Priors

While the proposed approach is capable of incorporating any form of prior belief on
the choice set A, below we outline several example priors which we explore. In exploring
these priors, we highlight differences in resulting agent posterior decisions based on
various prior beliefs.

Uniform

We begin with a uniform prior. The uniform probability represents the default case of
QRSE, where each action has an equally weighted prior. In the binary case, this corresponds
to pt[a] = 0.5 for all t and a. This corresponds to an agent who is agnostic to the available
actions before observing U.

Previous

Next we look at a “previous” prior. The previous prior uses the marginal action
probabilities from the previous time step as priors to the current timestep. This means at
time t, ft[a] plays the role of a posterior probability of making a decision, however, at time
t + 1 ft[a] now serves as the empirical prior. This is the example introduced in Section 4.4.
This corresponds to pt[a] = ft−1[a] for t > 0, and pt[a] = 0.5 for t = 0. The previous
prior represents an empirical prior where the decision is conditioned on previous market
information, where T controls the level of influence from the previous market stage (in our
case, each year). A high T means high influence from the past market state, whereas low T
means focusing on current market conditions alone (as measured by U). In the extreme
case of T = ∞, a backward looking expectations [55] approach is recovered where decisions
are assumed to be a function purely of past decisions, however, in the more general case
with T < ∞, U adjusts the decisions based on the current market state.

Mean

We also consider a mean prior. The mean prior uses the average marginal action

probability from all previous timesteps. This corresponds to pt[a] =
∑t−1

t′=0
ft′ [a]

t , for t > 0,
and pt[a] = 0.5 for t = 0. This can be seen as belief evolution, where over time, the previous
decisions help build the current prior (modulated by T) at each stage.
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Extreme Priors

As two further examples, we introduce extreme priors (more for visualisation/discussion
sake as opposed to being particularly useful). The extreme buy prior corresponds to a
strong prior preference for the buy action, pt[buy] = 0.99, pt[sell] = 0.01, for all t. Likewise,
the extreme sell case is simply the inverse of the buy case, a strong prior preference for
selling, i.e., pt[sell] = 0.99, pt[buy] = 0.01, for all t.

However, the formulations provided above by no means represent an exhaustive set
of possible priors. For example, Genewein et al. [56] discuss “optimal” priors, which draws
parallels with rate-distortion theory and can be seen as building abstractions of decisions
(see Appendix C). Adaptive expectations [57] are discussed in [58–60], where priors could
be partially adjusted based on some strength term (λE), where the strength term adjusts
the contribution from some error. For example, an adaptive prior could be represented as
pt = pt−1 + λ(pt−1 − p̂t−1), where p̂t−1 is the actual known likelihood of actions from the
previous time period. With our specific housing market data, we do not have p̂, i.e., we
do not have the true buying and selling likelihoods, but if known, such information could
be used to adjust future beliefs, i.e., over time the adaptive priors would adjust decisions
based on the previously observed likelihoods (controlled by λ). The proposed approach
makes no assumption about the forms of prior beliefs, so the ideas outlined above can be
incorporated into the method outlined here by adjusting the definition of pt.

5.2. Results

We fit the distributions with the various priors outlined in Section 5.1.1 to the actual
underlying return data, to estimate how well we are able to capture this distribution
and explore the effects that these priors have on the resulting distribution. The results
are presented in Table 1, which summarises the likelihood and the percentage of the
explained variability (measured as Information Distinguishability (I.D.) [61]) compared to
the underlying distribution. We see that there are no large differences in general between
the priors in terms of the explained variability. However, the goal here is not to argue
for the “best” prior fitting the dataset in terms of the explained variability, but rather to
explore differences in the agent behaviour based on the prior knowledge (using the housing
dataset as an example). Thus, the resulting fitted distributions f [x], which are visualised in
Figure A5, are more interesting. We observe how altering prior beliefs result in different
resulting distributions and discuss how the incorporation of prior beliefs allows for a
separation of the agents’ utility maximisation behaviour from their previous knowledge.
From Figure A5 we can also see how the priors can alter the optimisation process, for
example, a good (bad) prior may help (harm) the optimisation by providing alternate
initial configurations. The extreme priors can be seen as harmful, for example, in 2012
where the resulting distributions are unable to capture the true underlying distribution.
The reason for this is being unable to find suitable T to enable appropriate divergence from
the extreme prior beliefs. In contrast, well selected priors can help the optimisation process
and result in better fitting distributions, such as in 2016 where the decisions resulting from
the mean and previous prior fit the true data significantly better than the uniform prior.

The agents’ decision functions f [a|x] are visualised in Figure A7 which makes it clear
how each prior adjusts the resulting probability of taking an action (and thus, alters the
decisions). From this, we can see different probabilistic behaviours despite having equiva-
lent utility functions and optimisation processes due to varying prior beliefs. For example,
with the extreme priors, we observe a clear shift towards the strongly preferred action.

Figure A6 shows the resulting joint distributions f [a, x], combining the results of
Figures A5 and A7, since f [a, x] = f [a|x] f [x]. Looking at the second row of each plot in
Figure A6, we can see a visual representation of how the joint probabilities adjust over time
when using the previous year as the prior belief.
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Table 1. Resuling likelihood and percentage of variability explained for each year, when compared to
the actual underlying distribution (i.e., those given in Figure A2). Optimisation is done by minimising
the negative log-likelihood between the resulting distributions and the actual distribution of returns.

Uniform Previous Mean Extreme Buy Extreme Sell

2006 1082 (93%) 1082 (93%) 1082 (93%) 885 (59%) 1005 (74%)
2007 1089 (92%) 1089 (92%) 1090 (90%) 939 (68%) 1042 (83%)
2008 998 (95%) 905 (78%) 998 (95%) 998 (95%) 998 (95%)
2009 918 (96%) 918 (96%) 866 (88%) 880 (85%) 875 (85%)
2010 857 (95%) 857 (95%) 857 (95%) 740 (62%) 857 (95%)
2011 1045 (92%) 1044 (91%) 1047 (92%) 1045 (91%) 873 (62%)
2012 1067 (96%) 1067 (96%) 1067 (96%) 162 (6%) 142 (8%)
2013 1080 (90%) 1076 (90%) 1083 (90%) 983 (77%) 1075 (91%)
2014 938 (98%) 851 (74%) 938 (98%) 875 (71%) 938 (98%)
2015 860 (96%) 860 (96%) 860 (96%) 33 (10%) 808 (71%)
2016 873 (84%) 932 (95%) 908 (86%) 817 (70%) 932 (95%)
2017 916 (97%) 916 (97%) 916 (97%) 812 (76%) 916 (97%)
2018 989 (88%) 932 (85%) 933 (85%) 955 (82%) 998 (91%)
2019 1101 (92%) 1103 (92%) 1067 (94%) 1101 (92%) 952 (76%)

The resulting marginal action probabilities are visualised in Figure 4, where we
observe clear market peaks and dips which match the actual returns of Figure 5, aligning
with the general trends observed in Figure A1. The priors work on either increasing or
decreasing the resulting marginal probabilities. For example, in the extreme sell case we
see much higher resulting probabilities for f [sell], likewise in the extreme buying case, we
see much higher probabilities for f [buy]. The general peaks/dips remain in both cases.
Overall, this shows how the prior belief can influence the resulting marginal probabilities.
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Figure 4. Resulting marginal probabilities f [a] for varying priors. Green represents f [buy], and red
represents f [sell].
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Figure 5. Real Average Returns.

Using the previous year’s marginal probability as a prior for the current year has
a smoothing effect on the resulting year-to-year marginal probabilities. Comparing the
previous prior with the uniform prior in Figure 4, we observe, particularly during 2015–
2018, a more defined/well-behaved step-off in f [sell]. This indicates the slowing of returns
during these years. At the same time, the uniform priors are more affected by local noise,
potentially overfitting to only the current time period, since no consideration can be given to
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the past behaviour of the market. This results in larger fluctuations in the agent behaviour
as they have no concept of market history.

5.3. Role of Parameters

One of the benefits of QRSE is the low number of free parameters which results
in a relatively interpretable model. There are four free parameters in the typical QRSE
distribution: T, µ, ρ and γ, each with a corresponding microeconomic foundation. In
this section, we discuss the two main parameters of interest in this work: The decision
temperature T and agent expectations µ, and the effect that prior beliefs have on the
resulting values (and interpretation) of these parameters. We also include discussion on
the impact of decisions on resulting outcomes ρ and skewness of the resulting distributions
γ in Appendix D, since ρ and γ were less affected by the introduced extensions. There is an
additional parameter ξ (shown in Figure 5), which is not a free parameter, representing the
mean of the actual returns and serving as a constraint on the mean outcome in Equation (7).

5.3.1. Decision Temperature

The decision temperature T controls the level of rationality and deviations from an
agent’s prior beliefs. An extremely high temperature corresponds to high information
acquisition cost and results in choosing actions simply based on the prior belief. In contrast,
an extremely low temperature corresponds to utility maximisation, and in the case of free
information (T = 0) a perfect utility maximiser is recovered (i.e., homo economicus). In
the housing example used here, T relates to the ability of an agent to learn all the required
knowledge of the market, i.e. the actual profit rates for various areas. With T = 0, the
agent has perfect knowledge of the current market profitability. With T > 0, this represents
some friction with acquiring such information, e.g., it can be difficult to gather all the
required information to make an informed choice due to, for example, search costs. From
a psychological perspective, T can be a measure of the “just-noticeable difference” [62],
meaning microeconomically, T is related to the ability of an agent to observe quantitative
differences in resulting choices. High T means the agent is unable to distinguish choices
based on U, due to high information-processing costs, so instead acts according to their
previously learnt knowledge.

Since T is related to the prior, we see differences in the resulting values visualised in
Figure 6. What can be observed from looking at the general trends of T is that it peaks in
the years with high average growth (large ξ), such as 2015, as these years correspond to
a growing market, and agents require less attention to market conditions, although this
depends on the prior used.
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Figure 6. Decision Temperature.

Looking at the previous marginal probability as the prior (the orange profile), we
observe in the build-up phase to 2015 increasing decision temperatures corresponding to
agents acting on these previous beliefs. As these beliefs were also positive (i.e., agents ex-
pected favourable returns), these large returns can be explained by the agents continuously
expecting this growth. This pattern changed in 2016, when the market “reverses”: Now
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the agents must focus instead on their current utility since their prior beliefs no longer
reflect the current market state. Such market reversals are categorised by low decision
temperatures, since using the previous action probabilities now becomes misinformative
(in contrast to the “building”/trend-following stages). This indicates an increased focus on
agent rationality in times of market reversals. The incorporation of prior beliefs (particu-
larly using the previous priors) is useful as it allows for the discussion to be extended in the
temporal sense (as is done here). In other words, we can consider “building” the agent’s
beliefs as possible underlying causes for market collapses and relating the rationality of
agents to the relative state of the market.

5.3.2. Agent Expectations

In microeconomic terms, parameter µ captures the agent’s expectations. A large µ
corresponds to an optimistic agent, who is expecting high returns from the market. In
contrast, a low µ corresponds to a pessimistic agent, who is expecting poor returns from
the market. As this works to shift the decision functions, there is a relation between the
prior and parameter µ, since the prior also works as shifting preferences towards a priori
preferred actions as shown in Section 4.3. There is also a relationship between µ and γ
(outlined in Appendix D.2), since γ can help to account for unfulfilled agent expectations
by adjusting the skew of the resulting distributions.

Generally, the agent’s beliefs are within the ±2.5% range (expecting between a 2.5%
quarterly growth or 2.5% dip), which corresponds to the bulk of the area under the curve
in Figure A2. This means that the agent’s expectations develop in accordance with actual
market conditions, as can be seen in Figure 7.
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Figure 7. Agent Expectations vs. Actual Returns (in black).

The extreme priors result in larger absolute values of µ since larger shifts are needed
to offset the (perhaps) poor prior beliefs. This can be seen in 2014 particularly, where the
extreme sell prior has µ = 10%.

The values of previous prior µ tend to have a larger magnitude than the uniform
priors, since as mentioned, these priors can capture build-up of beliefs (and as such some
“trend-following” can be captured). For example, the year 2008 saw the lowest average
returns ξ, as shown in Figure 5. Using the previous prior, the agents’ expectations correctly
match the sign of the actual returns in 2008 (i.e., agents correctly expected a decline in
house prices). This results in more pessimistic agents than those using the uniform prior
since they can reflect on the market performance from 2007. Likewise, during 2013–2015,
the values of previous prior µ become larger than those for the uniform prior, since they are
building on the previous years expectations which were all positive. In contrast, the period
2015–2017 saw a steady decline in agents expectations of returns with previous priors,
reflecting the overall market state which appeared to be in a downward trend. The previous
priors were able to capture this trend. Using the uniform priors, the year 2016 had a higher
µ than the market peak of 2015. The reason is that uniform priors are unable to capture the
fact that the previous timestep had higher (or lower) returns than the current timestep. In
this case, the discussion can not be extended in the temporal sense of “building" on beliefs,
and agents may miss such crucial temporal information without the incorporation of prior
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beliefs. This is evidenced by the significantly lower performance of the uniform prior in
2016 in comparison to the previous prior, as shown in Table 1, highlighting the usefulness
of non-uniform (and temporal-based) priors in times of market crises and reversals.

5.4. Temporal Effects of Data Granularity on Decisions

In Section 5.2, we have analysed agent decisions over the previous 15 years, where
decisions were grouped annually. This level of granularity was chosen to examine different
agent behaviour from year to year. However, other levels of grouping can also be explored
to give an insight into the impact of noise on the inference process. For example, an
extremely granular grouping will likely result in additional noise in the decision-making
process, which may or may not be impacted by the incorporation of prior beliefs. Likewise,
a low granular grouping can be seen as “pre-smoothed”, which may work in a similar fash-
ion to the incorporation of prior temporal-based beliefs at a higher granularity, which we
have seen can smooth the resulting decisions. In this section, we examine the usefulness of
prior beliefs in such situations, providing comparisons with alternate data representations.

Two additional levels of granularity are considered, one more granular and one less
granular than the annual groupings introduced in Section 5.2. We look at quarterly data, as
well as aggregate groupings based on market state. In doing so, we have three levels for cate-
gorising agent behaviour: Quarterly, annually, and aggregated market state. This allows us to
compare resulting agent decisions across different temporal scales, comparing the differences
generated by the incorporation of prior beliefs and various data-level modifications.

The aggregate market state data groups years into “terms”, which correspond with
various “stages” of the market. These are growth and crash phases, highlighted as “Pre
Crash” (Mid 2006–2007), “Crash” (2008), “Recovery 1” (2009–Mid 2011), “Small Crash”
(Mid 2011–Mid 2012), “Recovery 2” (Mid 2012–Mid 2018) and “Recent Crash” (Mid 2018 to
2020). The overall market trends can be visualised in Figure A1 to see market returns for
each corresponding “term”.

The resulting decision likelihoods f [A] are presented in Figure 8. In analysing the
differences in resulting marginal probabilities between the various granularities, we can
observe the impact from data-level modifications, i.e., performing inference on a larger time
scale for macroeconomic observations, and how the incorporation of prior information
affects such results. In Section 5.2 we have mentioned the previous and mean priors
can have a smoothing effect on resulting decisions, in this sense, the lower granularity
groupings (the market state based grouping) can also be seen as a smoothed version of
the macroeconomic outcomes, i.e. pre-smoothing the data by considering a much larger
interval composed of several years for groupings. We see that the incorporation of prior
information helps preserve some important information in such settings. Looking at
the left-most column of Figure 8 (the uniform priors), we can see the overall “shape” of
the peaks and dips in preferences f [a] is lost with aggregate groupings. For example,
in the quarterly breakdown, there is a clear preference for selling in the later region in
the range 2014–2017, corresponding to the highest growing market, which is labelled as
“Recovery 2” in the aggregated version. When considering the “Recovery 2” with uniform
priors, such a clear preference is lost, and the “Pre Crash” and “Initial Recovery” have a
higher corresponding preference. This is because the agents can not separate past market
information from the current market state and act purely based on the current utility. In
contrast, with both the mean and the previous prior, such overall trends are preserved
across the various granularities since agents can distinguish favourable environments when
compared with previous market states (as captured by their prior beliefs). This additional
temporal insight provides an important consideration and shows that even with various
data-level smoothing or preprocessing (i.e., considering alternate data groupings) the
prior information remains useful and highlights various market states and corresponding
agent preferences.
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Figure 8. f [a] for varying granularities.

A key takeaway from this exploration is that the potential for temporal analysis
introduced by the prior beliefs provides additional insights into decision-making. These
insights can not be generated by simple data-level modifications. Furthermore, the decision
temperature T provides a way to modulate market state changes when considering agent
decision-making.

6. Discussion and Conclusions

Despite many well-founded doubts of perfect rationality in decision-making, agents
are often still modelled as perfect utility maximisers. In this paper, we proposed an
approach for inference of agent choice based on prior beliefs and market feedback, in which
agents may deviate from the assumption of perfect rationality.

The main contribution of this work is a theoretically grounded method for the incor-
poration of an agent’s prior knowledge in the inference of agent decisions. This is achieved
by extending a maximum entropy model of statistical equilibrium (specifically, Quantal
Response Statistical Equilibrium, QRSE), and introducing bounds on the agent processing
abilities, measured as the KL-divergence from their prior beliefs. The proposed model can
be seen as a generalization of QRSE, where prior preferences across an action set do not
necessarily have to be uniform. However, when uniform prior preferences are assumed, the
typical QRSE model is recovered. The result is an approach that can successfully infer least
biased agent choices, and produce a distribution of outcomes matching that of the actual
observed macroeconomic outcomes when individual choice level data is unobserved.

In the proposed approach, the agent rationality can vary from acting purely on prior
beliefs, to perfect utility maximisation behaviour, by altering the decision temperature.
Low decision temperatures correspond to rational actors, while high decision temperatures
represent a high cost of information acquisition and, thus, revert to prior beliefs. We
showed how varying an agent’s prior belief altered the resulting decisions and behaviour
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of agents, even those with equivalent utility functions. Importantly, the incorporation
of prior beliefs into the decision-making framework allowed the separation of two key
elements: The agent’s utility maximisation, and the contribution of the agent’s past beliefs.
This separation allowed for a discussion on the decision-making process in a temporal
sense, being able to refer to the previous decisions. This allows for investigation into the
building of beliefs over time, elucidating resulting microeconomic foundations in terms of
the underlying parameters.

It is worth pointing out some parallels with, and differences from, the frameworks
of embodied intelligence and information-driven (guided) self-organisation, in which
embodiment is seen as a fundamental principle for the organisation of biological and
cognitive systems [63–66]. Similar to these approaches, we consider information-processing
as a dynamic phenomenon and treat information as a quantity that flows between the
agent and its environment. As a result, an adaptive decision-making behaviour emerges
from these interactions under some constraints. Maximisation of potential information
flows is often proposed as a universal utility for such emergent agent behaviour, guiding
and shaping relevant decisions and actions within the perception-action loops [67–70].
Importantly, these studies incorporate a trade-off between minimising generic and task-
independent information-processing costs and maximising expected utility, following the
tradition of information bottleneck [71].

In our approach, we instead consider specific information acquisition costs incurred
when the agents need to update their relevant beliefs in the presence of (Smithian) compe-
tition and market feedback. The adopted thermodynamic treatment of decision-making
allows us to interpret relevant economic parameters in physical terms, e.g., agent’s decision
temperature T, the strength of negative feedback ρ, and skewness of the resulting energy
distribution γ. Interestingly, the decision temperature appears in our formalism as the
Lagrange multiplier of the information cost incurred when switching posterior and prior
beliefs (KL-divergence). The KL-divergence can be interpreted as the expected excess
code-length that is needed if a non-optimal code that was optimal for the prior (outdated)
belief is used instead of an optimal code based on the posterior (correct) belief. Thus, the
decision temperature modulates the inference problem of determining the true distribution
given new evidence, in a forward time direction [72]. Moreover, the thermodynamic time
arrow (asymmetry) is maintained only when decision temperatures are non-zero.

We demonstrated the applicability of the method using actual Australian housing
data, showing how the incorporation of prior knowledge can result in agents building on
past beliefs. In particular, the agent focus can be shown to shift from utility maximisation
to acting on previous knowledge. In other words, during the periods when the market has
been performing well, the agents were shown to become overly optimistic based on the
past performance.

The generality of the proposed approach makes it useful for incorporating any form
of prior information on the agent’s choice set. Moreover, we have shown that the default
QRSE is a special case of the proposed extension with uniform (i.e., uninformative) priors.
Therefore, the proposed approach can be seen as an extension of QRSE, which accounts
for prior agent beliefs based on information acquisition costs. As the QRSE framework
continues to be expanded, the generalised model proposed here could become an important
approach. Particularly, this would be useful whenever prior knowledge on agent decisions
is known, as well as in multi-action cases when the IIA property of the general logit function
is undesirable. Other relevant applications include scenarios with multiple time periods,
allowing for a detailed temporal analysis and exploration of the cost of switching between
equilibria (measured as an information acquisition cost from prior beliefs).
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Appendix A. Derivations

Appendix A.1. Decision Duality

There are two main perspectives, the first is of the agent performing actions within
the system, and the second is of the system observer [29].

Each of the two perspectives allows to capture the uncertainty faced by either the
actor or the observer, by imposing a constraint on entropy. In this section, we outline
the duality that arises from these perspectives, showing that a duality exists between
maximum entropy models, and entropy constrained models [7]. Additional discussion on
such perspectives is given in [21].

Modelling the actor corresponds to maximising the expected utility subject to a fixed
entropy constraint. This is the method outlined in Section 3.1.1. In this case, the agent
can be seen as a boundedly rational decision-maker, in that they might not have all of the
information required to make a perfectly rational choice.

The alternate perspective, modelling an observer, corresponds to maximising the
entropy of the decisions subject to a fixed expected utility. With this perspective, we
capture modelling uncertainty from the observer. The observers problem is formulated
as follows

max− ∑
a∈A

f [a|x] log f [a|x]

subject to ∑
a∈A

f [a|x] = 1

∑
a∈A

f [a|x]U[a, x] ≥ Umin

(A1)

where Umin represents the minimum expected utility. In order to see the duality of
Equations (A1) and (1), we formulate the following Lagrangian for converting
Equation (A1) into an unconstrained optimization problem.

L = − ∑
a∈A

f [a|x] log f [a|x]− λ

(
∑

a∈A
f [a|x]− 1

)
+ β

(
∑

a∈A
f [a|x]U[a, x]−Umin

)
(A2)

where again, taking the first order conditions and solving for f [a|x] yields

f [a|x] = 1
Z

eβU[a,x] (A3)

We can see Equation (A3) is equivalent with Equation (4) with β = 1
T , which highlights

an important dualism between the two perspectives.
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Appendix A.2. Decision Function

By setting the partial derivative of the unconstrained optimisation problem given in
Equation (15) with respect to f [a|x] to 0, we can obtain the following definition for f [a|x]:

dL
f [a|x] = U[a, x]− λ− T log

(
f [a|x]
p[a]

)
= 0

f [a|x] = e
U[a,x]

T −λ+log p[a]

(A4)

and, using the normalisation constraint ∑a∈A f [a|x] = 1, we obtain the following deci-
sion function

f [a|x] = 1
ZA|x

e
U[a,x]

T +log p[a]

=
1

ZA|x
p[a]e

U[a,x]
T

(A5)

with the partition function ZA|x = ∑a′∈A p[a′]e
U[a′ ,x]

T .

Appendix B. Australian Housing Market Data

Data from 2006–2020 is used. Data is split into individual years. We use the rolling
median price for each area and then measure the quarterly percentage growth rate for
the areas. The month-to-month percentage changes are visualised in Figure A1. The
distributions of the returns are visualised in Figure A2.
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Figure A1. Quarterly returns in the Sydney housing market.
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Figure A2. Density plots of returns grouped by year. We can see each year follows a different shape,
but shows some striking regularities representing a statistical equilibrium.

Appendix C. Relation to Rational Inattention

In his seminal work, [2] outlined rational inattention “based on the idea that indi-
vidual people have limited capacity for processing information”. This work introduced
information-processing constraints into the macroeconomic literature, using mutual infor-
mation as a measure of such information costs.

Of particular interest are the developments of [3] who showed how to apply rational
inattention (RI) to discrete decision-making. The key contribution was the modification
to the logit function that arises from considering a cost to decision-makers from deviat-
ing from prior knowledge. In this section, we highlight the similarities of R.I. with the
thermodynamic approach of [4] and the work proposed here.

The problem to be solved is formulated as follows. A utility-maximising agent must
make a discrete choice, while it is costly to acquire information about the options A available:

max f [a, x] ∑
a∈A

∫

x
f [a, x]U[a, x]dx− T

(
− ∑

a∈A
f [a, x] log(

f [a, x]
p[x] f [a]

)

)

subject to ∑
a∈A

f [a|x] = 1
(A6)

where the first term is the expected utility, and the second a cost of information (following
Sims [2], the mutual information). We see this as a similar setup to that of [4], which also
corresponds to maximising the expected utility subject to an information cost, however,
the information cost in [4] is instead measured as the KL-divergence. A key difference
between the two is that Equation (A6) adds a dependence on f [a] into the denominator of
the information cost term. We can take the first order conditions of the resulting Lagrangian
for (A6) and solve for f [a|x], yielding:

f [a|x] = e
U(a,x)

T +log( f [a])

∑a′∈A e
U(a′ ,x)

T +log( f [a′ ])
=

f [a]e
U(a,x)

T

∑a′∈A f [a′]e
U(a′ ,x)

T

(A7)
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which is not yet fully solved, as there is a dependence on the unconditional probability f [a].
Since f [a] =

∫
x f [a|x]p[x]dx, f [a] depends on f [a|x], and f [a|x] depends on f [a], this must

(generally) be solved numerically, for example, with the Blahut–Arimoto algorithm by first
making a guess for f [a] and then iterating from there (see Caplin et al. [73] or Matějka
and McKay [3] for solutions). It is for this reason, we utilise the configuration of [4] for
the decision-making component, which depends only on the prior probabilities, and not
the unconditional action probabilities f [a] meaning an analytical solution can be obtained.
However, the R.I. framework can be seen as equivalent to choosing an “optimal” prior
in the free energy framework of [4], as both can be seen as applications of rate-distortion
theory [56].

Further discussion on the relationship between R.I. and QRSE is given in [30].

Appendix D. Additional Parameters

While µ and T are the main parameters of interest in this work, since they have a
direct contribution to the modified decision function introduced, ρ and γ are still important,
although to a lesser extent as they are indirectly impacted. ρ is the Lagrange multiplier for
the competition constraint, and γ controls the skewness of the resulting distribution.

Appendix D.1. Impact of Decisions on Outcomes

Parameter ρ measures the impact of individual decisions on housing prices. A large
ρ corresponds to a highly effective market (high impact of actions on the response). In
contrast, a low ρ corresponds to a weaker market response, and thus, lower market
effectiveness. Parameter ρ, therefore, corresponds to the strength of the negative feedback
mechanism, with the case of ρ = 0 implying no market feedback (i.e., no impact on the
outcome based on the actions). In all cases, we see relatively large ρ’s, peaking in 2013
and 2019, indicating the presence of a well-functioning feedback loop across the years. We
see little variation between the uniform, previous, and mean prior in Figure A3, perhaps
drawn from the fact the priors work as linear weightings in the difference between the
conditional action probabilities, as shown in Equation (20).
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Figure A3. Competition.

Appendix D.2. Skewness

The parameter γ affects the skew of the resulting exponential distribution. This skew
arises from (potentially) unfulfilled agent expectations, i.e., where µ 6= ξ [21]. Parameter γ,
therefore, is a measure of skewness in the binary action case. In the asymmetric multi-action
QRSE case, γ is replaced by alternate µ’s explaining such skew. As mentioned, the priors
can also introduce such a skew (without the need for a γ). This is shown in the extreme buy
γ in Figure A4 which was almost always near zero, as the buying preference already creates
the skew needed to describe the underlying distribution (i.e., the skewness was already
explained by p). In contrast, extreme sell needs small γ’s to switch their (incorrect) skew.
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Figure A4. Skewness.

Negative γ corresponds to positive skewness, and positive γ corresponds to negative
skewness. In most cases here, we see (at least slightly) positively skewed distributions
(resulting in negative γ’s), with the exception of 2019, which is negatively skewed, as can
be verified in Figure A5.

Generally, γ’s for the mean, previous, and uniform priors follow similar paths, except
for the 2013–2016 years. In 2014 and 2016, γ’s for the previous priors differs from the other
priors. This can be explained by the fact that in both cases, the prior had a strong sell
preference (shown in Figure 4), meaning an adjusted γ was needed to capture the current
distributions shift correctly (and offset the influence of the prior).

0.10 0.05 0.00 0.05 0.10 0.15
0

10

20

30

40

50

60 Uniform
Previous
Mean
Extreme Buy
Extreme Sell
Actual data

(a) 2006

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0

10

20

30

40

50

(b) 2007

0.20 0.15 0.10 0.05 0.00 0.05 0.10
0

5

10

15

20

25

30

(c) 2008

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

25

30

(d) 2009

0.1 0.0 0.1 0.2 0.3
0

5

10

15

20

(e) 2010

0.10 0.05 0.00 0.05 0.10 0.15 0.20
0

10

20

30

40

50

(f) 2011

0.15 0.10 0.05 0.00 0.05 0.10
0

5

10

15

20

25

30

35

(g) 2012

0.05 0.00 0.05 0.10 0.15
0

10

20

30

40

(h) 2013

0.05 0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

25

30

(i) 2014

0.10 0.05 0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

25

30

(j) 2015

0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

25

(k) 2016

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

25

(l) 2017

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
0

5

10

15

20

25

30

35

(m) 2018

0.10 0.05 0.00 0.05 0.10
0

10

20

30

40

50

(n) 2019

Figure A5. Resulting fitted marginals distributions f [x] for each year. Each coloured line represents
a different prior (with the legend given in the top left). The blue bars show the (discretized) actual
return distribution. 104
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Appendix E. Probability Plots

In this section, we provide the resulting probability plots for f [x] (Figure A5), f [a, x]
(Figure A6), and f [a|x] (Figure A7) across all years analysed.
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Figure A6. Resulting Joint Distributions. Red lines represent f [sell, x], and green lines represent f [buy, x]. Each plot from
top to bottom shows: Uniform, previous, mean and extreme buy and extreme sell priors (in that order).
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Figure A7. Decision functions for selling. Buying curves are excluded as they are simply the
complement (1− sell). The green lines represent the extreme buy a priori preference, which means
the resulting probabilities of selling are shifted far to the right, i.e., the majority of the area comprises
buying actions, and only the extreme positive growth rates for sell. In contrast, the red lines represent
the sell preference, which “pulls” the area to the left, resulting in a strong resulting conditional
preference for selling.
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CHAPTER 5

An information-theoretic model for bounded rational strategic reasoning

Until this point, we have modelled inductive decision-making in markets using behavioural

heuristics. We now consider the strategic decision-making between interacting (and compet-

ing) agents. Strategic decision-making is an important consideration, as often, an agent is

not making a decision in isolation. Instead, an agent must consider the behaviour of other

agents when deciding what action to take. For example, when considering potential profit

rates in markets, one must consider the reasoning of other market participants, as the resulting

decisions will impact potential profit.

In the previous chapters, this type of strategic reasoning had been approximated using various

heuristics; however, here, we propose a more generalised way of modelling generic strategic

reasoning interactions. The resulting outcomes do not require any equilibrium (statistical or

otherwise) to arise.
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Abstract
While game theory has been transformative for decision making, the assumptions
made can be overly restrictive in certain instances. In this work, we investigate some
of the underlying assumptions of rationality, such as mutual consistency and best
response, and consider ways to relax these assumptions using concepts from level-k
reasoning and quantal response equilibrium (QRE) respectively. Specifically, we
propose an information-theoretic two-parameter model called the quantal hierarchy
model, which can relax both mutual consistency and best response while still
approximating level-k, QRE, or typical Nash equilibrium behavior in the limiting
cases. The model is based on a recursive form of the variational free energy principle,
representing higher-order reasoning as (pseudo) sequential decision-making in
extensive-form game tree. This representation enables us to treat simultaneous games
in a similar manner to sequential games, where reasoning resources deplete
throughout the game-tree. Bounds in player processing abilities are captured as
information costs, where future branches of reasoning are discounted, implying a
hierarchy of players where lower-level players have fewer processing resources. We
demonstrate the effectiveness of the quantal hierarchy model in several canonical
economic games, both simultaneous and sequential, using out-of-sample modelling.

Keywords Quantal hierarchy · Bounded rationality · Economic decision · Level-k ·
Cognitive hierarchy · Quantal response equilibrium

1 Introduction

A crucial assumption made in Game Theory is that all players behave perfectly
rationally. Nash Equilibrium (Nash, 1951) is a key concept that arises based on all
players being rational and assuming other players will also be rational, requiring
correct and consistent beliefs amongst players. However, despite being the traditional

Extended author information available on the last page of the article
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economic assumption, perfect rationality is incompatible with many human
processing tasks, with models of limited rationality better matching human behaviour
than fully rational models (Camerer, 2010; Gächter, 2004; Gabaix et al., 2006).
Further, if an opponent is irrational, then it would be rational for the subject to play
“irrationally” (Raiffa & Luce, 1957). That is, “[Nash equilibrium] is consistent with
perfect foresight and perfect rationality only if both players play along with it. But
there are no rational grounds for supposing they will” (Koppl et al., 2002). These
assumptions of perfect foresight and rationality often lead to contradictions and
paradoxes (Cournot et al., 1838; Glasner, 2022; Hoppe, 1997; Morgenstern, 1928).

Alternate formulations have been proposed that relax some of these assumptions
and model boundedly rational players, better approximating actual human behaviour
and avoiding some of these paradoxes (Simon, 1976). For example, relaxing mutual
consistency allows players to form different beliefs of other players (Camerer et al.,
2004; Stahl & Wilson, 1995) avoiding the infinite self-referential higher-order
reasoning which emerges as the result of interaction between rational players
(Knudsen, 1993) [I have a model of my opponent who has a model of me . . . ad
infinitum (Morgenstern, 1935)] and non-computability of best response functions
(Koppl et al., 2002; Rabin, 1957). The ability to break at various points in the higher-
order reasoning chain can be considered as “partial self-reference“ (Löfgren, 1990;
Mackie, 1971). Importantly, rather than implicating negation (Prokopenko et al.,
2019), this type of self-reference represents higher-order reasoning as a logically
non-contradictory chain of recursion (reasoning about reasoning...). Hence, bounded
rationality arises from the ability to break at various points in the chain, discarding
further branches. “Breaking” the chain on an otherwise potentially infinite regress of
reasoning about reasoning can be seen as the players limitations in information
processing, determining when to end the recursion.

Another example of bounded rationality based on information processing
constraints is the relaxation of the best response assumption of players, which
allows for erroneous play, with deviations from the best response governed by a
resource parameter (Goeree et al., 2005; Haile et al., 2008).

In this work, we adopt an information-theoretic perspective on reasoning
(decision-making). By enforcing potential constraints on information processing,
we are able to relax both mutual consistency and best response, and hence, players do
not necessarily act perfectly rational. The proposed approach provides an informa-
tion-theoretic foundation for level-k reasoning and a generalised extension where
players can make errors at each of the k levels.

Specifically, in this paper, we focus on three main aspects:

● Players reasoning abilities decrease throughout recursion in a wide variety of
games, motivating an increasing error rate at deeper levels of recursion. That is, it
becomes more and more difficult to reason about reasoning about reasoning . . .
(necessitating a relaxation in best response decisions).

● Finite higher-order reasoning can be captured by discounting future chains of
recursion and ultimately discarding branches once resources run out. This
representation introduces an implicit hierarchy of players, where a player assumes
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they have a higher level of processing abilities than other players, motivating
relaxation of mutual consistency.

● Existing game-theoretic models can be explained and recovered in limiting cases
of the proposed approach. This fills an important gap between methods relaxing
best response and methods relaxing mutual consistency.

The proposed approach features only two parameters, b and c, where b quantifies
relaxation of players’ best response, and c governs relaxation of mutual consistency
between players. In the limit, b ! 1 best response can be recovered, and in the limit
c ¼ 1 mutual consistency can be recovered. Equilibrium behaviour is recovered in
the limit of both b ! 1; c ¼ 1. For other values of b and c, interesting out-of-
equilibrium behaviour can be modelled which concurs with experimental data, and
furthermore, in repeated games that converge to Nash equilibrium, player learning
can be captured in the model with increases in b and c. Importantly, we also show
how fitted values of b and c also generalise well to out-of-sample data.

The remainder of the paper is organised as follows. Section 2 analyses bounded
rationality in the context of decision-making and game theory, Sect. 3 introduces
information-theoretic bounded rational decision-making, Sect. 4 extends the idea to
capture higher-order reasoning in game theory. We then use canonical examples
highlighting the use of information-constrained players in addressing bounded
rational behaviour in games in Sect. 5. We draw conclusions and outline future work
in Sect. 6.

2 Background and motivation

While a widespread assumption in economics, perfect rationality is incompatible
with the observed behaviour in many experimental settings, motivating the use of
bounded rationality (Camerer, 2011). Bounded rationality offers an alternative
perspective, by acknowledging that players may not have a perfect model of each
other or may not play perfectly rationally. In this section, we explore some common
approaches to modelling bounded rational decision-making.

2.1 Mutual consistency

Equilibrium models assume mutual consistency of beliefs and choices (Camerer
et al., 2003; Camerer, 2003), however, this is often violated in experimental settings
(Polonio & Coricelli, 2019) where “differences in belief arise from the different
iterations of strategic thinking that players perform“ (Chong et al., 2005).

Level-k reasoning (Stahl & Wilson, 1995) is one attempt at incorporating bounded
rationality by relaxing mutual consistency, where players are bound to some level k
of reasoning. A player assumes that other players are reasoning at a lower level than
themselves, for example, due to over-confidence. This relaxes the mutual consistency
assumption, as it implicitly assumes other players are not as advanced as themselves.
Players at level 0 are not assumed to perform any information processing, and simply
choose uniformly over actions (i.e., a Laplacian assumption due to the principle of
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insufficient reason), although alternate level-0 configurations can be considered
(Wright & Leyton-Brown, 2019). Level-1 players then exploit these level-0 players
and act based on this. Likewise, level-2 players act based on other players being
level-1, and so on and so forth for level-k players acting as if the other players are at
level-ðk � 1Þ. Various extensions have also been proposed (Levin & Zhang, 2022).

A similar approach to level-k is that of cognitive hierarchies (CH) (Camerer et al.,
2004), where again it is assumed other players have lower reasoning abilities.
However, rather than assuming that the other players are at k � 1, players can be
distributed across the k levels of cognition according to Poisson distribution with
mean and variance s. The validation of the Poisson distribution has been provided in
Chong et al. (2005), where an unconstrained general distribution offered only
marginal improvement. Again, various extensions have been proposed (Chong et al.,
2016; Koriyama & Ozkes, 2021) and there are many examples of successful
applications of such depth-limited reasoning in literature, for example, Goldfarb and
Xiao (2011).

Endogenous depth of reasoning (EDR) is a similar approach to level-k and CH,
but it separates the player’s cognitive bounds from their beliefs of their opponent’s
reasoning (Alaoui & Penta, 2016). EDR captures player reasoning as if they are
following a cost-benefit analysis (Alaoui & Penta, 2022), with cognitive abilities
(costs) and payoffs (benefits).

One fundamental similarity across these methods is that they all maintain best-
response. That is, they best respond based on the lower-level play assumptions. The
following section introduces methods that instead maintain mutual consistency, but
relax the best-response assumption.

2.2 Best response

Alternate approaches assume that a player may make errors when deciding which
strategy to play, rather than playing perfectly rationally. That is, they relax the best
response assumption. Quantal response equilibrium (McKelvey & Palfrey,
1995, 1998) (QRE) is a well-known example, where rather than choosing the best
response with certainty, players choose noisily based on the payoff of the strategies
and a resource parameter controlling this sensitivity. Another method of capturing
this erroneous play is Noisy Introspection (Goeree & Holt, 2004). Utility
proportional beliefs (Bach & Perea, 2014) is another method that relaxes the best
response assumption, where the authors note that “possibly, the requirement that only
rational choices are considered and zero probability is assigned to any irrational
choice is too strong and does not reflect how real world [players] reason”, giving
merit to the relaxation of best-response. By allowing for errors in decision-making,
these methods offer a more realistic perspective on how individuals make choices.

2.3 Infinite-regress

When considering reasoning about reasoning, infinite regress can emerge Knudsen
(1993). The problem of infinite regress can be formulated as a sequence
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A; f ðAÞ; f ðf ðAÞÞ; f ðf ðf ðAÞÞÞ
where the player is first confronted with an initial choice of an action a from the set
of actions A, or a computation f(A). If the action is chosen, the decision process is
complete. If, instead, the computation is chosen, the outcome of f(A) must be cal-
culated, and the player is then faced with another choice between the obtained result
or yet another computation. This process is repeated until the player chooses the
result, as opposed to performing an additional computation. Lipman (1991) inves-
tigates whether such sequence converges to a fixed point. A similar approach by
Mertens and Zamir (1985) formally approximates Harsanyi’s infinite hierarchies of
beliefs (Harsanyi, 1967, 1968) with finite states.

2.4 Contributions of our work

In contrast to existing works, we propose an information-theoretic approach to
higher-order reasoning, where each level or hierarchy corresponds to additional
information processing for the player. While Alaoui and Penta (2016) capture the
trade-off between additional reasoning and payoff, by measuring the first intersection
of the players’ payoff improvement (from k to k þ 1), and the cost of performing this
additional reasoning cðk þ 1Þ. This cost function c has to be determined (for all c(k)),
for example, with maximum likelihood estimation to estimate the average cost of
performing this extra level of reasoning (Alaoui & Penta, 2022). In contrast, we
propose capturing this trade-off with information processing costs by using the
Kullback–Leibler divergence to constrain the overall change in action probabilities at
each stage of reasoning.

Our approach constrains the overall amount of information processing available to
the players, leading to potential errors at each stage of reasoning, which is not present
in existing level-k type approaches. By doing so, we establish a foundation for
“breaking“ the chain of higher-order reasoning based on the depletion of players’
information processing resources.

This results in a principled information-theoretic explanation for decision-making
in games involving higher-order reasoning. Best response is relaxed with b\1
(linking to quantal response equilibrium) and mutual consistency is relaxed with
c\1 (linking to level-k type models). Best response and mutual consistency are
recovered with b ! 1 and c ¼ 1. This contributes to the existing literature on game
theory and decision-making by adopting an information-theoretic perspective on
bounded rationality, quantified by information processing abilities. A key benefit of
the proposed approach is while level-k models relax mutual consistency, but retain
best response, and QRE models relax best response but retain mutual consistency
(Chong et al., 2005), the proposed approach is able to relax either assumption
through the introduction of two tunable parameters. We apply this model to various
games, demonstrating the usefulness of the proposed approach for capturing human
behaviour when compared to these existing approaches.
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3 Technical preliminaries: information-theoretic bounded rationality

Information theory provides a natural way to reason about limitations in player
cognition, as it abstracts away specific types of costs (Wolpert, 2006; Harre, 2021).
This means that we can assume the existence of cognitive limitations without
speculating about the underlying behavioural foundations. As pointed out by Sims
(2003), an information-theoretic treatment may not be desirable for a psychologist, as
this does not give insights to where the costs arise from, however, for an economist,
reasoning about optimisation rather than specific psychological details may be
preferable, for example, in the Shannon model (Caplin et al., 2019). Such models
have seen considerable success in a variety of areas for information processing, for
example, embodied intelligence (Polani et al., 2007), self-organisation (Ay et al.,
2012) and adaptive decision-making of agents (Tishby & Polani, 2011) based on the
information bottleneck formalism (Tishby et al., 1999).

In this work, we adopt the information-theoretic representation of bounded
rational decision-making proposed by Ortega and Braun (2013), which has been
further developed in Ortega and Braun (2011), Braun and Ortega (2014), Ortega and
Stocker (2016), Gottwald and Braun (2019). This approach has a solid theoretical
foundation based on the (negative) free energy principle and has been successfully
applied to several tasks (Evans & Prokopenko, 2021). We begin by providing an
overview of single-step decisions and then sequential decisions, before discussing
extensions for capturing the relationship between processing limitations and higher-
order reasoning.

3.1 Single-step decisions

A boundedly-rational decision maker who is choosing an action a 2 A with payoff U
[a] is assumed to follow the following negative free energy difference when moving
from a prior belief p[a], e.g., a default action, to a (posterior) choice f[a], given by:

�DF½f ½a�� ¼
X
a2A

f ½a�U ½a� � 1

b

X
a2A

f ½a� log f ½a�
p½a�

� �
ð1Þ

The first term represents the expected payoff, while the second term represents a cost
of information acquisition that is regularised by the parameter b. Formally, the
second term quantifies information acquisition as the Kullback–Leibler (KL) diver-
gence from the prior belief p[a]. Parameter b, therefore, serves as the resource
allowance for a decision-maker.

By taking the first order conditions of Eq. (1) and solving for the decision function
f[a], we obtain the equilibrium distribution:

f ½a� ¼ 1

Z
p½a�ebU ½a� ð2Þ

where Z ¼ P
a02A p½a0�ebU ½a0;x� is the partition function. This representation is

equivalent to the logit function (softmax) commonly used in QRE models, and
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relates to control costs derived in economic literature (Mattsson & Weibull, 2002;
Stahl, 1990).

The parameter b serves as a resource allowance for the decision-maker,
modulating the cost of information acquisition from the prior belief. Low values
of b correspond to high costs of information acquisition (and high error play), while
as b ! 1, information becomes essentially free to acquire, and the perfectly rational
homo economicus player is recovered.

3.2 Sequential decisions

This free energy definition can be extended to sequential decision-making by
considering a recursive negative free energy difference, as described in Ortega and
Braun (2013, 2014). This corresponds to a nested variational problem, and involves
introducing new inverse temperature parameters bk for K sequential decisions, which
allows for different reasoning at different depths of recursion to choose a sequence of
K actions a�K .

Therefore, for sequential decision-making, Eq. (1) can be represented as:

�DF½f � ¼
X
a�K

f ½a�K �
XK
k¼1

U ½ak j a\k � � 1

bk
log

f ½ak j a\k �
p½ak j a\k �

� �
ð3Þ

where a\k abbreviates the history ao; ::; ak�1 of decisions. We can expand the sum:

¼
X
a1

f ½a1�
�
U ½a1� � 1

b1
f ½a1� log f ½a1�p½a1�

þ
X
a2

f ½a2 j a1�
�
U ½a2 j a1� � 1

b2
f ½a2 j a1� log f ½a2 j a1�p½a2 j a1�

þ . . .

þ
X
aK

f ½aK j a\K �
�
U ½aK j a\K � � 1

bK
f ½aK j a\K � log f ½aK j a\K �

p½aK j a\K �
��

ð4Þ

which we can see as first choosing an action a1 at k ¼ 1, while considering that to
choose this action, we must consider the future stages by analysing the result at k ¼ 2
given the choice a1, and so forth. To compute this, we can solve the innermost sum
first:

f ½aK j a\K � ¼ 1

ZK
p½aK j a\K �ebKU ½aK ja\K � ð5Þ

which recovers Eq. (2) with the introduction of conditioning on decision histories.
This represents the base-case for recursion. For steps where k\K, we get the fol-
lowing equilibrium solution for sequential decisions:
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f ½ak j a\k � ¼ 1

Zk
p½ak j a\k � exp bkðU ½ak j a\k � þ 1

bkþ1
log Zkþ1Þ

� �

¼ 1

Zk
p½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
PriorBelief

� Z
bk=bkþ1

kþ1|fflfflffl{zfflfflffl}
FutureContribution

� ebkU ½ak ja\k �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
CurrentPayoff

ð6Þ

where decisions are now dependent on the history of decisions as well as on a
recursive component based on the future contribution of each decision. Here

Zk ¼
X
ak

p½ak j a\k �Zbk=bkþ1

kþ1 ebkU ½ak ja\k � ð7Þ

where ZK ¼ 1, i.e., the base-case for recursion at the final level.

3.3 Extension

With this formal and generic treatment of information-processing costs for sequential
decision-making, it is desirable to use this to capture bounded rational reasoning of
an agent making sequential or simultaneous decisions in games. By representing
reasoning as an extensive-form game tree, these two can be captured in a similar
manner. Simultaneous decisions can be treated as if they are pseudo-sequential
decisions, considering possible repercussions for various choices.

To model higher-order reasoning, we extend the information-theoretic formulation
for sequential decisions discussed in Sect. 3.2. This involves representing reasoning
as a (pseudo) sequence of decisions, where each decision corresponds to a ”level“ of
reasoning. At each level, players may play incorrectly, producing a level-k play that
is modulated by bk. A high bk corresponds to an exact level-k thinker, while a low bk
corresponds to an error-prone level-k thinker. We can formalise this chain of
reasoning as an extensive-form game tree, where at the root node, a player is faced
with a decision to choose from a set of available options A or perform additional
processing f(A) to acquire new information on the beliefs and repercussions of each
choice. If the player chooses not to process additional information, each branch is
terminated early, and the player makes a decision based solely on the immediately
available information. However, if the player chooses to process additional
information, each action branch is (potentially) extended to analyze the possible
repercussions of taking an action, and a higher level thinker can examine these
repercussions. This process continues until the player runs out of processing
resources or, in a finite problem, converges to a solution. For example, in the p-
beauty contest analyzed in later sections, convergence occurs once the guess hits 0.

This extensive-form game tree representation means reasoning about simultaneous
decisions can be treated in the same manner as decisions in sequential games.
However, the key issue here is the requirement of Eq. (6) to have K information
processing parameters for each step or level of reasoning. To analyse the purpose of
these parameters, we consider a simple case, setting bk ¼ b for all k, giving discrete
control (Braun et al., 2011):
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f ½ak j x; a\k � ¼ 1

Zk
p½ak j a\k �Zkþ1e

bU ½ak ;xja\k � ð8Þ

which clarifies that the boundedness applies to the computation of payoff U, but the
depth of reasoning (or recursion-depth) is dependent on the length of the sequence
(or level) K, not on b. To represent higher-order reasoning more succinctly, it would
be desirable to implicitly base the sequence length K on the resource parameter b
rather than keeping them separate. This would allow us to treat recursive reasoning in
information-theoretic terms. For instance, when b ! 1, K ! 1, which captures
(potential) infinite-regress, while b ¼ 0 would imply K ¼ 0, leaving the player with
no information processing abilities.

In order to achieve this, b must be reduced at each level k. This reduction in b at
each level is related to the relaxation of mutual consistency, reflecting how a player
perceives other (lower-level) players’ reasoning about the problem. In the next
section, we outline our proposed approach for modelling this. This extension allows
us to reason directly about resource constraints instead of sequential level-k thinking.

4 Proposed approach

The proposed approach implicitly enforces the assumption that, in sequential games,
it becomes more difficult to reason to later stages in the game (e.g. in chess, it is
difficult to reason 5 steps-ahead), and likewise in simultaneous games, it is difficult
to perform the level of higher-order reasoning required to arrive at the equilibrium
solution. The further a player mentally tries to reason, the more likely an error is to
occur, as the processing resources deplete. This assumption is captured under the
proposed model in a generic information-theoretic sense.

The key concept is that it becomes more difficult to reason about reasoning, that is
the further one tries to explore through the extensive-form tree. This overall process
is visualised Fig. 1, where the players reasoning error increases throughout the steps
of reasoning. This representation can be thought of as a hierarchy of players noisily

Depth 1 Depth 2 Depth 3 Depth K...

Fig. 1 The effect of discounting resources over time. In the beginning, the player has b resources and may
make some error (red bars). Parameter c controls how this error grows over time and, implicitly, how the
player believes lower-level players will respond. A low c means the errors increase drastically at each level,
assuming opponents with much lower reasoning abilities. As bck ! 0, the noise increases, and the
recursion eventually stops once the utilities become indistinguishable (i.e., the player can not reason any
deeper)
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responding to lower level players, or as a sequential decision with increasing noise at
each step. Once a player’s resources deplete, the later depths simply echo the prior
beliefs as the noise obstructs the payoffs.

4.1 Quantal hierarchy model

To model higher-order reasoning with processing costs, we propose a more flexible
and succinct approach than simply setting a maximum depth K and corresponding
parameters bk in a pseudo-sequential decision-making task. Instead, we introduce an
overall information processing parameter b, which captures the available information
processing resources for a player, and a discount parameter c 2 ½0; 1�, which controls
the reduction in player rationality throughout the reasoning chain. This approach
allows for heterogeneous bounds on player reasoning, relaxing the assumptions of
best response and mutual consistency. We refer to this approach as the quantal
hierarchy (QH) model, as it shares formal similarities with quantal response
equilibrium and cognitive hierarchy models, as discussed in previous sections.

4.1.1 Formulation

We represent reasoning as information-constrained sequential decision-making. The
proposed formulation features only two parameters, b and c 2 ½0; 1� (as opposed to
the vector bk and number of levels K). Reasoning resources are then set as

bk ¼ bck

i.e., bk is b discounted based on c and the current depth of reasoning. This can be
represented by the following recursive free energy difference:

�DF½f � ¼
X
a�K

f ½a�K �
X1
k¼0

U ½ak j a\k � � 1

bck
log

f ½ak j a\k �
p½ak j a\k �

� �
ð9Þ

where we have represented the sequence as an infinite-sum. The sum converges due
to the discount parameter as the later (inner-most sums) simply echo the prior beliefs
once the player’s computational resources are exhausted. This formalisation draws
parallels with the reinforcement learning (RL) methods, where such representations
are common for reasoning about future states for the player. In RL, c is used to
discount future timesteps. Here, c is used to discount future chains of reasoning about
reasoning (i.e., the depth of recursion is governed by b discounted by c), and to
represent the limited resources that we believe other players have. We have repre-
sented this as in infinite sum with k ! 1, however, in various problems (such as
sequential games) K can be assumed to be finite. The solution for the decision
function f ½ak j a\k � with the discounted b becomes:
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f ½ak j a\k � ¼

1

Zk
p½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Prior Belief

; if bck � 0

1

Zk
p½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Prior Belief

� ebU ½ak ja\k �|fflfflfflfflffl{zfflfflfflfflffl}
Current Payoff

; if c ¼ 0

1

Zk
p½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Prior Belief

� Z1=c
kþ1|ffl{zffl}

Future Contribution

� ebc
kU ½ak ja\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Current Payoff

; otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

which aims to capture decisions based on the beliefs of other players reasoning at
later stages. With the assumption of a discount rate c, we can see the recursion is now
depth-bound based on the (discounted) resource parameter. Once bck ! 0,1 the
recursion will stop since the result will simply echo the prior belief as no focus will
be placed on the payoff, becoming the base case for recursion (the “naive” player).
This means that in the new implicit limit K2 (denoted by the case where bk � 0),
reasoning about the future provides no new information, which recovers the original
form of Eq. (5) (when c ¼ 1) with the introduction of conditioning on histories.

With the proposed representation, what was previously thought of in the context
of sequential decisions, can be extended and modified to think about hierarchies of
beliefs. The informationally constrained players “break“ the chain of reasoning due
to depleting their cognitive or computational capabilities as bounded by b and c.
Formally, this is represented as a (potentially) infinite-sum that converges based on c.
By discounting future computation in a chain of recursion, we can approximate
higher-order reasoning, where players become increasingly limited as the reasoning
chain progresses, making it more challenging to reason about reasoning.

4.1.2 Parameters

Resource parameter The resource parameter b quantifies the amount of processing a
player can perform. Perfect utility maximisation behaviour is recovered with b ! 1.
With b\1, players are assumed to be limited in computational resources and must
now balance the trade-off between their computation cost and payoff. With b ! 0,
players have no processing resources, and choose based on their prior beliefs (default
actions). Anti-rational (or adversarial) play can be modelled with b ! �1.

Discount parameter The discount parameter c quantifies other players mental
processing abilities in terms of level-k thinking. A high c assumes other players play
at a relatively similar cognitive level, whereas a low c assumes other players have
less playing ability. With c\1, Eq. (10) is guaranteed to converge to a finite
sequence of decisions, where the ability to process information decreases the further
we get through the sequence. This captures the belief about play at later stages of
reasoning, where other players are assumed to be less rational (and thus, more noisy)
as governed by c. The case c\1 implicitly relaxes mutual consistency as lower-level

1 e.g. when bck\� where � is some small enough term where the payoffs become indistinguishable, here,
� ¼ 10�8.
2 In contrast to level-k, here K indicates the level with the lowest resources.
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thinkers are then governed by a lower resource parameter, and allows for players to
believe that players at later nodes behave more noisily. In the case of otherwise
infinite regress (where backward induction can not be used), the limited foresight
approach proposed converges to a finite approximation of the sequence by relaxing
the assumption of mutual consistency. In tractable problems, we recover an
approximation of backward induction where the player performing such induction
may make errors at each step due to limited computational processing abilities. With
c ¼ 1, we recover mutual consistency, as we assume other players are just as rational
as ourselves, and in the special case with uniform prior beliefs and c ¼ 1, we collapse
to a logit form of agent QRE (McKelvey & Palfrey, 1998; Turocy, 2010). The special
case for c ¼ 0 exists in Eq. (10) as in this case, no future processing will be
performed.

In the limit, with b ! 1; c ¼ 1, perfect backward induction is recovered (see
Sect. B.1). Crucially, the proposed QH model allows for a general representation,
relaxing the perfect rationality assumption (with b\1; c\1), which can model out-
of-equilibrium behaviour compatible with observed experimental data. We explore
the role of these parameter values in more detail in the following section.

Parameter interactions In Fig. 2 we visualise how b and c interact in a general
setting. For b ! 1 and c ¼ 1, we approach payoff maximisation behaviour, i.e., the
perfectly rational (Nash Equilibrium) player is recovered. For b ! �1 and c ¼ 1,
payoff minimisation behaviour (an adversarial player) is recovered. In between, we
can see how c adjusts b. It is these values in between random play (b ¼ 0) and
perfect payoff maximisation behaviour which are particularly interesting, as they
give rise to out-of-equilibrium behaviour not predicted by traditional methods.

4.2 Explanation

We work through a generic example of the QH model on an extensive-form game
tree. A player is given decision-making resources, governed by b, to make a decision
f. At each stage of reasoning k, the player’s resources are discounted by c. Ultimately,
the player’s resources become depleted (at K, i.e., once bck � 0), and the game tree is
considered terminated, and the naive player chooses based on their prior belief
(which we assume to be uniform). This decision is then propagated backwards, and

Fig. 2 A heatmap visualising the
resulting players expected payoff
based on the values of b and c.
The yellow colour represents the
maximal expected payoff, and
the purple colour represents the
minimum expected payoff.
When either parameter is 0, the
result is a random choice
amongst the actions
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becomes the prior belief at the higher stage of reasoning p½aK�1�, where the player
has processing resources bcK�1, and hence, noisily responds to the lower-level play
based on these resources. This process is continued, with noisy responses from the
lower-level thinker captured by the resource constraint. Finally, once all results have
been recursively propagated, the higher-level players’ decision is made (which may
still be noisy, as captured by b). That is, their decision is made recursively, starting
from the most basic level of player reasoning (the naive player) and reasoning
upwards.

4.2.1 Basic example

To help illustrate the proposed approach, we will use a simplified version of the
Ultimatum game (see Sect. C.4) as a specific example. In this game, a player must
decide what percentage of a pie to take. We assume that there are uniform priors
among the available options at each stage.

At the first stage, Player 1 must request the percentage of the pie they want to take,
denoted by a1 2 ½0; 100�, with 100 giving the highest payoff (i.e., they receive the
entire pie). However, at the second stage, Player 1 encounters a fairness calculator
(Player 2). Player 2 decides whether or not to approve Player 1’s request, denoted by
A2 ¼ faccept; rejectg. The decisions are based on the following utilities:

U1½a1� ¼ a1 � f2½accept j a1�
U2½accept2 j a1� ¼ 100� a1

U2½reject2 j a1� ¼ 50

ð11Þ

where Un corresponds to Player n’s payoff, and fn the probability with which Player n
chooses the action. A player who has no look-ahead, i.e., one who assigns zero
weight to future decisions (or assumes that their opponent has zero processing
abilities), can be represented with b ! 1 and c ¼ 0. Such a player simply looks at
the first stage and sees that it is in their best interest to request 100% of the pie.
However, this player fails to take into account the repercussions of their chosen
action, as they did not consider the future decisions. They did not compute f2½a2 j a1�,
and thus assumed that f2½a2 j a1� is uniform and that their opponent would be
indifferent to accepting or rejecting their request regardless of the value of a1.

A perfectly rational player with unlimited computational resources, i.e., b ¼ 1
and c ¼ 1, would request 49 (assuming integer requests). They assign weight to the
future of their actions, and can see that for any a[ 50, the fairness calculator will
deny their request, and they will be left with nothing (at a ¼ 50, the calculator will be
indifferent to accepting or rejecting their request). This corresponds to the subgame
perfect equilibrium, where the player performed backward induction. That is, the
player examined the future until they reached the end of the game and then reasoned
backwards to request the optimal choice.

A player with limited computational resources, i.e., b\1, requests the best
action they can subject to their resource constraint. For example, they may only
request a ¼ 40, as they are unable to complete the search for a ¼ 49. A player with
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no information processing abilities, i.e., b ¼ 0, cannot search for any optimal choices
and therefore chooses based on the prior distribution, which we assumed to be
uniform. Therefore, the player is equally likely to choose any a 2 A.

An interesting question that arises is what if we assume that the ”fairness“
calculator may make errors, and that it is not necessarily defined by a step function
that rejects all requests above 50 and accepts all below. For example, there may be a
range where 100 will get rejected, but perhaps 75 would not. This can be captured
with bc\1, where the calculator is assumed to make errors for low values, and for
bc ! 1, it is assumed to be perfectly rational. If the fairness calculator is broken
and is indifferent to accepting or rejecting values, this can be represented with c ¼ 0,
which gives 0 processing ability to the calculator. This means
f2½accept2 j a1� ¼ f2½reject2 j a1� ¼ 0:5, and therefore, a rational Player 1 should
request a1 ¼ 100.

This example shows the usefulness of the proposed approach, and how modifying
b and c can capture a variety of heterogeneous behaviours between the two players.

5 Results

In this section, we perform out-of-sample comparisons across various canonical
economic games, including both sequential and simultaneous games. We compare
the proposed quantal hierarchy model against well-known approaches to capturing
bounded rational reasoning, including QRE, level-K and cognitive hierarchy, as well
as the Nash equilibrium predicted solutions. To assess the performance of each
method, we fit the corresponding parameter values to experimental data and then
evaluate the performance on hold-out data. For the quantal hierarchy method, these
parameter values are b and c. For QRE, the parameter value is k, which serves a
similar purpose as b in our approach, i.e., relaxing best response. For level-k, the
parameter value is the steps of reasoning k. For cognitive hierarchy, the parameter
value is s, corresponding to the Poisson distribution of level-k thinkers. Further
information on model fitting is given in Sect. A.

We show how the proposed approach convincingly captures human behaviour and
generalises beyond the training examples, outperforming existing approaches on a
wide range of games.

5.1 Performance on canonical games

For this work, we use various experimental data from canonical economic sequential
and simultaneous games. Specifically, for simultaneous games, we analyse market
entrance and beauty contest games, and for sequential games, centipede, and
bargaining games.

For market entrance games, we use the data of Camerer (2011), originally
presented in Sundali et al. (1995). For the beauty contest game, we use p-beauty
contest results from Bosch-Domenech et al. (2002). For the Centipede games, we use
the four and six-level data from McKelvey and Palfrey (1992). For the sequential
bargaining games, we use the Ultimatum game and two-stage game from Binmore
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et al. (2002) (Game 1 and 3 in their paper). Further discussion on game specifics,
utilities, and experimental analysis is given in Sect. C.

For each game, we perform 5 � 2 repeated cross-fold validation (Dietterich,
1998), analysing the out-of-sample performance. This analysis ensures that the
inclusion of an additional parameter does not overfit to the original training data, and
instead, ensures the approach generalises well to unseen data. We present the average
RMSE on the unseen data and the resulting rankings (Demšar, 2006) of each method
in Table 1. The rankings account for the independence of the games, and the inability
to compare errors directly across game classes. A visualisation of the resulting ranks
in Fig. 3. By using these evaluation metrics, we are able to determine the
effectiveness of the proposed method in comparison to existing approaches for
predicting (out-of-sample) human behaviour on a range of canonical games.

The proposed quantal hierarchy method consistently performs well across the
various games trialled, resulting in the best (lowest) overall rank (Table 1), as well as
the most consistent (narrowest distribution of results, Fig. 3), always performing in
the top 2. These results validate the modelling assumption that it becomes more
difficult to reason at deeper levels of reasoning, and thus, the reasoning process
becomes more erroneous. This motivates the usage of the quantal hierarchy model
for capturing human decision-making in a wide-range of settings.

In the following subsections, we analyse the game results in more detail.

5.2 Simultaneous games

Market entrance
In the market entrance game, players must simultaneously decide whether to enter

or stay out of a market, where the payoff depends on the decisions of the other
players and market capacity c (see Sect. C.1). Experimental data show that player
behaviour in market games is inconsistent with either mixed or pure Nash equilibria,
although, with repeated play, players begin to approach the mixed strategy
equilibrium (Duffy & Hopkins, 2005).

These deviations from equilibrium are captured well by the proposed quantal
hierarchy model (Fig. 4). We see that in the beginning (before learning, Fig. 4a), the
players overestimate for low c and underestimate for high c. Towards the final rounds
(after learning, e.g. Fig. 4b), the behaviour approaches equilibrium, and the proposed
QH model approximates this well using an increase in processing resources b and/or
c (see Table 2) to capture this player “learning”. These changes highlight an
important property of the QH model. If a player is learning, i.e., becoming closer to
rational, this should correspond to an increase in b (and/or an increase in c).

The level-k model fails to capture the overall trend, and is best fitted with k ¼ 0,
performing worse than the mixed strategy equilibrium (and all other alternatives).
The reason for this is simple. Level-k (k� 1) implies a step function, where for c[ T
where T is some threshold, the player enters with certainty, and for c� T, the player
stays out with certainty. The distance to the experimental data from this step function
is greater than the uniform case (k ¼ 0), so the uniform case is chosen. The cognitive
hierarchy model improves upon level-k, by fitting a distribution of k thinkers, able to

123

The quantal hierarchy model

124



Table 1 Average out-of-sample (5 � 2-fold cross-validation) error

Quantal hierarchy Level-k Cognitive hierarchy QRE Nash

Market entrance

Block 1 0.565 (2) 1.503 (5) 0.725 (3) 0.564 (1) 1.242 (4)

Block 2 0.426 (1) 2.115 (5) 1.077 (4) 0.442 (2) 0.726 (3)

Block 3 0.387 (1) 2.230 (5) 1.283 (4) 0.406 (2) 0.548 (3)

Block 4 0.493 (2) 2.344 (5) 1.365 (4) 0.431 (1) 0.559 (3)

Block 5 0.489 (1) 2.513 (5) 1.387 (4) 0.519 (2) 0.574 (3)

Average rank 1.4 5 3.8 1.6 3.2

Beauty contest

Lab 0.020 (1) 0.191 (4) 0.175 (3) 0.027 (2) 0.194 (5)

Classroom 0.042 (2) 0.188 (4) 0.162 (3) 0.019 (1) 0.190 (5)

Take Home 0.056 (2) 0.188 (4) 0.162 (3) 0.020 (1) 0.192 (5)

Internet 0.053 (2) 0.180 (4) 0.149 (3) 0.024 (1) 0.181 (5)

Newspaper 0.061 (2) 0.186 (4) 0.149 (3) 0.024 (1) 0.187 (5)

Theorists 0.071 (2) 0.171 (4) 0.135 (3) 0.040 (1) 0.172 (5)

Average rank 1.83 4 3 1.17 5

Centipede

4-level 0.469 (1) 1.774 (4) 0.611 (3) 0.606 (2) 3.715 (5)

6-level 0.350 (1) 1.950 (4) 0.439 (2) 1.120 (3) 2.837 (5)

Average rank 1 4 2.5 2.5 5

Bargaining

Ultimatum

− (10, 10) 0.051 (1.5) 0.098 (3.5) 0.098 (3.5) 0.051 (1.5) 0.197 (5)

− (10, 60) 0.030 (1) 0.093 (3.5) 0.093 (3.5) 0.057 (2) 0.192 (5)

− (70, 10) 0.048 (2) 0.090 (3.5) 0.090 (3.5) 0.047 (1) 0.187 (5)

Two-stage

�D ¼ 0:9 0.040 (1) 0.096 (3.5) 0.096 (3.5) 0.084 (2) 0.198 (5)

�D ¼ 0:8 0.054 (1) 0.095 (3.5) 0.095 (3.5) 0.076 (2) 0.198 (5)

�D ¼ 0:7 0.048 (1) 0.099 (3.5) 0.099 (3.5) 0.075 (2) 0.197 (5)

�D ¼ 0:6 0.067 (1) 0.128 (3.5) 0.128 (3.5) 0.095 (2) 0.197 (5)

�D ¼ 0:5 0.037 (1) 0.111 (3.5) 0.111 (3.5) 0.054 (2) 0.190 (5)

�D ¼ 0:4 0.030 (1) 0.105 (3.5) 0.105 (3.5) 0.039 (2) 0.191 (5)

�D ¼ 0:3 0.024 (1.5) 0.081 (3.5) 0.081 (3.5) 0.024 (1.5) 0.192 (5)

�D ¼ 0:2 0.052 (2) 0.117 (3.5) 0.117 (3.5) 0.050 (1) 0.196 (5)

Average rank 1.27 3.5 3.5 1.73 5

Overall

Rank 1.37 4.12 3.2 1.75 4.55

Resulting ranks are indicated in brackets. In both cases, lower is better. Tied values receive the average
rank between the ranks which would have been achieved had there been no ties. The overall rank is
determined as the mean rank of the average rank across the game classes, meaning each game has an equal
weighting in the overall rank, and the number of experiments for a game class does not affect this overall
weight

123

B. P. Evans, M. Prokopenko

125



“smooth“ out this step function, with the line shown in Fig. 4. While this captures the
qualitative trend (over entry for low c, under entry for high c, near equilibrium for
mid c), quantitatively, the approach is not as strong as QRE, quantal hierarchy, or
even the mixed-strategy equilibrium in most cases.

The QRE model is also a good fit here, however, due to the representation is
constrained to linear lines. In contrast, the QH representation can capture such “S”
shape curves, better approximating the experimental data in 3 out of the 5 blocks.
QRE and QH significantly outperform the approaches which just relax mutual
consistency (level-k and CH), motivating the relaxation of best-response in addition
to mutual consistency.

p-Beauty contest
In the p-beauty contest (Moulin, 1986), players must try and guess p times the

average guess (in the range [0, 100]) of other competitors (see Sect. C.2). The Nash
equilibrium is for all players to guess 0, however, experimentally, we see large
deviations from this behaviour.

Analysing the experimental results (Fig. 5), we see very strong performance for
the QH model when modelling the less experienced players, e.g. in the Lab
experiments. The QH model fits the data well, capturing the overall distribution and
achieving the lowest error rate. However, for the other experiments composed of
more experienced players or players with more time (take home, newspaper), we see
the distribution is better approximated by QRE.

The reason for this performance is because under the proposed approach, as a
player becomes more rational, the distribution of choices narrows in to the optimal
choice (see Fig. 6). However, under these experimental settings, even in the theorist
case, there is bounded rational (and anti-rational) behaviour. These deviations are
captured well by QRE. However, it is difficult for the QH model to capture the wide
distribution of choices, as well as the bulk probability mass around the optimal case.
For example, in Fig. 6 we show the proposed approach approximating level-k. As k
increases, the distribution narrows. Here, this narrowing of the distribution makes it
difficult to capture the entire prediction range for the more advanced subjects, due to
the fact there are many sub-rational choices mixed in. As a result, we see similar
fitted models for each case, despite the fact that the theorists clearly have a higher
level of reasoning. If, instead, we tried to approximate the average player for each

Fig. 3 Overall rankings for out-of-sample errors across the various game classes trialled. The vertical bars
indicate the full range of achieved ranks across the games, with the horizontal middle bar indicating the
median ranking. A lower ranking is better (with 1 = best)
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case, we could capture this increase in reasoning effort, and it would reflect an
increase in b and/or c as expected.

Nevertheless, in all cases, the model still significantly outperforms level-k,
cognitive hierarchy, and the mixed strategy equilibrium. The level-k model predicts
some of the representative spikes in the experimental data (e.g., with k ¼ 1 guesses
of 33, k ¼ 2 of 22, etc.). However, we can see that the players do not necessarily
choose according to level-k, and may make errors around the best response suggested
by level-k reasoning. Level-k thinking presupposes that players will predict a
multiple of p, i.e., with p ¼ 2

3, we get p� 50; p2 � 50; . . .; pk � 50, as the players at
each level are best responding to lower-level players. In the proposed QH model,
level-k reasoning can be recovered if bt ¼ 1 for t� k and bt ¼ 0 for t[ k.

(a) Block 1 (b) Block 2 (c) Block 3

(d) Block 4 (e) Block 5

Fig. 4 Market entrance game. The darker lines indicate the mean result from the 5 � 2 cross-validation.
The shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the black
circles. The proposed quantal hierarchy model is the purple line. Quantal response equilibrium is the
orange line, level-k is the blue line, and cognitive hierarchy is the green line. The Nash equilibrium solution
is indicated as the diagonal dashed grey line
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However, with bt\1, the proposed QH model produces a distribution around these
best-responding values anticipating potential errors in player reasoning, with these
errors growing throughout the chain of reasoning.

The cognitive hierarchy model can improve upon the level-k approach here by
weighting the “spikes“ of the level-k model differently, however, this still fails to capture
the underlying distribution. A large reason for this is that certain predictions in the p-
beauty contest are considered irrational, for example, any prediction over 67. However,
we can see experimentally that such predictions occur, for example, in Fig. 5. If a player

Table 2 Average fitted parameter values for each approach. Explanation of the parameters and the fitting
procedure is given in Sect. A

Quantal
hierarchy
b, c

Level-
k
k

Cognitive
hierarchy
s

QRE
k

Nash

Market entrance

Block 1 0.43, 0.24 0.0 0.72 10.39

Block 2 0.67, 0.18 0.0 0.68 34.56

Block 3 0.62, 0.28 0.0 0.65 59.44

Block 4 0.32, 0.54 0.0 0.69 83.51

Block 5 0.75, 0.19 0.2 0.72 80.8

Beauty contest

Lab 0.08, 0.76 1.2 5.45 1.21

Classroom 0.1, 0.69 1.7 5.52 1.9

Take Home 0.06, 0.79 2.4 5.36 2.2

Internet 0.07, 0.72 3.3 5.67 2.31

Newspaper 0.08, 0.64 6.3 5.76 2.8

Theorists 0.05, 0.67 5.6 5.84 3.02

Centipede

4-level 12.43, 0.22 0.0 1.82 2.09

6-level 19.1, 0.14 0.3 2.3 1.09

Bargaining

Ultimatum

− (10, 10) 0.08, 0.92 0.0 4.36 0.08

− (10, 60) 0.2, 0.32 0.0 4.84 0.09

− (70, 10) 0.06, 0.88 0.0 3.68 0.06

Two-stage

�D ¼ 0:9 0.24, 0.13 0.0 4.07 0.04

�D ¼ 0:8 0.2, 0.22 0.0 4.29 0.05

�D ¼ 0:7 0.22, 0.28 0.0 3.73 0.06

�D ¼ 0:6 0.52, 0.2 0.0 3.89 0.08

�D ¼ 0:5 0.2, 0.36 0.0 2.97 0.11

�D ¼ 0:4 0.19, 0.38 0.0 3.78 0.1

�D ¼ 0:3 0.13, 0.49 0.0 3.69 0.08

�D ¼ 0:2 0.17, 0.52 0.0 8.02 0.11
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believes that other players would choose the maximal offer of 100, then the player
should choose 2

3 100 ¼ 67. Level-k or cognitive hierarchy models cannot capture such
irrational behaviour where players choose [ 67. That is, there is no distribution of level-
k thinkers that would predict 100. However, this feature can be captured directly under
the proposed QH and QRE models due to the errors in play, again motivating the
usefulness of relaxing best response in addition to mutual consistency.

In summary, we see that under the lab experiment, the QH approach is the best fit.
However, QRE is a better fit in other cases of the beauty contest game.

5.2.1 Sequential games

Centipede games
In the centipede game (see Sect. C.3), “two players alternately get a chance to take

the larger portion of a continually escalating pile of money. As soon as one person

Fig. 6 Example comparing the
decisions of level-k (dashed
vertical lines) to the proposed
QH model (solid lines) in the p-
beauty contest for various
settings

(a) Lab (b) Classroom (c) Internet

(d) Newspaper (e) Take Home (f) Theorists

Fig. 5 Beauty contest games. The darker lines indicate the mean result from the 5 � 2 cross-validation.
The shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the black line.
The proposed quantal hierarchy model is the purple line. Quantal response equilibrium is the orange line.
The level-k and cognitive hierarchy plots are shown in Fig. 12 due to the large difference in scales,
distorting the figure. The Nash equilibrium solution is indicated as the diagonal dashed grey line
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takes, the game ends with that player getting the larger portion of the pile, and the
other player getting the smaller portion” (McKelvey & Palfrey, 1992).

The subgame perfect equilibrium of the centipede game is for each player to
immediately take the pot without proceeding to any further rounds, however, we see
this is not the case experimentally, where players behave far from the subgame
perfect equilibrium (Fig. 14). In general, many players take towards the middle of the
game. The proposed QH model can capture this trend well, with QRE and cognitive
hierarchy generally over-weighting the earlier nodes and under-weighting the later
modes (Fig. 7).

The quantal hierarchy model provides the best fit for both the four and six-level
centipede games, capturing realistic beliefs. When modelling this reasoning process,
the player believes they are reasoning at a higher level than their opponent, but in
addition, it is as if the player overestimates how noisy their own play will be when
faced with a decision at later nodes. This overestimation is because once actually
faced with the decision, there will be a smaller game tree for the player to consider.
This reasoning process was shown to approximate the experimental results well,
motivating the discounting of information processing resources for capturing future
beliefs. When comparing the resulting parameters (b and c) from the four and six-
level variants (Table 2), we note that the six-level variant results in additional
information processing costs for the player (larger b and c). The additional
processing costs result from the longer chain of reasoning, requiring higher
processing resources.

The significantly improved performance over quantal response equilibrium on
both games motivates the usefulness of relaxing mutual consistency in addition to
best response. By relaxing mutual consistency, we captured the perceived “lapse“ in
reasoning when considering the full extensive form game tree by reducing the
information processing resources the further the player tries to reason through the
tree.

(a) Four Move. (b) Six Move.

Fig. 7 Four and six-level centipede games. The darker lines indicate the mean result from the 5 � 2 cross-
validation. The shaded regions indicate ± one standard deviation. The out-of-sample data are shown in the
dark grey bars. The proposed quantal hierarchy model is the purple line. Quantal response equilibrium is
the orange line, level-k is the blue line, and cognitive hierarchy is the green line. The Nash equilibrium
solution is indicated as the light grey bar at the first move
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Bargaining games
In bargaining games, players alternately bargain over how to divide a sum (see

Sect. C.4). We examine two types, single-stage (Ultimatum) and two-stage
bargaining games. These are extensions of the example game considered in
Sect. 4.2.1.

Ultimatum The results are presented in Fig. 8 for the ultimatum game. We see the
QH model explains important features of the observed experimental behaviour. For
example, with higher V1, Player 1 is likely to make a larger initial request (Fig. 8a vs
8c). Perfect rationality does not capture this (with the Nash equilibrium remaining
unchanged), whereas the QH model suggests higher initial requests (due to higher V1

if the request is rejected). The QRE model and the QH model behave similarly here.
The reason for this similar behaviour is because the ultimatum game is nearly a
single-stage decision, meaning the QH model “collapses” to QRE. This is also
confirmed in the fitted parameters Table 2, with the (10, 10) and (70, 10) having
almost identical values for b and k, and QH having relatively high values of c,
meaning the differences between Player 1 and Player 2 processing resources are
small. However, something interesting happens in the (10, 60) case, where QRE
cannot capture the distribution. For example, if we look to the right of the rational
rejection region for Player 2 (Fig. 16), we do not see any acceptances in (10, 10) or
(70, 10). Whereas, if we look in the rational rejection region of (10, 60), we see
several acceptances. This behaviour is irrational, because if the player rejected the
request, they would have received a higher payoff. In contrast, Player 1’s initial
requests are relatively rational, with the peak occurring around the rational request of
40. This mismatch in player rationality is captured under the proposed model with a
small c, i.e., a large discount in processing resources. This mismatch in rationality
cannot be captured with the standard QRE, which assumes a fixed b for both players.
These results motivate the discounting of player resources, which can capture
heterogeneous information processing resources between the two players. Alternate
forms of QRE, such as Heterogenous QRE have also been proposed to deal with such
dilemmas (Rogers et al., 2009), however, this is captured natively by the QH model.

The level-k model fails to capture any of the trends, with the uniform level-0 case
being the best fit. The cognitive hierarchy model predicts a representative spike at the

(a) (10,10) (b) (10,60) (c) (70,10)

Fig. 8 Ultimatum game. The darker lines indicate the mean result from the 5 � 2 cross-validation. The
shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the black line. The
proposed quantal hierarchy model is the purple line. Quantal response equilibrium is the orange line, level-
k is the blue line, and cognitive hierarchy is the green line. The Nash equilibrium solution is indicated as
the vertical dashed grey line
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rational capacity in the (70, 10) and (10, 60) cases, however, it is still clearly
outperformed by both QRE and QH.

These results confirm the usefulness of QH. When both players behave with
similar levels of rationality, this can be captured with c ! 1, and the model acts the
same as QRE. However, when there is a mismatch in player rationality, this
heterogeneity can be captured directly with c\1, which became most pronounced in
the (10, 60) case.

Two-stage While we saw similar behaviour between QRE and QH in the
ultimatum game, under the two-stage game, the differences between the approaches
become more pronounced due to the longer game tree. Under such conditions, the
usefulness of discounting future paths (and relaxing mutual consistency) becomes
more noticeable. The QH model convincingly outperforms QRE across the
experimental results with the small disagreement penalties3 (i.e., D[ 0:5), and still
generally outperforms QRE for the larger disagreement penalties (i.e., D� 0:5),
although the two methods become closer.

With the larger disagreement penalties (i.e. smaller D), the experimental data are
closer to the perfectly rational case, as indicated with the peaks corresponding
roughly to the rational request in Fig. 9. This distribution around the rational request
is precisely the premise QRE is founded on, so QRE achieves adequate performance.
However, with the smaller disagreement penalties (larger D, top row of Fig. 9), the
distribution is not centred around the rational request, meaning QRE struggles to
capture such phenomena. In contrast, the QH approach is robust to this shift due to
the relaxation of mutual consistency, and is able to capture the varying distributions
regardless of whether they are approximating the best-response case.

5.3 Results summary

The quantal hierarchy method consistently performed well out-of-sample in all
games, ranking the best overall and achieving either the first or second position in
every game. The results analysis was categorised into two game types: sequential and
simultaneous games, where reasoning is represented as an extensive-form game tree
with depleting information-processing resources. Although the representation
worked well in both game types, it showed more improvement over alternative
methods in sequential games. This improvement in sequential games can be
attributed to the discount parameter that captures the heterogeneity of players,
allowing for different information processing resources between the players at each
stage, relaxing mutual consistency, which was crucial in bargaining games.

On the other hand, in simultaneous games, the approach aims to fit a
representative distribution of the entire group, but it can struggle to capture the
entire distribution of players, particularly when they exhibit widely varying levels of
rationality, as in certain versions of the beauty-contest game. This highlights a
potential limitation of the approach when attempting to capture multimodal
distributions with varying levels of rationality, such as a bi-modal distribution with

3 These are referred to as “discount“ rates in Binmore et al. (2002). We have used the term disagreement
penalties to avoid confusion with the information processing “discount” parameter c.
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beginners and experts. To address this limitation, multiple versions of the model may
need to be fitted, such as one for beginners and one for experts, as modelling more
rational play narrows the distribution to the rational prediction and modelling less
rational play widens the distribution to account for larger errors, as demonstrated in
Fig. 6. However, despite this potential limitation, the method still performed
exceptionally well overall.

6 Discussion and conclusions

The assumption of perfect rationality amongst players is violated in numerous
experimental settings, particularly in non-repeated games. In this work, we utilised
experimental datasets for several games, showing that the equilibrium behaviour is
often a poor predictor of the observed actions. The proposed quantal hierarchy model
offers a concise alternative representation, relaxing some traditional game-theoretic
assumptions underlying rationality. The model is a good fit for experimentally
observed behaviour on a range of canonical economic games, outperforming existing
bounded rationality approaches on out-of-sample validation.

(a) D=0.9 (b) D=0.8 (c) D=0.7

(d) D=0.6 (e) D=0.5 (f) D=0.4

(g) D=0.3 (h) D=0.2

Fig. 9 Two-stage bargaining game. The darker lines indicate the mean result from the 5 � 2 cross-
validation. The shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the
black line. The proposed quantal hierarchy model is the purple line. Quantal response equilibrium is the
orange line, level-k is the blue line, and cognitive hierarchy is the green line. The Nash equilibrium solution
is indicated as the vertical dashed grey line
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In the QH model, we represent higher-order reasoning as pseudo-sequential
decision-making. At each level, players may reason erroneously, and this error grows
the deeper one reasons (i.e., it becomes more difficult to reason about reasoning). The
magnitude of the errors is governed by b, with b ¼ 0, players do not perform any
reasoning, and with b ! 1 players reason perfectly. Parameter b, therefore, relaxes
the best response assumption of players at each level of reasoning.

Decreasing b at each level of reasoning was shown to work well on a wide variety
of games, reinforcing the assumption that players cognitive abilities decrease
throughout the depth of reasoning. This reduction in player cognition is captured
with c, introducing an implicit hierarchy of players, relaxing the mutual consistency
assumption. Representing this hierarchy of players as extensive-form game trees
allowed for an information-theoretic representation, where lower-level players are
assumed to make more significant playing errors (constrained by lower information
processing resources). With a single-step decision, this recovers the quantal response
equilibrium model. With multi-stage decisions, we recover an approximation of a
generalised level-k formulation, where at each step, players are assumed to have
higher resources and reasoning ability than players below themselves, but may still
play erroneously.

Similar to QRE, the resource parameter b is problem dependent, and depends on
the payoff magnitude (McKelvey et al., 2000). This opens an area of research
analysing whether a normalised b can be used to measure problem difficulty, or
whether some relationship holds between the the experimentally fitted b and the b
which corresponds to the Nash solution. For example, a question arises if a
normalised b can provide insights across games, and if so, can this average distance
to the Nash solution be generally useful across games. A similar consideration is
given to whether such payoff perturbations in QRE can be related across different
games (Haile et al., 2008), and whether the boundedness parameter can be
endogenised (Friedman, 2020).

There is a clear relationship between the decision-making components proposed in
this work and the decision-making in multi-agent systems, such as agent-based
models (ABMs) and multi-agent reinforcement learning (RL) approaches. For
example, Wen et al. (2020) outline a novel framework for hierarchical reasoning RL
agents, which allows agents to best respond to other less sophisticated agents based
upon level-k type models. Likewise, Łatek et al. (2009) propose a recursion based
bounded rationality approach for ABMs. Replacing the agents in these multi-agent
approaches with the informationally constrained agents presented in our work
provides a distinct area of future research, where we could examine the resulting
dynamics and out-of-equilibrium behaviour from heterogeneous QH agents.

In summary, we proposed an information-theoretic model for capturing higher-
order reasoning for boundedly rational players. Bounded rationality is achieved in the
model by the relaxation of two central assumptions underlying rationality, namely,
mutual consistency between players and best response decisions. Through relaxing
these assumptions, we showed how the predictions from the proposed quantal
hierarchy model align well with the experimentally observed human behaviour in a
variety of canonical economic games.
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Appendix A Model fittingEach model is fit to the training portion of the data
(from 5 � 2 cross-fold validation), using Bayesian hyperparameter optimisation
(Bergstra et al., 2013). Every model is given 1000 evaluations for a fair comparison.
With level-k, due to the integer parameter, rather than Bayesian optimisation, we
instead perform an exhaustive search for k 2 ½0; 1; . . .; 100�, noting that this is an
extensive range of k, easily capturing standard k’s reported in the literature. The fitted
parameter values with the lowest mean squared error between the predictions and the
training values are selected. The out-of-sample (testing) portion is never seen by the
optimisation process and is only used for evaluation after the parameter optimisation
has been complete.

For quantal response equilibrium and quantal hierarchy, we sample from the range
0� b\100. While b is unbounded, we find this upper bound to be more than enough
with no fitted values coming close to this upper threshold. For c, this is bounded
0� c� 1. For cognitive hierarchy, we sample from the range 0� s\10, which
despite s being unbounded, again provides a more than sufficient range for the
experimental data, and covers common s’s reported in literature (Camerer, 2010;
Camerer et al., 2004).

For the beauty contest games, as well as the bargaining games, due to the large
action space (a 2 ½0; . . .; 100�), rather than using the raw data directly, a fitted
Gaussian kernel density estimate of the training and testing data is used to account
for the large action space and the relatively small number of observations. Scott’s rule
is used to determine the bandwidth automatically (Scott, 2015), and we validate the
robustness of this rule choice in Sect. D.2. The same kernel density estimates are
used across all methods to ensure fair comparisons. For the remaining game classes,
the action space is sufficiently well sampled from the observations, so no density
approximation is required.

Appendix B Special cases

B.1 Backwards induction

Backwards induction can be recovered as a limiting case of the proposed model. We
can see this as follows from Eq. (10) (and the expansion process from Eq. (4)), noting
that softmax ebU ½a�=Z converges to argmax with b ! 1:

f ½ak j a\k � ¼ 1

Zk
� Z1=c

kþ1|ffl{zffl}
Future Contribution

� ebc
kU ½ak ja\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Current Payoff

¼ argmax
ak2Ak

U ½ak j a\k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Current Payoff

þ Vkþ1|ffl{zffl}
Future Contribution

0
B@

1
CA

ð12Þ

where Vkþ1 is derived recursively based on choosing ak . Backward induction
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assumes that all future decisions will be rational, i.e., at each stage, players choose
rationally.

Appendix C Canonical games and experimental data

C.1 Market entrance/El Farol bar problem

The market entrance game was outlined in the context of cognitive hierarchies in
Camerer et al. (2004), and has also been considered in prior studies, e.g., Rapoport
et al. (1998). This game is fundamentally similar to the El Farol bar problem of
Arthur (1994), and minority games of Challet et al. (2013). A player will profit
(enjoy) in the market (bar) if less than d � N ; d 2 ½0; 1� players also enter the same
market (bar).

For this work, we use the experimental data from Camerer (2011), specifically the
results originally presented in Sundali et al. (1995). The payoff for staying out is
fixed

U ½stay outk � ¼ 1 ð13Þ
However, the payoffs for entering are dependent on the total demand from the other
(lower-level) players and a preferential capacity c ¼ d � N :

U ½enterk � ¼ 1þ 2ðc� f ½enterkþ1�Þ ð14Þ
There were N ¼ 20 subjects, and various c’s trialled c 2 ½1; 3; 5. . .; 19�.

C.1.1 Comparison methods

We can represent this pseudo-sequential structure (Camerer et al., 2004) as an
extensive-form game, with each level of reasoning forming a new node in the game
tree.

Level-k Under this configuration, a level-0 player is assumed to randomise, i.e.,
enter or stay out with equal probability (the same level-0 configuration is used for the
naive player in the QH model). A level-1 player exploits this and attends the bar if
d[ 0:5, or stay home with d\0:5, at d ¼ 0:5 the player is indifferent and would
attend with 50% probability. Level-2 players then base their decision assuming other
players are level-1, and enter only if the level-1 players underestimated the expected
capacity. Likewise, level-3 players base their decision on reasoning about level-2.
Level-k behaviour necessitates step functions in the response, where players only
enter at a capacity c if they believe lower-level thinkers have over or under entered.

Cognitive hierarchy Rather than assuming all players are at k � 1, the cognitive
hierarchy model fits a distribution to these k players, and best responds according to
this distribution of lower level thinkers. Following Camerer et al. (2004), we use the
Poisson distribution.

Quantal response equilibrium To derive the (mixed strategy) quantal response
equilibrium, we use the logistic function of the differences in payoffs (between enter
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and stay out) as the distribution function, with numeric estimations for the fixed-point
solution since no analytical solution exists, following Goeree et al. (2016, Sec-
tion 2.2.2 and Section 8) and Goeree and Holt (2005) (Fig. 10).

C.2 Beauty contest

Keynes (1937, 2018) originally formulated the beauty contest game as follows.
Contestants are asked to vote for the six prettiest faces out of a selection of 100. The
winner is the contestant who most closely picks the overall consensus. A naive
(level-0) strategy is to choose based on personal preference. A level-1 strategy is to
choose as if everyone is choosing on personal preference, so the player chooses
whom they think others will find most desirable. A level-2 strategy is then for players

(a) Block 1 (b) Block 2 (c) Block 3

(d) Block 4 (e) Block 5

Fig. 10 Market entrance game at various blocks using the experimental data from Sundali et al. (1995). We
see over time, the experimental data becomes closer to the equilibrium of perfect attendance (dotted gray
line)
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to choose whom they think that others will think others will choose, and so on (with
Keynes believing there are players who “practise the fourth, fifth, and higher“ levels).
The game was originally outlined to highlight how investors are not necessarily
driven by fundamentals but rather by anticipating the thoughts of others.

An extension of the game is the p-beauty contest of Moulin (1986), where
contestants are asked to guess fraction p 2 ½0. . .1� (commonly p ¼ 2

3) of the average
value of the other competitors guesses within the range ½0; . . .100�. The Nash
equilibrium dictate that every player should choose 0. However, experimentally this
is not the case, and players act boundedly rational (Nagel, 1995). Such a game shows
out-of-equilibrium behaviour and motivates the modelling of such decisions in a
finite-depth manner (Aumann, 1992; Binmore, 1987, 1988; Stahl, 1993).

We use the experimental data provided by Bosch-Domenech et al. (2002) with
p ¼ 2

3. The resulting guesses are visualised in Fig. 11.
The utilities are represented as follows:

gk ¼ p�
P

akþ1
akþ1 � f ½akþ1�P
akþ1

f ½akþ1�
U ½ak � ¼ jak � gk j

ð15Þ

where gk represents the predicted goal, i.e., 2/3’s of the average weighted prediction
of the lower level thinkers. The utilities for each choice then become the distance to
the goal.

C.2.1 Comparison methods

Level-k Level-0 competitors are assumed to guess randomly between [0, 100] (the
same level-0 configuration is used for the naive player in the QH model). Level-1

(a) Lab (b) Classroom (c) Internet

(d) Newspaper (e) Take Home (f) Theorists

Fig. 11 Visualisation of various experimental p-beauty contests. The dotted vertical line indicates the
average for the given dataset. Datasets source: Bosch-Domenech et al. (2002)
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players then anticipate this and guess p� 50 (50 being the average from the level-0
players), level-2 players then guess p� ðp� 50Þ and so forth. As the levels increase,
the guesses, therefore, approach 0, coinciding with the perfectly rational choice.

Cognitive hierarchy Rather than assuming all players are at k � 1, the cognitive
hierarchy model fits a distribution to these k players, and best responds according to
this distribution of lower level thinkers. Again, following the convention of Camerer
et al. (2004), we use the Poisson distribution.

Quantal response equilibrium For the quantal response equilibrium, we use the
logit rule following Breitmoser (2012) estimated using fixed point iteration (see also
Section F4.1 of the supplementary material for Anufriev et al. (2022)) (Fig. 12).

C.3 Centipede game

With perfectly rational backward induction, the subgame perfect equilibrium of
the centipede game is for each player to immediately take the pot without proceeding
to any further rounds. However, this is a poor predictor of what happens
experimentally (Ho & Su, 2013), where players are shown to “grow“ the money
pile by playing for several rounds before taking (Ke, 2019). Again, there are multiple
reasons proposed to explain players deviation from the predicted unique subgame
equilibrium (Georgalos, 2020; Kawagoe & Takizawa, 2012; Krockow et al., 2018).

In this work, we use the experimental data of McKelvey and Palfrey (1992) (from
their Appendix C) for four and six-level centipede games. The utilities are
represented as:

(a) Lab (b) Classroom (c) Internet

(d) Newspaper (e) Take Home (f) Theorists

Fig. 12 Beauty contest games (extended). The darker lines indicate the mean result from 5 � 2 cross-
validation. The shaded regions indicate ± one standard deviation. The out-of-sample data are shown as the
black line. The level-k model is shown as the blue line. The Cognitive hierarchy model as the green line.
The Nash equilibrium solution is indicated as the diagonal dashed grey line
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U1½take1� ¼ 0:4

U1½pass1� ¼ 0:2� f ½take2� þ V1 � f ½pass2�
U2½take2� ¼ 0:8

U2½pass2� ¼ 0:4� f ½take3� þ V2 � f ½pass3�
. . .

ð16Þ

where V1;V2 are derived as the average expected return for the remainder of the
moves. These payoffs are also visualised in Fig. 13. The conditioning on the history
of decisions is implicit here, as to take an action an at n[ 1, all previous actions
must have been to pass (otherwise the game would have ended) (Fig. 14).

C.3.1 Comparison methods

Level-k
Under the level-k framework, we assume a level-0 agent is equally as likely to

take or pass at each stage of the game (the same configuration is used as the naive
player under the proposed quantal hierarchy approach). A level-1 player then takes at
the node which maximises the expected utility subject to this, and so on and so forth.
A full analysis of level-k framework in centipede games is presented in Kawagoe and
Takizawa (2012), but this configuration used [referred to as Random Behavioral
strategy (RBS) in Kawagoe and Takizawa (2012)] was shown to be the best
specification for matching the experimental data (for both level-k and cognitive
hierarchy).

Cognitive hierarchy Rather than assuming all players are at k � 1, the cognitive
hierarchy model fits a distribution to these k players, and best responds according to
this distribution of lower level thinkers. Again, the Poisson distribution was used,
which was shown to be the best experimental fit in Kawagoe and Takizawa (2012).

Quantal response equilibirum An agent-form of the QRE (McKelvey & Palfrey,
1998) is used here, where at each node, the agent choices nosily based on resource
parameter b, and assuming their opponent is also operating under the same resource
constraint b. This is calculated recursively following (McKelvey & Palfrey, 1998).

0.4
0.1

0.2
0.8

1.6
0.4

0.8
3.2

6.4
1.6

TAKE TAKE TAKE TAKE

PASS PASS PASS

3.2
12.8

25.6
6.4

TAKE TAKE TAKE

PASS PASS PASS

Fig. 13 The six move extensive-form centipede Game. Green (orange) circles highlight Player 1(2)’s turn,
and the top (bottom) row of the boxes highlights Player 1(2)s payoff. The four-move game is equivalent
until the fourth node, however, the payoffs for the fifth node become the “PASS” payoffs for Node 4

123

The quantal hierarchy model

140



C.4 Sequential bargaining

We examine the experimental results of the ultimatum game (one-stage) and two-
stage alternating-offer bargaining games (Binmore et al., 2002), which consistently
demonstrate violations of backward induction (Webster, 2013), even when account-
ing for “fairness” in the system (Johnson et al., 2002).

C.4.1 Ultimatum game

For the ultimatum game, we use the experimental data of Game 1 from Binmore et al.
(2002). In the ultimatum game, the players are faced with the following payoffs:

U1½a1� ¼ a1 � f ½accept j a1� þ V1 � f ½reject j a1�
U2½accept2 j a1� ¼ 100� a1

U2½reject2 j a1� ¼ V2

ð17Þ

where V1;V2 are the rejection payoffs for Player 1 and Player 2.
If opponents (Player 2) are rational, then Player 1, being rational, should request

no more than their opponent’s rejection payoff V2. However, if opponents are not
believed to be rational, then there is potential for Player 1 to exploit this fact and
request higher (or lower) amounts. That is, it becomes rational for Player 1 to play as
if Player 2 is not perfectly rational.

A rational opponent implies a step function, where for a1, with payoff 100�
a1 [V2 the player accepts with probability 1, and for payoffs below V2 the player
reject with certainty as shown in Fig. 16. However, from Fig. 16 we can see
deviations from rationality in the observed play. This is directly shown by non-
deterministic outputs, where the players may or may not accept the request based on
the requested value, as well as violations where the players reject or accept with
probability 1 even if a rational actor would do the opposite.

Now, knowing the opponent has potential bounds on their rationality, a rational
player would respond accordingly. Figure 17 plots the distribution of Player 1

(a) Four Move. (b) Six Move.

Fig. 14 Four and six-level centipede games using the dataset from McKelvey and Palfrey (1992)

123

B. P. Evans, M. Prokopenko

141



requests. We observe that Player 1’s request still deviates from perfect rationality.
Perfect rationality would imply a Dirac delta function with the probability mass
situated at the optimal request. The observed deviation from rationality may be due to
uncertainty in their opponent’s abilities (reflected in the probabilities from Fig. 16),
or limitations of Player 1’s reasoning.

C.4.2 Two-stage bargaining

Next, we examine a two-stage bargaining game (shown in Fig. 15b). Now, if Player 2
rejects Player 1’s request, they can come back with a counteroffer of their own. If the
players can not come to an agreement, they both receive 0. It is, therefore, in both
players best interest to reach an agreement. This is represented with the following
utilities:

U1½a1� ¼ a1 � f ½accept j a1� þ V1 � f ½reject j a1�
U2½accept2 j a1� ¼ 100� a1

U2½reject2 j a1� ¼ V2

U2½a3� ¼ Dð100� a3Þ � f ½accept j a3�
U1½accept4 j a3� ¼ D� a3

U1½reject4 j a3� ¼ 0

ð18Þ

where now V1 and V2 are derived from the expected payoff of the rejection branch.
Conditioning on past decisions are excluded from U2½a3� as it is implicit that this can
only occur when Player 2 rejects Player 1’s request. We use experimental data of
Game 3 from Binmore et al. (2002), considering all disagreement penalties

x
100-x

REJECTACCEPT

V1
V2

x0 100

(a) Ultimatum (One-stage)

x
100-x

REJECTACCEPT

x0 100

Dy
D(100-y)

REJECTACCEPT

y0 100

0
0

(b) Two-Stage

Fig. 15 Example extensive-form sequential bargaining games. In the ultimatum game (Fig. 15a), Player 1
makes a request x 2 ½0; 100�. If Player 2 accepts the request, Player 2 receives a payoff of 100� x, and
Player 1 receives x. If Player 2 declines the request, they each receive the rejection payoff (V1 or V2). In the
two-stage game, if Player 2 rejects, they can come back with a counteroffer y. Now the process repeats, and
it is up to Player 1 to accept or reject. If Player 1 accepts, Player 2 gets a disagreement penalised (D) payoff
of Dð100� yÞ, and Player 1 gets a payoff of Dy. However, if both decline they each get a payoff of 0
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D 2 ½0:2; 0:3; . . .; 0:9�. For discussion sake, here we assume D ¼ 0:9. With perfect
rationality, it is in Player 1’s best interest to accept any counteroffer greater than the
rejection payoff of 0 (see Fig. 15b). Therefore, if prompted, Player 2 should provide a
counteroffer of y ¼ 1, which gives Player 2 a payoff of Dð100� yÞ ¼ 89:1, and
Player 1 a payoff of Dy ¼ 0:9. Since Dy[ 0 (the rejection payoff), Player 1 should
prefer this to the alternative and accept. With this in mind, Player 1 now knows the
payoff for the rejection branch for Player 2 is 89.1, so if they request x[ 10 (as-
suming integer requests), Player 2 will reject this request since 100� x\89:1 if
x[ 10. Therefore, the rational Player 1 requests x ¼ 10, maximising their payoff,
assuming Player 2 is rational.

However, from Fig. 18 which summarises results from the experiments presented
by Binmore et al. (2002), we can see substantial deviations from the subgame perfect
equilibrium for both players. No Player 1 requests x\10 or the perfectly rational
request x ¼ 10. Furthermore, no Player 2 requests the rational counteroffer of y ¼ 1.
The distribution of initial and counteroffers is visualised in Fig. 19.

C.4.3 Comparison methods

Level-k Under the level-k model, level-0 players are assumed to be indifferent to all
choices, and chooose uniformly. Level-1 players exploit this, and choose based on
their opponent being a level-0 player, and so on.

(a) (V1=10, V2=10) (b) (V1=10, V2=60) (c) (V1=70, V2=10)

Fig. 16 Observed rejection rates from experimental data of Binmore et al. (2002). A rational opponent is
governed by the step function (black line), where a rational player would reject in the red area and accept in
the green area. The observed points show deviations from rationality

(a) (V1=10, V2=10) (b) (V1=10, V2=60) (c) (V1=70, V2=10)

Fig. 17 Player 1 requests in the ultimatum game, with experimental data from Binmore et al. (2002). The
black line indicates the perfectly rational choice (when assuming opponent is perfectly rational), i.e., a
rational opponent would reject any lower request (left of the black line), and would accept any value above
their rejection payoff (right of the black line)
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Cognitive hierarchy Similar to the other game classes, again rather than assuming
all players are at k � 1, the cognitive hierarchy model fits a distribution to these k
players, and best responds according to this distribution of lower level thinkers.
Again, the Poisson distribution is used.

Quantal response equilibrium For the quantal response equilibrium, again, an
agent form of QRE is used to account for players noisily responding at each level,
which is calculated recursively from the final step.

Appendix D Sensitivity

To ensure the method’s robustness, we check the sensitivity of the proposed results to
various factors that may affect the outcome. Specifically, we carried this testing out
with respect to the convergence/termination parameter � and the fitted density
estimates.

Fig. 18 Two-stage bargaining with disagreement penalty D ¼ 0:9. Initial requests are shown as black
circles. The y-position gives the rejection rate of these requests. For rejected requests, the counteroffers are
shown as a purple star (linked to their original request by a line), where again, the y-position shows the
rejection rate of the counteroffer. The perfectly rational initial request would be x ¼ 10 (black line), as any
requests in the red region would be rejected by a rational opponent. After a rejection, the perfectly rational
counteroffer would be y ¼ 1 (purple line). Deviations from the subgame perfect equilibrium are clear, with
no player performing perfect backward induction

(a) Player 1 Requests (b) Player 2 Counteroffers

Fig. 19 Initial requests and counteroffers in the two-stage bargaining game with D ¼ 0:9
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D.1 Termination parameter �

For the bargaining and centipede games, the reasoning naturally ends at the end of
the extensive-form game. However, for the market entry and beauty contest games
(with no defined end point), the reasoning continues until the resources are depleted,
i.e., bck\�. We have used the threshold � ¼ 10�8 to determine termination. To check
the robustness of the method to �, here we perform sensitivity analysis across the
range 10�7\�\10�9, i.e. ± one order of magnitude from the default value. We
sample 1000 points uniformly from this range, presenting the results in Fig. 20.

In both cases, we can see the approach is robust to these large changes in �, with
an order of magnitude change only having slight effects on the resulting outcomes.
These results show that � does not need to be treated as a hyperparameter to optimise
(as b/c), but rather as a fixed parameter to determine “convergence“ towards 0 and
termination, the choice of which depends on computational/numeric requirements.
We recommend using as small value as possible (e.g. �� 10�8) while still achieving
reasonable convergence speed.

D.2 Density estimates

We evaluate how the resulting rankings would change with different density
estimation methods. Specifically, we analyse the resulting average (out-of-sample)
ranks when using Scott’s rule (Scott, 2015) (as presented), Silverman’s rule
(Silverman, 2018), and the (improved) Sheather & Jones (Botev et al., 2010) for
automatic bandwidth identification. While this does not provide an exhaustive list, it
covers the most common rules used in literature. Density estimates are only used for
the bargaining and beauty contest games, so these are the two game classes analysed
here.

In Table 3, we see no change in average ranking between Scott’s and Silverman’s
rules for the beauty contest games. However, when using Sheather & Jones, the
rankings between Level-k and Nash change, going from 4 and 5, respectively, to 4.33

(a) Beauty Contest (b) Market

Fig. 20 Termination parameter � sensitivity. The outcome for the default value is displayed as the red line.
The outcome for the upper (lower) threshold is the dashed blue (green) bar. Intermediary values are
displayed as light grey lines
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and 4.67. This rank change does not alter any of the claims made within the paper, so
we can confirm the robustness of the resulting rankings to density estimates for the
beauty game.

For the bargaining games, we see slight improvement for the proposed method
when comparing Scott’s rule with Silverman’s and Sheather & Jones–in both cases,
going from 1.27 with Scott’s rule to 1.23. At the same time, QREs rank worsens from
1.73 to 1.77. The remaining methods keep the same ranking. These rank changes
strengthen the claims made in the paper, showing not only robustness to the rule used
but also improvements for the proposed approach when utilising alternative rules for
bandwidth estimation.
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Table 3 Robustness to changes in density estimation. Average rankings are computed using the results
from various automatic bandwidth determination methods. Scott’s is the method we present in the paper

Quantal hierarchy Level-k Cognitive hierarchy QRE Nash

Beauty contests

Scott’s 1.83 4.00 3.00 1.17 5.00

Silverman’s 1.83 4.00 3.00 1.17 5.00

Sheather & Jones 1.83 4.33 3.00 1.17 4.67

Bargaining games

Scott’s 1.27 3.50 3.50 1.73 5.00

Silverman’s 1.23 3.50 3.50 1.77 5.00

Sheather & Jones 1.23 3.50 3.50 1.77 5.00
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CHAPTER 6

Endogenous emergence of stylised facts in economic markets from

bounded rational agents

Building upon the work developed throughout this thesis; we now have the tools and tech-

niques to analyse the formation of crises and stylised facts in economic markets under a

relatively concise setting. Here, rather than making difficult modelling assumptions for a

complex agent-based model, such as when to buy/sell or how much to bid, or enforcing

constraints to give rise to a statistical equilibrium, we instead use Quantal Hierarchy reasoning

(from Chapter 5) to model the bottom-up strategic reasoning between agents in economic

markets. We show how various stylised facts can arise in this setting under generalised con-

ditions, highlighting the usefulness of the proposed Quantal Hierarchy model for capturing

decision-making in economic markets when compared to existing approaches.
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The efficient market hypothesis (EMH), based on rational
expectations and market equilibrium, is the dominant
perspective for modelling economic markets. However, the
most notable critique of the EMH is the inability to model
periods of out-of-equilibrium dynamics without significant
external news. When such dynamics emerge endogenously,
the traditional economic frameworks prove insufficient.
This work offers an alternate perspective explaining the
endogenous emergence of punctuated out-of-equilibrium
dynamics based on bounded rational agents. In a concise
market entrance game, we show how boundedly rational
strategic reasoning can lead to endogenously emerging crises,
exhibiting fat tails in returns. We also show how other
common stylized facts, such as clustered volatility, arise due to
agent diversity (or lack thereof) and the varying learning
updates across the agents. This work explains various stylized
facts and crisis emergence in economic markets, in the absence
of any external news, based on agent interactions and
bounded rational reasoning.

1. Introduction
Economic markets have existed for millennia, with the earliest
identified markets dating back to at least the Babylonian Empire
[1]. Since then, the modelling of such markets has been a
heavily researched topic, aiming to improve understanding of
markets, increase profits and shape policy and interventions
within these markets. The dominant perspective which has
arisen over the last two centuries [2] is the efficient market
hypothesis (EMH) [3], based on rational expectations and
market equilibrium. The EMH states that prices reflect all
known information about an asset, and as such, they reflect the
fair (fundamental) value. However, there are multiple significant
market crashes, such as the 1987 Dow Jones index crash [4], the
global financial crisis in 2008 [5] and the flash crash of 2010 [6],
that the EMH failed to explain purely by the arrival of external

© 2023 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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news. If prices reflected all information, assets matched their actual underlying value, and all agents were
perfectly rational and not speculative, such bubbles (and resulting bursts) would not occur. Instead,
agents perception on the market state can generate phenomena in a manner that is ‘totally unrelated
to economic fundamentals’ [7], where asset pricing deviates from the fundamental value. For example,
such phenomena can be driven by irrational exuberance of the agents [8], based on unfounded beliefs
and speculation [9]. This brings into question whether pricing does in fact follow the ‘rationally
expected fundamental value’, and highlights the need to consider alternative models of market
dynamics [10].

The most serious specific critiques of the EMH include its inability to explain periods of out-of-
equilibrium behaviour such as endogenous crises [11,12] or the ‘stylized facts’ present in economic
markets such as volatility clustering where periods of high (low) volatility occur in bursts, in the
absence of any significant external news [13]. Such crises are known to occur in different markets,
from housing markets [14,15], to stock markets [16], and foreign exchange markets [17]. Likewise,
volatility clustering is consistently observed in markets [18], with temporal correlations in volatility
breaching the traditional economic assumption of heteroskedasticity. The EMH suggests that such
phenomena occur due to rational agents reacting to external news in the market [19]. However, when
such dynamics emerge endogenously, i.e. in the absence of external news, the traditional economic
frameworks struggle to explain such stylized facts [20] or the deviation from equilibrium [21],
demanding adequate models explaining the ‘wildness’ of market dynamics [22–24].

Thus, the endogenous emergence of crises and stylized facts are significant aspects to consider in
the modelling of economic markets. An adequate model of economic markets should capture and
ideally explain three desirable aspects of actual market dynamics: (i) convergence to a good average
outcome, i.e. equilibrium, (ii) endogenous emergence of crises so that the resulting dynamics are
categorized by fat-tailed distributions of out-of-equilibria deviations, where abrupt periods differ
significantly from the ‘converged’ equilibrium and (iii) ability to recreate stylized facts of economic
markets such as clustered volatility. The EMH explains (ii) and (iii) as arising only from the arrival
of external news.

These notable deviations from EMH have pushed for a ‘revolution’ of economics [22], and
encouraged a modelling focus on agents who operate under ‘bounded rationality’ [25]. Relaxing the
perfect rationality assumption provides an alternate perspective to markets, admitting that market
participants may not follow the representative homo economicus model [26,27], and may instead be
speculative, adaptive or subject to limitations in their information processing abilities. It may initially
seem desirable to modify the representative agent to account for psychological or cognitive biases
directly, however, this only partially addresses the issue and still fails to explain various phenomena
which crucially only arise from the interactions among heterogeneous agents [20]. These
considerations have given rise to Complexity Economics [28], and the ‘interacting agent hypothesis’
[29,30] capturing the features of real-world financial markets, such as the endogenous emergence of
out-of-equilibrium dynamics due to the interaction among heterogeneous boundedly rational agents
[31–36], rather than purely by the rational reaction to the arrival of external news.

One of the most notable examples exploring Complexity Economics is the canonical El Farol bar
problem [37]. El Farol has been called ‘the most important problem’ in the modelling of complex
systems [38], and continues to be explored [39,40], having motivated a host of other market
entrance games [41] and minority games [42] for modelling markets. In this market entrance game
the agent payoffs depend on other market participants’ decisions, creating complex market
dynamics. Adaptive Strategies (AS) is the widely accepted solution to the El Farol bar problem
[37], which generally converges to an equilibrium near the optimal resource capacity [43].
However, it is unknown to what extent deviations from this equilibrium can be captured or
whether current Complexity Economics solutions to El Farol can adequately generate stylized facts
similar to those observed in actual markets [36]. Hence, we need a more refined model capable of
demonstrating convergence to equilibrium, punctuated by abrupt deviations, while also explaining
market dynamics and stylized facts arising endogenously rather than relying on the arrival of
external news.

Here, we propose an approach based on boundedly rational strategic (higher-order) reasoning
agents. Each Bounded Rational AdapTive Strategic (BRATS) reasoning agent maintains a recursive
model about other agents’ beliefs. However, the potentially infinite chain of strategic reasoning is
‘broken’ at various points of recursion, following the Quantal Hierarchy (QH) model [44].
Specifically, the heterogeneous agents are limited in the amount of information processing they can
perform, with reasoning resources quantified information-theoretically (in the Shannon sense). Based
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on the observed market outcomes, the BRATS agents learn and update their recursive beliefs (increase
resources). The BRATS approach improves upon the canonical solution driven by Adaptive Strategies
across all outlined criteria. Specifically, the approach not only ensures (i) general convergence
towards an ‘equilibrium’ even with boundedly rational agents, but also allows for (ii) the
explanation of abrupt endogenously emerging periods of out-of-equilibrium behaviour based on
boundedly rational strategic reasoning, generating ‘fat tails’. Furthermore, (iii) volatility clustering
can be generated and explained endogenously due to the diversity of agent beliefs and the
heterogeneous learning updates.

We provide comparisons to alternative approaches and show that the proposed approach
convincingly outperforms the alternatives across the key measures in a market game, better matching
dynamics observed in actual economic markets. Thus, the long-held conjecture that the AS approach
provides an adequate resolution to the El Farol problem is challenged. An effective solution is shown
to be provided by the agents which reason strategically (i.e. recursively) while being limited by their
information processing resources.

2. Material and methods
The importance of agent irrationality on market dynamics was discussed by Keynes [45], who explained
price fluctuations with the beauty contest game. Specifically, Keynes pointed out that ‘I-think-you-think-
they-think·· ·-type of regress’ better represented investor behaviour, with pricing driven by investors’
beliefs about other investors, rather than by the asset fundamentals.

While this ‘I-think-you-think-they-think·· ·-type of regress’ has been identified as a natural
representation for agent behaviour in market games [38], modelling these recursive beliefs becomes
problematic due to the potential infinite reasoning [46]. A recently introduced approach, the QH
model [44], addressed the modelling limitations of this higher-order reasoning by ‘breaking’ at
various points of recursion, thus accounting for boundedly rational agents and preventing infinite
regress.

2.1. Background
The QH model [44] is based upon a recursive form of the variational free-energy principle, which was
proposed as a thermodynamic treatment of bounded rational decision-making [47]. Agents make a
decision f on which action a∈A to take from the available choice set A, based upon the utility U of
the choice, and the prior beliefs of the agent p. Decision-making can be represented as state changes,
given by the following free-energy difference:

� DF½f ½a�� ¼
X
a[A

f ½a�U½a� � 1
b

X
a[A

f ½a� log f ½a�
p½a�

� �
, ð2:1Þ

which produces the equilibrium distribution for the decision function f [a]:

f ½a� ¼ 1
Z
p½a� ebU½a�, ð2:2Þ

where Z is the partition function, and the parameter β (i.e. inverse temperature) governs the information
processing available to an agent.

The QH model extended this framework to capture recursive higher-order reasoning [44] as pseudo-
sequential decision-making where agents are limited in the amount of information processing they can
perform. Specifically, at each level of recursive reasoning k, information processing resources are reduced
by a discount parameter γ. Parameter γ modulates an agent’s beliefs about other agents’ decisions.
Extending equation (2.1) to account for (pseudo-)sequential decision-making yields the following
recursive free-energy difference:

� DF½f � ¼
X
a�K

f ½a�K�
X1
k¼0

U½akja,k� � 1
bgk

log
f ½akja,k�
p½akja,k�

� �
, ð2:3Þ

where a<k represents the past decisions of the agent. The overall reasoning levels are bound by the
recursion depth based on γ, which ensures, given a simple computational threshold e, that the
recursion terminates [44]. The equilibrium solution for the agent decision function f [ak|a<k] is then
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given by

f ½ak j a,k� ¼

1
Zk

p½ak j a,k�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
prior belief

, if bgk , e

1
Zk

p½ak j a,k�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
prior belief

� ebU½ak ja,k �|fflfflfflfflffl{zfflfflfflfflffl}
current utility

, if g ¼ 0

1
Zk

p½ak j a,k�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
prior belief

� Z1=g
kþ1|ffl{zffl}

future contribution

� ebg
kU½ak ja,k �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

current utility

, otherwise

8>>>>>>>>>><
>>>>>>>>>>:

ð2:4Þ

The overall processing resources are governed by βγk, i.e. the information processing abilities β are
discounted based on γ and the strategic reasoning depth k. When bgk , e, the recursion stops since
the result simply echoes the prior belief, and no focus is placed on the payoff. In summary, the QH
model represents varying levels of higher-order reasoning and captures the expectations about the
processing abilities of other agents by varying parameters β and γ.

2.2. Proposed model: BRATS approach
In modelling a market, we assume that each market participant (agent) performs strategic reasoning
according to the QH model, i.e. recursively but boundedly reasons about the decisions of other
agents. The reasoning abilities β and γ are heterogeneously assigned among the participants. All
agents start naive, with low information processing abilities (β.� 0). Over time, agents learn and
adjust their beliefs based on the observed market outcomes by suitably increasing processing abilities
β (see below). We refer to this model as the Bounded Rational AdapTive Strategic reasoning (BRATS)
approach.

2.2.1. Naive agent

The simplest agent is the ‘naive agent’. Naive agents have no information processing abilities (bgk , e),
so they make their decisions based on prior beliefs without consideration of other agents’ reasoning—in
other words, they perform no strategic reasoning. Naive agents simply attend if it would have been
profitable to do so previously.

2.2.2. Learning

Learning in the BRATS model is represented through increasing reasoning abilities, i.e. increasing β. This
is determined by a learning rate η > 0, which acts as a linear modifier for β, as follows: βt+1 = βt + η. All
agents start with small β0. Agents are assigned different rates η generated from a given range (0.1 <
η≤ 1), representing different learning abilities. This heterogeneous representation provides a simple
configuration where varying learning rates can be captured across the population of agents at each
time step.

Parameter γ is not directly modified and assumed to be fixed (but different) for all agents. However,
increasing β implicitly increases the total internal resources used to reason about other agents’ reasoning
(through βγk).

2.3. Canonical model: Adaptive Strategies
The conventional approach to the El Farol bar problem is ‘Adaptive Strategies’, proposed initially in [37],
and extended in [48]. Each market participant i has a set of predictors si [ Si, creating an ‘ecology’ of
predictors based on the past observations that adapts over time. An individual strategy si is a vector
of weights, where each element in the vector determines how the agent believes the historical data
affects the attendance prediction for the current time [49]. By contrast to the BRATS approach, the AS
model is not a strategic reasoning model. Instead, each agent makes their prediction based on the
(public) history, and does not consider the reasoning of other agents at the current time step. Agents
weigh the likelihood of using predictors according to the past success of this predictor based on a
given history, choosing the strategy s�i which would have done the best in the previous time steps [49].
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3. Results
The basic premise of the El Farol market entrance game is as follows. Agents enjoy attending a bar, or
profit entering a market, if less than 60% of other agents attend the bar; otherwise, the bar/market is
deemed overcrowded/unprofitable, and they would have preferred to stay out. As a generalization,
we say N agents receive payoff Uenter for entering if less than cN, c∈ [0, 1] other agents attend,
otherwise they receive payoff Uovercrowded. Staying out returns a fixed payoff of Uexit. The inequality
Uenter >Uexit >Uovercrowded holds such that if the bar is overcrowded, the agent would have preferred
to stay home. However, the preference is always to attend if it is not overcrowded.

3.1. Convergence
We first consider the ‘desirable’ attendance rate c, and the simulated attendance rate from the bounded
rational agents. This convergence is displayed in figure 1a, comparing the proposed (BRATS) approach
with the canonical AS solution. Agents are able to self-organize around the desired value without
explicit coordination. We refer to this as the resource efficiency, i.e. the ability to operate near the
optimal capacity. Figure 1b shows the resulting errors, with lower average errors for the proposed
approach compared to AS.

The time evolution of the system is displayed in figure 5. There is an initial ‘adjustment’ period with
both approaches in which the agents are learning appropriate beliefs. However, once some learning has
taken place (e.g. several rounds have been completed), the proposed BRATS approach converges to a
higher average resource efficiency than the canonical AS approach, particularly for higher or lower
values of c, as confirmed in figure 1. The methods perform similarly for mid ranges of c, achieving
high resource efficiency. These results show that both approaches perform well on the first criteria of
convergence to a good average outcome, with the proposed approach outperforming AS for higher and
lower entrance capacities.

It is well known that there exists a unique symmetric mixed strategy Nash equilibrium (MSE) solution
to the problem, where agents attend probabilistically based on the enjoyable capacity c [50]. Such an
approach offers perfect convergence and utilization (i.e. 0 error), however, this MSE solution cannot
categorize learning or adaption throughout time [51], and further, cannot generate periods of
endogenously emerging crises. This limitation is problematic for explaining known deviations from
equilibrium in actual market settings. As we are particularly interested in out-of-equilibrium dynamics
generated from bounded rational agents, we do not explore such solutions further as they cannot
capture such phenomena. The following sections analyse these deviations from equilibrium inmore detail.

3.2. Emergence of endogenous crises
The previous section showed the average convergence towards the desired resource capacity c. Here, we
consider the endogenous emergence of crises, or self-induced shocks [52], as a result of endogenous
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Figure 1. Resource efficiency (N = 100). The purple (orange) line represents the proposed BRATS model (Adaptive Strategies). The
dotted red line highlights the optimal case with perfect efficiency, i.e. the mixed strategy Nash equilibrium. Figure 1a shows the
average overall attendance rate across runs, and the shaded surrounding area shows ±1 s.d. Figure 1b shows the average error for
each run, and the filled area shows ±1 s.d. across these runs. (a) Utilization and (b) errors.
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changes in agent beliefs [53]. Following [52], we consider crises to occur when the resulting attendance
change is at least three standard deviations from the average historical attendance change, and refer to
these as 3+σ events. The EMH suggests these deviations would follow a random walk, and, thus, be
normally distributed, meaning that the occurrence of 3+σ events would be small (0:3%). However, in
actual markets, the kurtosis of the observed return distribution can often be categorized as
leptokurtic, implying fatter tails, and a higher probability of ‘crisis’ than the probability suggested by
the random walk, casting doubts about the explanation given by the EMH [54,55].

To analyse the frequency of significant changes, we calculate the probability of 3+σ events, and in
addition, estimate the tail-index α of these changes using the Hill estimator [56]. The tail-index α gives
a measure of the shape of the tail, with lower α’s implying a slower decaying function and thus,
heavier tails. It has been reported that for many markets, α can often be in the range 1 to 4 [57] with
emerging markets having estimates 1 < α < 2, and developed markets 2 < α < 4 [57,58]. Thus, this
section demonstrates endogenous crisis formation in terms of fat tails in attendance fluctuations,
supported by estimates of the tail-indexes α.

Under the proposed BRATS approach to model market entrance, large abrupt changes in attendance
occur more than one would expect from a normal distribution, as displayed in table 1. With the AS
model, fatter tails than expected from the normal distribution are also observed, but to a lesser extent.
By contrast, the market dynamics generated by agents who follow a random walk (‘noise traders’) fall
entirely in line with the normal distribution. Therefore, the proposed approach demonstrates the
ability to recreate an important stylized fact: fat-tailed distributions in terms of (abrupt) resource
allocation changes.

We now estimate the tail-index α with a range of common tail sizes, 2.5%, 5%, 10%1 for (i) the
proposed approach, (ii) the canonical AS solution and (iii) ‘noise traders’. To re-iterate, a lower tail-
index α implies a heavier tail. The collated results are visualized in figure 2, and specific breakdowns
are shown in table 2. The tail indices (α0s) produced by the proposed approach consistently fall in the
1–3 range, as expected by crisis dynamics of emerging (1 < α < 2) and established (2 < α < 4) markets
[57,58]. By contrast, the AS approach often generates larger α0s (thinner tails), with approximately half
of the estimates falling outside the actual market range for tail indices (α > 4). With noise traders, the
majority of the α0s are found to be well outside this range, indicating even smaller tails.

These findings demonstrate that, unlike its alternatives, the interacting BRATS agents can consistently
generate endogenous crises (3+σ events), in accordance with observed market crises (indicated by the fat
tails that decay at a realistic rate), while simultaneously improving upon the average convergence.

3.3. Clustered volatility
Having analysed crisis emergence in terms of fat tails in attendance changes, we turn our attention to the
temporal correlations in ‘local’ volatility, i.e. in the absolute percentage changes in attendance at each
time step.

The temporal volatility correlations in the market entrance game are summarized in figure 3 and
further analysed in figure 6.

Table 1. The occurrence of 3+σ events. The table displays the observed percentage of attendance changes falling outside three
standard deviations of the mean attendance. Each cell represents the average results for the attendance rate c. According to the
normal distribution (bottom row), the percentage of expected occurrences for 3+σ events is 0.3, and any values greater than
this threshold indicate a higher probability of extreme events.

c

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BRATS 2.3 2 1.3 0.7 1 1.1 1.3 1.9 2.3

AS 1.5 1.4 1.1 1 0.8 0.6 0.5 0.4 0.6

noise traders 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3

normal distribution 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

1We use several tail sizes to account for estimates of α frequently depending on the tail size selection.
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The BRATS approach shows statistically significant autocorrelations for up to five time steps. In
contrast, the results produced by the AS approach generally show fewer temporal correlations in
volatility, demonstrating significantly less temporal correlation beyond one time step. These findings
indicate that the ability to recreate the clustered volatility observed in actual markets across multiple
temporal lags is not present in the canonical AS model. Furthermore, the noise traders show no
temporal volatility correlation (beyond lag zero).

The results shown in figure 3 confirm that volatility clustering can arise purely endogenously, as the
observed correlations occurred without any external changes to the system. That is not to say that
volatility does not also arise due to external news, but rather that periods of increased volatility can
also arise purely endogenously in the absence of such news.

To explain the endogenous emergence of periods of increased volatility, we analyse whether the
heterogeneity (diversity) of agents’ beliefs is a leading indicator of future volatility change. In doing
so, we employ a diversity measure quantified by the normalized entropy of the agent population,
suitably adopted for BRATS and AS approaches (described in appendix C). When the diversity of the
population decreases, this can indicate a group or herd formation and, thus, a reduction in the
heterogeneity of the population. An example of a realization of these two time series is presented in
figure 8.

We find that changes in the population diversity are predictive (or Granger causing) of changes in
attendance (details are provided in appendix D). Crucially, these findings show that the distribution of
agent beliefs is a significant predictor of volatility. To measure the effect that the diversity change has
on the resulting volatility, beyond merely being predictive of this change, we use an impulse response
function quantifying the impact on volatility generated by an ‘impulse’ of diversity (figures 4 and 7).
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Figure 2. Tail-index estimates α computed using the Hill Estimator. The average values across tail sizes and attendance capacities
are used to compute the density for the violin plots (cf. table 2). A lower α indicates a slower decay and, thus, a fatter tail. The
actual range of tail indices from economic markets is shown with the dashed grey lines.
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The y-axis shows the proportion of occurrences (across c’s) which were statistically significant. The x-axis shows the temporal
lag. The error bars represent the bootstrapped 95% confidence interval. Individual breakdowns for c’s are presented in figure 6.
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One unit shock in diversity change results in an initial consistent increase in positive volatility change,
followed by a ‘correction’ to a negative change in volatility. This correction is then followed by a
destabilizing period of oscillatory dynamics indicating larger changes and uncertainty in the volatility,
marked by larger confidence intervals and variations. Finally, the dynamics settle down after
approximately 10 periods on average, without a discernible influence beyond this interval.

When the diversity of the population is low, the system is in a ‘turbulent’ regime [33] where volatility is
high due to the interdependence of agent decisions. Over time, agents react and modify their beliefs. Due
to the agents’ alternate learning updates, the belief correlation declines, and the system returns to a calm
regime with less volatility, characterized by higher population heterogeneity. This reduction in the lagged
autocorrelation in volatility is demonstrated in figure 3. The reduction is also reflected in the oscillatory
period in figure 7 during which the impulse response flattens over time. By contrast, the results
produced by the AS do not provide clear outcomes in impulse response, as shown in figure 7. These
results indicate that clustered volatility cannot be explained or predicted based upon the AS approach.

4. Discussion and conclusion
The formation of crises in economic markets is a well-established phenomenon, dating back to at least the
Dutch ‘tulip mania’ of 1636, which abruptly burst overnight [59,60]. While the EMH explains such
phenomena as rational reactions to the arrival of external news, an alternative hypothesis is that
booms and busts can also arise endogenously due to the irrationality of market participants [61]. In
this work, exemplified by a concise market configuration, the canonical El Farol Bar Problem, we
extended the QH model to capture endogenous crisis emergence in market entrance games. Crucially,
this analysis showed that bounded strategic reasoning can lead to higher probabilities of crises (i.e. fat
tails in attendance fluctuations), matching the dynamics of actual economic markets. Furthermore, we
related the resulting volatility to the diversity of strategic reasoning resources across the agent
population.

Of course, convergence to a desirable market capacity, an ‘equilibrium’, has been demonstrated for
the El Farol bar problem before [37,43,48,62]. Moreover, it has been shown that even a large number
(N→∞) of zero-intelligence agents can self-organize to the desired capacity under relatively general
conditions, simply due to the law of large numbers [43]. The model proposed in this work performed
at least as well as these approaches, even in systems with a relatively low number of heterogeneous
agents (N = 100), when the agents follow boundedly rational strategic reasoning.

However, convergence to equilibrium is a necessary but not sufficient characteristic for an adequate
model of actual markets, as ‘a non-stationary economy must experience at least some transient moments
of disequilibrium’ [7]. For example, under which crises can endogenously form and volatility can cluster
in time. Hence, we systemically explored the formation of crises based on abrupt deviations from an
equilibrium state. Specifically, we analysed the tail indices of endogenously emerging crises, categorized
by significant changes in attendance (3+σ events), where the system can be seen as briefly being out-
of-equilibrium. This analysis demonstrated that these fat tails are significantly heavier than one would

8

6

4

2

0

–2

–4

–6

–8
0 5 10 15 20

Figure 4. An example smoothed impulse response function for c = 0.2. Purple (orange) represents the proposed BRATS model
(Adaptive Strategies). The dark line represents the mean across runs, and the shaded lighter region is the bootstrapped 95%
confidence interval. The y-axis shows the change in volatility difference following the impulse, and the x-axis shows the time
since the impulse. Full results ( for the range of c) are shown in figure 7.
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expect under a rational expectations model without the arrival of any external news. We related these
resultant tail indices to actual market data, showing that the fat tails produced by the BRATS
approach decay at a realistic rate.

Finally, we traced and examined the endogenous emergence of periods of volatility based on changes
in agent beliefs and related this to the agent learning process. A key stylized fact of economic markets—
clustered volatility—was recreated using a concise learning update of agents’ reasoning resources.
Notably, the change in the overall diversity of agent beliefs was predictive of the change in future
volatility, indicating that the heterogeneity of agent beliefs is a crucial predictor of volatility.

These findings strengthened the conjecture that the diversity of market participant beliefs is one of the
‘most important propagation mechanism[s] of economic volatility’ [63]. A similar conclusion was reached
by Lux & Marchesi [58], where periods of instabilities caused by the ratio of chartists and
fundamentalists in the market were ‘quickly brought to an end by stabilizing tendencies’. The
diversity of strategies had not yet been fully explored in the context of the El Farol bar problem [64],
here we offered a way to analyse the population diversity in terms of reasoning resources. In doing
so, we quantified the market dynamics, confirming that during a period of high volatility, if agent
beliefs are correlated, the volatility persists. As the agents attempt to alter their beliefs to recover
market capacity, the correlation in the agent beliefs reduces over time—due to the different agents’
learning updates. Eventually, the system returns to a ‘calm’ steadier state, with less volatility,
supported by the increased diversity of beliefs.

In summary, the proposed approach captured three key desirable characteristics for a model of
economic markets. Specifically, we have shown how the BRATS agents can (i) converge to a good
average outcome, i.e. equilibrium, on a macro scale, which is punctuated by the (ii) abrupt emergence
of crises on a micro-scale, categorized by spontaneous ‘out-of-equilibria deviations’ in accordance with
actual market dynamics, and in addition, can (iii) recreate stylized facts of markets such as clustered
volatility. Importantly, these emergent phenomena occur endogenously, without any external news to
the system. The phenomena arise simply due to the interaction among heterogeneous BRATS agents.

This work adds to the growing literature on the interacting agent hypothesis. Various approaches
explore this hypothesis using relatively complex and fine-grained models. For example, heterogeneous
agent beliefs can model observed market price dynamics and volatility in the S&P 500 [65]. Likewise,
booms and busts in various housing markets can be explained through heterogeneous expectations
and beliefs [66–68]. In [34], features of financial time series can be recreated based on the dynamics of
opinion formation of heterogeneous agents, and in [35,36], through the competition between local and
global interaction among the agents in the market. By contrast, we aimed to capture complex market
dynamics within a concise and intuitive model of agent reasoning in a general market setting. In
doing so, we verified the hypothesis that the heterogeneity of interacting agents is a crucial factor
behind the endogenous emergence of crisis and stylized facts in economic markets. These works can
be seen as complementary, helping to support the interacting agent hypothesis.

Various approaches have been proposed to consider price changes as a result of attendance
fluctuations [52,55,69]. For future work, it may be instructive to incorporate price changes into the
analysis presented here, e.g. with the introduction of a market-maker. In addition, while we have
examined entrance into a single market, it would be insightful to explore such findings in a
generalized multiple market setting, where agents not only need to decide whether or not to enter,
but also which market to enter (if any) in a congestion style game.

By contrast to the long-standing belief that AS provides an adequate solution to this class of market
games, we have shown that bounded strategic reasoning can capture salient market dynamics more
convincingly. This study highlights that bounded strategic reasoning (‘I-think-you-think-they-think·· ·’)
across heterogeneous agents can explain periods of volatility and abrupt crises emerging in economic
markets, even without any external shocks.
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Appendix A. Experimental setup
All experiments are run for 30 Monte Carlo simulations to account for stochasticity. To implement the AS
model for our comparative analysis, we used the model presented in [49], specifically the ‘El Farol’model
from Chapter 3.

The explored range of attendance rates is c∈ [0.01, 0.02, …, 0.99]. Generally, the limiting cases of c = 0
and c = 1 are excluded as trivial, as these correspond to every agent going or staying out. When showing
individual plots for c’s, typically only c [ ½0:1, 0:2, . . ., 0:9� are displayed for readability.

Appendix B. Additional results plots
B.1. Convergence
A breakdown of utilization rates for the range of c values is presented in figure 5.

B.2. Emergence of endogenous crises
The tail-index α produced by the proposed approach falls in the 1–3 range, as expected by crisis
dynamics of emerging (1 < α < 2) and established (2 < α < 4) markets [57,58], as shown in table 2. By
contrast, the AS approach generates the α’s typically in the range 2.5–6 (i.e. smaller tails). With noise
traders, the α’s are also found to be significantly larger, in the range 4.5–7.5, indicating even smaller tails.

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)
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Figure 5. Average resource utilization for various enjoyable capacities c. Purple (orange) represents the proposed BRATS model
(Adaptive Strategies). The mean attendance is shown as the dark line, with ±1 s.d. as the lighter bars. Perfect utilization (c) is
displayed as the dashed red line. (a) c = 0.1, (b) c = 0.2, (c) c = 0.3, (d ) c = 0.4, (e) c = 0.5, ( f ) c = 0.6, (g) c = 0.7, (h)
c = 0.8 and (i) c = 0.9.
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B.3. Clustered volatility
The temporal auto-correlations in volatility are presented in figure 6, and the resulting impulse response
functions are visualized in figure 7.

Table 2. Average tail-index α computed using the Hill Estimator. Each subtable provides the results for a tail size. Each column
for an attendance rate c, with the averages across c’s presented as the μ ± σ column. Each cell shows mean estimated tail-index
α for a tail size and c. A lower α indicates a slower decay, and thus a fatter tail.

c

μ ± σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.5% BRATS 2.3 ± 0.5 1.7 1.6 2.5 2.7 2.8 2.7 2.4 1.9 2.4

AS 4.7 ± 1.1 3.1 3.4 4.1 4.4 4.6 6.1 5.8 6.2 4.7

noise 7.0 ± 0.3 7.1 7.0 6.8 7.2 7.5 6.6 7.2 7.0 7.0

5% BRATS 1.9 ± 0.8 0.8 1.3 2.0 2.6 3.1 2.5 2.0 1.4 1.2

AS 4.1 ± 1.0 2.7 2.9 3.5 3.8 4.2 4.9 5.1 5.4 4.6

noise 5.9 ± 0.2 5.9 6.2 5.7 6.1 6.2 5.8 5.9 5.8 5.9

10% BRATS 1.6 ± 0.6 1.1 1.0 1.4 2.1 2.6 2.0 1.5 1.1 1.2

AS 3.5 ± 0.8 2.3 2.6 3.0 3.4 3.6 4.2 4.1 4.5 4.1

noise 4.6 ± 0.1 4.6 4.9 4.6 4.8 4.6 4.5 4.6 4.6 4.6
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Figure 6. Autocorrelation in the attendance volatility, showing the presence of clustered volatility. Purple (orange) represents the
proposed BRATS model (Adaptive Strategies). The dashed grey line represents noise traders. The filled grey region around 0
highlights the area of no statistically significant correlations. (a) c = 0.1, (b) c = 0.2, (c) c = 0.3, (d ) c = 0.4, (e) c = 0.5, ( f )
c = 0.6, (g) c = 0.7, (h) c = 0.8 and (i) c = 0.9.
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Appendix C. Population heterogeneity
The normalized entropy of the population is used tomeasure the approximate heterogeneity (diversity) of the
agents’beliefs. The resulting entropy is normalizedbydividingby themaximal entropydistribution toprovide
a value between 0 and 1, with 0 indicating no diversity and 1 indicating maximal diversity. This formulation
allows us to explore the relationship between the population diversity and the resulting attendance volatility,
and to explain the potential emergence of periods of high volatility based on population belief changes.

For the BRATS approach (based on QHmodel), this corresponds to the entropy of agent resources β’s,
with each agent following a behaviour defined by equation (2.4) at any given time. Given the set R of all
agent resources βi across N agents (1≤ i≤N), the number of bins |B| is chosen according to the
Freedman–Diaconis rule for bin width W, as follows:

W ¼ 2 IQRðRÞffiffi½p
3�N

and jBj ¼ maxðRÞ �minðRÞ
W

9>>>=
>>>;

ðC1Þ

Then, the entropy is defined across B bins:

HB ¼ �
X
b[B

xb log2 xb,

HB ¼ �
X
b[B

1
jBj log2

1
jBj

and Hb ¼ HB

HB

9>>>>>>>>=
>>>>>>>>;

ðC2Þ

where xb is the proportion of agent resources β distributed within bin b.
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Figure 7. Smooth Impulse Response Functions. Purple (orange) represents the proposed BRATS model (Adaptive Strategies). The
dark line represents the mean from across runs, and the shaded lighter region the bootstrapped 95% confidence interval. The y-axis
shows the change in volatility difference following the impulse, and the x-axis shows the time since the impulse. (a) c = 0.1, (b)
c = 0.2, (c) c = 0.3, (d ) c = 0.4, (e) c = 0.5, ( f ) c = 0.6, (g) c = 0.7, (h) c = 0.8 and (i) c = 0.9.
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For the AS approach, the diversity is quantified by the entropy of the bitstring representation of the
chosen strategies s�i across N agents (1≤ i≤N) at a given time. For each agent i, in order to convert
the strategy s�i into a bitstring vi, we use the following function converting an element sik [ s�i to the
corresponding element vik [ vi:

vikðsikÞ ¼ 1, if sik � 0
0, otherwise

�
ðC3Þ

The bitstring vi is then converted to its decimal representation

Di ¼
Xj~vij
j¼1

vij2j~vij�j, ðC4Þ

where vij is the jth element in bitstring vi for agent i. The decimal representations Di are then used to
compute the entropy. As before, we form the set D of all the decimal representations Di across N
agents and choose the number of bins |L| according to the Freedman–Diaconis rule. The entropy is
computed as follows:

HL ¼ �
X
l[L

xl log2 xl,

HL ¼ �
X
l[L

1
jLj log2

1
jLj

and HS ¼ HL

HL

9>>>>>>>>=
>>>>>>>>;

ðC5Þ

where xl is the proportion of decimal representations D distributed within bin l.
We note that the used measure Hβ quantifies the diversity of beliefs of the population, and not the

diversity of information, as each agent observes the same past historical attendance. For the AS
approach, the measure HS quantifies the diversity of the predictors.

Appendix D. Granger causality
Granger causality is used to test if changes in diversity predict changes in attendance. In other words, this
test is used to check if there is information in the (current) diversity about future volatility.

As non-stationarity is frequently observed in market settings [70] (as is the case in the market entrance
game proposed here), to run the Granger causality test, we first consider stationary time series by taking
the change in volatility and the change in diversity (first-order differencing). An example realization of
these two time series for the proposed approach is presented in figure 8. The time series are confirmed to
have unit-root with the Augmented Dickey–Fuller test, and stationarity with the Kwiatkowski–Phillips–
Schmidt–Shin tests. A vector autoregression (VAR) model is then fitted to these time series. The lag-order
L of the model is selected by minimizing the Akaike information criterion (AIC) [71]. This selection
process is visualized in figure 9. VAR(L) is then used to test for Granger causality. For each c, the
harmonic mean p-values [72] is given to provide an overall significance level across realizations, with
a Bonferonni correction to account for multiple tests across c.

0 01000 1000

(a) (b)

Figure 8. Example stationary transformations from one realization. (a) Diversity change and (b) volatility change.
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The null hypothesis H0 for this test is that diversity does not cause Granger volatility. Rejection of H0

confirms if the population heterogeneity can be seen as a leading indicator for volatility in the proposed
market game. Failure to reject H0 means that there is no significant predictive information in population
diversity about future attendance fluctuations. The resulting p-values from the significance tests are
presented in table 3. The test for Granger causality is significant at the 95% confidence level across all
entry rates, indicating we can reject H0 and confirm that diversity change is a leading indicator of
volatility in the market game. This result shows that the distribution of agent beliefs is a significant
predictor of volatility in the market game.
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CHAPTER 7

Conclusion

7.1 Summary

Throughout this thesis, we have provided methods for capturing the endogenous emergence

of crises, volatility, and stylised facts in economic markets, from the interactions among

bounded rational agents. This bounded rational reasoning can be captured in various ways,

such as with hand-crafted heuristics, and is supported more generally by the proposed Quantal

Hierarchy model for quantifying limitations in strategic reasoning. We have verified the

proposed methods with actual market and underlying economic data, and demonstrated

well-performing out-of-sample forecasting, outperforming a range of canonical approaches

This thesis provided essential insights, demonstrating the usefulness of multi-agent systems

for capturing market dynamics from the bottom-up, and provided a contrasting perspective

to the top-down efficient market hypothesis. This thesis supports the interacting agent

hypothesis, explaining the endogenous emergence of out-of-equilibria phenomena through

the interaction among bounded rational agents, while also providing a method of capturing

the decision-making of such agents.

7.2 Contributions

The contributions of our work have been presented in four studies, addressing the three key

objectives of the thesis. The key findings for each objective are presented as single-sentence

summaries here.
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7.2.1 Objectives

Through four studies, we have addressed our three key objectives.

Demonstrate how interactions among inductive reasoning agents can recreate key price

dynamics. We developed an agent-based model which showed that interacting agents, acting

according to heuristics influenced by various (not necessarily perfectly rational) factors such

as social pressures, can capture key price dynamics in an economic market (Chapter 3), and

supported these heuristics in more general information processing terms (Chapters 4 and 6).

Model strategic higher-order reasoning to capture decision-making in competitive mar-

kets. We developed the Quantal Hierarchy model, in which strategic reasoning can be quan-

tified with information-processing costs, where higher-order reasoning requires additional

processing resources (Chapter 5). We successfully applied this model to several canonical

games.

Demonstrate how interactions among bounded strategic reasoning agents can lead to

endogenous crisis emergence. We applied the Quantal Hierarchy model to the canonical El

Farol bar problem and showed that bounded strategic reasoning can lead to crises emergence

and the recreation of various stylised facts (such as clustered volatility) in a concise multi-

agent model of economic markets (Chapter 6).

7.3 Future work

Throughout this thesis, we have outlined a novel framework for agent-based modelling, in

which agents are capable of (bottom-up) higher-order strategic reasoning. Such an approach

helps overcome some overly restrictive modelling assumptions made throughout traditional

economics. There are still ways to go before such approaches become mainstream. Firstly, we

have shown how such models can be used for out-of-sample forecasting (e.g. in Chapter 3),

and other recent work is also beginning to highlight the usefulness of multi-agent methods

for forecasting (Poledna et al., 2022; Gatti and Grazzini, 2020). Developing robust and
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generalisable models rigorously assessed through out-of-sample forecasting provides a key

direction for future work on multi-agent models.

In this thesis, we used machine learning techniques for optimising models, for example,

Bayesian optimisation for finding parameter configurations in our ABM and parameter values

for the Quantal Hierarchy model. However, this optimisation can be taken a step further,

where machine learning can be used to learn the behavioural rules of such systems (Zheng

et al., 2022; Ardon et al., 2023). Combining machine learning and multi-agent systems

promises to be a key direction for the next generation of market models, with AI-based

simulation techniques such as reinforcement learning (Lussange et al., 2021). As an example,

rather than the utility functions being manually defined, agent utility functions could be learnt

automatically through revealed preference analysis with inverse reinforcement learning (Arora

and Doshi, 2021).

With the developed Quantal Hierarchy model, following up on Chapter 5, the resource

parameter β is problem dependent and depends on the payoff magnitude (in a similar manner

to QRE, McKelvey et al., 2000). It would be interesting to analyse whether such a resource

parameter can be related across different games (Haile et al., 2008), whether this parameter

can be endogenised (Friedman, 2020), or whether this parameter perhaps follows some

fundamental underlying law. This provides an interesting area for future research.

When the Quantal Hierarchy model is applied to sequential games, this can be seen as a type

of sequential optimisation, and with β → ∞, the Bellman optimality principle is recovered

(analogous to the subgame perfect equilibrium solution). This relationship between the

Quantal Hierarchy model and the Bellman equation opens an interesting potential connection

with the active inference framework of Da Costa et al., 2020, and when considering beliefs

about other agents beliefs, opens a possible link to the recently proposed framework of

sophisticated inference (Friston et al., 2021). Investigating this connection promises to

strengthen the thermodynamic foundations of the QH model.

Additionally, we have shown the usefulness of the Quantal Hierarchy representation for

modelling human behaviour in a range of canonical games, and how a population of interacting



7.4 ADDITIONAL TOOL FOR POLICY-MAKERS 171

QH agents can generate key market phenomena in a concise market entrance game. Applying

such an approach to a broader class of games, for example, generalised congestion games,

could provide insights into a more comprehensive range of economic behaviour, e.g. capturing

various asset types (or multiple markets). There is much room for applying the methods

developed throughout this thesis to explain a broader range of economic phenomena not yet

discussed.

7.4 Additional tool for policy-makers

This thesis showed how a concise multi-agent model can explain various stylised facts of

economic markets, and the flexibility of such approaches also allows for in-depth fine-grained

models to be developed that capture pricing dynamics (and downturns) of actual markets,

such as the Australian housing market.

This demonstrates that multi-agent systems can capture economic phenomena unexplainable

by traditional equilibrium approaches, such as the endogenous formation of stylised facts

and crises. The work proposed provides an important additional tool to conventional models,

which work well in general market times, but struggle to capture punctuated out-of-equilibrium

phenomena, leaving policymakers "abandoned" during such times. The methods developed

can provide insights into financial vulnerability (through analysis of market stability), highlight

potential investment opportunities, and assist policymakers during complicated market states.

In Chapter 1, we discussed some of the concerns of top policymakers with conventional

approaches to market modelling, particularly under crises and uncertainty. The methods

proposed here, which relax rational expectations, efficiency, and (economic) equilibrium,

provide an additional tool at the disposal of such policymakers, which can be used to consider

various market scenarios (for example, through counter factual analysis), even when the

resulting dynamics are out-of-equilibrium. To paraphrase the opening quote of this thesis

(from Herbert Simon), as economics finds it more and more necessary to understand out-of-

equilibrium phenomena, the types of methods proposed here will find increased usage and

importance.
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