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Abstract 

Malaria is caused by Plasmodium parasites, spread to people through the bites of infected 

female Anopheles mosquitoes. This study focuses on all 5 (Plasmodium falciparum, Plasmodium 

knowlesi, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax) parasites that cause 

malaria in humans. Africa is a developing continent, and it is the most affected with an estimation of 

90% of more than 400 000 malaria-related deaths reported by the World Health Organization (WHO) 

report in 2020, in which 61% of that number are children under the ages of five. Malaria resistance 

was initially observed in early 1986 and with the progression of time anti-malarial drug resistance has 

only increased. As a result, there is a need to study the malarial proteins mechanism of action and 

identify alternative treatment strategies for this disease. Type II NADH: quinone oxidoreductase 

(NDH2) is a monotopic protein that catalyses the electron transfer from NADH to quinone via FAD 

without a proton-pumping activity, and functions as an initial enzyme, either in addition to or as an 

alternative to proton-pumping NADH dehydrogenase (complex I) in the respiratory chain of bacteria, 

archaea, and fungal and plant mitochondrial. The structures for the Plasmodium knowlesi, 

Plasmodium malariae, Plasmodium ovale and Plasmodium vivax were modelled from the crystal 

structure of Plasmodium falciparum (5JWA). Compounds from the South African natural compounds 

database (SANCDB) were docked against both the NDH2 crystal structure and modelled structures. 

By performing in silico screening the study aimed to find potential compounds that might interrupt the 

electron transfer to quinone therefore disturbing the enzyme‟s function and thereby possibly 

eliminating the plasmodium parasite. CHARMM-GUI was used to create the membrane (since this 

work is with membrane-bound proteins) and to orient the protein on the membrane using OPM server 

guidelines, the interface produced GROMACS topology files that were used in molecular dynamics 

simulations. Molecular dynamics simulations were performed in the Centre for high performance 

computing (CHPC) cluster under the CHEM0802 project and the trajectories produced were further 

analysed. In this work not only were hit compounds from SANCDB identified, but also differences in 

behaviour across species and in the presence or absence of the membrane were described. This 

highlights the need to include the correct protein environment when studying these systems. 
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Thesis Overview 

This thesis investigated the Type II NADH: dehydrogenase (NDH2) enzyme, utilising bioinformatics 

computational tools and techniques to study the structure and mechanical function of the protein. The 

aim was to identify hit compounds against the protein, factoring in the membrane as the protein is a 

peripheral membrane protein. This document consists of 5 chapters that cover and explain the 

methods adopted to reach the project aim. 

CHAPTER 1 

This chapter introduces malaria and its lifecycle and the parasites that spread it to human beings. 

From this point, targets in the malarial life cycle are presented with particular focus on the NDH2 

protein and its human homologue, their sequence structures and function. The methods and packages 

used in this study are discussed, with reference to how these will be used with respect to the aims and 

objectives of the study. 

CHAPTER 2 

This chapter focuses on data retrieval and sequence study of the six protein structures. The 3-D 

construction of the other plasmodium species protein structures is also explored in this chapter. 

CHAPTER 3  

Drug discovery experiments were performed to identify hit compounds that could affect the 

functioning mechanism of the NDH2 protein. The protein ligand simulations were performed using 

GROMACS version 5.1.2 together with the CHARMM36 force filed in the absence of a membrane. 

Specific techniques were applied to study the MD trajectories. 

CHAPTER 4 

This chapter focuses on the MD simulation of the transmembrane protein. CHARMM-GUI was used 

to create the membrane and GROMACS topology files for simulation run and the OPM server was 

used to orient the protein on the membrane. The MD trajectories were visualised and analysed. 

CHAPTER 5 

This chapter summaries the results and findings from chapter 2-4 and proposed possible follow up 

experiments and future work are identified. 



 

1 
Literature review 

1.1 BACKGROUND 

Malaria is caused by a protozoan parasite, phylum Apicomplexa, genus Plasmodium, which is passed 

to human beings through the female mosquito anopheles‟ vector, which inoculates sporozoites into 

the human host (Cogswell, 1992; Lazarus et al., 2008). Malaria continues to be a fatal disease affect-

ing large numbers of people living in regions with high temperatures, humidity, and rainfall. Africa is 

a developing continent, and it is the most affected with an estimation of 90% of more than 400 000 

deaths reported by the World Health Organization (WHO) report in 2020, in which 61% of that num-

ber are children under the ages of five (Leffler et al., 2017; WHO, 2020). 

