
A Systematic Methodology to Evaluating

Optimised Machine Learning Based

Network Intrusion Detection Systems

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

of Rhodes University

Hatitye Chindove

Grahamstown, South Africa

June 20, 2022

Abstract

A network intrusion detection system (NIDS) is essential for mitigating computer network

attacks in various scenarios. However, the increasing complexity of computer networks

and attacks makes classifying unseen or novel network traffic challenging. Supervised

machine learning techniques (ML) used in a NIDS can be affected by different scenarios.

Thus, dataset recency, size, and applicability are essential factors when selecting and

tuning a machine learning classifier.

This thesis explores developing and optimising several supervised ML algorithms with

relatively new datasets constructed to depict real-world scenarios. The methodology in-

cludes empirical analyses of systematic ML-based NIDS for a near real-world network

system to improve intrusion detection. The thesis is experimental heavy for model assess-

ment. Data preparation methods are explored, followed by feature engineering techniques.

The model evaluation process involves three experiments testing against a validation, un-

trained, and retrained set. They compare several traditional machine learning and deep

learning classifiers to identify the best NIDS model.

Results show that the focus on feature scaling, feature selection methods and ML algo-

rithm hyper-parameter tuning per model is an essential optimisation component. Distance

based ML algorithm performed much better with quantile transformation whilst the tree

based algorithms performed better without scaling. Permutation importance performs

as a feature selection method compared to feature extraction using Principal Component

Analysis (PCA) when applied against all ML algorithms explored. Random forests, Sup-

port Vector Machines and recurrent neural networks consistently achieved the best results

with high macro f1-score results of 90% 81% and 73% for the CICIDS 2017 dataset; and

72% 68% and 73% against the CICIDS 2018 dataset.

ii

Acknowledgements

I want to acknowledge the following in their contributions to this thesis:

First, I would like to extend my gratitude to my supervisor, Dr Dane Brown, who pro-

vided extended support throughout this thesis and provided feedback whenever I needed

guidance.

I want to thank Professor Barry Irwin and the rest of the Rhodes University Computer

Science department for an excellent opportunity to complete this Qualification. The

department support made it possible for me to complete this research successfully.

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Question . 2

1.3 Research Objectives . 3

1.4 Research Contributions and Limits . 3

1.5 Document Structure . 4

2 Concepts and Literature Review 5

2.1 Intrusion Detection Systems . 5

2.2 NIDS Model Development Methods . 6

2.2.1 Signature-based Detection . 6

2.2.2 Anomaly-based Detection . 7

2.3 Machine Learning-Based NIDS . 8

2.3.1 Overview of Machine Learning . 8

2.3.2 Data Preparations . 9

2.3.3 Feature Scaling and Transformation 11

2.3.4 Feature space Reduction . 11

iii

CONTENTS iv

2.3.5 Model Evaluation . 13

2.3.6 Classification Algorithms . 14

2.4 Related Studies . 23

2.4.1 Related NIDS . 24

2.4.2 Discussion of Related NIDS . 29

2.5 Literature Review Summary . 30

3 Experimental Design 31

3.1 Methodology . 31

3.1.1 Overview . 31

3.1.2 Datasets . 33

3.2 Implementation . 35

3.2.1 Test Bed . 35

3.2.2 Data Preparation . 36

3.2.3 Feature Engineering . 41

3.2.4 Feature Space Reduction . 41

3.2.5 Model Evaluation . 43

3.2.6 Experiments . 45

3.3 Experiment Design Summary . 47

CONTENTS v

4 Results 48

4.1 Feature Engineering Results . 48

4.2 Model Evaluation . 50

4.2.1 Model Tuning . 50

4.3 Experiment Results . 53

4.3.1 Experiment 1: Training models with CICIDS 2017 dataset 53

4.3.2 Experiment 2: CICIDS 2017 Model testing with CICIDS 2018 dataset 60

4.3.3 Experiment 3: Training and Testing with CICIDS 2018 62

4.4 Model Comparisons . 64

4.5 Summary of Results . 64

5 Discussion 66

5.1 Introduction . 66

5.2 Data Preparation . 67

5.3 Feature Engineering . 67

5.4 Feature Space Reduction . 68

5.5 Model Evaluation . 68

5.6 Related NIDS Comparison . 69

6 Conclusion and Future Work 73

6.1 Summary of Research . 73

6.2 Research Objective . 75

6.3 Research Contribution . 76

6.4 Future Work . 76

CONTENTS vi

References 77

Appendices 88

A Appendix 88

A.1 Data Preparations . 88

A.1.1 Dataset: CICIDS2017 . 88

A.1.2 Attack Profiles . 89

A.1.3 Data Capturing . 90

A.1.4 Dataset Criteria . 91

A.2 Feature Engineering . 93

A.2.1 Feature Scaling and Transformation 93

A.3 Dimensionality Reduction . 95

A.3.1 Feature Ranking . 95

A.4 Model Evaluation . 99

A.4.1 Tuning of Experimental Model Parameters 99

A.5 Other Results . 99

A.6 Detailed classifier performance per class 107

A.7 Class performance per model against CICIDS 2017 109

A.7.1 RF Results . 109

A.7.2 KNN Results . 112

A.7.3 MLP Results . 113

CONTENTS vii

A.7.4 SVM Results . 114

A.7.5 DT Results . 115

A.7.6 LR Results . 117

A.7.7 RNN Results . 117

A.7.8 More Training Data . 119

List of Figures

2.1 KNN example . 15

2.2 SVM Hyperplane . 16

2.3 Decision Tree Example . 17

2.4 Random Forest Example . 19

2.5 Logistic Regression Function Example . 20

2.6 Hypothetical ANN Example. 20

2.7 MLP Example. 22

2.8 RNN Structure Example. 22

2.9 Classifiers Discussed. 23

3.1 Experiment Design Overview. 32

3.2 Original dataset distribution. 39

3.3 After Applying SMOTE and Undersampling. 40

3.4 RF: Boxplot of top 26 permutation importances per feature. 42

3.5 Experiment Variance. 43

4.1 26PI-RF: ROC curve of the best performing RF model on limited data. . . 55

4.2 Q-69PI-RNN: ROC curve of the best performing RF model on limited data. 59

viii

LIST OF FIGURES ix

A.1 CICIDS2017 Test Bed Architecture . 91

A.2 Standard Scaling . 93

A.3 Quantile Transformer . 94

A.4 Power Transformer . 94

A.5 RF: Boxplot of permutation importance per feature. 95

A.6 KNN: Boxplot of permutation importances per feature. 96

A.7 MLP: Boxplot of permutation importances per feature. 97

A.8 SVM: Boxplot of permutation importances per feature. 98

A.9 26RF-Standard: The most influential parameter’s effect on the macro f1-

score. 99

A.10 26MLP-Quantile: The most influential parameter’s effect on the macro

f1-score. 100

A.11 26KNN-Quantile: The most influential parameter’s effect on the macro

f1-score. 100

A.12 16DT-Standard: The most influential parameter’s effect on the macro f1-

score. 108

A.13 36LR-Power: The most influential parameter’s effect on the macro f1-score. 108

A.14 26PI-RF: ROC curve of the best performing RF model on limited data. . . 112

A.15 Q-26PI-KNN: ROC curve of the best performing KNN model on limited

data. 113

A.16 Q-36PI-MLP: ROC curve of the best performing MLP model on limited

data. 114

LIST OF FIGURES x

A.17 Q-26PI-SVM: ROC curve of the best performing SVM model on limited

data. 115

A.18 16PI-DT: ROC curve of the best performing DT model on limited data. . . 116

A.19 Q-26PCA-LR: ROC curve of the best performing LR model on limited data.117

A.20 Q-69PI-RNN: ROC curve of the best performing RF model on limited data.118

List of Tables

3.1 Test Bed Architecture. 36

4.1 Top Five Most Influential Features. 49

4.2 Most Influential Hyperparameters using 26PI. 51

4.3 Best results minimum distributable train/test split ratio models. 54

4.4 Best CICIDS 2017 limited data results for KNN model. 55

4.5 Best CICIDS 2017 limited data results for MLP model. 56

4.6 Best CICIDS 2017 limited data results for SVM model. 57

4.7 DT limited data best results. 57

4.8 LR limited data best results. 58

4.9 Summary of best results based on the extraction processing method. 60

4.10 Model tests against CICIDS 2018 dataset. 60

4.11 Q-26PI-SVM: Detection performance against the CICIDS 2018 dataset. . . 61

4.12 CICIDS 2018 Best Model Per Classifier. 62

4.13 Best model implementations across the CICIDS 2017 and 2018 datasets. . 64

5.1 Pros and Cons of evaluated models. 70

A.1 CICIDS 2017 dataset captured files and profiles 91

xi

LIST OF TABLES xii

A.2 Dataset 2017 Modelled . 101

A.3 All 2018 Dataset Findings . 104

A.4 26PI-RF: Results for the best performing model with limited data. 107

A.5 26PI-SVM: Results for the best performing model with limited data. 109

A.6 36PI-MLP: Results for the best performing model with limited data. 109

A.7 26PI-KNN: Results for the best performing model with limited data. . . . 110

A.8 16PI-DT: Results for the best performing model with limited data. 110

A.9 36PI-LR: Results for the best performing model with limited data. 111

A.10 69PI-RNN: Results for the best performing model with limited data. . . . 111

A.11 Effects of train and test data split. 119

List of source codes

1 Snippet of regular expression matching for CICIDS 2018. 35

2 Dataset File Merging (2017 dataset). 37

3 69 Features adopted for Modelling. 38

xiii

LIST OF ACRONYMS xiv

List of Acronyms

DNN Deep Neural Networks

LR Logistic Regression

SVM Support Vector Machines

MLP Multi-Layer Perceptrons

NB Gaussian Naive Bayes

DT Decision Trees

RT Random Tree

DL Deep Learning

GA Genetic Algorithm

IDS Intrusion Detection System

KNN K Nearest Neighbour

RNN Recurrent Neural Network

ML Machine Learning

NIDS Network Intrusion Detection System

PCAP Network Packet Capture

PCA Principal Component Analysis

LDA Linear Discriminant Analysis

RF Random Forests

ROC Receiver Operating Characteristic

FI Feature Importance

PI Permutation Importance

IG Information Gain

LSTM Long Short Term Memory

PI Permutation Importance

OvA One versus All

1
Introduction

As the world has become more dependent on computer systems, the scale of security

attacks on computer infrastructure has increased (Kizza, 2013, Schneier, 2015). A 2021

IBM report1 shows that successful attacks which result in a data breach have an average of

287 days from detection to breach containment. Early detection in these cases can assist

in improving security incident response times for systems seeking to maintain a high-

security availability, integrity and confidentiality posture (Denning, 1987, Zhang et al.,

2018). It follows that intrusion detection is an essential part of monitoring computer

events. Intrusion detection systems typically execute real-time traffic classification to

determine security incidents or attacks that may threaten the computer system (Valenti

et al., 2013). A Network-based Intrusion Detection System (NIDS) is a security tool

that identifies an inside attack, outside attack and unauthorised access into a computer

network.

NIDS generally use two methods to detect attacks, namely, signature-based and anomaly-

based detection. Signature-based detection uses sets of collected attacker patterns imple-

mented as pre-installed rules to detect attacks. On the other hand, anomaly-based at-

tack detection uses traffic shape observations to measure the deviation from normal traf-

fic (Hayes and Capretz, 2014). The use of anomaly-based detection adaptions through

1https://www.ibm.com/za-en/security/data-breach

1

Chapter 1. Introduction 2

machine learning (ML) techniques has shown promising results in recent studies (Ren

et al., 2019, Rosay et al., 2020).

A key characteristic of ML algorithms is their ability to learn and improve their per-

formance over time (Tsai et al., 2009). Common strategies for ML emphasise building

a framework that enhances its execution based on previous results – changing execution

strategy based on recently acquired data – to classify an intrusion. ML techniques have the

advantage of adaptability and capture inter-dependencies when effectively implemented.

However, an immediate challenge with ML is the general need to compromise between

model complexity and training duration. Selecting appropriate algorithms for NIDS is

vital in addressing this problem.

Generally, using ML for intrusion detection has potential. However, it has challenges and

limitations that require comprehensive review before developing ML-based NIDS.

1.1 Problem Statement

This research evaluates multiple variants of ML algorithms and their applicability to

various network attack profiles. The problem statements are detailed below:

1. In real-world systems, the vast majority of traffic NIDS encounter is ‘Benign’; as

such, identifying malicious traffic may be challenging.

2. NIDS constantly encounter novel attacks, and thus, it follows that they should adapt

to (detect) new scenarios.

1.2 Research Question

Based on the above statements, the following research question can be formulated: ‘How

can effective ML-based NIDS be developed for use in real-world systems’. This research

question can be broken down into the following sub-questions:

Chapter 1. Introduction 3

1. What supervised ML algorithms are better fitted for improved NIDS detection rates?

2. How can ML models be optimised to achieve consistent best detection results and

how can this be effectively measured?

1.3 Research Objectives

The proposed research aims to achieve the following objectives:

1. Conduct systematic experiments to investigate, design and construct a system for

ML-based NIDS that addresses the NIDS problems based on the literature.

2. Investigate methods that cater for the significant data imbalance and distribution

when developing ML models for NIDS.

3. Conduct an experiment to validate the ML models on a subset of the first dataset

by performing parameter tuning, biased towards data generalisation.

4. Determine the most effective NIDS performance metrics and ML algorithms on

modelled and unmodelled data from a different dataset.

The findings of the above objectives will reflect on each model’s classification capability.

1.4 Research Contributions and Limits

Based on the first objective, this research aims to develop systematic ML techniques for

NIDS that have consistency in yielding results applicable real-world data and aid future

studies. Although further analysis may benefit inefficient methods, this research will not

cover this in-depth analysis. Consequently, the methods used to fulfil the research follow

a scientific approach of testing and observing results.

Chapter 1. Introduction 4

1.5 Document Structure

The remaining chapters are as follows:

Chapter 2 Concepts and Literature Review : Introduces the various concepts about NIDS

development and other related implementations.

Chapter 3 Experimental Design: In addition to the testbed, the chapter presents the

methodology used to construct the proposed system.

Chapters 4 Results : Presents the results obtained by the experiments.

Chapter 5 Discussion: Discusses the results and compares them with related studies.

Chapter 6 Conclusion: This chapter concludes the thesis, highlights the research con-

tributions and provides directions for future work.

2
Concepts and Literature Review

This chapter provides a broad overview of intrusion detection systems and their related

literature. Section 2.1 introduces the concept of intrusion detection systems. Section 2.2

provides a brief outline of the methods adopted for Network Intrusion Detection System

(NIDS) development. Section 2.3 explains concepts of the standard machine learning

(ML) methodology. Section 2.4 discusses related NIDS that are considered for adoption

in Chapter 3. Focus is placed on methods that contribute towards ML-based NIDS.

2.1 Intrusion Detection Systems

The history of the intrusion detection system (IDS) dates back to the 1980s, where they

were termed “Intrusion Detection Expert System” (Lunt and Jagannathan, 1988). An

IDS monitors the information flowing through the network and alerts users of a probable

computer or network misuse event (Denning, 1987, Thakkar and Lohiya, 2020). IDS per-

forms network and user activity analysis through information made available by monitored

systems. Such activities may originate from an internal or external computer network.

For an IDS, a ‘Benign’ class is a regular normal event, while a ‘Malicious’ class may

indicate misuse or abuse on a computer network (Javaid et al., 2016). IDS capabilities

5

Chapter 2. Concepts and Literature Review 6

are achieved through activity classification techniques broadly categorised as signature-

based or anomaly-based methods (Liao et al., 2013).

The signature-based method involves the process of comparing pre-captured patterns of

monitored events – known as ‘Benign’ or ‘Malicious’ patterns – against captured events

to recognise possible intrusions (Jones and Sielken, 2000). An anomaly-based method

involves monitoring deviations from a known behaviour derived from regular network

activities over time (Javitz et al., 1991, Axelsson, 2000). As a result, anomaly-based

detection draws on the potential to detect new intrusion events (Garćıa-Teodoro et al.,

2009), which has led to more research into this area. In summary, signature-based de-

tection compares activity to established rules, while anomaly-based detection compares

activity to profiles.

Network administrators generally deploy these detection techniques to monitor a com-

puter application, client or host, network communications equipment or a hybrid method.

A NIDS captures information passing through network communications equipment by

analysing a stream of data packets (Liao et al., 2013). The focus of this thesis will be on

aspects related only to NIDS development.

2.2 NIDS Model Development Methods

This section briefly describes the influential signature-based and anomaly-based detection

studies.

2.2.1 Signature-based Detection

Signature-based detection analyses activity characteristics of captured network data that

resemble a predefined pattern or string of an intrusion event (Kayacik et al., 2005). The

method fundamentally assumes that malicious activities have a pattern that differs from

the norm.

Chapter 2. Concepts and Literature Review 7

Signature-based NIDS, such as Zeek (formerly Bro)1, Snort2 and Suricata3, are examples

of tools that have received widespread adoption (Garćıa-Teodoro et al., 2009). Studies by

Cardenas et al. (2006) and Hofstede et al. (2017) have shown that signature-based methods

obtain high accuracy on malicious pattern detection of known attacks and provide ease

of access for detail used for contextual analysis.

However, this approach has had challenges related to occasionally incorrectly classifying

benign traffic, leading to high false-positive rates (Chowdhury et al., 2017). This is most

apparent in detection tasks for unknown attacks or partially modelled data (Pérez et al.,

2017, Xian et al., 2018, Zhang et al., 2020). Liao et al. (2013) mention other challenges

such as the lack of understanding of network states and protocols, keeping signatures

up to date, and knowledge maintenance as time-consuming. Based on this viewpoint,

alternatives that may cater to these challenges appear attractive.

2.2.2 Anomaly-based Detection

Anomaly-based detection analyses the deviation of known behaviours and profiling of the

expected behaviours derived from monitoring regular activities (Javitz et al., 1991, Doshi

et al., 2018). The method fundamentally assumes that malicious behaviour profiles differ

from benign behaviour, thus has theoretical effectiveness at detecting new scenarios (Wang

and Stolfo, 2004). However, based on observed security events in literature (Liao et al.,

2013), the method occasionally yields weak model performance.

Anomaly-based techniques broadly include state transition analysis, expert systems, and

signature analysis. These techniques possess high accuracy and low false-positive rates.

The techniques pose a knowledge maintenance challenge for each attack, due to the de-

pendency on manual, careful and detailed analysis (Debar et al., 2000). Anomaly-based

systems also use ML techniques that can learn and improve performance on specific tasks

or task groups over time (Tsai et al., 2009).

1https://zeek.org/
2https://www.snort.org/
3https://suricataids.org/

Chapter 2. Concepts and Literature Review 8

ML has the advantage of flexibility, adaptability, and capturing of inter-dependencies

when effectively implemented. However, selecting appropriate algorithms is essential in

ML implementations that yield good performance.

2.3 Machine Learning-Based NIDS

This section explains basic concepts of ML and general supporting literature on ML-based

NIDS.

2.3.1 Overview of Machine Learning

ML is an approach to developing computer system models that optimise a performance

criterion, using example data or experience, without explicit programming (Valiant, 1984).

The model definition has a set of parameters, and learning is the execution of a computer

program to optimise the model’s parameters using training data or experience. Edgar and

Manz (2017) defines it as “a field of study that uses computational algorithms to turn

empirical data into usable models.” Generally, ML models are applied to make predictions,

gain knowledge, or both based on the training data provided.

ML often uses statistical models that make inferences from a sample (Russell and Norvig,

2002, Edgar and Manz, 2017, Alpaydin, 2020). The primary aim is to allow the computers

to learn without human assistance and adjust actions accordingly. ML can be broadly clas-

sified into three main types, supervised, unsupervised and reinforcement learning (Russell

and Norvig, 2002).

Supervised learning models development involves using a training dataset to create a

function in which each training data contains a pair of the input and output vectors –

features and class labels, respectively (Tsai et al., 2009). The learning task is to compute

the approximate relation between the input-output examples to create a classifier (model).

A trained model can classify unknown examples into learned class labels. The ability to

Chapter 2. Concepts and Literature Review 9

learn and adapt without explicit programming is not easy when using signature-based

methods (Laskov et al., 2005).

There is a lack of prominent open-source ML-based NIDS in the literature reviewed.

However, a growing number of implementations exist on a proprietary commercial scale,

such as DarkTrace4, Awake Security5 and AWS Guard Duty6. These proprietary solutions

are generally viewed as a ‘black box’ due to the lack of open literature about their ML

application techniques. These solutions are not explored any further in this thesis. Note,

Section 2.4 introduces several ML algorithms suited for ML-based NIDS.

Furthermore, Sommer and Paxson (2010) highlights challenges in evaluating NIDS per-

formance. As such, a comprehensive review is required to ascertain the strengths and

weaknesses of more modern ML-based NIDS – including the more recent Deep Learning

(DL) algorithms.

2.3.2 Data Preparations

Datasets

Based on the problem statement in Section 1.1, the datasets used against NIDS must

depict real-world systems. It follows that, research on datasets used in NIDS experiment

environments have focused on the need to generate synthetic traffic to represent real-

world scenarios (Garćıa-Teodoro et al., 2009). Abdulraheem and Ibraheem (2019) focused

on improving dataset quality and established crucial criteria7 for building a reliable NIDS

research dataset.

These dataset quality criteria concur with Corona et al. (2013)’s study on attribute stip-

ulations for real-world intrusion datasets used in research that aims to resolve security

problems. However, capturing these datasets may prove a challenge because of the rapid

4www.darktrace.com/
5www.awakesecurity.com/
6www.aws.amazon.com/guardduty/
7Criteria include network configuration, traffic representation, labelling, network interaction, packet

capture, protocol availability, attack diversity, anonymity, heterogeneity, feature set, and metadata.

Chapter 2. Concepts and Literature Review 10

evolution of intrusions. NIDS development falls in this class of security problems. There-

fore, selecting a dataset that fits these scenarios is crucial for practical implementations.

The KDD 99 dataset has been the most popular for NIDS research and has 41 fea-

tures (Aksu et al., 2018b). The significant challenge of this dataset is in the presence of

redundancies, which has made ML model training biased towards the most represented

classes resulting in poor model performance against underrepresented classes. Viegas

et al. (2017) and Ring et al. (2019) mention several other limitations which make the

dataset results unrealistic for real-world use. Most studies reviewed use the KDD 99 or

its variants – including UNSW-NB8, Kyoto 2006+9 and AWID10 – that supplement the

original dataset’s limitations (Stein et al., 2005, Su, 2011, Li et al., 2012, Almseidin et al.,

2017, Chuan-long et al., 2017, Zhang et al., 2018).

More recent studies (Ahmim et al., 2019, Abdulhammed et al., 2019, Rosay et al., 2020,

Kurniabudi et al., 2020) make use of the CICIDS 201711 and CICIDS 201812 datasets.

