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ABSTRACT

COVID-19, as a disease resulting from SARS-CoV-2 infection, and a pandemic has
had a devastating effect on the world. There are limited effective measures that
control the spread and treatment of COVID-19 illness. The homodimeric cysteine
main protease (MP) is crucial to the life cycle of the virus, as it cleaves the large
polyproteins la and lab into matured, functional non-structural proteins. The MP™©
exhibits high degrees of conservation in sequence, structure and specificity across
coronavirus species, making it an ideal drug target. The MP™ substrate-binding profiles
remain, despite the resolution of its recognition sequence and cleavage points
(Leu-GlIn|(Ser/Ala/Gly)). In this study, a series of hexapeptide sequences containing
the appropriate recognition sequence and cleavage points were generated and
screened against the MP™ to study these binding profiles, and to further be the basis
for efficiency-driven drug design. A multi-conformer hexapeptide substrate library
comprising optimised 81000 models of 810 unique sequences was generated using
RDKit within the context of python. Terminal capping with ACE and NMe was
effected using SMILES and SMARTS matching. Multiple hexapeptides were
complexed with chain B of crystallographic MP® (PDS ID: 6XHM), following the
validation of chain B for this purpose using AutoDock Vina at high levels of
exhaustiveness (480). The resulting Vina scores ranged between -8.7 and -7.0
kcal.mol!, and the reproducibility of best poses was validated through redocking.
Ligand efficiency indices were calculated to identify substrate residues with high
binding efficiency at their respective positions, revealing Val (P3), Ala (P1’); and Gly
and Ala (P2" and P3’) as leading efficient binders. Binding efficiencies were lowered
by molecular weight. Substrate recognition was assessed by mapping of binding
subsites, and MP™ specificity was evaluated through the resolution of intermolecular
interaction at the binding interface. Molecular dynamics simulations for 20 ns were
performed to assess the stability and behaviour of 132 MP™ systems complexed with

KLQ*** substrates. Principal component analysis (PCA), was performed to assess



protein motions and conformational changes during the simulations. A strategy was
formulated to classify and evaluate relations in the MP™® PCA motions, revealing four
main clades of similarity. Similarity within a clade (Group 2) and dissimilarity
between clades were confirmed. Trajectory visualisation revealed complex stability,

substrate unbinding and dimer dissociation for various MP™ systems.
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nucleocapsid comprising viral RNA. Adapted with permission from Kumar ef al,

Figure 1.2. The genomic arrangement of SARS-CoV-2. The size of the coronavirus
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cysteine proteases, including papain-like protease (nsp3), chymotrypsin-like, 3C-like,
or main protease (nsp5), RNA-dependent RNA polymerase (nsp12), helicase (nsp13),
and others likely to be involved in the transcription and replication of SARS-CoV-2.
In addition to nsps, the genome encodes for four major structural proteins including
spike surface glycoprotein (S), membrane, nucleocapsid protein (N), envelope (E) and
accessory proteins like ORFs. Adapted from Boster, 2020 and with permission from
KUmar €F AL, 2020D.......ueeiieiiiiieeeeeeeeeeeee ettt e e e e e e et e e e e e e s areaee s 5

Figure 1.3. Novel coronavirus life cycle. Life cycle: (1) First, the virus binds to
receptors on the surface of the host cell through the S-protein and is endocytosed or
directly fused with the host cell membrane into the cell; (2) Next, the lysosome
degrades the lipid membrane and protein envelope on the exterior of the virus
(endocytosis only); (3) Viral RNA is released into the cell, where ORF1a and ORF1ab
are translated into ppla and pplab, which in turn are cleaved by proteases encoded by
ORFla to produce multiple NSPs, forming the replication/transcription complex; (4)
At the same time as the previous step, viral RNA continues to use the cell for
replication; (5) The replicated viral RNA undergoes discontinuous transcription under
the action of the replication/transcription complex to produce subgenomic RNA,
which is translated into structural proteins in the cell's endoplasmic reticulum; (6) The
resulting structural proteins assemble in the ER-Golgi intermediate compartment
(ERGIC) to form the nucleocapsid and viral envelope; (7) Finally, smooth-walled
vesicles containing the nascent virus particles fuse with the cell membrane, releasing
the virus particles from the infected cell. S, Spike protein; M, Membrane protein; E,
Envelope protein; N, Nucleocapsid protein; NSPs, Non-structural proteins; DMV,
Double-membrane vesicles; ER, Endoplasmic reticulum; ERGIC, ER-Golgi
intermediate compartment. Adapted with permission (under the terms of the Creative
Commons Attribution License (CC BY)) from Guo et al., 2020.........ccccccvvevrveeveenennne. 8
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CHAPTER ONE

LITERATURE REVIEW

1.1 BACKGROUND

The novel coronavirus disease 2019 (COVID-19) is a pulmonary disease that is caused by the
infection of a virus called severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)
(Liu et al., 2020). Since the emergence of COVID-19 in December 2019 out of Wuhan, China,
the disease has spread globally at a rapid rate and was quickly declared a public health
emergency of international concern and shortly after, a pandemic by March 2020, due to high
transmission rates and fatalities associated with the disease (Khan ef al, 2020; Zhang et al.,
2020). As of February 2022, there have been more than 396 million infection cases reported
globally, along with more than 5.74 million confirmed deaths and approximately 315 million

recovered cases across 216 countries, areas or territories (WHO, 2022; Statista, 2022).

Since the initial outbreak of the coronavirus pandemic, COVID-19 has demonstrated a
massive impact on the global economy, exerted a great strain on public health resources and
predominantly threatened public health and the livelihood of millions of people. Globally,
countries were compelled to implement national lockdowns as means to control the spread of
COVID-19. These lockdowns entailed the suspension of mass gatherings and the
enforcement of social isolation, including academic progression, religious assemblies, the
closure of non-essential business sectors, border shutdowns and travel restrictions (Nicola et
al., 2020). Subsequently, the economic disruption and/or inactivity landed many countries in
critical economic instabilities, accompanied by hikes in unemployment rates and economic
recession, and even the decline of the standard of living for people living in specific regions

located in Asia, Africa, Europe and South America (Buheji et al., 2020).

According to economists, the threat of the COVID-19 crisis to global financial stability is
such that has the potential to be extremely adverse if the pandemic persists and could lead to
a global financial crisis similar to, or even worse than the financial crisis of 2007-2009, and
this will leave millions in devastating living conditions with little to no resources to support
their livelihood (International Monetary Fund and Capital Markets Department, 2020; Adrian
and Natalucci, 2020a; Adrian and Natalucci, 2020b; Bhuiyan et al, 2020). Developing



countries are very vulnerable to these adverse economic conditions, and the socio-economic
impact of the COVID-19 pandemic is already amplified in these countries (Bhuiyan et al.,
2020; Abouzzohour, 2020). Moreover, being low-income countries, a majority of developing
countries lack the basic health care facilities required to combat the outbreak of COVID-19
(Khan et al, 2020).

1.2 SEVERE ACUTE RESPIRATORY SYNDROME-CORONAVIRUS 2

Coronaviruses are a diverse group of RNA viruses that cause respiratory diseases in birds,
humans and other higher mammals (Perlman and Mclntosh, 2015; Milewska et al., 2020) and
which belong to the subfamily Coronavirinae, in the family Coronaviridae and the order
Nidovirales (Mousavizadeh and Ghasemi, 2020; Kumar ef al, 2020a). Coronaviridae is a
diverse family of enveloped viruses consisting of large single-stranded, positive-sense RNA
genomes of around 27-32 kb (Mousavizadeh and Ghasemi, 2020; Tu et al,, 2020) which are
typically composed of a 5'-methylguanosine cap at the beginning, a 3’-poly-A tail at the end,
and a total of 6-10 genes in between (Tu et al, 2020). The viral genome is characterised as
having a high frequency of genomic recombination and mutation (Khan et al, 2020) and is
the largest among RNA viruses, with G + C contents varying from 32% to 43%
(Mousavizadeh and Ghasemi, 2020).

There are four main classes of coronaviruses namely alpha, beta, gamma, and delta (Shereen
et al., 2020). The alpha and betacoronaviruses are believed to infect humans and mammals,
whereas the delta and gammacoronaviruses seem to infect bird species (Cascella ef al., 2020).
SARS-CoV-2 belongs to the betacoronavirus class, together with severe acute respiratory
syndrome (SARS) coronavirus (SARS-CoV) and the Middle East respiratory syndrome
(MERS) coronavirus (MERS-CoV). SARS-CoV-2 shares 82% RNA genome identity to that
of SARS-CoV, making both viruses members of the clade b of the genus Betacoronavirus and
hence, have similar names (Liu ef al., 2020; Zhang et al., 2020). The RNA genome identity
between SARS-CoV-2 and MERS-CoV is about 50% (Kim ef al., 2020). The enveloped viral
particles of coronaviruses are minute in size, ranging between 65-125 nm in diameter
(Shereen et al, 2020). Coronaviruses are sensitive to ultraviolet rays and heat, with high
temperatures decreasing replication and/or activity at about 27°C. On the contrary, some
species have shown resistance to cold temperatures even below 0°C (Cascella et al., 2020).
The inactivation temperature of SARS-CoV-2 is yet to be well elucidated. In addition, these

viruses can be effectively inactivated by lipid solvents including ether (75%), ethanol,



chlorine-containing disinfectant, peroxyacetic acid, and chloroform (but not chlorhexidine)

(Cascella et al., 2020).

The structure of the SARS-CoV-2 virion is spherical or elliptic and often exhibit
pleomorphism (Mousavizadeh and Ghasemi, 2020; Cascella et al, 2020). Similar to other
coronaviruses, the SARS-CoV-2 virions have a crown-like appearance under an electron
microscope due to the presence of the club-shaped glycoprotein projections referred to as the
spike protein (figure 1.1) (Mousavizadeh and Ghasemi, 2020; Cascella et al, 2020). The
name coronavirus is owing to this crown-like appearance (coronam is the Latin term for

crown) (Cascella ef al., 2020).

Figure 1.1. The structure of SARS-CoV-2. SARS-CoV-2 has surface viral proteins, namely, spike glycoprotein
(S), which mediates interaction with cell surface receptor ACE2. The viral membrane glycoprotein (M) and
envelope (E) of SARS-CoV-2 are embedded in the host membrane-derived lipid bilayer encapsulating the
helical nucleocapsid comprising viral RNA. Adapted with permission from Kumar ef al., 2020b.

There are three main structural proteins on the coronavirus membrane. The spike protein is a
homotrimeric, type I membrane glycoprotein that constitutes peplomers that protrude the

viral surface (Mousavizadeh and Ghasemi, 2020; Walls et al, 2020). Like in many other



coronaviruses, the majority of the spike protein is exposed to the exterior of the virion,
followed by a short transmembrane domain and a short cytoplasmic tail rich in cysteine
residues at the C-terminus (Woo et al, 2010). Being the prominent feature of the viral
membrane, the spike proteins are the main inducers of the neutralising antibodies
(Mousavizadeh and Ghasemi, 2020). More importantly, the spike protein plays a crucial role
in viral infection into host cells, as it mediates the fusion process between viral and host
membranes and ensures efficient cell entry of coronavirus particles (Alsaadi and Jones, 2019).

The details of this process and the interactions involved will be discussed in the next section.

The membrane glycoprotein is a type III transmembrane glycoprotein and is the most
abundant glycoprotein in the coronavirus membrane (Alsaadi and Jones, 2019). The protein
spans the membrane bilayer three times, with the short N-terminal domain on the exterior of
the virion, and the long C-terminal domain inside the cytoplasm of the virion (Mousavizadeh
and Ghasemi, 2020). The membrane glycoprotein is believed to play a crucial role in the
intracellular formation of virions, particularly the budding process of coronaviruses
(Mousavizadeh and Ghasemi, 2020; Bianchi ef al, 2020). During assembly of the authentic
virions, the membrane glycoprotein interacts with itself, the nucleocapsid protein, envelope
protein and the spike protein (Alsaadi and Jones, 2019). Moreover, the activity of membrane
glycoprotein is independent of the spike protein. According to Mousavizadeh and Ghasemi
(2020), the coronavirus replicates and forms spikeless (devoid of spike protein)

non-infectious virions containing membrane glycoproteins when exposed to tunicamycin.

The envelope protein is a small hydrophobic integral membrane protein which is generally a
minor component of the virus membrane in all coronaviruses groups (Alsaadi and Jones,
2019). The protein has an N-terminal domain, a long a-helical transmembrane domain and a
C-terminal hydrophilic domain (Alsaadi and Jones, 2019). The envelope protein is crucial to
the pathogenicity of SARS-CoV-2 as it promotes viral assembly and release (Cascella ef al.,
2020), achieved through the induction of membrane curvature which leads to membrane
scission of the budding virus particle and its eventual release. The membrane curvature
induced by the envelope protein is established such that the co-expression of membrane and
envelope proteins (and even the spike proteins, if spike protein co-expression took place) is

sufficient for the efficient formation of viral particles (Alsaadi and Jones, 2019).

The viral membrane encapsulates the single-stranded RNA associated with a nucleoprotein

within a capsid composed of matrix protein (Mousavizadeh and Ghasemi, 2020). The genome



is 29 891 nucleotides long with a G + C content of 38% and encodes 9 860 amino acids (Guo
et al., 2020). The viral RNA genome comprises of two flanking, untranslated regions (UTR)
and open reading frames (ORFs) arranged in the order: 5'-replicase (ORF1lab) - structural
proteins [Spike (S) - Envelope (E) - Membrane (M) - Nucleocapsid (N)]—3’ and nonstructural
OREFs (figure 1.2) (Wu et al., 2020b; Guo ef al., 2020). In a typical coronavirus genome, there
can be at least six ORFs (Mousavizadeh and Ghasemi, 2020). The SARS-CoV-2 genome
encodes at least 27 proteins, which include 16 non-structural proteins (nspl-10, nsp12-16),
the four structural proteins(S, E, M, and N) and 8 accessory proteins (ORF3a, ORF3b, ORF6,
ORF7a, ORF7b, ORF8, ORF9b, and ORF14) (Guo ef al., 2020; Mousavizadeh and Ghasemi,
2020).

Figure 1.2. The genomic arrangement of SARS-CoV-2. The size of the coronavirus genome ranges from 26 to
32 kb and comprises 6—11 open reading frames (ORFs) encoding 9680 amino acid polyprotein. The first ORF
comprises approximately 67% of the genome that encodes 16 nonstructural proteins (nsps), whereas the
remaining ORFs encode for accessory and structural proteins. The nsps includes two viral cysteine proteases,
including papain-like protease (nsp3), chymotrypsin-like, 3C-like, or main protease (nsp5), RNA-dependent
RNA polymerase (nsp12), helicase (nsp13), and others likely to be involved in the transcription and replication
of SARS-CoV-2. In addition to nsps, the genome encodes for four major structural proteins including spike
surface glycoprotein (S), membrane, nucleocapsid protein (N), envelope (E) and accessory proteins like ORFs.
Adapted from Boster, 2020 and with permission from Kumar ef al., 2020b.

The first ORFs (OFR1a/b) comprise two-thirds of the SARS-CoV-2 genome and encode two
large proteins, polyproteins la (ppla) and lab (pplab). A frameshift between ORFla and
ORF1b guides the synthesis of ppla and pplab which are subsequently processed by virally
encoded chymotrypsin-like protease (3CLP®) or main protease (MP®) and one or two
papain-like protease into non-structural proteins (Chen et al, 2020). Apart from ORFla and
ORF1b, other ORFs on the one-third of the genome near the 3'-terminus encode the four

main structural proteins (ORF10, ORF11), while the remaining ORFs encode accessory

proteins, such as 3a/b protein, and 4a/b protein (Mousavizadeh and Ghasemi, 2020, Chen et



al., 2020; Cascella ef al., 2020). Different species of coronaviruses present special structural
and accessory proteins translated by dedicated subgenomic RNAs (Chen ef al, 2020;
Cascella ef al., 2020).

The viral genome also serves as the template for replication and transcription. These
processes are mediated by nsp12, which displays RNA-dependent RNA polymerase activity
(Kim ef al, 2020). Once efficient host infection is established, the transcription commences
through the replication-transcription complex in double-membrane vesicles and via the
synthesis of subgenomic RNAs sequences (Cascella ef al, 2020). During transcription,
negative-sense RNA intermediates are synthesised as the templates for the synthesis of
positive-sense genomic RNA and subgenomic RNAs. The genomic RNA is packaged by the
structural proteins to assemble progeny virions, while the shorter subgenomic RNAs encode
conserved structural proteins and several accessory proteins (Kim et a/, 2020). Transcription
termination occurs at transcription regulatory sequences, located between the ORFs (Cascella

et al., 2020).

1.3 THE PATHOLOGY AND VIRULENCE MECHANISMS OF SEVERE ACUTE
RESPIRATORY SYNDROME-CORONAVIRUS 2

The first cases of the COVID-19 disease were presumed to spread via animal-to-human
transmission since they were associated with the Huanan Seafood Wholesale Market of
Wuhan and the fact that betacoronaviruses were known to infect higher mammals.
Nonetheless, the subsequent cases were not directly linked to the market and the contagion
mechanism was concluded to primarily involve human-to-human transmission, and
symptomatic people were the most frequent source of the COVID-19 spread. It was shortly
discovered that presymptomatic and asymptomatic individuals contributed to the spread of
the disease, accounting for about 80% of COVID-19 transmission (Cascella et al., 2020). It
was also established that close contact is essential for successful SARS-CoV-2 transmission,
but aerosol transmission is also possible in case of protracted exposure to elevated aerosol
concentrations in closed spaces (Sironi et al., 2020). Other possible modes of transmission
include contact with contaminated objects and surfaces such as plastic (2-3 days), stainless
steel (2-3 days), cardboard (1 day) copper (up to 4 hours) (Orleans and Manchikanti, 2020;
Cascella ef al., 2020).

1.3.1 SEVERE ACUTE RESPIRATORY SYNDROME-CORONAVIRUS 2 INFECTION

Much like other respiratory pathogens, efficient SARS-CoV-2 infection occurs via spraying



respiratory droplets (5-10 um in diameter) from infected individuals through their cough or
sneeze (Cascella et al,, 2020). Once inhaled, the virus particles are transported to the airway
where they invade the airway epithelial cells. To enter host cells, coronaviruses first bind to a
cell membrane receptor for viral attachment, subsequently enter endosomes, and eventually
fuse viral and lysosomal membranes (Shang et al., 2020). The surface-anchored spike protein
mediates the entire process of host cell invasion. In mature virions, the spike protein presents
as a trimer with two functional subunits, S1 and S2. To facilitate the fusion of viral and host
membranes, the spike protein requires proteolytic activation at the S1/S2 boundary for S1 to
dissociate and allow S2 to undergo the essential structural change. The host proteases that
mediate this entry-activating proteolysis include the surface-anchored serine protease, the
transmembrane protease serine 2 (TMPRSS2), and the lysosomal protease cathepsins. S1
contains a receptor-binding domain that recognises angiotensin-converting enzyme 2 (ACE2)
as its specific receptor. The receptor-binding domain is constantly changing conformations to
evade immune response. The binding of S1 to ACE2 facilitates viral attachment to the surface
of host cells. S2 is further cleaved at the S2’ site and activated by TMPRSS2 in a process
called protein priming. Together, these actions result in viral-host membrane fusion and
contribute to the rapid spread of COVID-19, as well as the severe clinical manifestation of
the SARS-CoV-2 exhibited by infected individuals (figure 1.3) (Hoffman et al, 2020; Shang
et al, 2020; Guo et al, 2020). Furthermore, the basic reproduction number (Ro) for
SARS-CoV-2 is 2.2, meaning that each patient transmits the infection to an additional 2.2
individuals (Cascella ef al., 2020).



Figure 1.3. Novel coronavirus life cycle. Life cycle: (1) First, the virus binds to receptors on the surface of the
host cell through the S-protein and is endocytosed or directly fused with the host cell membrane into the cell; (2)
Next, the lysosome degrades the lipid membrane and protein envelope on the exterior of the virus (endocytosis
only); (3) Viral RNA is released into the cell, where ORF/a and ORFab are translated into ppla and pplab,
which in turn are cleaved by proteases encoded by ORFla to produce multiple NSPs, forming the
replication/transcription complex; (4) At the same time as the previous step, viral RNA continues to use the cell
for replication; (5) The replicated viral RNA undergoes discontinuous transcription under the action of the
replication/transcription complex to produce subgenomic RNA, which is translated into structural proteins in the
cell's endoplasmic reticulum; (6) The resulting structural proteins assemble in the ER-Golgi intermediate
compartment (ERGIC) to form the nucleocapsid and viral envelope; (7) Finally, smooth-walled vesicles
containing the nascent virus particles fuse with the cell membrane, releasing the virus particles from the infected
cell. S, Spike protein; M, Membrane protein; E, Envelope protein; N, Nucleocapsid protein; NSPs,
Non-structural proteins; DMV, Double-membrane vesicles; ER, Endoplasmic reticulum; ERGIC, ER-Golgi
intermediate compartment. Adapted with permission (under the terms of the Creative Commons Attribution
License (CC BY)) from Guo et al., 2020.

1.3.2 CLINICAL MANIFESTATIONS OF COVID-19

The clinical spectrum of COVID-19 varies from asymptomatic or paucisymptomatic forms to
severe clinical conditions characterized by respiratory failure that necessitates mechanical

ventilation and support in an ICU, to multi-organ and systemic manifestations in terms of



sepsis, septic shock, and multiple organ dysfunction syndromes (Cascella et al, 2020).
Between infection and symptoms, the incubation period is generally within 3 to 5 days, and
even up to 2 weeks depending on the amount of virus that initially entered the body and the

general physical health of the infected person (Guo et al., 2020).

Typical clinical symptoms of COVID-19 include fever, fatigue, malaise, dry cough and
dyspnea, while atypical clinical symptoms include expectoration, headache, hemoptysis,
nausea, vomiting, and diarrhoea (Cascella et al., 2020; Guo ef al., 2020). There were reported
cases of chemosensory dysfunction, such as smell and taste impairment, associated with
COVID-19 in patients displaying flu-like symptoms (Yan ef al., 2020). Confirmed mild cases
present with symptoms of low fever, dry cough, mild fatigue, sore throat, nasal congestion,
headache, muscle pain or other symptoms, without presenting with pneumonia, and the
majority of these cases recover after 1 week (Guo et al,, 2020; Wang et al., 2020; Cascella et
al., 2020).

Severe cases of COVID-19 are characterised by a fever associated with severe dyspnea,
respiratory distress, and tachypnea, such that the respiratory rate can increase to 30
breaths/min or more. Hypoxia (blood oxygen saturation < 93%) and Acute Respiratory
Distress Syndrome (ARDS) (PaO2/FiO2 < 100) are other common clinical conditions
associated with severe cases. Furthermore, chest imaging using chest radiograph, Computed
Tomography (CT) scans, or lung ultrasound scans revealed increases in pulmonary infiltrates,
exceeding 50% within 24 to 48 hours (Wang et al, 2020; Cascella et al, 2020). Other
radiological features of severe cases include patients presenting with bilateral pulmonary
injury characterised by ground-glass opacities in X-ray scans, as well as the CT scans
showing SARS-CoV-2 distribution in the subpleural and lobular zones, with the two possibly

merged into a sheet or progressing to into bilobal diffuse opacities (Guo et al., 2020).

In critical COVID-19 cases, the patients generally present with hypoxemia, respiratory failure,
septic shock, and/or multiple organ dysfunction or failure. After a week of presenting
dyspnea, the individual rapidly progresses to ARDS accompanied by septic shock, metabolic
acidosis and coagulopathy. With septic shock, the patients usually suffer from persistent
hypotension despite volume resuscitation. This clinical condition is associated with increased
mortality, circulatory, and cellular/metabolic abnormalities such as serum lactate levels rising
even greater than 2 mmol/L. Extrapulmonary manifestations and systemic complications are

also prevalent in critical cases, demonstrated through injuries to the kidney, heart, and other



organs, and even multiple organ failure. These clinical manifestations suggest that
SARS-CoV-2 infection, in addition to affecting the respiratory organs, also have clinical
presentations that involve invasion of other organs. Of note, some tissue in select organs,
such as renal tubular cells, Leydig cells, and cells in seminiferous ducts in testis, is very
permissive to SARS-CoV infection due to high expression of ACE2, allowing for direct viral
attachment and invasion of such cells and the subsequent damage to the kidneys and
testicular tissue of a patient. Studies have confirmed that renal insufficiency is common in
patients with COVID-19, which may be one of the main causes of COVID-19 eventually
leading to multiple organ failure and even death (Guo et al, 2020; Cascella et al., 2020).

1.3.3 CURRENT TREATMENT/MANAGEMENT OF COVID-19

At present, there are three protective COVID-19 vaccines for primary and booster
vaccinations, approved or authorised by the Centre for Disease Control and Prevention. These
vaccines include the BNT162b2, mRNA-1273 and Ad26.COV2.S, which were developed by
Pfizer-BioNTech, Moderna and Johnson & Johnson/Janssen, respectively. The BNT162b2
vaccine is a nucleoside-modified RNA vaccine that induces immune response and antibody
production against the wild-type and beta variant of SARS-CoV-2, by expressing the
full-length prefusion spike protein (Liu et al, 2021; Falsey et al, 2021). The mRNA-1273
vaccine is a lipid nanoparticle-encapsulated mRNA-based vaccine that encodes the prefusion
stabilized full-length spike protein of SARS-CoV-2, resulting in an immune response that
protects against SARS-CoV-2 infection and lowers the severity of COVID-19 symptoms
(Baden er al, 2021). The Ad26.COV2.S vaccine is a recombinant, replication-incompetent
adenovirus serotype 26 (Ad26) vector encoding a full-length and stabilized SARS-CoV-2
spike protein (Sadoff et al,, 2021). The Ad26.COV2.S vaccine has been shown to have high
risks of adverse events and is thus less preferable, in comparison to the BNT162b2 and
mRNA-1273 vaccines.

In addition to the vaccines, there is one FDA-approved drug for the treatment of COVID-19
symptoms called remdesivir, or Veklury (trade name). Remdesivir targets the RNA-
dependent, RNA polymerase (nspl2) and exhibits inhibitory activity against SARS-CoV,
MERS-CoV and SARS-CoV-2 in vitro (Beigel et al., 2020). The drug is suitable for children,
paediatric patients and adults with SARS-CoV-2 infection, whether hospitalised or not.
Remdesivir is administered to soothe all symptomatic manifestations of COVID-19,
including mild-to-moderate cases, high risk for progression to severe COVID-19, and severe

cases.



There are additional treatments and therapeutic strategies in place to support symptomatic
cases of COVID-19 and were designed to primarily address respiratory impairments. These
strategies were implemented even before the development and authorisation of vaccines.
They help mitigate tissue injury and damage in extrapulmonary manifestations of COVID-19.
Intensive care is crucial for dealing with complicated cases of the disease. The first steps in
addressing respiratory impairment, hypoxia and ARDS in severe cases incorporate oxygen
therapy. Oxygen therapy involves the administration of oxygen using adaptable techniques
such as non-invasive (NIV) and invasive mechanical ventilation (IMV) therapy, Heated
humidified high-flow therapy, Continuous Positive Airway Pressure therapy, Intubation and
Protective Mechanical Ventilation. In critical cases and some severe cases, healthcare experts
employ several pharmaceutical therapies to treat adverse cases of COVID-19 clinical
manifestations, such as COVID-19 induced ARDS, as well as limit the spread and direct
extension of the virus to adjacent organs. These therapies include the use of corticosteroids,
the administration of antiviral and immunomodulatory drugs, serotherapy (plasma and
antibody therapies), the administration of anticoagulant agents and inflammation inhibitors.
These therapies have demonstrated effectiveness in treating COVID-19 symptoms and effect

recovery in patients.

Nonetheless, prevention is currently the best strategy to limit the spread of COVID-19.
Preventive strategies focus on social distancing, the isolation of patients and the careful
clinical care to an infected patient. The WHO and other organizations have issued general
recommendations for the public and healthcare personnel to implement during social
distancing, medical isolations and quarantines. Despite the implementation of preventative
measures, the number of cases continues to rise and COVID-19 continues to claim lives. The
ultimate measure for SARS-CoV-2 epidemic control and prevention will be the use of
protective vaccines that confer long-term immunity even against multiple variants and strains,
as well as therapeutic drugs against SARS-CoV-2 infection and COVID-19 symptoms.
Efforts in finding such vaccines and drugs are still ongoing. More compounds are being
proposed as potential treatments against COVID-19 (Nhean ef al, 2021; Awadasseid et al,
2021). The current COVID-19 management measures, although effective to a certain extent,
highlight the urgent need for the development of broad-spectrum antiviral chemotherapies,
which specifically target highly conserved proteins, to fight infections against the novel
SARS-CoV-2 variants and other coronaviruses (Cascella et al., 2020; Guo ef al., 2020; Aleem
etal,2021).
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1.4 SARS-CoV-2 MAIN PROTEASE

The SARS-CoV-2 main protease (MP™), also referred to as chymotrypsin-like protease (3CL
Pro) " is a cysteine protease and a non-structural protein (nsp5), encoded by OFR1a/b (Ullrich
and Nitsche, 2020). As in other coronaviruses, MP* is a homodimer and two subunits are
arranged almost perpendicular to each other. Each monomer of MP™ consists of 306 amino
acid residues, comprising 13 strands and 11 helices distributed among three distinct structural
domains (I, I and III), and a long loop (residues 185-200) joining domains II and III (Khan ef
al., 2020; Wu et al, 2020a; Chang, 2010; Zhang ef al., 2020). Domains I (8-101 amino acid
residues) and II (102-184 amino acid residues) are mainly beta-barrels and display
resemblance to chymotrypsin, whereas domain III (201-306 amino acid residues) primarily
comprises alpha helices (Zhang et al, 2020). On each monomer, there is a catalytic dyad
(His41 and Cysl145) situated on the cleft of the chymotrypsin-like double beta-barrel fold
between domains I and II (figure 1.4) (Goyal and Goyal, 2020; Ullrich and Nitsche, 2020).
The individual monomers are enzymatically inactive and require dimerization for

functionality (Goyal and Goyal, 2020).