Malaria epidemiology such as community prevalence, infection age-profile, disease syndromes and 

mortality, are affected by malaria transmission intensity, and this transmission intensity differs geo-

graphically (Gething et al., 2011). Malaria parasites infect the midgut, hemocoel, and salivary glands 

of the mosquito vector, which is then transmitted to the human being where it affects a variety of tis-

sues, including the blood and liver of mammalian host (Matz et al., 2018). The parasite binds to the 

erythrocyte receptors invading the red blood cells. It is at this point that genetic variation may occur 

which may influence the progression of the infection (Cowman & Crabb, 2006; Leffler et al., 2017). 

The difference in the life cycle development of the parasite led to the conclusion that there must be 

more than one species of malaria parasite responsible for the difference in pattern of cyclical infec-

tion. There are a few plasmodial species that cause a significant health threat on humans; Plasmodium 

falciparum has an associated high mortality rate, Plasmodium knowlesi emerged as a local but im-

portant cause of the disease, predominantly zoonosis without evidence of primary human to human 

transmission, Plasmodium malariae, and Plasmodium ovale which both have fewer cases of signifi-

cant death, and finally Plasmodium vivax is a major cause of illness around the globe with underesti-

mated death cases (Ahmed & Cox-Singh, 2015; Cowman et al., 2016; Naing et al., 2014).  

 

It is important to map the burden of malaria in different continents and countries, as this will give 

people a general sense of the effects of this disease so that they can take appropriate measures towards 
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controlling malaria. Global maps give a better visualisation of malaria problem and have long been 

used. Unfortunately, the most affected areas in the world, have the least well-developed health report-

ing systems and limited resources and knowledge to combat this disease (Snow et al., 1999). The en-

vironment plays a vital role in determining the distribution and diversity of the disease, as transmis-

sion is vector dependent. For example, the adult mosquito digests the blood meal faster and feeds 

more frequently in warmer climates and the parasite completes the extrinsic incubation in its anophe-

les vector in a shorter period of time leading to increase transmission intensity and infective mosqui-

toes (Minale & Alemu, 2018).  

According to WHO‟s definition, malaria control is reducing the disease burden until it is no longer a 

public health problem. 

 

 
Figure 1.1 Categorization of countries as malaria free, eliminating malaria, or controlling malaria 

adapted from (Feachem et al., 2010) with permission from authors and publisher 

P. falciparum is an obligately sexual but facultatively outcrossing eukaryotic parasite; meiosis 

following a union of parasite gametes usually occurs in the midgut of the mosquito and mosquitoes 

that affect humans infected by a single genotype of the plasmodium result in self-fertilization of male 

and female gametes from the same genotype, instead of outcrossing between in related genotypes 

(Cerqueira et al., 2017). An unknown and probably variable proportion of invading sporozoites 

develop into dormant forms, in hepatocytes, the hypnozoites after infection by a mosquito (Cogswell, 

1992). Plasmodium belongs to the phylum Apicomplexa, known to harbour a non-photosynthetic 

plastid like organelle of prokaryotic origin known as apicoplast (Foth et al., 2003). For the survival of 

the parasite, the organelle is indispensable and is the functional site for four major metabolic 

pathways (Saggu et al., 2016). 
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There are several emerging pathogens known to have cross-transmitted from the humans and the non-

human host, wild primate populations are believed to have the potential to serve as origins and reser-

voirs of certain human pathogens ranging from viruses to helminths (Jongwutiwes et al., 2004). P. 

knowlesi is a malaria parasite of old-world monkeys thought to rarely affect humans until a report of 

many cases was submitted from the Kapit Division of Sarawak State, Malaysian Borneo (Cox-Singh 

et al., 2008). Plasmodium knowlesi is a highly pathogenic malaria parasite in humans, with a low py-

rogenic threshold and a risk of severe disease that appears at least as high as that of P. falciparum in 

adults (Barber et al., 2013). There is a limit in accurate reporting of the true knowlesi malaria cases 

and its burden has likely been underestimated due to difficulties with microscopic diagnosis (Grigg et 

al., 2018). Death from P. knowlesi is associated primarily with respiratory distress; hypotension and 

acute kidney injury are common in older adults (Rajahram et al., 2016). Long-tailed macaque 