Both datasets are composed of more than 80 features, possess more attack categories, and

account for more of Abdulraheem and Ibraheem (2019)’s quality criteria than KDD 99

and its variants (Thakkar and Lohiya, 2020).

Balancing and Sampling Methods

NIDS datasets that have real-world depiction are likely to be imbalanced due to the ex-

pected majority of benign traffic, as is the case for CICIDS 2017 (Panigrahi and Borah,

2018). The imbalance leads to a severe skew in class distribution overly emphasising

majority classes. Imbalances may negatively affect ML modelling; however, this better

depicts the real-world traffic (Singh et al., 2015). Random Undersampling, Random Over-

sampling and Synthetic Minority Oversampling Technique (SMOTE) are some resampling

strategies that can be used to mitigate class imbalance (Branco et al., 2015).

8https://www.unsw.adfa.edu.au/unswcanberracyber/cybersecurity/ADFANB15Datasets
9http://www.takakura.com/Kyoto data/

10http://icsdweb.aegean.gr/awid/
11https://www.unb.ca/cic/datasets/ids2017.html
12https://www.unb.ca/cic/datasets/ids2018.html

Chapter 2. Concepts and Literature Review 11

The Random Undersampling strategy deletes majority class instances at random until

a more balanced class distribution is reached (Wang and Yao, 2009). It has the advantage

of removing intentional sampling bias due to its random nature.

The Random Oversampling strategy randomly selects minority class instances with

replacements and adds them to training datasets . The method increases the risk of overfit-

ting since the instances generated are copies of randomly selected minority classes (Song-

wattanasiri and Sinapiromsaran, 2010).

The SMOTE strategy selects samples in close feature space proximity to create a syn-

thetic sample (Bowyer et al., 2011). Similar synthetic instance generation methods in-

clude Borderline SMOTE, ADASYN, SMOTE NC and SVM SMOTE. Note; synthetic

oversampling methods are vulnerable to introducing ambiguous synthetic instances that

may substantially overlap with other original classes.

2.3.3 Feature Scaling and Transformation

Scaling and transformation are crucial parts for data representation and standardisa-

tion for numeric feature creation, rescaling, and adjusting skewed features for ML mod-

elling (Tax and Duin, 2000), as depicted from a research question in Section 1.2. Stan-

dardisation assures better input data quality and probability distribution to fit ML al-

gorithms (Rosay et al., 2020). Several scaling and transformation algorithms including

Standard, Quantile, Power and Robust methods can be used13.

2.3.4 Feature space Reduction

Feature Space reduction is used to deal with mapping original feature space from a high

dimensional space of features to a reduced dimensional space (Mladenić, 2006). The

process generally involves selecting a subset of original features and/or developing new

dimensions. The use of feature selection and feature extraction methods leads to dimen-

sionality reduction which can be leveraged to address the research question in Section 1.2.

13https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

Chapter 2. Concepts and Literature Review 12

Feature Selection

Feature selection is a data preprocessing activity involving the search for features present

in a dataset that best reflect the difference between classes by adopting important at-

tributes only and removing redundant data, thus giving ML algorithms unbiased re-

sults (Panda et al., 2012, Siva et al., 2012). Due to evolving attack scenarios, establishing

feature selection criteria for NIDS is challenging (Javaid et al., 2016, Viegas et al., 2017).

Feature selection methods usually rely on feature importance (Reis et al., 2019). Com-

mon feature importance methods include Gini Importance (GI) and Permutation

Importance (PI) (Louppe et al., 2013, Kurniabudi et al., 2020).

GI calculates importance based on the total decrease in node impurity weighted – more

details on GI are presented under Decision Trees in Section 2.3.6 – by the probability of

reaching a node averaged over all decision trees of an ensemble (Menze et al., 2009). PI

is an iterative function that focuses on the importance based on the result produced after

training a model (Altmann et al., 2010). If the order of a given feature value results in

less accurate predictions drawn from a model, then that feature has less importance as it

reduces performance.

Feature Extraction

Several feature extraction algorithms exist, but literature has commonly adopted Princi-

pal Component Analysis (PCA). The application of PCA reduces dataset complexity

and maximises the total variance of all data samples (Lakhina et al., 2010, Heba et al.,

2010). On its own, the technique is not a classifier but works as an auxiliary to other

classifiers in an unsupervised manner.

PCA reduces dataset complexity by transforming correlated features into a reduced num-

ber. Subsequently, the ML classifier adopts the transformed data, which can now be

trained on as uncorrelated linear combinations of the original features, reducing model

complexity.

Chapter 2. Concepts and Literature Review 13

2.3.5 Model Evaluation

Performance Metrics

NIDS are prone to detection errors, and as such, a good metric choice can assist in

evaluating classification algorithms’ ability to fulfil the desired task. A classification

model has the following desired prediction outcome of (Ferri et al., 2009):

• True Positive (TP) - is an outcome where the model class prediction matches the

actual class.

• True Negative (TN) - is an outcome where the prediction correctly matches the

negative class.

A perfect classification model is one that only possesses TP and TN. In the case of an

error, the following predictions occur on the classification model:

• False Positive (FP) - the model incorrectly predicts the negative class as the actual

class.

• False Negative (FN) - the model incorrectly predicts the positive class as a negative

class.

Literature commonly adopts metrics such as accuracy, precision, recall, f1-scores and ROC

curves for additional model analysis (Davis and Goadrich, 2006, Ferri et al., 2009, Xin

et al., 2018).

Accuracy is the ratio of the number of correct predictions to the total number of input

samples as shown in Equation 2.1.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.1)

Chapter 2. Concepts and Literature Review 14

Precision is the ratio of correctly classified attack flows, in front of all the classified flows

as shown in Equation 2.2.

Precision =
TP

TP + FP
(2.2)

Recall is the ratio of correctly classified attack flows in front of all generated flows as

shown in Equation 2.3.

Recall =
TP

TP + FN
(2.3)

F1-score (f1) is the harmonic mean of the precision and recall for a classification model.

This metric presents a balanced metric for classifiers as shown in Equation 2.4.

f1 = 2× Precision×Recall
Precision+Recall

(2.4)

The ROC curve is a probability curve that plots the true positive rate (TPR) against the

false positive rate (FPR) of a classifier. The Area Under the Curve (AUC) is a measure

that represents the degree or measure of separability of classes.

2.3.6 Classification Algorithms

The rest of this section describes several supervised ML classification algorithms used in

the proposed systems, including K-Nearest Neighbour, Support Vector Machines, Deci-

sion Trees, Random Forests, Multi-layer Perceptrons, Logistic Regression and Recurrent

Neural Networks.

K-Nearest Neighbour

K-Nearest Neighbour (KNN) is a learning algorithm that assumes similarities to exist at

a close distance. The model picks k entries in a dataset closest to the new data point

Chapter 2. Concepts and Literature Review 15

using distance measures such as Euclidean or Manhattan distance. A majority vote of

the most common classes among those k entries will be the class of the new data point.

Figure 2.1 shows an example 2D plane representation of KNN. The Euclidean distance

Figure 2.1: KNN Example14.

is calculated as shown in Equation 2.5.

d(x, y) =

√√√√ k∑
i=1

(aix− aiy)2 (2.5)

where d(x, y) is the Euclidean distance between two data instances x and y. Manhattan

distance between two points (x1, y1) and (x2, y2) can be calculated as Equation 2.6.

| x1 − x2 | + | y1 − y2 | (2.6)

For Equation 2.5, KNN makes use of Lazy learning15 to store training data until pre-

diction time. To assign the most common class of x, KNN sets neighbours as shown in

Equation 2.7.

c(x) = arg max
c∈C

k∑
i=1

δ (c, c (yi)) (2.7)

where y1, y2, ..., yk are the k nearest neighbours of x, k is the number of neighbours and

δ (c, c (yi)) = 1 if c= c (yi) and δ (c, c (yi)) = 1 otherwise (Jiang et al., 2007).

Support Vector Machines

Support Vector Machines (SVM) is a learning method that uses a statistical learning

14https://towardsdatascience.com/knn-using-scikit-learn-c6bed765be7
15‘Memorizes’ data instead of learning a discriminative function.

Chapter 2. Concepts and Literature Review 16

model for classification and regression problems (Chapelle et al., 1999). SVM first maps

the input vector into a higher dimensional feature space and obtains an optimal hyper-

plane. This hyperplane aims to separate two classes of data points by finding the biggest

margin between two points, as shown in Figure 2.2.

Figure 2.2: SVM Hyperplane Example16.

Given classes S+ = {xi | yi = 1} and S− = {xi | yi = −1} are linearly separable, at least

one boundary can be formed between them (Chapelle et al., 1999). Support vectors are

the data points for sets S+ and S− that are located on the boundaries of the margin and

are coloured in solid and non-solid red, respectively. Rescaling of w for all xi that are

support vectors holds:

w · xi + b = 1 (2.8)

w · xi + b = −1 (2.9)

The distance d decision boundary for the margin can be represented as:

d =
2

‖w‖
(2.10)

An optimal hyperplane is a decision boundary that achieves the maximum margin between

15https://svm.michalhaltuf.cz

Chapter 2. Concepts and Literature Review 17

sets S+ and S−. SVM has the advantage of high generalisation performance without prior

knowledge, even when the dimension of input space is high.

Decision Trees

Decision Trees (DT) are a learning technique based on a divide and conquer strategy,

which utilises decision nodes and leaf nodes where a decision node represents a test over

one of the attributes and a leaf node represents the class value (Stein et al., 2005, Tsai

et al., 2009). Figure 2.3 shows an example of a DT used to classify weather.

Figure 2.3: Decision Tree Example17.

DT node splitting into multiple sub-nodes is implemented through continuous target

variables or categorical target variables. Examples of categorical target variables include

Gini Impurity, Information Gain and Chi-Squared.

Equation 2.11 shows the calculation for Gini Impurity.

Gini Impurity = 1−
C∑
i=1

(pi)
2 (2.11)

where pi represents the relative frequency of a class in a dataset under observation and c

is the count of classes.

17https://towardsdatascience.com/decision-tree-in-machine-learning-e380942a4c96

Chapter 2. Concepts and Literature Review 18

Equation 2.12 shows the calculation for Information Gain.

Information Gain = info(T)−
s∑

i=1

|Ti|
|T |
× info (Ti) (2.12)

where T marks the set of decision cases and Ti(i = 1 to s) are a subset of T with value

attribute A. Equation 2.13 shows the entropy function as info (T).

info(T) = −
Nclass∑
j=1

freq (Cj, T)

|T |
× log2

(
freq (Cj, T)

|T |

)
(2.13)

Equation 2.14 shows the calculation for Chi-Squared.

Chi-Squared =

√
(Actual − Expected)2

Expected
(2.14)

where Actual is the actual child node class and Expected is the expected child node class

based on the distribution of classes in the parent node.

Random Forests

Random Forests (RF) is a learning algorithm that consists of a large volume of individual

DT that operate as an ensemble at training time (Resende and Drummond, 2018, Reis

et al., 2019). The training algorithm applies Bagging or Bootstrapping methods to DT

learners to improve model performance by decreasing the variance of the model without

increasing the bias. The training methods involve selecting and replacing a random sample

from the original training dataset. Each tree in the model is then trained independently

to generate results. The RF model outputs a class prediction for each tree, and through

the aggregation step, the class with the most votes becomes the models’ prediction, as

shown in Figure 2.4.

Chapter 2. Concepts and Literature Review 19

Figure 2.4: Random Forest Example18.

RF often uses Gini Impurity for node splitting on its trees due to its less mathematically

intensive nature shown in Equation 2.11.

Logistic Regression

Logistic Regression (LR) is a statistical learning model that measures the relationship

between the dependent variable and one or more independent variables by estimating

conditional probabilities between one and zero (Arunraj et al., 2017). The predicted

variable is denoted by Y when calculating the probability, and X denotes the predictor.

Zero and one represent the two classes of benign and malicious traffic. Figure 2.5 shows

an example of LR used to represent expertise.

18https://medium.com/williamkoehrsen/random-forest-simple-explanation-377895a60d2d

Chapter 2. Concepts and Literature Review 20

Figure 2.5: Logistic Regression Function Example19.

Artificial Neural Networks

Artificial Neural Networks (ANN) are a learning algorithm that aims to simulate the

operation of the human brain (Garćıa-Teodoro et al., 2009, Van et al., 2017, Muhuri

et al., 2020). It incorporates a collection of connected units called artificial neurons,

which each have a connection between neurons with the ability to transmit a signal to

another neuron (Tu, 1996). Figure 2.6 shows a hypothetical representation of an ANN.

Figure 2.6: Hypothetical ANN Example.

The input layer represents features from the dataset, and the output layer represents the

output labels for the respective features. The connections of the layers show weighted

19https://jupyter.ai/logistic-regression-ml/

Chapter 2. Concepts and Literature Review 21

paths in the network that each feature can take to reach the output label. The input

layer leads to the hidden layer, which computes the sum of each possible case from the

input layer, in a process called forward-propagation, when moving from left to right in

Figure 2.6 (Garćıa-Teodoro et al., 2009, Vinayakumar et al., 2017).

To effectively utilise the ANN, the model applies an activation function to the hidden layer

by providing non-linear change to the output values in the layer, capturing non-linearities

within the data (Tu, 1996). Depending on the nature of the problem, several options for

activation functions can be used, including Sigmoid, Tanh and ReLu functions.

Gradient descent steps are computed to find the minimum value of the function to min-

imise the prediction errors for the ML model. Back-propagation gathers gradients of each

descent step and updates the weights used in the previous steps. Back-propagation uses

the error from the output layer and propagates it back through the hidden layer, and at

each of the steps, the weight is updated (Garćıa-Teodoro et al., 2009, Tu, 1996).

ANN’s have received recent wide adoption in the field of intrusion detection due to their

adaptability to change (Chuan-long et al., 2017). An area of ANN that has received

recent prominence is the application of Deep Learning (DL) algorithms (Dong and Wang,

2016, Chuan-long et al., 2017, Vinayakumar et al., 2017, Meidan et al., 2018, Shone et al.,

2018).

DL uses hierarchical feature learning from observational data, where there is a definition

of higher-level features or factors from lower-level ones (Van et al., 2017). DL techniques

aim to maximise learning good feature representation of a large amount of data.

Recurrent Neural Network is a DL architecture that has significantly gained momentum

in recent NIDS studies (Chuan-long et al., 2017, Vinayakumar et al., 2017, Meidan et al.,

2018). Multi-Layer Perceptrons have also seen prominence in the NIDS literature (Garćıa-

Teodoro et al., 2009, Tu, 1996).

Multi-layer Perceptrons

Multi-layer Perceptrons (MLP) are a feed-forward ANN designed with a series of al-

gorithms that recognise underlying relationships in data that is not necessarily linearly

Chapter 2. Concepts and Literature Review 22

separable (Garćıa-Teodoro et al., 2009, Tu, 1996). Back-propagation is commonly used

to train MLP models in a supervised manner (Barapatre et al., 2008). An MLP consists

of at least the input, hidden and output layers, as shown in Figure 2.7.

Figure 2.7: MLP Example.

Researchers have used this method to predict commands based on a sequence of previous

commands or to identify the malicious behaviour of traffic patterns in NIDS (Garćıa-

Teodoro et al., 2009, Shenfield et al., 2018).

Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of ANN that contains loops, allowing storage

of temporal information within the network (Muhuri et al., 2020). RNN also uses back-

propagation learning via storing recurring time sequences. Figure 2.8 shows the basic

structure of a RNN.

Figure 2.8: RNN Structure Example.

Therefore, for an RNN, if the order of input were to be changed, the model becomes

significantly different (Chuan-long et al., 2017).

Chapter 2. Concepts and Literature Review 23

Training issues can result from exploding gradients20. An address of exploding gradients

can involve adding Gated Recurrent Units (GRU) – with No Use or No Update values for

weights – and/or Long Short Term Memory networks (LSTM) – with Forget Gates and

The Output Gate.

Literature has shown that this technique received increased adoption in NIDS develop-

ment, and RNN variants may provide interesting comparisons against other ML meth-

ods (Chuan-long et al., 2017, Vinayakumar et al., 2017, Meidan et al., 2018).

Figure 2.9 shows a visual summary of the grouping the classifiers presented in this section.

For the purpose of this research, the classifiers presented can broadly be grouped as Tree-

Based and Distance-Based methods.

Figure 2.9: Classifiers Discussed.

2.4 Related Studies

The following section relates to ML-based NIDS implementations found in the literature.

20Error gradients can accumulate too quickly during weight updates, resulting in unscalable values or
buffer overflow.

Chapter 2. Concepts and Literature Review 24

2.4.1 Related NIDS

Many studies have been conducted to develop ML methods that are used in NIDS im-

plementations. The following studies present notable model development techniques that

were able to attain good results.

Kurniabudi et al. (2020) studied Information Gain as a feature selection method.

They use a filter-based method for attribute ranking and noise reduction, allowing features

with the most information base to improve attack detection accuracy. The CICIDS 2017

dataset is used, with only 20% of the dataset for the experiment. They use a train/test

split ratio of 0.7/0.3 and 10 fold cross-validation method. After feature selection, several

classifiers, including RF, Bayes Network, Random Tree (RT), Naive Bayes (NB) and DT

(J48), are evaluated and compared against each other using recall, false negative rate,

precision, recall and accuracy metrics.

They found features Packet Length Std, Total Length of Bwd Packets, Subflow Bwd Bytes

and Destination Port as the most important (Kurniabudi et al., 2020). RF and RT

classifiers yielded an accuracy of 0.96. RF, Bayes Network, RT and DT classifiers are able

to effectively detect classes Benign, DoS/DDoS, Port Scan, Brute Force, Web XSS, Web

Brute Force and Web SQL Injection using feature subsets of 7, 35 or 52. The classifier

achieves a high recall of 0.80 using 22 or 35 features. The model obtained perfect accuracy

when presented with a feature subset of 52, 57 or 77.

However, data sampling methods used, feature scaling or transformation methods adopted,

the effect of the train and test data split, and model hyperparameter tuning used are not

referenced in Kurniabudi et al. (2020)’s study.

Reis et al. (2019) studied Gini, Permutation and Drop-column Importance feature

selection methods for optimal feature rankings for an effective ML-based NIDS. Gini is

used as the primary feature selection method and used with RF and DT classifiers. The

CICIDS 2017 dataset is used for model evaluation. Similar to Kurniabudi et al. (2020),

feature selection is used to identify irrelevant features.

Chapter 2. Concepts and Literature Review 25

Duplicate row entries are initially removed from the dataset, and eight21 of the features

available are reinitialised with a ‘0’ value, leaving 69 features. Stratified sampling takes 0.3

of the data in the dataset and creates a new dataset with the same proportion of benign

and malicious classes. The proportional cut also reduces attacks of minority classes such

as Heartbleed, Infiltration and Web SQL Injections to a mere single digit of samples.

Classification for DDoS, Heartbleed, Infiltration and SSH-Patator were the best-detected

attacks, whilst the Web Brute Force attacks were harder to detect. RF had the best

performance with the insignificant classification performance between 10 and 70 feature

selection. A difference of f1-score 0.002, an FPR of ≈ 0 and a false negative rate of 0.007

were observed over the feature selection range.

Reis et al. (2019) study has no discussions on how feature scaling, hyperparameter tuning

and classifier evaluation criteria are adopted. Aspects of a class imbalance concerning the

dataset are also not discussed, thus making the experiment challenging to reproduce.

Rosay et al. (2020) studied MLP classifiers to quantify the benefits of a DL-based

NIDS. The method details the steps for data preprocessing through formatting, cleaning,

sampling, training data split, cross-validation, test data splits and feature scaling. Feature

selection and extraction methods are evaluated against the CICIDS 2017 dataset. Random

sampling is used to create a training set by selecting 0.5 of each class instance. The

same strategy yields a 0.25 cross-validation set and 0.25 test set. The adopted sampling

method aims to reduce the benign to malicious class imbalance in the training data while

maintaining the original imbalance on the test and validation sets. A Standard Scaler

is used to provide better performance results compared to other techniques. The MLP

classifier uses two hidden layers and 256 nodes with a Dropout used as a regularisation

technique to prevent over adjustment on training data in the MLP. Rosay et al. (2020)

divides the training set into a mini-batch of 32 instances. Weight tuning between ANN

nodes is applied to reduce the cross-entropy loss function. Similar to Reis et al. (2019),

eight insignificant features are discarded from the training set.

A subsets of 70 and 73 features achieved the best f1-score of ≈ 0.99 with features IP
21Bwd PSH Flags, Bwd URG Flags, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate,

Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk and Bwd Avg Bulk Rate

Chapter 2. Concepts and Literature Review 26

Address and Source Port as the most important features. The authors state that the

prominence of the two features must be a result of the MLP model learning of an at-

tacking IP address and not necessarily the other features. IP Address and Source Port

are concluded as the most important features in helping to detect intrusion detection but

they may not be suitable for real-world implementation as they vary by environment.

The sampling methods used are not able to systematically address the class imbalance.

Feature scaling methods and the metrics for evaluation are also limited.

Abdulhammed et al. (2019) studied Auto-Encoder and PCA as dimensionality reduc-

tion methods for NIDS against the CICIDS 2017 dataset. PCA reduced the original 81

features to 10 features compared to 59 features from Auto-Encoders.

RF classifier achieved the best multi-class result of ≈ 0.99 accuracy and f1-score using

30 principal components from PCA. The results confirmed Abdulhammed et al. (2019)’s

framework for feature dimensionality reduction as the best, with precision value of 0.99

and an FPR of 0.01. PCA was a superior dimensionality reduction method compared to

Auto-Encoder due to its faster training times and interpretability of results.

Ahmim et al. (2019) studied a binary classifier, a multi-class classifier using all dataset

features and a hierarchical model to correctly classify each attack and provide a low FPR

and high recall against the CICIDS 2017 dataset. As part of the dataset preprocessing

procedure, the author removes duplicate rows in addition to the same insignificant features

as those identified in other studies (Reis et al., 2019, Rosay et al., 2020).

RF and MLP achieve an accuracy of 0.95 and 0.84, and an FPR of 0.02 and 0.07, respec-

tively. Ahmim et al. (2019)’s study lacks evidence of classifier development methodology

for comparative models for optimal results. Such evidence involves description hyperpa-

rameter tuning, classifier choice, scaling method, feature selection or extraction methods.

Aksu et al. (2018a) studied the Fisher score algorithm to determine the effect of each

feature on classification. The algorithm uses weighted vectors produced by Linear Dis-

criminant Analysis (LDA) for classification evaluated using the CICIDS 2017 dataset and

feature importance ranking to determine optimal features for classification algorithms.

Chapter 2. Concepts and Literature Review 27

Aksu et al. (2018a) uses accuracy, precision, recall, and f1-score to measure performance.

They found a selection of 30 features producing the best f1-scores for KNN, SVM and

DT of 0.99, 0.65 and 0.99, respectively.