Figure 1.4. The 3D structure of the SARS-CoV-2 MP®. X-ray crystal structure of the MP® homodimer of
SARS-CoV-2 (PDB: 6Y2E). Residues of the catalytic dyad (His41/Cys145) are indicated. (a) Monomers are
indicated. (b) Domains of each monomer are indicated. Adapted with permission from Ullrich and Nitsche,
2020.



Unlike other cysteine and serine proteases with catalytic triads, MP™ consists of a water
molecule that occupies the place of the third catalytic residue in the active site (Ullrich and
Nitsche, 2020). In addition to the catalytic dyad, there are two deeply buried subsites (S1 and
S2) and three shallow subsites (S3-S5) (figure 1.5). The amino acid residues in subsites S1
and S2 participate in hydrophobic and electrostatic interactions, whereas the residues in the

shallow subsites S3-S5 tolerate different functionalities (Khan et al., 2020).

Figure 1.5. The substrate-binding subsites of the SARS-CoV-2 MP®. The surface of SARS-CoV-2 MP™, showing
the substrate-binding subsites, colour-coded as follows: purple site S1 and S2, olive green site S3, blue site S4,
pink site S5. Adapted with permission from Khan et al., 2020.

The MP™ plays a vital role in cleaving the polyproteins translated by the ORFla and ORF1ab.
The MP© is first autocleaved from pplab (nps5) to produce a mature protease and then
proceeds to cleave downstream nsps at 11 different sites of the pplab to release nsp4-nspl16
(Khan et al, 2020). The recognition sequence at most sites was found to be
Leu-Gln|(Ser/Ala/Gly) (| shows the cleavage site) (Goyal and Goyal, 2020). The MP™ is
vital to the life cycle of coronaviruses, as it directly mediates the maturation of the nsps
which is essential for viral replication (Khan et al, 2020). Proteolysis mediated by MP™ is

believed to involve proton abstraction at the cysteine side chain by the histidine's imidazole,



resulting in a thiolate nucleophile which in turn, attacks the amide bond of the substrate. The
N-terminal peptide product is released by proton abstraction from histidine before the release
of the C-terminal peptide product vza the hydrolysis of the thioester, and ultimately the dyad
is restored (Ullrich and Nitsche, 2020).

1.5 PROBLEM STATEMENT

Despite having zoonotic reservoirs, the virus has exponential transmission rates owing to its
efficient human-to-human transmission allowing the pulmonary disease to be widespread.
Similar to its predecessors, SARS-CoV and MERS-CoV, SARS-CoV-2 attacks the lower
respiratory system to cause viral pneumonia, but it may also affect the gastrointestinal system,
heart, kidney, liver, and central nervous system leading to multiple organ failure. These
conditions can be fatal, particularly in patients with underlying cardiovascular diseases.
Confirmed cases continue to rise rapidly around the world, despite the availability of vaccines.
As of February 2022, there are more than 10 billion doses of vaccines administered, yet,
transmissions continue to rise (WHO, 2022). Infections after vaccination also contribute to
these increasing COVID-19 cases due to the emergence of SARS-CoV-2 variants that evade
immunological defences. Indeed, the vaccines have been shown to mitigate the severe
morbidity associated with COVID-19 and lower the mortality rate, which in turn alleviate the
burden and strain on public health services. The emergence of new SARS-CoV-2 variants
(mediated by structural protein mutations, especially the spike protein), however, lower the
efficacy of these vaccines as indicated by increased virulence and advanced evasive
mechanisms against host immunological defence employed by these coronaviruses (Aleem et
al, 2021; Azgari et al, 2021; Chen et al, 2021). There are currently few drugs
(FDA-approved and promising candidates) that fight off SARS-CoV-2 infection and provide
therapeutic relief from COVID-19 illness. There are no vaccines that confer long-term
immunity and consistently elicit immunological protection against a broad range of
SARS-CoV-2 variants. Optimal pharmacological measures to control the spread and

SARS-CoV-2-related morbidity are yet to be discovered and developed.

Nevertheless, there has been an influx of biological data relating to SARS-CoV-2, as well as
the availability of biological data of closely related species, such as SARS-CoV and
MERS-CoV, in biological databases. These data contribute to the efforts to elucidate the
pathogenicity of SARS-CoV-2, as well as its biology. Despite this data and knowledge influx,
there is still a knowledge gap in terms of the proteolytic mechanism employed by the



SARS-CoV-2 MPre. Recent attempts in elucidating the proteolytic activity of SARS-CoV-2
Mpr with the intent to develop or suggest potential antiviral agents were comparative studies
based on genomic and structural conservation (Ullrich and Nitsche, 2020; Zhang et al., 2020),
while others utilised experimental approaches (Rut et al, 2020) and further groups utilised
different substrates as opposed to oligopeptide substrates conventionally used to study

substrate specificity and the proteolytic mechanism of the MP* (Swiderek and Moliner,

2020).

In the past, viral proteases have proven to be excellent drug targets that have led to the
development of effective drugs against chronic infections, like human immunodeficiency
virus (HIV) or hepatitis C virus (HCV), which employ aspartyl and serine proteases,
respectively (Ullrich and Nitsche, 2020). Due to its participation in cleaving
replication-essential enzymes, such as RNA-dependent RNA polymerase or nsp12, the MP™ is
thus placed in the viral replication cycle, an essential process for SARS-CoV-2 pathogenesis
(Ullrich and Nitsche, 2020). The RNA-dependent RNA polymerase cannot fully function
before its proteolytic release from pplab (Ullrich and Nitsche, 2020). The functional
importance of MP® makes it an attractive target for antiviral drug discovery against
SARS-CoV-2, as its inhibition could potentially hinder the viral replication cycle, and overall,
stall the production of infectious SARS-CoV-2 virions (Khan et al., 2020; Ullrich and Nitsche,
2020). In addition, the structural architecture of MP™ is highly conserved across various
coronaviruses, despite the extensive mutagenesis that coronaviruses are subject to (Goyal and
Goyal, 2020). Mutations in key proteins are frequently detrimental to viruses. Thus, the
development of MP™ inhibitors will create broad-spectrum antiviral therapeutic agents against
SARS-CoV-2 and other coronaviruses, while reducing the risk of mutation-mediated drug
resistance in future deadly viral strains (Khan ef a/., 2020; Goyal and Goyal, 2020). There are
no human proteases with an analogous substrate specificity to the protein and therefore, MP™
inhibitors are more likely to be harmless to the patients (Goyal and Goyal, 2020).
Furthermore, a study outlined the role of MP® in counteracting the host innate immune
response by acting on post-translational modifications of host proteins across various
coronaviruses (Lei et al., 2018), thus, MP™ inhibition is of vital importance in preventing
replication and proliferation of SARS-CoV-2 and ultimately, in the fight against COVID-19.
Understanding the functionality of SARS-CoV-2 MP™ will provide insight into the physiology
of the coronavirus and also provide a rational approach in the development of effective

antiviral chemotherapy against COVID-19.



1.7 AIM AND OBJECTIVES

The principal aim of the present study was to profile peptide substrate binding onto
SARS-CoV-2 MP® and explore the binding interactions in the protease-peptide complexes to
gain better insight into the underlying proteolytic mechanism using Bioinformatics

approaches.
The specific objectives for this study were to:

1) To generate a library of potential hexapeptide substrates and calculate protein-peptide
complexes using molecular docking, in the context that the conformational search space for a

hexapeptide will be large

2) To profile substrate binding, by assessing binding efficiencies of the substrate residues and

evaluating the binding modes

3) To assess the protein behaviour and stability in the complex systems using molecular

dynamics simulations



CHAPTER TWO

GENERATION OF THE VIRTUAL MULTI-CONFORMER
HEXAPEPTIDE LIBRARY

COVID-19 has been spreading devastation across the world through the disruption of social,
economic, and political stability. Having claimed more than 5 million lives since its
emergence in 2019, the disease has proven to be the deadliest in recent history and has
resulted in a pandemic of extraordinary proportions with a severe negative impact on public
health and the livelihood of people (WHO, 2022). The disease is caused by the infection of
the SARS-CoV-2 coronavirus, which manifests in deadly pneumonia-like symptoms. The
virus consists of a 30 kilo-base RNA genome that encodes about 9 860 amino acids that form
the composition of at least 27 proteins (Guo et al., 2020; Mousavizadeh and Ghasemi, 2020).
The ORF1la and ORF1b in the first two-thirds of the RNA genome encodes two polyproteins,
ppla and pplab, which are subsequently processed by the MP™ and a papain-like protease
into non-structural proteins (nsps) (Chen ef al,, 2020). The preferred recognition sequence for
Mprr was determined to be Leu-Gln| (Ser/Ala/Gly) (| shows the cleavage site) (Goyal and
Goyal, 2020). The Mr™ is vital to the life cycle of coronaviruses, as it directly mediates the
maturation of the nsps which is essential for viral replication and assembly (Khan et al,
2020; ). This chapter details the generation of the multi-conformer hexapeptide library based
on the reported substrate specificity of SARS-CoV-2 MP® according to the findings of Ullrich
and Nitsche (2020). High occurrence amino acids were used to generate the peptide
substrates. Each hexapeptide was constructed to contain the recognition sequence and the
cleavage site. Terminal capping was performed to increase structural stability in the

substrates.

2.1 INTRODUCTION

The investigation, discovery and testing of natural substrates are fundamental to the
biochemical characterisation of any protein. Natural substrates reveal the function of the

protein and show the overall biological importance and physiological relevance to cellular
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homeostasis (Venkatraman et al, 2009). In many instances, substrates and their products
provide better insight into the cellular pathways the protein catalyses, as well as cascades of
cellular processes that rely on the regulation of the protein (Grigalunas et al, 2020;
Venkatraman et al, 2009). In the context of proteases, substrate specificity which highly
relates to protease function is understood through the investigation of the peptide substrates
and the examination of their products. Substrate specificity underpins the elucidation of the
mechanism of proteolysis which instructs the assignment of the protease to site-specific
proteolysis (Qi ef al,, 2017). In turn, substrate specificity substantially aids in deciphering the
biological importance of the products to the physiology of the organism (Hara et al., 2017,
Johnson and Chen, 2017). Since proteases are often associated with the development and
progression of diseases, the knowledge of their substrates and cleavage preferences become
fundamental to the rational design of therapeutic molecules that modulate protease activity

(Uliana et al., 2021).

Generally, the use of substrate libraries has been crucial to the characterization and profiling
of substrate specificity, and this has provided information for the elucidation of protein
function and catalytic mechanisms (Boulware and Daugherty, 2006). Since the pioneering of
peptide synthesis, synthetic peptides have been used to create cleavage preference profiles for
specific proteases; these profiles help in identifying the preferred cleavage sites and in the
characterisation of their linear recognition sequence specificities. In addition, these shed light
on subsite preferences and also aid in revealing the underlying molecular modes of action
(Ivry et al., 2018; Biniossek ef al, 2016; Zhou et al., 2020; Vizovisek et al, 2018). These
profiles also allow the identification of the structural origins of protease specificity and
promiscuity (Biniossek ef al, 2016). As a result, several pharmacological successes have
been possible due to this elucidation of substrate specificity and the subsequent exploitation
of the promiscuity revealed by the substrate specificity profiles. Peptide substrates have
always served as a strong basis for rational drug design and drug discovery, and have led to

effective and efficient chemotherapies (Grigalunas et al., 2020; Ullrich and Nitsche, 2020).

2.2 RDKit

RDKit is a powerful open-source software suite for cheminformatics, computational
chemistry, and predictive modelling. The software toolkit was developed to support the
construction of predictive models for ADMET (absorption, distribution, metabolism,

elimination and toxicity) and biological activity. RDKit supports various queries of
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computer-aided studies and machine learning like substructure searching, canonical
Simplified Molecular Input Line Entry System (SMILES), chirality support, chemical
transformations, chemical reactions, and even molecular serialization (Landrum, 2013a). The
general implementation of RDKit in computational modelling involves the use of SMILES
arbitrary target specification (SMARTS) and/or SMILES as inputs which generate models as
output that can be stored in MDL Molfile (mol), Standard Database Format (SDF), and
THOR Data Tree (TDT) files (Landrum, 2013a).

RDKit supports the construction of 2D and 3D molecular structures. It is very powerful at 2D
depiction of structures and also accommodates constrained depiction and mimicry of 3D
coordinates. Moreover, the toolkit accommodates the conversion of 2D molecules to 3D,
together with the conformational analysis via distance geometry that accompanies the process.
RDKit uses the Universal Force Field (UFF) implementation to clean up structures and
optimise geometries and conformations (Landrum, 2013a; Landrum, 2013b). Other
implementations within RDKit include Fingerprinting (Daylight-like, circular, atom pairs,
topological torsions, “MACCS keys”, etc.); similarity/diversity picking (include fuzzy
similarity); 2-D pharmacophores; Gasteiger-Marsili charges; hierarchical subgraph/fragment

analysis and Hierarchical RECAP implementation (Landrum, 2013a).

2.3 SMILES

SMILES is a linear notation language for entering and representing chemical structures and
reactions (Daylight, 2019a; Gasteiger et al., 2018). The SMILES language is a typographical
method that represents molecular structure by a linear string of symbols (i.e. printable
characters), like natural language (Weininger, 1988; Daylight, 2019a). SMILES notation is an
efficient alternative to conventional conversion tables as it requires less storage space (50% to
70% less space) and it is a linguistic construct that can be integrated into other languages
designed for the storage of chemical information and chemical intelligence (Daylight, 2019a).
SMILES denotes a molecular structure as a graph with optional chiral indications detailing
the description of a molecule in the manner in which they are drawn by chemists (Weininger,
1988; Daylight, 2019a). SMILES provides a platform for the accurate and unique
specification of molecules which can be used with chemical databases due to storage

efficiency (Weininger, 1988; Daylight, 2019a).
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2.4 SMARTS

SMARTS is a substructure identification language that allows one to specify substructures
using rules that are compatible with SMILES (Gasteiger ef al, 2018; Daylight, 2019b).
SMARTS specifies substructures using the same linear strings used to specify chemical
structures in SMILES. However, the specification in SMARTS extends to include logical
operators and special atomic and bond symbols which allows for the SMARTS atoms and
bonds to be more general (Daylight, 2019b). The difference in semantics between SMILES
and SMARTS expressions allude to the interpretation of the specific expression. The
SMILES string is interpreted as a molecule and the resultant molecule is what is subject to
substructure searching. Alternatively, the SMARTS string is interpreted as a pattern (which
denotes a substructure) and matched against a molecule (Daylight, 2019b). Both SMILES and
SMARTS provide a fast and efficient way to store and query chemical structures (Gasteiger

et al., 2018).

2.5 METHODOLOGY

As there were no available oligopeptide libraries with peptide chains demonstrating the
recognition sequence required by SARS-CoV-2 MP® for proteolytic cleavage, a peptide
library was generated using RDKit (v. 2019.09.1), powered by Python on a server (Landrum,
2013). With the findings of Ullrich and Nitsche (2020), hexapeptides were generated using
the MolFromSequence method. The selection of the constituent amino acids was based on

their high occurrence frequency in the recognition sequence and cleavage site.

Acetyl and methylamine constructs were generated to constitute terminal caps using
MolFromSMILES functionality. SMARTS patterns were utilised to identify the alpha carbon
atoms (a-carbons) of terminal amino acids. The C- and N- terminal a-carbons were replaced
with acetyl (ACE) and methylamine (NME) constructs to perform terminal capping (Penkler
et al., 2017). Subsequently, hydrogen atoms were removed and added back to ensure that the
valency of each atom was satisfied. The 3D coordinates of the atoms were generated using
the EmbedMolecule method. The molecules were optimised using the implemented
UFFOptimizeMolecule. A structural conformational search was performed to generate

conformers. The resulting conformers were stored in an SDF file.

2.6 RESULTS AND DISCUSSION

The generation of the peptide library was based on the findings of Ullrich and Nitsche (2020).
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Their study sought to elucidate the substrate specificity of the SARS-CoV-2 MP®. Their
approach was to analyse the polyprotein la/b sequence to identify the MP™ recognition
sequence or cleavage sites, provided that the P2 to P1’ residues of these sites display the
highest degree of conservation in closely related SARS-CoV and MERS-CoV viruses
(Ullrich and Nitsche, 2020). Their approach was motivated by the evident high conservation
of the RNA genomes across SARS-CoV-2, SARS-CoV and MERS-CoV, together with the
high degree of structural similarity and conservation of the active site which they observed in
superimposed main protease structures belonging to SARS-CoV-2, SARS-CoV and
MERS-CoV (Goyal and Goyal, 2020; Liu et al., 2020; Zhang et al., 2020; Ullrich and Nitsche,
2020). In addition, these conserved P2 to P1’ residues are crucial in determining substrate
specificity and they follow a similar pattern across the coronavirus species (figure 2.1). The
P2 position tolerates small hydrophobic amino acids with a clear preference for leucine
(figure 2.1; Ullrich and Nitsche, 2020). The P1 position is always occupied by the highly
conserved Glutamine (GLN) which is present in all polyprotein cleavage sites of
SARS-CoV-2, SARS-CoV and MERS-CoV (figure 2.1; Ullrich and Nitsche, 2020). The P1’
position tolerates small amino acids such as serine or alanine (figure 2.1; Ullrich and Nitsche,

2020).
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Figure 2.1. Polyprotein cleavage sites recognised by MP® of SARS-CoV-2, SARS-CoV and MERS-CoV.
Peptide sequences cover residues P5 to P5’ according to the nomenclature of Schechter and Berger (1967). 81
Data were generated from pplab polyprotein sequences reported in the UniProt database with the accession
codes PODTDI1 (SARS-CoV-2), POC6X7 (SARS-CoV) and KIN7C7 (MERS-CoV). The consensus sequence
covering all cleavage sites was plotted using WebLogo. Adapted with permission from Ullrich and Nitsche
(2020).

The generation of the peptide library was carried out using RDKit and Python scripting
(Landrum, 2013). The initial plan was to generate a peptide library of octapeptide substrates
utilising all the amino acids that occur in P4 to P4'. The resultant library consisted of 102 060
octapeptides. Due to time and computational (limited access to the large queue at the
supercomputer) constraints, hexapeptides (P3 to P3’) were prioritised and most importantly,
the focus was placed on amino acids that displayed high frequencies of occurrence in their
respective position of the cleavage site. The selection of the constituent amino acids was
based on their high occurrence frequency in the recognition sequence and cleavage site. In
essence, each hexapeptide (P3-P3’) consisted of the both the recognition sequences (P2-P1’)
and the cleavage site (P1-P1’), equally divided in the C- and N- terminal products of the
substrates (***). Despite this reduction of amino acids in the peptide substrates, variability in

chemical properties was maintained in P3, P2’ and P3’ (table 2.1; Crooks ef al., 2004).
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Table 2.1: The amino acid residues in the polyprotein cleavage sites recognised by SARS-CoV-2 MPused in the
construction of hexapeptides.

Residue position Amino acids
P3 ; Arg; Lys; Val; Met
P2 Leu
P1 Gln
P1’ ; Ala
P2’ Ala; ; Glu; Thr; Leu; Asn; Ser; Val
P3’ Glu; Asn; Ala; Asp; Phe; ; Met; Gln; Val

Green: Polar; Blue: Basic; Red: Acidic; Black: Hydrophobic; Purple: Neutral

Python scripting through nested loops was employed to generate the different hexapeptides;
each consisting of unique amino acid combinations of the cleavage site. A total of 810 capped
hexapeptides were generated and each hexapeptide consisted of 100 different structural
conformations. The purpose of the structural conformational search was to create a
multi-conformer library. In ligand-based drug design, multi-conformer libraries are essential
for predicting the bioactive conformations of ligands in the absence of the structural model of
the receptor, especially for ligands with rotatable bonds (Yongye et al., 2010). In this study,
the variation in conformation was intended to supplement the conformation generation within

molecular docking procedures.
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Figure 2.2. The terminal capping of the hexapeptides. The 3D structure of the Lys-Leu-Gln-Ala-Ala-Ala
(KLQAAA) substrate capped with acetyl (ACE) and methylamine (NME) in the C- and N-termini, respectively.
A) shows the stick representation of the capped hexapeptide presented in its atomic composition, where green
represents carbons; red represents oxygens; blue represents nitrogens and grey represents hydrogens. B) shows
the cartoon representation of the substrate backbone. C) shows the typical, colour-coded amino acid composition
of a hexapeptide showing the residues and caps in different colours. D) shows a cartoon representation of a
typical, colour-coded amino acid composition of a hexapeptide showing the residues and caps in different
colours. The image was generated using PyMOL.

Terminal capping using acetyl and methylamine groups can increase the peptide stability
towards its protease, which in turn can improve their affinity for specific biological targets
(figure 2.2; Fang et al,, 2011). According to Penkler ef al. (2017), the use of ACE and NME
for capping peptide chains allow the structures to simulate being part of a protein. To perform
the terminal capping shown in Figure 2.3, the SMARTS strings '[$(OC(=0O)CN)]'" and
S(NCC(=0))]" were applied to each hexapeptide to search and identify the C- and
N-terminal a-carbons. Once identified, these a-carbons were replaced with the a-carbons
consisting of the ACE and NME constructs for the C- and N-termini, respectively (figure
2.3B & D). This was all automated using python scripts which are listed in Appendix A.

Figure 2.2 shows the successful implementation of terminal capping. Although the structures

of terminal residues were modified during capping, amino acid compositions were restored
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and conventional peptide representations (such as the 3D structure) were conserved, as
indicated by the cartoon representation in figures 2.2B and 2.2D. In this context, terminal
capping was carried out to safeguard the stability of the hexapeptides and prevent helical ends
from fraying during the dynamic simulation studies (Zuo et al, 2012; Zuo et al, 2014).
Furthermore, capped termini prevent the misfolding of the protein and peptide chains -
serving as a protective group, and this avoids the disruption of the molecular structure in

receptor targets (Andreasen et al., 2014; Hernik-Magon et al., 2017; Lee et al., 2007).

2.5 CHAPTER SUMMARY
In this chapter, the objective to generate suitable peptide substrates for SARS-CoV-2 MP™ was

fulfilled. A multi-conformer hexapeptide library was generated based on the SARS-CoV-2
MPr substrate specificity and recognition informed by the work of Ullrich and Nitsche (2020).
The hexapeptides consisted of the recognition sequence and cleavage site for SARS-CoV-2
MpP. Only amino acids displaying high occurrence frequencies in their respective positions
were prioritised. A total of 810 unique hexapeptides were generated, each with 100
conformers using Python and SMILES in RDKit (a total of 81 000 conformers). The
constituent residues were equally divided between the C and N-terminal products (P3-P3’).
The C- and N- terminal a-carbons were replaced with ACE and NME constructs to constitute
terminal capping using SMARTS. Terminal capping was performed to increase the stability
of the substrates in dynamic environments. The hexapeptide conformers were stored in SDF

files and used in molecular docking studies detailed in the next chapter.
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CHAPTER THREE

MOLECULAR DOCKING OF MULTI-CONFORMER
HEXAPEPTIDE LIBRARY

The SARS-CoV-2 MP™ is essential to the life cycle of the coronavirus, as it directly mediates
the maturation of the non-structural proteins (nsps) which are essential for viral replication
and assembly (Khan er al, 2020). The MP® plays a key role in the processing of the
polyprotein to form mature nsps. The MP™ is first autocleaved from pplab (nsp5) to produce
mature protease, and then proceeds to cleave downstream nsps at 11 different sites of the
pplab to release nsp4-nspl6 (Khan ef al, 2020). The recognition sequence at most sites was
determined to be Leu-Gln|(Ser/Ala/Gly) (| shows the cleavage site) (Goyal and Goyal,
2020). This chapter details the profiling of substrate binding of the hexapeptides (from the
multi-conformer peptide library) onto MP™ via molecular docking. A suitable MP® crystal
structure was selected and prepared for molecular docking alongside the conformers of the
substrates. Substrate binding was characterized through docking results and the calculation of
ligand efficiencies. Substrate recognition and specificity were profiled via subsite mapping of
the protease-peptide interface, and through the assessment of ligand-receptor molecular

interactions at the active site of complexed structures.

3.1 INTRODUCTION

The biological significance of protein function and regulation is realized when the protein
makes direct physical interaction with other molecules (Du ef al, 2016). These direct
interactions occur as a result of molecular recognition, where the protein interacts with
binding partners through non-covalent interactions to form specific complexes (Du et al,
2016). Molecular recognition is mainly characterized by specificity and affinity.
Protein-ligand binding has been a topic of study for many years and is certainly an imperative

step for drug discovery. To gain better insight into protein function, thorough elucidation of
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the mechanisms governing protein-ligand interactions is required, together with the full
description, characterization and quantification of the energetics that facilitates the formation
of complexes. Consequently, this in-depth understanding of the physicochemical mechanisms
of protein-ligand binding, and analysis of structural data optimizes rational drug design and
facilitates the discovery, design and development of new drugs based on the detailed
information about molecular recognition and interaction (Du ef al., 2016).

To date, three main models explain the mechanisms of protein-ligand binding. These include
the "lock-and-key", "induced fit" and "conformational selection" models. Fisher proposed the
"lock-and-key" model in 1894, which depicts the ligand and protein/enzyme as rigid
structures wherein their binding interfaces perfectly complement one another. While the
model explains the substrate specificity that proteins exhibit, and also emphasizes the
importance of shape complementarity between the two structures, it does not account for the
structural differences the protein and ligands exhibit in unbound and bound states (Tobi and
Bahar, 2005; Du et al., 2016). This has led to the “induced fit” model proposed by Koshland
in 1958, to account for this type of plasticity of proteins (Tobi and Bahar, 2005). The model
explains that an interacting ligand induces a conformational change in the flexible binding
site of the protein and thus, mediates protein-ligand binding and interaction (Du et al., 2016).
This model takes into account the flexibility of the ligand-binding site, and also explains the
substrate recognition that proteins exhibit (Tobi and Bahar, 2005; Du et al., 2016). However,
the "induced fit" model is seemingly suitable for proteins that show minor conformational
changes after the ligand binding. Furthermore, both models depict a protein as a single, stable
conformation under given conditions (Du et al, 2016). The "conformational selection" model
later emerged to take into account this inherent flexibility of proteins. The "conformational
selection" model postulates the native state of a protein exists as a vast ensemble of closely
related conformational states or substates. These substates coexist in equilibrium, and the
ligand only binds selectively to the most suitable substate, thus shifting the equilibrium
towards this substate and consequently towards the formation of a complex. This suggests
that the unbound protein can sample with a certain probability the same conformation as that

of the ligand-bound state (Tobi and Bahar, 2005; Du et al., 2016)

3.2 MOLECULAR DOCKING

3.2.1 COMPUTER-AIDED DRUG DISCOVERY/DESIGN

Advancements in computer hardware, software, and algorithms have led to the optimization
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of the drug discovery process, where computation rather than experimentation reduces time
and costs (Lin et al, 2020). Over the past three decades, the implementation of
computer-aided discovery/design (CADD) methods in drug discovery has helped accelerate
the process and contributed to many breakthroughs in the development and rapid availability
of novel therapeutic agents. CADD methods largely contribute to the optimization of virtual
screening techniques, which then allow rapid hit identification, lead optimization and rational
drug design. Moreover, CADD methods are classified as either ligand-based or
structure-based methods (Sliwoski ef al, 2014). Ligand-based methods heavily rely on the
knowledge of elucidated ligands of the target protein. In principle, the structure-based
methods are analogous to high-throughput screening wherein accurate information about
target and ligand structures is imperative. Structure-based approaches must be performed
with available structural models of the target proteins, which are obtained either by X-ray
diffraction, nuclear magnetic resonance (NMR) or molecular simulation (homology
modelling) (Sliwoski ef al, 2014; Lin et al, 2020). Virtual screening techniques aim to
identify novel active small molecules from a large compound library that bind favourably to
the target protein. Readily used tools for virtual screening techniques include molecular
docking, pharmacophore modelling and Quantitative Structure-Activity Relationship (QSAR)
(Sliwoski et al., 2014; Lin ef al., 2020)

3.2.2 VIRTUAL SCREENING - MOLECULAR DOCKING

Molecular docking is a powerful screening technique that predicts the interaction patterns
between proteins and their ligands, by modelling virtually a complex structure of the binding
partners (Pantsar and Poso, 2018; Lin et al, 2020). The theoretical basis for molecular
docking is the “induced fit” model, in which ligand and receptor recognition depends on
spatial shape complementarity and energy matching (Lin et al, 2020). In structure-based
docking, a small ligand molecule is aligned inside the binding cavity of the target protein
with the intent to find the most favourable conformation or pose for complex formation. The
docking process typically involves two independent stages which are: conformation

generation; and the scoring of the resulting conformations (Pantsar and Poso, 2018).

