
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2022 to 2026 

2023 

Streaming and zeta potentials of basalt as a function of pressure, Streaming and zeta potentials of basalt as a function of pressure, 

temperature, salinity, and pH temperature, salinity, and pH 

Mirhasan Hosseini 
Edith Cowan University 

Faisal Ur Rahman Awan 
Edith Cowan University 

Nilesh Kumar Jha 
Edith Cowan University 

Alireza Keshavarz 
Edith Cowan University 

Stefan Iglauer 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2022-2026 

10.1016/j.fuel.2023.128996 
Hosseini, M., Awan, F. U. R., Jha, N. K., Keshavarz, A., & Iglauer, S. (2023). Streaming and zeta potentials of basalt as 
a function of pressure, temperature, salinity, and pH. Fuel, 351, article 128996. https://doi.org/10.1016/
j.fuel.2023.128996 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks2022-2026/2636 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2022-2026
https://ro.ecu.edu.au/ecuworks2022-2026?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F2636&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.fuel.2023.128996
https://doi.org/10.1016/j.fuel.2023.128996
https://doi.org/10.1016/j.fuel.2023.128996


Fuel 351 (2023) 128996

Available online 17 June 2023
0016-2361/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Full Length Article 

Streaming and zeta potentials of basalt as a function of pressure, 
temperature, salinity, and pH 

Mirhasan Hosseini *, Faisal Ur Rahman Awan , Nilesh Kumar Jha , Alireza Keshavarz , 
Stefan Iglauer 
Petroleum Engineering Discipline, School of Engineering, Edith Cowan University, 270 Joondalup Dr, Joondalup, 6027, WA, Australia   

A R T I C L E  I N F O   
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A B S T R A C T   

The electric surface charge of basalt in contact with filing fluids (e.g. water and CO2) has broad range of ap-
plications in varied fields such as gas geological storage sites, geothermal systems, and hydrocarbon reservoirs. 
The surface charge at the interface between a solid surface (e.g. rock) and liquid (e.g. aqueous solution) can be 
quantified by the zeta potential, thus zeta potential measurement is a useful technique for interpreting wetting 
characteristics of rock-fluid systems. However, there is no data for zeta potentials of basaltic rocks in presence of 
aqueous solutions or how zeta potentials may be affected by pressure, temperature, salinity, or pH. Thus, 
streaming potential measurements were performed to determine the zeta potential of basaltic rocks in the 
presence of aqueous NaCl solution at pore pressures (1.72 MPa to 6.9 MPa), temperatures (298 K and 323 K), 
brine salinities (1 wt% NaCl to 3.5 wt% NaCl), and pH values (4 to 10). Also, the effects of mineralogy and CO2- 
presence (dead and live brines) on the zeta potential were evaluated. The results showed that the zeta potential 
remained constant versus pressure, while it increased (became less negative) with increasing temperature and 
salinity, and decreased (became more negative) with increasing pH. This study provides key fundamental data 
and thus improves fundamental understanding of basalt-water-CO2 interactions, thereby aiding in the 
improvement of various industrial applications, including gas geo-storage schemes and geothermal energy 
production.   

1. Introduction 

Basalt is the most common igneous rock in Earth’s crust; it consti-
tutes 67% of the ocean floor (with 2–4 km thick layers), and covers 10% 
of the continents’ surfaces [1–4]. Such basaltic formations may form 
groundwater aquifers, geothermal reservoirs or hydrocarbon reservoirs 
[5–10]. However, while fluid flow through sedimentary rocks (e.g. 
carbonates or sandstones) has been widely investigated (e.g. [11–14]), 
fluid flow through basaltic rocks is only poorly understood [15]. One 
key property related to such fluid flow is the streaming potential C 
(which is created when an electrolyte (here brine) flows through a sta-
tionary porous medium (here basalt) [16,17]). C has a broad spectrum of 
important applications, including in enhanced hydrocarbon recovery, 
geothermal engineering, volcanology, drinking water production, hy-
draulic fracturing, CO2 geo-sequestration (CGS) and H2 geo-storage (e.g. 
[18–23]). C is related to the zeta potential (ζ) of the basalt, which is one 
of the main wettability-determinants and thus directly influences fluid 

flow through the basalt (e.g. [24–26]). 
The ζ of sedimentary rocks has been widely investigated in the 