The crucial features found in Aksu et al. (2018a)’s study resemble the same features raised

by Reis et al. (2019). Aksu et al. (2018a) highlight how feature selection trains optimal

classification models in ML. While 30 features produced the best accuracy, they are not

listed explicitly. The feature scaling or transformation methods used and hyperparameter

tuning activities and motivation for adopting LDA are also not stated.

Bisht and Ahmad (2017) studied DT, bootstrap aggregation (bagging), Adaboost, RF,

MultiBoostAB, Rotation Forest, and Random SubSpace modules ensemble methods for

NIDS classifiers. The authors use a maximum of ten classifier ensembles and the default

parameters of Weka – ML software.

Bisht and Ahmad (2017) use the KDD 99 dataset and two additional KDD 99 variant

testing datasets. The one testing dataset is created by removing all redundant records in

KDD 99 and using 21 classifiers to divide the testing dataset into five groups based on

prediction difficulty. DT achieved the best result of 0.83 f1-score and RF with a 0.80 f1-

score, which appears to be lower than the work by Zhang et al. (2018). However, there is

no discussion on how this method may perform with different feature scaling or extraction

methods in the experiment.

Chuan-long et al. (2017) studied a DL-based RNN architecture as a binary and multi-

class classification NIDS and compared the findings with RF, MLP and DT performance.

Chuan-long et al. (2017)’s literature review shows that previous studies mainly used DL

methods for preprocessing and the classification performed by a supervised classifier.

Chuan-long et al. (2017) evaluate algorithms against the NSL-KDD dataset – a KDD 99

variant – by preprocessing the dataset through numericalisation and normalisation.

Numericalisation involves working with the three non-numeric features in a dataset. Due

to the need for RNN numeric matrix input value, non-numeric features, such as ‘protocol

type’, ‘service’ and ‘flag’, need to be converted into numeric form. Features present

Chapter 2. Concepts and Literature Review 28

minimum and maximum values where a significant difference in the logarithmic scaling

method is applied to obtain the ranges for the duration, source bytes and destination

bytes, which is linearly mapped to a range between 0 and 1.

RNN produced the best accuracy and training time using 80 hidden nodes and a 0.1 learn-

ing rate. The best binary class performance of RNN had an accuracy of 0.83 compared

to RF, which had the second-best accuracy of 0.81. For multi-class findings, RNN had

an accuracy of 0.81 compared to MLP, with 0.78 as the second-best. Chuan-long et al.

(2017) identifies RNN as a candidate with solid modelling ability for NIDS. It is crucial

to note that comprehensive analysis is challenging as other metrics such as the f1-score or

precision and recall are not used as measures. Moreover, Chuan-long et al. (2017) makes

no mention of any model tuning of the other models to aid in a fair comparison.

Stein et al. (2005) studied genetic algorithm-based (GA) feature selection, which imple-

ments a wrapper model of search and evaluation components. As a measure, Stein et al.

(2005) uses error rates drawn from a hybrid approach using the KDD 99 dataset. The GA

and DT hybrid outperformed the DT without feature selection. The result attributes the

hybrid approach focusing on relevant features and eliminating unnecessary or distracting

features where the initial filtering can improve the classification abilities of DT.

Su (2011) studied GA in combination with KNN to detect large-scale attacks, such as

DoS attacks, in real-time. An accuracy rate of 0.97 for known attacks is achieved, with

only the top 19 features considered and for unknown attacks. A 0.78 accuracy is achieved

using the top 28 features. These result shows the potential of focusing on feature selection

for ML to yield optimised classification models.

Atefi et al. (2019) studied KNN and Deep Neural Network (DNN) NIDS using the

CICIDS 2017 dataset. Atefi et al. (2019) use a fraction of 0.8 for training each iteration,

with the remaining 0.2 for testing in a process. KNN and DNN achieved an accuracy of

0.90 and 0.96, respectively. KNN and DNN achieved a recall of 0.91 and 0.96, respectively,

and precision of 0.90 and 0.96, respectively.

Doshi et al. (2018) studied the use of IoT-specific network behaviours to inform feature

selection for high accuracy DDoS detection in IoT network traffic. They use various ML

Chapter 2. Concepts and Literature Review 29

algorithms, where linear SVM performed the worst in detecting DDoS. DT and KNN

classifiers attained a 0.99 accuracy. The finding attributed to the possibility of the models’

data segmentation into a higher feature space.

Almseidin et al. (2017) studied MLP classifier for NIDS against the KDD 99 dataset.

They found MLP not to suitable for classifying remote to local and user to root attacks

but more acceptable when handling DoS and Probe attacks. The results also showed that

no single algorithm could effectively handle all types of attacks. RF and Naive Bayes

achieved an accuracy of 0.93 and 0.91, respectively.

2.4.2 Discussion of Related NIDS

Generally, studies showed the process of feature selection as a crucial phase when handling

a dataset (Reis et al., 2019, Rosay et al., 2020, Kurniabudi et al., 2020). A number of

the studies were consistent in the redundant and non-relevant features dropped in their

dataset, especially for the CICIDS 2017 dataset. Studies observed consistency in the

application of a standardisation method for training data; however, most studies made no

mention of pre-training methods applied for feature processing (Aksu et al., 2018a, Zhang

et al., 2018).

A discussion of feature selection methods in a number of the studies and their benefits

of them were shown (Stein et al., 2005, Su, 2011, Abdulhammed et al., 2019, Reis et al.,

2019, Aksu et al., 2018a, Kurniabudi et al., 2020). However, most of the studies did not

entirely refer to the reproducible processes of investigating feature importance, regardless

of the importance of this phase. The lack of detail in the feature selection processes has

a potential shortfall to the findings, which warrants further research.

As most ML methods have various means of hyperparameter tuning for optimal model

performance, most studies made no emphasise handling these activities in training. Most

of the studies explored use the KDD 99 or other variations in use, such as NSL-KDD.

Datasets such as CICIDS 2017 were not variations of KDD 99 as they also possessed

different classes.

Chapter 2. Concepts and Literature Review 30

Most of the studies explored were not consistent with the metrics used when evaluating

the performance of a NIDS. Moreover, whether the findings were a weighted, micro or

average macro metric was not provided, especially for the recall and precision scores.

Therefore, the related studies lacked the development of a systematic ML-based NIDS.

2.5 Literature Review Summary

This chapter first introduced the background and fundamental concepts of network intru-

sion detection systems. The signature-based and anomaly-based detection methods were

highlighted as the prominent detection methods used for NIDS. The detection methods

were discussed with a focus on their strengths and shortfalls.

ML concepts related to NIDS were presented as a derivative of the anomaly-based detec-

tion methods. The chapter described datasets that have been adopted for ML in NIDS

related studies. Aspects of dataset balancing and sampling methods were discussed as a

means to assist in ML-based NIDS development. Feature selection and feature extrac-

tion methods are discussed as feature space reduction methods that could be leveraged

for better ML model training. Common performance metrics used in ML-based NIDS

assessments were then presented. The related ML concepts were closed with an overview

of ML classification algorithms identified in literature.

The chapter finally discusses related studies of interest found in the reviewed literature.

The overview provided a highlight of related ML-based NIDS found in literature. Discus-

sions of the shortfalls and opportunities from these related studies were presented. The

chapter closed with discussions highlighting the key areas that needed to be addressed to

develop a systematic ML-based NIDS.

3
Experimental Design

This chapter presents and discusses the approach used to create an adaptive ML-based

NIDS that addresses the problem statement described in Chapter 1. The system design

choices are explained in the following sections with data – data preparation, feature

engineering and ML algorithm implementation processes are outlined.

3.1 Methodology

Training an NIDS model to achieve the set objective from Section 1.3 requires selecting

an appropriate processing methodology and establishing relevant datasets. The success

of the proposed system implies that the algorithms and techniques chosen must perform

well for network traffic used by NIDS.

3.1.1 Overview

The proposed systems’ methodology involves much experimentation into several ML clas-

sifiers and optimisation methods stemming from literature reviewed in Chapter 2.

31

Chapter 3. Experimental Design 32

Figure 3.1 shows the general approach for creating the proposed NIDS. The proposed

system pipeline takes several stages, namely: 1) Data Preparation, 2) Feature Engineering,

and 3) Model Tuning and Evaluation. A modelling pipeline evaluation method is adopted

to assist with data leakage prevention in the test harness by ensuring that data preparation

is constrained to each fold of the cross-validation procedure.

Figure 3.1: Experiment Design Overview.

In the data preparation stage, datasets CICIDS 2017 and CICIDS 2018 are presented

initially in network packet captured files (PCAPs) format. The dataset authors initially

conducted feature extraction using CICFlowmeter1 to produce comma separated values

(CSV) format files. Section 3.1.2 provides an overview of datasets and additional early

processing of the dataset.

Data preprocessing includes data merging, formatting, cleansing and missing value treat-

ment. Possible data contamination for the proposed systems is avoided during this phase

by splitting training and test data before any additional data preparation activities are

completed. To address the imbalanced nature of the dataset, the proposed system rebal-

ances the data through oversampling and undersampling of the training sets.

1https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter

Chapter 3. Experimental Design 33

The feature engineering implementation stage is the first component of an iterative

model search that ends in the model tuning and evaluation stage. This stage involves

feature scaling or transformation, feature selection and feature extraction methods for

feature space reduction. The output of the feature engineering stage is combined with a

ML classification algorithm to form the model for the modeling phase.

The final stage of the pipeline focuses on model tuning and evaluation – extends

from the modeling phase. The proposed system completes a first series of experiments

to determine the optimal parameters for the base model by testing on a validation set.

The second experiment set involves running evaluation tests for the base model against

the unseen CICIDS 2018 dataset. The last set of experiments involves retraining the base

model with the CICIDS 2018 dataset without additional hyperparameter tuning to gauge

the original model tuning shortfalls.

3.1.2 Datasets

To address the research question posed in Section 1.2, the datasets selected for use are

required to reflect real-world systems. The CICIDS 2017 and CICIDS 2018 datasets were

selected as the ideal datasets to help address the research question.

The CICIDS 2017 dataset was captured by simulating an attack network and victim net-

work (Sharafaldin et al., 2018). The dataset was prelabeled by the authors of the dataset

and adopted in this research. The processed PCAPs are statistical features calculated sep-

arately for forward and reverse network communication – a bidirectional network. The

final dataset comprises a classification label and 83 statistical features, each calculated sep-

arately for forward and reverse directions. The dataset is composed of 15 classes, namely:

Benign, Bot, DDoS, DoS GoldenEye, DoS Hulk, DoS Slowhttptest, DoS slowloris, FTP-

Patator, Heartbleed, Infiltration, PortScan, SSH-Patator, Web Brute Force, Web SQL

Injection and Web XSS.

The CICIDS 2018 dataset follows a similar data gathering methodology as CICIDS 2017

but in a different setting. This research adopts context data of the attacks provided by

Chapter 3. Experimental Design 34

the dataset authors for the defined scenarios in the best effort to label the CICIDS 2018

dataset using the time windows.

The dataset includes different attack scenarios from the CICIDS 2017 dataset plus larger

attack and victim networks. Since it contains almost the same feature set, testing this

dataset will utilise the 69 common features on the models developed from the CICIDS

2017 dataset. The dataset is composed of 15 classes, namely: Benign, FTP-BruteForce,

SSH-Bruteforce, DoS-GoldenEye, DoS-Slowloris, DoS-SlowHTTPTest, DoS-Hulk, DDoS-

LOIC-HTTP, DDoS-LOIC-UDP, DDOS-HOIC, Brute Force-Web, Brute Force-XSS, SQL

Injection, Infiltration and Bot. For more details on the datasets, interested readers can

refer to Appendix A.1.1 and A.1.2.

The preliminary data preprocessing of CICIDS 2018 also involves the use of semantic

information from the extracted data using rules from regular expressions to determine

different variants of classes, both known and unknown. The following preprocessing steps

are completed during relabeling.

• Select classes that are suspected to be similar to those already modelled on CICIDS

2017 in the previous experiments, as shown in Listing 1, undergo regular expression

matching in Pandas.

• Class labels are matched to the models’ labels and included for subsequent classifi-

cation of those specific labels.

The caveat of the adopted labeling approach lies in possible inaccurate relabeling for

CICIDS 2018. However, the experiment presents the possible inaccuracy as a likely rep-

resentation of novel attack scenarios through an approach that targets a challenge in

real-world scenarios for NIDS.

The regular expression matching patterns used for relabeling of CICIDS 2018 in List-

ing 1 are based on the dataset authors’ tool and attack descriptions with a bias towards

realignment with CICIDS 2017.

Chapter 3. Experimental Design 35

data['Label'] = data['Label'].replace("Brute Force -Web", "Web Brute Force",

regex=True)

data['Label'] = data['Label'].replace("Brute Force -XSS", "Web XSS", regex=True)

data['Label'] = data['Label'].replace("DDOS attack-HOIC", "DDoS", regex=True)

data['Label'] = data['Label'].replace("DDOS attack-LOIC-UDP", "DDoS", regex=True)

data['Label'] = data['Label'].replace("DoS attacks-GoldenEye", "DoS GoldenEye",

regex=True)

data['Label'] = data['Label'].replace("DoS attacks-Hulk", "DoS Hulk", regex=True)

data['Label'] = data['Label'].replace("DoS attacks-SlowHTTPTest", "DoS Slowhttptest",

regex=True)

data['Label'] = data['Label'].replace("DoS attacks-Slowloris", "DoS slowloris",

regex=True)

data['Label'] = data['Label'].replace("FTP-BruteForce", "FTP-Patator", regex=True)

data['Label'] = data['Label'].replace("Infilteration", "Infiltration", regex=True)

data['Label'] = data['Label'].replace("SQL Injection", "Web Sql Injection",

regex=True)

data['Label'] = data['Label'].replace("SSH-Bruteforce", "SSH-Patator", regex=True)

Listing 1: Snippet of regular expression matching for CICIDS 2018.

Note, the use of the term ‘Malicious’ may reflect non-benign traffic classes in the datasets

regardless of some activities possibly not necessarily being attacker patterns in the real

world. Examples may be dataset class instances of Port Scan and Bots.

3.2 Implementation

The following subsections specify the details of the implementation of the proposed system

introduced in Section 3.1.

3.2.1 Test Bed

Table 3.1 shows all the hardware and software tools and components required to complete

the experiments, develop and test the proposed systems’.

Chapter 3. Experimental Design 36

Component Description

Server: AMD Ryzen 9 3950X 3.5 GHz
Memory: 128 GB 3200MHz DDR4 RAM

Operating System: Ubuntu 20.04 LTS
Programming Language: Python 32

Core Libraries: Scikit, Keras, Numpy, Panda

Table 3.1: Test Bed Architecture.

The complete version of the programming code of this research is available on GitHub

repo3.

3.2.2 Data Preparation

A detailed implementation of the proposed system begins with data preparation which

includes data acquisition, data preprocessing, the training set sampling and balancing

processes.

Data Acquisition

Initially datasets undergo data analysis through preliminary dataset assessments and ex-

ploration to assist in describing dataset characterizations to better understand the nature

of the data. As a result, numeric features from the dataset were loaded as floats and

integers, leading to an observation that downcasting all numeric data to integers results

in no measurable change in classification performance when using the same global random

seed of 42.

Listing 2 shows the fast loading method used in the proposed system. The method

achieves approximately a 5-fold improvement in speed across the different datasets by

loading all data as integers except the ‘Label’ column. The procedure was necessary to

address time constraints and memory limitations during experimentation.

3https://github.com/hatityechindove/ml-based-nids-research

Chapter 3. Experimental Design 37

1 def fast_load_data(data_path, non_numeric=[`Label'], dtype=`object'):

2 columns_to_skip = non_numeric

3 df = pd.read_csv(data_path, engine='c', dtype=dtype,

4 usecols=lambda x: x not in columns_to_skip)

5 df2 = pd.read_csv(data_path, engine='c', dtype='object',

6 usecols=lambda x: x in columns_to_skip)

7

8 con = pd.concat([df, df2], axis=1)

9 con = con[-con['Label'].isin(ex_class)]

10 if ex_class != None

11 else

12 print()

13 return con

Listing 2: Dataset File Merging (2017 dataset).

Data Preprocessing

The first step involves merging data into a single dataset by leveraging fast-loading for

all the CSV files on data acquisition – highlighted in previous Section 3.2.2. Each file is

loaded into data frames4 and merged into a single data frame. The first field is typically

a header containing the feature names per column. After combining the files to create

a single dataset, duplicate header fields are removed, resulting in a dataset containing

2,660,377 samples and 15 classes from CICIDS 2017.

Trailing and leading whitespaces are removed as part of data formatting to avoid am-

biguities by Python during string manipulation or interpretation. The proposed system

prunes duplicate records similar to that of Reis et al. (2019) and Rosay et al. (2020) –

who argued that the data loss is necessary for accurate real-world application, discussed

in Section 2.4. As a result, there were 69 functional features used during the ML training

process. Listing 3 shows the resulting 69 features of the original 83 statistical features

presented by the dataset authors.

Some instances contained (typically one) features with a NaN value, while the rest of

the features were unaffected. Instead of discarding those instances, the feature value

4A data frame is a table or a two-dimensional array-like structure in which each column contains
values of one variable and each row contains one set of values from each column.

Chapter 3. Experimental Design 38

1 "Dst Port", "Flow Duration", "Tot Fwd Pkts", "Tot Bwd Pkts",

2 "TotLen Fwd Pkts", "TotLen Bwd Pkts", "Fwd Pkt Len Max",

3 "Fwd Pkt Len Min", "Fwd Pkt Len Mean", "Fwd Pkt Len Std",

4 "Bwd Pkt Len Max", "Bwd Pkt Len Min", "Bwd Pkt Len Mean",

5 "Bwd Pkt Len Std", "Flow Byts/s", "Flow Pkts/s", "Flow IAT Mean",

6 "Flow IAT Std", "Flow IAT Max", "Flow IAT Min", "Fwd IAT Tot",

7 "Fwd IAT Mean", "Fwd IAT Std", "Fwd IAT Max", "Fwd IAT Min",

8 "Bwd IAT Tot", "Bwd IAT Mean", "Bwd IAT Std", "Bwd IAT Max",

9 "Bwd IAT Min", "Fwd PSH Flags", "Fwd URG Flags",

10 "Fwd Header Len", "Bwd Header Len", "Fwd Pkts/s",

11 "Bwd Pkts/s", "Pkt Len Min", "Pkt Len Max", "Pkt Len Mean",

12 "Pkt Len Std", "Pkt Len Var", "FIN Flag Cnt", "SYN Flag Cnt",

13 "RST Flag Cnt", "PSH Flag Cnt", "ACK Flag Cnt", "URG Flag Cnt",

14 "CWE Flag Count", "ECE Flag Cnt", "Down/Up Ratio", "Pkt Size Avg",

15 "Fwd Seg Size Avg", "Bwd Seg Size Avg", "Subflow Fwd Pkts",

16 "Subflow Fwd Byts", "Subflow Bwd Pkts", "Subflow Bwd Byts",

17 "Init Fwd Win Byts", "Init Bwd Win Byts", "Fwd Act Data Pkts",

18 "Fwd Seg Size Min", "Active Mean", "Active Std", "Active Max",

19 "Active Min", "Idle Mean", "Idle Std", "Idle Max", "Idle Min"

Listing 3: 69 Features adopted for Modelling.

was encoded (replaced) with a large integer since it may be malicious. Formatting also

involved class encoding to integer outputs from string outputs. The exercise reduced

the number of instances by 1,538, resulting in 2,658,839 instances of data applicable for

training.

Sampling and Balancing

Stratified sampling was applied to the dataset to separate training and test data. Post-

strata creation, the sample is proportionally selected randomly with a seed/state of 42

for reproduction purposes. The proposed system evaluates the effects of training data

size on the model’s performance by splitting training/test data splits of 10/90, 30/70 and

50/50 percentage. The validation set was created by splitting the training set to 70/30,

where the validation set is 30% of the training data. Sampling and testing leveraged

cross-validation during model development.

The CICIDS 2017 dataset has significant class imbalance – later visually shown in Fig-

ure 3.2. Benign data is the most represented class, as expected since this dataset emulates

a real-world representation.

Chapter 3. Experimental Design 39

Figure 3.2: Original dataset distribution.

The experiment defines Majority classes as those with more than 5000 samples and classes

with fewer instances as Minority classes. Visually, minority classes such as Infiltration

and Web SQL Injection are barely noticeable with their overlap with the Benign class.

SMOTE is applied systematically by performing a grid search in steps of 10 synthetic

samples to minority classes for validation. The best result of the Grid Search was 200

synthetic samples during preliminary tests. Adding synthetic samples to minority classes

yielded insignificant changes to classification performance on the validation set and was

thus avoided. Random Undersampling follows after the SMOTE process, which removes

excess samples from majority classes based on the earlier specified global random seed

if they contain more than 50000 samples. As a point of emphasis, SMOTE was applied

after the split to avoid data contamination for a fair comparison. Figure 3.3 shows the

visual effects of rebalancing the original dataset.

An extreme example of oversampling with SMOTE is the Heartbleed class, which contains

only one training sample. A preliminary test showed that contaminating the test data

and adding synthetic instances to the original dataset made it possible to achieve results

up to 0.94 macro f1-score. However, this is excluded in the proposed implementation.

Data contamination is a common mistake in ML training that should be avoided (Bowyer

et al., 2011).

Chapter 3. Experimental Design 40

Figure 3.3: After Applying SMOTE and Undersampling.

The experiment used a minimum distributable train/test split ratio – 10/90 – to test

model performance against limited data. The assumption was if the model performs

well with limited data it is likely to perform similarly on unseen data. Additionally, the

experiment uses a macro f1-score biased towards minority classes to influence the model

towards achieving better individual categorisation of classes versus binary classification.

Furthermore, if the experiment attained a good f1-score with a minimum distributable

train/test split ratio, it would reflect that the features selected are the most effective and

thus easily more applicable to real-world scenarios.

However, favouring a model that produces high macro f1-score on limited training data,

may not necessarily scale well with more training data. The experiment factors in that

the use of macro f1-score can lead to potential minority classes bias resulting in the loss

of accuracy for the model (Opitz and Burst, 2019). Similar considerations are made with

SMOTE as it may also reduce the overall f1-score while improving the minority classes

detection (Ramezankhani et al., 2014).

Chapter 3. Experimental Design 41

3.2.3 Feature Engineering

The following subsection specifies feature scaling and transformation for feature engineer-

ing applied to the collected dataset.

Feature Scaling and Transformation

The Standard, Power, Quantile and Robust5 scaling techniques – described in Section 2.3.3

– are evaluated for optimal distribution of functional statistical features in this step of

the experiment. The primary scaling method used Quantile scaling as it yielded the best

results across most classification models.

Note, feature scaling and transformation was applied to distance-based classifiers and not

focused on for tree-based classifiers due to these methods not being affected by the data

distribution. The effect of each scaling method, when applied to the resampled dataset,

is represented in Appendix A.2.1.

3.2.4 Feature Space Reduction

Feature space reduction – feature selection and feature extraction – activities were ex-

ecuted (separately) in parallel. There was a complete evaluation of the difference in

outcome between the two systems on the validation set. Of note, isolation forests6 were

fit on the training data but resulted in an average of 8.83% (+/- 3.07%) macro f1 score

reduction.

Feature Selection Methods

The evaluation of feature importance is a key part of the methodology. As part of the

experiment, two feature importance methods undergo evaluation, namely, Gini Impor-

tance (GI) and Permutation Importance (PI). These methods were applied to the base

5Robust was not considered further because it was consistently performing poorly.
6Isolation forest is an anomaly detection algorithm

Chapter 3. Experimental Design 42

models7 for all scalers to determine which approach to take. Using the Python time mod-

ule, calculating the PI function took 302.19 seconds, whilst the GI function took 2.12

seconds. The research adopts PI as detailed in Section 2.3.4. Feature selection ranks the

best features in each model by permuting over 34 (features / 2) iterations and explicitly

selecting features that produce the best f1-score for a particular base model.

Figure 3.4 shows the preliminary distribution of the RF model’s 26 most important fea-

tures before feature rescaling.

Figure 3.4: RF: Boxplot of top 26 permutation importances per feature.

The distribution shows that each feature ranking has differing quantile ranges and ex-

treme lower values in some cases. The shorter the range of the box, the higher the

compatibility with other combinations of features in terms of achieving optimal classifi-

cation performance (Altmann et al., 2010). Selected features undergo rescaling using a

Standard scaler to achieve zero mean and a unit of variance.

Feature Extraction Methods

As an alternative to feature selection methods, the dataset undergoes a dimensionality re-

duction using the PCA feature extraction method. Other reduction methods8 were tested

7Classifiers use default parameters of Scikit, as established by best practices in the literature.
8LDA, LLE, TSNE and UMAP

Chapter 3. Experimental Design 43

on the validation set but not presented in the findings due to practical limitations, includ-

ing the tendency to overfit, deficient classification performance, and high computational

requirements. To identify the number of required components for PCA, Figure 3.5 shows

that the first 26 principal components explain 0.99 of the variance.

Figure 3.5: Experiment Variance.

Note, the evaluation of PI and PCA methods uses hyperparameter tuning on each scaler-

classifier combination.

3.2.5 Model Evaluation

In addition to each classifier’s diverse hyperparameter tuning parameters, they are all ex-

haustively searched using Grid Search9. The phase involves conducting a series of training

experiments for each tuned ML classification algorithm against select feature engineer-

ing and feature space reduction methods. The study uses the findings for comparison

purposes of each output ML model.

For the tables presented in Chapter 4, Processing is used to refer to feature space reduction

activities presented in Section 3.2.3. For example, 26PCA represents a feature extraction

9First Random Search is used to reduce search space, followed by Grid Search, which iterates exhaus-
tively through the best subset of the hyperparameters of a target algorithm.

Chapter 3. Experimental Design 44

method where it is read as 26 components used with PCA, whilst 26PI represents the

first 26 most important features using PI. Moreover, Q-26PI-MLP represents a complete

model application, where the first character represents the Scaler or Transform method

– Quantile as Q – followed by the feature processing method – Permutation Importance

(PI) – and finally, the ML classification algorithm – Multilayer Perceptrons (MLP).

Performance Metrics

Multiple metrics are used to gauge the performance of a given model. The proposed

system used macro f1-score, micro precision, micro f1-score and ROC curves.

A macro f1-score is used in multi-class experiment to reflect on average model perfor-

mance. A macro-f1 is the harmonic mean between precision and recall, where the average

is calculated per label and then averaged across all labels. If pj and rj are the precision

and recall for all λj ∈ h (xi) from λj ∈ yi, the macro f1-score is shown in Equation 3.1:

macro f1-score =
1

Q

Q∑
j=1

2× pj × rj
pj + rj

(3.1)

The macro f1-score provides equal importance to all classes, regardless of their sample

size. A macro-average will compute the metric independently for each class and then take

the average (treating all classes equally), regardless of underrepresentation.

In contrast, a micro-average will aggregate the contributions of all classes to compute the

average metric. The research thus places emphasis and preference on the macro score

versus the weighted score.

Equations 3.2, 3.3 and 3.4 represent the calculation for the micro-average metrics, where

‘c’ is the class label.

micro precision =

∑
c TPc∑

c TPc +
∑

c FPc

(3.2)

Chapter 3. Experimental Design 45

micro recall =

∑
c TPc∑

c TPc +
∑

c FNc

(3.3)

micro f1-score = 2× micro precision×micro recall

micro precision + micro recall
(3.4)

ROC curves do not depend on the class distribution, thus making it helpful in evaluat-

ing classifiers predicting rare events such as underrepresented classes. The area under

the curve is a measure that represents the degree or measure of separability of classes

(Benign/Malicious). ROC curves evaluate model performance on unseen data and AUC

values to gauge unbiased performance.

Due to the general high performance of the models, the ROC curves are rescaled to ease

the interpretation of the findings. Hosmer Jr et al. (2013)’s general binary rules for AUC

are adapted for a multi-class problem area below:

• Values equal to 0.5 suggests that the model is no better than predicting an outcome

than random chance – represented as no discrimination.

• Values 0.5 < x < 0.7 means slightly better than random chance – represented as

poor.

• Values 0.7 <= x < 0.8 indicate an acceptable discrimination – represented as ac-

ceptable.

• Values 0.8 <= x < 0.9 indicate an excellent model – represented as exceptional.

• Values >= 0.9 indicates an outstanding model – represented as outstanding.

3.2.6 Experiments

To address the objectives set in Section 1.3, the following three experiments are completed:

Chapter 3. Experimental Design 46

• Experiment 1 - Compares the performance of models trained against CICIDS 2017.

• Experiment 2 - Compares the performance of the CICIDS 2017 models tested against

the unseen CICIDS 2018 data.

• Experiment 3 - Compares the performance of the CICIDS 2017 models retrained

against CICIDS 2018.

The results of these experiments are presented in Sections 4.3.1, 4.3.2 and 4.3.3, respec-

tively.

Experiment 1: Training models with CICIDS 2017 dataset

The One versus All (OvA) strategy is used as a training strategy for all classifiers. The

strategy involves training a single classifier per class, with the class samples as positive

samples and all other samples as negatives.

For the untrained data, the CICIDS 2017 has three train/test data splits of increasing size,

mentioned in Section 3.2.2. These are evaluated separately following the implementation

in Section 3.2.5 to determine the effect of having limited training data, as opposed to up

to half of the total samples in the dataset.

Experiment 2: CICIDS 2017 Model testing with CICIDS 2018 dataset

Using the semantic information from features extracted during data acquisition in Sec-

tion 3.2.2, the same models developed for CICIDS 2017 are used on CICIDS 2018 to

evaluate the model effectiveness against untrained data. Reusing the CICIDS 2017 mod-

els on a new dataset, the CICIDS 2018 dataset is processed in the same way as the above,

but with the following difference to allow for automated reuse of a model on different data

during classification.

Additionally, this approach seeks to prove the concept of detecting novel scenarios by

adopting class variants into a parent class, broadly classifying DDoS from variants DDoS

Chapter 3. Experimental Design 47

LOIC and HOIC. In cases where detection is successful, it is different from signature-

based detection, which will require new patterns developed. An interested reader may

refer to the dataset authors10 to describe the missing labels.

Experiment 3: Training and Testing with CICIDS 2018

The final experiment evaluates the classification performance of CICIDS 2018 by following

the same hyperparameter tuning and training methodology as the first experiment. For

remodelling, the study uses the grouping of classes during the regular expression matching

detailed in Section 3.1.2.

3.3 Experiment Design Summary

This chapter first provides a high-level view of the methodology used for the proposed

NIDS. This included the datasets, implemented algorithms and evaluation methods used.

The second section involved a detailed description of the implementation of the pro-

posed system including the testbed, data preparation, feature engineering, feature space

reduction methods and finally model evaluations. The focus was placed on how data

preparations were completed for the two datasets used in this experiment.

The chapter moves on to introduce and discuss metrics used for model evaluation. The

chapter closes with a description of the experiments that were conducted for model eval-

uation. The experiments were set to directly address the objectives set for this research.

10https://www.unb.ca/cic/datasets/ids-2018.html

4
Results

This chapter analyses and discusses findings from the experiments on NIDS development

conducted in Chapter 3. Results of feature engineering, model tuning and evaluation are

presented against the CICIDS 2017 and further evaluated for presentation against the

CICIDS 2018 datasets, respectively. The core model evaluation in this chapter uses the

metrics presented in Sections 2.3.5 and 3.2.5.

4.1 Feature Engineering Results

Table 4.1 shows an extract of the top five most important features per classifier using

PI. Dst Port – destination port – was the most consistent contributing feature for the

evaluated models. Given that the feature represents a common entry point onto a network,

it is sensible that the feature holds significance. These findings of feature ranking also

concur with that of the information gain method by Kurniabudi et al. (2020), where the

destination port is also one of the top-ranked features.

Several features including Init Bwd Win Byts, Fwd IAT Min, Bwd Pkt Len Std and

Fwd Pkt Len Max were preferred by RF, DT, KNN and MLP classifiers. These were

48

Chapter 4. Results 49

Classifier Top Five Features

RF
Dst Port, Init Bwd Byts
Bwd Seg Size Avg, Fwd IAT Min
Tot Len Pkts

SVM
Bwd Pkt Len Std, Dst Port
PSH Flag Cnt, Fwd IAT Std
Fwd Pkt Len Max

MLP
Dst Port, Fwd Act Data Pkts
Fwd Pkt Len Max, PSH Flag Cnt
Init Fwd Win Byts

KNN
Dst Port
Flow IAT Min, Fwd IAT Min
Bwd Header Len, Init Bwd Win Byts

DT
Fwd Pkt Len Max, Bwd Pkt Len Std
TotLen Bwd Pkts, Init Bwd Win Byts
Dst Port

LR
PSH Flag Cnt, Dst Port
Bwd Pkt Len Min, Fwd Pkt Len Max
Fwd Pkt Len Std

RNN N/A

Table 4.1: Top Five Most Influential Features.

also observed by Kurniabudi et al. (2020), Reis et al. (2019) and Aksu et al. (2018a) as

preferred features during feature selection.

Dimensionality reduction using PCA produced better results compared to other1 extrac-

tion methods, especially for the LR classifier. The performance of PCA against scaling

methods like Quantile reflect that the approach may be transforming the data into a more

uniform distribution2.

In general, feature selection had varying effects per ML model with better performance

than PCA. Readers may refer to Appendix A.3.1 for further analysis of feature selection

findings.

1LDA, LLE, TSNE and UMAP
2PCAs dominant components resulted in a uniform distribution.

Chapter 4. Results 50

4.2 Model Evaluation

This section details the findings from the experiments of the complete model evaluation

from Section 3.2.5.

4.2.1 Model Tuning

This subsection presents hyperparameters that were effective for each ML classifier. Hy-

perparameters bias/variance trade-off balance by selecting the value where training and

cross-validation scores peak for part of this section’s basis. Provision of best results is on

a case by case basis due to the many combinations drawn from hyperparameter tuning.

Table 4.2 shows classifiers with their respective most influential parameter. Note, the

parameter tuning experiments were repeated the standard ten times and the best param-

eters were taken based on the result. The following paragraphs provide details for each

classifier.

RF accuracy is not improved significantly with changes to parameters except when max-

imum depth and/or feature count are changed. In as much as the effect observed was

small, both Kurniabudi et al. (2020) and Ahmim et al. (2019) make no suggestion of

hyperparameter tuning value when evaluating RF models.

SVM results show that a low gamma of seven improves and stabilises the f1-score

across validation folds. Generally, a low-value gamma reflects that the model is too con-

strained and cannot capture the complexity of the data from the linearity of the training

data (Cherkassky and Ma, 2004).

Cross-validation macro f1-score is not improved by a gamma value above six. Of note,

the gamma value is multiplied by (1 - training split)/2) to allow the SVM algorithm to

train in a reasonable amount of time when given increasing amounts of data. The lower

gamma value reduces the complexity of the Gaussian kernel function (Ring and Eskofier,

2016).

Chapter 4. Results 51

Classifier Parameter(s) Accuracy

RF
n-estimators = 300
max-features = sqrt
max-depth = 25

≈ 1

SVM
kernel = rbf
gamma = 7
C = 100

≈ 1

MLP

solver = adam
learning-rate = constant
hidden-layer-sizes = (200, 200, 200)
alpha = 0.0001
activation = relu

0.887

KNN
weights = distance
n-neighbors = 1
metric = manhattan

≈ 1

DT

min-samples-split = 3
min-samples-leaf = 3
max-features = sqrt
max-depth = 25
criterion = gini

0.93

LR
C = 800
min-samples-leaf = 3
solver = lbfgs

0.887

RNN

epochs = 500
batch-size = 64
dropout-rate = 0.2
learn-rate = 0.001
neurons = 128

≈ 1

Table 4.2: Most Influential Hyperparameters using 26PI.

The best-tuned parameters included using a radial basis function (RBF) kernel, a class

weight for the imbalanced data, and a ‘C’ parameter to trade-off correct classification of

training examples against maximisation of the decision function’s margin. The ‘C’ value

of 100 was optimal, and higher values led to overfitting.

As was the case with RF, related SVM based NIDS did not describe their parameter

tuning process. It is thus challenging to compare aspects of the studies that led to good

model development.

Chapter 4. Results 52

MLP results show that the optimal tuned parameters include: using the ADAM solver, a

constant learning rate and adopting the ‘ReLu’ activation function. This result is similar

to SVM. The selection of the activation function is identical to that by Muhuri et al.

(2020) and indicates that this may be appropriate for this kind of data.

KNN results show that the model performs best with three neighbours on the validation

set. The Manhattan distance worked best for the multiclass. However, preliminary tests

showed that Euclidean distance works well on binary classification problems.

DT shows the optimal performing parameters for the model included: ‘Gini’ impurity

function, square root for the best split to maximise on feature search, minimum sample

split and leafs of three. There is no evidence of a better yield from using ‘Entropy’ as an

impurity function from preliminary tests.

LR yields the best result when using a ‘C’ value – Inverse of regularisation strength –

of 800. Values lower or higher than this result in decline in the f1-score. Additional

parameters used to achieve the best results included: using l2 for penalty normalising,

LBFGS optimisation algorithm and no class weighting.

RNN tuning involved adjusting the batch size for training and the updates on the number

of epochs for how many times the weights for the neural network were updated during

training. Higher epochs generally yielded better results when there was a minimum 500

epochs. The model uses all 69 features with tuned parameters, including dropout rate

varied between 0.1 and 0.5, the learning rate between 0.0001 and 0.001, and batch sizes

between 32 and 512. Best findings had epoch between 100 and 1500, where 1000 was

optimal before overfitting. Given all parameters are influential in this model, a validation

curve for hyperparameters was not used.

In general, a focus on hyperparameter tuning was able to show that this step is essential

for better assurance to optimised ML NIDS. Interestingly, no emphasise is placed on

hyperparameter tuning step from Section 2.4 in the literature review. Appendix A.4.1

shows other results related to hyperparameter tuning.

Chapter 4. Results 53

4.3 Experiment Results

The following subsections detail the results of the three experiments presented in Sec-

tion 3.2.6.

4.3.1 Experiment 1: Training models with CICIDS 2017 dataset

Findings for each model in this subsection are developed and validated against the CICIDS

2017 dataset. The rest of the section details findings of limited data for train/test splits

and the effects of varying train/test data splits on model outputs.

Minimum Distributable/Limited Data

In this section, the best performing models that use the minimum distributable – also

referred to as limited data – train/test split ratio – 0.1/0.9 – are analysed to prove ef-

fectiveness against training data dependence. Note that the training subset was further

split and used as a validation set. For multi-class classification, Hosmer Jr et al. (2013)’s

class discrimination rules, introduced in Section 3.2.5, are used to summarise performance.

Multiclass classification models are trained for all the classes3 in the CICIDS 2017 dataset,

as presented in Section 2.3.2.

Table 4.3 shows the limited data best results for the NIDS models where all models achieve

a macro f1 score above 0.70. Model 26PI-RF achieves the best macro f1-score of 0.87 with

a precision as high as 0.90.

The rest of the section details findings per model. Models are analysed using a table of

results and/or ROC curves. For model contrasts, the FPR and TPR per class due to the

high accuracy of the models, are zoomed for ROC curve analysis. There is a provision of

accuracy and other metrics for comparison with other studies.

3Benign, Bot, DDoS, DoS GoldenEye, DoS Hulk, DoS Slowhttptest, DoS Slowloris, FTP-Patator,
Heartbleed, Infiltration, PortScan, SSH-Patator, Web Brute Force, Web SQL Injection and Web XSS

Chapter 4. Results 54

Model Accuracy Precision Recall
f1-score
(macro)

26PI-RF 1 0.90 0.86 0.87
Q-26PI-KNN 1 0.80 0.86 0.82
Q-36PI-MLP 1 0.83 0.85 0.81
Q-26PI-SVM 1 0.82 0.84 0.81
16PI-DT 1 0.78 0.83 0.76
Q-26PCA-LR 0.99 0.69 0.78 0.73
Q-69PI-RNN 1 0.74 0.82 0.73

Table 4.3: Best results minimum distributable train/test split ratio models.

Due to evident class imbalance highlighted in Section 3.2.2, the f1-score is macro-averaged

except when compared to findings in literature. The wiki section of the code repository4

shows references to additional visual results for the models. For the reader interested in

more details, refer to Appendix A.5 through A.7.

RF: 26PI-RF yields the best results with limited data with a perfect (rounded) accuracy,

outperforming the 0.97 accuracies achieved by Kurniabudi et al. (2020), which was the

best observed in the literature. Generally, for feature space reduction, RF prefers feature

selection over feature extraction methods. It is not clear why this is the case, but this

may serve as a potential future study outside the scope of this study. The model performs

exceptionally well for the majority classes and to a fair extent in minority class cases. It

follows that RF is a strong detection model.

Figure 4.1 illustrates the ROC curve for 26PI-RF which reflects findings at a micro aver-

aged accuracy. The near perfect AUCs for the model indicates outstanding discrimination

for all classes except for Web Sql Injection.

In the latter instance, the curve is not completely visible due to the FPR tending to

1; hence the AUC value is explicitly given in parentheses. RF tends to perform better

with significant class representation in training sets; however, it is interesting to note that

minority classes Heartbleed and Web Brute Force also had good performance. It is not

clear why minority classes performed well. RF is the strongest detection model option

4https://github.com/hatityechindove/ml-based-nids-research/wiki

Chapter 4. Results 55

Figure 4.1: 26PI-RF: ROC curve of the best performing RF model on limited data.

for ML methods not using Deep Learning. Appendix A.7.1 shows additional information

related to the RF.

KNN: Table 4.4 shows that Q-26PI-KNN achieves the highest macro f1-score using lim-

ited data. Both models achieve a perfect (rounded-off) accuracy like the best RF model.

Processing Accuracy Precision Recall f1-score

Q-26PI-KNN 1 0.80 0.86 0.82
S-26PI-KNN 0.99 0.74 0.87 0.78
P-26PI-KNN 1 0.75 0.85 0.79
P-26PCA-KNN 1 0.71 0.82 0.74
Q-26PCA-KNN 1 0.75 0.81 0.77
S-26PCA-KNN 0.99 0.7 0.79 0.74

Table 4.4: Best CICIDS 2017 limited data results for KNN model.

During validation testing, the Quantile transformation set with a uniform output consis-

tently yielded better results across all feature selection and extraction methods, whilst

the Standard scaler produced the lowest. Given that the macro averages of the model

perform well, it goes to show that the model is appropriate for use in binary classification

and weaker for categorisation of classes. In general, KNN models perform lower across all

classes when compared to the RF model analysed earlier. There were no other findings

Chapter 4. Results 56

of interest. Appendix A.7.2 presents additional analysis related to the KNN.

MLP: Table 4.5 shows that Q-36PI-MLP achieves the highest macro f1-score of 0.81.

Similar to KNN, Quantile is able to yield better results for both feature space reduction

methods, whilst the Standard Scaler achieves the lowest f1-score results. Chuan-long et al.

(2017)’s study achieved a recall of 0.78, which is lower compared to those achieved by all

evaluated MLP models.

Processing Accuracy Precision Recall f1-score

P-36PI-MLP 1.00 0.80 0.84 0.79
Q-36PI-MLP 1.00 0.83 0.85 0.81
S-36PI-MLP 0.98 0.70 0.81 0.73
P-26PCA-MLP 1.00 0.76 0.79 0.75
Q-26PCA-MLP 1.00 0.77 0.82 0.78
S-26PCA-MLP 0.99 0.66 0.78 0.68

Table 4.5: Best CICIDS 2017 limited data results for MLP model.

The model prefers more features than the other applied ML models evaluated for optimal

results. An in-depth review show that MLP performs worst against Infiltration and all

Web Attacks. This finding may reflect that ANN’s may generally perform better with a

wider feature space, as observed for RNN findings. Appendix A.7.3 highlights additional

information related to the performance analysis.

SVM: Table 4.6 shows that Q-26PI-SVM was the best SVM model with a 0.81 macro f1-

score. Interestingly, SVM findings exhibit trends different to RF’s, in that SVM’s recall

is significantly better in many cases, and conversely, precision is worse. Furthermore,

differences in f1-scores are much lower across other feature selection combinations than

RF. This difference indicates that the SVM is relatively sensitive to features included in

the model.

Of note, all minority classes had low accuracy except for Heartbleed. The model may not

serve as a good option for categorising but is better suited for binary classification. For

the interested reader, refer to Appendix A.7.4 for additional analysis.

DT: Table 4.7 shows that 16PI-DT is the best performing model with accuracy, precision,

Chapter 4. Results 57

Processing Accuracy Precision Recall f1-score

Q-26PI-SVM 1.00 0.82 0.84 0.81
S-26PI-SVM 0.98 0.74 0.77 0.71
P-26PI-SVM 1.00 0.84 0.80 0.79
P-26PCA-SVM 1.00 0.84 0.78 0.80
Q-26PCA-SVM 1.00 0.84 0.80 0.80
S-26PCA-SVM 0.98 0.69 0.75 0.69

Table 4.6: Best CICIDS 2017 limited data results for SVM model.

recall and f1-score of 1, 0.78, 0.83 and 0.76, respectively. P-16PI-DT attains a similar f1-

score but has a lower precision and recall. In this case, results show that Quantile performs

best when used with feature space reduction.

Processing Accuracy Precision Recall f1-score

Q-16PI-DT 1 0.72 0.82 0.75
16PI-DT 1 0.78 0.83 0.76
P-16PI-DT 1 0.74 0.82 0.76
P-26PCA-DT 0.99 0.66 0.73 0.68
Q-26PCA-DT 0.99 0.72 0.77 0.74
S-26PCA-DT 0.99 0.70 0.73 0.69

Table 4.7: DT limited data best results.

All feature selection models achieved perfect (rounded) accuracy for DT regardless of the

data scaling method. DT findings exhibit trends where its recall is significantly better

in most cases than RF (an ensemble method). Moreover, results show that ensemble

methods prefer using no scaler or the Standard Scaler over other scaling methods. Of

note, DT preferred fewer features in both validation and these experiments compared

to the other models evaluated. This finding is advantageous in cases where a different

extraction method may be used compared to the CICFlowMeter used in this study. There

is a smaller feature space selection.

Further testing showed that adding more training samples (70% in total) drastically im-

proved the model to be on par with other classifiers like RF. However, it was impractical

to compare, as there are very few test data samples remaining when performing testing

this way. More analysis information can be review in Appendix A.7.5.

Chapter 4. Results 58

LR: Table 4.8 shows that Q-26PCA-LR is the best performing LR model compared to

the rest of the classifier’s implementations with limited data. Different from the other

models, the PCA feature space reduction methods performed best. The micro f1-score

performed marginally lower than other best models that achieved a perfect score. This

model has the advantage of having the fastest training times compared to other models

evaluated.

Processing Accuracy Precision Recall f1-score

S-36PI-LR 0.96 0.56 0.64 0.59
P-36PI-LR 0.99 0.67 0.79 0.71
Q-36PI-LR 0.99 0.68 0.78 0.70
P-26PCA-LR 0.99 0.64 0.77 0.68
Q-26PCA-LR 0.99 0.69 0.78 0.73
S-26PCA-LR 0.95 0.56 0.64 0.58

Table 4.8: LR limited data best results.

There were no other results of significance observed for the model. For additional infor-

mation, interested readers can refer to Appendix A.7.6.

RNN: Different from the rest of the evaluated models, RNN was presented with all the

features and did not undergo the same process of feature selection and extraction. Due to

several factors such as the training methods, loop structure of the neural network, layers,

dropout layers presented in Section 2.3.6, more focus was placed on model tuning.

Q-69PI-RNN was the best RNN model with accuracy, precision, recall and f1-score of 1,

0.74, 0.82 and 0.73, respectively. Figure 4.2 shows a ROC curve for the Q-69PI-RNN

used to identify and evaluate how each class performs at a micro-level. The ROC curve

shows an AUC greater than 0.90 across all classes except for Web SQL Injection that had

0.88. Overall, the model has outstanding discrimination for all classes with exceptional

discrimination as the minimum performance. RNN generally requires large training sets,

and it was interesting to observe the minority classes with good performance.

Further analysis of the ROC curve shows the exceptional performance for most classes

that achieve a TPR greater than 0.99 and FPR less than 0.05. Infiltration and Web SQL

Chapter 4. Results 59

Figure 4.2: Q-69PI-RNN: ROC curve of the best performing RF model on limited data.

Injection appear to be the anomalies due to their higher FPR. The anomalies can result

from significantly imbalanced class representation even after oversampling.

The model was effective at macro level detection but had poor, inconsistent detection of

minority classes. The results show a downside on the model complexity in establishing

the optimal parameters and the training times.

Train/Test Data Split Effects

Table 4.9 shows no significant consistent improvement in model performance from in-

creasing training data for most cases. In general, there was a consistent observation of

the benefits of adding more test data except for RF and DT based models. The findings

show that six models prefer feature selection instead of the PCA dimensionality reduction

method.

There are no significant additional findings on the effects of the train/test data split effects

observed. For the interested reader, refer to Appendix A.7.8 on results of more training

data.

Chapter 4. Results 60

Model Accuracy
f1-score
(macro)

Split

26PI-RF 1 0.90 0.5
Q-26PI-KNN 1 0.82 0.1
Q-36PI-MLP 1 0.81 0.1
Q-26PI-SVM 1 0.81 0.1
16PI-DT 1 0.76 0.1
Q-69PI-RNN 1 0.73 0.1
Q-26PCA-LR 0.99 0.73 0.1

Table 4.9: Summary of best results based on the extraction processing method.

4.3.2 Experiment 2: CICIDS 2017 Model testing with CICIDS

2018 dataset

Table 4.11 shows test results for the best CICIDS 2017 classifiers tested against the unseen

CICIDS 2018 dataset. Note, the models did not undergo additional hyperparameter

tuning and used the parameters from Section 4.2.1. Q-36PI-MLP achieves the best macro

f1-score of 0.22.

Model Precision Recall
f1-score
(macro)

f1-score
(micro)

Q-36PI-MLP 0.22 0.25 0.22 0.81
Q-26PI-SVM 0.29 0.18 0.19 0.9
Q-26PI-KNN 0.23 0.21 0.17 0.66
Q-69PI-RNN 0.14 0.15 0.13 0.78
16PI-DT 0.08 0.13 0.09 0.62
26PI-RF 0.06 0.07 0.06 0.81
Q-26PCA-LR 0.06 0.04 0.05 0.46

Table 4.10: Model tests against CICIDS 2018 dataset.

Q-26PI-SVM and Q-26PI-KNN performed marginally lower than the best model, whilst

the rest had a deficient performance. This low performance can be a result of the adopted

attribute learning method, which used regular expression matching during data acquisition

in Section 3.2.2. As stated in Section 3.2.6, the approach served to cater for the novel

scenarios that differentiate the adaptive ML capabilities to the signature-based detection.

Chapter 4. Results 61

For future studies, a review into Pérez et al. (2017)’s approach to semantic information

may be explored as a different method to try and improve the results.

In general, for unmodelled data, at a micro level, all models are able to predict the

Benign class with excellent accuracy. MLP, SVM and KNN detected the majority classes.

However, all models failed to predict the minority classes with high precision. Regardless

of the generally low performance of the ML methods, MLP, SVM and KNN models

proved better suited to detect new attack scenarios. Furthermore, these findings show

the model’s potential to be adopted as a binary classifier for ‘Benign’ versus ‘Non-Benign’

traffic classification.

These findings from the proposed model address the problem statement raised in Sec-

tion 1.1, where expectations of NIDS are to adapt to new scenarios. This achieves of one

of the set objectives as the findings show that NIDS models presented with unmodeled

data (new scenarios) show potential to detect intrusions.

Table 4.11 shows sample results of Q-26PI-SVM model’s detailed results of the multiple

classes. The model presented the best micro results against the CICIDS 2018 dataset.

Class Precision Recall
f1-score
(macro)

Benign 0.90 0.99 0.94
Bot 0 0 0
DDoS 0.90 0.19 0.32
DoS GoldenEye 0.99 0.21 0.34
DoS Hulk 0.55 0.84 0.67
DoS Slowhttptest 0 0 0
DoS slowloris 0.66 0.23 0.34
FTP-Patator 0 0 0
Infiltration 0 0 0
SSH-Patator 0 0 0
Web Brute Force 0 0 0
Web Sql Injection 0 0 0
Web XSS 0 0 0

Table 4.11: Q-26PI-SVM: Detection performance against the CICIDS 2018 dataset.

The model performs exceptionally well for the ‘Benign’ class at a micro-level. The DoS

Chapter 4. Results 62

GoldenEye class also achieved a high detection together with the other ‘DoS’ classes which

place the model as a model that can move towards generalising its detection capability.

The model had poor detection for Bot, DoS Slowhttptest, FTP-Patator, Infiltration, SSH-

Patator, Web Brute Force, Web Sql Injection and Web XSS. Similar findings were identi-

fied for the RF, RNN and MLP models. These results of the proposed model established

that detection on unmodeled data has potential in real-world application.

4.3.3 Experiment 3: Training and Testing with CICIDS 2018

This subsection discusses the model post retraining using the CICIDS 2018 dataset. Ta-

ble 4.12 shows the best models for each classifier after retraining with the CICIDS 2018

dataset. Note, the micro f1-score is not presented as it is similar to the accuracy.

Model Accuracy Macro f1-score

Q-69PI-RNN 0.98 0.73
26PI-RF 0.78 0.72
Q-26PI-SVM 0.73 0.68
Q-26PCA-MLP 0.78 0.67
Q-26PI-KNN 0.77 0.66
16PI-DT 0.77 0.64
P-26PCA-LR 0.70 0.62

Table 4.12: CICIDS 2018 Best Model Per Classifier.

Q-69PI-RNN provides the best results with an f1-score of 0.73, which persisted with

results from the CICIDS 2017 limited data in Section 4.3.1. Marginally lower was the

26PI-RF model with an f1-score of 0.72. The performance of the RF model declined by

0.16 against 0.88 from the CICIDS 2017 RF model. Finally, the new SVM model achieved

an f1-score of 0.68, down from the 0.82 from the best CICIDS 2017 SVM model.

An interesting observation is that PCA with a Quantile transform performs well against

the CICIDS 2018 dataset. The observation suggests that PCA makes the dataset more

uniform in distribution for the transformation to have a better effect.

Chapter 4. Results 63

RNN: After model retraining, at a macro level, RNN classifier findings remains similar to

those from the CICIDS 2017 dataset, especially when contrasted with other classification

models. Regardless of the model not having the best macro f1-score, findings show stabil-

ity when presented with a different dataset. In these cases, the model is more consistent

when compared to the rest of the models. Thus, RNN is a robust detection model choice

for multiple categories of intrusions events.

The RNN model analysis shows outstanding discrimination across all classes at a micro

class level. This finding assures the significance of RNN when applied to NIDS problems.

For the interested reader, refer to Appendix A.3 on the results of the remodelled classifiers.

RF: Q-26PI-RF was the best performing RF model after remodelling with a different

dataset. Unlike the CICIDS 2017 RF model, the Quantile Scaler was the better per-

former on this dataset. The inability of the model to retain the same engineered features

as those used by the best CICIDS 2017 model shows that the model cannot be easily

generalised. Regardless of the weakness in generalisation, the classifier continues to show

strong candidacy for a NIDS problem but requires significant attention on feature engi-

neering.

At a micro class level, the model achieves outstanding discrimination across all classes

except an exceptional rating for the Infiltration class. However, this performance was

lower than the CICIDS 2018 RNN model achieved. Regardless the model remains a

strong option for a NIDS model.

SVM: Q-26PI-SVM performs high when presented with different datasets. The remod-

elled results show Q-26PI-SVM as being more insensitive to feature engineering than the

RF counterpart. As much as RF had a better detection rate with a larger macro f1-score,

the SVM model has the advantage of being easily generalised. Due to feature engineering

not being applied to the RNN, there is no comparison with the RNN in the study.

Similar to RF, micro class analysis results show the model had outstanding discrimina-

tion across all classes except for Infiltration, which attained exceptional discrimination.

Similarly, the model retains strong candidacy for as NIDS model.

Chapter 4. Results 64

There were no other results of significance observed in the table presented for the other

classifiers.

4.4 Model Comparisons

Table 4.13 shows a representation of the macro-level best-evaluated model results against

the CICIDS 2017 and CICIDS 2018 datasets. Q-69PI-RNN is the most insensitive and

stable model that can be generalised. It can maintain its feature engineering properties

and a persistent macro-level f1-score.

Model
Macro f1-score

(2017)
Model

Macro f1-score
(2018)

26PI-RF 0.90 26PI-RF 0.72
Q-26PI-KNN 0.82 Q-26PI-KNN 0.66
Q-36PI-MLP 0.81 Q-26PCA-MLP 0.67
Q-26PI-SVM 0.81 Q-26PI-SVM 0.68
16PI-DT 0.76 16PI-DT 0.64
Q-69PI-RNN 0.73 Q-69PI-RNN 0.73
Q-26PCA-LR 0.73 P-26PCA-LR 0.62

Table 4.13: Best model implementations across the CICIDS 2017 and 2018 datasets.

Regardless of performance degrading across different datasets, SVM, KNN and DT also

show better generalisation as they were not very sensitive feature engineering changes

for their best performers. There was an observation of instability across the rest of

the classifiers because of the change in feature engineering for different datasets best

performers. As such, these models cannot be generalised in the context.

4.5 Summary of Results

This chapter presented the findings of the processes and algorithms implemented during

this research for constructing ML-based NIDS models. First, the chapter presents prelim-

inary results from feature engineering. Results of the overall best performers against the

Chapter 4. Results 65

CICIDS 2017 dataset for the evaluated models against limited data are presented. The

findings of the models are extended to evaluation against the CICIDS 2018 dataset. The

chapter closes by presenting the micro class level modelled and remodelled class analysis.

5
Discussion

This study aimed to evaluate and adopt systematic ML-based methods to NIDS develop-

ment. The chapter discusses the findings from Chapter 4 and its related literature. Sec-

tion 5.5 briefly discusses feature selection and model hyperparameter tuning, and model

training findings. Also included in the discussion was a section on the comparison with

the related NIDS presented in Section 2.4. The chapter concludes with a summary of

Chapter 5 discussions.

5.1 Introduction

Some noticeable differences between the findings compared to existing studies was in the

lack of emphasis on a systematic approach to feature selection and metric selection (Stein

et al., 2005, Bisht and Ahmad, 2017, Chuan-long et al., 2017, Aksu et al., 2018a, Reis

et al., 2019, Atefi et al., 2019, Subasi, 2020, Rosay et al., 2020). Kurniabudi et al. (2020)’s

study reflected on similar emphasis, where comparison and assessment with this study

evolved to be more straightforward.

The rest of the sections in this chapter extend and highlight areas where this study

observed gaps identified in the literature.

66

Chapter 5. Discussions 67

5.2 Data Preparation

Basic research considerations and understanding of the performance of each model against

individual classes formed part of essential comprehensive NIDS reviews (Sommer and

Paxson, 2010). Similar to Kurniabudi et al. (2020), findings presented in Section 4.3.1

and 4.3.3 reflected on the performance of each model against individual classes.

Due to significant class imbalance and minority instances count for classes like Heartbleed

and Web Brute Force, the use of SMOTE for oversampling had a positive effect on clas-

sification models. Regardless of the class representation, RF and RNN models appeared

not to show significant bias towards either minority or majority classes, which concurred

with the findings from Reis et al. (2019) and Kurniabudi et al. (2020).

When reviewed against the CICIDS 2018 dataset, RNN showed minority class Web XSS

as being able to achieve a high f1-score. This finding suggested that RNN could work

with minimal data and achieve better results compared to the rest of evaluated models.

In general, the training methods could get the most out of the algorithms and the dataset

provided. Minority classes continued to be a challenge, but the findings showed the effects

of applying sampling techniques to improve the training.

5.3 Feature Engineering

The effect of Quantile transformation with uniform output on distance-based classifiers –

KNN, MLP, SVM, RNN and NB – showed superiority in the macro f1 of the models. The

finding suggested that a uniform distribution transform to the training dataset inherently

benefited the models.

The Standard Scaler performed best when applied to RF and DT classifiers. The scaling

method generally performed worst against the distance-based classifiers. In such a case,

it was better to use the base model, which had default parameters set according to best

practices, instead of using the Standard Scaler. The Quantile Scaler consistently remained

optimal, with five models adopting the method.

Chapter 5. Discussions 68

5.4 Feature Space Reduction

Features DST Port, PSH Flag Cnt and Init Fwd Wind Byts show a classifier agnostic

trend. These were the most important features across most of the models. The features

may prove useful on other datasets outside of this study, as they have repeatable properties

by nature, unlike situational features such as SRC Port ranked by Rosay et al. (2020),

which are environment/context-specific. Contrary to Rosay et al. (2020)’s findings on SRC

Port feature relevance, there was no account of the criticality of feature ranking during the

training phase as evaluated in this study and stated in other studies (Aksu et al., 2018a,

Ahmim et al., 2019, Kurniabudi et al., 2020). DST Port feature importance concurred

with multiple studies where the feature was highly rated (Kurniabudi et al., 2020, Reis

et al., 2019). Consequently, the process of detailing feature selection was important to

guide systematic ML-based NIDS models development.

The feature importance results generally showed no universal set of equally essential

features across all traditional classification models. Depending on the classification algo-

rithm, feature preference may change, and it was essential to conduct a feature importance

test when training classifiers for NIDS.

Overall, the use of feature selection with PI generally outperformed the feature extraction

methods. Feature count of 26 appeared optimal with an increase in feature count beyond

or lower than 26, yielding marginally different scores.

5.5 Model Evaluation

Each model’s dimensionality reduction results highlighted the need for hyperparameter

tuning. The process required an extensive set of systematic, iterative experimentation to

evaluate the effects of each parameter. This process required caution to avoid overfitting

or underfitting as this appeared prevalent. Of the related studies reviewed in Section 2.4,

the experiment setup focused on the classifiers evaluated but did not discuss the model

optimisation process.

Chapter 5. Discussions 69

It was challenging to assess whether some of the models in the literature produced a fair

comparison, given that it was not clear that they were optimised to produce their best

results. The findings from this study reflected on providing an opportunity to review

better tuning for each NIDS classifier. In itself, there was better objectivity on each

classifier’s review.

Against the CICIDS 2017 dataset, KNN, MLP and SVM classifiers performed well with

a marginal difference at a macro level. Upon inspecting individual classes, RF performed

better for the majority classes but much less for the minority classes. MLP performed

much better for the minority classes, similarly for SVM and RNN on class inspection.

On the other hand, RNN performed best with high accuracy when remodelled against

the CICIDS 2018 dataset. The RF classifier follows, after which SVM and MLP retain

high performance as observed for the CICIDS 2017 dataset. In the case of RNN findings,

this study may accept errors in a practical scenario. To further improve the classifier,

future studies can explore in-depth other supplemental architectures like utilising LSTM

and GRU, similar to the work by Muhuri et al. (2020). This study did not venture into a

detailed review of the effects of methods. Consequently, more research will need to train

RNN for significantly underrepresented classes.

On further macro-level class inspection, generally, majority classes achieved higher perfor-

mance against the minority classes. The RNN classifier had eight of the twelve predictions

perfect. RF also performed well, but observations showed weakness towards minority

classes similar to the CICIDS 2017 dataset.

Table 5.1 shows a summary of some of pros and cons of each of the models evaluated.

5.6 Related NIDS Comparison

In comparison to Chuan-long et al. (2017), the proposed methodology took an objective

position on the development of the models. For the study, as part of the evaluation,

Chapter 5. Discussions 70

Model Pros Cons

RF

Simple model tuning
Strong majority class detection
No scaling or transformation required
Outstanding micro class discrimination

Requires larger training sets
Poor detection of minority classes
Fail to effectively adjust to unseen data
Harder to generalise for NIDS

SVM

Strong on binary classification
Adjust fairly to untrained data
Easier to generalise
Outstanding micro class discrimination

Long training times
Poor minority class detection

KNN Strong on binary classification
Poor in multi-class detection
High resource utilisation

MLP Adapts better to untrained data
Complex model tuning
Requires more training features

DT
Works effectively with few training features
Less dependency on additional scaling
Fast training times

Requires more training data
Fail to adjust to untrained

RNN
Consistent feature engineering requirements
Good minority class detection
Outstanding micro class discrimination

Most complex tuning requirements
Computationally intensive training
Long training periods

LR
Better leverages feature extraction methods
Strong as a binary classifier

Poor minority class detection
Weak multi-class classifier

Table 5.1: Pros and Cons of evaluated models.

the experiment automatically seeked to assign repeatable yet dynamic strategies for each

model. When the proposed methodology compared, it accounted for each classifier’s best.

This study’s methodology incorporated a breadth of evaluation criteria: ROC curves,

recall, precision, and f1-score (both macro and weighted), which provided more insights

into classification areas where RNN performed better than the other models. The results

from the methodology followed achieved a perfect accuracy for both datasets, which was

better than 0.8328 from Chuan-long et al. (2017). The study took a practical consideration

of the real-world data, which was generally imbalanced. This consideration was evident in

the datasets used, metrics explored beyond the accuracy metric, and class representation

issues encountered using RNN.

Similar to the proposed methodology in this study, Kurniabudi et al. (2020) made em-

Chapter 5. Discussions 71

phasises the breadth of evaluation. Kurniabudi et al. (2020) emphasised feature selection

by using information gain versus permutation importance and feature extraction meth-

ods used in this study. The study’s general conclusion was that RF and DT with more

features adopted have a better ability to detect Benign, DoS/DDoS, Brute Force and Bot

attacks. The proposed methodology also realises this conclusion. However, there was no

leverage of any Scaling or Transformation methods in the study including the effects of

the train/test ratio.

Similar to the proposed methodology, Reis et al. (2019)’s study adopted feature selection

as a means of identifying less interpretable predictions. The feature selection method

uses statistical and computation methods to determine the importance of a particular

predictor of anomalous traffic. This study’s findings concurred with Reis et al. (2019)

where the average of 26 features of the dataset was ideal for the experiment and was able

to yield good results.

Rosay et al. (2020)’s study developed an MLP model that utilises a Standard Scaler as

a means to provide better results. The findings showed that MLP performed well in all

classes except for Infiltration and all Web Attacks. This finding on Infiltration was similar

to the findings drawn from the proposed method except for the Web attack classes that

were handled well in this study’s experiments.

However, the approach taken for this experiment found the Quantile Scaler was a better

scaling strategy for working with MLP in this problem set. Despite this finding, Rosay

et al. (2020)’s model still had a higher f1-score of 0.99 compared to 0.81 achieved in this

experiment. The details of how Rosay et al. (2020) were able to achieve the score could

not be reproduced during the experiment setup followed as part of the experiments.

Lastly, Bisht and Ahmad (2017)’s study motivated an method of combining classifiers as

a means to produce better-performing classifiers than a single classifier. This concurred

with the study’s findings where the RF ensemble method better served as a NIDS when

compared against DT. However, this study could not be generalised to allow for better

comparison unless there were further exploration.

Chapter 5. Discussions 72

In general, findings from the proposed method for the NIDS used in the study performed

better than those identified in the literature. A more detailed review of the makeup of the

proposed NIDS was discussed compared to that in related NIDS. Most of the related NIDS

presented and emphasised a single aspect of the ML process – such as feature selection,

classifiers or sampling methods – but not the detailed considerations of each step of

developing the NIDS. As a result, the study may reveal limitations in the capabilities of

the other related systems explored in the literature.

6
Conclusion and Future Work

In conclusion, the primary objective of systematically investigating and developing a

supervised ML model for NIDS was completed and presented. The study reviews the

experiment’s findings to determine the performance of the models used and how they

align with the set goals of the research. Findings showed fundamental challenges faced

when applying ML to NIDS.

Based on additional gaps found in the literature, future work identified is detailed Sec-

tion 6.4.

6.1 Summary of Research

This study focused on experimentation with a range of ways necessary for systematic

ML-based NIDS classification models. The problem statements presented in Chapter 1

are detailed below:

1. In real-world systems, the vast majority of traffic is ‘Benign’; as such, identifying

malicious traffic may be challenging.

73

Chapter 6. Conclusion and Future Work 74

2. NIDS constantly encounter novel attacks, it follows that they should adapt to (de-

tect) new scenarios.

The study explored several concepts related to effective ML-based NIDS development

to address the above. The research considered the shortfalls of previous studies before

establishing a proposed system to conduct the study as part of the literature review.

The experiment setup section of the study was as follows. The system went through

several stages in the pipeline, namely; 1) Data Preparation, 2) Feature Engineering, and

3) Model Tuning and Evaluation.

Data acquisition and preprocessing activities were completed in the data preparation

stage, resulting in 69 features, resampled and rebalanced training datasets. The research

followed the feature engineering stage where feature scaling or transformation and dimen-

sionality reduction were applied using PI and PCA. The ML classifier training commenced

with the CICIDS 2017 validation set in the first experiment for the NIDS model devel-

opment. The evaluation tests were then run against the unseen CICIDS 2018 dataset as

part of the second experiment. The final experiment had the models retrained with the

CICIDS 2018 dataset.

Sampling and balancing methods explored showed potential but there were no substantial

improvements noted to allow a particular approach to be generalised. A focus on classifier

tuning against the input data for NIDS use case did show the significant benefits to model

performance.

The results section then addressed the main research objectives. RF achieves the best

macro f1-score of 0.87 with the top 26 most important features using PI. This finding was

higher than the previous studies by Almseidin et al. (2017), Atefi et al. (2019) and Kurni-

abudi et al. (2020). RNN and RF models consistently achieved high f1-score results with

macro f1-scores of 0.73 and 0.87 for the CICIDS 2017 dataset; and 0.73 and 0.72 against

the CICIDS 2018 dataset, respectively. With the exception of LR, distanced-based meth-

ods were able to detect attacks in untrained data in comparison to tree-based methods,

however the detection was still poor.

Chapter 6. Conclusion and Future Work 75

In general, the results demonstrate that there are effective ways that can be adopted in

developing ML-based needs that can be used in real-world systems. However, given that

CICIDS 2018 was considered unseen for part of the experimentation with the intention

of seeing whether the models are scalable to other datasets and new intrusion attacks

that are principally different from the one in the datasets used. The findings where not

substantial enough to draw a conclusion that the models can be generalised. As such,

more research will be required to achieve better scalable models that adapt to different

datasets.

6.2 Research Objective

Sections 6.1 and 6.2, reiterated the original objectives of the study based on the research

conducted. In response to the problem statement, the research achieved the following

objectives:

1. Systematically investigating and developing ML-based NIDS models, including DL.

2. Investigating methods that account for the significant data imbalance and distribu-

tion.

3. Performing parameter tuning to validate the models on a subset of the first dataset

and biasing towards new data generalisation.

4. Determining the most effective NIDS performance metrics and ML models for mod-

elled dataset against the unmodelled data from another dataset.

The findings concluded that each model will have varying configuration requirements that

are best with no single appropriate method. However, a general trend appears for scaling

methods, where the quantile transformation has generally yielded the best results for

distance-based methods.

Chapter 6. Conclusion and Future Work 76

6.3 Research Contribution

This research contributed towards the effective adoption of ML-based NIDS capabilities

following a systematic process. The major contribution was the methodology for devel-

oping a systematic ML-based system for NIDS. Moreover, a results contribution in the

form of a comprehensive model comparison was produced and may prove to be useful for

future research.

6.4 Future Work

There is a significant scope for future work in this area based on the above conclusion.

The study was able to show the benefits of feature selection in the ML-based NIDS model

development. A correlation matrix is one method that is worth exploring to identify

correlated features to contrast with Permutation Importance.

Additionally, given the widespread adoption of the KDD-99 dataset in related studies,

studies to consolidate features and labelling across datasets can be developed to address

limitations inherent to the model development with different datasets.

Lastly, the material discussed in the results chapter highlights areas where there are

opportunities to conduct future research.

References

Abdulhammed, R., Musafer, H., Alessa, A., Faezipour, M., and Abuzneid,

A. Features dimensionality reduction approaches for machine learning based network

intrusion detection. Electronics, 8(3):322, 2019.

Abdulraheem, M. H. and Ibraheem, N. B. A detailed analysis of new intrusion

detection dataset. In Semantic Scholar. 2019.

Ahmim, A., Maglaras, L., Ferrag, M. A., Derdour, M., and Janicke, H. A novel

hierarchical intrusion detection system based on decision tree and rules-based models.

In 2019 15th International Conference on Distributed Computing in Sensor Systems

(DCOSS), pages 228–233. IEEE, 2019.

Aksu, D., Ustebay, S., Aydin, M., and Atmaca, T. Intrusion Detection with

Comparative Analysis of Supervised Learning Techniques and Fisher Score Feature Se-

lection Algorithm, pages 141–149. Springer International Publishing, Cham, 09 2018a.

doi:10.1007/978-3-030-00840-6 16.

Aksu, D., Üstebay, S., Aydin, M. A., and Atmaca, T. Intrusion detection with

comparative analysis of supervised learning techniques and fisher score feature selection

algorithm. In Czachórski, T., Gelenbe, E., Grochla, K., and Lent, R., editors,

Computer and Information Sciences, pages 141–149. Springer International Publishing,

Cham, 2018b. ISBN 978-3-030-00840-6.

Almseidin, M., Alzubi, M., Kovacs, S., and Alkasassbeh, M. Evaluation of ma-

chine learning algorithms for intrusion detection system. In 2017 IEEE 15th Interna-

tional Symposium on Intelligent Systems and Informatics (SISY), pages 000277–000282.

Sep. 2017. ISSN 1949-0488. doi:10.1109/SISY.2017.8080566.

Alpaydin, E. Introduction to machine learning. MIT press, 2020, 3–7 pages.

77

References 78

Altmann, A., Toloşi, L., Sander, O., and Lengauer, T. Permutation importance:

a corrected feature importance measure. Bioinformatics, 26(10):1340–1347, 2010.

Arunraj, N., Hable, R., Fernandes, M., Leidl, K., and Heigl, M. Comparison

of supervised, semi-supervised and unsupervised learning methods in network intrusion

detection system application. Anwendungen und Konzepte der Wirtschaftsinformatik,

6:10 – 19, 11 2017.

Atefi, K., Hashim, H., and Kassim, M. Anomaly analysis for the classification

purpose of intrusion detection system with k-nearest neighbors and deep neural network.

In 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), pages 269–

274. 2019.

Axelsson, S. Intrusion detection systems: A survey and taxonomy. Technical report,

Citeseer, 2000.

Barapatre, P., Tarapore, N., Pukale, S., and Dhore, M. Training MLP neural

network to reduce false alerts in ids. In 2008 International Conference on Computing,

Communication and Networking, pages 1–7. IEEE, 2008.

Bisht, N. and Ahmad, A. Analysis of classifier ensembles for network intrusion

detection systems. Communications on Applied Electronics, 6:47–53, 02 2017. doi:

10.5120/cae2017652516.

Bowyer, K. W., Chawla, N. V., Hall, L. O., and Kegelmeyer, W. P. SMOTE:

synthetic minority over-sampling technique. CoRR, abs/1106.1813, 2011.

URL http://arxiv.org/abs/1106.1813

Branco, P., Torgo, L., and Ribeiro, R. P. A survey of predictive modelling under

imbalanced distributions. CoRR, abs/1505.01658, 2015.

URL http://arxiv.org/abs/1505.01658

Cardenas, A. A., Baras, J. S., and Seamon, K. A framework for the evaluation

of intrusion detection systems. In 2006 IEEE Symposium on Security and Privacy (S

P’06), pages 15 pp.–77. May 2006. ISSN 2375-1207. doi:10.1109/SP.2006.2.

http://arxiv.org/abs/1106.1813
http://arxiv.org/abs/1505.01658

References 79

Chapelle, O., Haffner, P., and Vapnik, V. Support vector machines for histogram-

based image classification. IEEE transactions on neural networks / a publication of the

IEEE Neural Networks Council, 10:1055–64, 09 1999. doi:10.1109/72.788646.

Cherkassky, V. and Ma, Y. Practical selection of SVM parameters and noise esti-

mation for SVM regression. Neural Networks, 17(1):113 – 126, 2004. ISSN 0893-6080.

doi:https://doi.org/10.1016/S0893-6080(03)00169-2.

URL http://www.sciencedirect.com/science/article/pii/S0893608003001692

Chowdhury, M. M. U., Hammond, F., Konowicz, G., Xin, C., Wu, H., and Li,

J. A few-shot deep learning approach for improved intrusion detection. In 2017 IEEE

8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference

(UEMCON), pages 456–462. Oct 2017. doi:10.1109/UEMCON.2017.8249084.

Chuan-long, Y., Yue-fei, Z., Jin-long, F., and Xin-zheng, H. A deep learning

approach for intrusion detection using recurrent neural networks. IEEE Access, PP:1–

1, 10 2017. doi:10.1109/ACCESS.2017.2762418.

Corona, I., Giacinto, G., and Roli, F. Adversarial attacks against intrusion detection

systems: Taxonomy, solutions and open issues. Information Sciences, 239:201 – 225,

2013. ISSN 0020-0255. doi:https://doi.org/10.1016/j.ins.2013.03.022.

URL http://www.sciencedirect.com/science/article/pii/S0020025513002119

Davis, J. and Goadrich, M. The relationship between precision-recall and roc curves.

In Proceedings of the 23rd international conference on Machine learning, pages 233–240.

2006.

Debar, H., Dacier, M., and Wespi, A. A revised taxonomy for intrusion-detection

systems. In Annales des télécommunications, volume 55, pages 361–378. Springer, 2000.

Denning, D. E. An intrusion-detection model. IEEE Transactions on software engi-

neering, 1(SE-13):222–232, 1987.

Dong, B. and Wang, X. Comparison deep learning method to traditional methods

http://www.sciencedirect.com/science/article/pii/S0893608003001692
http://www.sciencedirect.com/science/article/pii/S0020025513002119

References 80

using for network intrusion detection. In 2016 8th IEEE International Conference on

Communication Software and Networks (ICCSN), pages 581–585. 2016.

Doshi, R., Apthorpe, N., and Feamster, N. Machine learning DDoS detection for

consumer internet of things devices. In 2018 IEEE Security and Privacy Workshops

(SPW), pages 29–35. 2018.

Edgar, T. W. and Manz, D. O. Chapter 6 - machine learning. In

Edgar, T. W. and Manz, D. O., editors, Research Methods for Cyber

Security, pages 153 – 173. Syngress, 2017. ISBN 978-0-12-805349-2. doi:

https://doi.org/10.1016/B978-0-12-805349-2.00006-6.

URL http://www.sciencedirect.com/science/article/pii/

B9780128053492000066

Ferri, C., Hernández-Orallo, J., and Modroiu, R. An experimental comparison

of performance measures for classification. Pattern Recognition Letters, 30(1):27–38,

2009.

Garćıa-Teodoro, P., Dı́az-Verdejo, J., Maciá-Fernández, G., and Vázquez, E.

Anomaly-based network intrusion detection: Techniques, systems and challenges. Com-

puters and Security, 28(1):18 – 28, 2009. ISSN 0167-4048. doi:https://doi.org/10.1016/

j.cose.2008.08.003.

URL http://www.sciencedirect.com/science/article/pii/S0167404808000692

Hayes, M. A. and Capretz, M. A. M. Contextual anomaly detection framework for

big sensor data. Journal of Big Data, 2:1–22, 2014.

Heba, F. E., Darwish, A., Hassanien, A. E., and Abraham, A. Principle compo-

nents analysis and support vector machine based intrusion detection system. In 2010

10th international conference on intelligent systems design and applications, pages 363–

367. IEEE, 2010.

Hofstede, R., Jonker, M., Sperotto, A., and Pras, A. Flow-based web application

brute-force attack and compromise detection. Journal of Network and Systems Manage-

http://www.sciencedirect.com/science/article/pii/B9780128053492000066
http://www.sciencedirect.com/science/article/pii/B9780128053492000066
http://www.sciencedirect.com/science/article/pii/S0167404808000692

References 81

ment, 25(4):735–758, October 2017. ISSN 1064-7570. doi:10.1007/s10922-017-9421-4.

URL https://doi.org/10.1007/s10922-017-9421-4

Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X. Applied logistic regres-

sion, volume 398. John Wiley & Sons, 2013, 160-164 pages.

Javaid, A., Niyaz, Q., Sun, W., and Alam, M. A deep learning approach for network

intrusion detection system. In Proceedings of the 9th EAI International Conference on

Bio-Inspired Information and Communications Technologies (Formerly BIONETICS),

BICT’15, page 21–26. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), Brussels, BEL, 2016. ISBN 9781631901003. doi:

10.4108/eai.3-12-2015.2262516.

URL https://doi.org/10.4108/eai.3-12-2015.2262516

Javitz, H. S., Valdes, A. et al. The SRI IDES statistical anomaly detector. In IEEE

Symposium on Security and Privacy, pages 316–326. Oakland, 1991.

Jiang, L., Cai, Z., Wang, D., and Jiang, S. Survey of improving k-nearest-neighbor

for classification. In Fourth International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD 2007), volume 1, pages 679–683. 2007.

Jones, A. K. and Sielken, R. S. Computer system intrusion detection: A survey.

2000.

Kayacik, H. G., Zincir-Heywood, A. N., and Heywood, M. I. Selecting features

for intrusion detection: A feature relevance analysis on kdd 99. In PST. 2005.

Kizza, J. M. Guide to computer network security. Springer, 2013.

Kurniabudi, Stiawan, D., Darmawijoyo, Bin Idris, M. Y., Bamhdi, A. M., and

Budiarto, R. CICIDS-2017 dataset feature analysis with information gain for anomaly

detection. IEEE Access, 8:132911–132921, 2020. doi:10.1109/ACCESS.2020.3009843.

Lakhina, S., Joseph, S., and Verma, B. Feature reduction using principal component

analysis for effective anomaly–based intrusion detection on NSL-KDD. International

Journal of Engineering Science and Technology, 2(6):1790–1799, 2010.

https://doi.org/10.1007/s10922-017-9421-4
https://doi.org/10.4108/eai.3-12-2015.2262516

References 82

Laskov, P., Düssel, P., Schäfer, C., and Rieck, K. Learning intrusion detection:

Supervised or unsupervised? In Roli, F. and Vitulano, S., editors, Image Anal-

ysis and Processing – ICIAP 2005, pages 50–57. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2005. ISBN 978-3-540-31866-8.

Li, Y., Xia, J., Zhang, S., Yan, J., Ai, X., and Dai, K. An efficient intru-

sion detection system based on support vector machines and gradually feature removal

method. Expert Systems with Applications, 39(1):424 – 430, 2012. ISSN 0957-4174.

doi:https://doi.org/10.1016/j.eswa.2011.07.032.

URL http://www.sciencedirect.com/science/article/pii/S0957417411009948

Liao, H.-J., Lin, C.-H. R., Lin, Y.-C., and Tung, K.-Y. Intrusion detection system:

A comprehensive review. Journal of Network and Computer Applications, 36(1):16–24,

2013.

Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. Understanding variable im-

portances in forests of randomized trees. In Proceedings of the 26th International Con-

ference on Neural Information Processing Systems - Volume 1, NIPS’13, page 431–439.

Curran Associates Inc., Red Hook, NY, USA, 2013.

Lunt, T. F. and Jagannathan, R. A prototype real-time intrusion-detection expert

system. In Proceedings. 1988 IEEE Symposium on Security and Privacy, pages 59–66.

1988.

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breiten-

bacher, D., and Elovici, Y. N-baiot—network-based detection of iot botnet attacks

using deep autoencoders. IEEE Pervasive Computing, 17(3):12–22, Jul 2018. ISSN

1558-2590. doi:10.1109/MPRV.2018.03367731.

Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P., Pet-

rich, W., and Hamprecht, F. A. A comparison of random forest and its gini impor-

tance with standard chemometric methods for the feature selection and classification

of spectral data. BMC bioinformatics, 10(1):213, 2009.

http://www.sciencedirect.com/science/article/pii/S0957417411009948

References 83

Mladenić, D. Feature selection for dimensionality reduction. In Saunders, C., Gro-

belnik, M., Gunn, S., and Shawe-Taylor, J., editors, Subspace, Latent Structure

and Feature Selection, pages 84–102. Springer Berlin Heidelberg, Berlin, Heidelberg,

2006. ISBN 978-3-540-34138-3.

Muhuri, P., Chatterjee, P., Yuan, X., Roy, K., and Esterline, A. Using a long

short-term memory recurrent neural network (LSTM-RNN) to classify network attacks.

Information, 11:243, 05 2020. doi:10.3390/info11050243.

Opitz, J. and Burst, S. Macro f1 and macro f1. 2019. doi:10.48550/ARXIV.1911.03347.

URL https://arxiv.org/abs/1911.03347

Panda, M., Abraham, A., and Patra, M. R. A hybrid intelligent approach for

network intrusion detection. Procedia Engineering, 30:1–9, 2012.

Panigrahi, R. and Borah, S. A detailed analysis of cicids2017 dataset for design-

ing intrusion detection systems. International Journal of Engineering & Technology,

7(3.24):479–482, 2018.

Pérez, J. L. R., Ribeiro, B., Chen, N., and Leite, F. S. A grassmannian approach

to zero-shot learning for network intrusion detection. CoRR, abs/1709.07984, 2017.

URL http://arxiv.org/abs/1709.07984

Ramezankhani, A., Pournik, O., Shahrabi, J., Azizi, F., Hadaegh, F., and

Khalili, D. The impact of oversampling with SMOTE on the performance of 3

classifiers in prediction of type 2 diabetes. Medical decision making : an inter-

national journal of the Society for Medical Decision Making, 36, 12 2014. doi:

10.1177/0272989X14560647.

Reis, B., Maia, E., and Praça, I. Selection and performance analysis of CICIDS-

2017 features importance. In International Symposium on Foundations and Practice of

Security, pages 56–71. Springer, 2019.

Ren, J., Guo, J., Qian, W., Yuan, H., Hao, X., and Jingjing, H. Building

an effective intrusion detection system by using hybrid data optimization based on

https://arxiv.org/abs/1911.03347
http://arxiv.org/abs/1709.07984

References 84

machine learning algorithms. Security and Communication Networks, 2019:1–11, 06

2019. doi:10.1155/2019/7130868.

Resende, P. A. A. and Drummond, A. C. A survey of random forest based methods

for intrusion detection systems. ACM Computing Surveys (CSUR), 51(3):1–36, 2018.

Ring, M. and Eskofier, B. M. An approximation of the Gaussian RBF kernel for

efficient classification with SVMs. Pattern Recognition Letters, 84:107 – 113, 2016.

ISSN 0167-8655. doi:https://doi.org/10.1016/j.patrec.2016.08.013.

URL http://www.sciencedirect.com/science/article/pii/S016786551630215X

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., and Hotho, A. A survey

of network-based intrusion detection data sets. Computers and Security, 86:147–167,

2019.

Rosay, A., Carlier, F., and Leroux, P. Mlp4nids: An efficient MLP-based network

intrusion detection for CICIDS2017 dataset. In Boumerdassi, S., Renault, É., and

Mühlethaler, P., editors, Machine Learning for Networking, pages 240–254. Springer

International Publishing, Cham, 2020. ISBN 978-3-030-45778-5.

Russell, S. and Norvig, P. Artificial intelligence: a modern approach. Prentice Hall,

2002, 693–765 pages.

Schneier, B. Secrets and lies: digital security in a networked world. John Wiley & Sons,

2015.

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. Toward generating a new

intrusion detection dataset and intrusion traffic characterization. In ICISSP, pages

108–116. 2018.

Shenfield, A., Day, D., and Ayesh, A. Intelligent intrusion detection systems using

artificial neural networks. ICT Express, 4(2):95–99, 2018.

Shone, N., Ngoc, T. N., Phai, V. D., and Shi, Q. A deep learning approach to

network intrusion detection. IEEE Transactions on Emerging Topics in Computational

Intelligence, 2(1):41–50, 2018.

http://www.sciencedirect.com/science/article/pii/S016786551630215X

References 85

Singh, R., Kumar, H., and Singla, R. An intrusion detection system using network

traffic profiling and online sequential extreme learning machine. Expert Systems with

Applications, 42(22):8609–8624, 2015.

Siva, Geetha, and Kannan. Decision tree based light weight intrusion detection using

a wrapper approach. Expert Systems with Applications, 39(1):129 – 141, 2012. ISSN

0957-4174. doi:https://doi.org/10.1016/j.eswa.2011.06.013.

URL http://www.sciencedirect.com/science/article/pii/S0957417411009080

Sommer, R. and Paxson, V. Outside the closed world: On using machine learning for

network intrusion detection. In 2010 IEEE Symposium on Security and Privacy, pages

305–316. 2010.

Songwattanasiri, P. and Sinapiromsaran, K. Smoute: Synthetics minority over-

sampling and under-sampling techniques for class imbalanced problem. In Proceedings

of the Annual International Conference on Computer Science Education: Innovation

and Technology, Special Track: Knowledge Discovery, pages 78–83. 2010.

Stein, G., Chen, B., Wu, A. S., and Hua, K. A. Decision tree classifier for network

intrusion detection with GA-based feature selection. In Proceedings of the 43rd Annual

Southeast Regional Conference - Volume 2, ACM-SE 43, page 136–141. Association for

Computing Machinery, New York, NY, USA, 2005. ISBN 1595930590. doi:10.1145/

1167253.1167288.

URL https://doi.org/10.1145/1167253.1167288

Su, M.-Y. Real-time anomaly detection systems for denial-of-service attacks by weighted

k-nearest-neighbor classifiers. Expert Systems with Applications, 38(4):3492 – 3498,

2011. ISSN 0957-4174. doi:https://doi.org/10.1016/j.eswa.2010.08.137.

URL http://www.sciencedirect.com/science/article/pii/S0957417410009450

Subasi, A. Chapter 3 - machine learning techniques. In Subasi, A., editor, Practical Ma-

chine Learning for Data Analysis Using Python, pages 91 – 202. Academic Press, 2020.

ISBN 978-0-12-821379-7. doi:https://doi.org/10.1016/B978-0-12-821379-7.00003-5.

http://www.sciencedirect.com/science/article/pii/S0957417411009080
https://doi.org/10.1145/1167253.1167288
http://www.sciencedirect.com/science/article/pii/S0957417410009450

References 86

URL http://www.sciencedirect.com/science/article/pii/

B9780128213797000035

Tax, D. and Duin, R. Feature scaling in support vector data descriptions. Learning

from Imbalanced Datasets, pages 25–30, 2000.

Thakkar, A. and Lohiya, R. A review of the advancement in intrusion detection

datasets. Procedia Computer Science, 167:636–645, 2020. ISSN 1877-0509. doi:

https://doi.org/10.1016/j.procs.2020.03.330. International Conference on Computa-

tional Intelligence and Data Science.

URL https://www.sciencedirect.com/science/article/pii/S1877050920307961

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. Intrusion detection by machine

learning: A review. expert systems with applications, 36(10):11994–12000, 2009.

Tu, J. V. Advantages and disadvantages of using artificial neural networks versus lo-

gistic regression for predicting medical outcomes. Journal of Clinical Epidemiology,

49(11):1225 – 1231, 1996. ISSN 0895-4356. doi:https://doi.org/10.1016/S0895-4356(96)

00002-9.

URL http://www.sciencedirect.com/science/article/pii/S0895435696000029

Valenti, S., Rossi, D., Dainotti, A., Pescapè, A., Finamore, A., and Mellia,

M. Reviewing Traffic Classification, pages 123–147. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2013. ISBN 978-3-642-36784-7. doi:10.1007/978-3-642-36784-7 6.

URL https://doi.org/10.1007/978-3-642-36784-7_6

Valiant, L. G. A theory of the learnable. Commun. ACM, 27(11):1134–1142, November

1984. ISSN 0001-0782. doi:10.1145/1968.1972.

URL https://doi.org/10.1145/1968.1972

Van, N. T., Thinh, T. N., and Sach, L. T. An anomaly-based network intrusion

detection system using deep learning. In 2017 International Conference on System

Science and Engineering (ICSSE), pages 210–214. 2017.

http://www.sciencedirect.com/science/article/pii/B9780128213797000035
http://www.sciencedirect.com/science/article/pii/B9780128213797000035
https://www.sciencedirect.com/science/article/pii/S1877050920307961
http://www.sciencedirect.com/science/article/pii/S0895435696000029
https://doi.org/10.1007/978-3-642-36784-7_6
https://doi.org/10.1145/1968.1972

References 87

Viegas, E. K., Santin, A. O., and Oliveira, L. S. Toward a reliable anomaly-

based intrusion detection in real-world environments. Comput. Netw., 127(C):200–216,

November 2017. ISSN 1389-1286. doi:10.1016/j.comnet.2017.08.013.

URL https://doi.org/10.1016/j.comnet.2017.08.013

Vinayakumar, R., Soman, K. P., and Poornachandran, P. Applying convolutional

neural network for network intrusion detection. In 2017 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), pages 1222–1228.

2017.

Wang, K. and Stolfo, S. J. Anomalous payload-based network intrusion detection. In

Jonsson, E., Valdes, A., and Almgren, M., editors, Recent Advances in Intrusion

Detection, pages 203–222. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN

978-3-540-30143-1.

Wang, S. and Yao, X. Diversity analysis on imbalanced data sets by using ensemble

models. In 2009 IEEE Symposium on Computational Intelligence and Data Mining,

pages 324–331. IEEE, 2009.

Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. Zero-shot learning—a

comprehensive evaluation of the good, the bad and the ugly. IEEE transactions on

pattern analysis and machine intelligence, 41(9):2251–2265, 2018.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H.,

and Wang, C. Machine learning and deep learning methods for cybersecurity. IEEE

Access, 6:35365–35381, 2018. doi:10.1109/ACCESS.2018.2836950.

Zhang, B., Liu, Z., Jia, Y., Ren, J., and Zhao, X. Network intrusion detection

method based on PCA and Bayes algorithm. Security and Communication Networks,

2018:1–11, 11 2018. doi:10.1155/2018/1914980.

Zhang, Z., Liu, Q., Qiu, S., Zhou, S., and Zhang, C. Unknown attack de-

tection based on zero-shot learning. IEEE Access, 8:193981–193991, 2020. doi:

10.1109/ACCESS.2020.3033494.

https://doi.org/10.1016/j.comnet.2017.08.013

A
Appendix

A.1 Data Preparations

A.1.1 Dataset: CICIDS2017

The CICIDS 2017 dataset is an evaluation dataset created by the Canadian Institute of

Cyber Security to reflect modern intrusion events and can be used to develop NIDS. The

dataset is presented as initially network packet captured files (PCAPs) that were pro-

cessed using the CICFlowmeter to produce an output with statistical features calculated

separately for forward and reverse network communication for a bidirectional network.

CICFlowmeter is a network bidirectional flow generator, which utilizes the first network

packets from a PCAP file to determine the forward direction (source network to the

destination network) and backward direction (destination network to source network) of

the network data flow. The PCAP files were generated data was captured over several

days with different attack profiles and scenarios being simulated and accounted for as part

of the process to allow data labelling for intrusion classification.

Using the CICFlowmeter, data output was then further processed to add classification

88

Appendix A. Appendix 89

labels for each extracted instance, which resulted in comma-separated values (CSV) files

being created which can be used for NIDS development.

The final dataset comprises a classification label and 83 statistical features such as dura-

tion of transmission, the number of packets transmitted, the number of bytes transmitter,

length of packets, e.t.c, each being calculated separately for forward and reverse directions.

A.1.2 Attack Profiles

Such attack profiles used in this dataset also reflect on these attack profiles. This dataset

has six attack profiles created based on a list of common attack families.

• DoS Attack is an attack meant to make computer service unavailable for use due to

either resource constraints such as RAM hogging or CPU full utilization or Storage

Disk full utilization, or simply shutting down as computer system access altogether,

or corrupting files on the system rendering them inaccessible. Typically this is

exploited by an attacker that overload system resources and/or prevents some or all

legitimate requests fulfilment.

• Distributed Denial of Service (DDoS) attack is an advanced DoS attack that

typically uses multiple computers to flood the bandwidth or resources of a victim

computer network. Generally, a Zombie network is used by the attacker where the

Zombies are computers infected with tools installed by an attacker who can then

launch an attack.

• Heart Bleed bug is a flaw in the OpenSSL method for data encryption. This

vulnerability is exploited by sending malformed requests with a small payload and

large length field to the vulnerable networked computer to evoke the victim machine

to respond with information in memory. The attack can be categorized as a Remote

to User attack.

• Botnet is a group of interconnected devices used to perform various tasks on com-

puter networks. They can sometimes be used for malicious activities such as stealing

Appendix A. Appendix 90

data, transmitting spam or launching attacks such as DDoS attacks. Botnets can

also be used as part of a Probing attack.

• Brute Force Attack is an attack used for cracking passwords and also for discov-

ering hidden pages and content of web applications. This type of attack is based on

trial and error until a victim is successfully exploited.

• Web Attacks are toolkits that target web applications vulnerabilities that may be

existent such as SQL Injection, Cross-Site Scripting (XSS), brute force over HTTP,

which are included in this dataset. The attack can fit into all categories of attacks

depending on what vulnerability is being exploited.

• Infiltration Attack is an attack from inside a computer network that is commonly

exploited from vulnerable internal software. The attacks are generally categorized

as U2R or R2U attacks, leading to a further Probing attack to spread the attack

surface.

A.1.3 Data Capturing

The data capturing was conducted over five days based on the attack profiles explained

in Appendix A.1.2. Table A.1 shows the distribution of the attack profiles for each of the

days used to generate the dataset.

Appendix A. Appendix 91

Name of Files Day Activity Attacks Found

Monday Working ISCX.csv Monday Benign

Tuesday Working ISCX.csv Tuesday Benign, FTP Patator, SSH Patator

Wednesday Working ISCX.csv Wednesday Benign, DoS Golden Eye, DoS hulk,

DoS Slow httptest, DoS slowloris,

Heartbleed

Thursday Working Morning We-

bAttacks.pcap ISCX.csv

Thursday Benign, Web Attack - Brute Force,

Web Attack- SQL Injection, Web

Attack XSS

Thursday Working Afternoon Infil-

tration ISCX.csv

Thursday Benign, Infiltration

Friday Working Morning ISCX.csv Friday Benign, Bot

Table A.1: CICIDS 2017 dataset captured files and profiles

A.1.4 Dataset Criteria

Figure A.1 shows the testbed architecture used to create the CICIDS2017 dataset.

Figure A.1: CICIDS2017 Test Bed Architecture

The architecture of Figure A.1 can fulfil the 11 critical criteria for a quality dataset as

Appendix A. Appendix 92

follows:

• complete network configuration - architecture of dataset generation fulfils this by

including the use of various operating systems such as Windows and Ubuntu and

equipment such as a modem, firewall, switches and routers.

• total traffic - architecture of dataset generation fulfils this by simulation of attack

network that has a user profiling agent and 12 different machines in Victim Network.

• labelling in the dataset is fulfilled by the event windows, which allowed the dataset

to be labelled.

• complete interaction - this was fulfilled by having communications between an in-

ternal LAN and two different networks and Internet communication.

• complete capture - this is fulfilled through the generation of mirror ports used for

all traffic to be captured and recorded

• available protocols - this was fulfilled by the availability of a range of supported

protocols such as FTP, SSH and HTTP in the dataset.

• attack diversity - this was fulfilled by the use of a varying range of attacks that were

described in section A.1.2.

• heterogeneity - this was achieved by capturing network traffic from the main Switch,

memory dumps, and system calls for all victim machines

• feature set - this was achieved through the presence of 83 network features created

by the CICFlowmeter that is used to process the network PCAPs

• metadata - the details of the dataset achieved this provided, such as time, attacks,

flows, and label provided with the dataset.

Anonymity was the only criteria that was not explained how it would fully complete the

crucial criteria.

Appendix A. Appendix 93

A.2 Feature Engineering

A.2.1 Feature Scaling and Transformation

Standard scaler increases feature space the most but only uses a fraction of it. Pros is

that it does not transform the data, so outliers remain outliers.

Figure A.2: Standard Scaling

Quantile Scaler provides non-linear transformations in which distances between marginal

outliers and inliers are shrunk using a uniform transformation.

Appendix A. Appendix 94

Figure A.3: Quantile Transformer

Power scaler applies a power transformation to each feature to make the data more

Gaussian-like using Yeo-Johnson transformation. Similar to Quantile, it provides non-

linear transformations in which data is mapped to a normal distribution to stabilize

variance and minimize skewness.

Figure A.4: Power Transformer

Appendix A. Appendix 95

A.3 Dimensionality Reduction

A.3.1 Feature Ranking

RF Feature Rank

Figure A.5 shows that the Dst Port – destination port – feature contributes the most

discriminative information to a base RF classifier by a significant margin. Since this is a

classification problem, it implies that, overall, the input from Dst Port carries the most

weight in distinguishing between different classes. Given that Dst Port is typically an

entry point for any network activity – Benign or Malicious – its high importance rank-

ing is thus expected. On the other hand, none of the next seven features is significantly

better and falls within the same quantile range. The Init Bwd Byts is the second most

significant feature for RF. The remainder of the top five features include Bwd Seg Size

Avg, Fwd IAT Min and Tot Len Pkts. Moreover, this shows that each feature ranking

Figure A.5: RF: Boxplot of permutation importance per feature.

has differing quantile ranges and extreme lower values such as Subflow Fwd Pkts when

applied to RF. In permutation importance, the shorter the range of the box, the higher

the compatibility with other combinations of features in terms of achieving optimal clas-

sification performance (Altmann et al., 2010) – henceforth referred to as stability. In this

Appendix A. Appendix 96

case, the alternating variance suggests instability in the model from the feature selection

process.

KNN Feature Rank

Figure A.6 shows that the base KNN model prefers the Dst Port feature by a highly

significant margin. Similar to RF Feature Rank, given a destination port is an entry

point for network activities, its high importance ranking is thus expected. The Flow

IAT Min is the second most significant feature for KNN. It suggests that the minimum

time between two network flows contributes to a reduction in intraclass distance. The

remainder of the top five features then include Fwd IAT Min, Bwd Header Len and Init

Bwd Win Byts. The variance in most features is significant in combination with relatively

Figure A.6: KNN: Boxplot of permutation importances per feature.

high importance scores, indicating that the ranking order is significant. In the case of

KNN, this means that the model is volatile, with slight changes potentially resulting in

a significant shift in model performance, which was subsequently confirmed by reversing

the order of the last ten features (ranked 17–26).

MLP Feature Rank

Figure A.7 shows that base MLP prefers Dst Port – destination port – by a highly

significant margin but with one outlier, that may represent a class that is an outlier.

Appendix A. Appendix 97

Similar to RF, this feature has consistently been the most important feature. Fwd Act

Data Pkts – forward acknowledge data packet – is the second most significant feature

for MLP. The remainder of the top five features then include Fwd Pkt Len Max, PSH

Flag Cnt and Init Fwd Win Byts. The rest of the features are unstable but have equal

Figure A.7: MLP: Boxplot of permutation importances per feature.

importance and only five cases of outliers.

SVM Feature Rank

Figure A.8 shows that the base SVM prefers Bwd Pkt Len Std – Backward packet stan-

dard length – and Dst Port – destination port – features as the most significant features.

However, Bwd Pkt Len Std shows outliers which may be classes that could not fit well with

the feature. The top two features have very similar importance ranking and this suggests

that both features are crucial to SVM. The remainder of the top five features include

PSH Flag Cnt, Fwd IAT Std and Fwd Pkt Len Max. The top features shown in the Figure

concurs with those from Aksu et al. (2018a)’s findings on the ‘important’ features that

SVM adopts. The general distribution of the features, their small quantile range, and the

count of outliers suggest that feature ranking does not significantly affect the classifier.

There are many features with a narrower range of the box, suggesting higher compatibility

with other combinations of features in achieving optimal classification performance.

Other Feature Rankings

Appendix A. Appendix 98

Figure A.8: SVM: Boxplot of permutation importances per feature.

DT findings show that classifier prefers Fwd Pkt Len Max – Forward Packet Length Max

– by a highly significant margin and suggests that the length of the maximum packet sent

to a network contributes to an increase in information gain. The effects of Permutation

Importance on DT showed that the majority of features are stable, thus suggesting that

feature ranking may not be necessary for DT, corresponding to what Reis et al. (2019)

have observed.

LR findings show that the model prefers PSH Flag Cnt – Push flag count – as the most

significant feature. Dst Port, Bwd Pkt Len Min, Fwd Pkt Len Max and Fwd Pkt Len Std

are the remainder of the top five most important features. The variance in most features

is stable, but most features are significantly different in importance, indicating that rank

is important.

In general, the findings show that feature selection has varying effects on each ML model.

Appendix A. Appendix 99

A.4 Model Evaluation

A.4.1 Tuning of Experimental Model Parameters

Figures A.9 through A.13 show validation curves resulting from most influential hyper-

parameters for the best models per class for RF, MLP, KNN, DT and LR classifiers.

Figure A.9: 26RF-Standard: The most influential parameter’s effect on the macro f1-
score.

Figure A.10 shows the effects of the most influential parameters that affect the macro f1-

score for MLP. The nature of the graph in Figure A.10 suggests that for training scores,

multiples of 200 hidden layers may produce a similar f1-score.

A.5 Other Results

Table A.2 shows all results from the CICIDS 2017 dataset and Table A.3 shows all results

against the CICIDS 2018 dataset.

Appendix A. Appendix 100

Figure A.10: 26MLP-Quantile: The most influential parameter’s effect on the macro
f1-score.

Figure A.11: 26KNN-Quantile: The most influential parameter’s effect on the macro
f1-score.

Continued on next page

Appendix A. Appendix 101

Table A.2 – continued from previous page

Processing Classifier Scaler Accuracy Precision Recall F1-score Split

Table A.2: Dataset 2017 Modelled

Processing Classifier Scaler Accuracy Precision Recall F1-score Split

26PI SVM Quantile 1 0.82 0.84 0.81 0.9

36PI SVM Quantile 1 0.84 0.83 0.81 0.9

26PI SVM Power 1 0.84 0.83 0.8 0.7

69PI SVM Power 1 0.83 0.8 0.79 0.7

36PI SVM Standard 0.98 0.75 0.77 0.72 0.9

26PI SVM Standard 0.97 0.79 0.79 0.72 0.7

10PI DT Quantile 1 0.69 0.84 0.73 0.9

16PI DT Quantile 1 0.72 0.82 0.75 0.9

16PI DT Power 1 0.74 0.82 0.76 0.9

16PI DT - 1 0.78 0.83 0.76 0.9

26PI DT - 1 0.7 0.81 0.73 0.9

36PI LR Quantile 0.99 0.68 0.78 0.7 0.9

26PI LR Quantile 0.98 0.59 0.78 0.64 0.7

16PI LR Power 0.96 0.52 0.69 0.56 0.9

36PI LR Power 0.99 0.67 0.79 0.71 0.9

69PI LR Standard 0.96 0.58 0.65 0.6 0.9

36PI LR Standard 0.94 0.46 0.65 0.52 0.7

36PI RF Standard 1 0.86 0.9 0.88 0.5

10PI RF Quantile 1 0.88 0.86 0.87 0.7

26PI RF Standard 1 0.9 0.86 0.87 0.9

36PI KNN Power 1 0.79 0.87 0.82 0.9

10PI MLP Quantile 0.99 0.75 0.75 0.74 0.9

69PI MLP Quantile 1 0.77 0.87 0.8 0.7

10PI MLP Power 0.99 0.69 0.77 0.71 0.9

10PI MLP Power 0.99 0.72 0.79 0.72 0.7

Continued on next page

Appendix A. Appendix 102

Table A.2 – continued from previous page

Processing Classifier Scaler Accuracy Precision Recall F1-score Split

36PI MLP Standard 0.98 0.7 0.81 0.73 0.9

19PI MLP Standard 0.98 0.61 0.78 0.6 0.5

10PI KNN Quantile 1 0.77 0.84 0.79 0.9

16PI KNN Quantile 1 0.78 0.84 0.81 0.9

10PI KNN Power 0.99 0.71 0.84 0.75 0.9

26PCA RF Quantile 1 0.84 0.87 0.84 0.3

26PCA RF Power 1 0.86 0.88 0.86 0.5

26PCA RF Standard 1 0.76 0.85 0.77 0.5

26PCA SVM Quantile 1 0.81 0.88 0.82 0.3

26PI KNN Standard 0.99 0.74 0.87 0.78 0.9

36PI KNN Standard 0.98 0.64 0.89 0.7 0.5

69LDA KNN Robust 0.99 0.72 0.78 0.74 0.9

36PI RF Power 1 0.9 0.85 0.86 0.9

69LDA MLP Robust 0.99 0.68 0.87 0.69 0.3

69LDA KNN Power 1 0.72 0.82 0.74 0.9

69LDA RF Power 1 0.8 0.91 0.84 0.3

69LDA MLP Power 1 0.73 0.82 0.74 0.9

69LDA KNN Quantile 1 0.71 0.87 0.75 0.7

16PI RF Quantile 1 0.87 0.84 0.85 0.9

69LDA MLP Quantile 1 0.73 0.88 0.75 0.5

69LDA KNN Standard 0.99 0.67 0.88 0.71 0.5

69LDA RF Quantile 1 0.81 0.88 0.83 0.5

69LDA MLP Standard 0.99 0.7 0.87 0.74 0.5

26PCA KNN Robust 0.99 0.72 0.78 0.74 0.9

69LDA RF Robust 1 0.8 0.87 0.82 0.5

26PCA MLP Robust 0.99 0.68 0.87 0.69 0.3

26PCA KNN Power 1 0.74 0.88 0.77 0.5

Continued on next page

Appendix A. Appendix 103

Table A.2 – continued from previous page

Processing Classifier Scaler Accuracy Precision Recall F1-score Split

10PI RF Power 1 0.87 0.83 0.84 0.9

69PCA MLP Power 1 0.75 0.84 0.77 0.7

26PCA KNN Quantile 1 0.76 0.9 0.8 0.5

69LDA RF Standard 1 0.76 0.87 0.79 0.5

26PCA MLP Quantile 1 0.79 0.89 0.8 0.3

26PCA KNN Standard 0.99 0.7 0.79 0.74 0.9

26PCA RF Robust 1 0.8 0.87 0.82 0.9

26PCA MLP Standard 0.98 0.62 0.84 0.67 0.5

26PCA SVM Robust 0.98 0.72 0.81 0.68 0.3

69LDA SVM Power 1 0.8 0.85 0.8 0.5

69LDA SVM Quantile 1 0.83 0.83 0.81 0.7

69LDA SVM Standard 0.99 0.7 0.79 0.71 0.3

26PCA SVM Robust 0.98 0.72 0.81 0.68 0.3

26PCA SVM Power 1 0.84 0.78 0.8 0.9

26PI DT Power 0.99 0.76 0.86 0.78 0.7

26PCA SVM Standard 0.98 0.69 0.75 0.69 0.9

26PCA DT Robust 0.99 0.69 0.84 0.73 0.7

26PCA LR Robust 0.93 0.53 0.53 0.49 0.9

69LDA DT Power 0.99 0.66 0.83 0.7 0.7

69LDA LR Power 0.99 0.59 0.68 0.61 0.9

26PCA LR Quantile 0.99 0.69 0.78 0.73 0.9

69LDA DT Quantile 0.99 0.7 0.82 0.72 0.7

69LDA LR Quantile 0.99 0.6 0.78 0.64 0.9

69LDA DT Standard 0.99 0.65 0.84 0.7 0.7

69LDA LR Standard 0.95 0.48 0.58 0.51 0.9

26PCA DT Robust 0.99 0.69 0.84 0.73 0.7

26PCA LR Robust 0.93 0.53 0.53 0.49 0.9

Continued on next page

Appendix A. Appendix 104

Table A.2 – continued from previous page

Processing Classifier Scaler Accuracy Precision Recall F1-score Split

26PCA DT Power 0.99 0.65 0.86 0.71 0.5

26PCA LR Power 0.99 0.64 0.77 0.68 0.9

26PCA DT Quantile 0.99 0.72 0.77 0.74 0.9

69PI RNN Quantile 1 0.74 0.82 0.73 0.9

26PCA DT - 0.99 0.7 0.73 0.69 0.9

26PCA LR Standard 0.95 0.56 0.64 0.58 0.9

Table A.3: All 2018 Dataset Findings

Modeled? Model Accuracy Precision Recall F1-score Split

Yes Q-69PI-RNN 1 0.74 0.82 0.73 0.9

Yes Q-26PI-RF 0.78 0.7 0.81 0.72 0.5

Yes P-69PI-RNN 0.95 0.71 0.78 0.71 0.9

Yes Q-69PI-RNN 0.94 0.66 0.77 0.69 0.9

Yes Q-26PI-SVM 0.73 0.66 0.83 0.68 0.5

Yes P-26PI-RF 0.79 0.66 0.82 0.68 0.5

Yes 26PI-RF 0.78 0.66 0.83 0.68 0.5

Yes 26PCA-RF 0.8 0.66 0.79 0.68 0.5

Yes P-26PI-SVM 0.74 0.65 0.83 0.67 0.5

Yes P-26PCA-RF 0.79 0.65 0.8 0.67 0.5

Yes P-69PCA-MLP 0.74 0.65 0.84 0.67 0.5

Yes Q-26PCA-RF 0.79 0.64 0.81 0.67 0.5

Yes Q-26PCA-MLP 0.78 0.65 0.84 0.67 0.5

Yes Q-26PI-KNN 0.77 0.64 0.81 0.66 0.5

Yes S-26PI-KNN 0.77 0.64 0.82 0.66 0.5

Yes Q-26PI-MLP 0.76 0.63 0.83 0.65 0.5

Continued on next page

Appendix A. Appendix 105

Table A.3 – continued from previous page

Modeled? Model Accuracy Precision Recall F1-score Split

Yes P-26PI-MLP 0.74 0.63 0.82 0.65 0.5

Yes P-26PCA-KNN 0.78 0.62 0.8 0.65 0.5

Yes Q-26PCA-KNN 0.79 0.62 0.8 0.65 0.5

Yes 26PI-DT 0.77 0.62 0.8 0.64 0.5

Yes S-69PI-RNN 0.79 0.61 0.81 0.63 0.7

Yes P-26PI-KNN 0.77 0.61 0.81 0.63 0.5

Yes Q-26PI-DT 0.78 0.59 0.83 0.63 0.5

Yes S-26PCA-KNN 0.79 0.6 0.8 0.63 0.5

Yes S-26PCA-MLP 0.74 0.6 0.81 0.62 0.5

Yes P-26PCA-DT 0.78 0.6 0.77 0.62 0.5

Yes P-26PCA-LR 0.7 0.6 0.8 0.62 0.5

Yes Q-26PCA-DT 0.79 0.59 0.78 0.62 0.5

Yes 26PCA-DT 0.78 0.59 0.78 0.62 0.5

Yes S-26PI-SVM 0.66 0.62 0.77 0.61 0.5

Yes S-26PI-MLP 0.69 0.6 0.79 0.61 0.5

Yes P-26PI-DT 0.77 0.59 0.82 0.61 0.5

Yes Q-26PCA-LR 0.68 0.58 0.77 0.61 0.5

Yes S-26PCA-LR 0.63 0.57 0.73 0.57 0.5

Yes P-26PI-LR 0.6 0.5 0.72 0.53 0.5

Yes S-26PI-LR 0.58 0.47 0.68 0.5 0.5

Yes Q-26PI-LR 0.57 0.47 0.66 0.49 0.5

No P-26PI-MLP 0.77 0.25 0.28 0.22 0.9

No Q-26PI-SVM 0.89 0.31 0.19 0.2 0.9

No Q-26PI-KNN 0.65 0.25 0.22 0.19 0.9

No P-26PI-KNN 0.74 0.22 0.25 0.17 0.9

No Q-26PI-RF 0.76 0.26 0.16 0.17 0.9

No Q-26PI-MLP 0.81 0.18 0.21 0.17 0.9

Continued on next page

Appendix A. Appendix 106

Table A.3 – continued from previous page

Modeled? Model Accuracy Precision Recall F1-score Split

No Q-26PI-LR 0.74 0.21 0.22 0.15 0.9

No Q-26PI-LR 0.74 0.13 0.15 0.13 0.9

No 26PI-DT 0.44 0.15 0.17 0.13 0.9

No S-26PI-MLP 0.7 0.18 0.14 0.12 0.9

No P-26PI-RF 0.82 0.13 0.1 0.1 0.9

No S-26PI-LR 0.48 0.12 0.1 0.1 0.9

No S-26PI-KNN 0.75 0.09 0.12 0.09 0.9

No P-26PI-DT 0.74 0.09 0.1 0.08 0.9

No Q-26PI-DT 0.56 0.08 0.1 0.08 0.9

No 26PI-RF 0.8 0.07 0.07 0.07 0.9

No P-26PI-SVM 0.87 0.07 0.08 0.07 0.9

No S-26PI-SVM 0.87 0.07 0.08 0.07 0.9

No P-26PCA-RF 0.85 0.07 0.08 0.07 0.9

No Q-26PCA-RF 0.87 0.07 0.08 0.07 0.9

No Q-26PCA-MLP 0.69 0.07 0.07 0.07 0.9

No S-26PCA-KNN 0.77 0.07 0.07 0.07 0.9

No 26PCA-RF 0.87 0.07 0.08 0.07 0.9

No P-26PCA-SVM 0.87 0.07 0.08 0.07 0.9

No Q-26PCA-SVM 0.87 0.07 0.08 0.07 0.9

No S-26PCA-SVM 0.52 0.08 0.06 0.07 0.9

No 26PCA-DT 0.58 0.07 0.11 0.07 0.9

No P-26PCA-KNN 0.39 0.08 0.08 0.06 0.9

No P-26PCA-MLP 0.67 0.07 0.06 0.06 0.9

No Q-26PCA-KNN 0.56 0.07 0.05 0.06 0.9

No P-26PCA-DT 0.7 0.07 0.06 0.06 0.9

No Q-26PCA-DT 0.6 0.06 0.09 0.06 0.9

No S-26PCA-MLP 0.47 0.06 0.06 0.05 0.9

Continued on next page

Appendix A. Appendix 107

Table A.3 – continued from previous page

Modeled? Model Accuracy Precision Recall F1-score Split

No P-26PCA-LR 0.41 0.06 0.05 0.05 0.9

No Q-26PCA-LR 0.49 0.07 0.05 0.05 0.9

No S-26PCA-LR 0.43 0.07 0.05 0.05 0.9

A.6 Detailed classifier performance per class

The following section shows the precision, recall and f1-score per class for each of the best

models evaluated against the CICIDS 2017 dataset.

Class Precision Recall f1-score

Benign 1 1 1
Bot 0.7 0.89 0.78
DDoS 1 1 1
DoS GoldenEye 0.98 0.99 0.99
DoS Hulk 1 1 1
DoS Slowhttptest 0.98 0.99 0.99
DoS slowloris 0.99 0.99 0.99
FTP-Patator 1 1 1
Heartbleed 1 1 1
Infiltration 0.94 0.52 0.67
PortScan 0.99 1 0.99
SSH-Patator 0.99 0.99 0.99
Web Brute Force 0.72 0.68 0.7
Web Sql Injection 0.71 0.29 0.42
Web XSS 0.38 0.42 0.4

Table A.4: 26PI-RF: Results for the best performing model with limited data.

Appendix A. Appendix 108

Figure A.12: 16DT-Standard: The most influential parameter’s effect on the macro
f1-score.

Figure A.13: 36LR-Power: The most influential parameter’s effect on the macro f1-
score.

Appendix A. Appendix 109

Class Precision Recall f1-score

Benign 1 1 1
Bot 0.48 0.94 0.63
DDoS 1 1 1
DoS GoldenEye 0.98 0.99 0.98
DoS Hulk 0.99 0.99 0.99
DoS Slowhttptest 0.97 0.98 0.98
DoS slowloris 0.99 0.98 0.98
FTP-Patator 1 0.99 1
Heartbleed 1 0.89 0.94
Infiltration 0.71 0.3 0.43
PortScan 0.99 1 0.99
SSH-Patator 0.97 0.98 0.98
Web Brute Force 0.69 0.59 0.64
Web Sql Injection 0.12 0.35 0.18
Web XSS 0.4 0.66 0.5

Table A.5: 26PI-SVM: Results for the best performing model with limited data.

Class Precision Recall f1-score

Benign 1 1 1
Bot 0.54 0.89 0.67
DDoS 1 1 1
DoS GoldenEye 0.93 0.99 0.96
DoS Hulk 0.99 1 0.99
DoS Slowhttptest 0.97 0.96 0.97
DoS slowloris 0.95 0.99 0.97
FTP-Patator 0.99 1 0.99
Heartbleed 1 0.89 0.94
Infiltration 1 0.67 0.8
PortScan 0.99 1 0.99
SSH-Patator 0.97 0.99 0.98
Web Brute Force 0.63 0.98 0.77
Web Sql Injection 0.02 0.35 0.04
Web XSS 0.41 0.04 0.08

Table A.6: 36PI-MLP: Results for the best performing model with limited data.

A.7 Class performance per model against CICIDS

2017

A.7.1 RF Results

Figure A.14 shows a ROC curve providing the class representation and how the model

performs in relation to FPR and TPR. The AUC for S-26PI-RF shows that the discrimi-

Appendix A. Appendix 110

Class Precision Recall f1-score

Benign 1 1 1
Bot 0.49 0.9 0.63
DDoS 1 1 1
DoS GoldenEye 0.92 1 0.95
DoS Hulk 0.99 1 1
DoS Slowhttptest 0.95 0.98 0.97
DoS slowloris 0.97 0.98 0.98
FTP-Patator 0.99 1 1
Heartbleed 1 1 1
Infiltration 0.52 0.48 0.5
PortScan 0.99 1 0.99
SSH-Patator 0.98 0.99 0.99
Web Brute Force 0.68 0.65 0.66
Web Sql Injection 0.15 0.41 0.22
Web XSS 0.35 0.45 0.4

Table A.7: 26PI-KNN: Results for the best performing model with limited data.

Class Precision Recall f1-score

Benign 1 1 1
Bot 0.58 0.87 0.7
DDoS 1 1 1
DoS GoldenEye 0.94 0.98 0.96
DoS Hulk 0.99 1 1
DoS Slowhttptest 0.93 0.97 0.95
DoS slowloris 0.97 0.98 0.98
FTP-Patator 0.99 0.99 0.99
Heartbleed 1 0.56 0.71
Infiltration 0.11 0.36 0.17
PortScan 0.98 1 0.99
SSH-Patator 0.99 0.99 0.99
Web Brute Force 0.64 0.94 0.76
Web Sql Injection 0.07 0.76 0.13
Web XSS 0.5 0.02 0.03

Table A.8: 16PI-DT: Results for the best performing model with limited data.

native ability of the model tests across all classes is good except for Web SQL Injection.

This curve is not visible on the line because of the FPR close to 1.

The ROC curve shows the model performing consistently high for FTP-Patator, Web

Brute Force and DoS Hulk tests above the rest of the classes. With a TPR greater than

Appendix A. Appendix 111

Class Precision Recall f1-score

Benign 1 1 1
Bot 0.58 0.87 0.7
DDoS 0.99 1 1
DoS GoldenEye 0.93 0.98 0.95
DoS Hulk 0.99 1 0.99
DoS Slowhttptest 0.87 0.97 0.92
DoS slowloris 0.98 0.97 0.97
FTP-Patator 0.98 0.99 0.99
Heartbleed 0.05 0.78 0.09
Infiltration 0.57 0.52 0.54
PortScan 0.98 1 0.99
SSH-Patator 0.93 0.98 0.95
Web Brute Force 0.42 0.64 0.51
Web Sql Injection 0.17 0.18 0.17
Web XSS 0.31 0.37 0.34

Table A.9: 36PI-LR: Results for the best performing model with limited data.

Class Precision Recall f1-score

Benign 1 1 1
Bot 0.59 0.59 0.59
DDoS 1 1 1
DoS GoldenEye 0.9 0.98 0.94
DoS Hulk 0.98 1 0.99
DoS Slowhttptest 0.9 0.98 0.94
DoS slowloris 0.98 0.95 0.96
FTP-Patator 0.99 1 1
Heartbleed 1 0.9 0.95
Infiltration 0.08 0.72 0.14
PortScan 0.99 1 0.99
SSH-Patator 0.89 0.99 0.94
Web Brute Force 0.67 0.16 0.25
Web Sql Injection 0.01 0.11 0.02
Web XSS 0.18 0.92 0.3

Table A.10: 69PI-RNN: Results for the best performing model with limited data.

0.999 and FPR less than 0.05, the classes Benign, Bot, DDoS, DoS GoldenEye, SSH-

Patator, Heartbleed and Port Scan all yield good confidence levels for a NIDS model.

DoS Slowloris and DoS Slowhttptest also achieve an acceptable TPR confidence level

between 0.995 and 0.997 and a FPR less than 0.05. However, Web XSS, Infiltration and

Appendix A. Appendix 112

Figure A.14: 26PI-RF: ROC curve of the best performing RF model on limited data.

Web Sql Injection have a high FPR which places the classes at an unacceptable confidence

level.

Upon inspection of individual classes, it was found that Infiltration and Web Sql Injection

are mostly incorrectly classified as Benign.

A.7.2 KNN Results

Figure A.15 shows the ROC curve analysis for Q-26PI-KNN, where it is evident that the

primary classes can significantly perform better than the underrepresented instances. The

AUC for all classes is at an acceptable value over 0.95 except for Web XSS and Web SQL

Injection that can be classified as failed tests and, as such, are unreliable.

DDoS, DoS Hulk and FTP-Patator have exceptionally better reliability for this model

with an increase of between 0 and 0.05 FPR only at an interval of 0.999 and 1 TPR. Port

Scan has a slightly lower performance than that of the top-performing classes with a TPR

between 0.998 and 0.999 and FPR less than 0.05, thus making it reliable.

Generally, the models perform weaker across all classes when compared to the RF models

Appendix A. Appendix 113

Figure A.15: Q-26PI-KNN: ROC curve of the best performing KNN model on limited
data.

discussed. The finding aligns with Figure A.6 26PI-KNN box plot outliers and variance

representation, suggesting there is minimal feature correlation.

A.7.3 MLP Results

Figure A.16 shows that the Q-36PI-MLP model achieves a high AUC of over 0.90 across

all classes, suggesting that the model tests are better when compared to those from the

RF and KNN models, which had exceptions. Generally, the Q-36PI-MLP ROC curve

shows low reliability for classifying Heartbleed and Infiltration as the FPR is above 0.5.

The model performs best in classifying FTP-Patator, DoS Hulk and DoS GoldenEye with

the FPR being very close to 0 and TPR nearly at 1. DDoS, Port Scan, SSH-Patator and

Benign and Web Brute Force also perform fairly well with an ideal evaluation position

of TPR greater than 0.999 and FPR between 0 and 0.05. However, minimal instances of

incorrect classification with possible overlaps can be expected due to the FPR.

Additional classes such as Bot and DoS Slowhttptest also perform well with acceptable

points of TPR greater than 0.999 and FPR between 0.05 and 0.10. DoS Slowloris and

Appendix A. Appendix 114

Figure A.16: Q-36PI-MLP: ROC curve of the best performing MLP model on limited
data.

Web XSS show high FPR of over 0.10 or low TPR of under 0.999 which lowers their

reliability for this model. Upon inspection of individual classes, it was found that In-

filtration, Web Sql Injection and Web XSS are consistently the worst performers being

incorrectly classified as Benign.

A.7.4 SVM Results

Figure A.17 shows a ROC curve for the Q-26PI-SVM where Infiltration is the worst

performing test of an AUC less than 0.80. The model shows a high AUC of over 0.95

across all the other classes, suggesting the most reliable tests.

The ROC curve shows that the model performs best in classifying DDoS, DoS GoldenEye

and Port Scan with an FPR less than 0.05 and TPR between 0.999 and 1. DoS Hulk and

FTP-Patator also perform fairly well with a TPR greater than 0.998 and FPR under 0.05.

FPR for the Bot class is consistently below 0.05 with a minimal overlap between 0.05 and

0.10. When TPR is above 0.997, the FPR starts to increase thus degrading the model.

DoS Slowhttptest, DoS Slowloris and Web Brute Force perform very low, inconsistently

Appendix A. Appendix 115

Figure A.17: Q-26PI-SVM: ROC curve of the best performing SVM model on limited
data.

and unreliable to use. Minimal instances of incorrect classification with possible overlaps

can be expected due to the FPR.

Additional classes such as Bot and DoS Slowhttptest also perform well with a TPR greater

than 0.999 and FPR between 0.05 and 0.10. Further analysis confirms that Q-26PI-SVM

is mostly unreliable for Web XSS and Web SQL Injection. The results show the model

often incorrectly classifies Infiltration as Benign. The misclassifications follow the same

trend observed for RF and MLP, albeit to a far greater extent.

A.7.5 DT Results

Figure A.18 shows a ROC curve for the 16PI-DT where Infiltration is the worst performing

test of an AUC less that 0.80. The model shows a high AUC of over 0.90 across all the

other classes suggesting the tests are much more reliable.

Generally, DT shows poor performance across all classes evaluated when compared against

the other models discussed. The results also show that classes with minor representation in

the dataset during the training phase have poor performance when evaluated in the model.

Appendix A. Appendix 116

Figure A.18: 16PI-DT: ROC curve of the best performing DT model on limited data.

Upon further testing, it was discovered that adding more training samples improved the

model to be on par with other classifiers like RF. However, this finding is impractical to

compare, as there are very few test data samples remaining when performing testing this

way.

The AUC for each class on Figure A.18 for S-16PI-DT shows the ability of the model

tests across all classes are in an acceptable range with the exception of Web Sql Injection,

Heartbleed, Infiltration and Web XSS. The ROC curve shows the model performing highly

for Port Scan, DDoS and Benign tests above the rest of the classes with a TFP greater

than 0.999 TPR and FPR less than 0.005.

The high TPR (range of 0.998 to 0.999) for classes DoS Hulk and FTP-Patator with an

FPR less than 0.05 place the model as more reliable for these classes similar to S-26PI-RF.

However, the rest of the classes the model performs poorly with a TPR less than 0.995.

Web XSS, Infiltration, Web Brute Force, Web Sql Injection and Bot have a high FPR

that places the classes at a more unacceptable confidence level.

Generally, for the performance of the models against class representation, the S-16PI-DT

model shows bias towards majority classes in the dataset except for the Bot class.

Appendix A. Appendix 117

A.7.6 LR Results

Figure A.19 shows the AUC for Q-26PCA-LR where all the tests using the AUC are

reliable with the areas above 0.95 with the exception of Benign, Bot and DoS GoldenEye

that have fair areas between 0.90 and 0.95.

Figure A.19: Q-26PCA-LR: ROC curve of the best performing LR model on limited
data.

The ROC curve in Figure A.19 shows DDoS as the best performing class for the model

with a TPR greater than 0.999 and an FPR less than 0.05. However, this best performance

is much lower than the other models presented. Port Scan also performs well with an FPR

lower than 0.05, but the TPR is also lower than most models. Web Brute Force performs

on average with a FPR consistently less than 0.10. The rest of the classes perform poorly

for the model, with the FPR being greater than 0.10, with the worst being Infiltration

and Bot classes that have an FPR greater than 0.50.

A.7.7 RNN Results

Figure A.20 shows a ROC curve for the Q-69PI-RNN used to identify and evaluate how

each class performs. An AUC greater than 0.95 is shown across the classes with the

Appendix A. Appendix 118

exception of Infiltration and Web SQL Injection that had 0.9476 and 0.8834, respectively.

The result positions the model with fairly reliable tests across all classes.

Figure A.20: Q-69PI-RNN: ROC curve of the best performing RF model on limited
data.

FTP-Patator, Port Scan and DDoS are the best performing classes against the Q-69PI-

RNN model with a TPR greater than 0.999 and FPR less than 0.05. Although there is a

lower TRP range from 0.998 to 0.999 and FPR less than 0.05, the model performs well for

DoS Hulk, Benign, DoS Slowhttptest, Web Brute Force and Heartbleed. The rest of the

classes have a higher FPR between 0.05 and 0.10 with the exception of Web Sql Injection

and Infiltration significantly under perform with an FPR greater than 0.5.

Similar to MLP, further analysis into the model shows that five classes are perfectly

predicted, namely; Benign, DDoS, DoS Hulk, FTP-Patator and Port Scan. Web SQL

Injection is never correctly classified and for 47% of the prediction attempts, it is in-

correctly classified as Benign. 93% of the prediction attempts Web XSS have led to an

incorrect classification as Web Brute Force. Bot and Infiltration are incorrectly classified

and Benign for 63% and 66% respectively.

Appendix A. Appendix 119

A.7.8 More Training Data

As discussed in the proposed system in Chapter 3, each model is evaluated with three

different train split ratios: 0.1, 0.3 and 0.5 of each dataset. The split demonstrates

that the proposed methodology enables classifiers, including the deep learning RNN, to

require substantially less training data. Table A.11 shows how each model performs when

presented with more training data.

Model Split
Accuracy

(2017)
f1-score
(2017)

26PI-RF 0.1 1.00 0.87
26PI-RF 0.3 1.00 0.87
26PI-RF 0.5 1.00 0.90

Q-26PI-KNN 0.1 1.00 0.82
Q-26PI-KNN 0.3 1.00 0.77
Q-26PI-KNN 0.5 1.00 0.79
Q-36PI-MLP 0.1 1.00 0.81
Q-36PI-MLP 0.3 1.00 0.78
Q-36PI-MLP 0.5 1.00 0.78
Q-26PI-SVM 0.1 1.00 0.81
Q-26PI-SVM 0.3 1.00 0.79
Q-26PI-SVM 0.5 1.00 0.79

16PI-DT 0.1 1.00 0.76
16PI-DT 0.3 1.00 0.72
16PI-DT 0.5 0.99 0.75

Q-26PCA-LR 0.1 0.99 0.73
Q-26PCA-LR 0.3 0.98 0.66
Q-26PCA-LR 0.5 0.98 0.60
Q-69PI-RNN 0.1 1.00 0.73
Q-69PI-RNN 0.3 0.99 0.63
Q-69PI-RNN 0.5 0.99 0.62

Table A.11: Effects of train and test data split.

In general, the benefits of adding more test data were not consistently observed except

for RF based models. The other classifiers either experienced degradation of performance

or alternating performance.

	Introduction
	Problem Statement
	Research Question
	Research Objectives
	Research Contributions and Limits
	Document Structure

	Concepts and Literature Review
	Intrusion Detection Systems
	NIDS Model Development Methods
	Signature-based Detection
	Anomaly-based Detection

	Machine Learning-Based NIDS
	Overview of Machine Learning
	Data Preparations
	Feature Scaling and Transformation
	Feature space Reduction
	Model Evaluation
	Classification Algorithms

	Related Studies
	Related NIDS
	Discussion of Related NIDS

	Literature Review Summary

	Experimental Design
	Methodology
	Overview
	Datasets

	Implementation
	Test Bed
	Data Preparation
	Feature Engineering
	Feature Space Reduction
	Model Evaluation
	Experiments

	Experiment Design Summary

	Results
	Feature Engineering Results
	Model Evaluation
	Model Tuning

	Experiment Results
	Experiment 1: Training models with CICIDS 2017 dataset
	Experiment 2: CICIDS 2017 Model testing with CICIDS 2018 dataset
	Experiment 3: Training and Testing with CICIDS 2018

	Model Comparisons
	Summary of Results

	Discussion
	Introduction
	Data Preparation
	Feature Engineering
	Feature Space Reduction
	Model Evaluation
	Related NIDS Comparison

	Conclusion and Future Work
	Summary of Research
	Research Objective
	Research Contribution
	Future Work

	References
	Appendices
	Appendix
	Data Preparations
	Dataset: CICIDS2017
	Attack Profiles
	Data Capturing
	Dataset Criteria

	Feature Engineering
	Feature Scaling and Transformation

	Dimensionality Reduction
	Feature Ranking

	Model Evaluation
	Tuning of Experimental Model Parameters

	Other Results
	Detailed classifier performance per class
	Class performance per model against CICIDS 2017
	RF Results
	KNN Results
	MLP Results
	SVM Results
	DT Results
	LR Results
	RNN Results
	More Training Data