(Macaca fascicularis), pig-tailed macaque (Macaca nemestrina), and the banded-leaf monkey (Pres-

bytis melalophos) are the parasite‟s natural reservoir hosts, and several mosquito species belong to 

Leucosphyrus group considered as vectors for knowlesi malaria, namely Anopheles hacker, Anophe-

les latens, Anopheles cracens, Anopheles balabacensis, Anopheles dirus and Anopheles introlatus 

(Amir et al., 2018a). Infection with P. knowlesi can rapidly progress into severe malaria that can be 

fatal due to its short asexual cycle of 24h, the treatment guideline developed is based on four core 

principles: early diagnosis and prompt effective treatment, rational use of anti-malarial drugs, combi-

nation therapy and appropriate weight-based dosing depending on the severity of the infection (Amir 

et al., 2018b).  

 

Plasmodium malariae is considered a minor malaria parasite and its global disease burden is 

underappreciated with 4-24% cases across a wide geographical distribution. It may also modulate the 

clinical course and transmission of other species (Woodford et al., 2020). Production of immune 

complexes in the kidneys and the associated nephrotic syndrome are some of the infections associated 

with P. malariae; the essential lesions are a thickening of the glomerular basement membrane and 

endocapillary cell proliferation (Collins & Jeffery, 2007). This nephrotic syndrome can lead to 

progressive renal failure mainly in adolescents or young adults and is associated with high burden of 

anaemia (Yman et al., 2019). P. malariae is mostly found in Africa, tropical areas of Asia and 

Australasia, and this species has the ability to remain undiagnosed for long periods before 

multiplication and gametocytaemia occur, hindering malaria eradication efforts in endemic areas 

(Nabarro et al., 2018). It has a 72h intraerythrocytic intrahepatic development making it unique 

among the human-infective plasmodium species, it can persist in a human host for years to an entire 

lifetime (Rutledge, Marr, et al., 2017). According to (Rutledge, Böhme, et al., 2017),  the P. malariae 

reference genome is 33.6Mb in size, has 6 540 genes and has an average guanine plus cytosine 

content of 24%. 
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In 1922, Plasmodium ovale was first reported as one of the five plasmodium species that cause 

malaria in human beings, it accounts for between 0.5-10.5% of all malaria cases and is geographically 

distributed in sub-Saharan Africa, Western Pacific, Timor, and Indonesia (Kotepui, Kotepui, et al., 

2020). P. ovale demonstrates low parasitemia and has morphological similarities with P. vivax and 

mixed infections, leading to its infections being underestimated in comparison to other plasmodium 

species (Sofi et al., 2008). The presence of latent parasites (hypnozoites) in the liver long after first 

treatment with anti-malarial drugs can cause an infection relapse (Collins & Jeffery, 2005). This 

species can cause severe complications and death, complications including acute respiratory distress 

syndrome (ARDS), renal impairment, jaundice, hypotension, hyperbilirubinemia, pulmonary edema, 

shock, significant bleeding, and impaired consciousness (Wångdahl et al., 2019). The low species-

specific parasitaemia and its short duration of patient infections might be the cause of rarity of P. 

ovale in published studies (Kotepui, Masangkay, et al., 2020). The P. ovale complex is formed by two 

sympatric species Plasmodium ovale wallikeri and Plasmodium ovale curtisi, it has a mild and often 

asymptomatic clinical course (Mitchell et al., 2021; Xia et al., 2020). The most sensitive method for 

detecting P. ovale and other malaria causing species is Polymerase chain reaction (PCR), even in 

cases of very low parasite density; the use of this has led to expansion in research involving P. ovlae 

and proves a far wider distribution in cases than previously anticipated (Mahittikorn et al., 2021). 

 

Plasmodium vivax was once viewed as a benign infection but is now recognised as a cause of severe 

morbidity and mortality resulting in substantial negative effect on health worldwide; it is the most 

widespread species geographically and is the second largest contributor to clinical (symptomatic) ma-

laria worldwide (Kevin Baird, 2013). For effective control and potential elimination, it is important to 

understand the spatiotemporal distribution and clinical burden of P. vivax. The species circulates in 

the peripheral blood at low but transmissible parasite densities, it can also form undetectable dormant 

liver stages (for example hypnozoites), which periodically awaken to case relapse infection and dis-

ease (Battle et al., 2019). P. vivax is endemic in Africa, although local surveillance for this parasite is 

rare (Twohig et al., 2019). 11.9 and 22 million P. vivax clinical cases were reported by the world 

Health Organisation (WHO) per year (Price et al., 2020). The risk of relapse of Plasmodium vivax 

ranges from 5% to 80% depending on the geographic location, primaquine therapy is the drug availa-

ble to prevent relapse (Baird & Hoffman, 2004). It has been estimated that 38.8% of the population 

living at risk of P. vivax infection are unable to receive safe and effective primaquine therapy because 

of glucose-6-phosphate dehydrogenase (G6PD) deficiency and reduced CYP2D6 function  

(Cytochrome, 2019). The glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic disor-

der that causes haemolysis of the red blood cells in response to certain medication or infections, the 

primaquine drug is a trigger leading to abdominal and back pains, and other symptoms (Parsanathan 

& Jain, 2020). Rapid diagnostic tests (RDTs) for P. vivax have reduced sensitivity in comparison to 

that used to diagnose P. falciparum, making the control and elimination of P. vivax more challenging. 
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This parasite usually circulates at low peripheral parasite densities, which is transmissible to the mos-

quito vector creating significant challenges for diagnosing infected individuals (Ding et al., 2017). 

Infected individuals often present with both asexual and sexual parasite stages in the peripheral circu-

lation, resulting in efficient transmission before diagnosis and treatment (Douglas et al., 2013).   

 

All the pathological symptoms of malaria are due to the asexual stage life cycle of the parasite in the 

host erythrocytes. The intra-erythrocytic parasite grows within the parasitophorous vacuole, divides to 

form new merozoites, which are released by rupture of the host cell and subsequently invade new 

erythrocytes. During this growth cycle, the parasite takes up and degrades a large amount of hemo-

globin, an essential requirement for its growth, from the host cell. The uptake of host cytosol and he-

moglobin occurs through cytostomal vesicles that traverse to the food vacuole (Lazarus et al., 2008; 

Thakur et al., 2015). Figure 1.2 below summarizes the malaria life cycle. 

 

 

Figure 1.2 Malarial lifecycle figure adapted from, (Cowman et al., 2016) with permission from 

authors and publisher 
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Besides administration of highly effective anti-malarial drugs, there are other measures one can take 

to prevent malaria: measures such as, using insecticide treated nets (ITNs), indoor residual spraying 

(IRS) and improved diagnostics through the use of rapid diagnostic tests (RDTs) (Bhatt et al., 2015). 

A third of malaria endemic countries have a malaria elimination plan that is very distinct from regular 

malaria control strategies, which is the complete depletion of the parasite reservoir by targeting the 

gametocytes responsible for transmission and destroying silent hypnozoites that may relapse (Howes 

et al., 2012). 

The world health organisation fears a major health crisis if resistance to the first-line drug Artemisinin 

(ART) anti-malarial drug spreads to India and Africa, as it is now evident in six countries of Southeast 

Asia (Tilley et al., 2016). The World Malaria Report discussed challenges met due to development 

and spread of mosquito resistance to insecticides, resistance to Artemisinin and its partner drugs, also 

funding shortfalls (Barber et al., 2017). There is a need of identifying new and different biochemical 

pathways in the parasite that can be used as pharmacological targets for new affordable and effective 

drugs (Siregar et al., 2015). The rise of resistance in Plasmodium depends on multiple factors, includ-

ing the mutation rate of the parasite, the fitness costs associated with the resistance mutations, the 

overall parasite load, the strength of drug selection, and the treatment compliance (Petersen et al., 

2011). The following figure 1.3 shows some of the current anti-malarial drugs on the market.  

 

To describe and understand how a drug affects a specific target in a cell, producing a pharmacological 

effect in the body, the drug‟s mechanism of action (MoA) can be studied, this can produce infor-

mation about the safety of the drug and help identify the correct dose of the drug (Swinney, 2011). 

Other researchers state that target identification of a new drug and elucidating the mechanism of ac-

tion is important early in drug discovery process, before initiating human clinical trials (Davis, 2020). 

In the pre-molecular era, drug MoA was explored against whole tissues and rarely on isolated pro-

teins; however now almost all drug discovery begins with activity of molecules on a molecular target 

(Gregori-Puigjané et al., 2012). Toxic monomeric α-Hematin (ferriprotoporphyrin IX) is released as 

the by-product when haemoglobin is catabolised by plasmodium, this product catalyses reactive oxy-

gen species (ROS) production deposited on and damaging cell membranes (Pillat et al., 2020).    

 

 For uncomplicated malaria in Africa Amodiaquine is used as the first or second line of treatment and 

is predicted to have similar mode of action as that of chloroquine. The drug is a more pharmaco-

economical member of the chloroquine hybrids and has a related structure as chloroquine and is chil-

dren friendly as it has a palatable taste (Aliyu et al., 2021). Prophylactic use of Amodiaquine has been 

associated with fatal cases of agranulocytosis and hepatitis (Adjei et al., 2008). 
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The artemisinin-based combination therapies (ACTs) are the first-line medicines for the treatment of 

malaria worldwide (Windle et al., 2020a). Artemisinin is a sesquiterpene lactone compound derived 

from the sweet wormwood plant (Artemisia annua L) and has a unique chemical structure (J. Wang et 

al., 2019). For the treatment and management of uncomplicated P. falciparum malaria the artemisinin-

based combination therapies (ACTs) are the mainstay drugs and the mechanism of action for artemis-

inin-based combination therapies is unclear (O‟Neill et al., 2010). There are possibilities that have 

been suggested which involve the degradation of the endoperoxide bridge in a heme-dependent pro-

cess to form carbon centred radicals which then alkylate multiple targets including heme and proteins 

(Bergman et al., 2019). Other researchers suggest the alkylation of heme to be the trigger and target of 

artemisinin drug, also the drug influences reactive oxygen species (ROS) leading to the death of the 

parasite (N. Ma et al., 2020). Despite the artemisinin-based combination therapies (ACTs) being safe 

drugs, it should be noted that there is a possibility of adverse effects such as hepatitis and delayed 

haemolytic anaemia (Pousibet-Puerto et al., 2016). 

 

The mechanism of action of Atovaquone involves the blocking of the mitochondrial electron transport 

chain at complex III of the respiratory chain of plasmodium, inducing the collapse of the mitochondri-

al membrane potential blocking energy supply to the parasite (Srivastava et al., 1997). It is a competi-

tive inhibitor of ubiquinol binding that inhibits the complex III (cytochrome bc 1) of the electron 

transport chain leading to the loss of the membrane potential and parasite death (Egwu et al., 2021). 

The drug has potent sub-nanomolar activity against the erythrocytic P. falciparum in vitro and has 

activity against the liver stage and erythrocytic parasites (Bakshi et al., 2018). Atovaquone is com-

bined with prodrug proguanil as it has insufficient efficacy in malaria treatment due to recrudescence 

and resistance (Verdaguer et al., 2021).  Atovaquone causes few side effects and is generally well tol-

erated, however it should be noted that one might experience mild rash, fever, vomiting, diarrhoea, 

abdominal pain and headache (Nixon et al., 2013). 

Chloroquine interacts with membrane stability and alter signalling pathways and transcriptional ac-

tivity, resulting in inhibition of cytokine production and modulation of certain co-stimulatory mole-

cules, it also interferes with lysosomal activity and autophagy (Schrezenmeier & Dörner, 2020a). 

Chloroquine inhibits the heme polymerase in malarial trophozoites, preventing the conversion of 

heme to hemazoin leading to accumulation of toxic heme into the parasite eventually killing it (A. H. 

Kumar, 2020). This drug is one of the safest and cheapest drugs of all time. Chloroquine can be  pro-

tonated in the acidic environments of the low pH organelles within the cell and is a weak diprotic base 

(pKa = 10.1), it exhibits its main anti-malarial activity in the asexual stages (Pillat et al., 2020). The 

drug accumulates inside the food vacuole and interferes with the detoxification of heme a haemoglo-

bin catabolism product (Hyde, 2002). Hydroxychloroquine is the derivative of chloroquine (Carrière 

et al., 2020). The mode of action is probably context-dependent on the inflammatory conditions or the 

affected tissues or organs, as with various therapeutic interventions of the immune system 



8 
 

(Schrezenmeier & Dörner, 2020b). Chloroquine induce a dysfunction of the lysosomal enzymes, lead-

ing to the impairment of intracellular degradation processes in conjunction with the accumulation of 

pathological metabolic products (glycogen and phospholipids) (Tönnesmann et al., 2012). 

The lumefantrine mechanism of action has not been fully interpreted and has been implicated in de-

toxification of products of heme degradation (Santos et al., 2021). The drug is a weak base aryl amino 

alcohol and highly lipophilic, it is responsible for elimination of residual parasites as it is a blood 

schizonticide (Resende et al., 2019). The hemozoin formation in the digestive vacuole of the erythro-

cytic-stage malaria parasite can be inhibited by the drug and the hemozoin serves as a crystalline re-

pository for the sequestration and detoxification of ferri-protoporphyrin heme molecules released by 

hemoglobin digestion (Windle et al., 2020b). According to (Assefa et al., 2010), there is need for fur-

ther study on blood concentration of  lumefantrine and pharmaco-vigilance on the drug toxicity as it 

causes mouth ulcer in children.  

 

 

The Mefloquine anti-malarial drug is a nuclear factor kappa B (NF-kB) inhibitor that blocks the acti-

vation of IkBα kinase, leading to reduction of IkBα degradation, decrease of p65 phosphorylation and 

suppressed expression of NF-kB target genes in colorectal cancer (CRC) cells (Xu et al., 2018). The 

mechanism of action of mefloquine as an anti-malarial drug includes the lysosomal/vacuole inhibitor, 

a disruptor of the mitochondrial proton motive force, a protein translation inhibitor, and a purine nu-

cleoside phosphorylase (PNP) inhibitor (Montoya et al., 2019). As a quinoline-based compound, the 

drug modulates several cellular phenomena, such as alteration of membrane potential, induction of 

oxidative stress, imbalance of ion homeostasis, disruption of metabolism, failure of organelle func-

tion, leading to cell cycle arrest and programmed cell death (Ghosh et al., 2021). Mefloquine (a 4-

quinolinemethanol synthetic quinoline) is recommended as a prophylactic for malaria endemic areas 

and has long retention in the human body and high efficacy (Martins et al., 2021). Mefloquine pack-

age insert mentions psychiatric symptoms including abnormal dreams, anxiety, paranoia, agitation, 

confusion, memory impairment and hallucination (Cameron Ritchie et al., 2013). 

There is no direct evidence that exists of piperaquine (PQ) mechanism of action at the molecular level 

as few investigations of its clinical pharmacokinetics has been conducted (Sacchi et al., 2019). This 

drug is an essential component of the mainstay artemisinin-based therapies used for the treatment of 

malaria globally. The H NMR spectroscopy was used to investigate the interaction of the drug with 

heme, finding the formation of compound-heme complexes as the mechanism of action (R. Ma et al., 

2019). Mild headache, listlessness, nausea and dizziness were some of the side effects listed in the 

first human studies of piperaquine (Bouth Denis et al., 2002). 

Primaquine is effective against all exoerythrocytic forms of the parasite used in conjunction with oth-

er anti-malarial treatments for P. vivax and P. ovale, it is the available transmission-blocking drug, 

displaying a marked activity against gametocytes of all human malaria species (Vale et al., 2009). 
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This drug is not effective against endo-erythrocytic forms of plasmodia and is co-administered with 

blood-schizontocides (Baird & Hoffman, 2004). Primaquine prevents primary parasitemia by destroy-

ing the plasmodium parasite in the liver before reaching the bloodstream and cause disease and is 

therefore used as the primary prophylactic (Hill et al., 2006). Primaquine prevents relapse in P. vivax 

and P. ovale, however it is not given to patients with glucose-6-phosphate dehydrogenase (G6PD) 

deficiency due to haemolytic toxicity (Ashley et al., 2014). The primary targets of primaquine are the 

ROS-labile Fe-S groups and yeast respiratory growth (Lalève et al., 2016). Primaquine causes dose-

limiting side effects such as haemolytic anemia and methemoglobinemia mainly in patients with glu-

cose-6-phosphate dehydrogenase (G6PD) deficiency (Ganesan et al., 2009).  

The hepatic microsomal enzyme cytochrome P450 (CYP) 3A4 metabolises the quinine drug, the phe-

notypic variability in debrisoquine metabolism depends on CYP2D6 enzyme system and does not in-

fluence oral elimination of the drug (Krishna & White, 1996). Structure-activity studies show that the 

conformation around atoms C-8 and C-9 of the cinchona alkaloids, particularly the direction of the 

aliphatic N-H and (9C)0-H bonds relative to each other, are crucial to antimalarial activity (Karle et 

al., 1992). The drug is isolated from the bark of several species of Cinchona and Remijia trees a stal-

wart of anti-malarial chemotherapy and chemoprophylaxis (G. Z. Yang et al., 2019). Quinine and its 

derivatives act on a variety of ion channels including several types of potassium channels, members of 

family of ligand gated ion channels such as the 5-HT3-type of serotonin receptor and nicotinic acetyl-

choline receptors (nAChR) (Gisselmann et al., 2018). The Quinine drug is toxic to the auditory sys-

tem by commonly inducing hearing loss and tinnitus, presumably due to its ototoxic effects on disrup-

tion of cochlear hair cells and blockade of ion channels of neurons in the auditory system (Zou et al., 

2018). It evokes different physiological consequences by interacting with the striatum neurons and 

sympathetic neurons and modulates neuronal physiological by interacting with intrinsic ion channels 

or synaptic targets (Hirasawa et al., 2000). According to (Punihaole et al., 2018), the ability of quinine 

to bind to DNA and potentially inhibit transcription and translation has been considered as the mode 

of action for its anti-malarial activity.  

 

Toxic effects of most of these drugs, offset the robust usage in humans, hence new anti-malarial drug 

targets are considered. The physical abnormalities in the nervous system, cardiovascular system, neu-

romuscular junctions, and the liver caused as side effects by some of these administered drugs is a 

cause of concern for the continued use by the public (Mulenga-cilundika et al., 2020; Tse et al., 2019). 

Due to these side effects, it is necessary to find more effective and safe drugs that can be used to erad-

icate malaria, in this study we will look at potential hit compounds on the new anti-malarial drug tar-

get type II NADH: quinone oxidoreductase (NDH2) protein. 
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Figure 1.3 A list of few anti-malarial drugs currently on the market their name and structure 

 

1.1.1 Type II NADH: quinone oxidoreductase (NDH2) and Apoptosis-inducing factor 1 (AIF-M1) 

Due to the increase in drug resistance, it has been of importance to develop new and effective drugs 

that can be used to eradicate this disease. Type II NADH: quinone oxidoreductase (NDH2) is a 40-

70kDa single subunit monotopic membrane protein that catalyses the electron transfer from NADH to 

quinone via FAD or FMN without a proton-pumping activity (Nakatani et al., 2017). It functions as an 

initial enzyme, either in addition to or as an alternative to proton-pumping NADH dehydrogenase 

(complex I) in the respiratory chain of bacteria, archaea, and fungal and plant mitochondria 

(Yamashita et al., 2018). NDH2 is a homodimer, peripheral membrane protein containing chain A and 

chain H with a FAD cofactor and four magnesium ions on each chain and the PDB ID is 5JWA (Y. 

Yang et al., 2017). 

NDH2 is distinct from two other functionally related NDHs, the proton pumping type NDH (NDH-

I/complex I) and the sodium pumping type NDH (NQR) (Nakatani et al., 2020). 
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The complete malaria genome project (Gardner et al., 1999) showed that P. falciparum mitochondria 

lacks the NADH: dehydrogenase which is present in most mammalian mitochondria and it contains 

the alternative complex I (type II NADH: dehydrogenase) (Biagini et al., 2006). The Type II NADH: 

quinone oxidoreductase (NDH2) enzymes have emerged as potential drug targets against Plasmodium 

falciparum, the enzyme carries out the NADH: quinone oxidoreductase activity in the electron 

transport chain (Iwata et al., 2012). