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ABSTRACT

COVID-19, as a disease resulting from SARS-CoV-2 infection, and a pandemic has

had a devastating effect on the world. There are limited effective measures that

control the spread and treatment of COVID-19 illness. The homodimeric cysteine

main protease (Mpro) is crucial to the life cycle of the virus, as it cleaves the large

polyproteins 1a and 1ab into matured, functional non-structural proteins. The Mpro

exhibits high degrees of conservation in sequence, structure and specificity across

coronavirus species, making it an ideal drug target. The Mpro substrate-binding profiles

remain, despite the resolution of its recognition sequence and cleavage points

(Leu-Gln↓(Ser/Ala/Gly)). In this study, a series of hexapeptide sequences containing

the appropriate recognition sequence and cleavage points were generated and

screened against the Mpro to study these binding profiles, and to further be the basis

for efficiency-driven drug design. A multi-conformer hexapeptide substrate library

comprising optimised 81000 models of 810 unique sequences was generated using

RDKit within the context of python. Terminal capping with ACE and NMe was

effected using SMILES and SMARTS matching. Multiple hexapeptides were

complexed with chain B of crystallographic Mpro (PDS ID: 6XHM), following the

validation of chain B for this purpose using AutoDock Vina at high levels of

exhaustiveness (480). The resulting Vina scores ranged between -8.7 and -7.0

kcal.mol-1, and the reproducibility of best poses was validated through redocking.

Ligand efficiency indices were calculated to identify substrate residues with high

binding efficiency at their respective positions, revealing Val (P3), Ala (P1′); and Gly

and Ala (P2′ and P3′) as leading efficient binders. Binding efficiencies were lowered

by molecular weight. Substrate recognition was assessed by mapping of binding

subsites, and Mpro specificity was evaluated through the resolution of intermolecular

interaction at the binding interface. Molecular dynamics simulations for 20 ns were

performed to assess the stability and behaviour of 132 Mpro systems complexed with

KLQ*** substrates. Principal component analysis (PCA), was performed to assess
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protein motions and conformational changes during the simulations. A strategy was

formulated to classify and evaluate relations in the Mpro PCA motions, revealing four

main clades of similarity. Similarity within a clade (Group 2) and dissimilarity

between clades were confirmed. Trajectory visualisation revealed complex stability,

substrate unbinding and dimer dissociation for various Mpro systems.
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CHAPTER ONE

LITERATURE REVIEW

1.1 BACKGROUND

The novel coronavirus disease 2019 (COVID-19) is a pulmonary disease that is caused by the

infection of a virus called severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)

(Liu et al., 2020). Since the emergence of COVID-19 in December 2019 out of Wuhan, China,

the disease has spread globally at a rapid rate and was quickly declared a public health

emergency of international concern and shortly after, a pandemic by March 2020, due to high

transmission rates and fatalities associated with the disease (Khan et al., 2020; Zhang et al.,

2020). As of February 2022, there have been more than 396 million infection cases reported

globally, along with more than 5.74 million confirmed deaths and approximately 315 million

recovered cases across 216 countries, areas or territories (WHO, 2022; Statista, 2022).

Since the initial outbreak of the coronavirus pandemic, COVID-19 has demonstrated a

massive impact on the global economy, exerted a great strain on public health resources and

predominantly threatened public health and the livelihood of millions of people. Globally,

countries were compelled to implement national lockdowns as means to control the spread of

COVID-19. These lockdowns entailed the suspension of mass gatherings and the

enforcement of social isolation, including academic progression, religious assemblies, the

closure of non-essential business sectors, border shutdowns and travel restrictions (Nicola et
al., 2020). Subsequently, the economic disruption and/or inactivity landed many countries in

critical economic instabilities, accompanied by hikes in unemployment rates and economic

recession, and even the decline of the standard of living for people living in specific regions

located in Asia, Africa, Europe and South America (Buheji et al., 2020).

According to economists, the threat of the COVID-19 crisis to global financial stability is

such that has the potential to be extremely adverse if the pandemic persists and could lead to

a global financial crisis similar to, or even worse than the financial crisis of 2007–2009, and

this will leave millions in devastating living conditions with little to no resources to support

their livelihood (International Monetary Fund and Capital Markets Department, 2020; Adrian

and Natalucci, 2020a; Adrian and Natalucci, 2020b; Bhuiyan et al., 2020). Developing
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countries are very vulnerable to these adverse economic conditions, and the socio-economic

impact of the COVID-19 pandemic is already amplified in these countries (Bhuiyan et al.,
2020; Abouzzohour, 2020). Moreover, being low-income countries, a majority of developing

countries lack the basic health care facilities required to combat the outbreak of COVID-19

(Khan et al., 2020).

1.2 SEVERE ACUTE RESPIRATORY SYNDROME-CORONAVIRUS 2

Coronaviruses are a diverse group of RNA viruses that cause respiratory diseases in birds,

humans and other higher mammals (Perlman and McIntosh, 2015; Milewska et al., 2020) and

which belong to the subfamily Coronavirinae, in the family Coronaviridae and the order

Nidovirales (Mousavizadeh and Ghasemi, 2020; Kumar et al., 2020a). Coronaviridae is a

diverse family of enveloped viruses consisting of large single-stranded, positive-sense RNA

genomes of around 27–32 kb (Mousavizadeh and Ghasemi, 2020; Tu et al., 2020) which are

typically composed of a 5′-methylguanosine cap at the beginning, a 3′-poly-A tail at the end,

and a total of 6-10 genes in between (Tu et al., 2020). The viral genome is characterised as

having a high frequency of genomic recombination and mutation (Khan et al., 2020) and is

the largest among RNA viruses, with G + C contents varying from 32% to 43%

(Mousavizadeh and Ghasemi, 2020).

There are four main classes of coronaviruses namely alpha, beta, gamma, and delta (Shereen

et al., 2020). The alpha and betacoronaviruses are believed to infect humans and mammals,

whereas the delta and gammacoronaviruses seem to infect bird species (Cascella et al., 2020).

SARS-CoV-2 belongs to the betacoronavirus class, together with severe acute respiratory

syndrome (SARS) coronavirus (SARS-CoV) and the Middle East respiratory syndrome

(MERS) coronavirus (MERS-CoV). SARS-CoV-2 shares 82% RNA genome identity to that

of SARS-CoV, making both viruses members of the clade b of the genus Betacoronavirus and

hence, have similar names (Liu et al., 2020; Zhang et al., 2020). The RNA genome identity

between SARS-CoV-2 and MERS-CoV is about 50% (Kim et al., 2020). The enveloped viral

particles of coronaviruses are minute in size, ranging between 65–125 nm in diameter

(Shereen et al., 2020). Coronaviruses are sensitive to ultraviolet rays and heat, with high

temperatures decreasing replication and/or activity at about 27°C. On the contrary, some

species have shown resistance to cold temperatures even below 0°C (Cascella et al., 2020).
The inactivation temperature of SARS-CoV-2 is yet to be well elucidated. In addition, these

viruses can be effectively inactivated by lipid solvents including ether (75%), ethanol,
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chlorine-containing disinfectant, peroxyacetic acid, and chloroform (but not chlorhexidine)

(Cascella et al., 2020).

The structure of the SARS-CoV-2 virion is spherical or elliptic and often exhibit

pleomorphism (Mousavizadeh and Ghasemi, 2020; Cascella et al., 2020). Similar to other

coronaviruses, the SARS-CoV-2 virions have a crown-like appearance under an electron

microscope due to the presence of the club-shaped glycoprotein projections referred to as the

spike protein (figure 1.1) (Mousavizadeh and Ghasemi, 2020; Cascella et al., 2020). The

name coronavirus is owing to this crown-like appearance (coronam is the Latin term for

crown) (Cascella et al., 2020).

Figure 1.1. The structure of SARS-CoV-2. SARS-CoV-2 has surface viral proteins, namely, spike glycoprotein
(S), which mediates interaction with cell surface receptor ACE2. The viral membrane glycoprotein (M) and
envelope (E) of SARS-CoV-2 are embedded in the host membrane-derived lipid bilayer encapsulating the
helical nucleocapsid comprising viral RNA. Adapted with permission from Kumar et al., 2020b.

There are three main structural proteins on the coronavirus membrane. The spike protein is a

homotrimeric, type I membrane glycoprotein that constitutes peplomers that protrude the

viral surface (Mousavizadeh and Ghasemi, 2020; Walls et al., 2020). Like in many other
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coronaviruses, the majority of the spike protein is exposed to the exterior of the virion,

followed by a short transmembrane domain and a short cytoplasmic tail rich in cysteine

residues at the C-terminus (Woo et al., 2010). Being the prominent feature of the viral

membrane, the spike proteins are the main inducers of the neutralising antibodies

(Mousavizadeh and Ghasemi, 2020). More importantly, the spike protein plays a crucial role

in viral infection into host cells, as it mediates the fusion process between viral and host

membranes and ensures efficient cell entry of coronavirus particles (Alsaadi and Jones, 2019).

The details of this process and the interactions involved will be discussed in the next section.

The membrane glycoprotein is a type III transmembrane glycoprotein and is the most

abundant glycoprotein in the coronavirus membrane (Alsaadi and Jones, 2019). The protein

spans the membrane bilayer three times, with the short N-terminal domain on the exterior of

the virion, and the long C-terminal domain inside the cytoplasm of the virion (Mousavizadeh

and Ghasemi, 2020). The membrane glycoprotein is believed to play a crucial role in the

intracellular formation of virions, particularly the budding process of coronaviruses

(Mousavizadeh and Ghasemi, 2020; Bianchi et al., 2020). During assembly of the authentic

virions, the membrane glycoprotein interacts with itself, the nucleocapsid protein, envelope

protein and the spike protein (Alsaadi and Jones, 2019). Moreover, the activity of membrane

glycoprotein is independent of the spike protein. According to Mousavizadeh and Ghasemi

(2020), the coronavirus replicates and forms spikeless (devoid of spike protein)

non-infectious virions containing membrane glycoproteins when exposed to tunicamycin.

The envelope protein is a small hydrophobic integral membrane protein which is generally a

minor component of the virus membrane in all coronaviruses groups (Alsaadi and Jones,

2019). The protein has an N-terminal domain, a long α-helical transmembrane domain and a

C-terminal hydrophilic domain (Alsaadi and Jones, 2019). The envelope protein is crucial to

the pathogenicity of SARS-CoV-2 as it promotes viral assembly and release (Cascella et al.,
2020), achieved through the induction of membrane curvature which leads to membrane

scission of the budding virus particle and its eventual release. The membrane curvature

induced by the envelope protein is established such that the co-expression of membrane and

envelope proteins (and even the spike proteins, if spike protein co-expression took place) is

sufficient for the efficient formation of viral particles (Alsaadi and Jones, 2019).

The viral membrane encapsulates the single-stranded RNA associated with a nucleoprotein

within a capsid composed of matrix protein (Mousavizadeh and Ghasemi, 2020). The genome
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is 29 891 nucleotides long with a G + C content of 38% and encodes 9 860 amino acids (Guo

et al., 2020). The viral RNA genome comprises of two flanking, untranslated regions (UTR)

and open reading frames (ORFs) arranged in the order: 5′-replicase (ORF1ab) - structural

proteins [Spike (S) - Envelope (E) - Membrane (M) - Nucleocapsid (N)]−3′ and nonstructural

ORFs (figure 1.2) (Wu et al., 2020b; Guo et al., 2020). In a typical coronavirus genome, there

can be at least six ORFs (Mousavizadeh and Ghasemi, 2020). The SARS-CoV-2 genome

encodes at least 27 proteins, which include 16 non-structural proteins (nsp1-10, nsp12-16),

the four structural proteins(S, E, M, and N) and 8 accessory proteins (ORF3a, ORF3b, ORF6,

ORF7a, ORF7b, ORF8, ORF9b, and ORF14) (Guo et al., 2020; Mousavizadeh and Ghasemi,

2020).

Figure 1.2. The genomic arrangement of SARS-CoV-2. The size of the coronavirus genome ranges from 26 to
32 kb and comprises 6–11 open reading frames (ORFs) encoding 9680 amino acid polyprotein. The first ORF
comprises approximately 67% of the genome that encodes 16 nonstructural proteins (nsps), whereas the
remaining ORFs encode for accessory and structural proteins. The nsps includes two viral cysteine proteases,
including papain-like protease (nsp3), chymotrypsin-like, 3C-like, or main protease (nsp5), RNA-dependent
RNA polymerase (nsp12), helicase (nsp13), and others likely to be involved in the transcription and replication
of SARS-CoV-2. In addition to nsps, the genome encodes for four major structural proteins including spike
surface glycoprotein (S), membrane, nucleocapsid protein (N), envelope (E) and accessory proteins like ORFs.
Adapted from Boster, 2020 and with permission from Kumar et al., 2020b.

The first ORFs (OFR1a/b) comprise two-thirds of the SARS-CoV-2 genome and encode two

large proteins, polyproteins 1a (pp1a) and 1ab (pp1ab). A frameshift between ORF1a and

ORF1b guides the synthesis of pp1a and pp1ab which are subsequently processed by virally

encoded chymotrypsin-like protease (3CLpro) or main protease (Mpro) and one or two

papain-like protease into non-structural proteins (Chen et al., 2020). Apart from ORF1a and

ORF1b, other ORFs on the one‐third of the genome near the 3′‐terminus encode the four

main structural proteins (ORF10, ORF11), while the remaining ORFs encode accessory

proteins, such as 3a/b protein, and 4a/b protein (Mousavizadeh and Ghasemi, 2020, Chen et
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al., 2020; Cascella et al., 2020). Different species of coronaviruses present special structural
and accessory proteins translated by dedicated subgenomic RNAs (Chen et al., 2020;
Cascella et al., 2020).

The viral genome also serves as the template for replication and transcription. These

processes are mediated by nsp12, which displays RNA-dependent RNA polymerase activity

(Kim et al., 2020). Once efficient host infection is established, the transcription commences

through the replication-transcription complex in double-membrane vesicles and via the

synthesis of subgenomic RNAs sequences (Cascella et al., 2020). During transcription,

negative-sense RNA intermediates are synthesised as the templates for the synthesis of

positive-sense genomic RNA and subgenomic RNAs. The genomic RNA is packaged by the

structural proteins to assemble progeny virions, while the shorter subgenomic RNAs encode

conserved structural proteins and several accessory proteins (Kim et al., 2020). Transcription
termination occurs at transcription regulatory sequences, located between the ORFs (Cascella

et al., 2020).

1.3 THE PATHOLOGY AND VIRULENCE MECHANISMS OF SEVERE ACUTE
RESPIRATORY SYNDROME-CORONAVIRUS 2

The first cases of the COVID-19 disease were presumed to spread via animal-to-human

transmission since they were associated with the Huanan Seafood Wholesale Market of

Wuhan and the fact that betacoronaviruses were known to infect higher mammals.

Nonetheless, the subsequent cases were not directly linked to the market and the contagion

mechanism was concluded to primarily involve human-to-human transmission, and

symptomatic people were the most frequent source of the COVID-19 spread. It was shortly

discovered that presymptomatic and asymptomatic individuals contributed to the spread of

the disease, accounting for about 80% of COVID-19 transmission (Cascella et al., 2020). It
was also established that close contact is essential for successful SARS-CoV-2 transmission,

but aerosol transmission is also possible in case of protracted exposure to elevated aerosol

concentrations in closed spaces (Sironi et al., 2020). Other possible modes of transmission

include contact with contaminated objects and surfaces such as plastic (2-3 days), stainless

steel (2-3 days), cardboard (1 day) copper (up to 4 hours) (Orleans and Manchikanti, 2020;

Cascella et al., 2020).

1.3.1 SEVERE ACUTE RESPIRATORY SYNDROME-CORONAVIRUS 2 INFECTION

Much like other respiratory pathogens, efficient SARS-CoV-2 infection occurs via spraying
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respiratory droplets (5-10 μm in diameter) from infected individuals through their cough or

sneeze (Cascella et al., 2020). Once inhaled, the virus particles are transported to the airway
where they invade the airway epithelial cells. To enter host cells, coronaviruses first bind to a

cell membrane receptor for viral attachment, subsequently enter endosomes, and eventually

fuse viral and lysosomal membranes (Shang et al., 2020). The surface-anchored spike protein

mediates the entire process of host cell invasion. In mature virions, the spike protein presents

as a trimer with two functional subunits, S1 and S2. To facilitate the fusion of viral and host

membranes, the spike protein requires proteolytic activation at the S1/S2 boundary for S1 to

dissociate and allow S2 to undergo the essential structural change. The host proteases that

mediate this entry-activating proteolysis include the surface-anchored serine protease, the

transmembrane protease serine 2 (TMPRSS2), and the lysosomal protease cathepsins. S1

contains a receptor-binding domain that recognises angiotensin-converting enzyme 2 (ACE2)

as its specific receptor. The receptor-binding domain is constantly changing conformations to

evade immune response. The binding of S1 to ACE2 facilitates viral attachment to the surface

of host cells. S2 is further cleaved at the S2’ site and activated by TMPRSS2 in a process

called protein priming. Together, these actions result in viral-host membrane fusion and

contribute to the rapid spread of COVID-19, as well as the severe clinical manifestation of

the SARS-CoV-2 exhibited by infected individuals (figure 1.3) (Hoffman et al., 2020; Shang
et al., 2020; Guo et al., 2020). Furthermore, the basic reproduction number (R0) for

SARS-CoV-2 is 2.2, meaning that each patient transmits the infection to an additional 2.2

individuals (Cascella et al., 2020).
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Figure 1.3. Novel coronavirus life cycle. Life cycle: (1) First, the virus binds to receptors on the surface of the
host cell through the S-protein and is endocytosed or directly fused with the host cell membrane into the cell; (2)
Next, the lysosome degrades the lipid membrane and protein envelope on the exterior of the virus (endocytosis
only); (3) Viral RNA is released into the cell, where ORF1a and ORF1ab are translated into pp1a and pp1ab,
which in turn are cleaved by proteases encoded by ORF1a to produce multiple NSPs, forming the
replication/transcription complex; (4) At the same time as the previous step, viral RNA continues to use the cell
for replication; (5) The replicated viral RNA undergoes discontinuous transcription under the action of the
replication/transcription complex to produce subgenomic RNA, which is translated into structural proteins in the
cell's endoplasmic reticulum; (6) The resulting structural proteins assemble in the ER-Golgi intermediate
compartment (ERGIC) to form the nucleocapsid and viral envelope; (7) Finally, smooth-walled vesicles
containing the nascent virus particles fuse with the cell membrane, releasing the virus particles from the infected
cell. S, Spike protein; M, Membrane protein; E, Envelope protein; N, Nucleocapsid protein; NSPs,
Non-structural proteins; DMV, Double-membrane vesicles; ER, Endoplasmic reticulum; ERGIC, ER–Golgi
intermediate compartment. Adapted with permission (under the terms of the Creative Commons Attribution
License (CC BY)) from Guo et al., 2020.

1.3.2 CLINICAL MANIFESTATIONS OF COVID-19

The clinical spectrum of COVID-19 varies from asymptomatic or paucisymptomatic forms to

severe clinical conditions characterized by respiratory failure that necessitates mechanical

ventilation and support in an ICU, to multi-organ and systemic manifestations in terms of
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sepsis, septic shock, and multiple organ dysfunction syndromes (Cascella et al., 2020).
Between infection and symptoms, the incubation period is generally within 3 to 5 days, and

even up to 2 weeks depending on the amount of virus that initially entered the body and the

general physical health of the infected person (Guo et al., 2020).

Typical clinical symptoms of COVID-19 include fever, fatigue, malaise, dry cough and

dyspnea, while atypical clinical symptoms include expectoration, headache, hemoptysis,

nausea, vomiting, and diarrhoea (Cascella et al., 2020; Guo et al., 2020). There were reported

cases of chemosensory dysfunction, such as smell and taste impairment, associated with

COVID-19 in patients displaying flu-like symptoms (Yan et al., 2020). Confirmed mild cases

present with symptoms of low fever, dry cough, mild fatigue, sore throat, nasal congestion,

headache, muscle pain or other symptoms, without presenting with pneumonia, and the

majority of these cases recover after 1 week (Guo et al., 2020; Wang et al., 2020; Cascella et
al., 2020).

Severe cases of COVID-19 are characterised by a fever associated with severe dyspnea,

respiratory distress, and tachypnea, such that the respiratory rate can increase to 30

breaths/min or more. Hypoxia (blood oxygen saturation ≤ 93%) and Acute Respiratory

Distress Syndrome (ARDS) (PaO2/FiO2 ≤ 100) are other common clinical conditions

associated with severe cases. Furthermore, chest imaging using chest radiograph, Computed

Tomography (CT) scans, or lung ultrasound scans revealed increases in pulmonary infiltrates,

exceeding 50% within 24 to 48 hours (Wang et al., 2020; Cascella et al., 2020). Other
radiological features of severe cases include patients presenting with bilateral pulmonary

injury characterised by ground-glass opacities in X-ray scans, as well as the CT scans

showing SARS-CoV-2 distribution in the subpleural and lobular zones, with the two possibly

merged into a sheet or progressing to into bilobal diffuse opacities (Guo et al., 2020).

In critical COVID-19 cases, the patients generally present with hypoxemia, respiratory failure,

septic shock, and/or multiple organ dysfunction or failure. After a week of presenting

dyspnea, the individual rapidly progresses to ARDS accompanied by septic shock, metabolic

acidosis and coagulopathy. With septic shock, the patients usually suffer from persistent

hypotension despite volume resuscitation. This clinical condition is associated with increased

mortality, circulatory, and cellular/metabolic abnormalities such as serum lactate levels rising

even greater than 2 mmol/L. Extrapulmonary manifestations and systemic complications are

also prevalent in critical cases, demonstrated through injuries to the kidney, heart, and other
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organs, and even multiple organ failure. These clinical manifestations suggest that

SARS-CoV-2 infection, in addition to affecting the respiratory organs, also have clinical

presentations that involve invasion of other organs. Of note, some tissue in select organs,

such as renal tubular cells, Leydig cells, and cells in seminiferous ducts in testis, is very

permissive to SARS-CoV infection due to high expression of ACE2, allowing for direct viral

attachment and invasion of such cells and the subsequent damage to the kidneys and

testicular tissue of a patient. Studies have confirmed that renal insufficiency is common in

patients with COVID-19, which may be one of the main causes of COVID-19 eventually

leading to multiple organ failure and even death (Guo et al., 2020; Cascella et al., 2020).

1.3.3 CURRENT TREATMENT/MANAGEMENT OF COVID-19

At present, there are three protective COVID-19 vaccines for primary and booster

vaccinations, approved or authorised by the Centre for Disease Control and Prevention. These

vaccines include the BNT162b2, mRNA-1273 and Ad26.COV2.S, which were developed by

Pfizer-BioNTech, Moderna and Johnson & Johnson/Janssen, respectively. The BNT162b2

vaccine is a nucleoside-modified RNA vaccine that induces immune response and antibody

production against the wild-type and beta variant of SARS-CoV-2, by expressing the

full-length prefusion spike protein (Liu et al., 2021; Falsey et al., 2021). The mRNA-1273

vaccine is a lipid nanoparticle-encapsulated mRNA-based vaccine that encodes the prefusion

stabilized full-length spike protein of SARS-CoV-2, resulting in an immune response that

protects against SARS-CoV-2 infection and lowers the severity of COVID-19 symptoms

(Baden et al., 2021). The Ad26.COV2.S vaccine is a recombinant, replication-incompetent

adenovirus serotype 26 (Ad26) vector encoding a full-length and stabilized SARS-CoV-2

spike protein (Sadoff et al., 2021). The Ad26.COV2.S vaccine has been shown to have high

risks of adverse events and is thus less preferable, in comparison to the BNT162b2 and

mRNA-1273 vaccines.

In addition to the vaccines, there is one FDA-approved drug for the treatment of COVID-19

symptoms called remdesivir, or Veklury (trade name). Remdesivir targets the RNA-

dependent, RNA polymerase (nsp12) and exhibits inhibitory activity against SARS-CoV,

MERS-CoV and SARS-CoV-2 in vitro (Beigel et al., 2020). The drug is suitable for children,
paediatric patients and adults with SARS-CoV-2 infection, whether hospitalised or not.

Remdesivir is administered to soothe all symptomatic manifestations of COVID-19,

including mild-to-moderate cases, high risk for progression to severe COVID-19, and severe

cases.
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There are additional treatments and therapeutic strategies in place to support symptomatic

cases of COVID-19 and were designed to primarily address respiratory impairments. These

strategies were implemented even before the development and authorisation of vaccines.

They help mitigate tissue injury and damage in extrapulmonary manifestations of COVID-19.

Intensive care is crucial for dealing with complicated cases of the disease. The first steps in

addressing respiratory impairment, hypoxia and ARDS in severe cases incorporate oxygen

therapy. Oxygen therapy involves the administration of oxygen using adaptable techniques

such as non-invasive (NIV) and invasive mechanical ventilation (IMV) therapy, Heated

humidified high-flow therapy, Continuous Positive Airway Pressure therapy, Intubation and

Protective Mechanical Ventilation. In critical cases and some severe cases, healthcare experts

employ several pharmaceutical therapies to treat adverse cases of COVID-19 clinical

manifestations, such as COVID-19 induced ARDS, as well as limit the spread and direct

extension of the virus to adjacent organs. These therapies include the use of corticosteroids,

the administration of antiviral and immunomodulatory drugs, serotherapy (plasma and

antibody therapies), the administration of anticoagulant agents and inflammation inhibitors.

These therapies have demonstrated effectiveness in treating COVID-19 symptoms and effect

recovery in patients.

Nonetheless, prevention is currently the best strategy to limit the spread of COVID-19.

Preventive strategies focus on social distancing, the isolation of patients and the careful

clinical care to an infected patient. The WHO and other organizations have issued general

recommendations for the public and healthcare personnel to implement during social

distancing, medical isolations and quarantines. Despite the implementation of preventative

measures, the number of cases continues to rise and COVID-19 continues to claim lives. The

ultimate measure for SARS-CoV-2 epidemic control and prevention will be the use of

protective vaccines that confer long-term immunity even against multiple variants and strains,

as well as therapeutic drugs against SARS-CoV-2 infection and COVID-19 symptoms.

Efforts in finding such vaccines and drugs are still ongoing. More compounds are being

proposed as potential treatments against COVID-19 (Nhean et al., 2021; Awadasseid et al.,
2021). The current COVID-19 management measures, although effective to a certain extent,

highlight the urgent need for the development of broad-spectrum antiviral chemotherapies,

which specifically target highly conserved proteins, to fight infections against the novel

SARS-CoV-2 variants and other coronaviruses (Cascella et al., 2020; Guo et al., 2020; Aleem

et al., 2021).
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1.4 SARS-CoV-2 MAIN PROTEASE

The SARS-CoV-2 main protease (Mpro), also referred to as chymotrypsin-like protease (3CL
pro), is a cysteine protease and a non-structural protein (nsp5), encoded by OFR1a/b (Ullrich

and Nitsche, 2020). As in other coronaviruses, Mpro is a homodimer and two subunits are

arranged almost perpendicular to each other. Each monomer of Mpro consists of 306 amino

acid residues, comprising 13 strands and 11 helices distributed among three distinct structural

domains (I, II and III), and a long loop (residues 185-200) joining domains II and III (Khan et
al., 2020; Wu et al, 2020a; Chang, 2010; Zhang et al., 2020). Domains I (8-101 amino acid

residues) and II (102-184 amino acid residues) are mainly beta-barrels and display

resemblance to chymotrypsin, whereas domain III (201-306 amino acid residues) primarily

comprises alpha helices (Zhang et al., 2020). On each monomer, there is a catalytic dyad

(His41 and Cys145) situated on the cleft of the chymotrypsin-like double beta-barrel fold

between domains I and II (figure 1.4) (Goyal and Goyal, 2020; Ullrich and Nitsche, 2020).

The individual monomers are enzymatically inactive and require dimerization for

functionality (Goyal and Goyal, 2020).

Figure 1.4. The 3D structure of the SARS-CoV-2 Mpro. X-ray crystal structure of the Mpro homodimer of
SARS-CoV-2 (PDB: 6Y2E). Residues of the catalytic dyad (His41/Cys145) are indicated. (a) Monomers are
indicated. (b) Domains of each monomer are indicated. Adapted with permission from Ullrich and Nitsche,
2020.
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Unlike other cysteine and serine proteases with catalytic triads, Mpro consists of a water

molecule that occupies the place of the third catalytic residue in the active site (Ullrich and

Nitsche, 2020). In addition to the catalytic dyad, there are two deeply buried subsites (S1 and

S2) and three shallow subsites (S3-S5) (figure 1.5). The amino acid residues in subsites S1

and S2 participate in hydrophobic and electrostatic interactions, whereas the residues in the

shallow subsites S3-S5 tolerate different functionalities (Khan et al., 2020).

Figure 1.5. The substrate-binding subsites of the SARS-CoV-2 Mpro. The surface of SARS-CoV-2 Mpro, showing
the substrate-binding subsites, colour-coded as follows: purple site S1 and S2, olive green site S3, blue site S4,
pink site S5. Adapted with permission from Khan et al., 2020.

The Mpro plays a vital role in cleaving the polyproteins translated by the ORF1a and ORF1ab.

The Mpro is first autocleaved from pp1ab (nps5) to produce a mature protease and then

proceeds to cleave downstream nsps at 11 different sites of the pp1ab to release nsp4-nsp16

(Khan et al., 2020). The recognition sequence at most sites was found to be

Leu-Gln↓(Ser/Ala/Gly) (↓ shows the cleavage site) (Goyal and Goyal, 2020). The Mpro is

vital to the life cycle of coronaviruses, as it directly mediates the maturation of the nsps

which is essential for viral replication (Khan et al., 2020). Proteolysis mediated by Mpro is

believed to involve proton abstraction at the cysteine side chain by the histidine's imidazole,
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resulting in a thiolate nucleophile which in turn, attacks the amide bond of the substrate. The

N-terminal peptide product is released by proton abstraction from histidine before the release

of the C-terminal peptide product via the hydrolysis of the thioester, and ultimately the dyad

is restored (Ullrich and Nitsche, 2020).

1.5 PROBLEM STATEMENT

Despite having zoonotic reservoirs, the virus has exponential transmission rates owing to its

efficient human-to-human transmission allowing the pulmonary disease to be widespread.

Similar to its predecessors, SARS-CoV and MERS-CoV, SARS-CoV-2 attacks the lower

respiratory system to cause viral pneumonia, but it may also affect the gastrointestinal system,

heart, kidney, liver, and central nervous system leading to multiple organ failure. These

conditions can be fatal, particularly in patients with underlying cardiovascular diseases.

Confirmed cases continue to rise rapidly around the world, despite the availability of vaccines.

As of February 2022, there are more than 10 billion doses of vaccines administered, yet,

transmissions continue to rise (WHO, 2022). Infections after vaccination also contribute to

these increasing COVID-19 cases due to the emergence of SARS-CoV-2 variants that evade

immunological defences. Indeed, the vaccines have been shown to mitigate the severe

morbidity associated with COVID-19 and lower the mortality rate, which in turn alleviate the

burden and strain on public health services. The emergence of new SARS-CoV-2 variants

(mediated by structural protein mutations, especially the spike protein), however, lower the

efficacy of these vaccines as indicated by increased virulence and advanced evasive

mechanisms against host immunological defence employed by these coronaviruses (Aleem et
al., 2021; Azgari et al., 2021; Chen et al., 2021). There are currently few drugs

(FDA-approved and promising candidates) that fight off SARS-CoV-2 infection and provide

therapeutic relief from COVID-19 illness. There are no vaccines that confer long-term

immunity and consistently elicit immunological protection against a broad range of

SARS-CoV-2 variants. Optimal pharmacological measures to control the spread and

SARS-CoV-2-related morbidity are yet to be discovered and developed.

Nevertheless, there has been an influx of biological data relating to SARS-CoV-2, as well as

the availability of biological data of closely related species, such as SARS-CoV and

MERS-CoV, in biological databases. These data contribute to the efforts to elucidate the

pathogenicity of SARS-CoV-2, as well as its biology. Despite this data and knowledge influx,

there is still a knowledge gap in terms of the proteolytic mechanism employed by the
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SARS-CoV-2 Mpro. Recent attempts in elucidating the proteolytic activity of SARS-CoV-2

Mpro with the intent to develop or suggest potential antiviral agents were comparative studies

based on genomic and structural conservation (Ullrich and Nitsche, 2020; Zhang et al., 2020),

while others utilised experimental approaches (Rut et al., 2020) and further groups utilised

different substrates as opposed to oligopeptide substrates conventionally used to study

substrate specificity and the proteolytic mechanism of the Mpro (Swiderek and Moliner,

2020).

In the past, viral proteases have proven to be excellent drug targets that have led to the

development of effective drugs against chronic infections, like human immunodeficiency

virus (HIV) or hepatitis C virus (HCV), which employ aspartyl and serine proteases,

respectively (Ullrich and Nitsche, 2020). Due to its participation in cleaving

replication-essential enzymes, such as RNA-dependent RNA polymerase or nsp12, the Mpro is

thus placed in the viral replication cycle, an essential process for SARS-CoV-2 pathogenesis

(Ullrich and Nitsche, 2020). The RNA-dependent RNA polymerase cannot fully function

before its proteolytic release from pp1ab (Ullrich and Nitsche, 2020). The functional

importance of Mpro makes it an attractive target for antiviral drug discovery against

SARS-CoV-2, as its inhibition could potentially hinder the viral replication cycle, and overall,

stall the production of infectious SARS-CoV-2 virions (Khan et al., 2020; Ullrich and Nitsche,
2020). In addition, the structural architecture of Mpro is highly conserved across various

coronaviruses, despite the extensive mutagenesis that coronaviruses are subject to (Goyal and

Goyal, 2020). Mutations in key proteins are frequently detrimental to viruses. Thus, the

development of Mpro inhibitors will create broad-spectrum antiviral therapeutic agents against

SARS-CoV-2 and other coronaviruses, while reducing the risk of mutation-mediated drug

resistance in future deadly viral strains (Khan et al., 2020; Goyal and Goyal, 2020). There are
no human proteases with an analogous substrate specificity to the protein and therefore, Mpro

inhibitors are more likely to be harmless to the patients (Goyal and Goyal, 2020).

Furthermore, a study outlined the role of Mpro in counteracting the host innate immune

response by acting on post-translational modifications of host proteins across various

coronaviruses (Lei et al., 2018), thus, Mpro inhibition is of vital importance in preventing

replication and proliferation of SARS-CoV-2 and ultimately, in the fight against COVID-19.

Understanding the functionality of SARS-CoV-2 Mpro will provide insight into the physiology

of the coronavirus and also provide a rational approach in the development of effective

antiviral chemotherapy against COVID-19.
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1.7 AIMAND OBJECTIVES

The principal aim of the present study was to profile peptide substrate binding onto

SARS-CoV-2 Mpro and explore the binding interactions in the protease-peptide complexes to

gain better insight into the underlying proteolytic mechanism using Bioinformatics

approaches.

The specific objectives for this study were to:

1) To generate a library of potential hexapeptide substrates and calculate protein-peptide

complexes using molecular docking, in the context that the conformational search space for a

hexapeptide will be large

2) To profile substrate binding, by assessing binding efficiencies of the substrate residues and

evaluating the binding modes

3) To assess the protein behaviour and stability in the complex systems using molecular

dynamics simulations
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CHAPTER TWO

GENERATION OF THE VIRTUALMULTI-CONFORMER
HEXAPEPTIDE LIBRARY

COVID-19 has been spreading devastation across the world through the disruption of social,

economic, and political stability. Having claimed more than 5 million lives since its

emergence in 2019, the disease has proven to be the deadliest in recent history and has

resulted in a pandemic of extraordinary proportions with a severe negative impact on public

health and the livelihood of people (WHO, 2022). The disease is caused by the infection of

the SARS-CoV-2 coronavirus, which manifests in deadly pneumonia-like symptoms. The

virus consists of a 30 kilo-base RNA genome that encodes about 9 860 amino acids that form

the composition of at least 27 proteins (Guo et al., 2020; Mousavizadeh and Ghasemi, 2020).

The ORF1a and ORF1b in the first two-thirds of the RNA genome encodes two polyproteins,

pp1a and pp1ab, which are subsequently processed by the Mpro and a papain-like protease

into non-structural proteins (nsps) (Chen et al., 2020). The preferred recognition sequence for
Mpro was determined to be Leu-Gln↓ (Ser/Ala/Gly) (↓ shows the cleavage site) (Goyal and

Goyal, 2020). The Mpro is vital to the life cycle of coronaviruses, as it directly mediates the

maturation of the nsps which is essential for viral replication and assembly (Khan et al.,

2020; ). This chapter details the generation of the multi-conformer hexapeptide library based

on the reported substrate specificity of SARS-CoV-2 Mpro according to the findings of Ullrich

and Nitsche (2020). High occurrence amino acids were used to generate the peptide

substrates. Each hexapeptide was constructed to contain the recognition sequence and the

cleavage site. Terminal capping was performed to increase structural stability in the

substrates.

2.1 INTRODUCTION

The investigation, discovery and testing of natural substrates are fundamental to the

biochemical characterisation of any protein. Natural substrates reveal the function of the

protein and show the overall biological importance and physiological relevance to cellular
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homeostasis (Venkatraman et al., 2009). In many instances, substrates and their products

provide better insight into the cellular pathways the protein catalyses, as well as cascades of

cellular processes that rely on the regulation of the protein (Grigalunas et al., 2020;

Venkatraman et al., 2009). In the context of proteases, substrate specificity which highly

relates to protease function is understood through the investigation of the peptide substrates

and the examination of their products. Substrate specificity underpins the elucidation of the

mechanism of proteolysis which instructs the assignment of the protease to site-specific

proteolysis (Qi et al., 2017). In turn, substrate specificity substantially aids in deciphering the
biological importance of the products to the physiology of the organism (Hara et al., 2017;

Johnson and Chen, 2017). Since proteases are often associated with the development and

progression of diseases, the knowledge of their substrates and cleavage preferences become

fundamental to the rational design of therapeutic molecules that modulate protease activity

(Uliana et al., 2021).

Generally, the use of substrate libraries has been crucial to the characterization and profiling

of substrate specificity, and this has provided information for the elucidation of protein

function and catalytic mechanisms (Boulware and Daugherty, 2006). Since the pioneering of

peptide synthesis, synthetic peptides have been used to create cleavage preference profiles for

specific proteases; these profiles help in identifying the preferred cleavage sites and in the

characterisation of their linear recognition sequence specificities. In addition, these shed light

on subsite preferences and also aid in revealing the underlying molecular modes of action

(Ivry et al., 2018; Biniossek et al., 2016; Zhou et al., 2020; Vizovišek et al, 2018). These

profiles also allow the identification of the structural origins of protease specificity and

promiscuity (Biniossek et al., 2016). As a result, several pharmacological successes have

been possible due to this elucidation of substrate specificity and the subsequent exploitation

of the promiscuity revealed by the substrate specificity profiles. Peptide substrates have

always served as a strong basis for rational drug design and drug discovery, and have led to

effective and efficient chemotherapies (Grigalunas et al., 2020; Ullrich and Nitsche, 2020).

2.2 RDKit

RDKit is a powerful open-source software suite for cheminformatics, computational

chemistry, and predictive modelling. The software toolkit was developed to support the

construction of predictive models for ADMET (absorption, distribution, metabolism,

elimination and toxicity) and biological activity. RDKit supports various queries of
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computer-aided studies and machine learning like substructure searching, canonical

Simplified Molecular Input Line Entry System (SMILES), chirality support, chemical

transformations, chemical reactions, and even molecular serialization (Landrum, 2013a). The

general implementation of RDKit in computational modelling involves the use of SMILES

arbitrary target specification (SMARTS) and/or SMILES as inputs which generate models as

output that can be stored in MDL Molfile (mol), Standard Database Format (SDF), and

THOR Data Tree (TDT) files (Landrum, 2013a).

RDKit supports the construction of 2D and 3D molecular structures. It is very powerful at 2D

depiction of structures and also accommodates constrained depiction and mimicry of 3D

coordinates. Moreover, the toolkit accommodates the conversion of 2D molecules to 3D,

together with the conformational analysis via distance geometry that accompanies the process.

RDKit uses the Universal Force Field (UFF) implementation to clean up structures and

optimise geometries and conformations (Landrum, 2013a; Landrum, 2013b). Other

implementations within RDKit include Fingerprinting (Daylight-like, circular, atom pairs,

topological torsions, “MACCS keys”, etc.); similarity/diversity picking (include fuzzy

similarity); 2-D pharmacophores; Gasteiger-Marsili charges; hierarchical subgraph/fragment

analysis and Hierarchical RECAP implementation (Landrum, 2013a).

2.3 SMILES

SMILES is a linear notation language for entering and representing chemical structures and

reactions (Daylight, 2019a; Gasteiger et al., 2018). The SMILES language is a typographical

method that represents molecular structure by a linear string of symbols (i.e. printable

characters), like natural language (Weininger, 1988; Daylight, 2019a). SMILES notation is an

efficient alternative to conventional conversion tables as it requires less storage space (50% to

70% less space) and it is a linguistic construct that can be integrated into other languages

designed for the storage of chemical information and chemical intelligence (Daylight, 2019a).

SMILES denotes a molecular structure as a graph with optional chiral indications detailing

the description of a molecule in the manner in which they are drawn by chemists (Weininger,

1988; Daylight, 2019a). SMILES provides a platform for the accurate and unique

specification of molecules which can be used with chemical databases due to storage

efficiency (Weininger, 1988; Daylight, 2019a).
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2.4 SMARTS

SMARTS is a substructure identification language that allows one to specify substructures

using rules that are compatible with SMILES (Gasteiger et al., 2018; Daylight, 2019b).
SMARTS specifies substructures using the same linear strings used to specify chemical

structures in SMILES. However, the specification in SMARTS extends to include logical

operators and special atomic and bond symbols which allows for the SMARTS atoms and

bonds to be more general (Daylight, 2019b). The difference in semantics between SMILES

and SMARTS expressions allude to the interpretation of the specific expression. The

SMILES string is interpreted as a molecule and the resultant molecule is what is subject to

substructure searching. Alternatively, the SMARTS string is interpreted as a pattern (which

denotes a substructure) and matched against a molecule (Daylight, 2019b). Both SMILES and

SMARTS provide a fast and efficient way to store and query chemical structures (Gasteiger

et al., 2018).

2.5 METHODOLOGY

As there were no available oligopeptide libraries with peptide chains demonstrating the

recognition sequence required by SARS-CoV-2 Mpro for proteolytic cleavage, a peptide

library was generated using RDKit (v. 2019.09.1), powered by Python on a server (Landrum,

2013). With the findings of Ullrich and Nitsche (2020), hexapeptides were generated using

the MolFromSequence method. The selection of the constituent amino acids was based on

their high occurrence frequency in the recognition sequence and cleavage site.

Acetyl and methylamine constructs were generated to constitute terminal caps using

MolFromSMILES functionality. SMARTS patterns were utilised to identify the alpha carbon

atoms (α-carbons) of terminal amino acids. The C- and N- terminal α-carbons were replaced

with acetyl (ACE) and methylamine (NME) constructs to perform terminal capping (Penkler

et al., 2017). Subsequently, hydrogen atoms were removed and added back to ensure that the
valency of each atom was satisfied. The 3D coordinates of the atoms were generated using

the EmbedMolecule method. The molecules were optimised using the implemented

UFFOptimizeMolecule. A structural conformational search was performed to generate

conformers. The resulting conformers were stored in an SDF file.

2.6 RESULTS AND DISCUSSION

The generation of the peptide library was based on the findings of Ullrich and Nitsche (2020).
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Their study sought to elucidate the substrate specificity of the SARS-CoV-2 Mpro. Their

approach was to analyse the polyprotein 1a/b sequence to identify the Mpro recognition

sequence or cleavage sites, provided that the P2 to P1′ residues of these sites display the

highest degree of conservation in closely related SARS-CoV and MERS-CoV viruses

(Ullrich and Nitsche, 2020). Their approach was motivated by the evident high conservation

of the RNA genomes across SARS-CoV-2, SARS-CoV and MERS-CoV, together with the

high degree of structural similarity and conservation of the active site which they observed in

superimposed main protease structures belonging to SARS-CoV-2, SARS-CoV and

MERS-CoV (Goyal and Goyal, 2020; Liu et al., 2020; Zhang et al., 2020; Ullrich and Nitsche,

2020). In addition, these conserved P2 to P1′ residues are crucial in determining substrate

specificity and they follow a similar pattern across the coronavirus species (figure 2.1). The

P2 position tolerates small hydrophobic amino acids with a clear preference for leucine

(figure 2.1; Ullrich and Nitsche, 2020). The P1 position is always occupied by the highly

conserved Glutamine (GLN) which is present in all polyprotein cleavage sites of

SARS-CoV-2, SARS-CoV and MERS-CoV (figure 2.1; Ullrich and Nitsche, 2020). The P1′

position tolerates small amino acids such as serine or alanine (figure 2.1; Ullrich and Nitsche,

2020).
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Figure 2.1. Polyprotein cleavage sites recognised by Mpro of SARS-CoV-2, SARS-CoV and MERS-CoV.
Peptide sequences cover residues P5 to P5′ according to the nomenclature of Schechter and Berger (1967). 81
Data were generated from pp1ab polyprotein sequences reported in the UniProt database with the accession
codes P0DTD1 (SARS-CoV-2), P0C6X7 (SARS-CoV) and K9N7C7 (MERS-CoV). The consensus sequence
covering all cleavage sites was plotted using WebLogo. Adapted with permission from Ullrich and Nitsche
(2020).

The generation of the peptide library was carried out using RDKit and Python scripting

(Landrum, 2013). The initial plan was to generate a peptide library of octapeptide substrates

utilising all the amino acids that occur in P4 to P4′. The resultant library consisted of 102 060

octapeptides. Due to time and computational (limited access to the large queue at the

supercomputer) constraints, hexapeptides (P3 to P3′) were prioritised and most importantly,

the focus was placed on amino acids that displayed high frequencies of occurrence in their

respective position of the cleavage site. The selection of the constituent amino acids was

based on their high occurrence frequency in the recognition sequence and cleavage site. In

essence, each hexapeptide (P3-P3′) consisted of the both the recognition sequences (P2-P1′)

and the cleavage site (P1-P1′), equally divided in the C- and N- terminal products of the

substrates (***). Despite this reduction of amino acids in the peptide substrates, variability in

chemical properties was maintained in P3, P2′ and P3′ (table 2.1; Crooks et al., 2004).
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Table 2.1: The amino acid residues in the polyprotein cleavage sites recognised by SARS-CoV-2 Mpro used in the
construction of hexapeptides.

Residue position Amino acids

P3 Thr; Arg; Lys; Val; Met

P2 Leu

P1 Gln

P1′ Ser; Ala

P2′ Ala; Gly; Glu; Thr; Leu; Asn; Ser; Val

P3′ Glu; Asn; Ala; Asp; Phe; Gly; Met; Gln; Val

Green: Polar; Blue: Basic; Red: Acidic; Black: Hydrophobic; Purple: Neutral

Python scripting through nested loops was employed to generate the different hexapeptides;

each consisting of unique amino acid combinations of the cleavage site. A total of 810 capped

hexapeptides were generated and each hexapeptide consisted of 100 different structural

conformations. The purpose of the structural conformational search was to create a

multi-conformer library. In ligand-based drug design, multi-conformer libraries are essential

for predicting the bioactive conformations of ligands in the absence of the structural model of

the receptor, especially for ligands with rotatable bonds (Yongye et al., 2010). In this study,

the variation in conformation was intended to supplement the conformation generation within

molecular docking procedures.
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Figure 2.2. The terminal capping of the hexapeptides. The 3D structure of the Lys-Leu-Gln-Ala-Ala-Ala
(KLQAAA) substrate capped with acetyl (ACE) and methylamine (NME) in the C- and N-termini, respectively.
A) shows the stick representation of the capped hexapeptide presented in its atomic composition, where green
represents carbons; red represents oxygens; blue represents nitrogens and grey represents hydrogens. B) shows
the cartoon representation of the substrate backbone. C) shows the typical, colour-coded amino acid composition
of a hexapeptide showing the residues and caps in different colours. D) shows a cartoon representation of a
typical, colour-coded amino acid composition of a hexapeptide showing the residues and caps in different
colours. The image was generated using PyMOL.

Terminal capping using acetyl and methylamine groups can increase the peptide stability

towards its protease, which in turn can improve their affinity for specific biological targets

(figure 2.2; Fang et al., 2011). According to Penkler et al. (2017), the use of ACE and NME

for capping peptide chains allow the structures to simulate being part of a protein. To perform

the terminal capping shown in Figure 2.3, the SMARTS strings '[$(OC(=O)CN)]' and

'[$(NCC(=O))]' were applied to each hexapeptide to search and identify the C- and

N-terminal α-carbons. Once identified, these α-carbons were replaced with the α-carbons

consisting of the ACE and NME constructs for the C- and N-termini, respectively (figure

2.3B & D). This was all automated using python scripts which are listed in Appendix A.

Figure 2.2 shows the successful implementation of terminal capping. Although the structures

of terminal residues were modified during capping, amino acid compositions were restored
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and conventional peptide representations (such as the 3D structure) were conserved, as

indicated by the cartoon representation in figures 2.2B and 2.2D. In this context, terminal

capping was carried out to safeguard the stability of the hexapeptides and prevent helical ends

from fraying during the dynamic simulation studies (Zuo et al., 2012; Zuo et al., 2014).
Furthermore, capped termini prevent the misfolding of the protein and peptide chains -

serving as a protective group, and this avoids the disruption of the molecular structure in

receptor targets (Andreasen et al., 2014; Hernik-Magoń et al., 2017; Lee et al., 2007).

2.5 CHAPTER SUMMARY
In this chapter, the objective to generate suitable peptide substrates for SARS-CoV-2 Mprowas

fulfilled. A multi-conformer hexapeptide library was generated based on the SARS-CoV-2

Mpro substrate specificity and recognition informed by the work of Ullrich and Nitsche (2020).

The hexapeptides consisted of the recognition sequence and cleavage site for SARS-CoV-2

Mpro. Only amino acids displaying high occurrence frequencies in their respective positions

were prioritised. A total of 810 unique hexapeptides were generated, each with 100

conformers using Python and SMILES in RDKit (a total of 81 000 conformers). The

constituent residues were equally divided between the C and N-terminal products (P3-P3′).

The C- and N- terminal α-carbons were replaced with ACE and NME constructs to constitute

terminal capping using SMARTS. Terminal capping was performed to increase the stability

of the substrates in dynamic environments. The hexapeptide conformers were stored in SDF

files and used in molecular docking studies detailed in the next chapter.



26

CHAPTER THREE

MOLECULAR DOCKING OF MULTI-CONFORMER

HEXAPEPTIDE LIBRARY

The SARS-CoV-2 Mpro is essential to the life cycle of the coronavirus, as it directly mediates

the maturation of the non-structural proteins (nsps) which are essential for viral replication

and assembly (Khan et al., 2020). The Mpro plays a key role in the processing of the

polyprotein to form mature nsps. The Mpro is first autocleaved from pp1ab (nsp5) to produce

mature protease, and then proceeds to cleave downstream nsps at 11 different sites of the

pp1ab to release nsp4-nsp16 (Khan et al., 2020). The recognition sequence at most sites was

determined to be Leu-Gln↓(Ser/Ala/Gly) (↓ shows the cleavage site) (Goyal and Goyal,

2020). This chapter details the profiling of substrate binding of the hexapeptides (from the

multi-conformer peptide library) onto Mpro via molecular docking. A suitable Mpro crystal

structure was selected and prepared for molecular docking alongside the conformers of the

substrates. Substrate binding was characterized through docking results and the calculation of

ligand efficiencies. Substrate recognition and specificity were profiled via subsite mapping of

the protease-peptide interface, and through the assessment of ligand-receptor molecular

interactions at the active site of complexed structures.

3.1 INTRODUCTION

The biological significance of protein function and regulation is realized when the protein

makes direct physical interaction with other molecules (Du et al., 2016). These direct

interactions occur as a result of molecular recognition, where the protein interacts with

binding partners through non-covalent interactions to form specific complexes (Du et al.,
2016). Molecular recognition is mainly characterized by specificity and affinity.

Protein-ligand binding has been a topic of study for many years and is certainly an imperative

step for drug discovery. To gain better insight into protein function, thorough elucidation of
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the mechanisms governing protein-ligand interactions is required, together with the full

description, characterization and quantification of the energetics that facilitates the formation

of complexes. Consequently, this in-depth understanding of the physicochemical mechanisms

of protein-ligand binding, and analysis of structural data optimizes rational drug design and

facilitates the discovery, design and development of new drugs based on the detailed

information about molecular recognition and interaction (Du et al., 2016).
To date, three main models explain the mechanisms of protein-ligand binding. These include

the "lock-and-key", "induced fit" and "conformational selection" models. Fisher proposed the

"lock-and-key" model in 1894, which depicts the ligand and protein/enzyme as rigid

structures wherein their binding interfaces perfectly complement one another. While the

model explains the substrate specificity that proteins exhibit, and also emphasizes the

importance of shape complementarity between the two structures, it does not account for the

structural differences the protein and ligands exhibit in unbound and bound states (Tobi and

Bahar, 2005; Du et al., 2016). This has led to the “induced fit” model proposed by Koshland
in 1958, to account for this type of plasticity of proteins (Tobi and Bahar, 2005). The model

explains that an interacting ligand induces a conformational change in the flexible binding

site of the protein and thus, mediates protein-ligand binding and interaction (Du et al., 2016).

This model takes into account the flexibility of the ligand-binding site, and also explains the

substrate recognition that proteins exhibit (Tobi and Bahar, 2005; Du et al., 2016). However,

the "induced fit" model is seemingly suitable for proteins that show minor conformational

changes after the ligand binding. Furthermore, both models depict a protein as a single, stable

conformation under given conditions (Du et al., 2016). The "conformational selection" model
later emerged to take into account this inherent flexibility of proteins. The "conformational

selection" model postulates the native state of a protein exists as a vast ensemble of closely

related conformational states or substates. These substates coexist in equilibrium, and the

ligand only binds selectively to the most suitable substate, thus shifting the equilibrium

towards this substate and consequently towards the formation of a complex. This suggests

that the unbound protein can sample with a certain probability the same conformation as that

of the ligand-bound state (Tobi and Bahar, 2005; Du et al., 2016)

3.2 MOLECULAR DOCKING

3.2.1 COMPUTER-AIDED DRUG DISCOVERY/DESIGN

Advancements in computer hardware, software, and algorithms have led to the optimization
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of the drug discovery process, where computation rather than experimentation reduces time

and costs (Lin et al., 2020). Over the past three decades, the implementation of

computer-aided discovery/design (CADD) methods in drug discovery has helped accelerate

the process and contributed to many breakthroughs in the development and rapid availability

of novel therapeutic agents. CADD methods largely contribute to the optimization of virtual

screening techniques, which then allow rapid hit identification, lead optimization and rational

drug design. Moreover, CADD methods are classified as either ligand-based or

structure-based methods (Sliwoski et al., 2014). Ligand-based methods heavily rely on the

knowledge of elucidated ligands of the target protein. In principle, the structure-based

methods are analogous to high-throughput screening wherein accurate information about

target and ligand structures is imperative. Structure-based approaches must be performed

with available structural models of the target proteins, which are obtained either by X-ray

diffraction, nuclear magnetic resonance (NMR) or molecular simulation (homology

modelling) (Sliwoski et al., 2014; Lin et al., 2020). Virtual screening techniques aim to

identify novel active small molecules from a large compound library that bind favourably to

the target protein. Readily used tools for virtual screening techniques include molecular

docking, pharmacophore modelling and Quantitative Structure-Activity Relationship (QSAR)

(Sliwoski et al., 2014; Lin et al., 2020)

3.2.2 VIRTUAL SCREENING - MOLECULAR DOCKING

Molecular docking is a powerful screening technique that predicts the interaction patterns

between proteins and their ligands, by modelling virtually a complex structure of the binding

partners (Pantsar and Poso, 2018; Lin et al., 2020). The theoretical basis for molecular

docking is the “induced fit” model, in which ligand and receptor recognition depends on

spatial shape complementarity and energy matching (Lin et al., 2020). In structure-based

docking, a small ligand molecule is aligned inside the binding cavity of the target protein

with the intent to find the most favourable conformation or pose for complex formation. The

docking process typically involves two independent stages which are: conformation

generation; and the scoring of the resulting conformations (Pantsar and Poso, 2018).

3.2.3 CONFORMATIONAL SAMPLING AND DOCKING SIMULATION

The available conformations to both receptor and ligand present the sampling engine with a

huge challenge of finding all optimal receptor-ligand conformations during docking (Klebe,

2006; Guedes et al., 2014). Both structures are often flexible and dynamic in nature and
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possess numerous translational and rotational positions in a 3D space. Therefore, an

exhaustive conformational search on both the receptor and the ligand proves to be difficult,

especially for large protein structures. Widely used conformational sampling algorithms

overcome the computational cost of this process by limiting some flexibility in the structures,

most often this is for the receptor (Leach et al., 2006; Meng et al., 2011; Pantsar and Poso,

2018; Salmaso and Moro, 2018). Rigid docking algorithms, much like the "lock-and-key"

model, consider the receptor and ligands as rigid structures and only consider three

translational and three rotational degrees of freedom during sampling. Semi-flexible

algorithms treat ligands as flexible structures with rigid receptors and sample the

conformational freedom of the ligands alongside the six translational and rotational ones.

Flexible docking algorithms consider the ligand and receptor as flexible binding counterparts.

Consequently, these algorithms present a great number of degrees of freedom to search, and

as such computational resources are often augmented to optimise sampling and scoring to

attain a balance between accuracy and speed (Salmaso and Moro, 2018).

In the context of semi-flexible docking, the selection of the docking algorithms, together with

the setting of the search strategy and an appropriate level of conformational sampling, are

crucial steps to a successful simulation of docking. Scoring functions assess performance

which is affected by the conformational search and ligand placement. Search strategies may

be systematic or random. Systematic searches incorporate a comprehensive sampling of the

conformations and structural properties and thus, use significantly more time and resources to

generate the poses and evaluate them individually (Prieto-Martínez et al., 2018). As such, a

systematic search is performed by constructing the ligand from different fragments, wherein

one fragment serves as an anchor whilst the remaining fragments are sequentially added to

avoid the generation of a combinatorial explosion (Prieto-Martínez et al., 2018). Alternatively,
a stochastic search is performed randomly using the Monte Carlo (MC), Tabu search, Swarm

optimization (SO) or genetic algorithm (GA) methods. Each method develops different

conformers based on bond rotations as degrees of freedom and these conformers are then

evaluated by a scoring function for pose selection and filtering (Prieto-Martínez et al., 2018;
Salmaso and Moro, 2018). A stochastic search searches a broader range of conformations in a

given timeframe, and this may be advantageous in terms of rapidly finding feasible solutions.

However, the technique does not ensure the full search of the conformational space, meaning

the true solution may be missed. Increasing the number of iterations of the algorithm thus

mitigates this lack of convergence (Salmaso and Moro, 2018).
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3.2.4 ENERGY SCORING FUNCTIONS

Docking simulations and conformational sampling may produce a great number of solutions.

Energy scoring functions then evaluate the generated conformers of the ligands, separating

the biologically relevant poses from the incorrect and inactive poses (Meng et al, 2011;

Prieto-Martínez et al., 2018). Scoring functions are fast, approximate mathematical methods
used to assess the binding affinity between the binding partners after docking. Notably,

scoring functions can be used within the search algorithm to accelerate the process of pose

prediction (Du et al., 2016). The favourable solutions are distinguished through the

evaluation of a broad range of properties such as intermolecular interactions, desolvation,

electrostatic, and entropic effects (Prieto-Martínez et al., 2018). The scoring functions then

estimate the binding affinity between the ligand and receptor by adopting various

assumptions and simplifications (Meng et al, 2011). Scoring functions can be categorised as

force-field-based, empirically-based or knowledge-based.

Force-field-based scoring functions estimate the energy of a system with regards to bonded

(intramolecular) and non-bonded (intermolecular) components (Meng et al., 2011; Salmaso
and Moro, 2018). Binding affinity is assessed by calculating the sum of non-bonded

interactions using a function that also accounts for bonded interactions (Meng et al., 2011;
Prieto-Martínez et al., 2018). Intermolecular interactions include van der Waals and the

electrostatic potential, which are described by the Lennard-Jones potential and the Coulomb

function, respectively. Consequently, this means that the entropic contribution of solvation is

not accounted for. Thus, a distance-dependent dielectric may be introduced to mimic the

solvent effect (Salmaso and Moro, 2018). Moreover, force-field-based scoring functions have

a slow computational speed and require cut-off distances to be introduced to handle

intermolecular interactions. This reduces the accuracy of long-range effects involved in

binding (Meng et al., 2011).
Empirical scoring functions estimate the binding energy as a sum of several energy

components such as hydrogen bonding, ionic interactions, hydrophobic effects and binding

entropy. These empirical energy components are weighted by coefficients optimised from

regression analysis fitted to a test set of ligand-protein complexes with known binding

affinities (Du et al., 2016; Salmaso and Moro, 2018; Meng et al., 2011).
Knowledge-based scoring functions assume that more favourable interactions towards

binding affinity have greater frequencies of occurrences between the binding partners. Thus,

the functions use statistical analysis of ligand-protein complexes from a database of crystal
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structures to obtain the interatomic contact frequencies and/or distances between the ligand

and protein. The frequencies are computed and converted into an energy component. The

score for a pose is calculated by summing up the tabulated energy components for all

ligand-protein atom pairs (Salmaso and Moro, 2018; Meng et al., 2011). A significant

advantage of knowledge-based functions is computational simplicity that establishes a

balance between performance and accuracy. Moreover, these functions also consider

uncommon interactions like sulfur-aromatic or cation-π interactions (Meng et al., 2011;

Prieto-Martínez et al., 2018).

3.3 AUTODOCK VINA

AutoDock Vina is a powerful open-source computational program for molecular docking and

virtual screening (Trott and Olson, 2010). It borrows ideas and approaches from AutoDock 4

but is conceptually designed differently. The program is up to two orders of magnitude faster

than AutoDock4 and features significant improvements such as an efficient optimization

algorithm and a scoring-function-based search algorithm for estimating binding affinity and

predicting reasonable poses, respectively (Jaghoori et al., 2016; Vieira and Sousa, 2019).

AutoDock Vina uses the MC/BFGS search algorithm which comprises a Monte-Carlo (MC)

iterated search partnered with the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

gradient-based optimizer. The MC search serves as a tool for stochastic global optimization,

while the BFGS method is used for deterministic local optimization. The BFGS method is an

efficient quasi-Newton method that takes the value and the derivatives (gradient) of the

scoring function with respect to all the design variables, such as the position and orientation

of the ligand, together with the values of the torsions for the active rotatable bonds in the

ligand and flexible residues. After several iterations, the BFGS will converge to a point where

the gradients vanish in all directions, within a negligibly small tolerance. This point of

convergence marks the local minimum and is where the local search optimization is

terminated. This powerful MC/BFGS algorithm infers search efficiency that leads to better

docking results with fewer scoring function evaluations (Trott and Olson, 2010; Eberhardt et

al., 2021; Handoko et al., 2012).
AutoDock Vina implements a hybrid scoring function that combines the empirical and

knowledge-based functions. The scoring function is based on the pairwise interactions

between atoms. These interactions are defined by five terms based on the surface distance

between the atoms (Tanchuk et al., 2016). The five terms that define interaction include a van

der Waals-like potential (defined by a combination of a repulsion term and two attractive
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Gaussians), a non-directional hydrogen-bond term, a hydrophobic term, and a conformational

entropy penalty. Interestingly, AutoDock Vina lacks electrostatics and solvation which

AutoDock 4 has. The binding energy is predicted as the sum of distance-dependent atom pair

interactions (Quiroga and Villarreal, 2016; Eberhardt et al., 2021).
The appeal of AutoDock Vina over other docking programs is its multi-core capability, high

performance and enhanced accuracy, ease of use and free availability. The multi-core

capability and high performance contribute to the characteristic fast speed of AutoDock Vina

and make it a proficient choice for virtual screening (Vieira and Sousa, 2019). Moreover,

calculations can be performed simultaneously in parallel over multiple Central Processing

Unit (CPU) cores using multithreading. Additional features like exhaustiveness also

contribute to the enhanced accuracy of AutoDock Vina in terms of the prediction of plausible

poses. During a docking simulation, the program may repeat the conformational sampling

several times with different randomizations. The exhaustiveness controls the number of times

the conformational sampling can be repeated within the same randomization seed. Essentially,

higher exhaustiveness exponentially raises the probability of finding a correct solution as

more runs are performed, with the only drawback of increased computation time (Jaghoori et
al., 2016).

3.4 LIGAND EFFICIENCY

Ligand efficiency (LE) is defined as the binding energy per heavy atom (Hopkins et al., 2004).
LE was first proposed as a useful metric for the selection and optimization of favourable

fragments, hits and leads with optimal physicochemical and pharmacological properties in

drug discovery (Hopkins et al., 2004; Abad-Zapatero and Metz, 2005; Orita et al., 2011).

Orita et al. (2011) reported that LE is useful in assessing the quality of hit compounds, as the

metric represents a balance between potency and molecular weight, which relate to ADMET

(Absorption, Distribution, Metabolism, Excretion, and Toxicity) parameters. In simple terms,

LE is the measurement of the goodness of interaction between a compound and its target

protein (Orita et al., 2011). Additionally, fragments, hits and leads with favourable LE values

indicate a greater potential improvement in binding affinity in the process of structure-guided

drug design (Chen et al., 2017).
The application and scope of LE have since evolved in drug discovery to incorporate other

properties of ligands that closely relate to ADMET parameters, such as lipophilicity,

molecular mass, polar surface area, combinations of physicochemical properties, and
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functional group contributions (Hopkins et al., 2014). As a result, modified LE metrics have

been proposed to undertake the extension of LE. These modified metrics include percentage

efficiency index (PEI) and binding efficiency index (BEI) (which use molecular weight);

ligand-lipophilicity efficiency (LLE) and logP/ligand efficiency (LELP) (which incorporate

lipophilicity); and the surface-binding efficiency index (SEI) (which is based on PSA) (Orita

et al., 2011). With these extensions, LE and its modified metrics have provided practical

means to estimate target druggability and to control the balance of molecular size and potency.

This significantly improves the success rates of lead optimization and drug design (Hopkins

et al., 2014; Chen et al., 2017).

3.5 METHODOLOGY

3.5.1 RECEPTOR PREPARATION

The crystallographic 3D structure of the SARS-CoV-2 Mpro was retrieved from the RCSB

Protein Data Bank (PDB) (PDB id: 6XHM) with a resolution of 1.41 Å. The crystallographic

waters were removed. The receptor consisted of three rotamers which were separated using a

python script (prepare_pdb_split_alt_confs.py) provided by AutoDock tools (Morris et al.,
2009). The first rotamer was used (conf_A), and this was initially prepared by adding polar

hydrogen atoms and merging all other hydrogen atoms. Thereafter, the Gasteiger charges

were calculated, and atom types were assigned. In addition, non-standard residues were

deleted from the receptor. The receptor preparation was performed using a python script

(prepare_receptor4.py) provided by AutoDock tools and the rigid molecule output was saved

in an AutoDock Protein Data Bank, Partial Charge (Q), & Atom Type (T) (PDBQT) file

format.

3.5.2 LIGAND PREPARATION

The SDF files of the hexapeptides were converted into XMOL molecule model (XYZ) files

using OpenBabel (O'Boyle et al., 2011). The conversion resulted in the separation of the

conformers into individual XYZ files presenting one conformation of the respective

hexapeptide. The conformers were subjected to geometry optimization employing a

Semi-empirical Quantum Mechanical Method (XTB Semi-empirical method) using xtb

software (Werner Reckien, 2017). The optimised structures were converted into PDB files

using OpenBabel and subsequently prepared by adding polar hydrogen atoms and merging all

hydrogen atoms. The Gasteiger charges were calculated, and atom types were assigned using
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an AutoDock tools python script (prepare_ligand4.py). The output was saved in PDBQT files.

The ligand preparation process was automated through the use of a python script (that called

these tools where appropriate) executed in a Linux-based high-performance cluster

(Appendices B-D).

3.5.3 MOLECULAR DOCKING

Molecular docking was undertaken using AutoDock Vina (Trott and Olson, 2010). As there

were no co-crystallized ligands in the binding pocket, the grid parameters were determined

using AutoDock Tools. The AutoGrid setup in the Autodock Tools graphic user interface was

used to determine the grid parameters for each chain of the receptor with respect to the

positions of the catalytic dyad and other key substrate-binding residues (Goyal and Goyal,

2020). For chain A, the grid centre was set at 12.059, 8.933 and 29.021 in the x, y and z

directions, whereas the grid centre for chain B was set at -18.444, -16.361 and 7.944 in the x,

y and z directions, respectively. The grid box size was set at 20, 20 and 20 Å in the x, y and z

directions. A Vina configuration file was created for each ligand and the receptor protein,

wherein the energy range and exhaustiveness were set at 4 and 480, respectively. The cubic

box size values and the coordinates of the central atom of the grid centre were specified in the

configuration file (Appendix F). Each docking process was performed using 24 CPU cores.

The docking simulations were performed in parallel on a high-performance cluster to

compensate for the high computational costs and to speed up computations (Appendices G-I).

The generation of the Vina configuration files was automated through the use of a python

script (Appendix E).

3.5.4 MOLECULAR DOCKINGANALYSIS

Docking analysis was automated with the use of customised python scripts (Appendices J &

K). The best conformational poses from output docking files were extracted based on low

binding energies. The conformational poses were extracted alongside corresponding free

energy of binding from log files. In each substrate, the pose with the lowest free energy of

binding was used for the construction of peptide-enzyme complexes. Prior to the construction

of peptide-enzyme complexes, the structures of the best poses (pdbqt) were converted into

PDB format using a customised Perl script (Appendix M). Initially, the amino acid

information was lost and all hexapeptide constituents were then labelled "LIG" in the process

of terminal capping. The Perl script was thus used to restore the amino acid information.
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Docking validation was assessed through the reproducibility of high-affinity binding poses

across redocking of different conformers of the same substrate. High-affinity binding poses

were superimposed to visually assess the reproducibility of the docking results. Molecular

interactions at active sites were resolved using Biovia Discovery Studio 2020 Client.

Adherence of docked substrates to binding subsites was visualised using PyMOL (DeLano

2002).

3.5.5 LIGAND EFFICIENCIES

The free energies of binding of best binding poses were exported onto a spreadsheet and

sorted according to amino acid composition. The generic ligand efficiencies were determined

using the equation:

LE =
�(ΔG)
�

Equation 3.1: Ligand efficiency (Hopkins et al., 2004).

where ΔG is the free energy of binding and N is the number of heavy atoms (non-hydrogen

atoms) (Hopkins et al., 2004). Additionally, other metrics of ligand efficiencies were

determined namely binding efficiency index (BEI) and surface-binding efficiency index (SEI).

BEI was calculated using the equation:

BEI =
−�(ΔG)
�)

Equation 3.2: Binding Efficiency Index. Modified from Abad-Zapatero and Metz (2005).

where μ(ΔG) is the mean free energy of binding (the vina score was used for this value) and

MW is molecular weight in kDa. SEI was calculated using the equation:

SEI =
−�(ΔG)

(���/100 Å)
Equation 3.3: Surface-binding Efficiency Index. Modified from Abad-Zapatero and Metz (2005).

where ΔG is the free energy of binding and PSA is the polar surface area (Abad-Zapatero and

Metz, 2005). PSA values were calculated using OpenBabel (O'Boyle et al., 2011). All ligand

efficiency calculations were performed on WPS Spreadsheets 2019.



36

3.6 RESULTS AND DISCUSSION

3.6.1 RECEPTOR RETRIEVAL

The purpose of the molecular docking studies was to construct quality 3D peptide-enzyme

structures that best represent the SARS-CoV-2 Mpro complexed with its natural substrates.

The identification and selection of a quality protein receptor were fundamental to the success

of the docking studies. The crystallographic 3D structure of the SARS-CoV-2 Mpro was

retrieved from the RCSB Protein Data Bank (PDB) under the PDB ID of 6XHM (Rose et al.,

2012). This crystal structure was resolved using X-ray Diffraction, with crystallization

following an Escherichia coli expression system. The crystal structure had a resolution of

1.41 Å, and R-Value Free and R-Value Work values of 0.210 and 0.191, respectively. The

observed R-Value was 0.192. There were no mutations or missing residues.

3.6.2 PRELIMINARY DOCKING STUDIES

The homodimeric Mpro demonstrates proteolytic activity in both monomers. This makes both

monomers attractive targets in studies of protease characterisation and antiviral inhibition.

The dimerization of Mpro is critical to the biological function of the protein, since the

individual monomers do not exhibit enzymatic activity (Goyal and Goyal, 2020). Preliminary

docking studies were carried out to identify the monomer with better substrate binding. The

conformers of the randomly selected substrate, Arg-Leu-Gln-Ala-Ala-Asn (RLQAAN), were

docked on both chains (figure 3.1), using the grid specifications mentioned in section 3.5.3.
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Figure 3.1. The identification of better binding monomer of SARS-CoV-2 Mpro. The SARS-CoV-2 Mpro (PDB
ID:6XHM) was docked with conformers of randomly selected RLQAAN on both chains. Green chain represents
chain A. Orange chain represents chain B. Catalytic residues are represented as spheres. Yellow spheres
represent Cys145. Blue spheres represent His41. RLQAAN conformers are represented as sticks. The image was
generated using PyMOL (DeLano 2002).

The docking results showed that chain B was producing much better results in terms of the

lowest free energies of binding (supplementary figure 3.1, supplementary table 3.1). Chain B

attained binding energies as low as -8.7 kcal.mol−1. whereas chain A attained the lowest

binding energy of -8.5 kcal.mol−1. Moreover, more best poses were attaining binding

affinities lower than -8.0 kcal.mol−1 in chain B than in chain A (supplementary figure 3.1).

Hence, chain B was prioritised and used for the docking studies and subsequent calculations.

3.6.3 FREE ENERGIES OF BINDING

The assessment of the docking results is crucial in the evaluation of the overall performance

of ligands at the active site. Docking analysis provides insight on the affinity of binding of a

ligand, which in turn informs of its stability at the site of binding. The docking studies were

carried out on a high-performance cluster given the computational cost of docking each

substrate. Not all conformers were docked due to the extensive computational time required
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for docking such systems with many degrees of conformational freedom. However, for each

substrate at least ten conformations were redocked with exhaustiveness 480. Nevertheless,

the docking results were arguably good; displaying high-affinity binding of the substrates

onto the active site of the SARS-CoV-2 Mpro. The best binding poses registered affinities

ranging between -8.7 and -7.0 kcal.mol−1 across all substrates (supplementary table 3.1).

Substrates RLQATF, RLQSGA and RLQSTF were the only binding poses that reached

binding energies of -8.7 kcal.mol−1; for these systems this involved docking of 24, 100 and 14

conformers, respectively. Successively, substrates RLQAAF, RLQAAN, RLQAGA,

RLQALG, RLQAVN, TLQAGF, TLQAVA, VLQAAF and VLQAVF were the only binding

poses that reached binding energies of -8.6 kcal.mol−1; this involved the docking of 35,

100, 10, 40, 35, 35, 10, 35 and 40 conformers, respectively. These substrates represented the

high-affinity binding poses of the resulting docking. Conversely, the binding pose of

KLQSKM was the only substrate to only reach a binding energy of -7.0 kcal.mol−1; this even

after having redocked 10 conformers. The binding poses of substrates KLQAEM and

TLQSLM registered binding energies of -7.1 kcal.mol−1, followed by the binding poses of

KLQSEM, KLQSKD, MLQAKM, MLQSKM and VLQAKD which registered binding

energies of -7.2 kcal.mol−1. The number of conformers redocked for these substrates was 10,

10, 24, 14, 24, 14 and 10 (supplementary table 3.1). These binding poses represented the

lowest-affinity binding in the full set of docking experiments. The docking results are

summarised in supplementary table 3.1; detailing the number of conformers redocked per

substrate, alongside the best binding conformer and its respective binding energy.

Overall, there were a total of 408 binding poses that registered energies of free binding ≤ -8.0

kcal.mol−1. The remaining 402 binding poses registered energies of free binding >-8.0

kcal.mol−1. At present, there are no similar studies on SARS-CoV-2 Mpro in the literature

that provide for comparison. However, there have been several studies investigating

peptide-based inhibition of the SARS-CoV-2 Mpro (Porto, 2021; Gahlawat et al., 2020; Micco

et al., 2020). Micco et al. (2020) and Ansari et al. (2020) reported docking scores within the

same range as these findings, whilst other studies reported much higher affinities of binding;

however, these binding affinities were not Vina scores and as such comparison is difficult

(Çakır et al., 2021; Gahlawat et al., 2020). However, these findings collectively support the

use of peptide molecules as a basis for drug discovery and improved drug design. Moreover,

they highlight the necessity to elucidate the proteolytic mechanism employed by the Mpro at

the atomic level. The resulting knowledge will in turn instruct the approach for designing

potent antiviral inhibitors. In as much as the binding affinity was not quantified, the
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docking scores of the best poses are very promising. The quantification of the binding affinity

could benefit the selection of the best substrates for lead optimization and rational drug

design. In computational studies, high affinity strengthens the stability of the ligands in the

receptor binding interface. Ligand stability enables the creation of stable complexes and

reduces the chances of unbinding events of substrates during molecular dynamics studies.

Unbinding events during such dynamics studies are indicative of probable ejection of the

ligand from the site of binding in vitro.

3.6.4 DOCKING REPRODUCIBILITY

The substrates for whom 100 conformers were redocked (supplementary table 3.1) were used

to assess the reproducibility of the best docking poses. These substrates included KLQAAA,

KLQAAD, KLQAAE, KLQAAF, KLQAAV, KLQSAV, KLQSTD, MLQSLN, MLQSVM,

RLQAAN, RLQATE, RLQSGA, RLQSGF, RLQSSA and VLQSGD as shown in figure 3.2.

Most of the substrates attained a similar pose in the best binding geometries across docking

experiments. The backbone (α-carbons) of the peptide substrates were overlapped when

superimposed. However, the KLQSTD, RLQAAN and RLQATE substrates attained two or

more main poses in their best binding conformers that did not overlap, yet with the same

binding energy (figure 3.2). Interestingly, these three substrates represent some of the best

docking results obtained in this study. The exploration of these alternative poses would prove

advantageous in the characterisation of the mechanism of the SARS-CoV-2 Mpro, especially

the profiling of substrate specificity and affinity.
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Figure 3.2 Validation of reproducibility of the docking results. The visualisation of the best poses of substrates
with all 100 conformers docked. Image was generated using PyMOL.

High degrees of docking reproducibility was obtained in KLQAAA, KLQAAD, KLQAAV,

KLQSAV, MLQSVM, RLQSGA, RLQSGF and VLQSGD substrates. These represent the

substrates that attained more than two identical high-affinity docking poses across

experiments, with overlap, and excluding the presence of alternative poses. Substrates

KLQAAE, KLQAAF and MLQSLN displayed reproducibility, albeit with only two docking

pose overlaps (figure 3.2).
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3.6.5 LE OF VARIABLE PEPTIDES

The determination of LE for the range of hexapeptide substrates, bearing in mind the

respective positions of residues on the peptides, was carried out to identify the amino acids

that have a high (ΔG/HA of amino acid) contribution to the efficiency of substrate binding to

the Mpro. These amino acids represented the fragments and/or constituents of the substrates

that displayed high potential in the improvement of binding affinity. The underlying objective

of this identification was to obtain optimal combinations of "efficient" amino acids that could

serve as a basis for efficiency-driven drug design.

Before the calculation of LE, substrates were sorted according to the amino acids occupying

the peptide position of interest, and the mean free energy of binding was calculated across all

substrates with a particular amino acid residue at a specified position. The mean free energy

of binding was divided by the number of heavy atoms in the specific amino acid to determine

the LE of that amino acid in the full set of substrates. The values of the LE of peptides in their

respective positions are reflected in table 3.1.

In the P3 position, amino acids threonine (T) and valine (V) attained the highest LE of -1.1,

both having seven heavy atoms (HA). Following these amino acids was methionine (M) with

a LE of -1.0, having eight HA (Table 3.1). All three amino acids showed promising potential

for lead optimization as they represented the best results in the P3 position. However, valine

proved to be supreme as it attained the lowest mean free energy of binding, indicating that

several substrates containing valine at P3 attained lower binding energies compared to those

containing threonine and methionine. Despite attaining the worst LE value in the group,

arginine (R) had the best mean binding energy and the LE value was only reduced due to the

high number of HA in the residue. It could still be important to consider arginine in lead

optimization, given the observed favourable mean binding energy, and this could prove

beneficial to the discovery of antiviral drugs against SARS-CoV-2.

In the P1′ (cleavage site) position, alanine (A) and serine (S) attained LE of -1.6 and -1.3,

respectively. Both of these LE show promising potential for lead optimization. However, the

alanine residue was shown to be more attractive as a P1′ candidate since it attained both the

best mean binding energy and LE. The mean binding energies of the two residues were much

closer in range in comparison to LE, owing to the differences in the number of HA in both of

them.
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Table 3.1: The ligand efficiencies of the hexapeptide substrates docked onto SARS-CoV-2 Mpro on basis of
variable amino acid residues.

Position Residue mean ∆G
(kcal.mol-1) SD HA mean LE

(kcal.mol-1. per atom) SD

P3

K -8.0 0.26 9 -0.9 0.03
M -7.9 0.30 8 -1.0 0.04
R -7.9 0.33 11 -0.7 0.03
T -7.9 0.26 7 -1.1 0.04
V -8.0 0.23 7 -1.1 0.03

P1′
A -8.0 0.27 5 -1.6 0.05
S -7.9 0.30 6 -1.3 0.05

P2′

A -8.0 0.26 5 -1.6 0.05

E -7.9 0.24 9 -0.9 0.03
G -8.0 0.29 4 -2.0 0.07
K -7.7 0.27 9 -0.9 0.03
L -7.9 0.27 8 -1.0 0.03
N -8.0 0.25 8 -1.0 0.03
S -8.0 0.24 6 -1.3 0.04
T -8.0 0.26 7 -1.1 0.04
V -8.0 0.27 7 -1.1 0.04

P3′

A -8.1 0.24 5 -1.6 0.05
D -7.9 0.26 8 -1.0 0.03
E -7.8 0.26 9 -0.9 0.03
F -8.1 0.30 11 -0.7 0.03
G -8.0 0.25 4 -2.0 0.06
M -7.7 0.23 8 -1.0 0.03
N -8.0 0.24 8 -1.0 0.03
Q -7.9 0.25 9 -0.9 0.03

V -8.0 0.22 7 -1.1 0.03

∆G: free energy of binding; SD: standard deviation; HA: heavy atoms (non-hydrogen atoms); LE: ligand
efficiency.

The examination of the LEs of the recognition sequences (P2-P1′) also showed results

consistent with the above observations, showing that alanine was the efficient residue at P1′

in these results (Table 3.2). Since alanine was the most efficient residue of P1′, it is thus a

favourable amino acid to consider in lead optimization. Nonetheless, the prioritisation of
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serine as an alternative could be beneficial in drug design since both residues registered

similar mean binding energies and also displayed similar occurrence frequencies (Ullrich and

Nitsche, 2020).

Table 3.2: The ligand efficiencies of the hexapeptide substrates docked onto SARS-CoV-2 Mpro on basis of
recognition sequence.

Sequence mean ∆G
(kcal.mol−1) SD HA mean LE

(kcal.mol−1per atom) SD

LQ↓A -8.0 0.28 22 -0.4 0.01

LQ↓S -7.9 0.28 23 -0.3 0.01

∆G: free energy of binding; SD: standard deviation; HA: heavy atoms (non-hydrogen atoms); LE: ligand
efficiency.

In P2′, alanine, glycine (G) and serine were the highly efficient residues. The three amino

acids were also among the best in terms of mean binding energy alongside asparagine (N),

threonine and valine. Relating to LE, glycine attained the best value of -2.0, followed by

arginine with -1.6 and serine with -1.3. The same explanation used for P1′ was also applied

here. The reason for the differences in the LE values was owed to the differences in the

number of HA atoms constituting the respective amino acids. Moreover, these three amino

acids represented the smallest residues of the group; which explained why asparagine,

threonine and valine attained poorer LE values in comparison. Glycine was the most

favourable residue for lead optimization as it was the most efficient and the smallest of P2′.

Binding efficiency and small size are desirable physicochemical and pharmacological

properties in drug discovery as they relate to ADMET parameters. Similarly to the serine

residue in P1′, alanine and serine (of P2′) could be used as alternatives.

P3′ residues showed similar patterns as seen in P1′ and P2′. The smallest amino acids of the

group attained the best LE values. Alanine and glycine attained LE values of -1.6 and -2.0,

respectively. The best binding was displayed by alanine and phenylalanine (F). Phenylalanine

did not attain a favourable LE value due to its number of HA (Table 3.1). The prioritisation of

alanine, glycine and phenylalanine could benefit the design of peptide-based drug candidates.

3.6.6 BEI VS SEI

BEI and SEI are some of the modified LE metrics that are widely used in drug discovery.

Abad-Zapatero and Metz (2005) proposed the BEI and SEI to address the limitations of LE

by developing easy to calculate indices that take account for differences between elements in

different rows of the periodic table in compounds. BEI incorporates the ratio of potency and
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molecular weight, whereas SEI incorporates the ratio of potency and PSA. Together, BEI and

SEI combine three critical variables, namely potency, molecular weight and PSA. The

combined use of BEI and SEI during optimization reduces the three variables to two and

provides useful and comparable numerical scales for examining both indices simultaneously

(Abad-Zapatero and Metz, 2005). In an optimization plane, the chemical series are placed on

an SEI-BEI plot where both axis scales are similar, allowing for the simultaneous

optimization of BEI and SEI. The general rule is to optimize the compounds towards the

diagonal of the SEI-BEI plane, where both BEI and SEI are optimal (Abad-Zapatero and

Metz, 2005).

The BEI and SEI of the substrates were calculated to account for the physicochemical

properties that were excluded in LE (section 3.5.5) and plotted on an SEI-BEI plane per

Abad-Zapatero and Metz (2005). The substrates were categorised by their P3-P1 residues.

There were no substrates placed along the diagonal and all of the substrates were located

within the lower portion of the diagonal on the SEI-BEI plane (figure 3.3). The placement of

substrates on the plot showed that the compounds had high affinity per unit of PSA

(Abad-Zapatero and Metz, 2005). This placement indicated that the compounds exhibited

small PSA (high SEI), and low binding efficiency due to relatively large molecular mass.

Promising compounds exhibit high BEI and SEI (lower molecular weight and PSA) as they

relate to desirable pharmacokinetic properties (Abad-Zapatero and Metz, 2005).

Figure 3.3. Mapping of surface-binding and binding efficiency indices in the SEI-BEI optimization plane for
hexapeptide substrates of the SARS-CoV-2 Mpro. Substrates were categorised according to P1-P3 residues. The
figure was generated using WPS Spreadsheets 2019 and RStudio.

The VLQ substrates were the most favourable compounds for lead selection, validation and

optimization despite being the farthest from the optimization diagonal (figure 3.3). These
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substrates attained the highest values of BEI and SEI in the entire results. The best overall

substrates included VLQAAG, VLQAGA, VLQAGG and VLQASG, as well as KLQAGG.

These substrates attained BEI values of 13.1, 12.5, 13.7, 13.2 and 13.5; and SEI values of

32.4, 28.9, 33.2, 31.1 and 31.2, respectively. After VLQ substrates, more promising BEI and

SEI values were attained by a few hexapeptides belonging to KLQ, MLQ and TLQ substrates

(figure 3.3).

The BEI-SEI results followed a similar trend with the LE results in section 3.5.5. The

substrates containing Val or Thr at P3 displayed better ligand efficiency in comparison with

other residues in the position. In addition, positions P1′ to P3′ were dominated by small

residues in terms of LE which is also a visible trend in the BEI-SEI plane (figure 3.3).

RLQ substrates recorded the poorest BEI-SEI results despite being the closest to the diagonal

(figure 3.3). Substrates with Arg (R) at P3 also attained poor LE in section 3.6.5. The simplest

explanation for these recurring patterns relates to the size of residues constituting the RLQ

substrates, especially the Arg residue. Molecular size is inversely related to BEI, and the large

size of Arg (and other residues) in RLQ substrates accounted for the poor BEI values.

Despite registering the poorest overall BEI and SEI values, a few RLQ compounds

demonstrated potential for lead optimization (figures 3.3). Because of this, RLQ substrates

could not be written off as unfavourable ligands to consider for drug design, even though the

majority had unfavourable characteristics. In addition, some RLQ substrates were among the

best binding ligands in the docking results (supplementary table 3.1), attained the highest

mean binding energy compared to other residues at P1′ (table 3.1), and were closest to the

diagonal indicating that the substrates exhibited the best balance between BEI and SEI in the

results (Abad-Zapatero and Metz, 2005; figure 3.3). These points further support the

consideration of RLQ substrates for lead selection and optimization. Thus, the mapping of

RLQ substrates according to their constituting residues allowed for the visualisation and

identification of the favourable residues in promising compounds (figures 3.4 and 3.5).
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Figure 3.4. Mapping of surface-binding and binding efficiency indices in the SEI-BEI optimization plane for
RLQ hexapeptide substrates of the SARS-CoV-2 Mpro. The RLQ substrates were grouped by P1′ residues. The
figure was generated using WPS Spreadsheets 2019 and RStudio.

The mapping of the recognition sequence of RLQ substrates showed that Ala was the more

efficient residue at P1′ over Ser. Substrates with Ala (P1′) attained the best BEI values and

best SEI values in the group (figure 3.4). Nonetheless, there were select few substrates with

Ser (P1′) that attained high values. Furthermore, the substrates closest to the diagonal

consisted of Ser at P1′. Thus, further mapping of the RLQ substrates was carried out to

identify the favourable residues in both Ala (P1′) and Ser (P1′) substrates.
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Figure 3.5. The identification of optimal residues constituting RLQ substrates hexapeptide substrates of the
SARS-CoV-2 Mpro. The surface-binding and binding efficiency indices were mapped in the SEI-BEI
optimization plane for RLQ hexapeptide substrates. The RLQ substrates were grouped by P2′ residues. A)
shows the substrates with Ala at P1′. B) shows the substrates with Ser at P1′. The figure was generated using
WPS Spreadsheets 2019 and RStudio.

For substrates with Ala (P1′), the highest SEI and BEI were mostly registered by substrates

consisting of Ala, Gly or Val at P2′ (figure 3.5A). Ala and Gly have very small volumes/sizes,

whereas Val is considered medium-sized (IMGT, 2020). For substrates with Ser (P1′), the

highest SEI and BEI values were attained by substrates consisting of Ala, Gly or Leu at P2′

(figure 3.5B). Curiously, Leu is a large amino acid and this molecular weight decreases BEI

(IMGT, 2020). Thus, the high placement of Leu (P2′) substrates was owing to the presence of

very small residues occupying P3′, namely Ala and Gly. Nevertheless, both groups of RLQ

substrates showed similar trends in terms of substrates closest to the diagonal (figure 3.5A

and B). Substrates consisting of Asn at P2′ were most proximal to the diagonal, followed by

substrates consisting of Ser and Thr at P2′.
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3.6.6.1 BEI VS SEI - RECOGNITION SEQUENCE

The mapping of substrates on the SEI-BEI plot, according to the recognition sequence (now

grouped by residues in P2-P1′), showed that the best values were attained by those consisting

of Ala at P1′, as opposed to Ser (figure 3.6). The efficiency of Ala at P1′ was visible in LE

results (tables 3.1 & 3.2) and RLQ BEI-SEI mapping (figure 3.4). This further supports the

prioritisation of Ala at P1' during drug design. However, as emphasised in section 3.6.5, the

use of Ser at P1′ (as a substitute at the very least) in drug design could prove beneficial as

there were select promising substrates with Ser at the cleavage site (figures 3.4 & 3.6).

Figure 3.6. Mapping of surface-binding and binding efficiency indices in the SEI-BEI optimization plane for the
recognition sequences of hexapeptide substrates of the SARS-CoV-2 Mpro. The substrates were grouped by
P2-P1′ residues. The figure was generated using WPS Spreadsheets 2019 and RStudio.

3.6.7 SUBSTRATE RECOGNITIONAND SPECIFICITY OF MPRO

The SARS-CoV-2 Mpro mainly recognises substrate residue ranging from P4 to P1′ (Ullrich

and Nitsche, 2020). However, the substrate specificity is determined by residues P2-P1′ as

they display the highest degree of conservation among the pp1a/ab cleavage sites (Ullrich and

Nitsche, 2020). These substrate residues are recognised and anchored onto the binding pocket

by specific active site residues that comprise subsites. For binding P1 and P2, respectively,

subsite 1 (S1) consists of His163, Glu166, Cys145, Gly143, His172, and Phe140, while S2

consists of Met49, His41, Cys145 and Thr25 (Khan et al., 2020). Both S1 and S2 deeply bury

the P1 and P2 residues and are involved in hydrophobic and electrostatic interactions

(Mengist et al., 2021; Khan et al., 2020). S3 is comprised of residues Met165, Met49, and

His41 (Lu et al., 2006). Residues Thr25, Thr26, Leu27 and Cys145 constitute part of S1′

which generally form polar contact interactions with substrates (Mengist et al., 2021). These

substrates surround the catalytic dyad which consists of His41 and Cys145, that perform the
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digestion of the polyproteins (Ullrich and Nitsche, 2020). Overall, the key active site residues

that support substrate binding and processing include His41, Met49, Gly143, Ser144, His163,

His164, Met165, Glu166, Leu167, Asp187, Arg188, Gln189, Thr190, Ala191 and Gln192

(Goyal and Goyal, 2020).

3.6.7.1 MAPPING OF SUBSITES

Subsites are crucial to the binding, anchoring and stabilization of substrates in the active site.

Thus, the mapping of the subsites was carried out to assess whether the binding of the

hexapeptides was following the nomenclature of Schechter and Berger (1967) and that each

peptide corresponded to its respective subsite. Further, subsite mapping was performed to

visualise the binding mode of the substrates in the active site, which in turn informed of the

substrate recognition. This was performed using both the best binding poses which attained

the lowest (figures 3.7 and 3.8), and the poorest performers with the highest (figures 3.9, 3.10

and 3.11) binding energies in the docking studies.

In as much as producing the best docking score (-8.7 kcal.mol-1), the binding modes of

RLQATF and RLQSTF were not in accordance with Schechter and Berger (1967). In both

substrates, the side chain of P3 was anchored in S1, whereas the side chains of P2 and P1

were anchored in S3 and S2, respectively (figure 3.7). Nevertheless, RLQSGA demonstrated

the desired binding mode as the side chains of P3-P1 residues interacted with corresponding

subsites (figure 3.7).



50

Figure 3.7 Confirmation of SARS-CoV-2 Mpro substrate recognition in binding poses for substrates RLQATF,
RLQSGA and RLQSTF. The surface of SARS-CoV-2 Mpro (PDB ID:6XHM) showing docked substrates and
substrate binding subsites colour-coded as follows: Purple: S1, Cyan: S2; Green: S3. The substrates attained a
docking score of -8.6 kcal.mol-1. The image was generated using PyMOL.

Desired binding modes were majorly evident in the second group of highest binding poses

(-8.7 kcal.mol-1; figure 3.8). While substrates RLQSGA, RLQALG, RLQAVN, TLQAGF,

TLQAVA, VLQAAF and VLQAVF were all bound as expected in terms of protease-peptide

binding modes, RLQAAF and RLQAAN violated the nomenclature of Schechter and Berger

(1967). The binding mode of RLQAAF (figure 3.8) was similar to that of RLQATF and

RLQSTF (figure 3.7). Curiously, the binding mode of RLQAAN showed S1 anchoring the

side chains of P1 and P3, whilst S2 rightfully anchored P2 (figure 3.8). Interestingly, the ACE

cap and P3 backbone were anchored in S3.
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Figure 3.8 Confirmation of SARS-CoV-2 Mpro substrate recognition in binding poses for substrates RLQAAN,
RLQAAF, RLQAGA, RLQALG, RLQAVN, TLQAGF, TLQAVA, VLQAAF and VLQAVF. The surface of
SARS-CoV-2 Mpro (PDB ID:6XHM) showing docked substrates and substrate binding subsites colour-coded as
follows: Purple: S1, Cyan: S2; Green: S3. The substrates attained a docking score of -8.6 kcal.mol-1. The image
was generated using PyMOL.

The violation of the nomenclature of Schechter and Berger (1967), was less prevalent in the

protease-peptide complexes which attained the poorest docking scores (figures 3.9-3.11),

with the exception of the KLQAEM complex (figure 3.10). Unlike previous violations of the

binding rule in figures 3.7 and 3.8, KLQAEM displayed interactions between P3 and S3; P2

and S1; and P1 and S2 (figure 3.10).
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Figure 3.9. Confirmation of SARS-CoV-2 Mpro substrate recognition in binding poses for substrate KLQSKM.
The surface of SARS-CoV-2 Mpro (PDB ID:6XHM) showing docked substrates and substrate binding subsites
colour-coded as follows: Purple: S1, Cyan: S2; Green: S3. The substrates attained a docking score of -7.0
kcal.mol-1. The image was generated using PyMOL.

Figure 3.10 Confirmation of SARS-CoV-2 Mpro substrate recognition in binding poses for substrates KLQAEM
and TLQSLM. The surface of SARS-CoV-2 Mpro (PDB ID:6XHM) showing docked substrates and substrate
binding subsites color-coded as follows: Purple: S1, Cyan: S2; Green: S3. The substrates attained docking score
of -7.1 kcal.mol-1. Image was generated using PyMOL.
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Figure 3.11 Confirmation of SARS-CoV-2 Mpro substrate recognition in binding poses for substrates KLQSEM,
KLQSKD, MLQAKM, MLQSKM and VLQAKD. The surface of SARS-CoV-2 Mpro (PDB ID:6XHM) showing
docked substrates and substrate binding subsites colour-coded as follows: Purple: S1, Cyan: S2; Green: S3. The
substrates attained a docking score of -7.2 kcal.mol-1. The image was generated using PyMOL.

Collectively, these binding modes indicate that the crystal structure of the Mpro displayed the

substrate recognition of SARS-CoV-2 Mpro. The side chains of the hexapeptides were

appropriately accommodated in the subsites of the active site, despite having large differences

in free energies of binding. Furthermore, these results also inform that the generation of the

hexapeptides was a success since the resultant structures were recognisable to the receptor

protein. Substrate recognition of SARS-CoV-2 Mpro towards the hexapeptide was thus,

confirmed. Therefore, hexapeptide-based drug design could prove beneficial to the pursuit of

antiviral agents since recognition is well established.

3.6.7.2 MPRO-SUBSTRATE MOLECULAR INTERACTIONS

Protein-ligand molecular interactions at the binding site are a crucial part of characterising

the binding affinity of the protein for promising fragments, hits and leads. Molecular

interactions at the interface of protease and substrate in the protease active site determine

substrate specificity (Schauperl et al., 2015). Thus, Discovery Studio was used to resolve the

protease-peptide molecular interactions and to generate 2D representations of these

interactions shown in figures 3.12 to 3.16.

Hydrogen bonds were the most prevalent interactions throughout the complexed structures as

shown in figures 3.12 to 3.16 and supplementary tables 3.2 to 3.4. These hydrogen bonds

included conventional hydrogen bonds, carbon-hydrogen bonds and Pi-donor hydrogen bonds.

Hydrogen bonds, especially conventional hydrogen bonds, are the fundamental stabilising
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forces in biomolecular structures, which also underpin structure, function and conformational

dynamics (Horowitz and Trievel, 2012; Herschlag and Pinney, 2018). In addition,

complementarity and stability in protein-ligand complexes are largely owed to the formation

of hydrogen bonds in the binding interface (Lippert and Rarey, 2009; Norel et al., 1999).
Therefore, the prevalence of hydrogen bond formation at the active site indicate shape and

electrostatic complementarities between Mpro and hexapeptides and points towards high

affinity of the protein towards the peptides. This is evident in binding energies in

supplementary table 3.1. Furthermore, the stabilising effect of hydrogen bonds would be

integral in maintaining the structures in dynamic processes.

The key functional residues, His41 and Cys145, formed various interactions with the

substrates. Cys145 typically formed conventional hydrogen bonds with the oxygen atoms of

the carboxyl group of P1 (RLQSGA, RLQAAN, RLQAGA, RLQALG, RLQAVN, TLQAVA,

VLQAAF and VLQAVF) or P1′ (RLQSTF, TLQSLM KLQSEM and MLQAKM); placing

the catalytic residue in close proximity to the cleavage site and the scissile peptide bond.

Remarkably, most of these substrates demonstrated appropriate binding modes in compliance

with the nomenclature of Schechter and Berger (1967). Other interactions with Cys145

included hydrogen bonds with the nitrogen atoms of P3 Arg (RLQATF and RLQAAF);

Pi-Alkyl/Alkyl interaction with the β-carbon of P1′ Ala (TLQAGF); a hydrogen bond with

the oxygen atoms of the carboxyl group of P2 Leu (KLQAEM); carbon-hydrogen bond with

the β-carbon of P1′ Ser (MLQSKM); and Pi-Alkyl/Alkyl interaction with the β-carbon of P3

Val (VLQAKD).
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Figure 3.12. Resolution of intermolecular interactions between Mpro and substrates at the active site. 2D
representation of the protein-ligand interactions at active sites for Mpro complexed with RLQATF, RLQSGA and
RLQSTF. The images were generated on BIOVIA Discovery Studio 2020 Client.
.



58



59

Figure 3.13. Resolution of intermolecular interactions between Mpro and substrates at the active site. 2D
representation of the protein-ligand interactions at active sites for Mpro complexed with RLQAAF, RLQAAN,
RLQAGA, RLQALG, RLQAVN, TLQAGF, TLQAVA, VLQAAF and VLQAVF. The images were generated on
BIOVIADiscovery Studio 2020 Client.

The intermolecular interactions involving His41 varied to a much greater extent across the

complexed systems as shown in figures 3.12 to 3.16. Across the systems, the typical

interactions with His41 were Alkyl/Pi-Alkyl interactions with the β-carbon of P1′ Ala

(RLQAAN; RLQAGA; RLQALG; RLQAVN; TLQAVA; VLQAAF; VLQAVF; MLQAKM)

which were mostly among the top binding substrates; and Pi-Sigma interactions with a

δ-carbon of P2 Leu (RLQSTF; KLQSKM; KLQSKD; MLQAKM). Much like with

conventional hydrogen bonds involving Cys145, the Alkyl/Pi-Alkyl interactions with the

β-carbon of P1′ Ala placed His41 in proximity with the cleavage site. Notably, these

interactions were mainly found in substrates that demonstrated appropriate binding modes.

In figure 3.12, the top binding substrates were involved in additional interactions which

included a cleavage site proximal interaction (RLQATF); hydrogen bonds with oxygen atoms

of the ACE cap and the side chain of P1′ Ser (RLQSGA). For substrates with the binding

energy of -8.6 kcal.mol-1, additional interactions involving His41 are shown in figure 3.13.

These included a Pi-donor hydrogen bond with the side chain oxygen atom of P1 Gln

(RLQAAF); Pi-Sigma with the carbon atom of the ACE cap (RLQAGA); an Alkyl/Pi-Alkyl

interaction with the γ-carbon of P2 Leu (TLQAGF); a hydrogen bond with oxygen atoms of

the ACE cap together with Pi-Sigma with the α-carbon of P3 Thr (TLQAVA); and an

Alkyl/Pi-Alkyl interaction with β-carbon P1 Val (VLQAVF).

For the poorest binding substrates, more intermolecular interactions with His41 were shown

(figure 3.14-3.16). However, a frequent interaction in the group was the Alkyl/Pi-Alkyl
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interaction with the γ-carbon of P2 Leu (KLQSEM and MLQSKM). Other interactions

included a hydrogen bond with the oxygen atom of P1 Gln, and an Alkyl/Pi-Alkyl interaction

with the γ-carbon of P3 Lys (KLQAEM); a Pi-donor hydrogen bond with the oxygen atom on

the side chain of P3 Thr, and (TLQSLM); a carbon-hydrogen bond with the β-atom of P1′

Ser (MLQSKM); and lastly, a Pi-donor hydrogen bond with P3′ Asp alongside an

Alkyl/Pi-Alkyl interaction with the β-carbon of P3 Val (VLQSKD). The catalytic residues

engaged in varying interactions with the respective substrates. However, the common trend

across complexes was Cys145 forming interactions (mostly hydrogen bonds) with the

backbone atoms around the scissile bond, whereas His41 was forming interactions with the

side chains of peptides around the scissile bond. The explanation for this pattern could owe to

the flexible nature of the peptide chains, which resulted in a torsional rotation that orientated

the substrates in a way that the substrates could only interact with His41 via side chains.

Figure 3.14. Resolution of intermolecular interactions between Mpro and substrates at the active site. 2D
representation of the protein-ligand interactions at the active site for Mpro complexed with KLQSKM. The
images were generated on BIOVIA Discovery Studio 2020 Client.
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Figure 3.15. Resolution of intermolecular interactions between Mpro and substrates at the active site. 2D
representation of the protein-ligand interactions at active sites for Mpro complexed with KLQAEM and
TLQSLM. The images were generated on BIOVIA Discovery Studio 2020 Client.
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Figure 3.16. Resolution of intermolecular interactions between Mpro and substrates at the active site. 2D
representation of the protein-ligand interactions at active sites for Mpro complexed with KLQSEM, KLQSKD,
MLQAKM, MLQSKM and VLQAKD. The images were generated on BIOVIA Discovery Studio 2020 Client.

Key residues that play an important role in substrate binding and substrate stabilization in the

binding pocket also participated in non-covalent interactions with the substrates. These

included the residues 138 to 146 which constitute the so-called oxyanion loop that confers

substrate stability during the proteolytic process. The backbones of Gly143 and Cys145 form

the oxyanion hole which in turn stabilises the partial negative charge that arises at the P1

carbonyl group of the substrate during the hydrolysis of the scissile bond (Suárez and Díaz,

2020). In supplementary tables 3.2 to 3.4, these residues are (indicated in purple) participated

in the key stabilising forces (hydrogen bonds and van der Waals forces of attraction) that

promoted the formation of stable complexes.

Other key residues include Met49, His163, His164, Met165, Glu166, Leu167, Asp187,

Arg188, Gln189, Thr190, Ala191 and Gln192, which underpin the subsites and accommodate

the appropriate binding of substrate residues (Goyal and Goyal, 2020; Muramatsu et al., 2016;
Hsu et al., 2005). These residues mostly mediate the binding of substrates onto their

respective subsites via side-chain rearrangement and also contribute to anchoring the

substrates (Lee et al., 2020; Muramatsu et al., 2016; Hsu et al., 2005). Similar to the oxyanion

loop residues, these residues also formed hydrogen bonds with substrates and inferred

stability to the bound substrates (supplementary tables 3.2-3.4). Thus, stable complexes were

formed, with many stabilising interactions. The prevalent formation of hydrogen bonds at the

binding interface pointed towards substrate specificity.

The mapping of sites and non-covalent interactions were also resolved for KLQ***
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complexes (supplementary figures 3.2-3.3). For the most part, the aforementioned trends in

substrate binding modes with relation to subsites and intermolecular interactions were

consistent with the patterns discussed in this chapter. The mapping of subsites revealed high

recognition of substrate residues by corresponding subsites in most systems, excluding the

KLQASV, KLQAVQ, KLQSAF, KLQSAQ, KLQSSF, KLQSTE, and KLQSVF complexes.

Nevertheless, substrate recognition was suggested by the binding modes of the KLQ***

substrates. In a similar manner to the substrates discussed above, KLQ*** substrates also

showed a prevalence of hydrogen bond formation between the substrates and the active site

residues of Mpro. In terms of the catalytic residues, the typical interactions discussed above

were also prevalent in KLQ complexes. Cys145 was seen frequently forming hydrogen bonds

with oxygen atoms of the carboxyl group of residues P1 or P1′, whereas His41 interacted

with various side chains of the substrates. Subsequently, the KLQ*** complexes were used in

molecular dynamic studies to assess the behaviour of the complexed systems and examine the

stability between Mpro and substrates conferred by the intermolecular interactions. The

selection of only KLQ*** complexes for further study was a practical one, given the

extensive computational resources required, and to essentially conduct dynamic studies on a

complete subset of systems.

3.7 CHAPTER SUMMARY

In this chapter, the conformers of the hexapeptides were docked onto a suitable crystal

structure of SARS-CoV-2 Mpro. Before the docking studies, a preliminary study was carried

out to determine which chain would produce better docking results and the results favoured

the use of chain B. Docking studies were thus conducted on chain B using the exhaustiveness

of 480, and repeated with 10 or more starting substrate conformations. The resulting free

energies of binding ranged between -8.6 and -7.0 kcal/mol. The reproducibility of docking

results was visually assessed in select substrates where 100 conformers were redocked per

substrate. Reproducibility was achieved in high-affinity binding poses. LE was performed to

determine the binding efficiencies of the constituent residues. In P3, Val was shown to be the

most efficient residue in the position despite Arg registering the best binding energies. In P1′,

Ala was a more efficient residue in comparison to Ser, although Ser produced better docking

results in terms of binding energy. Gly and Ala were consistently more efficient residues at

P2′ and P3′, with Gly attaining the most desirable LE score through the docking results. The

favourable LE scores were a result of the small sizes of residues since the majority of the

residues did not attain the best docking scores in their respective positions. The most efficient
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recognition sequence or cleavage site was shown to be LQA, over LQS. A BEI-SEI plane was

constructed for all the substrates, using the BEI and SEI indices which accounted for the

physicochemical properties that LE does not account for. VLQ substrates were shown to be

most desirable for lead optimization, followed by KLQ and TLQ substrates. Despite being the

least desirable, RLQ substrates were curiously the closest to the diagonal of the SEI-BEI

plane and were further analysed which in turn informed that RLQAG, RLQAV, RLQAA,

RLQAA, RLQSG and RLQSL substrates displayed high potential for lead optimization.

Subsite mapping showed the binding modes of the top (RLQATF, RLQSGA, TLQSTF,

RLQAAF, RLQAAN, RLQAGA, RLQALG, RLQAVN, TLQAGF, TLQAVA, VLQAAF and

VLQAVF), and poorest (KLQSKM, KLQAEM, TLQSLM, KLQSEM, KLQSKD,

MLQAKM, MLQSKM and VLQAKD) binding poses. Interestingly, appropriate substrate

binding was more prevalent in the poorest binding substrates as the hexapeptide residues

were anchored by corresponding subsites at the binding interface. Across the top and

bottom-most binding poses, the hexapeptides bound favourably to the active site of Mpro;

hydrogen bonds were the prominent intermolecular interaction and these were formed with

binding pocket residues. The catalytic dyad, alongside the oxyanion loop and other key

residues, also formed favourable interactions with the substrates. Cys145 typically interacted

with the atoms of the backbone of P1 or P1′, whilst His41 formed interactions with side

chains of residues proximal to the cleavage site and various others. Key substrate binding

residues and the oxyanion loop residues mostly formed stability conferring hydrogen bonds

and van der Waals forces of attraction with the substrates. Subsite mapping alluded to

substrate recognition and the resolution of non-covalent interactions pointed towards

substrate specificity of Mpro for the hexapeptides. KLQ*** substrates were also assessed for

subsite binding modes and intermolecular interaction. Overall trends were consistent with the

typical patterns seen in both the top-performing and poorest binding substrates.
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CHAPTER FOUR

MOLECULAR DYNAMICS SIMULATIONS AND TRAJECTORY

ANALYSIS

COVID-19 has dealt a devastating blow to the world. The widespread distribution of the

disease is propagated by the exponential transmission of the pathogenic SARS-CoV-2.

Variants of the coronavirus have conferred even greater transmission and infection rates and

enriched the virus with advanced immunological evasive mechanisms (Harvey et al., 2021).

The increased virulence is attributed to mutations in the spike protein that mediates cell entry.

Thus, the investigation of antiviral agents which specifically target highly conserved

non-structural proteins has become even more imperative to combat SARS-CoV-2-related

illnesses and deaths and will allow the development of highly effective broad-spectrum

treatments against the SARS-CoV-2 variants and other coronaviruses. As such we explore in

this study sequences that are recognized by the SARS-CoV-2 Mpro. This part of the study is a

complete study on molecular dynamics of substrate sequences KLQ*** (P3′-P1′) of length 6

in complex within the Mpro, detailing the stability and prominent motion/conformational

changes of the protein-substrate systems.

4.1 INTRODUCTION

Proteins are dynamic entities in cellular solution with functions governed essentially by their

dynamic personalities. Protein dynamics are manifested as changes in molecular structure, or

conformation as a function of time. In silico and ab initio techniques assist in the resolution
of protein structures which serve as a solid basis for structure-function studies that contribute

to the elucidation of many dynamic aspects of enzymatic mechanism such as substrate

binding, orientation, catalysis, and product release. Molecular dynamics are the prominent

technique used in protein dynamics to approximate the interactions and behaviour of proteins

in protein-protein or protein-ligand complexes. The simulations treat both binding partners as

flexible entities, allowing for motion and conformational changes that provide insight into

protein function and mechanism of action (Yang et al., 2014; David and Jacobs, 2014;
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Salsbury, 2010).

4.2 MOLECULAR DYNAMIC SIMULATIONS

Molecular dynamics (MD) simulations are a powerful tool to study and understand the

structure and behaviour of protein systems with extreme detail - in scales where the motion of

individual particles can be tracked (Lindahl, 2008). MD simulations are widely used in the

elucidation of protein structure-to-function relationships, as they are useful in studies of

protein folding events, enzymatic catalytic mechanisms, protein conformational changes, and

allostery (Hospital et al., 2015). Rational drug design also relies on MD simulations in the

elucidation of molecular recognition, the binding and unbinding of drugs and overall

mechanisms of action for a drug and its target (Galeazzi, 2009; Do et al., 2018).
MD simulations treat all particles in a system as flexible entities and simulate their

movements and dynamic behaviour as a function of time (Salmaso and Moro, 2018). During

a simulation, the trajectories of all atoms in a system are computed by the solution of

Newton's laws of motion (also known as the Classical mechanics), and an empirical force

field (Berendsen et al., 1995; Salmaso and Moro, 2018; Binder et al., 2004). In principle, the

classical equations of motion (Newton's equations of motion) are solved by using the forces

between atoms to compute successive atomic configurations and to assess the movement of

these atoms based on their interactions (Adcock, and McCammon, 2006). To solve Newton's

equations of motion, velocities are calculated using the Maxwellian distribution centred on

the desired temperature, using the atom positions are obtained from the coordinate

information in the structure PDB file (van der Spoel et al., 2005). In these computations, the

molecule is described as a series of charged spheres or radii (atoms) linked by springs (bonds)

based on molecular mechanics, to decrease the computational cost associated with

macromolecular simulations (Vanommeslaeghe and Guvench, 2014). In addition, the

movement of atoms is calculated in small steps, based on the Cartesian coordinates of the

particle, allowing the sampling of molecular motion on the nanosecond and microsecond

scale, and consequently enables the study of millisecond scale processes such as protein

folding (Abraham et al., 2015). The interactions (inter- or intramolecular, and forces) that

mediate movement are described and evaluated by the force field of choice (Berendsen et al.,
1995; Binder et al., 2004; Heinz et al., 2013). In essence, MD simulations involve the

solution of equations of motions detailing the forces acting on all atoms in a system. The

most efficient and common way for the forces to be calculated in large biological systems is

through molecular mechanics and the use of force fields.



67

4.2.1 FORCE FIELDS

A force field is a mathematical expression that describes the dependence of the energy of a

system on the coordinates of its constituent particles (González, 2011). A force field consists

of a functional form of the inter-atomic potential energy of a system, together with the set of

molecular mechanical parameters for different types of atoms, chemical bonds, dihedral

angles, out-of-plane interactions, non-bonded interactions, and other possible terms that fit

into this form (González, 2011; Heinz et al., 2013). These parameters are typically obtained

from ab initio or semi-empirical quantum mechanical calculations, or by fitting to

experimental data (such as neutron, X-ray and electron diffraction, NMR, infrared, Raman

and neutron spectroscopy, etc.) (González, 2011).

The components of a force field include bonded terms for interactions in atoms linked by

covalent bonds computed using Hooke's law, and non-bonded terms that describe the

long-range electrostatic and van der Waals forces which are computed using Coulomb's law

and a Lennard-Jones potential, respectively (Heinz et al., 2013). Notably, the terms described

in a force field are very specific and may vary from terms in other force fields, but the

general expression of the total energy in a force field is written as follows:

Equation 4.1: Summation of the bonded and non-bonded components of the total energy in a
force field.

where the terms of the bonded and non-bonded contributions are generally expressed by the

following summations:

Equation 4.2: Summations of the bonded and non-bonded terms constituting the bonded and
non-bonded components of a force field

Commonly used force fields in biological simulations include CHARMM (Brooks et al.,
2009), NAMD (Phillips et al., 2005), AMBER (Case et al., 2005), GROMACS (van der

Spoel et al., 2005) and GROMOS (Christen et al., 2005). In terms of protein simulations,

these force fields typically provide the parameters for standard and non-standard amino acid

residues, as well as few post-translational modifications (Margreitter et al., 2013).

In practical terms, molecular dynamics will involve steps of: 1) topology generation; 2)
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defining periodic boundary conditions; 3) solvation; 4) neutralization; 5) minimization; 6)

equilibration (2 steps for temperature and pressure); 7) production dynamics; 8) trajectory

analysis. In this present study, the protein dynamics of the SARS-CoV-2 Mpro-hexapeptide

complexes were explored using GROMACS software.

4.2.2 GROMACS

GROningen MAchine for Chemical Simulation or GROMACS is an open-source software

widely used in the dynamical simulation studies of biomolecules, in aqueous and membrane

environments. The software features a powerful set of calculation types, preparation and

analysis tools and supports several advanced techniques for free-energy calculations.

GROMACS exhibits much more flexibility as it supports the accurate use of different force

fields which are useful in studying biomolecular dynamics. GROMACS tools are

implemented by the use of gmx commands to perform the preparation, running and analysis

of MD simulations and trajectory analysis. GROMACS is optimized for complex calculations

through the use of multi-CPU and even multi-GPU, which contribute to the acceleration of

the performance (van der Spoel et al., 2005; Abraham et al., 2015). GROMACS offers

Message Passage Interface (MPI) which allows the splitting of a computation into

independent units of work that are handled in parallel (Abraham et al., 2015). Numerous MPI

schemes are implemented through enhanced parallelization algorithms. Moreover, optimal

performance of the toolkit is attributed to the combined use of multi-GPUs and MPI schemes,

which achieve optimization through acceleration and parallelization. Similarly, MPI tools,

which compile preparation and simulation calculations with parallelization algorithms, are

implemented with the use of gmx_mpi commands (GROMACS, 2015). In this study

GROMACS was used at the Center for High Performance Computing (CHPC), running on 24

cores across 8 nodes (total of 192 cores per simulation) with a wall time of 24h on the PBS

queue management system.

4.2.3 TRAJECTORYANALYSIS

MD simulations yield a wealth of data about the structure, dynamics, and function of

biomolecules by modelling the physical interactions between their atomic constituents. In

order to deduce meaningful conclusions from the simulations, MD trajectories need to be

analysed in terms of the positions (and possibly velocities and forces) of individual or

selected subsets of atoms for each time frame of the trajectory (Michaud-Agrawal et al.,

2011). The trajectory files obtained contain the position of all atoms at frames during the
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simulation, and these may be used to provide structural information on the course of

dynamics.

4.2.3.1 ROOT MEAN SQUARE DEVIATION (RMSD)

The RMSD of certain atoms in a molecule is a measure of distance, or dissimilarity, between

molecular conformations, with respect to a reference structure. In terms of MD simulations,

RMSD is used as a primary benchmark to measure how structures or parts of structures

change over time in comparison to the reference structure - which is frequently the first frame

of the trajectory. Relatively constant RMSD values signify proper convergence and

stabilization with the RMSD having a narrow range after equilibration. This indicates

stabilization of the backbone (Gowers et al., 2019).

4.2.3.2 RADIUS OF GYRATION (Rg)

The Rg is defined as the distribution of atoms of a protein around its axis. In MD simulation,

the Rg measures the degree of compactness and folding of protein systems, wherein a

constant Rg value in the simulation period signifies that there is protein folding stability;

conversely, protein unfolding is indicated by changes in Rg values over time (Lobanov et al.,

2008; Sneha and Doss, 2016).

4.2.3.3 ROOT MEAN SQUARE FLUCTUATION (RMSF)

The RMSF is a measure of the deviation between the position of a particle with respect to its

reference position. Unlike RMSD which is averaged over the particles to give time specific

values, RMSF is averaged over time to give values for each particle. RMSD calculates the

overall deviation of the structure from its reference structure, whereas RMSF determines

individual residue flexibility and thus allows the identification of the most mobile/flexible

regions during a simulation (BioChemCoRe 2018, 2021; Dong et al., 2018).

4.2.3.4 PRINCIPAL COMPONENTANALYSIS (PCA)

PCA, or essential dynamics, is an advanced analysis tool for identifying essential protein

motions in trajectories from MD simulations. In principle, PCA extracts concerted protein

motion in different frames during simulations to identify the most prominent motions of the

protein backbone. PCA is conducted in two steps, involving the construction of a

variance/covariance matrix using α-carbons and the diagonalization of the covariance matrix.

The covariance matrix is routinely constructed from the atomic fluctuations after the removal
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of the translational and rotational movement. The diagonalization of the covariance matrix

yields a set of eigenvectors and eigenvalues. The eigenvectors show the directions in a 3

N-dimensional (the N is the number of atoms used for constructing the covariance matrix)

conformational space and describe the majority of the protein motion along those directions.

On the other hand, the eigenvalues are measurements of the mean square fluctuations of the

system along the corresponding eigenvectors. The underlying assumption for PCA is that

only a few eigenvectors with large corresponding eigenvalues are important for describing

the overall motions of a protein. Therefore, the motion of the protein is identified by

projecting the original data onto the first two eigenvectors (ev1 vs ev2), to create the first two

principal components (PC1 and PC2) which contain the maximum motions (Srikumar et al.,
2014; Yang et al., 2014).

4.3 METHODOLOGY

4.3.1 TOPOLOGY GENERATION

Following molecular docking, the hexapeptide (KLQ***) PDBQT output files were

converted to PDB format using OpenBabel. The custom Perl script (Appendix M) was used

to restore the amino acid information of the constituent residues of each best binding pose

(Appendices L & N). The hexapeptide PDB information was then added onto the receptor

PDB as a third subunit, thus constructing complexes as a single PDB file with three protein

chains (the first two from the SARS-CoV-2 Mpro homodimer, the third the hexapeptide

KLQ***) (Appendix O). The topology and coordinate files for the apo-Mpro and

Mpro-Hexapeptide systems were created using the GROMACS version 2018.1 pdb2gmx
command, employing the AMBER03 protein, nucleic AMBER94 force field (Duan et al.,

2003). The topology file (.top) contains all the necessary information to define the molecule

within a simulation, including non-bonded (atom types and charges) and bonded (bonds,

angles and dihedrals) parameters. The configuration file (.gro) contains all the coordinates of

the molecule in the system, together with its corresponding parameter files (.itp) which

contain the connection of atoms in each subunit.

4.3.2 BOX DEFINITION, SOLVATIONANDADDITION OF IONS

To establish an aqueous and neutral system that mimics cellular conditions in vitro, the Mpro

systems were subjected to solvation and neutralisation. The apo-Mpro and Mpro-hexapeptide

systems were solvated in a cubic box of dimension 10 nm using a TIP3P water model. The
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structures were centred in the cubic box and placed under periodic boundary conditions

(PBC). Subsequently, the systems were neutralised to a net charge of zero by the addition of

the Na+ and Cl- counter ions.

4.3.3 ENERGYMINIMIZATION

To avoid steric clashes and unfavourable geometries in the systems arising from solvation and

neutralisation, the Mpro systems were subjected to energy minimization. The minimization

was prepared using the GROMACS grompp command and minimization was initiated with

the GROMACS mdrun command. Energy minimization was performed using the steepest

descent minimization algorithm for 50000 steps and minimization was set to stop when the

maximum force of <10.0 kJ/mol was achieved to avoid high-energy interactions.

4.3.4 SYSTEM EQUILIBRATION

In order to optimise the solvent and the ions surrounding the protein structures, equilibration

was carried out to bring the systems to desirable simulation temperature and pressure. The

temperature of the system was equilibrated with an NVT ensemble (constant Number of

atoms, Volume and Temperature) at 300K for 100 ps. Sequentially, the pressure was

equilibrated with an NPT ensemble (constant Number of atoms, constant Pressure and

constant Temperature) at 1.0 bar for 100 ps. A modified Berendsen thermostat was employed

in both equilibration ensembles. In both steps position restraints for heavy atoms were

included.

4.3.5 MD PRODUCTION

Following the temperature and pressure equilibration, the system position restraints were

released and 20 ns MD production runs were executed using the GROMACS mdrun. The
time steps were set at 2 fs and the trajectory and coordinate information were saved every 10

ps, resulting in 2000 frames saved for every system simulated. Energy minimization,

equilibration and production runs were automated on the CHPC cluster, employing multiple

nodes and CPU cores to compensate for the computational expense.

4.3.6 TRAJECTORYANALYSIS

Upon the completion of the production runs for the 20 ns simulations, the structures were

removed from the PBC simulation box and centred within the box using the trjconv

GROMACS command. The trajectory files were analysed by calculating the RMSD, RMSF,
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and Rg using the GROMACS commands rms, rmsf and gyrate, respectively. Conformational
changes and structural motions over the course of the trajectory for the protein backbone

were monitored using PCA. The dynamics of the structures over the simulation time were

visually inspected using Visual Molecular Dynamics (VMD) (Humphrey et al., 1996).

4.4 RESULTS AND DISCUSSION

The strength and stability of a protein-ligand complex are related to the intermolecular

interactions between these binding partners (Pantsar and Poso, 2018). Hence, MD simulations

for the apo- (unbound) and complexed proteins were carried out to assess the binding strength
of protein and substrates in the complexed systems, and to gain insight into changes in the

structure and stability of Mpro as a result of binding the KLQ*** hexapeptides. Thus, 20 ns

trajectories of the various apo and KLQ-complexed Mpro systems were analysed and plotted

to assess such changes, globally (figures 4.1-4.2), locally (figure 4.3) and based on their

prominent protein motions during the trajectory (figures 4.4-4.10). 131 KLQ*** substrates

were used in the final data set for MD and were subsequently analysed.

4.4.1 GLOBAL STRUCTURAL STABILITY OF THE SARS-CoV-2 MPRO

4.4.1.1 RMSD

The stability of the Mpro systems was assessed through the calculation of RMSD for the

protein backbone (α-carbons) from the 20 ns trajectories and plotted against time as shown in

figure 4.1. The apo-protein retained RMSD values around 0.2 nm, after equilibration, after

400 ps of simulation time. The majority of the complexed systems also equilibrated to an

RMSD of around 0.2 nm, showing that the binding of the substrates did not introduce

structural changes to the protein, and also that the complexes were stable. However, there

were a few complexed systems that equilibrated at a lower RMSD in comparison to the

apo-protein, with values ranging roughly between 0.10 and 0.22 nm like KLQAAM,

KLQAKA, KLQASD, KLQASG, KLQSND and KLQSSN. These complexes indicate the

subtle reduction of backbone fluctuation in the protein as a consequence of substrate binding.

These lower RMSD values are quite interesting since they show the nuances of binding of a

set of substrates that are in essence quite similar in composition.

A few complexed systems did attain higher fluctuations, accompanied by steady increases in

the RMSD as the simulation progressed (for example, KLQAGD, KLQALA, KLQALD,

KLQANA and KLQSEA). Backbone fluctuation was common among these systems, as
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periodic drops and instability in the RMSD were evident. The values of RMSD in some cases

would reach as high as 0.36 nm. Some of these systems would retain this higher value for a

longer period as when compared to others (indicating a variation in stability at the 0.36 nm

RMSD). For instance, systems KLQAGV, KLQAVA, KLQAVE, KLQSKG, KLQSLA and

KLQSTN retained RMSD > 0.3 nm for: the final 10 ns; final 15 ns; final 8 ns; final 3 ns; final

5 ns; and between 10 and 18 ns, of the simulations, respectively

The last group of systems registered significantly steep increases in RMSD at various points

of the simulation (KLQAEQ, KLQAND, KLQSGA and KLQSVQ). These spikes were

indicative of significant changes in the protein dynamics during the simulations. Bear in mind

that the peptide substrate is chain C of the PDB file, and cannot be separated from this RMSD

calculation for the protein. Of these, the complex KLQSVQ displayed the highest increase in

RMSD, with values reaching 4.20 nm, followed by KLQAND with the highest RMSD

reaching 4.13 nm. The increases shown in KLQAEQ and KLQSGA were less drastic when

compared to KLQAND and KLQSVQ, reaching peaks of 1.00 and 1.20 nm, respectively. The

details of the dynamic events that postulate these steep increases in RMSD for KLQAEQ,

KLQSGA and KLQSVQ are discussed below. To summarize, most systems consistently

achieved RMSD equilibration around 0.2 nm. With the exception of KLQAEQ, KLQAND,

KLQSGA and KLQSVQ, the RMSD values for the systems ranged between 0.1 and 0.38 nm.

Similar RMSD values for the Mpro apo-dimer that fall within this range were reported by

Suárez and Díaz (2020), where they sought to inhibit the protein using peptide-based

inhibitors.
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Figure 4.1. The global stability of the Mpro and Mpro-Hexapeptide complexes. RMSD of the backbone α-carbon
atoms for the apo-protein and KLQ*** hexapeptide bound Mpro systems during the 20 ns MD simulation. Plots
were created using RStudio.

4.4.1.2 Rg

The degree of compactness and folding of the Mpro systems was monitored through the Rg

plotted against time as shown in figure 4.2. Rg was used to monitor changes in protein

structure with respect to its native state, thus relaying information about the folding and

unfolding of the Mpro structure during the 20 ns simulations.

The majority of the systems retained similar degrees of compaction, as shown by the

equilibration of the Rg around 2.60 nm throughout the simulation. The apo-Mpro was also

among these systems. In the context of the complexed systems, this trend indicates that the

effect of substrate binding does not confer instability in protein structure; further pointing to

the substrate specificity of Mpro for this set of KLQ*** hexapeptides. This is also indicated in

the observed proper substrate binding (chapter 3, section 3.6.7.1), and the prevalence of

stabilising intermolecular interactions (chapter 3, section 3.6.7.2) known to confer strength

and stability in complexes.

Interestingly, some complexed systems displayed steady drops in Rg as the simulation

progressed (KLQAAA, KLQAEV, KLQAGM, KLQAGQ, KLQALE, KLQAKN, KLQATG,

KLQATN, KLQATV, KLQAVN, KLQSAE, KLQSAM, KLQSEA, KLQSEM, KLQSEN,

KLQSLA, and KLQSNM). The decreases in Rg values never fell below 2.55 nm. In these

systems, the binding of substrates introduced, increased the compaction of the protein
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structure, and resulted in a slightly greater contraction of the Mpro-hexapeptide structure.

Similarly, some of the systems displayed steady increases in Rg (from 2.6 nm) as the

simulation progressed, without exceeding 2.65 nm (KLQAAV, KLQAKM, KLQSGV and

KLQSLV). Structural compaction was reduced in the systems, showing minor flexibility in

the Mpro-hexapeptide structure as the simulation progressed. There were also a few systems

that consistently attained and retained Rg equilibration above (KLQAAN, KLQANA,

KLQAVA and KLQSEQ), and below (KLQAAD, KLQAAE, KLQAEM, KLQSLE and

KLQSLG) the typical 2.6 nm point of equilibration. The overall Rg values of these

aforementioned systems roughly ranged between 2.57 and 2.62 nm. Notably, the reference

state for these systems had an Rg of 2.57 nm. Thus, Mpro-hexapeptide and apo-Mpro systems

retained close levels of flexibility to their native states.

As also seen in the RMSD, the systems KLQAEQ, KLQAND, KLQSGA and KLQSVQ

displayed steep hikes in Rg at various times of their simulations. KLQSVQ and KLQAND

achieved the steepest hikes, reaching maximum values of approximately 5.40 and 5.31 nm,

respectively. As with RSMD, KLQAEQ and KLQSGA attained less drastic increases in Rg

than KLQSVQ or KLQAND, with approximate peaks of 2.67 and 2.74 nm, respectively.

Fascinatingly, these peaks in Rg corresponded to the peaks of RMSD with regards to scale

and the timestamps of the simulation period, suggesting that the sudden increase in backbone

fluctuations correlated with the sudden increases in structural flexibility. Outside these

timestamps, these systems display the typical hexapeptide-protein behaviour demonstrated by

the majority of the systems simulated. Curiously, a look into the binding modes of substrates

reveals that all were bound onto the Mpro active site appropriately and in accordance with the

nomenclature of Schechter and Berger (1967).



81



82



83



84



85



86

Figure 4.2. The global stability of the Mpro and Mpro-Hexapeptide complexes. Rg of the backbone α-carbon
atoms for the apo-protein and KLQ*** hexapeptide bound Mpro systems during the 20 ns MD simulation. Plots
were created using RStudio.

As a conclusion, the RMSD and Rg of these systems, except for KLQAEQ, KLQAND,

KLQSGA and KLQSVQ, displayed no indication of destabilising effect of the KLQ***

hexapeptides on the Mpro structure and further confirmed the stabilising force and strength of

the intermolecular interactions in the substrate binding interface. At present, there is little in

the literature surrounding the behaviour during the dynamics of these and similar systems.

However, interestingly, Gupta et al. (2020) reported RMSD and Rg values for SARS-CoV-2

Mpro within the same range for an inhibitory study using natural compounds. In contrast to

this study, they performed slightly longer 30 ns MD simulations

4.4.2 LOCAL STRUCTURAL STABILITY OF THE SARS-COV-2 MPRO

4.4.2.1 RMSF

Local chain fluctuations of the Mpro were measured by calculating the RMSF and assessed

using heatmaps. Heatmaps allowed the identification of high-flexibility regions, which were

subsequently mapped on the Mpro crystal structure to reveal the positions of these regions

within the 3D protein structure.

Across all systems, the RMSF of chain A approximated the RMSF of chain B, despite the fact

only chain B had a bound substrate in complex systems (figures 4.5, 4.7 and 4.9). Moreover,
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slightly higher RMSF values were registered in chain A. Overall, the highest RMSF values

were obtained in systems KLQAND and KLQSVQ (figure 4.9 & 4.10). Since these values

were disproportionately higher than the rest of the systems, the data were separated to

optimise visualisation as follows: i) systems with KLQ*** substrates with Ala at P1′ (figures

4.5 & 4.6); ii) systems KLQ*** substrates with Ser at P1′ (figure 4.7 & 4.8); iii) systems with

KLQAND and KLQSVQ (figures 4.9 & 4.10).

Figure 4.5 shows the heatmaps for both chains of KLQA** systems alongside the apo-Mpro.

While values vary from one system to the next, both chains of the Mpro demonstrated similar

values and high-flexible regions in each system. Overall, the RMSF values for KLQA**

systems ranged between 0.0384-0.5805 nm for chain A and 0.0394-0.5698 nm for chain B.

High flexibility was observed in residues 21-26, 44-80, 92-97, 118-127, 141-144, 152-156,

167-171, 188-198, 215-288, and 298-302 in chain A (figure 4.5A); and residues 1-4, 22-24,

44-80, 92-96, 118-125, 153-156, 168-171, 188-197, 212-288, and 297-301 in chain B (figure

4.5B), respectively.
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Figure 4.5. The local stability of the Mpro and Mpro-KLQA** Hexapeptide complexes. RMSF of the backbone
α-carbon atoms for the apo-protein and KLQA** hexapeptide bound Mpro systems during the 20 ns MD
simulation. A and B refer to the separate chains of the Mpro homodimer. Images were created using RStudio.

The majority of the highly fluctuating residues constituted loop regions in both monomers of
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the Mpro, as shown (as red, and blue) in figure 4.6. Loop regions are highly flexible structures

in their native state. Of all the flexible loop regions, the residues 1-4 displayed flexibility

exclusively in chain B. Residues 1-9 are known to form the N-finger terminal region which

plays a crucial role in dimer formation through interactions with Domain II of chain A (Sheik

Amamuddy et al., 2020). Semi-flexibility in β-sheets was displayed on either end of the

structure in both monomers, connecting to or from loop regions. These β-sheets constituted

Domains I and II. Additionally, there were α-helices displaying semi-flexibility, comprising

of residues 44-80 (domain I) and 212-288 (domain III). Residues 44-80 are part of the

catalytic domain which is responsible for catalysis and Mpro autocleavage (Mengist et al.,

2021). Sequentially, this α-helix comes after the catalytic His41 and is comprised of key

residues like Met49 which contribute to substrate stabilisation. Considering the RMSD and

Rg of these systems, this apparent semi-flexibility is not indicative of instability in the

binding pocket, but instead shows functional flexibility that accommodates the bound

substrate. The α-helices of Domain III (figure 4.6 lower region of protein) consistently

displayed high flexibility in both monomers. Curiously, α-helices typically demonstrate

restricted motion but can confer great flexibility that is essential to protein function (Skipper,

2005). However, since the helices are connected by long loop chains, fluctuation/deviation is

highly likely to be present.

Figure 4.6. The localisation of high-fluctuation residues of the Mpro in apo- and KLQA** Hexapeptide bound
systems. The 3D structure of the Mpro show chain A and chain B in orange and green, respectively. Residues
displaying high fluctuations are shown in red in chain A, and in blue in chain B. Catalytic His41 is shown as
blue spheres and catalytic Cys145 is shown as yellow spheres on each chain. Images were generated using
PyMOL.

The KLQS** systems showed similar trends to the KLQA** systems in terms of RMSF and

the localisation of flexible residues. Much like KLQA** systems, the RMSF of chain A were



90

similar to the RMSF of chain B (figure 4.7). The value for RMSF ranged between 0.0399 -

0.4223 nm for chain A and 0.0372-0.3726 nm for chain B. Similarly, flexibility was

demonstrated in residues 21-26, 32-35, 44-80, 92-97, 119-123, 139-143, 153-156, 167-171,

187-197, 212-288, and 297-302 in chain A; and residues 1-5, 21-26, 33-35, 44-66, 70-80,

92-98, 152-156, 167-170, 186-197, 212-238, 241-286, and 297-301 for chain B. Flexibility in

N-finger terminal residues was also exclusive to chain B (figures 4.7B & 4.8).
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Figure 4.7. The local stability of the Mpro and Mpro-KLQS** Hexapeptide complexes. RMSF of the backbone
α-carbon atoms for the apo-protein and KLQS** hexapeptide bound Mpro systems during the 20 ns MD
simulation. A and B refer to the chains of the Mpro homodimer. Images were created using RStudio.
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Figure 4.8. The localisation of high-fluctuation residues of the Mpro in apo- and KLQS** Hexapeptide bound
systems. The 3D structure of the Mpro show chain A and chain B in orange and green, respectively. Residues
displaying high fluctuations are shown in red in chain A, and in blue in chain B. Catalytic His41 is shown as
blue spheres and catalytic Cys145 is shown as yellow spheres on each chain. Images were generated using
PyMOL.

In the context of the two KLQAND and KLQSVQ systems, residue fluctuation was the

highest across all systems with values ranging between 0.2261-1.1565 nm for chain A, and

0.2174-1.1333 nm for chain B. The flexible residues were similar to those in the KLQA**

and KLQS** systems, and included residues 1-17, 69-73, 96-100, 111-127, 138-144, 152-157,

202-209, 210-223, 224-234, 236-237, 242-254, 255-259, 260-276, 277-285, 286-298, and

299-302 in chain A; and residues 1-19, 24-29, 69-74, 95-100, 111-128, 138-143, 151-157,

170-173, 199-206, 207-223, 224-227, 247-288, 291-299, and 300-301 in chain B. These were

the only instances where the N-finger terminal residues displayed flexibility in both chains

(figure 4.9 & 4.10).

Furthermore, the localisation of the flexible residues showed more residue fluctuation in

Domain II involving β-sheets; this was not evident in all other systems. The α-helix

semi-flexibility (residues 44-63) around the catalytic dyad was also not shown in these

systems, pointing towards potential inactivity of the active site residues. Further, α-helices

residues constituting Domain III demonstrated greater flexibility than any of the

aforementioned systems.
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Figure 4.9. The local stability of the Mpro and Mpro-KLQ*** Hexapeptide complexes. RMSF of the backbone
α-carbon atoms for the apo-protein, KLQAND and KLQSVQ hexapeptide bound Mpro systems during the 20 ns
MD simulation. A and B refer to the chains of the Mpro homodimer. Images were created using RStudio.
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Figure 4.10. The localisation of high-fluctuation residues of the Mpro in apo-, KLQAND and KLQSVQ
Hexapeptide bound systems. The 3D structure of the Mpro show chain A and chain B in orange and green,
respectively. Residues displaying high fluctuations are shown in red in chain A, and in blue in chain B. Catalytic
His41 is shown as blue spheres and catalytic Cys145 is shown as yellow spheres on each chain. Images were
generated using PyMOL.

In conclusion, the RMSF results show that the Mpro residues display typical fluctuation

patterns in the presence of the KLQ*** substrates, except for KLQAND and KLQSVQ, of

course. The RMSF in both monomers approximated one another in magnitude and

localisation, in terms of flexible regions of the Mpro. Curiously, the KLQAEQ and KLQSGA

systems did not demonstrate atypical, or similar behaviours to KLQAND and KLQSVQ as

previously shown in RMSD and Rg. The visualisation of the systems revealed the key events

that account for these nuances/variations in the KLQAEQ, KLQSGA, KLQAND and

KLQSVQ systems. The details are further discussed below.

4.4.3 ANALYSIS OF THE PROMINENT MOTIONS OF THE MPRO SYSTEMS

4.4.3.1 PCA

The prominent structural motions and conformational changes of the Mpro backbone during

the 20 ns MD simulations were assessed using PCA calculations. PCA divided the overall

motion of the trajectories into principal components that describe the essential functional

protein motions during the simulation. Since the first two principal components, PC1 and

PC2, retain the majority of the variance of the original data, they can be used to provide a

meaningful description of the protein motions throughout the course of the simulations. Thus,

2D projections of these principal components were plotted using the Cartesian coordinates of

all backbone atoms and used to visualise and examine these conformational changes (figure
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4.11).

The coordinates were divided into three to observe the motions of the systems at various time

periods in the duration of the simulation. The black points depict the backbone motions in the

first third (frames 0-666), the green points indicate the motions in the second third (frames

667-1333), and the red points show the motions of the final third (frames 1334-2001) of the

simulation, as shown in figure 4.11. The different systems demonstrated different patterns in

protein motions and backbone conformational changes. The direction of change of the PCA

plot according to timeframe was unique to each system, with some demonstrating a clockwise

change in PCA (like KLQAAD and KLQAAE), whilst others displayed an anti-clockwise

change in PCA trajectory (like APO and KLQAAA). Seemingly, the majority of systems

retained steady conformational changes throughout the simulation as the distribution of the

coordinates of the PCA were generally compact. Regardless of the patterns shown by the PC1

and PC2 coordinates, the typical range for the coordinates was between -5 and 5 for both PC1

and PC2. The KLQAEQ, KLQAND, KLQSGA and KLQSVQ systems displayed the most

drastic conformational changes, indicating structural instabilities during the simulation. The

time periods in which these rapid conformational changes occur corresponded with the

timestamps of the backbone instability illustrated by their RMSD and Rg results.
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Figure 4.11. The 2D projections of the principal components for Mpro apo and KLQ***-substrate-bound systems
over the duration of the 20 ns MD simulations. The projection of the motion along phase space for PC1 and PC2
of Mpro apo and KLQ***-substrate-bound systems, showing the first third (black), second third (green) and final
third (red) of the 20 ns simulation. Images were generated using Xmgrace (of Grace 5) and RStudio.

4.4.3.2 CLASSIFICATION OF THE PCA

In an attempt to classify the PCA data, a custom pairwise comparison of the Mpro systems was

performed. The Cartesian coordinates of PC1 and PC2 for each system were fitted in a 5×5

grid to demarcate the protein motions as defined by PCA over the course of the simulation. In

intervals of 2 ns (200 frames), the PC1 and PC2 coordinates of the protein were averaged and

subsequently used to position the PCA within a grid. This was assigned a letter code to

uniquely identify the position of the PCA in the particular time interval (Appendix P). The

string of letters therefore uniquely identified the progression in PCA for a particular

simulation (Appendix Q). The differences in these codes between simulations were used to

create a pairwise comparison that included all the systems (Appendices R & S). This assumes

that the motion described by PC1 and PC2 is the same in compared systems. However, this

was in an attempt to identify systems with similar motion across 132 simulations; once

identified, the similarity of motion could be validated through the superimposition of the

structures.

The differences between these PCA codes were clustered using correlation as a measure of

distance (figure 4.12). Figure 4.12 shows the cluster map, and this illustrates the correlation

of the protein motions for all the systems, with respect to one another (bearing in mind the

underlying assumption). The accompanying hierarchy also indicates four main clades of PCA

plot, where progression of PCA within the clade is similar. This hierarchical clustering was

performed to indicate hierarchical relationships between the systems, with regard to their

dynamic motion (figure 4.13). Hierarchical clustering allowed for the arrangement of the

systems based on similarity. The resultant dendrogram of the hierarchical clustering also

clearly shows these four main groups of systems sharing similarities. The main clades are

shown in table 4.1. While three groups of PCA plots share varying similarities within and

between themselves, group 1 PCA (comprising of the KLQSVQ, KLQAEQ and KLQAND
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systems) demonstrated the highest dissimilarity to the other groups. Considering the results of

RMSD, Rg and even RMSF (for KLQAND and KLQSVQ systems), this is highly expected

and relates to the dynamic events that indicate destabilisation of these systems during the

simulations. This illustrated the ability of this clustering of PCA codes to identify highly

dissimilar motion, this dissimilar motion is already confirmed from RMSD, Rg and RMSF.

Interestingly, the KLQSGA system which also showed backbone instability in RMSD and Rg

was arranged in group 3 and not alongside the KLQSVQ, KLQAEQ and KLQAND systems.

However, the dendrogram in figure 4.13 indicates that KLQSGA displayed the highest

dissimilarity with the rest of the systems within the group, delineating a weak correlation in

terms of protein motions and conformational changes with "similar" systems.

Figure 4.12. Determination of correlation in the protein motions of Mpro dynamic systems. The clustering of the
differences in protein motions of Mpro systems using correlation as a measure of distance. The image was
generated using Seaborn in Python.
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Figure 4.13. The similarity of the protein dynamic motion in the apo-Mpro and Hexapeptide-Mpro systems. The
dendrogram shows the arrangement of the Mpro systems according to similarity. The image was generated using
Seaborn in Python.
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Table 4.1: The related Mpro systems based on conformational changes in the duration of the 20 ns simulation.

Substrates

Groups

1 2 3 4

KLQSVQ;
KLQAEQ;
KLQAND

KLQANV; KLQSNN;
KLQAKE; APO;

KLQSEG; KLQSAG;
KLQSAV;

KLQSSV; KLQALG;
KLQATD; KLQSGE;
KLQSNQ; KLQAAM;
KLQAEA; KLQSKN;
KLQSLG; KLQSLV;
KLQSSE; KLQALA;
KLQSAA; KLQSGD;
KLQSKD; KLQSTD;
KLQAGE; KLQAKV;
KLQATM; KLQAVG;
KLQAKG; KLQAVD;
KLQATV; KLQSTE;
KLQSTG; KLQAKA;
KLQSLQ; KLQSTN;
KLQSAD; KLQASN;
KLQSSD; KLQALE;
KLQAED; KLQSGN;
KLQAKQ; KLQASA;
KLQATE; KLQAGD;
KLQSSN; KLQSVE;
KLQSAM; KLQSKA

KLQSGA;
KLQSLE;
KLQAAE;
KLQAGQ;
KLQSAN;
KLQALM;
KLQSVD;
KLQASQ;
KLQAAQ;
KLQAEM;
KLQSEQ;
KLQAVV;
KLQSTA

KLQAAG;
KLQSGV; KLQANA;
KLQAKN; KLQAAA;
KLQSEA; KLQAVA;
KLQAAD; KLQALQ;
KLQSVG; KLQSAE;
KLQSAQ; KLQAGM;
KLQSNA; KLQSVV;
KLQANG; KLQSGQ;
KLQSLN; KLQALD;
KLQAGV; KLQAKD;
KLQATA; KLQAGG;
KLQASV; KLQSKV;
KLQANM; KLQAVN;
KLQSKG; KLQSTQ;
KLQSLA; KLQSNM;
KLQSND; KLQASM;
KLQSTM; KLQANQ;
KLQSLD; KLQSEE;
KLQSEM; KLQSLM;
KLQSVN; KLQAEE;
KLQAGA; KLQAVM;
KLQSNG; KLQATQ;
KLQSSG; KLQALN;
KLQAEG; KLQATG;
KLQATN; KLQAVQ;
KLQASG; KLQAAV;
KLQASD; KLQSKM;
KLQAVE; KLQSEN;
KLQASE; KLQALV;
KLQANE; KLQAEV;
KLQSVA; KLQAAN;
KLQAKM; KLQSKQ;
KLQSSQ; KLQSVM

The PCA results are in agreement with RMSD, Rg and RMSF observations. All the systems

displayed similar behaviour that correlates with the trends of the RMSD and Rg, shown by

the equilibration around 0.2 nm and 2.60 nm, respectively. Despite binding substrates with

minor chemical differences, the proteins achieved and retained similar backbone flexibility

and degree of compaction, and overall displayed similar stability in their trajectories. The

SARS-CoV-2 Mpro has an intrinsic mechanism that enables the protein to bind different

peptide substrates without conferring instability to the entire structure. In PCA, the majority

of the systems seemingly occupied the same spaces throughout the course of the simulation.

The exceptions to these trends have consistently included KLQAEQ, KLQAND, KLQSGA
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and KLQSVQ systems. The hierarchical clustering even showed the high dissimilarity the

protein motions in these systems share with the rest. However, the explanation for the

partitioning of these select systems owes to the events that occur during the MD simulation.

Thus, two systems from each hierarchical clade (or group) were selected for trajectory

visualization using VMD.

4.4.3.3 VISUALISATION OF THE TRAJECTORIES

The visualisation of the trajectories was carried out to assess the similarities of protein

motions implied in the hierarchical clustering and to monitor the events that caused the

backbone destabilisation in the KLQAEQ, KLQAND, KLQSGA and KLQSVQ systems.

The visualisation of group 1 systems (KLQAEQ and KLQSVQ) provided insight into the

instability of the backbone of the protein systems. Figure 4.14 shows that the systems appear

to not overlap at any point of the simulation, indicating a weak relationship (in terms of

movements) between the two protein systems. In KLQAEQ, the timestamps of steep

increases in RMSD and Rg correspond to unbinding events of the substrate. The ejection of

non-covalently bound ligands from the active site normally does not produce such extreme

changes to the RMSD and Rg of the protein backbone. In this case, the peaks are shown as a

result of including the substrates as a third chain of the Mpro before topology generation, as

previously mentioned. Thus, the motions of the substrates contributed to and affected the

values for RMSD and Rg. In terms of RMSF, the unbinding of the substrates is not visible in

the RMSF plots, since these RMSF plots were limited to chains A and B. This explains why

the KLQAEQ system was not included in RMSF with the extremely high-fluctuation systems.

The RMSF only measured the deviations of the residues of each of the monomers. Hence, no

high RMSF values were registered for the system. The spikes in RMSD and Rg for KLQSVQ

corresponded with the dissociation of the Mpro dimer (figure 4.14). The movement apart of

the monomers caused a great displacement of the subunit backbones and consequently,

induced the high values for RMSD, Rg and RMSF.
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Figure 4.14. Visualisation of the MD trajectories for Group 1 systems. Protein systems are shown cartoon
representation, showing Mpro-KLQAEQ in blue and Mpro-KLQSVQ in red. Images were generated using VMD.

The visualisation of the KLQAND system also revealed dimer dissociation at the timestamps

corresponding to the steep spikes in RMSD and Rg (figure 4.15). The same explanation for

the high values in RMSD, Rg and RMSF also applies in this system. The dimer dissociation

resulted in great displacement of the monomers, thus increasing deviation from reference

points and inducing high RMSD, Rg and RMSF values. Curiously, in both systems, the Mpro

dimer was restored after initial dissociation and later further dissociated. The dissociation of

the dimer in these systems proves to be an area of interest for future study. The identification

of the underlying molecular interactions that governed this dissociation could prove

beneficial in the investigation of antiviral agents.
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Figure 4.15. Visualisation of the MD trajectories for the KLQAND system. Protein systems are shown cartoon
representation, shown in blue. The images were generated using VMD.

The visualisation of group 2 systems (the apo-Mpro and Mpro-KLQSEG) showed a strong

relationship in protein motions as the structures overlapped throughout all frames of

dynamics (figure 4.16). Particularly, Domains I and II (the chymotrypsin-like structure)

consistently overlapped throughout the simulation, while the helices of Domain III showed

the most difference. The mapping of high-flexibility residues indicated this domain to be

highly flexible.
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Figure 4.16. Visualisation of the MD trajectories for Group 2 systems. Protein systems are shown cartoon
representation, showing apo-Mpro in blue and Mpro-KLQSVQ in red. Images were generated using VMD.
.
Group 3 systems (Mpro-KLQAVV and Mpro-KLQSGA) displayed little similarity in protein

motions at any point of the simulation (figure 4.17). This is supported by the placement of

these systems in dendrogram, where KLQSGA was shown to have high dissimilarity with the

rest of the system in group 3. Nonetheless, the KLQAVV system demonstrated structural

stability, as well as ligand stability throughout the simulation. The KLQSGA systems showed

the unbinding of the substrate at corresponding time stamps with steep spikes in RMSD and

Rg. This substrate ejection is seemingly the cause of the dissimilarity of KLQSGA with other

systems in groups 3. However, the relation with other group 3 systems could possibly be as a

result of overlapping Mpro motions. Much like KLQAEQ, the ejection of the substrate induces

the high values in RMSD and Rg, but did not affect the RMSF values because only Mpro

residues were considered in the calculations. This also explains as to why the spikes in

KLQAEQ and KLQSGA were not as drastic like KLQAND and KLQSVQ. The spikes were

a result of substrate displacement (or deviation), which was very small with respect to the

Mpro.
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Figure 4.17. Visualisation of the MD trajectories for Group 3 systems. Protein systems are shown cartoon
representation, showing Mpro-KLQAVV in blue and Mpro-KLQSGA in red. Images were generated using VMD.

Group 4 systems (Mpro-KLQAAA and Mpro-KLQSKG) also showed little similarity in motion

(figure 4.18). Overlapping of structures was visible in the β-sheets of Domain I. Considering

the placement of the KLQAAA and KLQSKG systems in the dendrogram (figure 4.13; table

4.1), a strong relation in protein motion was less likely. It could be that generally the motions

are within a broad range, but visually it is not possible to see this detail, or it could be that

simply the PC1 and PC2 motions are not the same in these systems.
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Figure 4.18. Visualisation of the MD trajectories for Group 3 systems. Protein systems are shown cartoon
representation, showing Mpro-KLQAAA in blue and Mpro-KLQSKG in red. Images were generated using VMD.

Lastly, the visualisation of the systems from the different groups revealed little to no

similarity in motion between the groups (figure 4.19). Structural overlaps rarely occurred

during the simulation. These systems were representatives for each clade and each clade

diverges from the highest point of dissimilarity as shown in figure 4.13. This observation

further validates the outcomes of the hierarchical clustering since these systems exhibited no

similar motions throughout the 20 ns simulation.



111

Figure 4.19. Visualisation of the MD trajectories for systems in all hierarchical groups. Protein systems are
shown cartoon representation, showing Mpro-KLQSKQ in blue, Mpro-KLQSGA in red, Mpro-KLQSVQ in purple
and Mpro-KLQSEG in orange. Images were generated using VMD.

This visualisation, of the four clades of PCA progression, allowed the inspection and

confirmation of the similarities in protein motion of the systems. This shows that this type of

PCA progression analysis is able, certainly in some cases to identify both similar and

dissimilar motions of the protein. With refinement, it could provide for general use. In this

case, it certainly provided focus on particular systems given the number of simulations to

assess. For the second group of systems we have a set where the substrates affect the motion

during dynamics in a very similar manner. These are listed in table 4.1 of this chapter.

Furthermore, the dynamic events that indicated instability in the KLQAEQ, KLQAND,

KLQSGA and KLQSVQ systems were assessed and this provided insight into the behaviour

of the protein and the substrate in the respective systems.

4.5 CHAPTER SUMMARY

In this chapter, the objective to assess the behaviour and conformational changes of the Mpro

in dynamic environments was addressed. MD simulations were performed on 132 Mpro

systems (apo- and 131 KLQ*** hexapeptide bound), for a simulation period of 20 ns. The



112

trajectory files from these simulations were analysed in terms of RMSD, Rg, RMSF and PCA

to monitor backbone fluctuation, protein folding stability, residue-level fluctuations and

protein motion and conformational changes, respectively.

The majority of Mpro systems demonstrated relatively similar behaviour in terms of global

stability of the backbone. Typical RMSD and Rg were equilibrated around 0.2 nm and 2.6 nm,

respectively; indicating stable backbone flexibility and protein folding over the course of the

20 ns simulations. The exceptions to these trends were consistently the KLQAEQ, KLQAND,

KLQSGA and KLQSVQ systems which displayed extreme increases in RMSD and Rg at

various time frames when comparing the systems. These increases corresponded in

timestamps in both RMSD and Rg within the same system. Despite having substrate docking

performed exclusively on chain B of the Mpro, local fluctuation analysis saw the two Mpro

chains approximately matching one another in magnitude and localisation of high-flexibility

residues and regions of the protein. Localisation of high-flexibility residues showed high

flexibility in loop regions joining β-sheets and the domains of each monomer, as well as the

helices of Domain III. Semi-flexibility was observed in the catalytic domain which appeared

to be functional fluctuation that accommodates the bound hexapeptide. Only the KLQAND

and KLQSVQ systems registered disproportionately high RMSF values when compared to

the rest of the systems in data.

In terms of protein motion and conformational changes, the different systems displayed

unique PCA progression. Generally, the distribution of the coordinates of PC1 and PC2 were

compact and ranged between -5 and 5. As with RMSD, Rg and RMSF, the KLQAEQ,

KLQAND, KLQSGA and KLQSVQ systems registered extreme values for the coordinates of

PC1 and PC2; in time periods corresponding to time frames of high RMSD, Rg and RMSF.

In order to accommodate the analysis of 132 PCA plots, a strategy in terms of encoding PCA

progression during the dynamic simulations was introduced, that could identify similar and

dissimilar systems on the basis of protein motion and conformational changes. The strategy

was able to identify that group 2 motions, according to sequences in Table 4.1, of the protein

during dynamics is similar, and therefore the interaction between Mpro of these systems is

likely similar. Taking results from RMSD and Rg, together with visualisation of the

trajectories enabled the identification of the unstable systems where dimer dissociation was

observed, in particular for systems KLQAND and KLQSVQ; and the unbinding of the

substrates in KLQAEQ and KLQSGA systems.
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CONCLUDING REMARKS AND FUTURE PROSPECTS

COVID-19, as a disease and pandemic, continues to cause devastation around the

world. The strain on public health services is of extraordinary and unprecedented

proportions. The disease is caused by SARS-CoV-2 infection. Existing measures

placed to control the spread of the virus are losing efficacy due to the emergence of

novel variants with increased virulence and immunological evasive mechanisms. The

viral life cycle of SARS-CoV-2 relies greatly on the cleavage of polyproteins 1a and

1ab into mature non-structural proteins (nsps), facilitated by the main protease (Mpro)

and papain-like proteases activity. After its autocleavage, the Mpro further cleaves

downstream nsps at eleven sites, recognising the sequence Leu-Gln↓(Ser/Ala/Gly) (↓

shows the cleavage site). Mpro proves to be a promising drug target as it exhibits high

degrees of conservation in sequence, structure and specificity. Therefore, this study

sought to profile the binding of substrates in the context of hexapeptide substrates,

onto SARS-CoV-2 Mpro.

In this study, a virtual multi-conformer substrate library was generated comprising

100 conformers of 810 unique hexapeptide sequences. Each hexapeptide was

constructed to contain the recognition sequence and cleavage points and equally

divided between the C- (P3-P1) and N-terminal (P1′-P3′) products. Terminal capping

was successfully effected to safeguard the structural stability of each conformer.

The conformers were screened against chain B of the crystal structure of

SARS-CoV-2 Mpro (PDB ID: 6XHM) using AutoDock Vina at high levels of

exhaustiveness. After docking, the reproducibility of docking results was validated

using the high-affinity poses. Calculation of ligand efficiency indices consistently

showed residues Val, Ala, and Gly and Ala, to be efficient binders at P3, P1′, and P2′

and P3′, respectively. RLQ*** substrates exhibited the poorest binding efficiencies

despite attaining the highest mean binding energy, and the best balance between BEI

and SEI. Subsite mapping was performed to assess substrate recognition at the active

site and the majority of hexapeptides showed appropriate binding modes. Resolution
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of active site intermolecular interactions, as means to assess specificity, revealed a

high prevalence of stabilising interactions, like hydrogen bonding, proving favourable

binding and thus confirmed specificity. This specificity was also supported by the

high-affinity binding of hexapeptides, as Vina scores ranged between -8.7 and -7.0

kcal.mol-1. Hexapeptide binding modes and interactions showed optimal positioning

of the substrates at the active site for proteolytic cleavage.

Complexed Mpro systems with 131 KLQ*** hexapeptides and an apo-Mpro were

subjected to 20 ns MD runs to assess the strength of the interactions and the binding

effect of the hexapeptides. System stability was assessed using RMSD, Rg and RMSF

and revealed persistent stability in all but four systems. PCA was performed to assess

the protein motion and conformational changes in the Mpro systems and showed a

compact distribution of PC1 and PC2 in all but the same four systems. Custom

pairwise comparison was conducted to quantify the PCA progression of each system

and to subsequently determine similarities in PCA motion among the 132 systems

through hierarchical clustering. Hierarchical clustering revealed four main clades (or

groups) of similarity in the PCA progression. Trajectory visualization confirmed the

calculated similarity within one group and verified dissimilarity across the groups.

Visualization was also used to assess the dynamics of the four unstable systems and

revealed substrate unbinding in KLQAEQ and KLQSVQ systems, and dimer

dissociation in KLQAND and KLQSVQ systems.

This present study is a prelude for intended future studies which will seek to

characterise the Mpro proteolytic mechanism using combined Quantum

Mechanics/Molecular Mechanics techniques, as well as to explore and profile the

conformational diversity of the hexapeptides, since they are fundamentally protein

chains, using Replica Exchange Molecular Dynamics. Furthermore, future inhibition

studies have many bases for rational drug design, such as position-specific efficient

(binding) residues, binding modes (appropriate and inappropriate) of the hexapeptides,

hexapeptide unbinding, dimer dissociating hexapeptides and so forth.

Recommendations for future studies include permitting flexibility in Mpro active site

residues during docking and longer MD simulations, allowing for more accurate
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profiling of substrate binding and longer periods to assess the effect of the

hexapeptides on the behaviour of the SARS-CoV-2 Mpro.
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SUPPLEMENTARY MATERIAL

Supplementary figure 3.1. Preliminary docking studies to determine the protein chain to prioritise for
docking studies. The negative of the docking scores of the RLQAAN conformers were plotted on bar
graphs, showing the docking scores of chain A (red) and chain B (blue). Image was generated using
WPS Spreadsheet 2019.

Supplementary table 3.1: Summary of docking results.

Substrate Conformers
Docked

Best
Binding Conformer

∆G
(kcal/mol)

KLQAAA 100 17 -8.3

KLQAAD 100 100 -8.2

KLQAAE 100 3 -8.1

KLQAAF 100 27 -8.2

KLQAAG 57 27 -8.1

KLQAAM 19 32 -7.6

KLQAAN 10 32 -7.9

KLQAAQ 10 33 -7.9
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KLQAAV 100 16 -8.1

KLQAEA 40 14 -8.3

KLQAED 40 10 -8.1

KLQAEE 24 16 -7.8

KLQAEF 24 18 -8.3

KLQAEG 40 12 -7.9

KLQAEM 10 31 -7.1

KLQAEN 40 24 -8.1

KLQAEQ 14 38 -7.7

KLQAEV 24 17 -8.0

KLQAGA 24 1 -8.4

KLQAGD 14 32 -7.7

KLQAGE 24 1 -7.8

KLQAGF 14 31 -8.0

KLQAGG 24 15 -8.2

KLQAGM 40 29 -8.0

KLQAGN 24 32 -8.2

KLQAGQ 24 15 -7.9

KLQAGV 14 33 -8.0

KLQAKA 14 35 -7.7

KLQAKD 14 1 -7.8

KLQAKE 10 33 -7.4

KLQAKF 40 22 -8.0

KLQAKG 10 31 -7.6

KLQAKM 24 15 -7.3

KLQAKN 40 19 -7.8

KLQAKQ 10 32 -7.4

KLQAKV 40 11 -7.9

KLQALA 10 32 -8.0

KLQALD 40 12 -8.1

KLQALE 24 1 -7.9

KLQALF 10 32 -7.9

KLQALG 24 1 -7.9

KLQALM 10 32 -7.4

KLQALN 35 16 -8.2

KLQALQ 14 34 -7.9
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KLQALV 10 32 -7.9

KLQANA 24 19 -8.1

KLQAND 10 31 -8.1

KLQANE 40 15 -8.0

KLQANF 24 15 -8.4

KLQANG 19 1 -8.0

KLQANM 10 31 -7.4

KLQANN 24 16 -8.2

KLQANQ 10 31 -7.9

KLQANV 10 36 -8.0

KLQASA 24 16 -8.1

KLQASD 16 31 -8.2

KLQASE 10 35 -7.9

KLQASF 40 24 -8.1

KLQASG 24 18 -7.9

KLQASM 14 1 -7.5

KLQASN 35 1 -8.2

KLQASQ 10 34 -7.9

KLQASV 10 31 -8.0

KLQATA 10 32 -8.2

KLQATD 10 31 -8.1

KLQATE 10 33 -7.8

KLQATF 40 1 -8.2

KLQATG 10 34 -8.1

KLQATM 14 36 -7.7

KLQATN 10 31 -8.2

KLQATQ 10 31 -7.8

KLQATV 35 19 -8.0

KLQAVA 14 2 -8.1

KLQAVD 24 1 -8.2

KLQAVE 24 15 -7.9

KLQAVF 10 31 -8.0

KLQAVG 10 33 -8.1

KLQAVM 40 11 -7.7

KLQAVN 14 2 -8.1

KLQAVQ 24 15 -8.1
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KLQAVV 24 15 -8.0

KLQSAA 40 27 -8.1

KLQSAD 14 33 -7.6

KLQSAE 14 1 -8.0

KLQSAF 24 15 -8.0

KLQSAG 35 2 -8.1

KLQSAM 40 14 -7.6

KLQSAN 24 17 -7.9

KLQSAQ 10 31 -7.5

KLQSAV 100 28 -8.0

KLQSEA 40 1 -7.9

KLQSED 10 32 -7.9

KLQSEE 40 21 -7.8

KLQSEF 24 2 -7.6

KLQSEG 35 21 -7.9

KLQSEM 24 17 -7.2

KLQSEN 24 33 -8.0

KLQSEQ 14 32 -7.3

KLQSEV 24 1 -7.8

KLQSGA 24 37 -8.0

KLQSGD 40 15 -8.0

KLQSGE 10 31 -7.4

KLQSGF 24 33 -7.7

KLQSGG 10 31 -8.0

KLQSGM 24 2 -7.5

KLQSGN 10 32 -7.9

KLQSGQ 10 34 -7.7

KLQSGV 10 31 -7.7

KLQSKA 24 18 -7.8

KLQSKD 14 2 -7.2

KLQSKE 10 33 -7.3

KLQSKF 40 26 -7.7

KLQSKG 14 33 -7.8

KLQSKM 10 31 -7.0

KLQSKN 24 15 -7.6

KLQSKQ 10 32 -7.3
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KLQSKV 40 19 -7.6

KLQSLA 14 2 -7.8

KLQSLD 10 31 -7.5

KLQSLE 10 32 -7.4

KLQSLF 24 2 -7.7

KLQSLG 10 32 -8.1

KLQSLM 19 32 -7.4

KLQSLN 10 33 -8.1

KLQSLQ 14 32 -7.6

KLQSLV 10 32 -7.6

KLQSNA 14 1 -8.1

KLQSND 40 13 -8.2

KLQSNE 24 2 -7.5

KLQSNF 10 32 -7.6

KLQSNG 40 14 -8.0

KLQSNM 10 31 -7.3

KLQSNN 24 18 -8.0

KLQSNQ 24 17 -7.9

KLQSNV 24 16 -8.0

KLQSSA 10 32 -8.1

KLQSSD 24 15 -7.9

KLQSSE 40 1 -7.7

KLQSSF 40 15 -8.0

KLQSSG 40 22 -8.0

KLQSSM 21 16 -7.5

KLQSSN 40 19 -8.0

KLQSSQ 24 16 -7.7

KLQSSV 24 33 -7.9

KLQSTA 14 34 -8.0

KLQSTD 100 33 -8.0

KLQSTE 10 31 -7.6

KLQSTF 40 10 -8.0

KLQSTG 24 31 -7.9

KLQSTM 14 1 -7.6

KLQSTN 24 2 -7.9

KLQSTQ 10 35 -7.8
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KLQSTV 10 31 -7.8

KLQSVA 10 32 -8.0

KLQSVD 10 35 -7.8

KLQSVE 10 32 -7.6

KLQSVF 24 16 -7.7

KLQSVG 10 32 -7.9

KLQSVM 40 18 -7.6

KLQSVN 40 14 -7.9

KLQSVQ 10 31 -7.7

KLQSVV 14 34 -7.8

MLQAAA 24 17 -7.9

MLQAAD 40 27 -7.8

MLQAAE 10 35 -7.5

MLQAAF 14 31 -8.0

MLQAAG 10 32 -7.8

MLQAAM 40 17 -7.7

MLQAAN 10 32 -7.8

MLQAAQ 19 2 -7.8

MLQAAV 40 1 -7.9

MLQAEA 10 32 -7.9

MLQAED 10 31 -7.6

MLQAEE 10 32 -7.6

MLQAEF 10 32 -7.9

MLQAEG 24 31 -7.6

MLQAEM 24 37 -7.7

MLQAEN 10 34 -7.9

MLQAEQ 14 1 -7.7

MLQAEV 10 31 -8.0

MLQAGA 24 15 -8.0

MLQAGD 10 32 -7.8

MLQAGE 10 33 -7.7

MLQAGF 10 31 -7.6

MLQAGG 14 2 -7.9

MLQAGM 40 30 -7.8

MLQAGN 14 1 -7.9

MLQAGQ 14 32 -7.8
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MLQAGV 24 18 -7.9

MLQAKA 24 18 -7.8

MLQAKD 10 32 -7.5

MLQAKE 40 16 -7.4

MLQAKF 10 35 -7.5

MLQAKG 10 32 -7.4

MLQAKM 24 18 -7.2

MLQAKN 24 18 -7.5

MLQAKQ 40 11 -7.4

MLQAKV 10 31 -7.9

MLQALA 40 23 -8.5

MLQALD 10 34 -8.0

MLQALE 10 32 -7.6

MLQALF 40 12 -8.0

MLQALG 10 31 -7.7

MLQALM 10 35 -7.5

MLQALN 40 14 -7.9

MLQALQ 24 15 -8.0

MLQALV 10 31 -7.7

MLQANA 40 29 -8.2

MLQAND 24 36 -8.0

MLQANE 10 35 -7.9

MLQANF 10 31 -8.0

MLQANG 24 34 -7.8

MLQANM 14 1 -7.4

MLQANN 14 32 -7.9

MLQANQ 24 1 -8.1

MLQANV 40 19 -7.9

MLQASA 40 18 -7.8

MLQASD 24 18 -7.9

MLQASE 10 31 -7.5

MLQASF 10 32 -8.0

MLQASG 24 19 -7.7

MLQASM 24 39 -7.6

MLQASN 10 31 -7.8

MLQASQ 14 31 -7.6
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MLQASV 24 18 -7.8

MLQATA 10 31 -7.9

MLQATD 35 23 -8.0

MLQATE 24 15 -7.7

MLQATF 10 33 -7.9

MLQATG 24 16 -7.8

MLQATM 10 31 -7.6

MLQATN 35 23 -8.1

MLQATQ 14 1 -7.7

MLQATV 10 33 -7.9

MLQAVA 14 1 -8.1

MLQAVD 24 16 -7.8

MLQAVE 40 14 -7.7

MLQAVF 40 11 -8.0

MLQAVG 24 15 -7.8

MLQAVM 19 1 -7.6

MLQAVN 14 1 -8.0

MLQAVQ 40 11 -7.7

MLQAVV 40 16 -7.8

MLQSAA 10 31 -7.8

MLQSAD 35 17 -7.6

MLQSAE 10 34 -7.5

MLQSAF 35 16 -7.8

MLQSAG 40 12 -7.7

MLQSAM 40 22 -7.5

MLQSAN 10 33 -7.8

MLQSAQ 24 16 -7.7

MLQSAV 14 31 -7.6

MLQSEA 14 37 -7.7

MLQSED 14 36 -7.9

MLQSEE 35 30 -7.6

MLQSEF 35 26 -7.9

MLQSEG 19 33 -7.7

MLQSEM 10 33 -7.6

MLQSEN 14 31 -7.8

MLQSEQ 14 36 -7.7
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MLQSEV 40 12 -7.8

MLQSGA 14 1 -7.9

MLQSGD 24 1 -7.5

MLQSGE 24 19 -7.7

MLQSGF 24 33 -7.8

MLQSGG 40 10 -8.0

MLQSGM 14 2 -7.4

MLQSGN 24 17 -7.8

MLQSGQ 10 31 -7.6

MLQSGV 24 35 -7.8

MLQSKA 24 18 -7.5

MLQSKD 14 1 -7.4

MLQSKE 24 18 -7.4

MLQSKF 14 1 -7.4

MLQSKG 10 31 -7.4

MLQSKM 14 2 -7.2

MLQSKN 24 15 -7.6

MLQSKQ 24 15 -7.6

MLQSKV 14 1 -7.5

MLQSLA 35 30 -7.8

MLQSLD 10 32 -7.5

MLQSLE 10 32 -7.4

MLQSLF 10 31 -7.6

MLQSLG 40 15 -7.8

MLQSLM 35 22 -7.5

MLQSLN 100 30 -7.9

MLQSLQ 24 2 -7.6

MLQSLV 10 33 -7.8

MLQSNA 10 34 -7.6

MLQSND 24 19 -7.8

MLQSNE 14 1 -7.5

MLQSNF 40 17 -8.1

MLQSNG 10 32 -7.6

MLQSNM 40 17 -7.6

MLQSNN 10 36 -7.8

MLQSNQ 40 13 -7.8
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MLQSNV 10 31 -7.6

MLQSSA 19 33 -7.9

MLQSSD 24 15 -7.6

MLQSSE 24 1 -7.6

MLQSSF 10 37 -7.7

MLQSSG 24 16 -7.8

MLQSSM 40 15 -7.5

MLQSSN 24 2 -7.8

MLQSSQ 40 10 -7.7

MLQSSV 10 31 -7.7

MLQSTA 14 1 -7.6

MLQSTD 35 22 -7.8

MLQSTE 10 31 -7.6

MLQSTF 10 32 -8.1

MLQSTG 10 31 -7.8

MLQSTM 24 32 -7.4

MLQSTN 24 36 -7.9

MLQSTQ 40 24 -7.7

MLQSTV 10 32 -7.7

MLQSVA 35 18 -8.0

MLQSVD 35 17 -7.9

MLQSVE 40 15 -7.6

MLQSVF 35 21 -8.3

MLQSVG 24 16 -7.7

MLQSVM 100 14 -7.6

MLQSVN 10 33 -7.7

MLQSVQ 10 32 -7.6

MLQSVV 10 33 -7.6

RLQAAA 10 31 -8.1

RLQAAD 19 1 -8.5

RLQAAE 10 35 -7.9

RLQAAF 35 20 -8.6

RLQAAG 10 33 -8.2

RLQAAM 24 19 -8.1

RLQAAN 100 11 -8.6

RLQAAQ 24 17 -8.2
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RLQAAV 24 17 -8.4

RLQAEA 10 31 -7.9

RLQAED 10 33 -7.9

RLQAEE 40 15 -8.1

RLQAEF 10 32 -8.4

RLQAEG 14 1 -8.0

RLQAEM 35 16 -8.0

RLQAEN 10 33 -8.3

RLQAEQ 24 18 -8.2

RLQAEV 19 2 -8.3

RLQAGA 10 31 -8.6

RLQAGD 24 15 -8.4

RLQAGE 10 33 -7.6

RLQAGF 40 14 -8.5

RLQAGG 24 16 -8.4

RLQAGM 10 31 -7.6

RLQAGN 14 31 -7.9

RLQAGQ 40 13 -8.2

RLQAGV 10 31 -8.1

RLQAKA 40 23 -8.0

RLQAKD 10 31 -7.7

RLQAKE 24 1 -7.6

RLQAKF 14 1 -8.1

RLQAKG 14 1 -8.2

RLQAKM 14 2 -7.7

RLQAKN 10 33 -7.9

RLQAKQ 24 35 -7.8

RLQAKV 10 35 -8.0

RLQALA 10 32 -7.8

RLQALD 10 32 -8.1

RLQALE 35 21 -8.1

RLQALF 10 31 -8.1

RLQALG 40 14 -8.6

RLQALM 24 18 -7.8

RLQALN 14 33 -8.0

RLQALQ 40 11 -8.2
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RLQALV 10 33 -8.3

RLQANA 10 32 -8.3

RLQAND 24 15 -8.1

RLQANE 10 31 -7.8

RLQANF 10 32 -8.5

RLQANG 14 1 -8.1

RLQANM 14 1 -8.0

RLQANN 14 1 -8.2

RLQANQ 10 31 -7.8

RLQANV 10 31 -8.2

RLQASA 10 36 -8.4

RLQASD 10 34 -7.9

RLQASE 40 14 -8.1

RLQASF 24 2 -8.4

RLQASG 24 15 -8.2

RLQASM 40 15 -8.0

RLQASN 14 31 -8.0

RLQASQ 40 2 -8.2

RLQASV 24 17 -8.1

RLQATA 35 1 -8.4

RLQATD 14 2 -8.1

RLQATE 100 54 -8.3

RLQATF 24 34 -8.7

RLQATG 24 15 -8.3

RLQATM 24 17 -8.0

RLQATN 10 35 -8.2

RLQATQ 14 1 -8.2

RLQATV 40 17 -8.4

RLQAVA 24 18 -8.2

RLQAVD 10 33 -8.2

RLQAVE 24 16 -8.2

RLQAVF 10 33 -8.1

RLQAVG 24 16 -8.4

RLQAVM 10 32 -7.8

RLQAVN 35 22 -8.6

RLQAVQ 10 33 -8.1
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RLQAVV 40 20 -8.4

RLQSAA 10 34 -8.2

RLQSAD 35 22 -8.1

RLQSAE 40 17 -8.2

RLQSAF 10 35 -8.5

RLQSAG 10 31 -8.2

RLQSAM 19 35 -7.9

RLQSAN 19 32 -8.1

RLQSAQ 100 26 -8.2

RLQSAV 14 2 -8.0

RLQSEA 40 20 -8.1

RLQSED 10 31 -7.8

RLQSEE 24 15 -7.9

RLQSEF 10 31 -8.0

RLQSEG 24 17 -7.9

RLQSEM 14 33 -7.8

RLQSEN 10 32 -7.8

RLQSEQ 24 2 -8.2

RLQSEV 10 31 -7.9

RLQSGA 100 19 -8.7

RLQSGD 24 17 -7.8

RLQSGE 10 32 -7.8

RLQSGF 100 100 -8.4

RLQSGG 40 18 -8.5

RLQSGM 24 15 -7.9

RLQSGN 14 2 -8.0

RLQSGQ 24 17 -7.9

RLQSGV 40 15 -8.3

RLQSKA 24 18 -7.9

RLQSKD 24 18 -7.9

RLQSKE 10 35 -7.5

RLQSKF 10 33 -7.9

RLQSKG 14 1 -7.7

RLQSKM 14 31 -7.8

RLQSKN 10 33 -7.5

RLQSKQ 14 2 -7.6
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RLQSKV 10 32 -8.0

RLQSLA 10 33 -7.8

RLQSLD 14 34 -8.0

RLQSLE 10 31 -7.6

RLQSLF 40 18 -8.1

RLQSLG 24 15 -8.0

RLQSLM 40 12 -7.9

RLQSLN 35 19 -8.1

RLQSLQ 40 20 -8.2

RLQSLV 40 17 -8.3

RLQSNA 40 1 -8.3

RLQSND 14 2 -7.9

RLQSNE 24 15 -8.0

RLQSNF 14 2 -8.2

RLQSNG 40 14 -8.3

RLQSNM 40 14 -7.9

RLQSNN 10 34 -8.0

RLQSNQ 24 16 -8.1

RLQSNV 10 32 -7.9

RLQSSA 100 29 -8.4

RLQSSD 14 1 -8.3

RLQSSE 40 18 -8.2

RLQSSF 10 31 -8.3

RLQSSG 24 16 -8.1

RLQSSM 10 31 -7.6

RLQSSN 24 1 -8.1

RLQSSQ 35 22 -8.4

RLQSSV 24 1 -8.1

RLQSTA 35 19 -8.4

RLQSTD 10 31 -7.8

RLQSTE 10 33 -7.9

RLQSTF 14 1 -8.7

RLQSTG 24 1 -8.3

RLQSTM 40 11 -7.8

RLQSTN 14 33 -8.2

RLQSTQ 24 16 -8.2



143

RLQSTV 24 31 -8.1

RLQSVA 14 1 -8.2

RLQSVD 10 31 -8.0

RLQSVE 40 27 -8.3

RLQSVF 24 1 -8.5

RLQSVG 24 15 -8.4

RLQSVM 24 16 -7.9

RLQSVN 40 15 -8.2

RLQSVQ 40 13 -8.3

RLQSVV 10 31 -8.2

TLQAAA 10 36 -8.2

TLQAAD 24 17 -8.2

TLQAAE 19 38 -7.9

TLQAAF 14 38 -8.1

TLQAAG 10 31 -8.3

TLQAAM 14 31 -7.7

TLQAAN 24 19 -8.4

TLQAAQ 35 23 -8.1

TLQAAV 10 31 -8.2

TLQAEA 24 17 -8.2

TLQAED 10 33 -7.7

TLQAEE 40 13 -8.0

TLQAEF 10 31 -7.8

TLQAEG 10 33 -8.2

TLQAEM 24 16 -7.7

TLQAEN 10 33 -8.4

TLQAEQ 24 19 -8.0

TLQAEV 40 1 -8.1

TLQAGA 14 32 -8.4

TLQAGD 10 33 -7.6

TLQAGE 24 19 -8.0

TLQAGF 35 32 -8.6

TLQAGG 24 32 -8.3

TLQAGM 10 34 -7.9

TLQAGN 40 19 -8.2

TLQAGQ 14 35 -8.2
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TLQAGV 24 17 -8.4

TLQAKA 10 32 -7.6

TLQAKD 10 32 -7.6

TLQAKE 24 32 -7.6

TLQAKF 14 32 -7.8

TLQAKG 14 1 -8.0

TLQAKM 10 32 -7.5

TLQAKN 10 31 -7.5

TLQAKQ 35 22 -8.0

TLQAKV 10 35 -7.6

TLQALA 10 33 -7.9

TLQALD 24 1 -8.1

TLQALE 40 11 -7.9

TLQALF 10 33 -7.7

TLQALG 10 31 -7.9

TLQALM 10 31 -7.7

TLQALN 40 14 -8.2

TLQALQ 24 32 -7.9

TLQALV 35 16 -8.1

TLQANA 14 1 -7.9

TLQAND 24 39 -8.2

TLQANE 35 23 -7.9

TLQANF 14 1 -7.9

TLQANG 24 31 -8.2

TLQANM 40 18 -7.7

TLQANN 24 18 -8.5

TLQANQ 10 33 -8.2

TLQANV 24 19 -8.1

TLQASA 14 33 -8.1

TLQASD 10 33 -7.9

TLQASE 40 17 -8.2

TLQASF 10 31 -8.0

TLQASG 40 25 -8.2

TLQASM 24 39 -7.7

TLQASN 14 2 -8.3

TLQASQ 40 11 -8.0
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TLQASV 24 17 -8.1

TLQATA 14 35 -8.4

TLQATD 10 33 -7.9

TLQATE 10 31 -8.3

TLQATF 24 32 -8.4

TLQATG 24 17 -8.2

TLQATM 10 32 -7.8

TLQATN 14 31 -8.2

TLQATQ 24 15 -8.2

TLQATV 10 32 -8.2

TLQAVA 10 31 -8.6

TLQAVD 40 13 -8.3

TLQAVE 24 15 -8.1

TLQAVF 10 34 -8.3

TLQAVG 40 24 -8.4

TLQAVM 10 31 -8.2

TLQAVN 10 34 -7.9

TLQAVQ 10 32 -8.0

TLQAVV 24 16 -8.4

TLQSAA 10 32 -8.2

TLQSAD 40 12 -8.1

TLQSAE 10 32 -8.2

TLQSAF 40 14 -8.4

TLQSAG 10 37 -8.0

TLQSAM 40 18 -7.7

TLQSAN 14 32 -8.1

TLQSAQ 24 16 -8.2

TLQSAV 40 22 -8.0

TLQSEA 40 24 -8.1

TLQSED 10 31 -7.9

TLQSEE 40 12 -8.2

TLQSEF 24 18 -7.9

TLQSEG 14 32 -8.0

TLQSEM 40 11 -7.9

TLQSEN 24 15 -8.0

TLQSEQ 24 16 -7.9



146

TLQSEV 10 32 -7.6

TLQSGA 40 1 -8.4

TLQSGD 24 16 -7.9

TLQSGE 24 17 -8.1

TLQSGF 10 32 -8.2

TLQSGG 10 33 -8.1

TLQSGM 14 32 -7.9

TLQSGN 24 38 -8.3

TLQSGQ 10 35 -7.9

TLQSGV 10 31 -8.3

TLQSKA 14 34 -8.0

TLQSKD 24 31 -7.9

TLQSKE 40 12 -8.1

TLQSKF 24 19 -7.4

TLQSKG 14 32 -8.0

TLQSKM 40 13 -7.7

TLQSKN 14 1 -7.4

TLQSKQ 35 1 -7.6

TLQSKV 24 16 -8.0

TLQSLA 14 33 -8.0

TLQSLD 40 10 -7.7

TLQSLE 24 17 -7.7

TLQSLF 40 14 -8.1

TLQSLG 14 1 -8.0

TLQSLM 10 32 -7.1

TLQSLN 40 14 -8.0

TLQSLQ 24 17 -8.0

TLQSLV 35 29 -8.0

TLQSNA 24 2 -7.9

TLQSND 10 33 -7.9

TLQSNE 24 31 -7.7

TLQSNF 24 15 -8.1

TLQSNG 10 31 -7.9

TLQSNM 40 12 -7.9

TLQSNN 14 2 -7.7

TLQSNQ 10 34 -7.7
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TLQSNV 40 13 -7.9

TLQSSA 40 13 -7.9

TLQSSD 10 31 -7.7

TLQSSE 24 15 -7.9

TLQSSF 40 28 -7.9

TLQSSG 40 11 -8.1

TLQSSM 40 20 -7.9

TLQSSN 40 13 -8.1

TLQSSQ 24 16 -8.1

TLQSSV 40 14 -8.2

TLQSTA 40 12 -8.3

TLQSTD 40 11 -8.2

TLQSTE 24 18 -7.9

TLQSTF 10 31 -8.0

TLQSTG 40 14 -8.3

TLQSTM 10 31 -7.8

TLQSTN 35 20 -8.3

TLQSTQ 10 32 -7.8

TLQSTV 24 15 -8.2

TLQSVA 24 17 -8.1

TLQSVD 24 19 -8.0

TLQSVE 24 16 -7.7

TLQSVF 14 31 -7.9

TLQSVG 40 10 -8.1

TLQSVM 35 18 -7.8

TLQSVN 35 20 -8.4

TLQSVQ 10 32 -7.9

TLQSVV 24 15 -7.9

VLQAAA 10 31 -8.1

VLQAAD 10 32 -8.2

VLQAAE 35 15 -8.2

VLQAAF 35 25 -8.6

VLQAAG 24 34 -8.5

VLQAAM 24 15 -7.8

VLQAAN 10 34 -7.9

VLQAAQ 14 2 -8.1



148

VLQAAV 14 1 -8.2

VLQAEA 24 35 -8.2

VLQAED 35 15 -8.2

VLQAEE 40 10 -7.9

VLQAEF 40 13 -7.9

VLQAEG 10 32 -7.9

VLQAEM 35 22 -7.8

VLQAEN 40 14 -8.4

VLQAEQ 10 31 -7.8

VLQAEV 10 34 -8.0

VLQAGA 10 34 -8.5

VLQAGD 24 17 -8.1

VLQAGE 40 12 -8.0

VLQAGF 14 34 -8.2

VLQAGG 10 31 -8.1

VLQAGM 24 16 -7.9

VLQAGN 24 19 -8.3

VLQAGQ 10 34 -8.2

VLQAGV 10 32 -8.0

VLQAKA 24 32 -8.0

VLQAKD 10 31 -7.2

VLQAKE 10 31 -7.5

VLQAKF 24 17 -8.3

VLQAKG 10 34 -7.8

VLQAKM 24 38 -7.7

VLQAKN 40 23 -8.1

VLQAKQ 40 14 -7.8

VLQAKV 24 31 -7.8

VLQALA 10 32 -8.2

VLQALD 10 34 -8.2

VLQALE 24 37 -7.6

VLQALF 10 31 -8.0

VLQALG 10 31 -8.0

VLQALM 40 1 -7.6

VLQALN 10 33 -8.1

VLQALQ 35 17 -8.3
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VLQALV 24 16 -8.1

VLQANA 24 1 -8.4

VLQAND 10 32 -8.4

VLQANE 10 34 -8.0

VLQANF 10 32 -8.1

VLQANG 24 32 -8.2

VLQANM 24 19 -7.8

VLQANN 10 33 -8.2

VLQANQ 14 1 -8.2

VLQANV 10 31 -8.1

VLQASA 10 36 -8.3

VLQASD 14 1 -7.9

VLQASE 10 33 -8.0

VLQASF 100 37 -8.2

VLQASG 24 19 -8.3

VLQASM 10 32 -7.5

VLQASN 24 31 -8.4

VLQASQ 40 28 -8.0

VLQASV 10 33 -8.1

VLQATA 40 11 -8.4

VLQATD 10 32 -8.2

VLQATE 24 18 -8.2

VLQATF 24 15 -8.1

VLQATG 14 2 -8.1

VLQATM 10 32 -7.7

VLQATN 10 31 -8.4

VLQATQ 10 31 -8.2

VLQATV 24 1 -8.2

VLQAVA 10 33 -8.2

VLQAVD 24 2 -8.3

VLQAVE 14 1 -8.0

VLQAVF 40 21 -8.6

VLQAVG 40 29 -8.4

VLQAVM 40 10 -7.9

VLQAVN 100 26 -8.4

VLQAVQ 24 15 -8.2
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VLQAVV 40 22 -8.2

VLQSAA 24 16 -8.2

VLQSAD 24 18 -8.2

VLQSAE 10 31 -7.9

VLQSAF 10 34 -7.8

VLQSAG 24 2 -8.2

VLQSAM 24 16 -7.9

VLQSAN 24 17 -8.2

VLQSAQ 35 19 -8.1

VLQSAV 24 18 -8.3

VLQSEA 10 31 -7.9

VLQSED 24 31 -8.1

VLQSEE 24 15 -7.7

VLQSEF 10 31 -7.8

VLQSEG 10 33 -7.9

VLQSEM 24 31 -7.6

VLQSEN 14 2 -7.9

VLQSEQ 24 18 -7.9

VLQSEV 40 30 -8.0

VLQSGA 10 33 -8.2

VLQSGD 100 2 -8.1

VLQSGE 10 35 -7.8

VLQSGF 40 3 -8.4

VLQSGG 14 1 -8.3

VLQSGM 40 26 -8.0

VLQSGN 35 1 -8.2

VLQSGQ 10 32 -8.0

VLQSGV 24 15 -8.3

VLQSKA 24 17 -8.1

VLQSKD 35 16 -7.9

VLQSKE 10 33 -7.3

VLQSKF 35 19 -7.8

VLQSKG 10 31 -7.7

VLQSKM 24 39 -7.4

VLQSKN 40 15 -8.0

VLQSKQ 10 31 -7.5
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VLQSKV 40 11 -7.9

VLQSLA 40 10 -8.3

VLQSLD 10 32 -8.1

VLQSLE 24 2 -7.6

VLQSLF 14 31 -7.9

VLQSLG 10 33 -8.5

VLQSLM 10 31 -7.8

VLQSLN 24 17 -8.0

VLQSLQ 10 34 -7.7

VLQSLV 35 31 -8.1

VLQSNA 14 36 -8.2

VLQSND 19 2 -7.8

VLQSNE 14 2 -7.7

VLQSNF 14 2 -8.0

VLQSNG 10 31 -8.2

VLQSNM 24 38 -7.7

VLQSNN 10 31 -8.1

VLQSNQ 14 31 -8.2

VLQSNV 24 33 -8.0

VLQSSA 10 38 -8.2

VLQSSD 10 31 -7.9

VLQSSE 10 31 -7.9

VLQSSF 10 33 -8.0

VLQSSG 24 16 -8.0

VLQSSM 10 32 -7.6

VLQSSN 10 31 -7.8

VLQSSQ 10 33 -7.8

VLQSSV 24 15 -8.0

VLQSTA 24 16 -8.4

VLQSTD 10 33 -8.1

VLQSTE 24 19 -8.2

VLQSTF 10 31 -7.8

VLQSTG 24 18 -8.0

VLQSTM 24 34 -7.7

VLQSTN 24 15 -8.2

VLQSTQ 40 17 -8.2



152

VLQSTV 24 33 -8.3

VLQSVA 14 2 -8.0

VLQSVD 40 15 -8.2

VLQSVE 10 31 -7.5

VLQSVF 24 35 -8.5

VLQSVG 40 11 -8.1

VLQSVM 10 31 -7.6

VLQSVN 24 37 -8.2

VLQSVQ 10 35 -8.1

VLQSVV 10 32 -7.9



153

Supplementary table 3.2: Intermolecular interactions of SARS-CoV-2 Mpro complexed with substrates RLQATF, RLQSGA and TLQSTF.

Substrate Hydrogen Bonds* van der Waals Interactions Other
Interactions*

Docking Score
(kcal.mol-1)

RLQATF
Thr24; Thr25; Thr26; Tyr54; Leu141; Asn142;
Gly143; Ser144; Cys145; His164; Met165;

Glu166; Asp187; Gln189;

Ser(A)1; His163; Phe140; Thr190;
Asn119; Leu27; His41; Met49;

Arg188; Pro52
Cys45; Gly143

-8.7RLQSGA Thr26; His41; Asn119; Phe140; Gly143; Ser144;
Cys145; His164; Glu166; Gln189; Thr190

Ser(A)1; Thr24; Thr25; Leu27; Ser4
6; Leu141; Asn142; His163; Leu167;
Pro168; His172; Asp187; Arg188;

Ala191; Gln192

Met49; Met165

RLQSTF
Ser(A)1; Thr25; Thr26; Ser46; Met49; Phe140;
Leu141; Asn142; Gly143; Ser144; Cys145;

His164; Glu166; Gln189

Thr24; Leu27; Tyr54; Tyr118;
Asn119; Asp187; Arg188; Thr190;

Ala191;
His41; Met165

Blue: Catalytic His41; Red: Catalytic Cys145; Purple: Oxyanion Loop
*Hydrogen bonds include : Conventional, Carbon, Pi-Donor
* Other interactions includes: Alkyl, Pi-Alkyl, Pi-Sigma, Sulfur-X, Unfavourable Donor-Donor, Unfavourable Bump
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Supplementary table 3.3: Intermolecular interactions of SARS-CoV-2 Mpro complexed with substrates RLQAAF, RLQAAN, RLQAGA, RLQALG, RLQAVN, TLQAGF,
TLQAVA, VLQAAF and VLQAVF.

Substrate Hydrogen Bonds* van der Waals Interactions Other
Interactions*

Docking Score
(kcal.mol-1)

RLQAAF
Thr26; His41; Tyr54; Leu141;

Gly143; Ser144; Cys145; His164;
Met165;mGlu166; Gln189

Ser(A)1; Thr24; Thr25; Met49; Pro52;
Asn119; Phe140; Asn142; His163; Arg188;

Thr190

Leu27; His41;
Cys145

-8,6

RLQAAN
Thr24; Thr25; Thr26; Ser46; Phe140;
Asn142; Gly143; Ser144; Cys145;

His163; Glu166; Gln189

Ser(A)1; Cys44; Thr45; Leu141; His164;
Leu167; Pro168; His172; Asp187; Arg188;

Thr190; Ala191; Gln192

Leu27; His41;
Met49; Met165

RLQAGA
Thr26; Asn119; Phe140; Gly143;
Ser144; Cys145; His163; His164;

Met165; Glu166; Gln189

Ser(A)1; Thr24; Thr25; Tyr54; Leu141;
Asn142; His172; Phe181; Asp187; Arg188

Leu27; His41;
Met49; Cys145;
Met165; Gln189

RLQALG
Thr26; Asn119; Phe140; Gly143;
Ser144; Cys145; His164; Met165;

Glu166; Gln189

Ser(A)1; Thr24; Thr25; Ser46; Leu141;
Asn142; His163; His172; Phe181; Asp187;

Arg188

Leu27; His41;
Met29; Gln189

RLQAVN
Thr24; Thr25; Thr26; Phe140;

Gly143; Ser144; Cys145; His164;
Glu166; Arg188; Gln189

Ser(A)1; Thr45; Ser46; Asn119; Leu141;
Asn142; His163; Leu167; Pro168; His172;

Phe181; aAsp187; Ala191; Gln192

Leu27; His41;
Met49; Met165;

Thr190

TLQAGF Thr26; Asn119; Phe140; Asn142;
Gly143; Ser144; Glu166; Gln189

Ser(A)1; Thr24; Thr25; Tyr118; Leu141;
His163; His164; Leu167; Pro168; His172;
Asp187; Arg188; Thr190; Ala191; Gln192

Leu27; His41;
Met49; Cys145;

Met165

TLQAVA
Thr24; Thr25; Thr26; His41; Phe140;
Gly143; Ser144; Cys145; Glu166;

Met165; Gln189

Ser(A)1; Leu27; Ser46; Leu141; Asn142;
His163; His164; Phe181; Val186; Asp187;

Arg188

His41; Met49;
Cys145; Met165
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VLQAAF Thr26; Phe140; Gly143; Ser144;
Cys145; Glu166; Gln189

Ser(A)1; Thr24; Thr25; Ser46; Asn119;
Leu141; Asn142; His163; His164; His172;

Asp187; Arg188

Leu27; His41;
Met49; Cys145;

Met165

VLQAVF
Thr24; Thr26; Phe140; Gly143;
Ser144; Cys145; His163; His164;

Met165; Glu166; Gln189

Ser(A)1; Thr25; Ser46; Tyr118; Leu141;
Asn142; His172; Asp187; Arg188

Leu27; His41;
Met49; Met165

Blue: Catalytic His41; Red: Catalytic Cys145; Purple: Oxyanion Loop
*Hydrogen bonds include : Conventional, Carbon, Pi-Donor
* Other interactions includes: Alkyl, Pi-Alkyl, Pi-Sigma, Sulfur-X, Unfavourable Donor-Donor, Unfavourable Bump
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Supplementary table 3.4: Intermolecular interactions of SARS-CoV-2 Mpro in complexed with substrates KLQSKM, KLQAEM, TLQSLM, KLQSEM, KLQSKD, MLQAKM,
MLQSKM and VLQAKD.

Substrate Hydrogen Bonds* van der Waals Interactions Other
Interactions*

Docking Score
(kcal.mol-1)

KLMSKM
Thr24; Thr26; Phe140; Gly143;
Ser144; Cys145; His163; Glu166;

Gln189

Ser(A)1; Thr25; Leu27; Ser46; Asn119; Leu141;
Asn142; His164; Leu167; Pro168; His172; Asp187;

Arg188; Thr190; Ala191

His41;
Met49;
Met165

-7.0

KLQAEM
Thr24; Thr25; Thr26; His41; Tyr54;
Asn119; Gly143; Cys145; Glu166;

Asp187; Gln189

Leu27; Thr45; Ser46; Pro52; Phe140; Leu141;
Asn142; Ser144; His163; His164; Met165; His172;

Arg188
His41; Met49

-7.1

TLQSLM His41; Leu141; Gly143; Ser144;
Cys145; Glu166; Gln189

Thr25; Thr26; Ser46; Asn119; Phe140; Asn142;
His163; His164; Met165; Leu167; Pro168; Arg188;

Thr190

Leu27; His41;
Met49;
Cys145

KLQSEM
Thr24; Thr26; Asn119; Leu141;
Gly143; Ser144; Cys145; His163;
Met165; Glu166; Gln189; Thr190

Thr25; Leu27; Thr45; Ser46; Phe140; Asn142;
His164; Leu167; Pro168; His172; Asp187; Arg188;

Ala191; Gln192

His41;
Met49;
Met165

-7.2

KLQSKD
Thr24; Thr26; Asn119; Phe140;
Asn142; Gly143; Ser144; Cys145;

His163; Glu166; Gln189

Thr25; Leu27; Tyr188; Asn119; Leu141; His164;
Leu167; Pro168; His172; Asp187; Arg188; Thr190;

Ala191

His41;
Met49;
Met165

MLQAKM
Thr24; Thr26; Leu141; Gly143;
Ser144; Cys145; His163; His164;

Glu166; Gln189

Thr25; Ser46; Tyr118; Phe140; Asn142; Met165;
Asp187; Arg188; Thr190; Ala191

Leu27; His41;
Met49;
Cys145

MLQSKM
Thr24; Thr25; Thr26; His41;

Phe140; Asn142; Gly143; Ser144;
His163; Glu166; Gln189

Ser(A)1; Leu27; Ser46; Tyr118; Asn119; Leu141;
Cys145; His164; Leu167; Pro168; His172; Asp187;

Thr190; Ala191; Gln192

His41;
Met49;
Met165
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VLQAKD
His41; Phe140; Asn142; Gly143;
His163; His164; Glu166; His172;

Gln189

Ser(A)1; Thr25; Thr26; Ser46; Tyr54; Leu141;
Ser144; Leu167; Pro168; Phe181; Asp187; Arg188;

Thr190

Leu27;
Met49;
Cys145;
Met165;
Ala191

Blue: Catalytic His41; Red: Catalytic Cys145; Purple: Oxyanion Loop
*Hydrogen bonds include : Conventional, Carbon, Pi-Donor
* Other interactions includes: Alkyl, Pi-Alkyl, Pi-Sigma, Sulfur-X, Unfavourable Donor-Donor, Unfavourable Bump
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Supplementary figure 3.2. Confirmation of SARS-CoV-2 Mpro substrate recognition in binding poses
for KLQ*** substrates. The surface of SARS-CoV-2 Mpro (PDB ID:6XHM) showing docked substrates
and substrate binding subsites color-coded as follows: Purple: S1, Cyan: S2; Green: S3. The images
were generated using PyMOL.
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Supplementary figure 3.3. Resolution of intermolecular interactions between Mpro and substrates at
active site. 2D representation of the protein-ligand interactions at active sites for Mpro complexed with
KLQ hexapeptides. The images were generated on BIOVIA Discovery Studio 2020 Client.
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APPENDICES

CHAPTER TWO

Appendix A: The generation of the capped multi-conformer hexapeptide substrates

using Python, SMILES and SMARTS
#!/usr/bin/env python
# coding: utf-8

# In[ ]:

from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw

p3list = ["T","R","K","V","M"]
p2list = ["L"]
p1list = ["Q"]
p1plist = ["S","A"]
p2plist = ["A","G","E","T","K","L","N","S","V"]
p3plist = ["E","N","A","D","F","G","M","Q","V"]

peptidestrings, peptidemolecules = [],[]
for p3 in p3list:

for p2 in p2list:
for p1 in p1list:

for p1p in p1plist:
for p2p in p2plist:

for p3p in p3plist:
sequence = p3+p2+p1+p1p+p2p+p3p
peptidestrings.append(sequence)
peptide=Chem.rdmolfiles.MolFromSequence(sequence)
methylcarbonyl=Chem.MolFromSmiles('NC(=O)C')
methylamine=Chem.MolFromSmiles('NC')

ctermpattern=Chem.MolFromSmarts('[$(OC(=O)CN)]')
new=AllChem.ReplaceSubstructs(peptide,ctermpattern,methylamine)
new[0]
ntermpattern=Chem.MolFromSmarts('[$(NCC(=O))]')
final=AllChem.ReplaceSubstructs(new[0],ntermpattern,methylcarbonyl)
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final[0]
peptide = AllChem.RemoveHs(final[0])
peptide_h= AllChem.AddHs(peptide)
AllChem.EmbedMolecule(peptide_h)
AllChem.UFFOptimizeMolecule(peptide_h)
writer_pdb= AllChem.PDBWriter(sequence+".pdb")
writer_pdb.write(peptide_h)
peptide_confs= peptide_h
ids = AllChem.EmbedMultipleConfs(peptide_confs,numConfs=100)
writer= AllChem.SDWriter(sequence+".sdf")
for ido in ids:
writer.write(peptide_confs,confId=ido)

peptidemolecules.append(peptide_h)

# In[ ]:

Draw.MolsToGridImage(peptidemolecules)

# In[12]:

import nglview as nv
first_structure = nv.RdkitStructure(peptidemolecules[0])
first_view= nv.NGLWidget()
first_view.add_component(first_structure)
first_view
#view.add_sticks(first_view)

# In[ ]:

CHAPTER THREE

Appendix B: Geometry optimization of the conformers of hexapeptide substrates

using OpenBabel and xtb software - Part 1
#!/usr/bin/python

import os

files=os.listdir("./")
for file in files:

if "sdf" in file:
directory=file[:-4]
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os.system("mkdir "+directory)
os.system("babel -isdf "+file+" -oxyz "+directory+"/"+directory+".xyz -h -m")
print("module add chpc/openbabel/2.3.1/cmake-3.7.1/gcc-4.9.0; cd

/mnt/lustre/users/szabo/SARS_CoV_2/Ligands/"+directory+";/mnt/lustre/users/szabo/SARS_CoV_2/Ligan
ds/sdf_xyz_pdb.py")

Appendix C: Geometry optimization of the conformers of hexapeptide substrates

using OpenBabel and xtb software - Part 2 (sdf_xyz_pdb.py)
#!/usr/bin/python

import os

file_2 = os.listdir(".")

for file_name2 in file_2:
if file_name2.endswith(".xyz"):

pdbname = file_name2[:-4]+".pdb"
if not os.path.isfile(pdbname):

print("rm -f charges wbo xtbopt.log xtbopt.xyz xtbrestart")
os.system("rm -f charges wbo xtbopt.log xtbopt.xyz xtbrestart")

file_name_2 = file_name2[:-4]

print("xtb {0}.xyz".format(file_name_2))
os.system("/home/szabo/bin/xtb {0}.xyz -opt".format(file_name_2))

print("babel -ixyz xtbopt.xyz -opdb {0}.pdb".format(file_name_2))
os.system("babel -ixyz xtbopt.xyz -opdb {0}.pdb".format(file_name_2))

print("Done")

Appendix D: Automated preparation of the ligands (hexapeptide conformers) for

molecular docking
#!/usr/bin/python
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import os

files = os.listdir(".")

for filename in files:
if filename.endswith(".pdb"):

print("prepare_ligand4.py -l {0}".format(filename))
os.system("prepare_ligand4.py -l {0}".format(filename))

print("Done!")

Appendix E: Automated creation of the Vina configuration files
#!/usr/bin/python

import os

directories = os.listdir(".")

rec = "conf_A.pdbqt"
protein = rec
prefix = rec[:-6]+"_"

x_value_A, x_value_B = "12.059","-18.444"
y_value_A, y_value_B = "8.933","-16.361"
z_value_A, z_value_B = "29.021","7.944"
exhaust = "480"
cpu = "24"

for directory in directories:
if(directory == "receptors" or directory.endswith("py") or directory.endswith("pbs") or

directory.endswith("txt")):
pass

else:
os.system("cp ./receptors/"+rec+" ./"+directory)
files = os.listdir("./"+directory)
for file1 in files:

if file1.endswith(".pdbqt")and not "conf" in file1:
filename= file1[:-6]
print(filename)
vina_A, vina_B = "./"+directory+"/"+prefix+filename+"_A.vina",

"./"+directory+"/"+prefix+filename+"_B.vina"

vina = open(vina_A,"w")
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vina.write("receptor = "+protein)
vina.write("\nligand = "+filename+".pdbqt")
vina.write("\nlog = "+prefix+filename+"_A.log")
vina.write("\nout = "+prefix+filename+"_A.all.pdbqt")
vina.write("\ncenter_x = "+x_value_A+"\ncenter_y = "+y_value_A+"\ncenter_z =

"+z_value_A)
vina.write("\nsize_x = 22\nsize_y = 22\nsize_z = 22")
vina.write("\nenergy_range = 4\nexhaustiveness = "+exhaust+"\ncpu = "+cpu+"\n")
vina.close()

vina = open(vina_B,"w")
vina.write("receptor = "+protein)
vina.write("\nligand = "+filename+".pdbqt")
vina.write("\nlog = "+prefix+filename+"_B.log")
vina.write("\nout = "+prefix+filename+"_B.all.pdbqt")
vina.write("\ncenter_x = "+x_value_B+"\ncenter_y = "+y_value_B+"\ncenter_z =

"+z_value_B)
vina.write("\nsize_x = 22\nsize_y = 22\nsize_z = 22")
vina.write("\nenergy_range = 4\nexhaustiveness = "+exhaust+"\ncpu = "+cpu+"\n")
vina.close()

print("\n\nDONE!")

Appendix F: Typical example of the specifications in a Vina configuration file
receptor = conf_A.pdbqt
ligand = KLQAAE1.pdbqt
log = conf_A_KLQAAE1_A.log
out = conf_A_KLQAAE1_A.all.pdbqt
center_x = 12.059
center_y = 8.933
center_z = 29.021
size_x = 22
size_y = 22
size_z = 22
energy_range = 4
exhaustiveness = 480
cpu = 24

receptor = conf_A.pdbqt
ligand = KLQAAE1.pdbqt
log = conf_A_KLQAAE1_B.log
out = conf_A_KLQAAE1_B.all.pdbqt
center_x = -18.444
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center_y = -16.361
center_z = 7.944
size_x = 22
size_y = 22
size_z = 22
energy_range = 4
exhaustiveness = 480
cpu = 24

Appendix G: Automated generation for all the Vina commands that execute Molecular
Docking using AutoDock Vina

Appendix H: Examples of the Vina commands

#!/usr/bin/python

import os

#makes commands.txt

vina_dir = os.popen('find . -name "conf_A*_B.vina" -type f').read()
vina_dir = vina_dir.split("\n")
vina_dir.pop(-1)

command = open("commands.txt","w")
for directory in vina_dir:

folder = directory[2:8]
vina_file = directory[9:]
vina_num = directory[22:-7]
pdbqt_name= directory[:-5]+".all.pdbqt"

if not "folder" in directory:
if not os.path.exists(pdbqt_name):

if int(vina_num) <41 and int(vina_num) > 30:
command.write("module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd

/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/"+folder+"/;vina --config "+vina_file+"\n")
print(pdbqt_name)

else:
if int(vina_num) < 41 and int(vina_num) > 30:

print("existing ",pdbqt_name)
command.close()

module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
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Appendix I: PBS job file specifying the execution of Molecular Docking using the

implemented multi-CPU parallelization algorithms on AutoDock Vina
#!/bin/bash
#PBS -e /mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/gnu_parallel.stderr.out
#PBS -o /mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/gnu_parallel.stdout.out
#PBS -V
#PBS -P CHEM0802
#PBS -M youremailaddress
#PBS -l select=20:ncpus=24
#PBS -W group_list=largeq
#PBS -l walltime=96:00:00
#PBS -q large
#PBS -m be
#PBS -r n
#PBS -mb

module add chpc/gnu/parallel-20160422

WORKING_DIR=/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/

cd ${WORKING_DIR}
echo "start `date +%s`"

/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE31_B.vina
module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE32_B.vina
module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE40_B.vina
module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE38_B.vina
module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE33_B.vina
module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE37_B.vina
module add chpc/autodock_vina/1.1.2/gcc-6.1.0;cd
/mnt/lustre/users/szabo/SARS_CoV_2/pdb_ligands/Ligands/KLQASE/;vina --config
conf_A_KLQASE35_B.vina
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parallel -M --sshdelay 0.2 -j 1 -u --sshloginfile ${PBS_NODEFILE} < commands.txt
echo "end `date +%s`"

Appendix J: Automated separation of the best binding poses for each hexapeptide
import os

folders= os.popen("ls -d */").read()
folders= folders.split("\n")
folders.pop(-1)
best_dock,best_aff,affs=[],0,[]

for folder in folders:
print(folder)
affs, best_dock = [], []
os.chdir("./"+folder)
affinity = os.popen("head *pdbqt| grep 'VINA'").read()
affinity= affinity.split("\n")
affinity.pop(-1)

for aff in affinity:
num = aff[25:30].strip()
affs.append(float(num))

affs.sort()
best_aff = [affs[0],affs[1],affs[2]]

files= os.popen("ls *.pdbqt").read()
files= files.split("\n")
files.pop(-1)
for aff in best_aff:

for filename in files:
content = open(filename,"r")
text = content.readlines()
content.close()
if(str(aff) in text[0]):

best_dock.append(filename)
else:

pass

os.mkdir("./best_dock/")
for best in best_dock:

print(best)
os.system("cp {0} ./best_dock/".format(best))
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os.chdir("..")

Appendix K: Automated summarisation of the docking results, detailing the number

conformers redocked, the best binding conformer and its respective binding energy

for each hexapeptide
import os

dirs = os.popen("ls -d */").read()
dirs = dirs.split("\n")
dirs.pop(-1)

docks = open("dock_summary.csv","w")
docks.write("Substrate;Docked Conformers;Best Conformer;Best Energy (kcal/mol)\n")

for dir1 in dirs:
os.chdir("./"+dir1)
best_files = os.listdir("./best_dock")
best_files.sort()
best = best_files[0]
energy = os.popen("head -n1 ./best_dock/{0}".format(best)).read()
energy = energy[25:29]
conf = best[13:-21]
others = os.popen("ls ./other_files/*.all.pdbqt | wc -l").read()
others = others.strip("\n")
lig = dir1[:6]
docks.write("{0};{1};{2};{3}\n".format(lig,others,conf,energy))
os.chdir("..")

CHAPTER FOUR

Appendix L: Automated restoration of the amino acid information in the best binding

pose and superimposition of the best binding poses
import os

folders= os.popen("ls -d */").read()
folders= folders.split("\n")
folders.pop(-1)
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for folder in folders:
os.chdir(folder)
best_docks = os.popen("ls ./best_dock").read()
best_docks = best_docks.split("\n")
best_docks.pop(-1)

for dock in best_docks:
print(folder)
print(dock)
num = dock[13:-21]
f_dir= "./best_dock/"+dock
print(f_dir)
print(num)

os.system("../sort.pl {0} > {1}.pdb".format(f_dir,num))

counter,load_text,sticks_show= 0,"",""
while(counter < len(best_docks)):

load_text+="load ./best_dock/{0}, LIG{1}\n".format(best_docks[counter],counter+1)
sticks_show+="show sticks, LIG{0}\n".format(counter+1)
counter+=1

text1='''
#################
### Set Style ###
#################
hide everything
set bg_rgb, white
zoom\n'''

text2='''
###################
### Save a copy ###
###################
set antialias, 2
set hash_max, 220
set ray_shadows,0
png {0}.png, width=25cm, height=25cm, dpi=300
quit'''.format(folder[:-1])

final_text=load_text+text1+sticks_show+text2
pymol_vis=open("pymol_vis.pml","w")
pymol_vis.write(final_text)
pymol_vis.close()
os.system("pymol pymol_vis.pml")
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os.chdir("..")

Appendix M: The custom Perl script to restore amino acid information of the best

binding poses.
#!/usr/bin/perl
#
open(PDBIN,"< $ARGV[0]");

my @atommatrix;
my $an=0;

sub distance
{
my $a1=shift;
my $a2=shift;

my $x1=$atommatrix[$a1][1];
my $x2=$atommatrix[$a2][1];
my $y1=$atommatrix[$a1][2];
my $y2=$atommatrix[$a2][2];
my $z1=$atommatrix[$a1][3];
my $z2=$atommatrix[$a2][3];
my $dist=sqrt( (($x1-$x2)*($x1-$x2))+(($y1-$y2)*($y1-$y2))+(($z1-$z2)*($z1-$z2)) );
#print "distance $dist\n";
return $dist;

}

sub allorder
{
my $at=shift;
my $or=0;
for(my $i=0;$i<$an;$i++)
{
if(($atommatrix[$i][0] =~ m/C/)and(distance($at,$i)<1.7))
{
$or++;

}
if(($atommatrix[$i][0] =~ m/N/)and(distance($at,$i)<1.7))
{
$or++;
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}
}
return $or;

}

sub corder
{
my $at=shift;
my $or=0;
for(my $i=0;$i<$an;$i++)
{
if(($atommatrix[$i][0] =~ m/C/)and(distance($at,$i)<1.7))
{
$or++;

}
}
return $or;

}

sub iscarbonyl
{
my $at=shift;
my $co=-1;
for(my $i=0;$i<$an;$i++)
{
if(($atommatrix[$i][0] =~ m/O/)and(distance($at,$i)<1.3))
{
$co=$i;

}
}

return $co;
}

sub findcs
{
my $at=shift;
my @cs;
for(my $i=0;$i<$an;$i++)
{
if(($atommatrix[$i][0] =~ m/C/)and(distance($at,$i)<1.7))
{
push @cs, $i;
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#print "$i\n";
}

}
return @cs;

}

sub findterminalNMe
{
my $n=-1,$me=-1;
for(my $i=0;$i<$an;$i++)
{
if($atommatrix[$i][0] =~ m/N/)
{

#print "$i is N\n";
my @cs=findcs($i);
foreach my $c (@cs)
{
my $o=iscarbonyl($c);
my $or=corder($c);
#print "$c $o order $or\n";
if($or eq 1)
{
$atommatrix[$i][4]=8;
$atommatrix[$c][4]=8;
#print "found NME $i $c\n";
$n=$i;$me=$c;

}
}

}
}
return($n,$me)
}

sub findterminalcco
{
my $me=-1,$co=-1,$oc=-1;
for(my $i=0;$i<$an;$i++)
{
if($atommatrix[$i][0] =~ m/C/)
{
my $or=allorder($i);
my $ca=iscarbonyl($i);
if(($or eq 2) and ($ca eq -1))
{
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##print "candidate $i\n";
my @cs=findcs($i);
foreach my $c (@cs)
{
my $o=iscarbonyl($c);
if($o ge 0)
{

$atommatrix[$i][4]=1;
$atommatrix[$c][4]=1;
$atommatrix[$o][4]=1;
#print "found CCO $i $c $o\n";
$me=$i;$co=$c;$oc=$o;

}
}

}
}

}
return($me,$co,$oc);
}

sub findn
{
my $at=shift;
my $n=-1;
for(my $i=0;$i<$an;$i++)
{
if($atommatrix[$i][0] =~ m/N/)
{
my $d=distance($at,$i);
#print("N $i distance to $at = $d\n");
if($d<1.4)
{
$n=$i

}
}

}
return $n;
}

sub findco
{
my $at=shift;
my $co=-1;
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my $oc=-1;
for(my $i=0;$i<$an;$i++)
{
if($atommatrix[$i][0] =~ m/C/)
{
if(distance($at,$i)<1.55)
{
my $o=iscarbonyl($i);
if($o ge 0){$co=$i;$oc=$o}

}
}

}
return ($co,$oc);
}

sub findca
{
my $at=shift;
my $ca=-1;
for(my $i=0;$i<$an;$i++)
{
if($atommatrix[$i][0] =~ m/C/)
{
my $d=distance($at,$i);
#print "C $i distance to N $at is $d\n";
if($d<1.5)
{
my $o=iscarbonyl($i);
#print "o is $o\n";
if($o eq -1){$ca=$i;}

}
}

}
return ($ca);
}

sub findnextbackbone
{
my $co1=shift;
my $n=findn($co1);
my $ca=findca($n);
my ($co,$oc)=findco($ca);

return($n,$ca,$co,$oc);
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}

sub fillsidechain
{
my $at=shift;
#print "working with atom $at\n";
my $amino=$atommatrix[$at][4];
my $level=$atommatrix[$at][5]+1;
for(my $i=0;$i<$an;$i++)
{
my $d=distance($at,$i);
my $tolerance=1.7;
if(($atommatrix[$i][0] =~ m/S/)or($atommatrix[$at][0] =~ m/S/)){$tolerance=1.9}
if(($d<$tolerance)and($atommatrix[$i][4] eq 0) and ($i ne $at))
{
$atommatrix[$i][4]=$amino;
$atommatrix[$i][5]=$level;
if($atommatrix[$i][0] =~ m/H/){$atommatrix[$i][5]=$at};#identify parent of Hydrogens

rather than level.
fillsidechain($i);

}

}
}

sub identifyamino
{
my $at=shift;
my @O=[0,0,0,0,0,0],@C=[0,0,0,0,0,0],@N=[0,0,0,0,0,0],@S=[0,0,0,0,0,0];
my $totalc=0;my $totalo=0; my $totaln=0; my $totals=0;

for(my $i=0;$i<$an;$i++)
{
my $level=$atommatrix[$i][5];

if(($level>1)and($atommatrix[$i][4] eq $at))
{
if($atommatrix[$i][0] =~ m/C/){$C[$level]++;$totalc++}
if($atommatrix[$i][0] =~ m/N/){$N[$level]++;$totaln++}
if($atommatrix[$i][0] =~ m/O/){$O[$level]++;$totalo++}
if($atommatrix[$i][0] =~ m/S/){$S[$level]++;$totals++}
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}
}

#print "o $totalo n $totaln s $totals c $totalc\n";

my $res="XXX";
if(($totalc eq 0) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 0)){$res="GLY"}
if(($totalc eq 1) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 0)){$res="ALA"}
if(($totalc eq 1) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 1)){$res="CYS"}
if(($totalc eq 1) and ($totalo eq 1) and ($totaln eq 0) and ($totals eq 0)){$res="SER"}
if(($totalc eq 2) and ($totalo eq 1) and ($totaln eq 0) and ($totals eq 0)){$res="THR"}
if(($totalc eq 2) and ($totalo eq 2) and ($totaln eq 0) and ($totals eq 0)){$res="ASP"}
if(($totalc eq 2) and ($totalo eq 1) and ($totaln eq 1) and ($totals eq 0)){$res="ASN"}
if(($totalc eq 3) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 0)){$res="VAL"}
if(($totalc eq 3) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 1)){$res="MET"}
if(($totalc eq 3) and ($totalo eq 2) and ($totaln eq 0) and ($totals eq 0)){$res="GLU"}
if(($totalc eq 3) and ($totalo eq 1) and ($totaln eq 1) and ($totals eq 0)){$res="GLN"}
if(($totalc eq 3) and ($totalo eq 0) and ($totaln eq 1) and ($totals eq 0)){$res="PRO"}
if(($totalc eq 4) and ($totalo eq 0) and ($totaln eq 1) and ($totals eq 0)){$res="LYS"}
if(($totalc eq 7) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 0)){$res="PHE"}
if(($totalc eq 7) and ($totalo eq 1) and ($totaln eq 0) and ($totals eq 0)){$res="TYR"}
if(($totalc eq 9) and ($totalo eq 0) and ($totaln eq 1) and ($totals eq 0)){$res="TRP"}
if(($totalc eq 4) and ($totalo eq 0) and ($totaln eq 3) and ($totals eq 0)){$res="ARG"}

if(($totalc eq 4) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 0) and ($C[3] eq
1)){$res="LEU"}
if(($totalc eq 4) and ($totalo eq 0) and ($totaln eq 0) and ($totals eq 0) and ($C[3] eq
2)){$res="ILE"}

return $res;
}

sub printamino
{
my $amino=shift;
my $code=shift;
my $atomnumber=shift;

#N
for(my $i=0;$i<$an;$i++)
{
if(($atommatrix[$i][4] eq $amino) and ($atommatrix[$i][5] eq 1) and ($atommatrix[$i][0]=~

m/N/))
{



193

printf "ATOM %4d N $code %4d %8.3f%8.3f%8.3f 1.00 1.00
$atommatrix[$i][0]\n",$atomnumber,$amino,$atommatrix[$i][1],$atommatrix[$i][2],$atommatrix[$i]
[3];

$atomnumber++
}

}

#CA
for(my $i=0;$i<$an;$i++)
{
my $ic=-1;
if(($atommatrix[$i][0]=~ m/C/) and ($atommatrix[$i][5] eq 1) and ($atommatrix[$i][4] eq

$amino)){$ic=iscarbonyl($i)}
if(($ic eq -1) and ($atommatrix[$i][0]=~ m/C/) and ($atommatrix[$i][5] eq 1) and

($atommatrix[$i][4] eq $amino))
{
printf "ATOM %4d CA $code %4d %8.3f%8.3f%8.3f 1.00 1.00

$atommatrix[$i][0]\n",$atomnumber,$amino,$atommatrix[$i][1],$atommatrix[$i][2],$atommatrix[$i]
[3];

$atomnumber++
}

}

#C
#
for(my $i=0;$i<$an;$i++)
{
my $ic=-1;
if(($atommatrix[$i][0]=~ m/C/) and ($atommatrix[$i][5] eq 1)){$ic=iscarbonyl($i)}
if(($ic gt -1) and ($atommatrix[$i][0]=~ m/C/) and ($atommatrix[$i][5] eq 1) and

($atommatrix[$i][4] eq $amino))
{
printf "ATOM %4d C $code %4d %8.3f%8.3f%8.3f 1.00 1.00

$atommatrix[$i][0]\n",$atomnumber,$amino,$atommatrix[$i][1],$atommatrix[$i][2],$atommatrix[$i]
[3];

$atomnumber++;
printf "ATOM %4d O $code %4d %8.3f%8.3f%8.3f 1.00 1.00

$atommatrix[$ic][0]\n",$atomnumber,$amino,$atommatrix[$ic][1],$atommatrix[$ic][2],$atommatrix
[$ic][3];

$atomnumber++;

}
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}

for(my $lev=2;$lev<8;$lev++)
{
my @lcs;$lcs[2]="B";$lcs[3]="G";$lcs[4]="D";$lcs[5]="E";$lcs[6]="Z";$lcs[7]="H";

#BETA
for(my $i=0;$i<$an;$i++)
{
if((not ($atommatrix[$i][0]=~ m/H/)) and ($atommatrix[$i][5] eq $lev) and ($atommatrix[$i][4]

eq $amino))
{
printf "ATOM %4d $atommatrix[$i][0]$lcs[$lev] $code %4d %8.3f%8.3f%8.3f 1.00

1.00
$atommatrix[$i][0]\n",$atomnumber,$amino,$atommatrix[$i][1],$atommatrix[$i][2],$atommatrix[$i]
[3];

$atomnumber++;
for(my $j=0;$j<$an;$j++)
{
if(($atommatrix[$i][0]=~ m/H/) and ($atommatrix[$i][5] eq $i) and ($atommatrix[$i][4] eq

$amino))
{

# printf "ATOM %4d H$atommatrix[$i][0]$lcs[$lev]
$code %4d %8.3f%8.3f%8.3f 1.00 1.00
$atommatrix[$i][0]\n",$atomnumber,$amino,$atommatrix[$i][1],$atommatrix[$i][2],$atommatrix[$i][3
];

$atomnumber++;
}

}
}

}

}

return $atomnumber;
}

while (my $line = <PDBIN>)
{
if(($line =~ m/HETATM/)or($line =~ m/ATOM/))
{
my $atomname=substr $line,13,4;$atomname =~ s/\s+//g;
my $x=substr $line,31,8;$x =~ s/\s+//g;
my $y=substr $line,39,8;$y =~ s/\s+//g;



195

my $z=substr $line,47,8;$z =~ s/\s+//g;
#print $line;
#print "$atomname,$x,$y,$z\n";
$atommatrix[$an][0]=substr $atomname, 0 ,1;
#print "*$atomname*\n";
$atommatrix[$an][1]=$x;
$atommatrix[$an][2]=$y;
$atommatrix[$an][3]=$z;
$atommatrix[$an][4]=0;
$an++;

}
}
close PDBIN;

my($cme,$cco,$coc)=findterminalcco();
print("backbone 1: $cme,$cco,$coc\n");
$atommatrix[$cme][4]=1;$atommatrix[$cco][4]=1;$atommatrix[$coc][4]=1;
$atommatrix[$cme][5]=1;$atommatrix[$cco][5]=1;$atommatrix[$coc][5]=1;
my($n1,$ca1,$co1,$oc1)=findnextbackbone($cco);
print("backbone 2: $n1,$ca1,$co1,$oc1\n");
$atommatrix[$n1][4]=2;$atommatrix[$ca1][4]=2;$atommatrix[$co1][4]=2;$atommatrix[$oc1][4]=
2;
$atommatrix[$n1][5]=1;$atommatrix[$ca1][5]=1;$atommatrix[$co1][5]=1;$atommatrix[$oc1][5]=
1;
my($n2,$ca2,$co2,$oc2)=findnextbackbone($co1);
print("backbone 3: $n2,$ca2,$co2,$oc2\n");
$atommatrix[$n2][4]=3;$atommatrix[$ca2][4]=3;$atommatrix[$co2][4]=3;$atommatrix[$oc2][4]=
3;
$atommatrix[$n2][5]=1;$atommatrix[$ca2][5]=1;$atommatrix[$co2][5]=1;$atommatrix[$oc2][5]=
1;
my($n3,$ca3,$co3,$oc3)=findnextbackbone($co2);
print("backbone 4: $n3,$ca3,$co3,$oc3\n");
$atommatrix[$n3][4]=4;$atommatrix[$ca3][4]=4;$atommatrix[$co3][4]=4;$atommatrix[$oc3][4]=
4;
$atommatrix[$n3][5]=1;$atommatrix[$ca3][5]=1;$atommatrix[$co3][5]=1;$atommatrix[$oc3][5]=
1;
my($n4,$ca4,$co4,$oc4)=findnextbackbone($co3);
print("backbone 5: $n4,$ca4,$co4,$oc4\n");
$atommatrix[$n4][4]=5;$atommatrix[$ca4][4]=5;$atommatrix[$co4][4]=5;$atommatrix[$oc4][4]=
5;
$atommatrix[$n4][5]=1;$atommatrix[$ca4][5]=1;$atommatrix[$co4][5]=1;$atommatrix[$oc4][5]=
1;
my($n5,$ca5,$co5,$oc5)=findnextbackbone($co4);
print("backbone 6: $n5,$ca5,$co5,$oc5\n");
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$atommatrix[$n5][4]=6;$atommatrix[$ca5][4]=6;$atommatrix[$co5][4]=6;$atommatrix[$oc5][4]=
6;
$atommatrix[$n5][5]=1;$atommatrix[$ca5][5]=1;$atommatrix[$co5][5]=1;$atommatrix[$oc5][5]=
1;
my($n6,$ca6,$co6,$oc6)=findnextbackbone($co5);
print("backbone 7: $n6,$ca6,$co6,$oc6\n");
$atommatrix[$n6][4]=7;$atommatrix[$ca6][4]=7;$atommatrix[$co6][4]=7;$atommatrix[$oc6][4]=
7;
$atommatrix[$n6][5]=1;$atommatrix[$ca6][5]=1;$atommatrix[$co6][5]=1;$atommatrix[$oc6][5]=
1;
my($nme,$men)=findterminalNMe();
$atommatrix[$nme][4]=8;$atommatrix[$men][4]=8;
$atommatrix[$nme][5]=1;$atommatrix[$men][5]=1;
print("backbone 8: $nme,$men\n");

#print "chain $cme, $cco, $n1, $ca1, $co1, $oc1, $n2, $ca2, $co2, $oc2\n";
print "point A\n";
fillsidechain($ca1);
print "point B\n";
fillsidechain($ca2);
print "point C\n";
fillsidechain($ca3);
print "point D\n";
fillsidechain($ca4);
print "point E\n";
fillsidechain($ca5);
print "point F\n";
fillsidechain($ca6);
print "point G\n";

#print "In this we have $an atoms\n";
for(my $i=0;$i<$an;$i++)
{
#print "filling from atom $i\n";
fillsidechain($i);

}

my $amin1="ACE";
my $amin2=identifyamino(2);
my $amin3=identifyamino(3);
my $amin4=identifyamino(4);
my $amin5=identifyamino(5);
my $amin6=identifyamino(6);
my $amin7=identifyamino(7);
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my $amin8="NME";

print "REMARK $amin1 $amin2 $amin3 $amin4 $amin5 $amin6 $amin7 $amin8\n";

my $nextno=printamino(1,$amin1,1);
$nextno=printamino(2,$amin2,$nextno);
$nextno=printamino(3,$amin3,$nextno);
$nextno=printamino(4,$amin4,$nextno);
$nextno=printamino(5,$amin5,$nextno);
$nextno=printamino(6,$amin6,$nextno);
$nextno=printamino(7,$amin7,$nextno);
$nextno=printamino(8,$amin8,$nextno);

for(my $j=1;$j<9;$j++)
{
for(my $i=0;$i<$an;$i++)
{
if($atommatrix[$i][4] eq $j)
{
$k=$i+1;
print "$k $atommatrix[$i][0] $atommatrix[$i][4] (level $atommatrix[$i][5])\n";

}
}

}

Appendix N: Supplementary edition of the atom types in restored amino acid

information of the best binding poses.
import os

pdb_files = os.popen('''find . -name "*.pdb" -type f''').read()
pdb_files= pdb_files.split("\n")
pdb_files.pop(-1)
pdb_files.sort()

for pdb_file in pdb_files:
pdb_content = open(pdb_file,"r")
pdb_lines = pdb_content.readlines()
pdb_content.close()

if("XXX" in pdb_lines[0]):
os.system("rm {0}".format(pdb_file))
pass

elif("complex" in pdb_file or "6xhm" in pdb_file):
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pass
else:

print(pdb_file)
print(pdb_lines[0])
counter =1
while(counter < len(pdb_lines)):

line = pdb_lines[counter]
prot = line[17:20]
atom = line[13:16]

if(prot == "ACE" and atom == "CA "):
edit_line = line[:13]+"CH3"+line[16:]
pdb_lines[counter]= edit_line

elif(prot == "NME" and atom == "CA "):
edit_line = line[:13]+"CH3"+line[16:]
pdb_lines[counter]= edit_line

elif(prot == "GLN"):
if(atom == "OE "):

edit_line = line[:13]+"OE1"+line[16:]
pdb_lines[counter]= edit_line

elif(atom == "NE "):
edit_line = line[:13]+"NE2"+line[16:]
pdb_lines[counter]= edit_line

elif(prot == "LEU"):
if(atom == "CD "):

edit_line = line[:13]+"CD1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"CD2"+line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+1]= edit_line2
counter+=1

elif(prot == "THR"):
if(atom == "OG "):

edit_line = line[:13]+"OG1"+line[16:]
pdb_lines[counter]= edit_line

elif(atom == "CG "):
edit_line =line[:13]+"CG2"+line[16:]
pdb_lines[counter]= edit_line

elif(prot == "GLU"):
if(atom == "OE "):

edit_line = line[:13]+"OE1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"OE2"+line2[16:]
pdb_lines[counter]= edit_line
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pdb_lines[counter+1]= edit_line2
counter+=1

elif(prot == "ASP"):
if(atom == "OD "):

edit_line = line[:13]+"OD1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"OD2"+line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+1]= edit_line2
counter+=1

elif(prot == "VAL"):
if(atom == "CG "):

edit_line = line[:13]+"CG1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"CG2"+line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+1]= edit_line2
counter+=1

elif(prot == "ARG"):
if(atom == "NH "):

edit_line = line[:13]+"NH1"+line[16:]
line2 = pdb_lines[counter+1]
edit_line2= line2[:13]+"NH2"+line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+1]= edit_line2
counter+=1

elif(prot == "PHE"):
if(atom == "CE "):

edit_line = line[:13]+"CE1"+line[16:]
line2 = pdb_lines[counter+2]
edit_line2= line2[:13]+"CE2"+line2[16:]
pdb_lines[counter]= edit_line
pdb_lines[counter+2]= edit_line2
counter+=2

elif(prot == "ASN"):
if(atom == "OD "):

edit_line = line[:13]+"OD1"+line[16:]
pdb_lines[counter]= edit_line

elif(atom == "ND "):
edit_line = line[:13]+"ND2"+line[16:]
pdb_lines[counter]= edit_line

counter+=1
pdb_final = open(pdb_file,"w")
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for lines in pdb_lines:
pdb_final.write(lines)

pdb_final.close()

Appendix O: Automated addition of the hexapeptide PDB information onto the

receptor PDB as a third subunit
#!/usr/bin/python
import os

prot_name="6xhm_apo.pdb"
folders= os.popen("ls -d */").read()
folders= folders.split("\n")
folders.pop(-1)

for folder in folders:
pdb_list= os.listdir(folder)
if(len(pdb_list) == 0):

pass
else:

print(folder)
lig_name=folder+pdb_list[0]
print(lig_name)
complex_name=folder+folder[:-1]+"_complex.pdb"

##read in protein
proteinfile=open(prot_name,"r")
protein=proteinfile.readlines()
proteinfile.close()

##open output file
complexfile=open(complex_name,"w")

atomnumber=1
resnumber=0
for line in protein:

if((line.startswith("ATOM")) or (line.startswith("HETATM"))):
complexfile.write(line)
atomnumber += 1

if ("REMARK"in line):
complexfile.write(line)
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##sort the ligand
ligfile=open(lig_name,"r")
ligand=ligfile.readlines()
ligfile.close()

for line in ligand:
if((line.startswith("ATOM")) or (line.startswith("HETATM"))):

atomnumber += 1
#delete characters (4) where the atom number should be columns 7-11
numberstring="%4d" % atomnumber
altered1line=line[:7]+numberstring+line[11:]
#insert the atom number as formated integer with width 4
#replace a character with chain c column 22
#ligresnumber=int(line[22:26])
#actresnumber=resnumber+ligresnumber
altered2line=altered1line[:21]+"C"+altered1line[22:]
#then write the line
complexfile.write(altered2line)

complexfile.close()

Appendix P: The assignment of letter code as means to uniquely identify the position

of the PCA in the particular time interval
#!/opt/chemistry/anaconda3/bin/python

import os
import sys

files = os.popen("ls *xvg").read()
files = files.split("\n")
files.pop(-1)

def xpos(minx,maxx,x):
deltax=(maxx-minx)/5.0
position=x-minx
numberofdeltas=position/deltax
thepos=int(numberofdeltas+1)
return thepos

def ypos(miny,maxy,y):
deltay=(maxy-miny)/5.0
position=y-miny
numberofdeltas=position/deltay
thepos=int(numberofdeltas+1)
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return thepos

def postoletter(minx,maxx,miny,maxy,x,y):
thex=xpos(minx,maxx,x)
they=ypos(miny,maxy,y)
letter=""
if they==1:
if thex==1:
letter="a"

if thex==2:
letter="b"

if thex==3:
letter="c"

if thex==4:
letter="d"

if thex==5:
letter="e"

if they==2:
if thex==1:
letter="f"

if thex==2:
letter="g"

if thex==3:
letter="h"

if thex==4:
letter="i"

if thex==5:
letter="j"

if they==3:
if thex==1:
letter="k"

if thex==2:
letter="l"

if thex==3:
letter="m"

if thex==4:
letter="n"

if thex==5:
letter="o"

if they==4:
if thex==1:
letter="p"

if thex==2:
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letter="q"
if thex==3:
letter="r"

if thex==4:
letter="s"

if thex==5:
letter="t"

if they==5:
if thex==1:
letter="u"

if thex==2:
letter="v"

if thex==3:
letter="w"

if thex==4:
letter="x"

if thex==5:
letter="y"

return letter

for i in files:
code=""
text = os.popen("cat "+i+" | tail -n2001| awk '{print $1,$2}'").read()
lines=text.splitlines()
maxx=-10
maxy=-10
minx=10
miny=10
for line in lines:
x,y=line.split()
if maxx<float(x):

maxx=float(x)
if maxy<float(y):

maxy=float(y)
if minx>float(x):

minx=float(x)
if miny>float(y):

miny=float(y)
maxx=maxx+0.01
maxy=maxy+0.01
counter=0
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totalx=0
totaly=0
for line in lines:

x,y=line.split()
if counter==200:

counter=0
averagex=totalx/200
averagey=totaly/200
letter=postoletter(minx,maxx,miny,maxy,averagex,averagey);
code=code+letter
totalx=0
totaly=0

totalx=totalx+float(x)
totaly=totaly+float(y)
counter=counter+1

print(i,":",code)

Appendix Q: A preview of the letter codes that uniquely identify the PCA progression

in the time intervals
APO_2dproj_ev_1_2.xvg : innlqpqrxx
KLQAAA_2dproj_ev_1_2.xvg : plhhhinonn
KLQAAD_2dproj_ev_1_2.xvg : qhcisnsssr
KLQAAE_2dproj_ev_1_2.xvg : qqlmmhhhgh
KLQAAG_2dproj_ev_1_2.xvg : qkhiinntsm
KLQAAM_2dproj_ev_1_2.xvg : ijnnrrrrlg
KLQAAN_2dproj_ev_1_2.xvg : hgqlmnoooo
KLQAAQ_2dproj_ev_1_2.xvg : srtniihlll
KLQAAV_2dproj_ev_1_2.xvg : gkllrrnnoo

Appendix R: The calculation of the differences in the letter codes between simulations

and the construction of a pairwise comparison across all the systems
#!/opt/chemistry/anaconda3/bin/python

import os
import sys
import math

res = open("results.txt","r")
lines=res.readlines()
names=[]
codes=[]
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number=0

def lettertox(l):
x=0
if (l=='a' or l=='f' or l=='k' or l=='p' or l=='u'):

x=0
if (l=='b' or l=='g' or l=='l' or l=='q' or l=='v'):

x=1
if (l=='c' or l=='h' or l=='m' or l=='r' or l=='w'):

x=2
if (l=='d' or l=='i' or l=='n' or l=='s' or l=='x'):

x=3
if (l=='e' or l=='j' or l=='o' or l=='t' or l=='y'):

x=4
return x

def lettertoy(l):
y=0
if (l=='a' or l=='b' or l=='c' or l=='d' or l=='e'):

y=0
if (l=='f' or l=='g' or l=='h' or l=='i' or l=='j'):

y=1
if (l=='k' or l=='l' or l=='m' or l=='n' or l=='o'):

y=2
if (l=='p' or l=='q' or l=='r' or l=='s' or l=='t'):

y=3
if (l=='u' or l=='v' or l=='w' or l=='x' or l=='y'):

y=4
return y

def difference(a,b):
lena=len(a)
lenb=len(b)
if lena != lenb:

return 100000000
total=0

for j in range (0,lena):
deltax=lettertox(a[j])-lettertox(b[j])
deltay=lettertoy(a[j])-lettertoy(b[j])
difference=(deltax*deltax)+(deltay*deltay)
total=total+difference

return math.sqrt(total)
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for line in lines:
words=line.split()
sub = words[0]
sub_index = sub.rindex("_")
lig_name = sub[:sub_index]
names.append(lig_name)
codes.append(words[2])
number=number+1

print("name,",end="")

for i in range (0,number):
print(names[i],end=",")

print("")

for i in range (0,number):
print(names[i],end=",")
for j in range (0,number):

result=difference(codes[i],codes[j])
print(result,end=",")

print("")

Appendix S: A preview of the pairwise comparison matrix including all the systems
name,APO,KLQAAA,KLQAAD,KLQAAE,KLQAAG,KLQAAM,KLQAAN,KLQAAQ,KLQAAV,KLQAEA,KLQAED,KLQAEE,
KLQAEG,KLQAEM,KLQAEQ,KLQAEV,KLQAGA,KLQAGD,KLQAGE,KLQAGG,KLQAGM,KLQAGQ,KLQAGV,KLQAKA,K
LQAKD,KLQAKE,KLQAKG,KLQAKM,KLQAKN,KLQAKQ,KLQAKV,KLQALA,KLQALD,KLQALE,KLQALG,KLQALM,KLQA
LN,KLQALQ,KLQALV,KLQANA,KLQAND,KLQANE,KLQANG,KLQANM,KLQANQ,KLQANV,KLQASA,KLQASD,KLQASE,
KLQASG,KLQASM,KLQASN,KLQASQ,KLQASV,KLQATA,KLQATD,KLQATE,KLQATG,KLQATM,KLQATN,KLQATQ,KLQA
TV,KLQAVA,KLQAVD,KLQAVE,KLQAVG,KLQAVM,KLQAVN,KLQAVQ,KLQAVV,KLQSAA,KLQSAD,KLQSAE,KLQSAG,
KLQSAM,KLQSAN,KLQSAQ,KLQSAV,KLQSEA,KLQSEE,KLQSEG,KLQSEM,KLQSEN,KLQSEQ,KLQSGA,KLQSGD,KLQ
SGE,KLQSGN,KLQSGQ,KLQSGV,KLQSKA,KLQSKD,KLQSKG,KLQSKM,KLQSKN,KLQSKQ,KLQSKV,KLQSLA,KLQSLD
,KLQSLE,KLQSLG,KLQSLM,KLQSLN,KLQSLQ,KLQSLV,KLQSNA,KLQSND,KLQSNG,KLQSNM,KLQSNN,KLQSNQ,KL
QSSD,KLQSSE,KLQSSG,KLQSSN,KLQSSQ,KLQSSV,KLQSTA,KLQSTD,KLQSTE,KLQSTG,KLQSTM,KLQSTN,KLQSTQ
,KLQSVA,KLQSVD,KLQSVE,KLQSVG,KLQSVM,KLQSVN,KLQSVQ,KLQSVV
APO,0,7.54983443527075,6.48074069840786,7.74596669241483,7.54983443527075,5.74456264653803,6
.92820323027551,7.48331477354788,6.2449979983984,6.92820323027551,7.41619848709566,8.3066238
6291808,6.40312423743285,6.70820393249937,9.53939201416946,6.08276253029822,7.2801098892805
2,5.65685424949238,5.3851648071345,6.40312423743285,8,9.21954445729289,7.48331477354788,5.47
722557505166,7,4.79583152331272,5.47722557505166,6.92820323027551,6.92820323027551,6.480740
69840786,5.74456264653803,6,7.48331477354788,6.6332495807108,5.65685424949238,7.87400787401
181,5.8309518948453,6.48074069840786,6.08276253029822,6.40312423743285,8.30662386291808,5.83
09518948453,8.48528137423857,7.81024967590665,8.42614977317636,4.24264068711929,6.928203230
27551,5.29150262212918,6.40312423743285,5.65685424949238,6.557438524302,7,8.42614977317636,6
.70820393249937,6.85565460040104,6.70820393249937,5.74456264653803,6.16441400296898,5.744562
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64653803,7.07106781186548,6.557438524302,6.85565460040104,7,5,6.557438524302,5.4772255750516
6,8,8.06225774829855,6.557438524302,8.06225774829855,6.78232998312527,6,7.68114574786861,5.74
456264653803,7,9.05538513813742,7.81024967590665,6,7.68114574786861,7.54983443527075,3.60555
127546399,6.92820323027551,5.8309518948453,6.92820323027551,7.61577310586391,5.916079783099
62,6,7,7.54983443527075,7,6.70820393249937,6.78232998312527,7.34846922834953,6.6332495807108,
6.2449979983984,7.21110255092798,8.30662386291808,7.61577310586391,7.61577310586391,8.717797
88708135,6.2449979983984,7.93725393319377,7.48331477354788,5.65685424949238,6.2449979983984
,7.41619848709566,6.92820323027551,8.30662386291808,7.74596669241483,4.12310562561766,6.6332
495807108,6.48074069840786,5.29150262212918,7.07106781186548,5.29150262212918,6.32455532033
676,7.21110255092798,9.1104335791443,5.47722557505166,6.32455532033676,6.85565460040104,6.92
820323027551,6.78232998312527,7.07106781186548,6.08276253029822,7.48331477354788,6.24499799
83984,7.74596669241483,6.16441400296898,7.21110255092798,10.6301458127347,6.85565460040104
KLQAAA,7.54983443527075,0,4.12310562561766,4.58257569495584,2.82842712474619,7.211102550927
98,4.58257569495584,6.40312423743285,4.69041575982343,7.93725393319377,8.83176086632785,5.09
901951359278,5.09901951359278,5.65685424949238,9.16515138991168,5.65685424949238,5.47722557
505166,8.06225774829855,7.48331477354788,3.74165738677394,3.87298334620742,5.65685424949238
,3,7.54983443527075,2.82842712474619,6.78232998312527,7.14142842854285,4.58257569495584,2.64
575131106459,8.30662386291808,8.36660026534076,7.54983443527075,2.64575131106459,8.66025403
784439,7.54983443527075,6.557438524302,4.58257569495584,3,4.47213595499958,2.44948974278318,
8.60232526704263,5.3851648071345,4.58257569495584,2.44948974278318,4.89897948556636,7.416198
48709566,8.66025403784439,5.56776436283002,4.89897948556636,5,3.74165738677394,7.2111025509
2798,7.34846922834953,3.46410161513775,3.46410161513775,8,8.83176086632785,5,8.7177978870813
5,3.87298334620742,4.47213595499958,6.78232998312527,3.74165738677394,6.92820323027551,5.291
50262212918,6.85565460040104,5.56776436283002,3.16227766016838,4.47213595499958,7.483314773
54788,8.42614977317636,7,4.24264068711929,7.07106781186548,8.60232526704263,7.2801098892805
2,3.74165738677394,6.70820393249937,2,4.47213595499958,6.92820323027551,3.87298334620742,4.7
9583152331272,6.08276253029822,7,7.87400787401181,6.557438524302,8.36660026534076,4,3.464101
61513775,8.48528137423857,8.18535277187245,6.08276253029822,4.79583152331272,9.591663046625
44,4.58257569495584,2.82842712474619,3.60555127546399,4.58257569495584,6.08276253029822,8.48
528137423857,3.74165738677394,3.60555127546399,7.54983443527075,9.05538513813742,3.16227766
016838,4.12310562561766,4.89897948556636,3.87298334620742,6.32455532033676,6.557438524302,8.
06225774829855,8.06225774829855,4.58257569495584,7.54983443527075,4.79583152331272,8.544003
74531753,6.78232998312527,7.54983443527075,7,7.48331477354788,3.3166247903554,6.40312423743
285,5.74456264653803,6.16441400296898,5.74456264653803,7.34846922834953,4.12310562561766,4.5
8257569495584,4.35889894354067,9.48683298050514,3.16227766016838
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