literature for various purposes. Regarding the influence of high salinity 
brines on ζ, Singh et al. (2022) [27], Collini et al. (2020) [18], Cherubini 
et al. (2018) [28], and Al Mahrouqi et al. (2017) [33] investigated 
carbonates, while Walker & Glover (2018) [29], Alarouj et al. (2021) 
[30], and Nasralla & Nasr-El-Din (2014) [31] examined sandstone. The 
effect of elevated temperature on ζ for carbonates was studied by Al 
Mahrouqi et al. (2016) [32], Al Mahrouqi et al. (2017) [33], and 
Rodríguez & Araujo (2006) [34], while Vinogradov & Jackson (2015) 
[35] investigated this effect for sandstone. In terms of conducting ζ 
measurements under multi-phase flow conditions, Revil & Cerepi (2004) 
[36] conducted tests on carbonates, while Sprunt et al. (1994) [17] 
studied carbonates and sandstone. Additionally, Alroudhan et al. (2016) 
[37] investigated the impact of brine composition on ζ for carbonates, 
and Thanh & Sprik (2016) [38] examined this effect for sandstone. The 
effect of brine pH on ζ for carbonates was examined by Vdović & Bǐsćan 

* Corresponding author. 
E-mail addresses: m.hosseini@ecu.edu.au, mirhasan.hosseini@gmail.com (M. Hosseini).  

Contents lists available at ScienceDirect 

Fuel 

journal homepage: www.elsevier.com/locate/fuel 

https://doi.org/10.1016/j.fuel.2023.128996 
Received 2 April 2023; Received in revised form 29 May 2023; Accepted 11 June 2023   

mailto:m.hosseini@ecu.edu.au
mailto:mirhasan.hosseini@gmail.com
www.sciencedirect.com/science/journal/00162361
https://www.elsevier.com/locate/fuel
https://doi.org/10.1016/j.fuel.2023.128996
https://doi.org/10.1016/j.fuel.2023.128996
https://doi.org/10.1016/j.fuel.2023.128996
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fuel.2023.128996&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Fuel 351 (2023) 128996

2

(1998) [39], Vdović (2001) [40], Mahani et al. (2017) [22], and Chen 
et al. (2014) [41]. In the case of sandstone, Vinogradov & Jackson 
(2015) [35], Alarouj et al. (2021) [30], and Hidayat et al. (2022) [19] 
investigated this effect. 

However, ζ of volcanic rocks received only little attention. For 
example, Jouniaux et al. (2000) [42] measured the zeta potential of 11 
andesitic volcanic samples with different permeabilities and concluded 
that the increase in permeability of basalt results in an increase in C. 
They attributed this variation to the reduction of rock’s effective con-
ductivity with permeability (note: C has inverse relation with the 
effective conductivity (e.g. [43]), see section 2.3). In another study, 
Hase et al. (2003) [44] derived the zeta potential of various rocks from 
Aso volcano and found that basalt samples with low SiO2 content and 
high isoelectric points (note: isoelectric point is the pH value where ζ 
equals zero [45]) showed positive zeta potentials (ζ ranged from − 20 to 
+ 20 mV). Moreover, Aizawa et al. (2008) [46] derived the zeta po-
tential of 73 volcanic samples and found 9 samples with positive zeta 
potential, 11 samples with small values<10 mV, and the remaining 
samples with negative zeta potentials. There are also a few studies 
reporting ζ of the minerals which are commonly found in basaltic rocks, 
including augite [47], olivine [48], labradorite [49], albite [50], and 
microcline [51]. Under typical experimental conditions, most of these 
minerals have been found to exhibit negative zeta potentials. 

Various thermophysical parameters, including pressure, tempera-
ture, brine salinity and composition (note that formation water always 
contains dissolved salts which can reach maximum saturation [52–56]), 
and brine pH can vary significantly in the underground [57,58], and this 
may significantly affect C and ζ [17,36,59,60]. However, the effects of 
these parameters on ζ of basaltic rock remains unknown. 

In this study, we therefore examine the influence of pressure, tem-
perature, pH value and brine salinity on ζ of a New Zealand basaltic rock 
sample. This also includes the effect of CO2 (an acidic gas) added on ζ; 
this study will thus aid various important applications, including gas 
geo-storage (CO2 and H2) and geothermal projects. 

2. Experimental methodology 

2.1. Materials 

A New Zealand basaltic core plug (petrophysical and mineralogical 
properties are listed in Table 1) was retrieved from Auckland Volcanic 
Field (AVF, depth = 74 m, age = 68.3 ka), New Zealand [61]. The 
sample contained labradorite ((Na,Ca)1-2Si3-2O8), augite (Ca(Fe,Mg) 
Si2O6), olivine ((Mg,Fe)2SiO₄), and nepheline ((Na,K)AlSiO4) as main 
mineral components [61] (compare Table 1). Furthermore, aqueous 
NaCl solutions (“dead brines”) were prepared by dissolving NaCl salt 

(purity ≥ 99 mol% from Scharlab) in deionized (DI) water (electrical 
conductivity of 0.02 mS.cm− 1 from David Gray). Small amounts of 
NaOH (purity ≥ 99 mol% from Scharlab) and (aqueous) HCl (concen-
tration of 10− 3 mol/L and purity ≥ 99 mol% from Scharlab) were added 
for adjusting pH values (measured via a FiveGo pH meter, Mettler 
Toledo, accuracy of 0.01 pH units). Live brine was also prepared by 
dissolving CO2 (purity > 99.9 mol% from BOC) in the dead brine at 
HPHT conditions, see below. The compositions of the produced brines 
(after core flooding, see also below) were analyzed via inductively 
coupled plasma (ICP) tests using a HORIBA Jobin Yvon® ULTIMA 2C 
instrument. 

2.2. Experimental procedure 

The streaming potential experiments were conducted using an HPHT 
core flooding system, Fig. 1. The core sample was cleaned with toluene 
and methanol to remove any impurities that could interfere with the 
flow or alter the surface properties. The core holder with the sample 
inside and associated electrodes on two sides was placed inside an oven 
with controlled temperature (accuracy of ± 1 ◦C). The core holder is 
made of polyether ether ketone (PEEK) which is a high-performance 
thermoplastic known for its excellent mechanical and chemical prop-
erties, making it suitable for use in experimental setups involving fluid 
flow and pressure [32]. Using a PEEK core holder offers researchers 
several advantages, including resistance to chemicals, tolerance for high 
temperatures, strong mechanical properties, effective electrical insu-
lation, and dimensional stability [63]. These benefits enhance the 
dependability and precision of streaming potential measurements con-
ducted during core flooding experiments [64]. The pumps (500D Has-
telloy Teledyne ISCO pumps, flow rate resolution ~ 0.5% of setpoint, 
pressure resolution within 0.1% full scale) were used to apply an over-
burden pressure of 3.45 MPa and a pore back pressure of 1.72 MPa; brine 
was then injected through the sample at different flow rates (1 ml/min, 
2 ml/min, and 3 ml/min) to equilibrate the rock core sample with the 
brine (note: the core sample was vacuumed before saturating it with 
brine to avoid air trapping). The back-pressure pump plays a crucial role 
in streaming core flooding experiments by providing controlled flow 
rate, representative sampling, continuous collection, and enhanced ef-
ficiency during the collection of brine or effluent fluid. The pressure 
control system (including pumps and pressure gauges) controls the flow 
rate and pressure of the brine flowing through the core. Two non-
polarizing Ag/AgCl electrodes are connected to a high impedance 
voltmeter to monitor the voltage of the brine. This brine flow through 
the rock resulted in pressure differential and voltage between the two 
sides of the core; and flow was continued until stable pressure differ-
ential and stable voltage were achieved. This was followed by a system 
relaxation (i.e. a static state without flow) and the associated static 
voltage (with zero pressure differential) was recorded. This process was 
repeated for different pore pressures (up to 6.9 MPa) and overburden 
pressures (up to 10.34 MPa) at the prescribed temperatures (note that 
the effective stress, i.e. the difference between overburden and pore 
back pressures was set to a constant 3.45 MPa [64]). All the pressure and 
voltage values were recorded and analyzed by a data acquisition system. 

2.3. Data analysis 

The associated streaming potential coupling coefficient (Csp) and 
zeta potential (ζsp) were calculated with the paired stabilization method 
described in [60]; thus [59]: 

Csp =
ΔV
ΔP

, (1)  

where ΔV is the stabilized voltage (in mV) and ΔP is the stabilized 
pressure differential (in MPa). Note that Csp is therefore the slope of 
stabilized ΔV plotted versus stabilized ΔP (for varying flow rates, here 1 

Table 1 
Petrophysical and mineralogical properties of the basalt sample used in this 
study.  

Property Result Unit 

Mineralogy1 Labradorite (42), Augite (37.5), Olivine (11.9), 
Nepheline (8.6) 

wt 
% 

Core plug 
dimensions 

Length = 5.2, Diameter = 3.8 cm 

Porosity2 10 ± 1.0 % 
Brine permeability3 4.6 ± 0.3 mD 
Formation factor 

(F)4 
61 ± 2 –  

1 Measured via X-ray diffraction (XRD, Bruker-AXS D8 instrument) analysis 
[54]. 

2 Measured via UltraPoroPerm-910 from Core Laboratories. 
3 Measured in core-flood apparatus (shown in Fig. 1). Permeability was 

measured at 10 MPa overburden pressure, and the error was obtained based on 
three different flow rates used at the same overburden pressure. 

4 F = σw/σrw is used when surface electrical conductivity is negligible for sa-
linities > 0.1 M (as assumed here, see section 2.3)[62]. 
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ml/min, 2 ml/min, and 3 ml/min) at constant pH, brine salinity (S), 
overburden pressure, pore back pressure (p), and temperature (T) [65]. 
Fig. 2 shows an example of how Csp was determined at p = 3.45 MPa, T 
= 323 K, S = 1 wt% NaCl, and brine pH = 7. 

The conductivity of a core saturated with water (σrw) can be calcu-
lated using the differential effective medium (DEM) theory [66,67]: 

σrw =
σw

F

(
1 − σs/σw

1 − σs/σrw

)m

, (2)  

where σw is the water conductivity (here obtained from [68]), F is the 
formation factor, σs is the rock surface conductivity, and m is the 
cementation exponent. Assuming that the effect of surface conductivity 
is negligible (when compared to the bulk fluid conductivity – i.e. no 
additional conductivity occurs in the vicinity of the charged interface 
and the effective conductivity equals the fluid conductivity, resulting in 
a constant F for all single-phase experiments [44]), which is justified as 
higher ionic strength (typically for salinities > 0.1 M if the rock contains 
minerals other than clays [62]), the following equation is obtained [69]: 

F =
σw

σrw
. (3) 

Thus, ζsp could be obtained via the classical Helmholtz- 

Smoluchowski equation [70]: 

ζsp =
μwσwCsp

εw
, (4)  

where µw is the dynamic brine viscosity (here obtained from [71]), Ɛw is 
the brine permittivity (here obtained from [71]), and Csp is obtained 
from Eq. (1), see above. The average standard deviation of Csp and ζsp 
were ± 0.3 mV/MPa and ± 2.5 mV based on replicate measurements. 

3. Results and discussion 

All measured C are given in Table 2 and Fig. 3. In the following, the 
effect of each thermophysical parameter is discussed in detail. 

3.1. Effects of pressure and temperature 

Basaltic rock can be found at shallow (near to surface) or deep (i.e. 
up to 200 km) depth, resulting in a wide range of pore pressures existing 
in the rock [72]. However, for CGS and geothermal purposes, the ideal 
production depth lies within 200 to 1000 m underground depth (mostly 
due to limitations/complications in drilling operations, including slow 
penetration rate, drill bit and string stuck due to pressure differential 

Fig. 1. Experimental apparatus for streaming potential measurements used in this study: (a) ISCO pump (flow rate accuracy of 0.5% of setpoint, pressure accuracy 
within 0.1% full scale) for injecting brine, (b) ISCO back-pressure pump for collecting brine, (c) ISCO pump for applying overburden pressure, (d) high precision 
pressure transducer (Keller-Druck, 0.1% accuracy) for monitoring the inlet pressure, (e) high precision pressure transducer for monitoring the outlet pressure, (f) 
nonpolarizing Ag/AgCl electrode (accuracy 0.15%) at injection side, (g) nonpolarizing Ag/AgCl electrode at collection side, (h) core holder, (i) data acquisition 
system, (j) oven, (k) effluent collection line. 
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between wellbore mud pressure and pore pressure, wellbore collapse, 
among others [73]). Thus, in this study, we examined a pressure range of 
1.72 MPa to 6.9 MPa to mimic realistic underground pressures for gas 
geo-storage purposes [2]. 

Dead brine C did not change with pore pressure (at constant tem-
perature, salinity and pH), Table 2 and Fig. 3. Moreover, ζ remained 
constant when pore pressure increased from 1.72 MPa to 6.9 MPa (at 
constant temperature), Fig. 4; this behavior was also observed for 
sandstone (e.g. [19,59]) and carbonates (e.g. [34]); note that for dead 
brine at constant salinity (here 1 wt% NaCl) and constant temperature 
(here 298 or 323 K), µw, σw, and Ɛw and also pH remained constant 
[59,71,74]. However, it was found by [59] that for live brine (where pH 
decreased with increase in pore pressure due to increased CO2 dissolu-
tion, reaction with water and associated increased acidity, e.g. [75–77]), 
ζ increased with pore pressure due to protonation of functional surface 
groups on the rock (e.g. [35,59,74,78,79]). This observation signifi-
cantly impacts the wettability of CO2-basalt (which increases with 
pressure, consistent with the more hydrophobic rock surface charac-
teristics [80,81]). The increase in CO2-basalt wettability with increase in 
pressure can also be attributed to the increased intermolecular forces 
between basalt and CO2 [82]. 

Furthermore, C and ζ increased with temperature (decrease in |C| 
and |ζ|). For example, when temperature increased from 298 K to 323 K 
at 5.17 MPa, C and ζ changed from − 9.1 mV/MPa to − 3.6 mV/MPa and 
from − 22 mV to − 9.1 mV, respectively. This result is again similar to the 
responses observed for sandstone (e.g. [35,59,74]) and carbonates (e.g. 
[32–34]), and is attributed to the decrease in pH when temperature 
increases at low ionic strength (Note that this is caused by dissociation of 
water molecules which are more vibrated and ionized at higher tem-
perature, resulting in an increase in hydronium ions and consequently 
an acidic behavior), [74,83]. Moreover, Ɛw and µw decreased with 
temperature, while σw increased with temperature (i.e. by increasing 
temperature from 298 K to 323 K, σw increased from 17.83 mS/m to 
27.29 mS/mv (see Eq. (9) in [68]), while Ɛw decreased from 6.64 × 10- 

10F/m to 5.96 × 10− 10F/m (see Eq. (A-3) in [71]) and µw decreased from 
9.02 × 10− 4 Pa.s to 5.58 × 10− 4 Pa.s (see Eq. (A-9) in [71]) for dead 
brine (with a salinity of 1 wt% NaCl at 5.17 MPa). Thus, based on Eq. (4), 
µw and C are the most significant parameters affecting ζ and leading to its 
increase with temperature. We also conclude that the increase in CO2 
wettability with temperature (for the basalt/CO2/brine system, e.g. 
[80,81]) can at least partially be attributed to the decrease in |ζ| with 
increasing temperature, see Fig. 4. 

3.2. Effect of salinity 

C and ζ increased with salinity, Fig. 5; for example, when salinity 
increased from 1 wt% NaCl to 3.5 wt% NaCl at 5.7 MPa and 323 K, C 
increased from − 3.6 mV/MPa to − 0.1 mV/MPa, while ζ changed from 
− 9.1 mV to − 0.7 mV. However, ζ remained negative over the whole 
salinity range tested. Such a decrease in |ζ| with increasing salinity was 
also reported for sandstone (e.g. [29–31,64,65]) and carbonates (e.g. 
[18,28,33]), albeit anomalies regarding the salinity dependence of ζ 
have also been reported for sandstone (e.g. [59,84]); those anomalies 
were attributed to other minerals such as chlorites, montmorillonite, 
mica, feldspars, and ilmenite contained in the sandstone [51]. Mecha-
nistically this ρ-s response implies that alterations in the electrical re-
sistivity (ρ) of the rock are related to the compression of the electric 
double layer and the subsequent surface charge (s) shielding (i.e. the 
negative surface charge of basalt is shielded by the cations of the dis-
solved salt; note that as the double layer compresses, the ions in the 
diffuse layer move closer to the surface, leading to increased shielding of 
the surface charges on the basalt [85,86]), which results in a more 
electrically neutral surface. Moreover, Ɛw, decreased with salinity, but 
µw and σw increased with salinity. For example, when salinity increased 
from 1 wt% NaCl to 3.5 wt% NaCl (at p = 5.17 MPa and T = 323 K), σw 
increased from 27.28 mS/m to 83.08 mS/m, while Ɛw slightly decreased 
from 5.96 × 10− 10F/m to 5.36 × 10-10F/m and µw slightly increased 
from 5.58 × 10− 4 Pa.s to 5.77 × 10− 4 Pa.s (for the latter three param-
eters dead brine with 1 wt% NaCl salinity was considered). Thus, based 
on Eq. (4), C is the most significant parameter which reduces |ζ| when 
salinity increases. Consequently, CO2 wettability increases with salinity 
for basalt due to the decrease in |ζ| with increasing salinity, see Fig. 5. 

Divalent ions found in salts such as Mg2+ and Ca2+ exhibit stronger 
electrostatic interactions with the surface of the basaltic rock when 
compared to monovalent ions such as K+ and Na+ [87,88]. These in-
teractions lead to a decrease in the magnitude of the zeta potential [89]. 
Moreover, certain salts, such as Na2CO3, KOH, (NH4)2SO4 and KHP have 
the ability to alter the pH of the brine [90,91]. These pH changes impact 
the zeta potential of basaltic rocks [29]. In the presence of hydroxyl ions 
(OH− ), creating alkaline conditions (e.g. by Na2CO3 and KOH), the zeta 
potential becomes more negative [92]. Conversely, the presence of 
hydrogen ions (H+), leading to acidic conditions (e.g. by (NH4)2SO4 and 
KHP), leads to less negative zeta potentials [93], see also section 3.3. 

3.3. Effect of pH value 

In case of CGS, the pH value of the pore fluid in the basalt can vary 

Fig. 2. Csp (curve slope) determined via plotting ΔV versus ΔP (for 1 ml/min, 2 
ml/min, and 3 ml/min brine flow rates) at 3.45 MPa, 323 K, 1 wt% NaCl brine 
salinity at pH = 7. 

Table 2 
Streaming and zeta potentials measured for basalt.  

Brine p, MPa T, K S, wt% NaCl pH1 pH2 C, mV/MPa ζ, mV 

Dead  1.72 298 1  7.0  7.1  − 9.6  − 23.3 
Dead  3.45 298 1  7.0  7.3  − 9.5  − 23.1 
Dead  5.17 298 1  7.0  7.4  − 9.1  − 22.0 
Dead  6.9 298 1  7.0  7.3  − 9.2  − 22.3 
Dead  1.72 323 1  7.0  7.0  − 3.2  − 8.2 
Dead  3.45 323 1  7.0  7.1  − 3.6  − 9.3 
Dead  5.17 323 1  7.0  7.3  − 3.6  − 9.1 
Dead  6.9 323 1  7.0  7.2  − 3.3  − 8.6 
Dead  5.17 323 1  4.0  6.4  − 1.4  − 3.7 
Dead  5.17 323 1  8.5  7.4  − 4.8  − 12.3 
Dead  5.17 323 1  10.0  7.9  − 6.6  − 16.9 
Dead  5.17 323 1.8  7.0  7.0  − 2.0  − 8.2 
Dead  5.17 323 2.6  7.0  7.1  − 0.7  − 4.6 
Dead  5.17 323 3.5  7.0  7.2  − 0.1  − 0.7 
Live  5.17 323 1  7.0  5.8  − 2.5  − 6.3  

1 injected brine at atmospheric condition. 
2 collected brine at atmospheric condition. 
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significantly, from relatively low (pH = 3–4 [93–96]) to high (pH =
8–11, due to the basic nature of basalt which contains 45 to 55% silica (i. 
e. mafic minerals, plagioclase feldspars and feldspathoid minerals, e.g. 
[97]). Here, C and ζ increased strongly with decreasing pH, as expected 
(consistent with data reported [29,30,35,51,59] for sandstone and 
[22,39,40,98,99] for carbonates), and due to protonation of surface 
function groups (compare reaction schemes 1 and 2, Fig. 6); for instance, 
C increased from − 6.6 mV/MPa to − 1.4 mV/MPa and ζ increased from 
− 16.9 mV to − 3.7 mV when pH decreased from 10 to 4 (moving pH 
away from point of zero charge or PZC = 3.5 for basalt [100]). Again, ζ 
remained negative over the whole pH range tested here, consistent with 
literature data (reported for other minerals, e.g. [29,59,74]). Overall 
alkaline components in the basalt (e.g. calcium, magnesium, sodium and 
potassium which create pH > 7, [92,101]) reduce the surface potential 
(i.e. render it more negative, by adding OH− ions onto the rock surface 
(i.e. via deprotonation reaction, see Scheme 2) while the acidic com-
ponents (e.g. iron and aluminum which create pH < 7, [93,102]) in-
crease ζ by adding protons (H+) onto the rock surface (i.e. via a 
protonation reaction, see Scheme 1). 

In addition, in CGS, dissolution trapping is a major storage mecha-
nism, and generally CO2 mixes with H2O around the edges of the 
injected CO2 plume which (see above) creates acidic live brine 
[75,103–106]. Thus, we conducted one test for 1 ml/min, 2 ml/min, and 
3 ml/min brine flow rates with live brine (1 wt% NaCl brine equilibrated 
with CO2 at 5.17 MPa and 323 K) and compared the result with that of 
dead brine (at the same test pressure and temperature). Now, while C 
was − 3.6 mV/MPa and ζ was − 9.1 mV for dead brine (pH = 7.3 for 
produced brine at atmospheric condition, see Table 2), C = − 2.5 mV/ 
MPa and ζ = − 6.33 mV were measured for live brine (pH = 5.8 for 
produced brine at atmospheric condition, see Table 2). This higher ζ for 
live brine is consistent with our results in terms of the effects of pH on ζ, 
see above, and it is also consistent with [19,59] where they tested these 
effects on San Saba sandstone sample at 4.5 to 10 MPa and 298 to 313 K 
and compared their results with Fontainebleau sample at the same 
experimental conditions. 

Fig. 3. Streaming potential C of basalt as a function of various thermophysical parameters: (a) effect of pressure and temperature, (b) effect of NaCl concentration 
(measured at 5.17 MPa and 323 K for dead brine), and (c) effect of pH value of the brine (measured at 1 wt% NaCl concentration, 5.17 MPa, and 323 K for 
dead brine). 
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3.4. Effect of rock mineralogy 

Rock mineralogy significantly affects ζ [64], and it has been sug-
gested that ζ can be estimated as a weighted average of the zeta po-
tentials of all minerals in the rock [30]. Consequently, ζ of the rock is 

mostly determined by the ζ of the dominant minerals in that rock [59]. 
For example, in the basalt studied here, the dominant minerals were 
labradorite and augite (constituting a total of 79.5 wt% of the rock, see 
Table 1); thus, it is expected that ζ of the basalt is mostly affected by ζ of 
these two minerals. 

Augite (a pyroxene mineral which constitutes 37.5 wt% of the basalt) 
tends to exhibit a negative zeta potential, under typical experimental 
conditions [49]. This is primarily attributed to the presence of nega-
tively charged surface groups or sites (e.g. silicate groups) on its surface. 
These silicate groups can undergo ionization in an aqueous environ-
ment, resulting in the release of OH− ions or other negatively charged 
species [107]. Under neutral to alkaline pH conditions, the dissociation 
of silicate groups on the augite surface contributes to a net negative 
charge [108]. Tohry et al. (2021) [47] found that ζ of hematite is more 
negative than that of augite (|ζaugite|<|ζhematite|). Moreover, Forbes and 
Franks (2013) [109] found that ζ of quartz is more negative than that of 
hematite (|ζhematite|<|ζquartz|). We, thus, expect that ζ of quartz should 
be more negative than that of augite (|ζaugite|<|ζquartz|). 

Similarly, the zeta potentials of labradorite (a plagioclase feldspar 
which constitutes 42 wt% of the basalt) and nepheline (a feldspathoid 
mineral which constitutes 8.6 wt% of the basalt) are negative under 
typical experimental conditions [49,110], indicating their propensity to 
attract and interact with positively charged species (cations) in the 
surrounding solution. This can be attributed to the presence of charged 
surface groups on the mineral surfaces, which are usually derived from 
the dissociation of OH groups on the surface of the minerals [107]. 

Despite augite, labradorite and nepheline which tend to exhibit 
negative ζ, olivine (a magnesium iron silicate which constitutes 11.9 wt 
% of the basalt) has positive ζ at pH = 5 to 7 [48], resulting in an in-
crease in ζ for basalt. 

Overall, ζ of quartz is found to be more negative than that of the 

Fig. 4. Zeta potential of the dead brine-basalt system as a function of pore 
pressure and temperature (measured at 1 wt% NaCl and pH = 7). 

Fig. 5. Basalt zeta potential as a function of NaCl concentration in the dead 
brine (measured at p = 5.17 MPa, T = 323 K and pH = 7). 

Scheme 1. Protonation of FeOH surface group.  

Scheme 2. Deprotonation of CaOH surface group.  

Fig. 6. Zeta potential of basalt as a function of pH value of the brine (measured 
at 1 wt% NaCl concentration, 5.17 MPa and 323 K). 
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dominant minerals in the basalt, such as labradorite (e.g. as shown in 
[29] compared to [49]) and augite (as mentioned above). Additionally, ζ 
of olivine is positive. Therefore, based on these findings, we can 
conclude that in a macro-scale, ζquartz is more negative than ζbasalt. It is 
also important to note that since the SiO2 content in basalt (i.e. 52 wt%) 
is less than that of quartz [111], ζquartz is more negative than ζbasalt [44], 
which is consistent with literature results (e.g. [109,112,113]) and our 
result in this study (e.g. see Figs. 4, 5 and 6 for basalt and sandstone). 
Consequently, more gas wettability of basalt/gas/brine system is ex-
pected compared to that of quartz/gas/brine system (e.g. [2,81,114]) 
due to less |ζ| in the basalt. 

Table 3 lists concentrations of the main cations in the dead and live 
effluents. In this regard, identification of the dissolved Na is impossible 
as it is hard to distinguish between Na in NaCl aqueous solution and the 
dissolved Na. However, it is clearly seen a significant increase in con-
centration of Ca and carbonate (CaCO3) mineral and a non-significant 
increase in concentration of Fe and K by the live brine (pH = 5.8) 
compared to the dead brine (pH = 7.3), implying more dissolution of the 
minerals by the live brine. This shows the impact of a pH < 7 environ-
ment on the mineral dissolution, where divalent cations (e.g. Mg2+, 
Ca2+, and Fe2+) are released into the solution [115,116] (note that the 
dissolution rate of basalt is a function of pH and temperature [117]). The 
release of Ca2+ cations as an alkali component of the basalt reduces the 
pH of the system, implying the less negative zeta potential with the live 
brine compared to the dead brine. It is notable that high concentration of 
the divalent cations can enhance the rate of carbon mineralization 
[118], indicating that the studied basalt can be a good host rock for 
mineral trapping of CO2. Furthermore, the permeability and porosity of 
the basaltic host rock can be increased due to the more mineral disso-
lution through the live brine [119], resulting in an increase in the 
streaming potential coupling coefficient, consistent with [42]. 

4. Conclusions 

The electric surface charge of basaltic rocks saturated with geo-fluids 
(e.g. water, CO2 and H2) has many applications in various fields such as 
CO2 and H2 geological storage sites, hydrocarbon reservoirs, and 
geothermal systems [18–20,23]. Therefore, the zeta potential of a 
basaltic rock (saturated with aqueous NaCl solutions) was deduced from 
streaming potential measurement and the effects of pore pressure, 
temperature, salinity, rock mineralogy and pH were reported for the first 
time. The key findings of the study are as follows:  

• ζ was negative at all thermophysical conditions examined in this 
study; the ζ of dead brine remained constant versus pore pressure (as 
the pH value did not change). However, ζ strongly increased when 
CO2 was added (and pH decreased significantly, live brine); thus the 
magnitude of ζ decreased with pore pressure when CO2 was present, 
implying an increase in CO2 wettability with pore pressure, and 
consistent with independent contact angle measurements (e.g. 
[80,81]). 

• ζ increased (attained less negative values) with increasing tempera-
ture (implying an increase in CO2 wettability with temperature, 
consistent with literature [2,80,81,120]) and salinity, but decreased 
(became more negative) with increasing pH.  

• Pore pressure, temperature and salt type have an indirect impact on 
the ζ via impact on pH, while the pH value strongly affects ζ 
[19,29,38]. 

• The ζbasalt measured in this study is less negative than ζsandstone re-
ported in the literature (i.e. ζbasalt = -9.53 mV/MPa and ζsandstone =

-15.7 mV/MPa at p = 3.45 MPa, T = 298 K, pH = 7 and S = 1 wt% 
NaCl were obtained, e.g. [19]). 

The fundamental results reported in this study are relevant for many 
applications, including gas geo-storage (CO2 and H2), subsurface flow 
pattern interpretation and geothermal projects. 
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system in fractured basalt: a case study from Kollafjørður, Faroe Islands. NE- 
Atlantic Ocean Geothermics 2019;82:296–314. 

[8] Khadri S, Moharir K. Characterization of aquifer parameter in basaltic hard rock 
region through pumping test methods: a case study of Man River basin in Akola 
and Buldhana Districts Maharashtra India. Modeling Earth Systems Environ 
2016;2(1):1–18. 
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