3.2.3 CONFORMATIONAL SAMPLING AND DOCKING SIMULATION

The available conformations to both receptor and ligand present the sampling engine with a
huge challenge of finding all optimal receptor-ligand conformations during docking (Klebe,

2006; Guedes et al, 2014). Both structures are often flexible and dynamic in nature and

28



possess numerous translational and rotational positions in a 3D space. Therefore, an
exhaustive conformational search on both the receptor and the ligand proves to be difficult,
especially for large protein structures. Widely used conformational sampling algorithms
overcome the computational cost of this process by limiting some flexibility in the structures,
most often this is for the receptor (Leach et al, 2006; Meng et al., 2011; Pantsar and Poso,
2018; Salmaso and Moro, 2018). Rigid docking algorithms, much like the "lock-and-key"
model, consider the receptor and ligands as rigid structures and only consider three
translational and three rotational degrees of freedom during sampling. Semi-flexible
algorithms treat ligands as flexible structures with rigid receptors and sample the
conformational freedom of the ligands alongside the six translational and rotational ones.
Flexible docking algorithms consider the ligand and receptor as flexible binding counterparts.
Consequently, these algorithms present a great number of degrees of freedom to search, and
as such computational resources are often augmented to optimise sampling and scoring to
attain a balance between accuracy and speed (Salmaso and Moro, 2018).

In the context of semi-flexible docking, the selection of the docking algorithms, together with
the setting of the search strategy and an appropriate level of conformational sampling, are
crucial steps to a successful simulation of docking. Scoring functions assess performance
which is affected by the conformational search and ligand placement. Search strategies may
be systematic or random. Systematic searches incorporate a comprehensive sampling of the
conformations and structural properties and thus, use significantly more time and resources to
generate the poses and evaluate them individually (Prieto-Martinez ef al, 2018). As such, a
systematic search is performed by constructing the ligand from different fragments, wherein
one fragment serves as an anchor whilst the remaining fragments are sequentially added to
avoid the generation of a combinatorial explosion (Prieto-Martinez ef al., 2018). Alternatively,
a stochastic search is performed randomly using the Monte Carlo (MC), Tabu search, Swarm
optimization (SO) or genetic algorithm (GA) methods. Each method develops different
conformers based on bond rotations as degrees of freedom and these conformers are then
evaluated by a scoring function for pose selection and filtering (Prieto-Martinez et al., 2018;
Salmaso and Moro, 2018). A stochastic search searches a broader range of conformations in a
given timeframe, and this may be advantageous in terms of rapidly finding feasible solutions.
However, the technique does not ensure the full search of the conformational space, meaning
the true solution may be missed. Increasing the number of iterations of the algorithm thus

mitigates this lack of convergence (Salmaso and Moro, 2018).
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3.2.4 ENERGY SCORING FUNCTIONS

Docking simulations and conformational sampling may produce a great number of solutions.
Energy scoring functions then evaluate the generated conformers of the ligands, separating
the biologically relevant poses from the incorrect and inactive poses (Meng et al, 2011;
Prieto-Martinez et al., 2018). Scoring functions are fast, approximate mathematical methods
used to assess the binding affinity between the binding partners after docking. Notably,
scoring functions can be used within the search algorithm to accelerate the process of pose
prediction (Du er al, 2016). The favourable solutions are distinguished through the
evaluation of a broad range of properties such as intermolecular interactions, desolvation,
electrostatic, and entropic effects (Prieto-Martinez ef al, 2018). The scoring functions then
estimate the binding affinity between the ligand and receptor by adopting various
assumptions and simplifications (Meng ef a/, 2011). Scoring functions can be categorised as
force-field-based, empirically-based or knowledge-based.

Force-field-based scoring functions estimate the energy of a system with regards to bonded
(intramolecular) and non-bonded (intermolecular) components (Meng et al, 2011; Salmaso
and Moro, 2018). Binding affinity is assessed by calculating the sum of non-bonded
interactions using a function that also accounts for bonded interactions (Meng et al, 2011;
Prieto-Martinez et al, 2018). Intermolecular interactions include van der Waals and the
electrostatic potential, which are described by the Lennard-Jones potential and the Coulomb
function, respectively. Consequently, this means that the entropic contribution of solvation is
not accounted for. Thus, a distance-dependent dielectric may be introduced to mimic the
solvent effect (Salmaso and Moro, 2018). Moreover, force-field-based scoring functions have
a slow computational speed and require cut-off distances to be introduced to handle
intermolecular interactions. This reduces the accuracy of long-range effects involved in
binding (Meng ef al., 2011).

Empirical scoring functions estimate the binding energy as a sum of several energy
components such as hydrogen bonding, ionic interactions, hydrophobic effects and binding
entropy. These empirical energy components are weighted by coefficients optimised from
regression analysis fitted to a test set of ligand-protein complexes with known binding
affinities (Du ef al, 2016; Salmaso and Moro, 2018; Meng et al., 2011).

Knowledge-based scoring functions assume that more favourable interactions towards
binding affinity have greater frequencies of occurrences between the binding partners. Thus,

the functions use statistical analysis of ligand-protein complexes from a database of crystal
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structures to obtain the interatomic contact frequencies and/or distances between the ligand
and protein. The frequencies are computed and converted into an energy component. The
score for a pose is calculated by summing up the tabulated energy components for all
ligand-protein atom pairs (Salmaso and Moro, 2018; Meng et al, 2011). A significant
advantage of knowledge-based functions is computational simplicity that establishes a
balance between performance and accuracy. Moreover, these functions also consider
uncommon interactions like sulfur-aromatic or cation-m interactions (Meng et al, 2011,

Prieto-Martinez et al., 2018).

3.3 AUTODOCK VINA

AutoDock Vina is a powerful open-source computational program for molecular docking and
virtual screening (Trott and Olson, 2010). It borrows ideas and approaches from AutoDock 4
but is conceptually designed differently. The program is up to two orders of magnitude faster
than AutoDock4 and features significant improvements such as an efficient optimization
algorithm and a scoring-function-based search algorithm for estimating binding affinity and
predicting reasonable poses, respectively (Jaghoori ef al., 2016; Vieira and Sousa, 2019).
AutoDock Vina uses the MC/BFGS search algorithm which comprises a Monte-Carlo (MC)
iterated search partnered with the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
gradient-based optimizer. The MC search serves as a tool for stochastic global optimization,
while the BFGS method is used for deterministic local optimization. The BFGS method is an
efficient quasi-Newton method that takes the value and the derivatives (gradient) of the
scoring function with respect to all the design variables, such as the position and orientation
of the ligand, together with the values of the torsions for the active rotatable bonds in the
ligand and flexible residues. After several iterations, the BFGS will converge to a point where
the gradients vanish in all directions, within a negligibly small tolerance. This point of
convergence marks the local minimum and is where the local search optimization is
terminated. This powerful MC/BFGS algorithm infers search efficiency that leads to better
docking results with fewer scoring function evaluations (Trott and Olson, 2010; Eberhardt et
al., 2021; Handoko et al., 2012).
AutoDock Vina implements a hybrid scoring function that combines the empirical and
knowledge-based functions. The scoring function is based on the pairwise interactions
between atoms. These interactions are defined by five terms based on the surface distance
between the atoms (Tanchuk et al,, 2016). The five terms that define interaction include a van

der Waals-like potential (defined by a combination of a repulsion term and two attractive
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Gaussians), a non-directional hydrogen-bond term, a hydrophobic term, and a conformational
entropy penalty. Interestingly, AutoDock Vina lacks electrostatics and solvation which
AutoDock 4 has. The binding energy is predicted as the sum of distance-dependent atom pair
interactions (Quiroga and Villarreal, 2016; Eberhardt ef al., 2021).

The appeal of AutoDock Vina over other docking programs is its multi-core capability, high
performance and enhanced accuracy, ease of use and free availability. The multi-core
capability and high performance contribute to the characteristic fast speed of AutoDock Vina
and make it a proficient choice for virtual screening (Vieira and Sousa, 2019). Moreover,
calculations can be performed simultaneously in parallel over multiple Central Processing
Unit (CPU) cores using multithreading. Additional features like exhaustiveness also
contribute to the enhanced accuracy of AutoDock Vina in terms of the prediction of plausible
poses. During a docking simulation, the program may repeat the conformational sampling
several times with different randomizations. The exhaustiveness controls the number of times
the conformational sampling can be repeated within the same randomization seed. Essentially,
higher exhaustiveness exponentially raises the probability of finding a correct solution as
more runs are performed, with the only drawback of increased computation time (Jaghoori et

al., 2016).

3.4 LIGAND EFFICIENCY

Ligand efficiency (LE) is defined as the binding energy per heavy atom (Hopkins ef a/., 2004).
LE was first proposed as a useful metric for the selection and optimization of favourable
fragments, hits and leads with optimal physicochemical and pharmacological properties in
drug discovery (Hopkins ef al, 2004; Abad-Zapatero and Metz, 2005; Orita et al, 2011).
Orita et al. (2011) reported that LE is useful in assessing the quality of hit compounds, as the
metric represents a balance between potency and molecular weight, which relate to ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) parameters. In simple terms,
LE is the measurement of the goodness of interaction between a compound and its target
protein (Orita et al, 2011). Additionally, fragments, hits and leads with favourable LE values
indicate a greater potential improvement in binding affinity in the process of structure-guided
drug design (Chen et al., 2017).

The application and scope of LE have since evolved in drug discovery to incorporate other
properties of ligands that closely relate to ADMET parameters, such as lipophilicity,

molecular mass, polar surface area, combinations of physicochemical properties, and
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functional group contributions (Hopkins ef al., 2014). As a result, modified LE metrics have
been proposed to undertake the extension of LE. These modified metrics include percentage
efficiency index (PEI) and binding efficiency index (BEI) (which use molecular weight);
ligand-lipophilicity efficiency (LLE) and logP/ligand efficiency (LELP) (which incorporate
lipophilicity); and the surface-binding efficiency index (SEI) (which is based on PSA) (Orita
et al., 2011). With these extensions, LE and its modified metrics have provided practical
means to estimate target druggability and to control the balance of molecular size and potency.
This significantly improves the success rates of lead optimization and drug design (Hopkins

et al, 2014; Chen et al., 2017).

3.5 METHODOLOGY

3.5.1 RECEPTOR PREPARATION

The crystallographic 3D structure of the SARS-CoV-2 MP® was retrieved from the RCSB
Protein Data Bank (PDB) (PDB id: 6XHM) with a resolution of 1.41 A. The crystallographic
waters were removed. The receptor consisted of three rotamers which were separated using a
python script (prepare pdb split alt confts.py) provided by AutoDock tools (Morris et al.,
2009). The first rotamer was used (conf A), and this was initially prepared by adding polar
hydrogen atoms and merging all other hydrogen atoms. Thereafter, the Gasteiger charges
were calculated, and atom types were assigned. In addition, non-standard residues were
deleted from the receptor. The receptor preparation was performed using a python script
(prepare_receptor4.py) provided by AutoDock tools and the rigid molecule output was saved
in an AutoDock Protein Data Bank, Partial Charge (Q), & Atom Type (T) (PDBQT) file

format.

3.5.2 LIGAND PREPARATION

The SDF files of the hexapeptides were converted into XMOL molecule model (XYZ) files
using OpenBabel (O'Boyle et al, 2011). The conversion resulted in the separation of the
conformers into individual XYZ files presenting one conformation of the respective
hexapeptide. The conformers were subjected to geometry optimization employing a
Semi-empirical Quantum Mechanical Method (XTB Semi-empirical method) using xtb
software (Werner Reckien, 2017). The optimised structures were converted into PDB files
using OpenBabel and subsequently prepared by adding polar hydrogen atoms and merging all

hydrogen atoms. The Gasteiger charges were calculated, and atom types were assigned using
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an AutoDock tools python script (prepare ligand4.py). The output was saved in PDBQT files.
The ligand preparation process was automated through the use of a python script (that called
these tools where appropriate) executed in a Linux-based high-performance cluster

(Appendices B-D).

3.5.3 MOLECULAR DOCKING

Molecular docking was undertaken using AutoDock Vina (Trott and Olson, 2010). As there
were no co-crystallized ligands in the binding pocket, the grid parameters were determined
using AutoDock Tools. The AutoGrid setup in the Autodock Tools graphic user interface was
used to determine the grid parameters for each chain of the receptor with respect to the
positions of the catalytic dyad and other key substrate-binding residues (Goyal and Goyal,
2020). For chain A, the grid centre was set at 12.059, 8.933 and 29.021 in the x, y and z
directions, whereas the grid centre for chain B was set at -18.444, -16.361 and 7.944 in the x,
y and z directions, respectively. The grid box size was set at 20, 20 and 20 A in the x, y and z
directions. A Vina configuration file was created for each ligand and the receptor protein,
wherein the energy range and exhaustiveness were set at 4 and 480, respectively. The cubic
box size values and the coordinates of the central atom of the grid centre were specified in the
configuration file (Appendix F). Each docking process was performed using 24 CPU cores.
The docking simulations were performed in parallel on a high-performance cluster to
compensate for the high computational costs and to speed up computations (Appendices G-I).
The generation of the Vina configuration files was automated through the use of a python

script (Appendix E).
3.5.4 MOLECULAR DOCKING ANALYSIS

Docking analysis was automated with the use of customised python scripts (Appendices J &
K). The best conformational poses from output docking files were extracted based on low
binding energies. The conformational poses were extracted alongside corresponding free
energy of binding from log files. In each substrate, the pose with the lowest free energy of
binding was used for the construction of peptide-enzyme complexes. Prior to the construction
of peptide-enzyme complexes, the structures of the best poses (pdbqt) were converted into
PDB format using a customised Perl script (Appendix M). Initially, the amino acid
information was lost and all hexapeptide constituents were then labelled "LIG" in the process

of terminal capping. The Perl script was thus used to restore the amino acid information.
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Docking validation was assessed through the reproducibility of high-affinity binding poses
across redocking of different conformers of the same substrate. High-affinity binding poses
were superimposed to visually assess the reproducibility of the docking results. Molecular
interactions at active sites were resolved using Biovia Discovery Studio 2020 Client.
Adherence of docked substrates to binding subsites was visualised using PyMOL (DeLano
2002).

3.5.5 LIGAND EFFICIENCIES

The free energies of binding of best binding poses were exported onto a spreadsheet and
sorted according to amino acid composition. The generic ligand efficiencies were determined
using the equation:
H(AG)
F= ——

N
Equation 3.1: Ligand efficiency (Hopkins ef al., 2004).

where AG is the free energy of binding and N is the number of heavy atoms (non-hydrogen
atoms) (Hopkins ef al, 2004). Additionally, other metrics of ligand efficiencies were
determined namely binding efficiency index (BEI) and surface-binding efficiency index (SEI).
BEI was calculated using the equation:

—u(AG)

MW
Equation 3.2: Binding Efficiency Index. Modified from Abad-Zapatero and Metz (2005).

BEI =

where f(AG) is the mean free energy of binding (the vina score was used for this value) and
MW is molecular weight in kDa. SEI was calculated using the equation:
—H(AG)
(PSA/100 A)
Equation 3.3: Surface-binding Efficiency Index. Modified from Abad-Zapatero and Metz (2005).

SEl =

where AG is the free energy of binding and PSA is the polar surface area (Abad-Zapatero and
Metz, 2005). PSA values were calculated using OpenBabel (O'Boyle et al, 2011). All ligand

efficiency calculations were performed on WPS Spreadsheets 2019.
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3.6 RESULTS AND DISCUSSION

3.6.1 RECEPTOR RETRIEVAL

The purpose of the molecular docking studies was to construct quality 3D peptide-enzyme
structures that best represent the SARS-CoV-2 MP™ complexed with its natural substrates.
The identification and selection of a quality protein receptor were fundamental to the success
of the docking studies. The crystallographic 3D structure of the SARS-CoV-2 MP® was
retrieved from the RCSB Protein Data Bank (PDB) under the PDB ID of 6XHM (Rose et al/.,
2012). This crystal structure was resolved using X-ray Diffraction, with crystallization
following an Escherichia coli expression system. The crystal structure had a resolution of
1.41 A, and R-Value Free and R-Value Work values of 0.210 and 0.191, respectively. The

observed R-Value was 0.192. There were no mutations or missing residues.

3.6.2 PRELIMINARY DOCKING STUDIES

The homodimeric MP™ demonstrates proteolytic activity in both monomers. This makes both
monomers attractive targets in studies of protease characterisation and antiviral inhibition.
The dimerization of MP™ is critical to the biological function of the protein, since the
individual monomers do not exhibit enzymatic activity (Goyal and Goyal, 2020). Preliminary
docking studies were carried out to identify the monomer with better substrate binding. The
conformers of the randomly selected substrate, Arg-Leu-Gln-Ala-Ala-Asn (RLQAAN), were

docked on both chains (figure 3.1), using the grid specifications mentioned in section 3.5.3.
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Figure 3.1. The identification of better binding monomer of SARS-CoV-2 MP®, The SARS-CoV-2 MP* (PDB
ID:6XHM) was docked with conformers of randomly selected RLQAAN on both chains. Green chain represents
chain A. Orange chain represents chain B. Catalytic residues are represented as spheres. Yellow spheres
represent Cys145. Blue spheres represent His41. RLQAAN conformers are represented as sticks. The image was
generated using PyYMOL (DeLano 2002).

The docking results showed that chain B was producing much better results in terms of the
lowest free energies of binding (supplementary figure 3.1, supplementary table 3.1). Chain B
attained binding energies as low as -8.7 kcal.mol!. whereas chain A attained the lowest
binding energy of -8.5 kcal.mol!. Moreover, more best poses were attaining binding

affinities lower than -8.0 kcal.mol™" in chain B than in chain A (supplementary figure 3.1).

Hence, chain B was prioritised and used for the docking studies and subsequent calculations.

3.6.3 FREE ENERGIES OF BINDING

The assessment of the docking results is crucial in the evaluation of the overall performance
of ligands at the active site. Docking analysis provides insight on the affinity of binding of a
ligand, which in turn informs of its stability at the site of binding. The docking studies were
carried out on a high-performance cluster given the computational cost of docking each

substrate. Not all conformers were docked due to the extensive computational time required

37



for docking such systems with many degrees of conformational freedom. However, for each
substrate at least ten conformations were redocked with exhaustiveness 480. Nevertheless,
the docking results were arguably good; displaying high-affinity binding of the substrates
onto the active site of the SARS-CoV-2 MP®. The best binding poses registered affinities
ranging between -8.7 and -7.0 kcal.mol™! across all substrates (supplementary table 3.1).
Substrates RLQATF, RLQSGA and RLQSTF were the only binding poses that reached
binding energies of -8.7 kcal.mol™'; for these systems this involved docking of 24, 100 and 14
conformers, respectively. Successively, substrates RLQAAF, RLQAAN, RLQAGA,
RLQALG, RLQAVN, TLQAGF, TLQAVA, VLQAAF and VLQAVF were the only binding
poses that reached binding energies of -8.6 kcal.mol™; this involved the docking of 35,
100, 10, 40, 35, 35, 10, 35 and 40 conformers, respectively. These substrates represented the
high-affinity binding poses of the resulting docking. Conversely, the binding pose of
KLQSKM was the only substrate to only reach a binding energy of -7.0 kcal.mol™!; this even
after having redocked 10 conformers. The binding poses of substrates KLQAEM and
TLQSLM registered binding energies of -7.1 kcal.mol™!, followed by the binding poses of
KLQSEM, KLQSKD, MLQAKM, MLQSKM and VLQAKD which registered binding
energies of -7.2 kcal.mol™!. The number of conformers redocked for these substrates was 10,
10, 24, 14, 24, 14 and 10 (supplementary table 3.1). These binding poses represented the
lowest-affinity binding in the full set of docking experiments. The docking results are
summarised in supplementary table 3.1; detailing the number of conformers redocked per
substrate, alongside the best binding conformer and its respective binding energy.

Overall, there were a total of 408 binding poses that registered energies of free binding < -8.0
kcal.mol™!. The remaining 402 binding poses registered energies of free binding >-8.0
kcal.mol™!. At present, there are no similar studies on SARS-CoV-2 MP™® in the literature
that provide for comparison. However, there have been several studies investigating
peptide-based inhibition of the SARS-CoV-2 MP™ (Porto, 2021; Gahlawat et al., 2020; Micco
et al., 2020). Micco et al. (2020) and Ansari ef al. (2020) reported docking scores within the
same range as these findings, whilst other studies reported much higher affinities of binding;
however, these binding affinities were not Vina scores and as such comparison is difficult
(Cakar ef al, 2021; Gahlawat ef al., 2020). However, these findings collectively support the
use of peptide molecules as a basis for drug discovery and improved drug design. Moreover,
they highlight the necessity to elucidate the proteolytic mechanism employed by the MP™ at
the atomic level. The resulting knowledge will in turn instruct the approach for designing

potent antiviral inhibitors. In as much as the binding affinity was not quantified, the
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docking scores of the best poses are very promising. The quantification of the binding affinity
could benefit the selection of the best substrates for lead optimization and rational drug
design. In computational studies, high affinity strengthens the stability of the ligands in the
receptor binding interface. Ligand stability enables the creation of stable complexes and
reduces the chances of unbinding events of substrates during molecular dynamics studies.
Unbinding events during such dynamics studies are indicative of probable ejection of the

ligand from the site of binding n vitro.

3.6.4 DOCKING REPRODUCIBILITY

The substrates for whom 100 conformers were redocked (supplementary table 3.1) were used
to assess the reproducibility of the best docking poses. These substrates included KLQAAA,
KLQAAD, KLQAAE, KLQAAF, KLQAAV, KLQSAV, KLQSTD, MLQSLN, MLQSVM,
RLQAAN, RLQATE, RLQSGA, RLQSGF, RLQSSA and VLQSGD as shown in figure 3.2.
Most of the substrates attained a similar pose in the best binding geometries across docking
experiments. The backbone (a-carbons) of the peptide substrates were overlapped when
superimposed. However, the KLQSTD, RLQAAN and RLQATE substrates attained two or
more main poses in their best binding conformers that did not overlap, yet with the same
binding energy (figure 3.2). Interestingly, these three substrates represent some of the best
docking results obtained in this study. The exploration of these alternative poses would prove
advantageous in the characterisation of the mechanism of the SARS-CoV-2 MP, especially

the profiling of substrate specificity and affinity.
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Figure 3.2 Validation of reproducibility of the docking results. The visualisation of the best poses of substrates
with all 100 conformers docked. Image was generated using PyMOL.

High degrees of docking reproducibility was obtained in KLQAAA, KLQAAD, KLQAAYV,
KLQSAV, MLQSVM, RLQSGA, RLQSGF and VLQSGD substrates. These represent the
substrates that attained more than two identical high-affinity docking poses across
experiments, with overlap, and excluding the presence of alternative poses. Substrates
KLQAAE, KLQAAF and MLQSLN displayed reproducibility, albeit with only two docking
pose overlaps (figure 3.2).
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3.6.5 LE OF VARIABLE PEPTIDES

The determination of LE for the range of hexapeptide substrates, bearing in mind the
respective positions of residues on the peptides, was carried out to identify the amino acids
that have a high (AG/HA of amino acid) contribution to the efficiency of substrate binding to
the MP™. These amino acids represented the fragments and/or constituents of the substrates
that displayed high potential in the improvement of binding affinity. The underlying objective
of this identification was to obtain optimal combinations of "efficient" amino acids that could
serve as a basis for efficiency-driven drug design.

Before the calculation of LE, substrates were sorted according to the amino acids occupying
the peptide position of interest, and the mean free energy of binding was calculated across all
substrates with a particular amino acid residue at a specified position. The mean free energy
of binding was divided by the number of heavy atoms in the specific amino acid to determine
the LE of that amino acid in the full set of substrates. The values of the LE of peptides in their
respective positions are reflected in table 3.1.

In the P3 position, amino acids threonine (T) and valine (V) attained the highest LE of -1.1,
both having seven heavy atoms (HA). Following these amino acids was methionine (M) with
a LE of -1.0, having eight HA (Table 3.1). All three amino acids showed promising potential
for lead optimization as they represented the best results in the P3 position. However, valine
proved to be supreme as it attained the lowest mean free energy of binding, indicating that
several substrates containing valine at P3 attained lower binding energies compared to those
containing threonine and methionine. Despite attaining the worst LE value in the group,
arginine (R) had the best mean binding energy and the LE value was only reduced due to the
high number of HA in the residue. It could still be important to consider arginine in lead
optimization, given the observed favourable mean binding energy, and this could prove
beneficial to the discovery of antiviral drugs against SARS-CoV-2.

In the P1’ (cleavage site) position, alanine (A) and serine (S) attained LE of -1.6 and -1.3,
respectively. Both of these LE show promising potential for lead optimization. However, the
alanine residue was shown to be more attractive as a P1’ candidate since it attained both the
best mean binding energy and LE. The mean binding energies of the two residues were much
closer in range in comparison to LE, owing to the differences in the number of HA in both of

them.
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Table 3.1: The ligand efficiencies of the hexapeptide substrates docked onto SARS-CoV-2 MP® on basis of
variable amino acid residues.

Position ~ Residue (12 :frlnﬁl(_}l) SD HA (kcal.rrrfloelir.l ;e]i atom) SD
K -8.0 026 9 -0.9 0.03

M 7.9 030 8 -1.0 0.04

P3 R 7.9 033 11 -0.7 0.03
T 7.9 026 7 -1.1 0.04

\Y -8.0 023 7 -1.1 0.03

, A -8.0 027 5 -1.6 0.05
Pl S 7.9 030 6 -1.3 0.05
A -8.0 026 5 -1.6 0.05

E 7.9 024 9 -0.9 0.03

G -8.0 029 4 2.0 0.07

K 7.7 027 9 -0.9 0.03

p2’ L -7.9 0.27 8 -1.0 0.03
N -8.0 025 8 -1.0 0.03

S -8.0 024 6 -1.3 0.04

T -8.0 026 7 -1.1 0.04

\Y -8.0 027 7 -1.1 0.04

A -8.1 024 5 -1.6 0.05

D 7.9 026 8 -1.0 0.03

E -7.8 026 9 -0.9 0.03

F -8.1 030 11 -0.7 0.03

P3’ G -8.0 025 4 2.0 0.06
M 7.7 0.23 8 -1.0 0.03

N -8.0 024 8 -1.0 0.03

Q 7.9 025 9 -0.9 0.03

A -8.0 022 7 -1.1 0.03

AG: free energy of binding; SD: standard deviation; HA: heavy atoms (non-hydrogen atoms); LE: ligand
efficiency.

The examination of the LEs of the recognition sequences (P2-P1’) also showed results
consistent with the above observations, showing that alanine was the efficient residue at P1’
in these results (Table 3.2). Since alanine was the most efficient residue of P1’, it is thus a

favourable amino acid to consider in lead optimization. Nonetheless, the prioritisation of
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serine as an alternative could be beneficial in drug design since both residues registered
similar mean binding energies and also displayed similar occurrence frequencies (Ullrich and

Nitsche, 2020).

Table 3.2: The ligand efficiencies of the hexapeptide substrates docked onto SARS-CoV-2 MP® on basis of
recognition sequence.

mean AG mean LE
Sequence (kcal.mol ™) SD HA (kcal.mol 'per atom) SD
LQJA -8.0 0.28 22 -0.4 0.01
LQJS -7.9 0.28 23 -0.3 0.01

AG: free energy of binding; SD: standard deviation; HA: heavy atoms (non-hydrogen atoms); LE: ligand
efficiency.

In P2', alanine, glycine (G) and serine were the highly efficient residues. The three amino
acids were also among the best in terms of mean binding energy alongside asparagine (N),
threonine and valine. Relating to LE, glycine attained the best value of -2.0, followed by
arginine with -1.6 and serine with -1.3. The same explanation used for P1’' was also applied
here. The reason for the differences in the LE values was owed to the differences in the
number of HA atoms constituting the respective amino acids. Moreover, these three amino
acids represented the smallest residues of the group; which explained why asparagine,
threonine and valine attained poorer LE values in comparison. Glycine was the most
favourable residue for lead optimization as it was the most efficient and the smallest of P2’.
Binding efficiency and small size are desirable physicochemical and pharmacological
properties in drug discovery as they relate to ADMET parameters. Similarly to the serine
residue in P1’, alanine and serine (of P2’) could be used as alternatives.

P3' residues showed similar patterns as seen in P1" and P2’. The smallest amino acids of the
group attained the best LE values. Alanine and glycine attained LE values of -1.6 and -2.0,
respectively. The best binding was displayed by alanine and phenylalanine (F). Phenylalanine
did not attain a favourable LE value due to its number of HA (Table 3.1). The prioritisation of

alanine, glycine and phenylalanine could benefit the design of peptide-based drug candidates.

3.6.6 BEI VS SEI

BEI and SEI are some of the modified LE metrics that are widely used in drug discovery.
Abad-Zapatero and Metz (2005) proposed the BEI and SEI to address the limitations of LE
by developing easy to calculate indices that take account for differences between elements in

different rows of the periodic table in compounds. BEI incorporates the ratio of potency and
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molecular weight, whereas SEI incorporates the ratio of potency and PSA. Together, BEI and
SEI combine three critical variables, namely potency, molecular weight and PSA. The
combined use of BEI and SEI during optimization reduces the three variables to two and
provides useful and comparable numerical scales for examining both indices simultaneously
(Abad-Zapatero and Metz, 2005). In an optimization plane, the chemical series are placed on
an SEI-BEI plot where both axis scales are similar, allowing for the simultaneous
optimization of BEI and SEI. The general rule is to optimize the compounds towards the
diagonal of the SEI-BEI plane, where both BEI and SEI are optimal (Abad-Zapatero and
Metz, 2005).

The BEI and SEI of the substrates were calculated to account for the physicochemical
properties that were excluded in LE (section 3.5.5) and plotted on an SEI-BEI plane per
Abad-Zapatero and Metz (2005). The substrates were categorised by their P3-P1 residues.
There were no substrates placed along the diagonal and all of the substrates were located
within the lower portion of the diagonal on the SEI-BEI plane (figure 3.3). The placement of
substrates on the plot showed that the compounds had high affinity per unit of PSA
(Abad-Zapatero and Metz, 2005). This placement indicated that the compounds exhibited
small PSA (high SEI), and low binding efficiency due to relatively large molecular mass.
Promising compounds exhibit high BEI and SEI (lower molecular weight and PSA) as they
relate to desirable pharmacokinetic properties (Abad-Zapatero and Metz, 2005).

Figure 3.3. Mapping of surface-binding and binding efficiency indices in the SEI-BEI optimization plane for
hexapeptide substrates of the SARS-CoV-2 MP®. Substrates were categorised according to P1-P3 residues. The
figure was generated using WPS Spreadsheets 2019 and RStudio.

The VLQ substrates were the most favourable compounds for lead selection, validation and

optimization despite being the farthest from the optimization diagonal (figure 3.3). These
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substrates attained the highest values of BEI and SEI in the entire results. The best overall
substrates included VLQAAG, VLQAGA, VLQAGG and VLQASG, as well as KLQAGG.
These substrates attained BEI values of 13.1, 12.5, 13.7, 13.2 and 13.5; and SEI values of
32.4,28.9, 33.2, 31.1 and 31.2, respectively. After VLQ substrates, more promising BEI and
SEI values were attained by a few hexapeptides belonging to KLQ, MLQ and TLQ substrates
(figure 3.3).

The BEI-SEI results followed a similar trend with the LE results in section 3.5.5. The
substrates containing Val or Thr at P3 displayed better ligand efficiency in comparison with
other residues in the position. In addition, positions P1’ to P3" were dominated by small
residues in terms of LE which is also a visible trend in the BEI-SEI plane (figure 3.3).

RLQ substrates recorded the poorest BEI-SEI results despite being the closest to the diagonal
(figure 3.3). Substrates with Arg (R) at P3 also attained poor LE in section 3.6.5. The simplest
explanation for these recurring patterns relates to the size of residues constituting the RLQ
substrates, especially the Arg residue. Molecular size is inversely related to BEI, and the large
size of Arg (and other residues) in RLQ substrates accounted for the poor BEI values.

Despite registering the poorest overall BEI and SEI values, a few RLQ compounds
demonstrated potential for lead optimization (figures 3.3). Because of this, RLQ substrates
could not be written off as unfavourable ligands to consider for drug design, even though the
majority had unfavourable characteristics. In addition, some RLQ substrates were among the
best binding ligands in the docking results (supplementary table 3.1), attained the highest
mean binding energy compared to other residues at P1’ (table 3.1), and were closest to the
diagonal indicating that the substrates exhibited the best balance between BEI and SEI in the
results (Abad-Zapatero and Metz, 2005; figure 3.3). These points further support the
consideration of RLQ substrates for lead selection and optimization. Thus, the mapping of
RLQ substrates according to their constituting residues allowed for the visualisation and

identification of the favourable residues in promising compounds (figures 3.4 and 3.5).
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Figure 3.4. Mapping of surface-binding and binding efficiency indices in the SEI-BEI optimization plane for
RLQ hexapeptide substrates of the SARS-CoV-2 MP®. The RLQ substrates were grouped by P1’ residues. The
figure was generated using WPS Spreadsheets 2019 and RStudio.

The mapping of the recognition sequence of RLQ substrates showed that Ala was the more
efficient residue at P1’ over Ser. Substrates with Ala (P1') attained the best BEI values and
best SEI values in the group (figure 3.4). Nonetheless, there were select few substrates with
Ser (P1') that attained high values. Furthermore, the substrates closest to the diagonal
consisted of Ser at P1’. Thus, further mapping of the RLQ substrates was carried out to
identify the favourable residues in both Ala (P1’) and Ser (P1') substrates.
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Figure 3.5. The identification of optimal residues constituting RLQ substrates hexapeptide substrates of the
SARS-CoV-2 MP®. The surface-binding and binding efficiency indices were mapped in the SEI-BEI
optimization plane for RLQ hexapeptide substrates. The RLQ substrates were grouped by P2’ residues. A)
shows the substrates with Ala at P1’. B) shows the substrates with Ser at P1’. The figure was generated using
WPS Spreadsheets 2019 and RStudio.

For substrates with Ala (P1'), the highest SEI and BEI were mostly registered by substrates
consisting of Ala, Gly or Val at P2’ (figure 3.5A). Ala and Gly have very small volumes/sizes,
whereas Val is considered medium-sized (IMGT, 2020). For substrates with Ser (P1’), the
highest SEI and BEI values were attained by substrates consisting of Ala, Gly or Leu at P2’
(figure 3.5B). Curiously, Leu is a large amino acid and this molecular weight decreases BEI
(IMGT, 2020). Thus, the high placement of Leu (P2’) substrates was owing to the presence of
very small residues occupying P3’, namely Ala and Gly. Nevertheless, both groups of RLQ
substrates showed similar trends in terms of substrates closest to the diagonal (figure 3.5A
and B). Substrates consisting of Asn at P2’ were most proximal to the diagonal, followed by

substrates consisting of Ser and Thr at P2’.
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3.6.6.1 BEI VS SEI - RECOGNITION SEQUENCE

The mapping of substrates on the SEI-BEI plot, according to the recognition sequence (now
grouped by residues in P2-P1’), showed that the best values were attained by those consisting
of Ala at P1’, as opposed to Ser (figure 3.6). The efficiency of Ala at P1’ was visible in LE
results (tables 3.1 & 3.2) and RLQ BEI-SEI mapping (figure 3.4). This further supports the
prioritisation of Ala at P1' during drug design. However, as emphasised in section 3.6.5, the
use of Ser at P1’ (as a substitute at the very least) in drug design could prove beneficial as

there were select promising substrates with Ser at the cleavage site (figures 3.4 & 3.6).

Figure 3.6. Mapping of surface-binding and binding efficiency indices in the SEI-BEI optimization plane for the
recognition sequences of hexapeptide substrates of the SARS-CoV-2 MP®, The substrates were grouped by
P2-P1' residues. The figure was generated using WPS Spreadsheets 2019 and RStudio.

3.6.7 SUBSTRATE RECOGNITION AND SPECIFICITY OF MFPRO

The SARS-CoV-2 MP* mainly recognises substrate residue ranging from P4 to P1’ (Ullrich
and Nitsche, 2020). However, the substrate specificity is determined by residues P2-P1’ as
they display the highest degree of conservation among the ppla/ab cleavage sites (Ullrich and
Nitsche, 2020). These substrate residues are recognised and anchored onto the binding pocket
by specific active site residues that comprise subsites. For binding P1 and P2, respectively,
subsite 1 (S1) consists of His163, Glul66, Cys145, Gly143, His172, and Phel40, while S2
consists of Met49, His41, Cys145 and Thr25 (Khan et al., 2020). Both S1 and S2 deeply bury
the P1 and P2 residues and are involved in hydrophobic and electrostatic interactions
(Mengist ef al, 2021; Khan et al., 2020). S3 is comprised of residues Met165, Met49, and
His41 (Lu et al, 2006). Residues Thr25, Thr26, Leu27 and Cys145 constitute part of S1’
which generally form polar contact interactions with substrates (Mengist ef al., 2021). These

substrates surround the catalytic dyad which consists of His41 and Cys145, that perform the
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digestion of the polyproteins (Ullrich and Nitsche, 2020). Overall, the key active site residues
that support substrate binding and processing include His41, Met49, Gly143, Ser144, His163,
His164, Metl165, Glul66, Leul67, Aspl187, Argl88, GInl189, Thr190, Alal91 and GIn192
(Goyal and Goyal, 2020).

3.6.7.1 MAPPING OF SUBSITES

Subsites are crucial to the binding, anchoring and stabilization of substrates in the active site.
Thus, the mapping of the subsites was carried out to assess whether the binding of the
hexapeptides was following the nomenclature of Schechter and Berger (1967) and that each
peptide corresponded to its respective subsite. Further, subsite mapping was performed to
visualise the binding mode of the substrates in the active site, which in turn informed of the
substrate recognition. This was performed using both the best binding poses which attained
the lowest (figures 3.7 and 3.8), and the poorest performers with the highest (figures 3.9, 3.10
and 3.11) binding energies in the docking studies.

In as much as producing the best docking score (-8.7 kcal.mol!), the binding modes of
RLQATF and RLQSTF were not in accordance with Schechter and Berger (1967). In both
substrates, the side chain of P3 was anchored in S1, whereas the side chains of P2 and P1
were anchored in S3 and S2, respectively (figure 3.7). Nevertheless, RLQSGA demonstrated
the desired binding mode as the side chains of P3-P1 residues interacted with corresponding

subsites (figure 3.7).
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Figure 3.7 Confirmation of SARS-CoV-2 MP® substrate recognition in binding poses for substrates RLQATF,
RLQSGA and RLQSTF. The surface of SARS-CoV-2 MP® (PDB ID:6XHM) showing docked substrates and
substrate binding subsites colour-coded as follows: Purple: S1, Cyan: S2; Green: S3. The substrates attained a
docking score of -8.6 kcal.mol™!. The image was generated using PyMOL.

Desired binding modes were majorly evident in the second group of highest binding poses
(-8.7 kcal.mol”'; figure 3.8). While substrates RLQSGA, RLQALG, RLQAVN, TLQAGF,
TLQAVA, VLQAAF and VLQAVF were all bound as expected in terms of protease-peptide
binding modes, RLQAAF and RLQAAN violated the nomenclature of Schechter and Berger
(1967). The binding mode of RLQAAF (figure 3.8) was similar to that of RLQATF and
RLQSTF (figure 3.7). Curiously, the binding mode of RLQAAN showed S1 anchoring the
side chains of P1 and P3, whilst S2 rightfully anchored P2 (figure 3.8). Interestingly, the ACE

cap and P3 backbone were anchored in S3.
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Figure 3.8 Confirmation of SARS-CoV-2 MP® substrate recognition in binding poses for substrates RLQAAN,
RLQAAF, RLQAGA, RLQALG, RLQAVN, TLQAGF, TLQAVA, VLQAAF and VLQAVF. The surface of
SARS-CoV-2 Mr* (PDB ID:6XHM) showing docked substrates and substrate binding subsites colour-coded as
follows: Purple: S1, Cyan: S2; Green: S3. The substrates attained a docking score of -8.6 kcal.mol!. The image
was generated using PyMOL.

The violation of the nomenclature of Schechter and Berger (1967), was less prevalent in the
protease-peptide complexes which attained the poorest docking scores (figures 3.9-3.11),
with the exception of the KLQAEM complex (figure 3.10). Unlike previous violations of the
binding rule in figures 3.7 and 3.8, KLQAEM displayed interactions between P3 and S3; P2
and S1; and P1 and S2 (figure 3.10).
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Figure 3.9. Confirmation of SARS-CoV-2 MP® substrate recognition in binding poses for substrate KLQSKM.
The surface of SARS-CoV-2 MP* (PDB ID:6XHM) showing docked substrates and substrate binding subsites
colour-coded as follows: Purple: S1, Cyan: S2; Green: S3. The substrates attained a docking score of -7.0
kcal.mol!. The image was generated using PyMOL.

Figure 3.10 Confirmation of SARS-CoV-2 MP™ substrate recognition in binding poses for substrates KLQAEM
and TLQSLM. The surface of SARS-CoV-2 MP® (PDB ID:6XHM) showing docked substrates and substrate
binding subsites color-coded as follows: Purple: S1, Cyan: S2; Green: S3. The substrates attained docking score
of -7.1 kcal.mol"'. Image was generated using PyMOL.
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Figure 3.11 Confirmation of SARS-CoV-2 MP® substrate recognition in binding poses for substrates KLQSEM,
KLQSKD, MLQAKM, MLQSKM and VLQAKD. The surface of SARS-CoV-2 MP™ (PDB ID:6XHM) showing
docked substrates and substrate binding subsites colour-coded as follows: Purple: S1, Cyan: S2; Green: S3. The
substrates attained a docking score of -7.2 kcal.mol™'. The image was generated using PyMOL.

Collectively, these binding modes indicate that the crystal structure of the MP™ displayed the
substrate recognition of SARS-CoV-2 MP®. The side chains of the hexapeptides were
appropriately accommodated in the subsites of the active site, despite having large differences
in free energies of binding. Furthermore, these results also inform that the generation of the
hexapeptides was a success since the resultant structures were recognisable to the receptor
protein. Substrate recognition of SARS-CoV-2 MP® towards the hexapeptide was thus,
confirmed. Therefore, hexapeptide-based drug design could prove beneficial to the pursuit of

antiviral agents since recognition is well established.

3.6.7.2 MPRO-SUBSTRATE MOLECULAR INTERACTIONS

Protein-ligand molecular interactions at the binding site are a crucial part of characterising
the binding affinity of the protein for promising fragments, hits and leads. Molecular
interactions at the interface of protease and substrate in the protease active site determine
substrate specificity (Schauperl et al, 2015). Thus, Discovery Studio was used to resolve the
protease-peptide molecular interactions and to generate 2D representations of these
interactions shown in figures 3.12 to 3.16.

Hydrogen bonds were the most prevalent interactions throughout the complexed structures as
shown in figures 3.12 to 3.16 and supplementary tables 3.2 to 3.4. These hydrogen bonds
included conventional hydrogen bonds, carbon-hydrogen bonds and Pi-donor hydrogen bonds.

Hydrogen bonds, especially conventional hydrogen bonds, are the fundamental stabilising
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forces in biomolecular structures, which also underpin structure, function and conformational
dynamics (Horowitz and Trievel, 2012; Herschlag and Pinney, 2018). In addition,
complementarity and stability in protein-ligand complexes are largely owed to the formation
of hydrogen bonds in the binding interface (Lippert and Rarey, 2009; Norel et al, 1999).
Therefore, the prevalence of hydrogen bond formation at the active site indicate shape and
electrostatic complementarities between MP® and hexapeptides and points towards high
affinity of the protein towards the peptides. This is evident in binding energies in
supplementary table 3.1. Furthermore, the stabilising effect of hydrogen bonds would be
integral in maintaining the structures in dynamic processes.

The key functional residues, His4l and Cys145, formed various interactions with the
substrates. Cys145 typically formed conventional hydrogen bonds with the oxygen atoms of
the carboxyl group of P1 (RLQSGA, RLQAAN, RLQAGA, RLQALG, RLQAVN, TLQAVA,
VLQAAF and VLQAVF) or P1' (RLQSTF, TLQSLM KLQSEM and MLQAKM); placing
the catalytic residue in close proximity to the cleavage site and the scissile peptide bond.
Remarkably, most of these substrates demonstrated appropriate binding modes in compliance
with the nomenclature of Schechter and Berger (1967). Other interactions with Cysl145
included hydrogen bonds with the nitrogen atoms of P3 Arg (RLQATF and RLQAAF);
Pi-Alkyl/Alkyl interaction with the B-carbon of P1" Ala (TLQAGF); a hydrogen bond with
the oxygen atoms of the carboxyl group of P2 Leu (KLQAEM); carbon-hydrogen bond with
the B-carbon of P1' Ser (MLQSKM); and Pi-Alkyl/Alkyl interaction with the B-carbon of P3
Val (VLQAKD).
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Figure 3.12. Resolution of intermolecular interactions between MP® and substrates at the active site. 2D
representation of the protein-ligand interactions at active sites for MP® complexed with RLQATF, RLQSGA and
RLQSTF. The images were generated on BIOVIA Discovery Studio 2020 Client.
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Figure 3.13. Resolution of intermolecular interactions between MP® and substrates at the active site. 2D
representation of the protein-ligand interactions at active sites for MP* complexed with RLQAAF, RLQAAN,
RLQAGA, RLQALG, RLQAVN, TLQAGF, TLQAVA, VLQAAF and VLQAVF. The images were generated on
BIOVIA Discovery Studio 2020 Client.

The intermolecular interactions involving His41 varied to a much greater extent across the
complexed systems as shown in figures 3.12 to 3.16. Across the systems, the typical
interactions with His41l were Alkyl/Pi-Alkyl interactions with the PB-carbon of P1’ Ala
(RLQAAN; RLQAGA; RLQALG; RLQAVN; TLQAVA; VLQAAF; VLQAVF; MLQAKM)
which were mostly among the top binding substrates; and Pi-Sigma interactions with a
d-carbon of P2 Leu (RLQSTF; KLQSKM; KLQSKD; MLQAKM). Much like with
conventional hydrogen bonds involving Cys145, the Alkyl/Pi-Alkyl interactions with the
B-carbon of P1’ Ala placed His41 in proximity with the cleavage site. Notably, these
interactions were mainly found in substrates that demonstrated appropriate binding modes.

In figure 3.12, the top binding substrates were involved in additional interactions which
included a cleavage site proximal interaction (RLQATF); hydrogen bonds with oxygen atoms
of the ACE cap and the side chain of P1' Ser (RLQSGA). For substrates with the binding
energy of -8.6 kcal.mol™!, additional interactions involving His41 are shown in figure 3.13.
These included a Pi-donor hydrogen bond with the side chain oxygen atom of P1 GIn
(RLQAAF); Pi-Sigma with the carbon atom of the ACE cap (RLQAGA); an Alkyl/Pi-Alkyl
interaction with the y-carbon of P2 Leu (TLQAGF); a hydrogen bond with oxygen atoms of
the ACE cap together with Pi-Sigma with the a-carbon of P3 Thr (TLQAVA); and an
Alkyl/Pi-Alkyl interaction with B-carbon P1 Val (VLQAVF).

For the poorest binding substrates, more intermolecular interactions with His41 were shown

(figure 3.14-3.16). However, a frequent interaction in the group was the Alkyl/Pi-Alkyl
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interaction with the y-carbon of P2 Leu (KLQSEM and MLQSKM). Other interactions
included a hydrogen bond with the oxygen atom of P1 Gln, and an Alkyl/Pi-Alkyl interaction
with the y-carbon of P3 Lys (KLQAEM); a Pi-donor hydrogen bond with the oxygen atom on
the side chain of P3 Thr, and (TLQSLM); a carbon-hydrogen bond with the B-atom of P1’
Ser (MLQSKM); and lastly, a Pi-donor hydrogen bond with P3’ Asp alongside an
Alkyl/Pi-Alkyl interaction with the B-carbon of P3 Val (VLQSKD). The catalytic residues
engaged in varying interactions with the respective substrates. However, the common trend
across complexes was Cysl45 forming interactions (mostly hydrogen bonds) with the
backbone atoms around the scissile bond, whereas His41 was forming interactions with the
side chains of peptides around the scissile bond. The explanation for this pattern could owe to
the flexible nature of the peptide chains, which resulted in a torsional rotation that orientated

the substrates in a way that the substrates could only interact with His41 via side chains.

Figure 3.14. Resolution of intermolecular interactions between MP® and substrates at the active site. 2D
representation of the protein-ligand interactions at the active site for MP® complexed with KLQSKM. The
images were generated on BIOVIA Discovery Studio 2020 Client.
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Figure 3.15. Resolution of intermolecular interactions between MP® and substrates at the active site. 2D
representation of the protein-ligand interactions at active sites for MP® complexed with KLQAEM and
TLQSLM. The images were generated on BIOVIA Discovery Studio 2020 Client.
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Figure 3.16. Resolution of intermolecular interactions between MP® and substrates at the active site. 2D
representation of the protein-ligand interactions at active sites for MP® complexed with KLQSEM, KLQSKD,
MLQAKM, MLQSKM and VLQAKD. The images were generated on BIOVIA Discovery Studio 2020 Client.

Key residues that play an important role in substrate binding and substrate stabilization in the
binding pocket also participated in non-covalent interactions with the substrates. These
included the residues 138 to 146 which constitute the so-called oxyanion loop that confers
substrate stability during the proteolytic process. The backbones of Gly143 and Cys145 form
the oxyanion hole which in turn stabilises the partial negative charge that arises at the P1
carbonyl group of the substrate during the hydrolysis of the scissile bond (Suéarez and Diaz,
2020). In supplementary tables 3.2 to 3.4, these residues are (indicated in purple) participated
in the key stabilising forces (hydrogen bonds and van der Waals forces of attraction) that
promoted the formation of stable complexes.

Other key residues include Met49, His163, His164, Metl65, Glul66, Leul67, Aspl87,
Argl88, GIn189, Thr190, Ala191 and GIn192, which underpin the subsites and accommodate
the appropriate binding of substrate residues (Goyal and Goyal, 2020; Muramatsu et al., 2016;
Hsu et al, 2005). These residues mostly mediate the binding of substrates onto their
respective subsites via side-chain rearrangement and also contribute to anchoring the
substrates (Lee ef al., 2020; Muramatsu et al., 2016; Hsu ef al., 2005). Similar to the oxyanion
loop residues, these residues also formed hydrogen bonds with substrates and inferred
stability to the bound substrates (supplementary tables 3.2-3.4). Thus, stable complexes were
formed, with many stabilising interactions. The prevalent formation of hydrogen bonds at the
binding interface pointed towards substrate specificity.

The mapping of sites and non-covalent interactions were also resolved for KLQ***
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complexes (supplementary figures 3.2-3.3). For the most part, the aforementioned trends in
substrate binding modes with relation to subsites and intermolecular interactions were
consistent with the patterns discussed in this chapter. The mapping of subsites revealed high
recognition of substrate residues by corresponding subsites in most systems, excluding the
KLQASYV, KLQAVQ, KLQSAF, KLQSAQ, KLQSSF, KLQSTE, and KLQSVF complexes.
Nevertheless, substrate recognition was suggested by the binding modes of the KLQ***
substrates. In a similar manner to the substrates discussed above, KLQ*** substrates also
showed a prevalence of hydrogen bond formation between the substrates and the active site
residues of MP™, In terms of the catalytic residues, the typical interactions discussed above
were also prevalent in KLQ complexes. Cys145 was seen frequently forming hydrogen bonds
with oxygen atoms of the carboxyl group of residues P1 or P1’, whereas His41 interacted
with various side chains of the substrates. Subsequently, the KLQ*** complexes were used in
molecular dynamic studies to assess the behaviour of the complexed systems and examine the
stability between MP™ and substrates conferred by the intermolecular interactions. The
selection of only KLQ*** complexes for further study was a practical one, given the
extensive computational resources required, and to essentially conduct dynamic studies on a

complete subset of systems.

3.7 CHAPTER SUMMARY

In this chapter, the conformers of the hexapeptides were docked onto a suitable crystal
structure of SARS-CoV-2 MP. Before the docking studies, a preliminary study was carried
out to determine which chain would produce better docking results and the results favoured
the use of chain B. Docking studies were thus conducted on chain B using the exhaustiveness
of 480, and repeated with 10 or more starting substrate conformations. The resulting free
energies of binding ranged between -8.6 and -7.0 kcal/mol. The reproducibility of docking
results was visually assessed in select substrates where 100 conformers were redocked per
substrate. Reproducibility was achieved in high-affinity binding poses. LE was performed to
determine the binding efficiencies of the constituent residues. In P3, Val was shown to be the
most efficient residue in the position despite Arg registering the best binding energies. In P1’,
Ala was a more efficient residue in comparison to Ser, although Ser produced better docking
results in terms of binding energy. Gly and Ala were consistently more efficient residues at
P2’ and P3’, with Gly attaining the most desirable LE score through the docking results. The
favourable LE scores were a result of the small sizes of residues since the majority of the

residues did not attain the best docking scores in their respective positions. The most efficient
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recognition sequence or cleavage site was shown to be LQA, over LQS. A BEI-SEI plane was
constructed for all the substrates, using the BEI and SEI indices which accounted for the
physicochemical properties that LE does not account for. VLQ substrates were shown to be
most desirable for lead optimization, followed by KLLQ and TLQ substrates. Despite being the
least desirable, RLQ substrates were curiously the closest to the diagonal of the SEI-BEI
plane and were further analysed which in turn informed that RLQAG, RLQAV, RLQAA,
RLQAA, RLQSG and RLQSL substrates displayed high potential for lead optimization.
Subsite mapping showed the binding modes of the top (RLQATF, RLQSGA, TLQSTF,
RLQAAF, RLQAAN, RLQAGA, RLQALG, RLQAVN, TLQAGF, TLQAVA, VLQAAF and
VLQAVF), and poorest (KLQSKM, KLQAEM, TLQSLM, KLQSEM, KLQSKD,
MLQAKM, MLQSKM and VLQAKD) binding poses. Interestingly, appropriate substrate
binding was more prevalent in the poorest binding substrates as the hexapeptide residues
were anchored by corresponding subsites at the binding interface. Across the top and
bottom-most binding poses, the hexapeptides bound favourably to the active site of MP™;
hydrogen bonds were the prominent intermolecular interaction and these were formed with
binding pocket residues. The catalytic dyad, alongside the oxyanion loop and other key
residues, also formed favourable interactions with the substrates. Cys145 typically interacted
with the atoms of the backbone of P1 or P1’, whilst His41 formed interactions with side
chains of residues proximal to the cleavage site and various others. Key substrate binding
residues and the oxyanion loop residues mostly formed stability conferring hydrogen bonds
and van der Waals forces of attraction with the substrates. Subsite mapping alluded to
substrate recognition and the resolution of non-covalent interactions pointed towards
substrate specificity of MP™ for the hexapeptides. KLQ*** substrates were also assessed for
subsite binding modes and intermolecular interaction. Overall trends were consistent with the

typical patterns seen in both the top-performing and poorest binding substrates.
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CHAPTER FOUR

MOLECULAR DYNAMICS SIMULATIONS AND TRAJECTORY
ANALYSIS

COVID-19 has dealt a devastating blow to the world. The widespread distribution of the
disease is propagated by the exponential transmission of the pathogenic SARS-CoV-2.
Variants of the coronavirus have conferred even greater transmission and infection rates and
enriched the virus with advanced immunological evasive mechanisms (Harvey ef al, 2021).
The increased virulence is attributed to mutations in the spike protein that mediates cell entry.
Thus, the investigation of antiviral agents which specifically target highly conserved
non-structural proteins has become even more imperative to combat SARS-CoV-2-related
illnesses and deaths and will allow the development of highly effective broad-spectrum
treatments against the SARS-CoV-2 variants and other coronaviruses. As such we explore in
this study sequences that are recognized by the SARS-CoV-2 MP™. This part of the study is a
complete study on molecular dynamics of substrate sequences KLQ*** (P3’-P1’) of length 6
in complex within the MP®, detailing the stability and prominent motion/conformational

changes of the protein-substrate systems.

4.1 INTRODUCTION

Proteins are dynamic entities in cellular solution with functions governed essentially by their
dynamic personalities. Protein dynamics are manifested as changes in molecular structure, or
conformation as a function of time. In silico and ab initio techniques assist in the resolution
of protein structures which serve as a solid basis for structure-function studies that contribute
to the elucidation of many dynamic aspects of enzymatic mechanism such as substrate
binding, orientation, catalysis, and product release. Molecular dynamics are the prominent
technique used in protein dynamics to approximate the interactions and behaviour of proteins
in protein-protein or protein-ligand complexes. The simulations treat both binding partners as
flexible entities, allowing for motion and conformational changes that provide insight into

protein function and mechanism of action (Yang et al, 2014; David and Jacobs, 2014;
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Salsbury, 2010).

4.2 MOLECULAR DYNAMIC SIMULATIONS

Molecular dynamics (MD) simulations are a powerful tool to study and understand the
structure and behaviour of protein systems with extreme detail - in scales where the motion of
individual particles can be tracked (Lindahl, 2008). MD simulations are widely used in the
elucidation of protein structure-to-function relationships, as they are useful in studies of
protein folding events, enzymatic catalytic mechanisms, protein conformational changes, and
allostery (Hospital et al, 2015). Rational drug design also relies on MD simulations in the
elucidation of molecular recognition, the binding and unbinding of drugs and overall
mechanisms of action for a drug and its target (Galeazzi, 2009; Do et al., 2018).

MD simulations treat all particles in a system as flexible entities and simulate their
movements and dynamic behaviour as a function of time (Salmaso and Moro, 2018). During
a simulation, the trajectories of all atoms in a system are computed by the solution of
Newton's laws of motion (also known as the Classical mechanics), and an empirical force
field (Berendsen et al., 1995; Salmaso and Moro, 2018; Binder et al., 2004). In principle, the
classical equations of motion (Newton's equations of motion) are solved by using the forces
between atoms to compute successive atomic configurations and to assess the movement of
these atoms based on their interactions (Adcock, and McCammon, 2006). To solve Newton's
equations of motion, velocities are calculated using the Maxwellian distribution centred on
the desired temperature, using the atom positions are obtained from the coordinate
information in the structure PDB file (van der Spoel ef al, 2005). In these computations, the
molecule is described as a series of charged spheres or radii (atoms) linked by springs (bonds)
based on molecular mechanics, to decrease the computational cost associated with
macromolecular simulations (Vanommeslaeghe and Guvench, 2014). In addition, the
movement of atoms is calculated in small steps, based on the Cartesian coordinates of the
particle, allowing the sampling of molecular motion on the nanosecond and microsecond
scale, and consequently enables the study of millisecond scale processes such as protein
folding (Abraham er al, 2015). The interactions (inter- or intramolecular, and forces) that
mediate movement are described and evaluated by the force field of choice (Berendsen et al,
1995; Binder ef al, 2004; Heinz et al, 2013). In essence, MD simulations involve the
solution of equations of motions detailing the forces acting on all atoms in a system. The
most efficient and common way for the forces to be calculated in large biological systems is

through molecular mechanics and the use of force fields.
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4.2.1 FORCE FIELDS

A force field is a mathematical expression that describes the dependence of the energy of a
system on the coordinates of its constituent particles (Gonzalez, 2011). A force field consists
of a functional form of the inter-atomic potential energy of a system, together with the set of
molecular mechanical parameters for different types of atoms, chemical bonds, dihedral
angles, out-of-plane interactions, non-bonded interactions, and other possible terms that fit
into this form (Gonzalez, 2011; Heinz ef al, 2013). These parameters are typically obtained
from ab initio or semi-empirical quantum mechanical calculations, or by fitting to
experimental data (such as neutron, X-ray and electron diffraction, NMR, infrared, Raman
and neutron spectroscopy, etc.) (Gonzalez, 2011).

The components of a force field include bonded terms for interactions in atoms linked by
covalent bonds computed using Hooke's law, and non-bonded terms that describe the
long-range electrostatic and van der Waals forces which are computed using Coulomb's law
and a Lennard-Jones potential, respectively (Heinz et al, 2013). Notably, the terms described
in a force field are very specific and may vary from terms in other force fields, but the

general expression of the total energy in a force field is written as follows:

Equation 4.1: Summation of the bonded and non-bonded components of the total energy in a
force field.

where the terms of the bonded and non-bonded contributions are generally expressed by the

following summations:

Equation 4.2: Summations of the bonded and non-bonded terms constituting the bonded and
non-bonded components of a force field

Commonly used force fields in biological simulations include CHARMM (Brooks et al,
2009), NAMD (Phillips et al, 2005), AMBER (Case ef al, 2005), GROMACS (van der
Spoel et al, 2005) and GROMOS (Christen et al, 2005). In terms of protein simulations,
these force fields typically provide the parameters for standard and non-standard amino acid
residues, as well as few post-translational modifications (Margreitter ef al., 2013).

In practical terms, molecular dynamics will involve steps of: 1) topology generation; 2)
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defining periodic boundary conditions; 3) solvation; 4) neutralization; 5) minimization; 6)
equilibration (2 steps for temperature and pressure); 7) production dynamics; 8) trajectory
analysis. In this present study, the protein dynamics of the SARS-CoV-2 MP*-hexapeptide

complexes were explored using GROMACS software.

4.2.2 GROMACS

GROningen MAchine for Chemical Simulation or GROMACS is an open-source software
widely used in the dynamical simulation studies of biomolecules, in aqueous and membrane
environments. The software features a powerful set of calculation types, preparation and
analysis tools and supports several advanced techniques for free-energy calculations.
GROMACS exhibits much more flexibility as it supports the accurate use of different force
fields which are useful in studying biomolecular dynamics. GROMACS tools are
implemented by the use of gmx commands to perform the preparation, running and analysis
of MD simulations and trajectory analysis. GROMACS is optimized for complex calculations
through the use of multi-CPU and even multi-GPU, which contribute to the acceleration of
the performance (van der Spoel et al, 2005; Abraham et al, 2015). GROMACS offers
Message Passage Interface (MPI) which allows the splitting of a computation into
independent units of work that are handled in parallel (Abraham et al., 2015). Numerous MPI
schemes are implemented through enhanced parallelization algorithms. Moreover, optimal
performance of the toolkit is attributed to the combined use of multi-GPUs and MPI schemes,
which achieve optimization through acceleration and parallelization. Similarly, MPI tools,
which compile preparation and simulation calculations with parallelization algorithms, are
implemented with the use of gmx mpi commands (GROMACS, 2015). In this study
GROMACS was used at the Center for High Performance Computing (CHPC), running on 24
cores across 8 nodes (total of 192 cores per simulation) with a wall time of 24h on the PBS

queue management system.

4.2.3 TRAJECTORY ANALYSIS

MD simulations yield a wealth of data about the structure, dynamics, and function of
biomolecules by modelling the physical interactions between their atomic constituents. In
order to deduce meaningful conclusions from the simulations, MD trajectories need to be
analysed in terms of the positions (and possibly velocities and forces) of individual or
selected subsets of atoms for each time frame of the trajectory (Michaud-Agrawal et al,

2011). The trajectory files obtained contain the position of all atoms at frames during the
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simulation, and these may be used to provide structural information on the course of

dynamics.

4.2.3.1 ROOT MEAN SQUARE DEVIATION (RMSD)

The RMSD of certain atoms in a molecule is a measure of distance, or dissimilarity, between
molecular conformations, with respect to a reference structure. In terms of MD simulations,
RMSD is used as a primary benchmark to measure how structures or parts of structures
change over time in comparison to the reference structure - which is frequently the first frame
of the trajectory. Relatively constant RMSD values signify proper convergence and
stabilization with the RMSD having a narrow range after equilibration. This indicates

stabilization of the backbone (Gowers et al., 2019).

4.2.3.2 RADIUS OF GYRATION (Rg)

The Rg is defined as the distribution of atoms of a protein around its axis. In MD simulation,
the Rg measures the degree of compactness and folding of protein systems, wherein a
constant Rg value in the simulation period signifies that there is protein folding stability;
conversely, protein unfolding is indicated by changes in Rg values over time (Lobanov et al.,

2008; Sneha and Doss, 2016).

4.2.3.3 ROOT MEAN SQUARE FLUCTUATION (RMSF)

The RMSF is a measure of the deviation between the position of a particle with respect to its
reference position. Unlike RMSD which is averaged over the particles to give time specific
values, RMSF is averaged over time to give values for each particle. RMSD calculates the
overall deviation of the structure from its reference structure, whereas RMSF determines
individual residue flexibility and thus allows the identification of the most mobile/flexible

regions during a simulation (BioChemCoRe 2018, 2021; Dong ef al., 2018).

4.2.3.4 PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA, or essential dynamics, is an advanced analysis tool for identifying essential protein
motions in trajectories from MD simulations. In principle, PCA extracts concerted protein
motion in different frames during simulations to identify the most prominent motions of the
protein backbone. PCA is conducted in two steps, involving the construction of a
variance/covariance matrix using o-carbons and the diagonalization of the covariance matrix.

The covariance matrix is routinely constructed from the atomic fluctuations after the removal
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of the translational and rotational movement. The diagonalization of the covariance matrix
yields a set of eigenvectors and eigenvalues. The eigenvectors show the directions in a 3
N-dimensional (the N is the number of atoms used for constructing the covariance matrix)
conformational space and describe the majority of the protein motion along those directions.
On the other hand, the eigenvalues are measurements of the mean square fluctuations of the
system along the corresponding eigenvectors. The underlying assumption for PCA is that
only a few eigenvectors with large corresponding eigenvalues are important for describing
the overall motions of a protein. Therefore, the motion of the protein is identified by
projecting the original data onto the first two eigenvectors (evl vs ev2), to create the first two

principal components (PC1 and PC2) which contain the maximum motions (Srikumar et a/.,

2014; Yang et al., 2014).

4.3 METHODOLOGY

4.3.1 TOPOLOGY GENERATION

Following molecular docking, the hexapeptide (KLQ***) PDBQT output files were
converted to PDB format using OpenBabel. The custom Perl script (Appendix M) was used
to restore the amino acid information of the constituent residues of each best binding pose
(Appendices L & N). The hexapeptide PDB information was then added onto the receptor
PDB as a third subunit, thus constructing complexes as a single PDB file with three protein
chains (the first two from the SARS-CoV-2 MP® homodimer, the third the hexapeptide
KLQ***) (Appendix O). The topology and coordinate files for the apo-MP® and
Mpr-Hexapeptide systems were created using the GROMACS version 2018.1 pdb2gmx
command, employing the AMBERO3 protein, nucleic AMBER94 force field (Duan ef al.,
2003). The topology file (.top) contains all the necessary information to define the molecule
within a simulation, including non-bonded (atom types and charges) and bonded (bonds,
angles and dihedrals) parameters. The configuration file (.gro) contains all the coordinates of
the molecule in the system, together with its corresponding parameter files (.itp) which

contain the connection of atoms in each subunit.

4.3.2 BOX DEFINITION, SOLVATION AND ADDITION OF IONS

To establish an aqueous and neutral system that mimics cellular conditions in vitro, the MP™
systems were subjected to solvation and neutralisation. The apo-MP™ and MP™-hexapeptide

systems were solvated in a cubic box of dimension 10 nm using a TIP3P water model. The
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structures were centred in the cubic box and placed under periodic boundary conditions
(PBC). Subsequently, the systems were neutralised to a net charge of zero by the addition of

the Na* and CI- counter ions.

4.3.3 ENERGY MINIMIZATION

To avoid steric clashes and unfavourable geometries in the systems arising from solvation and
neutralisation, the MP™ systems were subjected to energy minimization. The minimization
was prepared using the GROMACS grompp command and minimization was initiated with
the GROMACS mdrun command. Energy minimization was performed using the steepest
descent minimization algorithm for 50000 steps and minimization was set to stop when the

maximum force of <10.0 kJ/mol was achieved to avoid high-energy interactions.

4.3.4 SYSTEM EQUILIBRATION

In order to optimise the solvent and the ions surrounding the protein structures, equilibration
was carried out to bring the systems to desirable simulation temperature and pressure. The
temperature of the system was equilibrated with an NVT ensemble (constant Number of
atoms, Volume and Temperature) at 300K for 100 ps. Sequentially, the pressure was
equilibrated with an NPT ensemble (constant Number of atoms, constant Pressure and
constant Temperature) at 1.0 bar for 100 ps. A modified Berendsen thermostat was employed
in both equilibration ensembles. In both steps position restraints for heavy atoms were

included.

4.3.5 MD PRODUCTION

Following the temperature and pressure equilibration, the system position restraints were
released and 20 ns MD production runs were executed using the GROMACS mdrun. The
time steps were set at 2 fs and the trajectory and coordinate information were saved every 10
ps, resulting in 2000 frames saved for every system simulated. Energy minimization,
equilibration and production runs were automated on the CHPC cluster, employing multiple

nodes and CPU cores to compensate for the computational expense.

4.3.6 TRAJECTORY ANALYSIS

Upon the completion of the production runs for the 20 ns simulations, the structures were
removed from the PBC simulation box and centred within the box using the trjconv

GROMACS command. The trajectory files were analysed by calculating the RMSD, RMSF,
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and Rg using the GROMACS commands rms, rmsfand gyrate, respectively. Conformational
changes and structural motions over the course of the trajectory for the protein backbone
were monitored using PCA. The dynamics of the structures over the simulation time were

visually inspected using Visual Molecular Dynamics (VMD) (Humphrey ef al., 1996).

4.4 RESULTS AND DISCUSSION

The strength and stability of a protein-ligand complex are related to the intermolecular
interactions between these binding partners (Pantsar and Poso, 2018). Hence, MD simulations
for the apo- (unbound) and complexed proteins were carried out to assess the binding strength
of protein and substrates in the complexed systems, and to gain insight into changes in the
structure and stability of MP™ as a result of binding the KLQ*** hexapeptides. Thus, 20 ns
trajectories of the various apo and KLQ-complexed MP™ systems were analysed and plotted
to assess such changes, globally (figures 4.1-4.2), locally (figure 4.3) and based on their
prominent protein motions during the trajectory (figures 4.4-4.10). 131 KLQ*** substrates

were used in the final data set for MD and were subsequently analysed.

4.4.1 GLOBAL STRUCTURAL STABILITY OF THE SARS-CoV-2 MPRO

4.4.1.1 RMSD

The stability of the MP™ systems was assessed through the calculation of RMSD for the
protein backbone (a-carbons) from the 20 ns trajectories and plotted against time as shown in
figure 4.1. The apo-protein retained RMSD values around 0.2 nm, after equilibration, after
400 ps of simulation time. The majority of the complexed systems also equilibrated to an
RMSD of around 0.2 nm, showing that the binding of the substrates did not introduce
structural changes to the protein, and also that the complexes were stable. However, there
were a few complexed systems that equilibrated at a lower RMSD in comparison to the
apo-protein, with values ranging roughly between 0.10 and 0.22 nm like KLQAAM,
KLQAKA, KLQASD, KLQASG, KLQSND and KLQSSN. These complexes indicate the
subtle reduction of backbone fluctuation in the protein as a consequence of substrate binding.
These lower RMSD values are quite interesting since they show the nuances of binding of a
set of substrates that are in essence quite similar in composition.

A few complexed systems did attain higher fluctuations, accompanied by steady increases in
the RMSD as the simulation progressed (for example, KLQAGD, KLQALA, KLQALD,
KLQANA and KLQSEA). Backbone fluctuation was common among these systems, as
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periodic drops and instability in the RMSD were evident. The values of RMSD in some cases
would reach as high as 0.36 nm. Some of these systems would retain this higher value for a
longer period as when compared to others (indicating a variation in stability at the 0.36 nm
RMSD). For instance, systems KLQAGYV, KLQAVA, KLQAVE, KLQSKG, KLQSLA and
KLQSTN retained RMSD > 0.3 nm for: the final 10 ns; final 15 ns; final 8 ns; final 3 ns; final
5 ns; and between 10 and 18 ns, of the simulations, respectively

The last group of systems registered significantly steep increases in RMSD at various points
of the simulation (KLQAEQ, KLQAND, KLQSGA and KLQSVQ). These spikes were
indicative of significant changes in the protein dynamics during the simulations. Bear in mind
that the peptide substrate is chain C of the PDB file, and cannot be separated from this RMSD
calculation for the protein. Of these, the complex KLQSVQ displayed the highest increase in
RMSD, with values reaching 4.20 nm, followed by KLQAND with the highest RMSD
reaching 4.13 nm. The increases shown in KLQAEQ and KLQSGA were less drastic when
compared to KLQAND and KLQSVQ, reaching peaks of 1.00 and 1.20 nm, respectively. The
details of the dynamic events that postulate these steep increases in RMSD for KLQAEQ,
KLQSGA and KLQSVQ are discussed below. To summarize, most systems consistently
achieved RMSD equilibration around 0.2 nm. With the exception of KLQAEQ, KLQAND,
KLQSGA and KLQSVQ, the RMSD values for the systems ranged between 0.1 and 0.38 nm.
Similar RMSD values for the MP® apo-dimer that fall within this range were reported by
Suérez and Diaz (2020), where they sought to inhibit the protein using peptide-based

inhibitors.
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Figure 4.1. The global stability of the MP® and MP*-Hexapeptide complexes. RMSD of the backbone a-carbon
atoms for the apo-protein and KLQ*** hexapeptide bound MP™ systems during the 20 ns MD simulation. Plots
were created using RStudio.

44.12Rg

The degree of compactness and folding of the MP™ systems was monitored through the Rg
plotted against time as shown in figure 4.2. Rg was used to monitor changes in protein
structure with respect to its native state, thus relaying information about the folding and
unfolding of the MP™ structure during the 20 ns simulations.

The majority of the systems retained similar degrees of compaction, as shown by the
equilibration of the Rg around 2.60 nm throughout the simulation. The apo-MP™ was also
among these systems. In the context of the complexed systems, this trend indicates that the
effect of substrate binding does not confer instability in protein structure; further pointing to
the substrate specificity of MP™ for this set of KLQ*** hexapeptides. This is also indicated in
the observed proper substrate binding (chapter 3, section 3.6.7.1), and the prevalence of
stabilising intermolecular interactions (chapter 3, section 3.6.7.2) known to confer strength
and stability in complexes.

Interestingly, some complexed systems displayed steady drops in Rg as the simulation
progressed (KLQAAA, KLQAEV, KLQAGM, KLQAGQ, KLQALE, KLQAKN, KLQATG,
KLQATN, KLQATV, KLQAVN, KLQSAE, KLQSAM, KLQSEA, KLQSEM, KLQSEN,
KLQSLA, and KLQSNM). The decreases in Rg values never fell below 2.55 nm. In these

systems, the binding of substrates introduced, increased the compaction of the protein
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structure, and resulted in a slightly greater contraction of the MP™-hexapeptide structure.
Similarly, some of the systems displayed steady increases in Rg (from 2.6 nm) as the
simulation progressed, without exceeding 2.65 nm (KLQAAV, KLQAKM, KLQSGV and
KLQSLV). Structural compaction was reduced in the systems, showing minor flexibility in
the MP-hexapeptide structure as the simulation progressed. There were also a few systems
that consistently attained and retained Rg equilibration above (KLQAAN, KLQANA,
KLQAVA and KLQSEQ), and below (KLQAAD, KLQAAE, KLQAEM, KLQSLE and
KLQSLG) the typical 2.6 nm point of equilibration. The overall Rg values of these
aforementioned systems roughly ranged between 2.57 and 2.62 nm. Notably, the reference
state for these systems had an Rg of 2.57 nm. Thus, MP*-hexapeptide and apo-MP™ systems
retained close levels of flexibility to their native states.

As also seen in the RMSD, the systems KLQAEQ, KLQAND, KLQSGA and KLQSVQ
displayed steep hikes in Rg at various times of their simulations. KLQSVQ and KLQAND
achieved the steepest hikes, reaching maximum values of approximately 5.40 and 5.31 nm,
respectively. As with RSMD, KLQAEQ and KLQSGA attained less drastic increases in Rg
than KLQSVQ or KLQAND, with approximate peaks of 2.67 and 2.74 nm, respectively.
Fascinatingly, these peaks in Rg corresponded to the peaks of RMSD with regards to scale
and the timestamps of the simulation period, suggesting that the sudden increase in backbone
fluctuations correlated with the sudden increases in structural flexibility. Outside these
timestamps, these systems display the typical hexapeptide-protein behaviour demonstrated by
the majority of the systems simulated. Curiously, a look into the binding modes of substrates
reveals that all were bound onto the MP™ active site appropriately and in accordance with the

nomenclature of Schechter and Berger (1967).
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Figure 4.2. The global stability of the MP® and MPr-Hexapeptide complexes. Rg of the backbone a-carbon
atoms for the apo-protein and KLQ*** hexapeptide bound MP™ systems during the 20 ns MD simulation. Plots
were created using RStudio.

As a conclusion, the RMSD and Rg of these systems, except for KLQAEQ, KLQAND,
KLQSGA and KLQSVQ, displayed no indication of destabilising effect of the KLQ***
hexapeptides on the MP™ structure and further confirmed the stabilising force and strength of
the intermolecular interactions in the substrate binding interface. At present, there is little in
the literature surrounding the behaviour during the dynamics of these and similar systems.
However, interestingly, Gupta et al. (2020) reported RMSD and Rg values for SARS-CoV-2
Mpr within the same range for an inhibitory study using natural compounds. In contrast to

this study, they performed slightly longer 30 ns MD simulations

4.4.2 LOCAL STRUCTURAL STABILITY OF THE SARS-COV-2 M?RO

4.4.2.1 RMSF

Local chain fluctuations of the MP™ were measured by calculating the RMSF and assessed
using heatmaps. Heatmaps allowed the identification of high-flexibility regions, which were
subsequently mapped on the MP™ crystal structure to reveal the positions of these regions
within the 3D protein structure.

Across all systems, the RMSF of chain A approximated the RMSF of chain B, despite the fact

only chain B had a bound substrate in complex systems (figures 4.5, 4.7 and 4.9). Moreover,
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slightly higher RMSF values were registered in chain A. Overall, the highest RMSF values
were obtained in systems KLQAND and KLQSVQ (figure 4.9 & 4.10). Since these values
were disproportionately higher than the rest of the systems, the data were separated to
optimise visualisation as follows: 1) systems with KLQ*** substrates with Ala at P1’ (figures
4.5 & 4.6); ii) systems KLQ*** substrates with Ser at P1’ (figure 4.7 & 4.8); iii) systems with
KLQAND and KLQSVQ (figures 4.9 & 4.10).

Figure 4.5 shows the heatmaps for both chains of KLQA** systems alongside the apo-MP™.
While values vary from one system to the next, both chains of the MP™ demonstrated similar
values and high-flexible regions in each system. Overall, the RMSF values for KLQA**
systems ranged between 0.0384-0.5805 nm for chain A and 0.0394-0.5698 nm for chain B.
High flexibility was observed in residues 21-26, 44-80, 92-97, 118-127, 141-144, 152-156,
167-171, 188-198, 215-288, and 298-302 in chain A (figure 4.5A); and residues 1-4, 22-24,
44-80, 92-96, 118-125, 153-156, 168-171, 188-197, 212-288, and 297-301 in chain B (figure
4.5B), respectively.
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Figure 4.5. The local stability of the MP® and MP°-KLQA** Hexapeptide complexes. RMSF of the backbone
a-carbon atoms for the apo-protein and KLQA** hexapeptide bound MP® systems during the 20 ns MD
simulation. A and B refer to the separate chains of the MP™ homodimer. Images were created using RStudio.

The majority of the highly fluctuating residues constituted loop regions in both monomers of
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the MP™, as shown (as red, and blue) in figure 4.6. Loop regions are highly flexible structures
in their native state. Of all the flexible loop regions, the residues 1-4 displayed flexibility
exclusively in chain B. Residues 1-9 are known to form the N-finger terminal region which
plays a crucial role in dimer formation through interactions with Domain II of chain A (Sheik
Amamuddy et al, 2020). Semi-flexibility in B-sheets was displayed on either end of the
structure in both monomers, connecting to or from loop regions. These [3-sheets constituted
Domains I and II. Additionally, there were a-helices displaying semi-flexibility, comprising
of residues 44-80 (domain I) and 212-288 (domain III). Residues 44-80 are part of the
catalytic domain which is responsible for catalysis and MP™ autocleavage (Mengist ef al.,
2021). Sequentially, this a-helix comes after the catalytic His41 and is comprised of key
residues like Met49 which contribute to substrate stabilisation. Considering the RMSD and
Rg of these systems, this apparent semi-flexibility is not indicative of instability in the
binding pocket, but instead shows functional flexibility that accommodates the bound
substrate. The o-helices of Domain III (figure 4.6 lower region of protein) consistently
displayed high flexibility in both monomers. Curiously, o-helices typically demonstrate
restricted motion but can confer great flexibility that is essential to protein function (Skipper,
2005). However, since the helices are connected by long loop chains, fluctuation/deviation is

highly likely to be present.

Figure 4.6. The localisation of high-fluctuation residues of the MP@ in apo- and KLQA** Hexapeptide bound
systems. The 3D structure of the MP® show chain A and chain B in orange and green, respectively. Residues
displaying high fluctuations are shown in red in chain A, and in blue in chain B. Catalytic His41 is shown as
blue spheres and catalytic Cys145 is shown as yellow spheres on each chain. Images were generated using
PyMOL.

The KLQS** systems showed similar trends to the KLQA** systems in terms of RMSF and
the localisation of flexible residues. Much like KLQA** systems, the RMSF of chain A were
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similar to the RMSF of chain B (figure 4.7). The value for RMSF ranged between 0.0399 -
0.4223 nm for chain A and 0.0372-0.3726 nm for chain B. Similarly, flexibility was
demonstrated in residues 21-26, 32-35, 44-80, 92-97, 119-123, 139-143, 153-156, 167-171,
187-197, 212-288, and 297-302 in chain A; and residues 1-5, 21-26, 33-35, 44-66, 70-80,
92-98, 152-156, 167-170, 186-197, 212-238, 241-286, and 297-301 for chain B. Flexibility in

N-finger terminal residues was also exclusive to chain B (figures 4.7B & 4.8).
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Figure 4.7. The local stability of the MP® and MPP-KLQS** Hexapeptide complexes. RMSF of the backbone
a-carbon atoms for the apo-protein and KLQS** hexapeptide bound MP® systems during the 20 ns MD
simulation. A and B refer to the chains of the MP™ homodimer. Images were created using RStudio.
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Figure 4.8. The localisation of high-fluctuation residues of the MP® in gpo- and KLQS** Hexapeptide bound
systems. The 3D structure of the MP® show chain A and chain B in orange and green, respectively. Residues
displaying high fluctuations are shown in red in chain A, and in blue in chain B. Catalytic His41 is shown as
blue spheres and catalytic Cys145 is shown as yellow spheres on each chain. Images were generated using
PyMOL.

In the context of the two KLQAND and KLQSVQ systems, residue fluctuation was the
highest across all systems with values ranging between 0.2261-1.1565 nm for chain A, and
0.2174-1.1333 nm for chain B. The flexible residues were similar to those in the KLQA**
and KLQS** systems, and included residues 1-17, 69-73, 96-100, 111-127, 138-144, 152-157,
202-209, 210-223, 224-234, 236-237, 242-254, 255-259, 260-276, 277-285, 286-298, and
299-302 in chain A; and residues 1-19, 24-29, 69-74, 95-100, 111-128, 138-143, 151-157,
170-173, 199-206, 207-223, 224-227, 247-288, 291-299, and 300-301 in chain B. These were
the only instances where the N-finger terminal residues displayed flexibility in both chains
(figure 4.9 & 4.10).

Furthermore, the localisation of the flexible residues showed more residue fluctuation in
Domain II involving [B-sheets; this was not evident in all other systems. The a-helix
semi-flexibility (residues 44-63) around the catalytic dyad was also not shown in these
systems, pointing towards potential inactivity of the active site residues. Further, a-helices
residues constituting Domain III demonstrated greater flexibility than any of the

aforementioned systems.
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Figure 4.9. The local stability of the MP® and MP°-KLQ*** Hexapeptide complexes. RMSF of the backbone
a-carbon atoms for the apo-protein, KLQAND and KLQSVQ hexapeptide bound MP® systems during the 20 ns

MD simulation. A and B refer to the chains of the MP® homodimer. Images were created using RStudio.
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Figure 4.10. The localisation of high-fluctuation residues of the MP™® in apo-, KLQAND and KLQSVQ
Hexapeptide bound systems. The 3D structure of the MP™ show chain A and chain B in orange and green,
respectively. Residues displaying high fluctuations are shown in red in chain A, and in blue in chain B. Catalytic
His41 is shown as blue spheres and catalytic Cys145 is shown as yellow spheres on each chain. Images were
generated using PyMOL.

In conclusion, the RMSF results show that the MP™ residues display typical fluctuation
patterns in the presence of the KLQ*** substrates, except for KLQAND and KLQSVQ, of
course. The RMSF in both monomers approximated one another in magnitude and
localisation, in terms of flexible regions of the MP™. Curiously, the KLQAEQ and KLQSGA
systems did not demonstrate atypical, or similar behaviours to KLQAND and KLQSVQ as
previously shown in RMSD and Rg. The visualisation of the systems revealed the key events
that account for these nuances/variations in the KLQAEQ, KLQSGA, KLQAND and
KLQSVQ systems. The details are further discussed below.

4.4.3 ANALYSIS OF THE PROMINENT MOTIONS OF THE MP®C SYSTEMS

4.4.3.1 PCA

The prominent structural motions and conformational changes of the MP® backbone during
the 20 ns MD simulations were assessed using PCA calculations. PCA divided the overall
motion of the trajectories into principal components that describe the essential functional
protein motions during the simulation. Since the first two principal components, PC1 and
PC2, retain the majority of the variance of the original data, they can be used to provide a
meaningful description of the protein motions throughout the course of the simulations. Thus,
2D projections of these principal components were plotted using the Cartesian coordinates of

all backbone atoms and used to visualise and examine these conformational changes (figure
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4.11).

The coordinates were divided into three to observe the motions of the systems at various time
periods in the duration of the simulation. The black points depict the backbone motions in the
first third (frames 0-666), the green points indicate the motions in the second third (frames
667-1333), and the red points show the motions of the final third (frames 1334-2001) of the
simulation, as shown in figure 4.11. The different systems demonstrated different patterns in
protein motions and backbone conformational changes. The direction of change of the PCA
plot according to timeframe was unique to each system, with some demonstrating a clockwise
change in PCA (like KLQAAD and KLQAAE), whilst others displayed an anti-clockwise
change in PCA trajectory (like APO and KLQAAA). Seemingly, the majority of systems
retained steady conformational changes throughout the simulation as the distribution of the
coordinates of the PCA were generally compact. Regardless of the patterns shown by the PC1
and PC2 coordinates, the typical range for the coordinates was between -5 and 5 for both PC1
and PC2. The KLQAEQ, KLQAND, KLQSGA and KLQSVQ systems displayed the most
drastic conformational changes, indicating structural instabilities during the simulation. The
time periods in which these rapid conformational changes occur corresponded with the

timestamps of the backbone instability illustrated by their RMSD and Rg results.
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Figure 4.11. The 2D projections of the principal components for MP® apo and KLQ***-substrate-bound systems
over the duration of the 20 ns MD simulations. The projection of the motion along phase space for PC1 and PC2
of MP apo and KLQ***-substrate-bound systems, showing the first third (black), second third (green) and final
third (red) of the 20 ns simulation. Images were generated using Xmgrace (of Grace 5) and RStudio.

4.4.3.2 CLASSIFICATION OF THE PCA

In an attempt to classify the PCA data, a custom pairwise comparison of the MP™ systems was
performed. The Cartesian coordinates of PC1 and PC2 for each system were fitted in a 5%5
grid to demarcate the protein motions as defined by PCA over the course of the simulation. In
intervals of 2 ns (200 frames), the PC1 and PC2 coordinates of the protein were averaged and
subsequently used to position the PCA within a grid. This was assigned a letter code to
uniquely identify the position of the PCA in the particular time interval (Appendix P). The
string of letters therefore uniquely identified the progression in PCA for a particular
simulation (Appendix Q). The differences in these codes between simulations were used to
create a pairwise comparison that included all the systems (Appendices R & S). This assumes
that the motion described by PC1 and PC2 is the same in compared systems. However, this
was in an attempt to identify systems with similar motion across 132 simulations; once
identified, the similarity of motion could be validated through the superimposition of the
structures.

The differences between these PCA codes were clustered using correlation as a measure of
distance (figure 4.12). Figure 4.12 shows the cluster map, and this illustrates the correlation
of the protein motions for all the systems, with respect to one another (bearing in mind the
underlying assumption). The accompanying hierarchy also indicates four main clades of PCA
plot, where progression of PCA within the clade is similar. This hierarchical clustering was
performed to indicate hierarchical relationships between the systems, with regard to their
dynamic motion (figure 4.13). Hierarchical clustering allowed for the arrangement of the
systems based on similarity. The resultant dendrogram of the hierarchical clustering also
clearly shows these four main groups of systems sharing similarities. The main clades are
shown in table 4.1. While three groups of PCA plots share varying similarities within and

between themselves, group 1 PCA (comprising of the KLQSVQ, KLQAEQ and KLQAND
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systems) demonstrated the highest dissimilarity to the other groups. Considering the results of
RMSD, Rg and even RMSF (for KLQAND and KLQSVQ systems), this is highly expected
and relates to the dynamic events that indicate destabilisation of these systems during the
simulations. This illustrated the ability of this clustering of PCA codes to identify highly
dissimilar motion, this dissimilar motion is already confirmed from RMSD, Rg and RMSF.
Interestingly, the KLQSGA system which also showed backbone instability in RMSD and Rg
was arranged in group 3 and not alongside the KLQSVQ, KLQAEQ and KLQAND systems.
However, the dendrogram in figure 4.13 indicates that KLQSGA displayed the highest
dissimilarity with the rest of the systems within the group, delineating a weak correlation in

terms of protein motions and conformational changes with "similar" systems.

Figure 4.12. Determination of correlation in the protein motions of MP™ dynamic systems. The clustering of the
differences in protein motions of MP® systems using correlation as a measure of distance. The image was
generated using Seaborn in Python.
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Figure 4.13. The similarity of the protein dynamic motion in the apo-MP® and Hexapeptide-MP™ systems. The
dendrogram shows the arrangement of the MP™ systems according to similarity. The image was generated using
Seaborn in Python.

103



Table 4.1: The related MP™ systems based on conformational changes in the duration of the 20 ns simulation.

Substrates

Groups
1 2 3 4

KLQSVQ; KLQANYV; KLQSNN; KLQSGA; KLQAAG;
KLQAEQ; KLQAKE; APO; KLQSLE; KLQSGV; KLQANA;
KLQAND KLQSEG; KLQSAG; KLQAAE; KLQAKN; KLQAAA,;
KLQSAV; KLQAGQ; KLQSEA; KLQAVA;
KLQSSV; KLQALG; KLQSAN; KLQAAD; KLQALQ;
KLQATD; KLQSGE; KLQALM; KLQSVG; KLQSAE;
KLQSNQ; KLQAAM,; KLQSVD; KLQSAQ; KLQAGM;
KLQAEA; KLQSKN; KLQASQ; KLQSNA; KLQSVV;
KLQSLG; KLQSLV; KLQAAQ; KLQANG; KLQSGQ;
KLQSSE; KLQALA; KLQAEM; KLQSLN; KLQALD;
KLQSAA; KLQSGD; KLQSEQ; KLQAGV; KLQAKD;
KLQSKD; KLQSTD; KLQAVYV; KLQATA; KLQAGG;
KLQAGE; KLQAKYV; KLQSTA KLQASV; KLQSKV;

KLQATM; KLQAVG;
KLQAKG; KLQAVD;
KLQATV; KLQSTE;
KLQSTG; KLQAKA;
KLQSLQ; KLQSTN;
KLQSAD; KLQASN;
KLQSSD; KLQALE;
KLQAED; KLQSGN;
KLQAKQ; KLQASA;
KLQATE; KLQAGD;
KLQSSN; KLQSVE;
KLQSAM; KLQSKA

KLQANM; KLQAVN;
KLQSKG; KLQSTQ;
KLQSLA; KLQSNM;
KLQSND; KLQASM;
KLQSTM; KLQANQ;
KLQSLD; KLQSEE;
KLQSEM; KLQSLM;
KLQSVN; KLQAEE;
KLQAGA; KLQAVM,;
KLQSNG; KLQATQ;
KLQSSG; KLQALN;
KLQAEG; KLQATG;
KLQATN; KLQAVQ;
KLQASG; KLQAAYV;
KLQASD; KLQSKM;
KLQAVE; KLQSEN;
KLQASE; KLQALYV;
KLQANE; KLQAEV;
KLQSVA; KLQAAN;
KLQAKM; KLQSKQ;
KLQSSQ; KLQSVM

The PCA results are in agreement with RMSD, Rg and RMSF observations. All the systems

displayed similar behaviour that correlates with the trends of the RMSD and Rg, shown by

the equilibration around 0.2 nm and 2.60 nm, respectively. Despite binding substrates with

minor chemical differences, the proteins achieved and retained similar backbone flexibility

and degree of compaction, and overall displayed similar stability in their trajectories. The

SARS-CoV-2 MP® has an intrinsic mechanism that enables the protein to bind different

peptide substrates without conferring instability to the entire structure. In PCA, the majority

of the systems seemingly occupied the same spaces throughout the course of the simulation.

The exceptions to these trends have consistently included KLQAEQ, KLQAND, KLQSGA
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and KLQSVQ systems. The hierarchical clustering even showed the high dissimilarity the
protein motions in these systems share with the rest. However, the explanation for the
partitioning of these select systems owes to the events that occur during the MD simulation.
Thus, two systems from each hierarchical clade (or group) were selected for trajectory

visualization using VMD.

4.4.3.3 VISUALISATION OF THE TRAJECTORIES

The visualisation of the trajectories was carried out to assess the similarities of protein
motions implied in the hierarchical clustering and to monitor the events that caused the
backbone destabilisation in the KLQAEQ, KLQAND, KLQSGA and KLQSVQ systems.

The visualisation of group 1 systems (KLQAEQ and KLQSVQ) provided insight into the
instability of the backbone of the protein systems. Figure 4.14 shows that the systems appear
to not overlap at any point of the simulation, indicating a weak relationship (in terms of
movements) between the two protein systems. In KLQAEQ, the timestamps of steep
increases in RMSD and Rg correspond to unbinding events of the substrate. The ejection of
non-covalently bound ligands from the active site normally does not produce such extreme
changes to the RMSD and Rg of the protein backbone. In this case, the peaks are shown as a
result of including the substrates as a third chain of the MP™ before topology generation, as
previously mentioned. Thus, the motions of the substrates contributed to and affected the
values for RMSD and Rg. In terms of RMSF, the unbinding of the substrates is not visible in
the RMSF plots, since these RMSF plots were limited to chains A and B. This explains why
the KLQAEQ system was not included in RMSF with the extremely high-fluctuation systems.
The RMSF only measured the deviations of the residues of each of the monomers. Hence, no
high RMSF values were registered for the system. The spikes in RMSD and Rg for KLQSVQ
corresponded with the dissociation of the MP™ dimer (figure 4.14). The movement apart of
the monomers caused a great displacement of the subunit backbones and consequently,

induced the high values for RMSD, Rg and RMSF.
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Figure 4.14. Visualisation of the MD trajectories for Group 1 systems. Protein systems are shown cartoon
representation, showing MP°-KLQAEQ in blue and MP*-KLQSVQ in red. Images were generated using VMD.

The visualisation of the KLQAND system also revealed dimer dissociation at the timestamps
corresponding to the steep spikes in RMSD and Rg (figure 4.15). The same explanation for
the high values in RMSD, Rg and RMSF also applies in this system. The dimer dissociation
resulted in great displacement of the monomers, thus increasing deviation from reference
points and inducing high RMSD, Rg and RMSF values. Curiously, in both systems, the MP™
dimer was restored after initial dissociation and later further dissociated. The dissociation of
the dimer in these systems proves to be an area of interest for future study. The identification
of the underlying molecular interactions that governed this dissociation could prove

beneficial in the investigation of antiviral agents.
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Figure 4.15. Visualisation of the MD trajectories for the KLQAND system. Protein systems are shown cartoon
representation, shown in blue. The images were generated using VMD.

The visualisation of group 2 systems (the apo-MP™ and MPP-KLQSEG) showed a strong
relationship in protein motions as the structures overlapped throughout all frames of
dynamics (figure 4.16). Particularly, Domains I and II (the chymotrypsin-like structure)
consistently overlapped throughout the simulation, while the helices of Domain III showed
the most difference. The mapping of high-flexibility residues indicated this domain to be
highly flexible.

107



Figure 4.16. Visualisation of the MD trajectories for Group 2 systems. Protein systems are shown cartoon
representation, showing apo-MP™ in blue and MP*-KLQSVQ in red. Images were generated using VMD.

Group 3 systems (MP°-KLQAVV and MP°-KLQSGA) displayed little similarity in protein
motions at any point of the simulation (figure 4.17). This is supported by the placement of
these systems in dendrogram, where KLQSGA was shown to have high dissimilarity with the
rest of the system in group 3. Nonetheless, the KLQAVV system demonstrated structural
stability, as well as ligand stability throughout the simulation. The KLQSGA systems showed
the unbinding of the substrate at corresponding time stamps with steep spikes in RMSD and
Rg. This substrate ejection is seemingly the cause of the dissimilarity of KLQSGA with other
systems in groups 3. However, the relation with other group 3 systems could possibly be as a
result of overlapping MP™ motions. Much like KLQAEQ), the ejection of the substrate induces
the high values in RMSD and Rg, but did not affect the RMSF values because only MP™©
residues were considered in the calculations. This also explains as to why the spikes in
KLQAEQ and KLQSGA were not as drastic like KLQAND and KLQSVQ. The spikes were
a result of substrate displacement (or deviation), which was very small with respect to the

Mpro

108



Figure 4.17. Visualisation of the MD trajectories for Group 3 systems. Protein systems are shown cartoon
representation, showing MPP-KLQAVYV in blue and MP°-KLQSGA in red. Images were generated using VMD.

Group 4 systems (MPP-KLQAAA and MP°-KLQSKG) also showed little similarity in motion
(figure 4.18). Overlapping of structures was visible in the B-sheets of Domain I. Considering
the placement of the KLQAAA and KLQSKG systems in the dendrogram (figure 4.13; table
4.1), a strong relation in protein motion was less likely. It could be that generally the motions
are within a broad range, but visually it is not possible to see this detail, or it could be that

simply the PC1 and PC2 motions are not the same in these systems.
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Figure 4.18. Visualisation of the MD trajectories for Group 3 systems. Protein systems are shown cartoon
representation, showing MP°-KLQAAA in blue and MP°-KLQSKG in red. Images were generated using VMD.

Lastly, the visualisation of the systems from the different groups revealed little to no
similarity in motion between the groups (figure 4.19). Structural overlaps rarely occurred
during the simulation. These systems were representatives for each clade and each clade
diverges from the highest point of dissimilarity as shown in figure 4.13. This observation
further validates the outcomes of the hierarchical clustering since these systems exhibited no

similar motions throughout the 20 ns simulation.
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Figure 4.19. Visualisation of the MD trajectories for systems in all hierarchical groups. Protein systems are
shown cartoon representation, showing MP°-KLQSKQ in blue, MP*-KLQSGA in red, MP*-KLQSVQ in purple
and MP-KLQSEG in orange. Images were generated using VMD.

This visualisation, of the four clades of PCA progression, allowed the inspection and
confirmation of the similarities in protein motion of the systems. This shows that this type of
PCA progression analysis is able, certainly in some cases to identify both similar and
dissimilar motions of the protein. With refinement, it could provide for general use. In this
case, it certainly provided focus on particular systems given the number of simulations to
assess. For the second group of systems we have a set where the substrates affect the motion
during dynamics in a very similar manner. These are listed in table 4.1 of this chapter.
Furthermore, the dynamic events that indicated instability in the KLQAEQ, KLQAND,
KLQSGA and KLQSVQ systems were assessed and this provided insight into the behaviour

of the protein and the substrate in the respective systems.

4.5 CHAPTER SUMMARY

In this chapter, the objective to assess the behaviour and conformational changes of the MP™
in dynamic environments was addressed. MD simulations were performed on 132 MPe

systems (apo- and 131 KLQ*** hexapeptide bound), for a simulation period of 20 ns. The
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trajectory files from these simulations were analysed in terms of RMSD, Rg, RMSF and PCA
to monitor backbone fluctuation, protein folding stability, residue-level fluctuations and
protein motion and conformational changes, respectively.

The majority of MP™ systems demonstrated relatively similar behaviour in terms of global
stability of the backbone. Typical RMSD and Rg were equilibrated around 0.2 nm and 2.6 nm,
respectively; indicating stable backbone flexibility and protein folding over the course of the
20 ns simulations. The exceptions to these trends were consistently the KLQAEQ, KLQAND,
KLQSGA and KLQSVQ systems which displayed extreme increases in RMSD and Rg at
various time frames when comparing the systems. These increases corresponded in
timestamps in both RMSD and Rg within the same system. Despite having substrate docking
performed exclusively on chain B of the MP™, local fluctuation analysis saw the two MP™©
chains approximately matching one another in magnitude and localisation of high-flexibility
residues and regions of the protein. Localisation of high-flexibility residues showed high
flexibility in loop regions joining B-sheets and the domains of each monomer, as well as the
helices of Domain III. Semi-flexibility was observed in the catalytic domain which appeared
to be functional fluctuation that accommodates the bound hexapeptide. Only the KLQAND
and KLQSVQ systems registered disproportionately high RMSF values when compared to
the rest of the systems in data.

In terms of protein motion and conformational changes, the different systems displayed
unique PCA progression. Generally, the distribution of the coordinates of PC1 and PC2 were
compact and ranged between -5 and 5. As with RMSD, Rg and RMSF, the KLQAEQ,
KLQAND, KLQSGA and KLQSVQ systems registered extreme values for the coordinates of
PC1 and PC2; in time periods corresponding to time frames of high RMSD, Rg and RMSF.
In order to accommodate the analysis of 132 PCA plots, a strategy in terms of encoding PCA
progression during the dynamic simulations was introduced, that could identify similar and
dissimilar systems on the basis of protein motion and conformational changes. The strategy
was able to identify that group 2 motions, according to sequences in Table 4.1, of the protein
during dynamics is similar, and therefore the interaction between MP™ of these systems is
likely similar. Taking results from RMSD and Rg, together with visualisation of the
trajectories enabled the identification of the unstable systems where dimer dissociation was
observed, in particular for systems KLQAND and KLQSVQ; and the unbinding of the
substrates in KLQAEQ and KLQSGA systems.
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CONCLUDING REMARKS AND FUTURE PROSPECTS

COVID-19, as a disease and pandemic, continues to cause devastation around the
world. The strain on public health services is of extraordinary and unprecedented
proportions. The disease is caused by SARS-CoV-2 infection. Existing measures
placed to control the spread of the virus are losing efficacy due to the emergence of
novel variants with increased virulence and immunological evasive mechanisms. The
viral life cycle of SARS-CoV-2 relies greatly on the cleavage of polyproteins la and
lab into mature non-structural proteins (nsps), facilitated by the main protease (MP™)
and papain-like proteases activity. After its autocleavage, the MP™ further cleaves
downstream nsps at eleven sites, recognising the sequence Leu-Gln|(Ser/Ala/Gly) (|
shows the cleavage site). MP™ proves to be a promising drug target as it exhibits high
degrees of conservation in sequence, structure and specificity. Therefore, this study
sought to profile the binding of substrates in the context of hexapeptide substrates,
onto SARS-CoV-2 MPr.

In this study, a virtual multi-conformer substrate library was generated comprising
100 conformers of 810 unique hexapeptide sequences. Each hexapeptide was
constructed to contain the recognition sequence and cleavage points and equally
divided between the C- (P3-P1) and N-terminal (P1'-P3’) products. Terminal capping
was successfully effected to safeguard the structural stability of each conformer.

The conformers were screened against chain B of the crystal structure of
SARS-CoV-2 Mre (PDB ID: 6XHM) using AutoDock Vina at high levels of
exhaustiveness. After docking, the reproducibility of docking results was validated
using the high-affinity poses. Calculation of ligand efficiency indices consistently
showed residues Val, Ala, and Gly and Ala, to be efficient binders at P3, P1’, and P2’
and P3’, respectively. RLQ*** substrates exhibited the poorest binding efficiencies
despite attaining the highest mean binding energy, and the best balance between BEI
and SEI. Subsite mapping was performed to assess substrate recognition at the active

site and the majority of hexapeptides showed appropriate binding modes. Resolution
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of active site intermolecular interactions, as means to assess specificity, revealed a
high prevalence of stabilising interactions, like hydrogen bonding, proving favourable
binding and thus confirmed specificity. This specificity was also supported by the
high-affinity binding of hexapeptides, as Vina scores ranged between -8.7 and -7.0
kcal.mol!. Hexapeptide binding modes and interactions showed optimal positioning
of the substrates at the active site for proteolytic cleavage.

Complexed MP® systems with 131 KLQ*** hexapeptides and an apo-MP™ were
subjected to 20 ns MD runs to assess the strength of the interactions and the binding
effect of the hexapeptides. System stability was assessed using RMSD, Rg and RMSF
and revealed persistent stability in all but four systems. PCA was performed to assess
the protein motion and conformational changes in the MP® systems and showed a
compact distribution of PC1 and PC2 in all but the same four systems. Custom
pairwise comparison was conducted to quantify the PCA progression of each system
and to subsequently determine similarities in PCA motion among the 132 systems
through hierarchical clustering. Hierarchical clustering revealed four main clades (or
groups) of similarity in the PCA progression. Trajectory visualization confirmed the
calculated similarity within one group and verified dissimilarity across the groups.
Visualization was also used to assess the dynamics of the four unstable systems and
revealed substrate unbinding in KLQAEQ and KLQSVQ systems, and dimer
dissociation in KLQAND and KLQSVQ systems.

This present study is a prelude for intended future studies which will seek to
characterise the MP® proteolytic mechanism using combined Quantum
Mechanics/Molecular Mechanics techniques, as well as to explore and profile the
conformational diversity of the hexapeptides, since they are fundamentally protein
chains, using Replica Exchange Molecular Dynamics. Furthermore, future inhibition
studies have many bases for rational drug design, such as position-specific efficient
(binding) residues, binding modes (appropriate and inappropriate) of the hexapeptides,
hexapeptide unbinding, dimer dissociating hexapeptides and so forth.
Recommendations for future studies include permitting flexibility in MP™ active site

residues during docking and longer MD simulations, allowing for more accurate
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profiling of substrate binding and longer periods to assess the effect of the

hexapeptides on the behaviour of the SARS-CoV-2 MP™.
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SUPPLEMENTARY MATERIAL

Supplementary figure 3.1. Preliminary docking studies to determine the protein chain to prioritise for
docking studies. The negative of the docking scores of the RLQAAN conformers were plotted on bar
graphs, showing the docking scores of chain A (red) and chain B (blue). Image was generated using
WPS Spreadsheet 2019.

Supplementary table 3.1: Summary of docking results.

Substrate Conformers o Best AG
Docked Binding Conformer (kcal/mol)

KLQAAA 100 17 -8.3
KLQAAD 100 100 -8.2
KLQAAE 100 3 -8.1
KLQAAF 100 27 -8.2
KLQAAG 57 27 -8.1
KLQAAM 19 32 -7.6
KLQAAN 10 32 -7.9
KLQAAQ 10 33 -7.9
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TLQAEM
TLQAEN
TLQAEQ
TLQAEV
TLQAGA
TLQAGD
TLQAGE
TLQAGF
TLQAGG
TLQAGM
TLQAGN
TLQAGQ

24
14
10
40
24
24
24
40
40
10
10
24
19
14
10
14
24
35
10
24
10
40
10
10
24
10
24
40
14
10
24
35
24
10
40
14

31

31
27

15
16
15
13
31
36
17
38
38
31
31
19
23
31
17
33
13
31
33
16
33
19

32
33
19
32
32
34
19
35

-8.1
-8.2
-8.0
-8.3
-8.5
-8.4
-7.9
-8.2
-8.3
-8.2
-8.2
-8.2
-7.9
-8.1
-8.3
-1.7
-8.4
-8.1
-8.2
-8.2
-1.7
-8.0
-7.8
-8.2
-1.7
-8.4
-8.0
-8.1
-8.4
-7.6
-8.0
-8.6
-8.3
-7.9
-8.2
-8.2
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TLQAGV
TLQAKA
TLQAKD
TLQAKE
TLQAKF
TLQAKG
TLQAKM
TLQAKN
TLQAKQ
TLQAKYV
TLQALA
TLQALD
TLQALE
TLQALF
TLQALG
TLQALM
TLQALN
TLQALQ
TLQALV
TLQANA
TLQAND
TLQANE
TLQANF
TLQANG
TLQANM
TLQANN
TLQANQ
TLQANV
TLQASA
TLQASD
TLQASE
TLQASF
TLQASG
TLQASM
TLQASN
TLQASQ

24
10
10
24
14
14
10
10
35
10
10
24
40
10
10
10
40
24
35
14
24
35
14
24
40
24
10
24
14
10
40
10
40
24
14
40

17
32
32
32
32

32
31
22
35
33

11
33
31
31
14
32
16

39
23

31
18
18
33
19
33
33
17
31
25
39

11

-8.4
-7.6
-7.6
-7.6
-7.8
-8.0
-7.5
-7.5
-8.0
-7.6
-7.9
-8.1
-7.9
-1.7
-7.9
-1.7
-8.2
-7.9
-8.1
-7.9
-8.2
-7.9
-7.9
-8.2
-1.7
-8.5
-8.2
-8.1
-8.1
-7.9
-8.2
-8.0
-8.2
-1.7
-8.3
-8.0

144



TLQASV
TLQATA
TLQATD
TLQATE
TLQATF
TLQATG
TLQATM
TLQATN
TLQATQ
TLQATV
TLQAVA
TLQAVD
TLQAVE
TLQAVF
TLQAVG
TLQAVM
TLQAVN
TLQAVQ
TLQAVV
TLQSAA
TLQSAD
TLQSAE
TLQSAF
TLQSAG
TLQSAM
TLQSAN
TLQSAQ
TLQSAV
TLQSEA
TLQSED
TLQSEE
TLQSEF
TLQSEG
TLQSEM
TLQSEN
TLQSEQ

24
14
10
10
24
24
10
14
24
10
10
40
24
10
40
10
10
10
24
10
40
10
40
10
40
14
24
40
40
10
40
24
14
40
24
24

17
35
33
31
32
17
32
31
15
32
31
13
15
34
24
31
34
32
16
32
12
32
14
37
18
32
16
22
24
31
12
18
32
11
15
16

-8.1
-8.4
-7.9
-8.3
-8.4
-8.2
-7.8
-8.2
-8.2
-8.2
-8.6
-8.3
-8.1
-8.3
-8.4
-8.2
-7.9
-8.0
-8.4
-8.2
-8.1
-8.2
-8.4
-8.0
-1.7
-8.1
-8.2
-8.0
-8.1
-7.9
-8.2
-7.9
-8.0
-7.9
-8.0
-7.9
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TLQSEV
TLQSGA
TLQSGD
TLQSGE
TLQSGF
TLQSGG
TLQSGM
TLQSGN
TLQSGQ
TLQSGV
TLQSKA
TLQSKD
TLQSKE
TLQSKF
TLQSKG
TLQSKM
TLQSKN
TLQSKQ
TLQSKV
TLQSLA
TLQSLD
TLQSLE
TLQSLF
TLQSLG
TLQSLM
TLQSLN
TLQSLQ
TLQSLV
TLQSNA
TLQSND
TLQSNE
TLQSNF
TLQSNG
TLQSNM
TLQSNN
TLQSNQ

10
40
24
24
10
10
14
24
10
10
14
24
40
24
14
40
14
35
24
14
40
24
40
14
10
40
24
35
24
10
24
24
10
40
14
10

32

16
17
32
33
32
38
35
31
34
31
12
19
32
13

16
33
10
17
14

32
14
17
29

33
31
15
31
12

34

-7.6
-8.4
-7.9
-8.1
-8.2
-8.1
-7.9
-8.3
-7.9
-8.3
-8.0
-7.9
-8.1
-7.4
-8.0
-1.7
-7.4
-7.6
-8.0
-8.0
-1.7
-1.7
-8.1
-8.0
-7.1
-8.0
-8.0
-8.0
-7.9
-7.9
-1.7
-8.1
-7.9
-7.9
-1.7
-1.7
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TLQSNV
TLQSSA
TLQSSD
TLQSSE
TLQSSF
TLQSSG
TLQSSM
TLQSSN
TLQSSQ
TLQSSV
TLQSTA
TLQSTD
TLQSTE
TLQSTF
TLQSTG
TLQSTM
TLQSTN
TLQSTQ
TLQSTV
TLQSVA
TLQSVD
TLQSVE
TLQSVF
TLQSVG
TLQSVM
TLQSVN
TLQSVQ
TLQSVV
VLQAAA
VLQAAD
VLQAAE
VLQAAF
VLQAAG
VLQAAM
VLQAAN
VLQAAQ

40
40
10
24
40
40
40
40
24
40
40
40
24
10
40
10
35
10
24
24
24
24
14
40
35
35
10
24
10
10
35
35
24
24
10
14

13
13
31
15
28
11
20
13
16
14
12
11
18
31
14
31
20
32
15
17
19
16
31
10
18
20
32
15
31
32
15
25
34
15
34

-7.9
-7.9
-1.7
-7.9
-7.9
-8.1
-7.9
-8.1
-8.1
-8.2
-8.3
-8.2
-7.9
-8.0
-8.3
-7.8
-8.3
-7.8
-8.2
-8.1
-8.0
-1.7
-7.9
-8.1
-7.8
-8.4
-7.9
-7.9
-8.1
-8.2
-8.2
-8.6
-8.5
-7.8
-7.9
-8.1
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VLQAAV
VLQAEA
VLQAED
VLQAEE
VLQAEF
VLQAEG
VLQAEM
VLQAEN
VLQAEQ
VLQAEV
VLQAGA
VLQAGD
VLQAGE
VLQAGF
VLQAGG
VLQAGM
VLQAGN
VLQAGQ
VLQAGV
VLQAKA
VLQAKD
VLQAKE
VLQAKF
VLQAKG
VLQAKM
VLQAKN
VLQAKQ
VLQAKV
VLQALA
VLQALD
VLQALE
VLQALF
VLQALG
VLQALM
VLQALN
VLQALQ

14
24
35
40
40
10
35
40
10
10
10
24
40
14
10
24
24
10
10
24
10
10
24
10
24
40
40
24
10
10
24
10
10
40
10
35

35
15
10
13
32
22
14
31
34
34
17
12
34
31
16
19
34
32
32
31
31
17
34
38
23
14
31
32
34
37
31
31

33
17

-8.2
-8.2
-8.2
-7.9
-7.9
-7.9
-7.8
-8.4
-7.8
-8.0
-8.5
-8.1
-8.0
-8.2
-8.1
-7.9
-8.3
-8.2
-8.0
-8.0
-7.2
-7.5
-8.3
-7.8
-1.7
-8.1
-7.8
-7.8
-8.2
-8.2
-7.6
-8.0
-8.0
-7.6
-8.1
-8.3
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VLQALV
VLQANA
VLQAND
VLQANE
VLQANF
VLQANG
VLQANM
VLQANN
VLQANQ
VLQANV
VLQASA
VLQASD
VLQASE
VLQASF
VLQASG
VLQASM
VLQASN
VLQASQ
VLQASV
VLQATA
VLQATD
VLQATE
VLQATF
VLQATG
VLQATM
VLQATN
VLQATQ
VLQATV
VLQAVA
VLQAVD
VLQAVE
VLQAVF
VLQAVG
VLQAVM
VLQAVN
VLQAVQ

24
24
10
10
10
24
24
10
14
10
10
14
10

100
24
10
24
40
10
40
10
24
24
14
10
10
10
24
10
24
14
40
40
40

100
24

16

32
34
32
32
19
33

31
36

33
37
19
32
31
28
33
11
32
18
15

32
31
31

33

21
29
10
26
15

-8.1
-8.4
-8.4
-8.0
-8.1
8.2
7.8
8.2
8.2
-8.1
8.3
7.9
-8.0
8.2
-8.3
7.5
-8.4
-8.0
-8.1
-8.4
8.2
8.2
-8.1
-8.1
7.7
-8.4
8.2
8.2
8.2
8.3
-8.0
-8.6
-8.4
7.9
-8.4
8.2
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VLQAVV
VLQSAA
VLQSAD
VLQSAE
VLQSAF
VLQSAG
VLQSAM
VLQSAN
VLQSAQ
VLQSAV
VLQSEA
VLQSED
VLQSEE
VLQSEF
VLQSEG
VLQSEM
VLQSEN
VLQSEQ
VLQSEV
VLQSGA
VLQSGD
VLQSGE
VLQSGF
VLQSGG
VLQSGM
VLQSGN
VLQSGQ
VLQSGV
VLQSKA
VLQSKD
VLQSKE
VLQSKF
VLQSKG
VLQSKM
VLQSKN
VLQSKQ

40
24
24
10
10
24
24
24
35
24
10
24
24
10
10
24
14
24
40
10

100
10
40
14
40
35
10
24
24
35
10
35
10
24
40
10

22
16
18
31
34

16
17
19
18
31
31
15
31
33
31

18
30
33

35

26

32
15
17
16
33
19
31
39
15
31

-8.2
-8.2
-8.2
-7.9
-7.8
-8.2
-7.9
-8.2
-8.1
-8.3
-7.9
-8.1
-1.7
-7.8
-7.9
-7.6
-7.9
-7.9
-8.0
-8.2
-8.1
-7.8
-8.4
-8.3
-8.0
-8.2
-8.0
-8.3
-8.1
-7.9
-7.3
-7.8
-1.7
-7.4
-8.0
-7.5
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VLQSKV
VLQSLA
VLQSLD
VLQSLE
VLQSLF
VLQSLG
VLQSLM
VLQSLN
VLQSLQ
VLQSLV
VLQSNA
VLQSND
VLQSNE
VLQSNF
VLQSNG
VLQSNM
VLQSNN
VLQSNQ
VLQSNV
VLQSSA
VLQSSD
VLQSSE
VLQSSF
VLQSSG
VLQSSM
VLQSSN
VLQSSQ
VLQSSV
VLQSTA
VLQSTD
VLQSTE
VLQSTF
VLQSTG
VLQSTM
VLQSTN
VLQSTQ

40
40
10
24
14
10
10
24
10
35
14
19
14
14
10
24
10
14
24
10
10
10
10
24
10
10
10
24
24
10
24
10
24
24
24
40

11
10
32

31
33
31
17
34
31
36

31
38
31
31
33
38
31
31
33
16
32
31
33
15
16
33
19
31
18
34
15
17

-7.9
-8.3
-8.1
-7.6
-7.9
-8.5
-7.8
-8.0
-1.7
-8.1
-8.2
-7.8
-1.7
-8.0
-8.2
-1.7
-8.1
-8.2
-8.0
-8.2
-7.9
-7.9
-8.0
-8.0
-7.6
-7.8
-7.8
-8.0
-8.4
-8.1
-8.2
-7.8
-8.0
-1.7
-8.2
-8.2
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VLQSTV
VLQSVA
VLQSVD
VLQSVE
VLQSVF
VLQSVG
VLQSVM
VLQSVN
VLQSVQ
VLQSVV

24
14
40
10
24
40
10
24
10
10

33

15
31
35
11
31
37
35
32

-8.3
-8.0
-8.2
-7.5
-8.5
-8.1
-7.6
-8.2
-8.1
-7.9
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Supplementary table 3.2: Intermolecular interactions of SARS-CoV-2 MP* complexed with substrates RLQATF, RLQSGA and TLQSTF.
. Other Docking Score
*
Substrate Hydrogen Bonds van der Waals Interactions Interactions® (keal.mol )
Thr24; Thr25; Thr26; Tyr54; Leul41; Asnl142; Ser(A)1; His163; Phe140; Thr190;
RLQATF Gly143; Ser144; Cys145; His164; Met165; Asnl19; Leu27; His41; Met49; Cys45; Glyl143
Glul66; Asp187; GIn189; Argl188; Pro52
Ser(A)1; Thr24; Thr25; Leu27; Ser4
Thr26; His41; Asn119; Phel40; Gly143; Ser144;  6; Leul41; Asnl42; His163; Leul67; )
RLQSGA Cys145; His164; Glul66; Gln189; Thr190 Pro168; His172; Aspl87; Arglgs; ~ Miet9; Metl6s 8.7
Alal91; GIn192
Ser(A)1; Thr25; Thr26; Ser46; Met49; Phe140; Thr24; Leu27; Tyr54; Tyrl18;
RLQSTF Leul41; Asn142; Gly143; Ser144; Cys145; Asnl19; Asp187; Argl88; Thr190; His41; Metl165
His164; Glul66; GIn189 Alalol,

Blue: Catalytic His41; Red: Catalytic Cys145; Purple: Oxyanion Loop

*Hydrogen bonds include : Conventional, Carbon, Pi-Donor
* Other interactions includes: Alkyl, Pi-Alkyl, Pi-Sigma, Sulfur-X, Unfavourable Donor-Donor, Unfavourable Bump
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Supplementary table 3.3: Intermolecular interactions of SARS-CoV-2 MP® complexed with substrates RLQAAF, RLQAAN, RLQAGA, RLQALG, RLQAVN, TLQAGF,
TLQAVA, VLQAAF and VLQAVF.

Substrate

Hydrogen Bonds*

van der Waals Interactions

Other
Interactions*®

Docking Score
(kcal.mol™)

RLQAAF

RLQAAN

RLQAGA

RLQALG

RLQAVN

TLQAGF

TLQAVA

Thr26; His41; Tyr54; Leuldl;
Gly143; Ser144; Cys145; His164;
Met165;mGlul66; GIn189

Thr24; Thr25; Thr26; Ser46; Phe140;
Asnl42; Gly143; Ser144; Cys145;
His163; Glul66; GIn189

Thr26; Asn119; Phel40; Gly143;
Ser144; Cys145; His163; His164;
Met165; Glul66; GIn189

Thr26; Asnl119; Phe140; Gly143;
Ser144; Cys145; His164; Met165;
Glul66; GIn189

Thr24; Thr25; Thr26; Phel40;
Gly143; Ser144; Cys145; His164;
Glul66; Argl88; Gln189

Thr26; Asnl119; Phel40; Asnl42;
Gly143; Ser144; Glul66; GIn189

Thr24; Thr25; Thr26; His41; Phel40;
Gly143; Ser144; Cys145; Glul66;
Metl165; GIn189

Ser(A)1; Thr24; Thr25; Met49; Pro52;
Asnl119; Phel40; Asnl142; His163; Argl8S;
Thr190

Ser(A)1; Cys44; Thr45; Leul41; His164;
Leul67; Prol68; His172; Asp187; Argl88;
Thr190; Alal91; GIn192

Ser(A)1; Thr24; Thr25; Tyr54; Leul4l;
Asnl42; His172; Phel81; Asp187; Argl88

Ser(A)1; Thr24; Thr25; Ser46; Leul4l;
Asnl42; His163; His172; Phel81; Asp187;
Argl88

Ser(A)1; Thr45; Ser46; Asn119; Leul4l;
Asnl42; His163; Leul67; Pro168; His172;
Phel81; aAsp187; Alal91; GIn192

Ser(A)1; Thr24; Thr25; Tyr118; Leul41;
His163; His164; Leul67; Pro168; His172;
Aspl87; Argl88; Thr190; Alal91; GIn192

Ser(A)1; Leu27; Serd6; Leul41; Asnl42;
His163; His164; Phel81; Vall86; Aspl187;
Argl88

Leu27; His41;
Cys145

Leu27; His41;
Met49; Met165

Leu27; His41;
Met49; Cys145;
Metl165; GIn189

Leu27; His41;
Met29; GIn189 -8,6

Leu27; His41;
Met49; Metl65;
Thr190

Leu27; His41;

Met49; Cys145;
Metl165

His41; Met49;
Cysl145; Met165
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Ser(A)1; Thr24; Thr25; Ser46; Asnl19;
Leul41; Asn142; His163; His164; His172;
Aspl87; Argl88

Thr26; Phe140; Gly143; Ser144;
VLQAAF Cysl45; Glul66; GIn189
Thr24; Thr26; Phel40; Gly143;
VLQAVF Ser144; Cys145; His163; His164;
Metl165; Glul66; GIn189

Ser(A)1; Thr25; Ser46; Tyr118; Leul4l;
Asnl42; His172; Aspl187; Argl88

Leu27; His41;
Met49; Cys145;
Metl65

Leu27; His41;
Met49; Met165

Blue: Catalytic His41; Red: Catalytic Cys145; Purple: Oxyanion Loop
*Hydrogen bonds include : Conventional, Carbon, Pi-Donor
* Other interactions includes: Alkyl, Pi-Alkyl, Pi-Sigma, Sulfur-X, Unfavourable Donor-Donor, Unfavourable Bump
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Supplementary table 3.4: Intermolecular interactions of SARS-CoV-2 MP™ in complexed with substrates KLQSKM, KLQAEM, TLQSLM, KLQSEM, KLQSKD, MLQAKM,

MLQSKM and VLQAKD.
. Other Docking Score
*
Substrate Hydrogen Bonds van der Waals Interactions Interactions™ (keal.mol")

Thr24; Thr26; Phel40; Gly143; Ser(A)1; Thr25; Leu27; Serd46; Asnl19; Leul4l, His41;

KLMSKM Ser144; Cys145; His163; Glul66; Asnl42; His164; Leul67; Prol68; His172; Asp187; Met49; -7.0
GIn189 Argl88; Thr190; Alal91 Metl65

Thr24; Thr25; Thr26; His41; Tyr54; Leu27; Thr45; Ser46; Pro52; Phel40; Leul4l;
KLQAEM Asnl19; Gly143; Cys145; Glul66; Asnl42; Ser144; His163; His164; Met165; His172; His41; Met49
Aspl87; GIn189 Argl88 -
e ) ) ) Thr25; Thr26; Serd6; Asnl119; Phel40; Asnl42; Leu27; His41; o

TLQSLM Hls“é’ sﬁi‘;“&;ﬁéﬁ“&ﬂi‘?&““’ His163; His164; Met165; Leul67; Pro168; Argl88; Met49;
ySias; ’ Thr190 Cys145
Thr24; Thr26; Asnl19; Leul4l; Thr25; Leu27; Thr45; Ser46; Phel40; Asnl42; His41;
KLQSEM Gly143; Serl144; Cys145; His163; His164; Leul67; Pro168; His172; Asp187; Argl88; Met49;
Metl165; Glul66; GIn189; Thr190 Alal91; GIn192 Met165
Thr24; Thr26; Asn119; Phel40; Thr25; Leu27; Tyr188; Asnl119; Leul41; His164; His41;
KLQSKD Asnl42; Gly143; Ser144; Cys145; Leul67; Prol68; His172; Asp187; Argl88; Thr190; Met49;

His163; Glul66; GIn189 Alal91 Metl165 -

Thr24; Thi26; Leql41; G1¥143; Thr25; Ser46; Tyr118; Phel40; Asn142; Met165; Leu27; Hisdl;

MLQAKM Ser144; Cys145; His163; His164; Aspl87- Arel188: Thr190: Alal9] Met49;
Glu166; GIn189 PIo/s ATE1O%; ’ Cys145
Thr24; Thr25; Thr26; His41; Ser(A)1; Leu27; Ser46; Tyr118; Asnl119; Leul4l; His41;
MLQSKM Phel40; Asn142; Gly143; Serl44; Cys145; His164; Leul67; Prol68; His172; Asp187; Met49;
His163; Glul66; GIn189 Thr190; Alal91; GIn192 Metl65
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Leu27;

His41; Phel40; Asnl142; Gly143; Ser(A)1; Thr25; Thr26; Ser46; Tyr54; Leul41; Met49;

VLQAKD His163; His164; Glul66; His172; Ser144; Leul67; Prol68; Phel81; Asp187; Argl88; Cysl145;
GIn189 Thr190 Metl65;

Alal91

Blue: Catalytic His41; Red: Catalytic Cys145; Purple: Oxyanion Loop
*Hydrogen bonds include : Conventional, Carbon, Pi-Donor
* Other interactions includes: Alkyl, Pi-Alkyl, Pi-Sigma, Sulfur-X, Unfavourable Donor-Donor, Unfavourable Bump
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Supplementary figure 3.2. Confirmation of SARS-CoV-2 MP® substrate recognition in binding poses
for KLQ*** substrates. The surface of SARS-CoV-2 MP® (PDB ID:6XHM) showing docked substrates
and substrate binding subsites color-coded as follows: Purple: S1, Cyan: S2; Green: S3. The images

were generated using PyMOL.
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Supplementary figure 3.3. Resolution of intermolecular interactions between MP® and substrates at
active site. 2D representation of the protein-ligand interactions at active sites for MP complexed with

KLQ hexapeptides. The images were generated on BIOVIA Discovery Studio 2020 Client.
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APPENDICES

CHAPTER TWO
Appendix A: The generation of the capped multi-conformer hexapeptide substrates

using Python, SMILES and SMARTS

#!/usr/bin/env python
# coding: utf-8

#In[ ]:

from rdkit import Chem
from rdkit.Chem import AllChem

from rdkit.Chem import Draw

p3list = ["T","R","K","V","M"]
p2list = ["L"]

pllist = ["'Q"]

plplist = ['S","A"]

p2plist = ["A","G","E","T","K","L","N","S","V"]
p3plist = ["E","N","A","D","F","G","M","Q","V"]

peptidestrings, peptidemolecules = [],[]
for p3in p3list:
for p2 in p2list:
for plin pllist:
for plp in plplist:
for p2p in p2plist:
for p3p in p3plist:

sequence = p3+p2+pl+plp+p2p+p3p
peptidestrings.append(sequence)
peptide=Chem.rdmolfiles.MolFromSequence(sequence)
methylcarbonyl=Chem.MolFromSmiles('NC(=0)C')

methylamine=Chem.MolFromSmiles('NC')

ctermpattern=Chem.MolFromSmarts('[$(OC(=0)CN)]')
new=AlIChem.ReplaceSubstructs(peptide,ctermpattern,methylamine)
new[0]

ntermpattern=Chem.MolFromSmarts('[$(NCC(=0))]')

final=AllChem.ReplaceSubstructs(new[0],ntermpattern,methylcarbonyl)
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final[0]

peptide = AllChem.RemoveHs(final[0])

peptide_h= AllChem.AddHs(peptide)

AllChem.EmbedMolecule(peptide_h)

AllChem.UFFOptimizeMolecule(peptide_h)

writer_pdb= AllChem.PDBWriter(sequence+".pdb")

writer_pdb.write(peptide_h)

peptide_confs= peptide_h

ids = AllChem.EmbedMultipleConfs(peptide_confs,numConfs=100)

writer= AllIChem.SDWriter(sequence+".sdf")

for ido in ids:
writer.write(peptide_confs,confld=ido)

peptidemolecules.append(peptide_h)

#1In[ I

Draw.MolsToGridImage(peptidemolecules)

# In[12]:

import nglview as nv

first_structure = nv.RdkitStructure(peptidemolecules[0])
first_view= nv.NGLWidget()
first_view.add_component(first_structure)

first_view

#view.add_sticks(first_view)

#1In[ I

CHAPTER THREE
Appendix B: Geometry optimization of the conformers of hexapeptide substrates

using OpenBabel and xtb software - Part 1

#!/usr/bin/python

import os

files=os.listdir("./")
for file in files:
if "sdf" in file:

directory=file[:-4]
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os.system("mkdir "+directory)

os.system("babel -isdf "+file+" -oxyz "+directory+"/"+directory+".xyz -h -m")

print("module add chpc/openbabel/2.3.1/cmake-3.7.1/gcc-4.9.0; cd
/mnt/lustre/users/szabo/SARS_CoV_2/Ligands/"+directory+";/mnt/lustre/users/szabo/SARS_CoV_2/Ligan
ds/sdf _xyz_pdb.py")

Appendix C: Geometry optimization of the conformers of hexapeptide substrates

using OpenBabel and xtb software - Part 2 (sdf xyz pdb.py)

#!/usr/bin/python

import os

file_2 = os.listdir(".")

for file_name2 in file_2:

if file_name2.endswith(".xyz"):

pdbname = file_name2[:-4]1+".pdb"

if not os.path.isfile(pdbname):

print("rm -f charges wbo xtbopt.log xtbopt.xyz xtbrestart")

os.system("rm -f charges wbo xtbopt.log xtbopt.xyz xtbrestart")

file_name_2 = file_name2[:-4]

print("xtb {0}.xyz".format(file_name_2))

os.system("/home/szabo/bin/xtb {0}.xyz -opt".format(file_name_2))

print("babel -ixyz xtbopt.xyz -opdb {0}.pdb".format(file_name_2))
os.system("babel -ixyz xtbopt.xyz -opdb {0}.pdb".format(file_name_2))

print("Done")

Appendix D: Automated preparation of the ligands (hexapeptide conformers) for

molecular docking

#!/usr/bin/python

178




import os
files = os.listdir(".")
for filename in files:
if filename.endswith(".pdb"):
print("prepare_ligand4.py - {0}".format(filename))

os.system("prepare_ligand4.py -I {0}".format(filename))

print("Done!")

Appendix E: Automated creation of the Vina configuration files

#!/usr/bin/python

import os

directories = os.listdir(".")

rec = "conf A.pdbgt"
protein = rec

prefix = rec[:-6]+"_"

x_value_A, x_value_B = "12.059","-18.444"
y_value_A, y value B = "8.933","-16.361"
z_value_A, z_value_B = "29.021","7.944"
exhaust = "480"

cpu = "24"

for directory in directories:
if(directory == ‘'receptors" or directory.endswith("py") or directory.endswith("pbs") or
directory.endswith("txt")):
pass
else:
os.system("cp ./receptors/"+rec+" ./"+directory)
files = os.listdir("./"+directory)
for filel in files:
if filel.endswith(".pdbgt")and not "conf" in filel:
filename= file1l[:-6]
print(filename)
vina_A, vina_B = "./"+directory+"/"+prefix+filename+"_A.vina",

"./"+directory+"/"+prefix+filename+" B.vina"

vina = open(vina_A,"w")
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vina

vina.

vina

vina

vina.

"+z_value_A)

vina

vina.

vina.

vina
vina

vina

vina.

vina

vina
"+2z_value_B)

vina

vina

vina.

print("\n\nDONE!")

.write("receptor = "+protein)

write("\nligand = "+filename+".pdbqt")

write("\nlog = "+prefix+filename+" A.log")

write("\nout = "+prefix+filename+" A.all.pdbqgt")

write("\ncenter_x = "+x_ value_A+"\ncenter.y = "4y value_A+"\ncenter z =

write("\nsize_x = 22\nsize_y = 22\nsize_z = 22")

write("\nenergy range = 4\nexhaustiveness = "+exhaust+"\ncpu = "+cpu+"\n")

close()
= open(vina_B,"w")
.write("receptor = "+protein)

write("\nligand = "+filename+".pdbqt")

write("\nlog = "+prefix+filename+" B.log")

write("\nout = "+prefix+filename+" B.all.pdbgt")

.write("\ncenter_x = "+x_value_B+"\ncenter_y = "+y_value_B+"\ncenter_z =

write("\nsize_x = 22\nsize_y = 22\nsize_z = 22")

write("\nenergy range = 4\nexhaustiveness = "+exhaust+"\ncpu = "+cpu+"\n")

close()

Appendix F: Typical example of the specifications in a Vina configuration file

receptor = conf_A.pdbqt

ligand = KLQAAE1.pdbqt

log = conf_A_KLQAAE1_A.log

out = conf_A_KLQAAE1_A.all.pdbqt

center_x = 12.059
center_y = 8.933
center_z = 29.021

size_x = 22
size_y = 22
size_z = 22

energy_range = 4

exhaustiveness = 480

cpu = 24

receptor = conf_A.pdbqt

ligand = KLQAAE1.pdbqt

log = conf_A_KLQAAE1_B.log

out = conf_A_KLQAAE1_B.all.pdbqt

center_x = -18.444
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center_y = -16.361

center_z = 7.944

size_x = 22
size_y = 22
size_z = 22

energy_range = 4
exhaustiveness = 480

cpu = 24

Appendix G: Automated generation for all the Vina commands that execute Molecular
Docking using AutoDock Vina

#!/usr/bin/python

import os

#makes commands.txt

vina_dir = os.popen('find . -name "conf A* B.vina" -type f').read()
vina_dir = vina_dir.split("\n")

vina_dir.pop(-1)

command = open('commands.txt","w"
for directory in vina_dir:

folder = directory[2:8]

vina_file = directory[9:1

vina_num = directory[22:-7]

pdbgt_name= directory[:-51+".all.pdbqgt"

if not "folder" in directory:
if not os.path.exists(pdbqt_name):
if int(vina_num) <41 and int(vina_num) > 30:
command.write("module add chpc/autodock vina/l1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/"+folder+"/;vina --config "+vina_file+"\n")
print(pdbgt_name)
else:
if int(vina_num) < 41 and int(vina_num) > 30:
print("existing ",pdbgt_name)

command.close()

Appendix H: Examples of the Vina commands

module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd

181




/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE31 B.vina

module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_ A_KLQASE32_B.vina

module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE40_B.vina

module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE38 B.vina

module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE33 B.vina

module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf A_KLQASE37_B.vina

module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE35 B.vina

Appendix I: PBS job file specifying the execution of Molecular Docking using the

implemented multi-CPU parallelization algorithms on AutoDock Vina

#!/bin/bash

#PBS -e /mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/gnu_parallel.stderr.out
#PBS -o /mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/gnu_parallel.stdout.out
#PBS -V

#PBS -P CHEM0802

#PBS -M youremailaddress

#PBS -l select=20:ncpus=24

#PBS -W group_list=largeq

#PBS -l walltime=96:00:00

#PBS -q large

#PBS -m be

#PBS -rn

#PBS -mb

module add chpc/gnu/parallel-20160422

WORKING_DIR=/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/

cd ${WORKING_DIR}

echo "start "date +%s™"
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parallel -M --sshdelay 0.2 -j 1 -u --sshloginfile ${PBS_NODEFILE} < commands.txt

echo "end "date +%s™"

Appendix J: Automated separation of the best binding poses for each hexapeptide

import os

folders= os.popen("ls -d */").read()
folders= folders.split("\n")
folders.pop(-1)
best_dock,best_aff,affs=[1,0,[]

for folder in folders:
print(folder)
affs, best_dock =[], [1
os.chdir("./"+folder)
affinity = os.popen("head *pdbqt| grep 'VINA").read()
affinity= affinity.split("\n")
affinity.pop(-1)

for aff in affinity:
num = aff[25:30].strip()
affs.append(float(num))

affs.sort()
best_aff = [affs[0],affs[1],affs[2]]

files= os.popen("ls *.pdbqt").read()

files= files.split("\n")

files.pop(-1)

for aff in best_aff:

for filename in files:
content = open(filename,"r")
text = content.readlines()
content.close()
if(str(aff) in text[0]):
best_dock.append(filename)

else:

pass

os.mkdir("./best_dock/")
for best in best_dock:
print(best)
os.system("cp {0} ./best dock/".format(best))
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os.chdir("..")

Appendix K: Automated summarisation of the docking results, detailing the number
conformers redocked, the best binding conformer and its respective binding energy

for each hexapeptide

import os

dirs = os.popen("ls -d */").read()

dirs = dirs.split("\n")

dirs.pop(-1)

docks = open("dock summary.csv","w")

docks.write("Substrate;Docked Conformers;Best Conformer;Best Energy (kcal/mol)\n")

for dirl in dirs:
os.chdir("./"+dirl)
best files = os.listdir("./best _dock")
best _files.sort()
best = best files[0]
energy = os.popen(“head -n1 ./best dock/{0}".format(best)).read()
energy = energy[25:29]
conf = best[13:-21]
others = os.popen("ls ./other files/*.all.pdbqgt | wc -I").read()
others = others.strip("\n")
lig = dirl[:6]
docks.write("{0};{1};{2};{3}\n".format(lig,others,conf,energy))
os.chdir("..")

CHAPTER FOUR
Appendix L: Automated restoration of the amino acid information in the best binding

pose and superimposition of the best binding poses

import os

folders= os.popen("ls -d */").read()
folders= folders.split("\n")
folders.pop(-1)
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for folder in folders:
os.chdir(folder)
best_docks = os.popen("ls ./best _dock").read()
best_docks = best_docks.split("\n")
best_docks.pop(-1)

for dock in best_docks:
print(folder)
print(dock)
num = dock[13:-211]
f dir="./best_dock/"+dock
print(f_dir)

print(num)

os.system("../sort.pl {0} > {1}.pdb".format(f_dir,num))

counter,load_text,sticks_show= 0,"",""

while(counter < len(best_docks)):

load_text+="load ./best dock/{0}, LIG{1}\n".format(best_docks[counter],counter+1)

sticks_show+="show sticks, LIG{0}\n".format(counter+1)

counter+=1

textl=""
HUBHBBBBRBHBRBRTH
### Set Style ###
HUBHBBBBRBHBRBRTH
hide everything
set bg_rgb, white
zoom\n'"
text2=""
HUBBBBRBRBRBRBRBHRH
##+# Save a copy ###
HUBBBBRBRBRBRBRBHRH
set antialias, 2
set hash_max, 220
set ray_shadows,0
png {0}.png, width=25cm, height=25cm, dpi=300
quit"'.format(folder[:-1])
final_text=load_text+textl+sticks_show+text2
pymol_vis=open("pymol vis.pml!","w")
pymol_vis.write(final_text)
pymol_vis.close()

os.system("pymol pymol_vis.pml")
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os.chdir("..")

Appendix M: The custom Perl script to restore amino acid information of the best

binding poses.

#!/usr/bin/perl
#
open(PDBIN,"< $ARGV[0]");

my @atommatrix;

my $an=0;

sub distance

{
my $al=shift;
my $a2=shift;

my Sxl=%Satommatrix[$al]l[1l];

my $x2=%Satommatrix[$a2][1];

my syl=Satommatrix[$all[2];

my sy2=Satommatrix[$a2]1[2];

my $zl=%atommatrix[$alll3];

my $z2=%atommatrix[$a21[3];

my Sdist=sqrt( ((Sx1=5x2)¥($x1=5x2))+((Sy1-5y2)*¥(Sy1=-5y2))+(($21-522)K($21-522)) );
#print "distance $dist\n";

return $dist;

sub allorder
{
my Sat=shift;
my $or=0;
for(my $i=0;%i<$an;Si++)
{
if((satommatrix[$i][0] =~ m/C/)and(distance($at,$i)<1.7))
{
$or++;
}
if((satommatrix[$i][0] =~ m/N/)and(distance($at,$1)<1.7))
{

Sor++;
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}
}

return $or;

}

sub corder
{
my Sat=shift;
my $or=0;
for(my $i=0;%i<$an;Si++)
{
if((Satommatrix[$11[0] =~ m/C/)and(distance(s$at,$1)<1.7))
{
$or++;
}
}
return $or;

}

sub iscarbonyl

{
my Sat=shift;
my $co=-1;

for(my $i=0;5i<%an;Si++)

{
if((satommatrix[$i][0] =~ m/O/)and(distance($at,$i)<1.3))
{
$co=$i;
}
}
return $co;
}
sub findcs
{
my Sat=shift;
my @cs;
for(my $i=0;%i<$an;Si++)
{

if((satommatrix[$i][0] =~ m/C/)and(distance($at,$i)<1.7))
{
push @cs, $i;
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#print "$i\n";
}
}
return @cs;

}

sub findterminalNMe
{
my sn=-1,$me=-1;
for(my $i=0;%i<%an;Si++)
{
if($atommatrix[$i11[0] =~ m/N/)
{
#print "$i is N\n";
my @cs=findcs($i);
foreach my S$c (@cs)
{
my $o=iscarbonyl(5c);
my $or=corder(s$c);
#print "$c $o order $or\n";
if(50req 1)
{
$atommatrix[$i]1[4]1=8;
$atommatrix[$c][4]1=8;
#print "found NME $i $c\n";

$n=3%i;$me=sc;

}

return(sn,sme)

}

sub findterminalcco
{
my sme=-1,$co=-1,%0c=-1;
for(my $i=0;%i<$an;Si++)
{
if(Satommatrix[$i1[0] =~ m/C/)
{
my $or=allorder($i);
my $ca=iscarbonyl($i);
if((sor eq 2) and (5ca eq -1))
{
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#4#print "candidate $i\n";
my @cs=findcs($i);
foreach my S$c (@cs)
{
my $o=iscarbonyl($c);
if(50 ge 0)
{
Satommatrix[$11[4]1=1;
Satommatrix[$c][4]=1;
Satommatrix[$01[4]1=1;

#print "found CCO $i $c $o\n";

$me=%$i;$co=%$c;$0c=%$0;

}

return(¢sme,$co,$oc);

}

sub findn
{
my Sat=shift;
my $n=-1;
for(my $i=0;%i<%an;Si++)
{
if($atommatrix[$i1[0] =~ m/N/)
{
my $d=distance($at,$i);
#print("N $i distance to $at = $d\n");
if($d<1.4)
{
$n=gi

}

return $n;

}

sub findco
{
my Sat=shift;

my $co=-1;
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my $oc=-1;
for(my $i=0;%i<%an;Si++)
{
if(Satommatrix[$i1[0] =~ m/C/)
{
if(distance($at,$1)<1.55)
{
my So=iscarbonyl($i);
if(50 ge 0){$co=3%i;50c=5%0}
}

}

return ($co,%oc);

}

sub findca
{
my Sat=shift;
my $ca=-1;
for(my $i=0;5i<$an;si++)
{
if(Satommatrix[$i1[0] =~ m/C/)
{
my $d=distance($at,$i);
#print "C $i distance to N $at is $d\n";
if($d<1.5)
{
my So=iscarbonyl($i);
#print "o is $o\n";
if($o eq -1){$ca=3%i;}

}

return ($ca);

}

sub findnextbackbone
{
my $col=shift;
my sn=findn($col);
my Sca=findca($n);

my ($co,$o0c)=findco($ca);

return(s$n,$ca,$co,%o0c);
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sub fillsidechain
{
my Sat=shift;
#print "working with atom $at\n";
my Samino=%atommatrix[$at][4];
my Slevel=$atommatrix[$at][5]+1;
for(my $i=0;%i<$an;Si++)
{
my Sd=distance($at,$i);
my Stolerance=1.7;
if((satommatrix[$i][0] =~ m/S/)or(satommatrix[$at]l[0] =~ m/S/)){$tolerance=1.9}
if((sd<s$tolerance)and($atommatrix[$i1[4] eq 0) and ($i ne $at))
{
$atommatrix[$il[4]1=$amino;
$atommatrix[$il[5]1=$level;
if(satommatrix[$i][0] =~ m/H/){$atommatrix[$i][5]1=%at};#identify parent of Hydrogens
rather than level.
fillsidechain($i);

sub identifyamino

{
my Sat=shift;
my @0=[0o,0,0,0,0,0],@C=[0,0,0,0,0,0],@N=[0,0,0,0,0,0],@5=I[0,0,0,0,0,0];
my Stotalc=0;my $totalo=0; my $totaln=0; my Stotals=0;

for(my $i=0;%i<%an;Si++)
{
my Slevel=%atommatrix[$i1[5];

if((Slevel>1)and(Satommatrix[$i1[4] eq $at))

{

if(Satommatrix[$i][0] =~ m/C/){sC[Slevel]l++;S$totalc++}
if(satommatrix[$iI][0] =~ m/N/){sN[$level]l++;$totaln++}
if(Satommatrix[$i][0] =~ m/O/){s0[S$level]++;Stotalo++}
if(Satommatrix[$iI][0] =~ m/S/){sS[Slevell++;$totals++}
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#print "o $totalo n $totaln s $totals ¢ $totalc\n";

my Sres="XXX";

if((Stotalc eq 0) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 0)){Sres="GLY"}
if((Stotalc eq 1) and ($totalo eq 0) and ($totaln eq 0) and (Stotals eq 0)){$res="ALA"}
if((Stotalc eq 1) and ($totalo eq 0) and ($totaln eq 0) and (Stotals eq 1)){$res="CYS"}
if((Stotalc eq 1) and ($totalo eq 1) and ($totaln eq 0) and ($totals eq 0)){$res="SER"}
if((Stotalc eq 2) and ($totalo eq 1) and ($totaln eq 0) and ($totals eq 0)){Sres="THR"}
if((Stotalc eq 2) and ($totalo eq 2) and ($totaln eq 0) and (Stotals eq 0)){$res="ASP"}
if((Stotalc eq 2) and ($totalo eq 1) and ($totaln eq 1) and ($totals eq 0)){Sres="ASN"}
if((Stotalc eq 3) and (Stotalo eq 0) and ($totaln eq 0) and (Stotals eq 0)){$res="VAL"}
if((Stotalc eq 3) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 1)){Sres="MET"}
if((Stotalc eq 3) and ($totalo eq 2) and ($totaln eq 0) and ($totals eq 0)){Sres="GLU"}
if((Stotalc eq 3) and ($totalo eq 1) and ($totaln eq 1) and ($totals eq 0)){Sres="GLN"}
if((Stotalc eq 3) and ($totalo eq 0) and ($totaln eq 1) and ($totals eq 0)){Sres="PRO"}
if((Stotalc eq 4) and ($totalo eq 0) and ($totaln eq 1) and (Stotals eq 0)){$res="LYS"}

if((Stotalc eq 7) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 0)){$res="PHE"}
if((Stotalc eq 7) and (Stotalo eq 1) and ($totaln eq 0) and (Stotals eq 0)){$res="TYR"}
if((Stotalc eq 9) and (Stotalo eq 0) and ($totaln eq 1) and (Stotals eq 0)){$res="TRP"}
if((Stotalc eq 4) and ($totalo eq 0) and ($totaln eq 3) and ($totals eq 0)){Sres="ARG"}

if((stotalc eq 4) and (Stotalo eq 0) and (Stotaln eq 0) and ($totals eq 0) and ($C[3] eq
1)){sres="LEU"}
if((stotalc eq 4) and (Stotalo eq 0) and (Stotaln eq 0) and ($totals eq 0) and ($C[3] eq
2)){sres="ILE"}

return $res;

}

sub printamino

{
my Samino=shift;
my $code=shift;

my Satomnumber=shift;

#N
for(my $i=0;%i<$an;Si++)
{
if((Satommatrix[$i1[4] eq $amino) and (Satommatrix[$11[5] eq 1) and (Satommatrix[$i][0]=~
m/N/})
{

192




printf "ATOM %4d N $code %4d %8.3f%8.3f%8.3f 1.00 1.00
$atommatrix[$il[0]\n",$atomnumber,$amino,$atommatrix[$i][1], $atommatrix[$i1[2], Satommatrix[$i]
[31;

$atomnumber++

#CA
for(my $i=0;%i<San;Si++)
{

my $ic=-1;

if((Satommatrix[$i][0]=~ m/C/) and ($atommatrix[$i][5] eq 1) and ($atommatrix[$i1[4] eq
$amino)){S$ic=iscarbonyl($i)}

if((s5ic eq -1) and (Satommatrix[$i][0l=~ m/C/) and (Satommatrix[$i]l[5] eq 1) and
(satommatrix[$11[4] eq $amino))

{

printf "ATOM %4d CA $code %4d %8.3f%8.3f%8.3f 1.00 1.00

$atommatrix[$il[0]\n",$atomnumber,$amino,$atommatrix[$i][1],$atommatrix[$i1[2], Satommatrix[$i]
[31;

$atomnumber++

#C
#
for(my $i=0;%i<San;Si++)

{

my $ic=-1;

if((Satommatrix[$i][0]=~ m/C/) and (Satommatrix[$i]1[5] eq 1)){Sic=iscarbonyl($i)}

if((sic gt -1) and (Satommatrix[$il[0]=~ m/C/) and (satommatrix[$i1][5] eq 1) and
(satommatrix[$11[4] eq $amino))

{

printf "ATOM %4d C $code %4d %8.3f%8.3f%8.3f 1.00 1.00

$atommatrix[$il[0]\n",$atomnumber,$amino,$atommatrix[$i][1], $atommatrix[$i1[2], $atommatrix[$i]

[31;

$atomnumber++;
printf "ATOM %4d 0] $code %4d %8.3f%8.3f%8.3f 1.00 1.00
$atommatrix[$ic][0]\n",$atomnumber,$amino,$atommatrix[$icl[1],$atommatrix[$ic][2], $atommatrix
[$icIl3T;
$atomnumber++;
}
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for(my $lev=2;5lev<8;slev++)
{
my @Ics;$lcs[2]="B";$lcs[3]1="G";$lcs[4]="D";$lcs[5]="E";$lcs[6]1="2";$lcs[71="H";
#BETA
for(my $i=0;%i<San;si++)
{
if((not (Satommatrix[$1][0]1=~ m/H/)) and ($atommatrix[$i1[5] eq $lev) and (Satommatrix[$i1[4]
eq $amino))
{
printf "ATOM %4d  $atommatrix[$il[0]$lcs[$lev] $code %4d %8.3f%8.3f%8.3f 1.00
1.00
$atommatrix[$il[0]\n",$atomnumber,$amino,$atommatrix[$i][1],$atommatrix[$i1[2], Satommatrix[$i]
[35;
$atomnumber++;
for(my $j=0;%]<%an;$j++)
{
if((Satommatrix[$11[0]=~ m/H/) and (Satommatrix[$i][5] eq $i) and ($Satommatrix[$i1[4] eq

$amino))

# printf "ATOM  %4d H$atommatrix[$i]l[0]$lcs[$lev]

$code %4d %8.3f%8.3f%8.3f 1.00 1.00
$atommatrix[$i][0]\n",$atomnumber,$amino,$atommatrix[$il[1],$atommatrix[$il[2],$atommatrix[$i][3
I;

$atomnumber++;

return $satomnumber;

}

while (my $line = <PDBIN>)
{
if(($line =~ m/HETATM/)or($line =~ m/ATOM/))
{
my $satomname=substr $line,13,4;$atomname =~ s/\s+//g;
my $x=substr $line,31,8;5x =~ s/\s+//g;
my $y=substr $line,39,8;5y =~ s/\s+//0;
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my $z=substr $line,47,8;5z =~ s/\s+//g;
#print $line;

#print "$atomname,$x,$y,$z\n";
$atommatrix[$an][0]=substr $atomname, 0 ,1;
#print "*$atomname*\n";
$atommatrix[$an][1]1=$x;
$atommatrix[$an][2]=%$y;
$atommatrix[$an][3]1=%$z;
$atommatrix[$an][4]1=0;

San++;

}
close PDBIN;

my($cme,$cco,$coc)=findterminalcco();

print("backbone 1: $cme,$cco,$coc\n");
satommatrix[$cmell4]l=1;$atommatrix[$ccoll4]l=1;$atommatrix[$coc][4]=1;
$atommatrix[$cmell5]1=1;$atommatrix[$ccol[5]=1;$atommatrix[$coc][5]=1;
my($nl,scal,$col,$ocl)=findnextbackbone(scco);

print('backbone 2: $n1,$cal,$col,$ocl\n");
Satommatrix[$n11[4]=2;$atommatrix[$calll4]=2;$atommatrix[$coll[4]=2;$atommatrix[$ocl]1[4]=
2;
Satommatrix[$n1][5]=1;%atommatrix[$cal]ll5]=1;Satommatrix[$col][5]=1;%atommatrix[$ocl][5]=
1

my($n2,%ca2,$co2,%0c2)=findnextbackbone($col);

print('backbone 3: $n2,$ca2,$co2,$0c2\n");
$satommatrix[$n2][4]=3;$atommatrix[$ca2][4]=3;$atommatrix[$co2][4]=3;$atommatrix[$oc2][4]=
3;
Satommatrix[$n2][5]1=1;%atommatrix[$ca2][5]=1;Satommatrix[$co2][5]=1;%atommatrix[$oc2][5]=
1

my($n3,%ca3,$co3,%0c3)=findnextbackbone($co2);

print("backbone 4: $n3,$ca3,$co3,$0c3\n");
Ssatommatrix[$n31[4]1=4;$atommatrix[$ca3]l[4]1=4;$atommatrix[$co31[4]=4;$atommatrix[$oc31[4]=
4;
Satommatrix[$n3][5]1=1;%atommatrix[$ca3][5]=1;Satommatrix[$co3][5]=1;%atommatrix[$oc3][5]=
1

my($n4,5cad,scod,50c4)=findnextbackbone($co3);

print('backbone 5: $n4,$ca4,$co4,$oc4\n");
$atommatrix[$n4][4]=5;%$atommatrix[$cad][4]=5;%atommatrix[$cod][4]=5;%$atommatrix[$oc4][4]=
5;
$satommatrix[$n4][5]=1;$atommatrix[$cad][5]=1;$atommatrix[$cod][5]=1;$atommatrix[$oc4][5]=
1

my($n5,%cab,$co5,%0c5)=findnextbackbone($co4);

print('backbone 6: $n5,$ca5,$co5,$0c5\n");
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$atommatrix[$n5][4]=6;%$atommatrix[$ca5][4]=6;%atommatrix[$co5][4]=6;%$atommatrix[$oc5][4]=

6;

Satommatrix[$n5][5]1=1;%atommatrix[$ca5][5]=1;$atommatrix[$co5][5]=1;$atommatrix[$oc5][5]=

1;
my($n6,%ca6,$co6,%0c6)=findnextbackbone($co5);
print("backbone 7: $n6,$ca6,$co6,$0c6\n");

$satommatrix[$n6][4]=7;$atommatrix[$cab][4]=7;$atommatrix[$co6][4]=7;$atommatrix[$oce][4]=

7;

$atommatrix[$n6][5]=1;$atommatrix[$cab][5]=1;$atommatrix[$co6][5]=1;$atommatrix[$oc6][5]=

1;

my($nme,$men)=findterminalNMe();
$atommatrixf$nmel[4]=8;$atommatrix[$men][4]=8;
$satommatrixf$nmell5]1=1;$atommatrix[$men][5]=1;

print('backbone 8: $nme,$men\n");

#print "chain $cme, $cco, $nl, $cal, $col, $ocl, $n2, $ca2, $co2, $oc2\n";
print "point A\n";
fillsidechain($cal);
print "point B\n";
fillsidechain($ca2);
print "point C\n";
fillsidechain($ca3);
print "point D\n";
fillsidechain($ca4);
print "point E\n";
fillsidechain($ca5);
print "point F\n";
fillsidechain($cab);
print "point G\n";

#print "In this we have $an atoms\n";
for(my $i=0;5i<%an;Si++)
{
#print "filling from atom $i\n";
fillsidechain($i);
}

my Saminl="ACE";

my Samin2=identifyamino(2);
my Samin3=identifyamino(3);
my Samind=identifyamino(4);
my Samin5=identifyamino(5);
my Samin6=identifyamino(6);

my Samin’/=identifyamino(7);
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my Samin8="NME";

print "REMARK  $aminl $amin2 $amin3 $amin4 $amin5 $amin6 $amin7 $amin8\n";

my Snextno=printamino(1,$aminl,1);

$nextno=printamino(2,5amin2,$nextno);
$nextno=printamino(3,5amin3,snextno);
$nextno=printamino(4,5amin4,snextno);
$nextno=printamino(5,5amin5,$nextno);
$nextno=printamino(6,5amin6,snextno);
$nextno=printamino(7,5amin7,$nextno);

$nextno=printamino(8,5aming,snextno);

for(my $j=1;5]<9;%j++)
{
for(my $i=0;%i<$an;si++)
{
if(satommatrix[$i1[4] eq $))
{
$k=$i+1;
print "$k $atommatrix[$il[0] $atommatrix[$il[4] (level $atommatrix[$i][5])\n";

Appendix N: Supplementary edition of the atom types in restored amino acid

information of the best binding poses.

import os

pdb_files = os.popen(''find . -name "*.pdb" -type '"").read()
pdb_files= pdb_files.split("\n")

pdb_files.pop(-1)

pdb_files.sort()

for pdb_file in pdb_files:
pdb_content = open(pdb_file,"r")
pdb_lines = pdb_content.readlines()

pdb_content.close()

if("XXX" in pdb_lines[0]):
os.system("rm {0}".format(pdb_file))
pass

elif("complex" in pdb_file or "6xhm" in pdb_file):
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pass
else:

print(pdb_file)

print(pdb_lines[0])

counter =1

while(counter < len(pdb_lines)):
line = pdb_lines[counter]
prot = line[17:20]
atom = line[13:16]

if(prot == "ACE" and atom == "CA "):
edit_line = line[:13]+"CH3"+line[16:]
pdb_lines[counter]= edit_line
elif(prot == "NME" and atom == "CA"):
edit_line = line[:13]+"CH3"+line[16:]
pdb_lines[counter]= edit_line
elif(prot == "GLN"):
if(atom == "OE "):
edit_line = line[:13]1+"OE1"+line[16:]
pdb_lines[counter]= edit_line
elif(atom == "NE "):
edit_line = line[:13]+"NE2"+line[16:]
pdb_lines[counter]= edit_line
elif(prot == "LEU"):
if(atom == "CD "):
edit_line = line[:13]1+"CD1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"CD2"+line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+1]= edit_line2
counter+=1
elif(prot == "THR"):
if(atom == "OG "):
edit_line = line[:13]1+"0G1"+line[16:]
pdb_lines[counter]= edit_line
elif(atom == "CG "):
edit_line =line[:13]1+"CG2"+line[16:]
pdb_lines[counter]= edit_line
elif(prot == "GLU"):
if(atom == "OE "):
edit_line = line[:13]1+"OE1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"OE2"+line2[16:]

pdb_lines[counter]= edit_line
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pdb_lines[counter+1]= edit_line2
counter+=1
elif(prot == "ASP"):
if(atom == "OD "):
edit_line = line[:13]1+"0OD1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"0D2"+line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+1]= edit_line2
counter+=1
elif(prot == "VAL"):
if(atom == "CG "):
edit_line = line[:13]1+"CG1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"CG2"+line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+1]= edit_line2
counter+=1
elif(prot == "ARG"):
if(atom == "NH "):
edit_line = line[:13]1+"NH1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"NH2"+line2[16:]
pdb_lines[counter]= edit_line

pdb_lines[counter+1]= edit_line2

counter+=1
elif(prot == "PHE"):
if(atom == "CE "):

edit_line = line[:13]1+"CE1"+line[16:]
line2 = pdb_lines[counter+2]
edit_line2= line2[:13]+"CE2" +line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+2]= edit_line2
counter+=2
elif(prot == "ASN"):

if(atom == "OD "):
edit_line = line[:13]1+"0OD1"+line[16:]
pdb_lines[counter]= edit_line

elif(atom == "ND "):
edit_line = line[:13]1+"ND2"+line[16:]

pdb_lines[counter]= edit_line

counter+=1

pdb_final = open(pdb_file,"w")
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for lines in pdb_lines:
pdb_final.write(lines)

pdb_final.close()

Appendix O: Automated addition of the hexapeptide PDB information onto the

receptor PDB as a third subunit

#!/usr/bin/python

import os

prot_name="6xhm_apo.pdb"
folders= os.popen("ls -d */").read()
folders= folders.split("\n")
folders.pop(-1)

for folder in folders:

pdb_list= os.listdir(folder)

if(len(pdb_list) == 0):
pass

else:
print(folder)
lig_name=folder+pdb_list[0]
print(lig_name)

complex_name=folder+folder[:-1]+" complex.pdb"

##read in protein
proteinfile=open(prot_name,"r")
protein=proteinfile.readlines()

proteinfile.close()

##open output file

complexfile=open(complex_name,"w"

atomnumber=1
resnumber=0
for line in protein:
if((line.startswith("ATOM")) or (line.startswith("HETATM"))):
complexfile.write(line)

atomnumber +=1

if ("REMARK"in line):

complexfile.write(line)
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#+#sort the ligand
ligfile=open(lig_name,"r")
ligand=ligfile.readlines()

ligfile.close()

for line in ligand:
if((line.startswith("ATOM")) or (line.startswith("HETATM"))):

atomnumber +=1
#delete characters (4) where the atom number should be columns 7-11
numberstring="%4d" % atomnumber
alteredlline=line[:7]+numberstring+line[11:]
#insert the atom number as formated integer with width 4
#replace a character with chain ¢ column 22
#ligresnumber=int(line[22:26])
#actresnumber=resnumber+ligresnumber
altered2line=alteredlline[:21]+"C"+alteredlline[22:]
#then write the line
complexfile.write(altered2line)

complexfile.close()

Appendix P: The assignment of letter code as means to uniquely identify the position

of the PCA in the particular time interval

#!/opt/chemistry/anaconda3/bin/python

import os

import sys

files = os.popen("ls *xvg").read()
files = files.split("\n")
files.pop(-1)

def xpos(minx,maxx,x):
deltax=(maxx-minx)/5.0
position=x-minx
numberofdeltas=position/deltax
thepos=int(numberofdeltas+1)

return thepos

def ypos(miny,maxy,y):
deltay=(maxy-miny)/5.0
position=y-miny
numberofdeltas=position/deltay

thepos=int(numberofdeltas+1)
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return thepos

def postoletter(minx,maxx,miny,maxy,Xx,y):
thex=xpos(minx,maxx,x)
they=ypos(miny,maxy,y)
letter=""
if they==1:
if thex==1:
letter="a"
if thex==2:
letter="b"
if thex==3:
letter="c"
if thex==4:
letter="d"
if thex==5:
letter="e"
if they==2:
if thex==1:
letter="f"
if thex==2:
letter="g"
if thex==3:
letter="h"
if thex==4:
letter="i"
if thex==5:
letter="j"
if they==3:
if thex==1:
letter="k"
if thex==2:
letter="1"
if thex==3:
letter="m"
if thex==4:
letter="n"
if thex==5:
letter="0"
if they==4:
if thex==1:
letter="p"

if thex==2:
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letter="9"

if thex==3:
letter="r"
if thex==4:
letter="s"
if thex==5:
letter="t"
if they==5:
if thex==1:
letter="u"
if thex==2:
letter="v"
if thex==3:
letter="w"
if thex==4:
letter="x"
if thex==5:
letter="y"

return letter

foriin files:
code=""
text = os.popen('cat "+i+" | tail -n2001| awk '{print $1,$2}"").read()
lines=text.splitlines()
maxx=-10
maxy=-10
minx=10
miny=10
for line in lines:
x,y=line.split()
if maxx<float(x):
maxx=Ffloat(x)
if maxy<float(y):
maxy=Ffloat(y)
if minx>float(x):
minx=Ffloat(x)
if miny>float(y):
miny=float(y)
maxx=maxx+0.01
maxy=maxy+0.01

counter=0
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totalx=0
totaly=0
for line in lines:
x,y=line.split()
if counter==200:
counter=0
averagex=totalx/200
averagey=totaly/200
letter=postoletter(minx,maxx,miny,maxy,averagex,averagey);
code=code+letter
totalx=0
totaly=0
totalx=totalx+float(x)
totaly=totaly+float(y)
counter=counter+1

print(i,":",code)

Appendix Q: A preview of the letter codes that uniquely identify the PCA progression

in the time intervals

APO_2dproj_ev_1_2.xvg : innlgpgrxx
KLQAAA_2dproj_ev_1_2.xvg : plhhhinonn
KLQAAD_2dproj_ev_1_2.xvg : ghcisnsssr
KLQAAE_2dproj_ev_1_2.xvg : gglmmhhhgh
KLQAAG_2dproj_ev_1_2.xvg : gkhiinntsm
KLQAAM_2dproj_ev_1_2.xvg : ijnnrrrrig
KLQAAN_2dproj_ev_1_2.xvg : hgglmnoooo
KLQAAQ_2dproj_ev_1_2.xvg : srtniihlll
KLQAAV_2dproj_ev_1_2.xvg : gkllrrnnoo

Appendix R: The calculation of the differences in the letter codes between simulations

and the construction of a pairwise comparison across all the systems

#!/opt/chemistry/anaconda3/bin/python

import os
import sys

import math

res = open("results.txt","r")
lines=res.readlines()
names=[]

codes=[1]
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number=0

def lettertox(l):

x=0

if (I=="a' or I=='f" or I=='k' or I=="p' or I=="u'):
x=0

if (I=='b'orI=='g' or I=='I" or I=='q' or I=="V'):
x=1

if (I=='c' or I=="h'or I=="m"'or I=='r" or |=="w'):
x=2

if (I=='d' or I=="I" or I=='n' or I=="'s' or |=="x'):
x=3

if (I=="e' orl==']' or I=='0" or |I=="t' or I=="y'):
x=4

return x

def lettertoy(l):

y=0

if (I=="a' or I=="b' or |I=='c' or |I=='d' or |I=="e'):
y=0

if (I=="T" or I=='g' or |I=="h" or I=="" or |=="]'):
y=1

if (I=="k' or I=="I"or I=='m' or I=="n' or I=="'0"):
y=2

if (I=="p' or I=='q"' or I=='r" or I=='s' or |=='t"):
y=3

if (I=="u' or I=="V' or |I=="'W' or |I=="X"or |I=="y'):
y=4

returny

def difference(a,b):
lena=len(a)
lenb=len(b)
if lena != lenb:
return 100000000
total=0

for j in range (0,lena):
deltax=lettertox(alj])-lettertox(b[j]1)
deltay=lettertoy(alj]l)-lettertoy(b[j]1)
difference=(deltax*deltax)+(deltay*deltay)
total=total+difference

return math.sqgrt(total)
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for line in lines:
words=line.split()
sub = words[0]
sub_index = sub.rindex(" ")
lig_name = sub[:sub_index]
names.append(lig_name)
codes.append(words[2])
number=number+1

print('name,",end="")

for i in range (0,number):
print(names[il,end=",")

print("")

for i in range (0,number):
print(names[il,end=",")
for j in range (0,number):
result=difference(codeslil,codeslj])
print(result,end=",")

print("")

Appendix S: A preview of the pairwise comparison matrix including all the systems

name,APO,KLQAAA,KLQAAD,KLQAAE,KLQAAG,KLQAAM,KLQAAN,KLQAAQ,KLQAAV,KLQAEA,KLQAED,KLQAEE,
KLQAEG,KLQAEM,KLQAEQ,KLQAEV,KLQAGA,KLQAGD,KLQAGE,KLQAGG,KLQAGM,KLQAGQ,KLQAGV,KLQAKA,K
LQAKD, KLQAKE,KLQAKG,KLQAKM,KLQAKN,KLQAKQ,KLQAKV,KLQALA,KLQALD,KLQALE,KLQALG,KLQALM,KLQA
LN,KLQALQ,KLQALV,KLQANA,KLQAND,KLQANE,KLQANG,KLQANM,KLQANQ,KLQANV,KLQASA,KLQASD,KLQASE,
KLQASG,KLQASM,KLQASN,KLQASQ,KLQASV,KLQATA,KLQATD,KLQATE,KLQATG,KLQATM,KLQATN,KLQATQ,KLQA
TV,KLQAVA,KLQAVD, KLQAVE,KLQAVG,KLQAVM,KLQAVN,KLQAVQ,KLQAVV,KLQSAA,KLQSAD,KLQSAE,KLQSAG,
KLQSAM,KLQSAN,KLQSAQ,KLQSAV,KLQSEA,KLQSEE,KLQSEG,KLQSEM,KLQSEN,KLQSEQ,KLQSGA,KLQSGD,KLQ
SGE,KLQSGN,KLQSGQ,KLQSGV,KLQSKA,KLQSKD,KLQSKG,KLQSKM, KLQSKN,KLQSKQ,KLQSKV,KLQSLA,KLQSLD
,KLQSLE,KLQSLG,KLQSLM,KLQSLN,KLQSLQ,KLQSLV,KLQSNA,KLQSND,KLQSNG,KLQSNM,KLQSNN,KLQSNQ,KL
QSSD,KLQSSE,KLQSSG,KLQSSN,KLQSSQ,KLQSSV,KLQSTA,KLQSTD,KLQSTE,KLQSTG,KLQSTM,KLQSTN,KLQSTQ
,KLQSVA,KLQSVD,KLQSVE,KLQSVG,KLQSVM,KLQSVN,KLQSVQ,KLQSVV
APO,0,7.54983443527075,6.48074069840786,7.74596669241483,7.54983443527075,5.74456264653803,6
.92820323027551,7.48331477354788,6.2449979983984,6.92820323027551,7.41619848709566,8.3066238
6291808,6.40312423743285,6.70820393249937,9.53939201416946,6.08276253029822,7.2801098892805
2,5.65685424949238,5.3851648071345,6.40312423743285,8,9.21954445729289,7.48331477354788,5.47
722557505166,7,4.79583152331272,5.47722557505166,6.92820323027551,6.92820323027551,6.480740
69840786,5.74456264653803,6,7.48331477354788,6.6332495807108,5.65685424949238,7.87400787401
181,5.8309518948453,6.48074069840786,6.08276253029822,6.40312423743285,8.30662386291808,5.83
09518948453,8.48528137423857,7.81024967590665,8.42614977317636,4.24264068711929,6.928203230
27551,5.29150262212918,6.40312423743285,5.65685424949238,6.557438524302,7,8.42614977317636,6
.70820393249937,6.85565460040104,6.70820393249937,5.74456264653803,6.16441400296898,5.744562
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64653803,7.07106781186548,6.557438524302,6.85565460040104,7,5,6.557438524302,5.4772255750516
6,8,8.06225774829855,6.557438524302,8.06225774829855,6.78232998312527,6,7.68114574786861,5.74
456264653803,7,9.05538513813742,7.81024967590665,6,7.68114574786861,7.54983443527075,3.60555
127546399,6.92820323027551,5.8309518948453,6.92820323027551,7.61577310586391,5.916079783099
62,6,7,7.54983443527075,7,6.70820393249937,6.78232998312527,7.34846922834953,6.6332495807108,
6.2449979983984,7.21110255092798,8.30662386291808,7.61577310586391,7.61577310586391,8.717797
88708135,6.2449979983984,7.93725393319377,7.48331477354788,5.65685424949238,6.2449979983984
,7.41619848709566,6.92820323027551,8.30662386291808,7.74596669241483,4.12310562561766,6.6332
495807108,6.48074069840786,5.29150262212918,7.07106781186548,5.29150262212918,6.32455532033
676,7.21110255092798,9.1104335791443,5.47722557505166,6.32455532033676,6.85565460040104,6.92
820323027551,6.78232998312527,7.07106781186548,6.08276253029822,7.48331477354788,6.24499799
83984,7.74596669241483,6.16441400296898,7.21110255092798,10.6301458127347,6.85565460040104
KLQAAA,7.54983443527075,0,4.12310562561766,4.58257569495584,2.82842712474619,7.211102550927
98,4.58257569495584,6.40312423743285,4.69041575982343,7.93725393319377,8.83176086632785,5.09
901951359278,5.09901951359278,5.65685424949238,9.16515138991168,5.65685424949238,5.47722557
505166,8.06225774829855,7.48331477354788,3.74165738677394,3.87298334620742,5.65685424949238
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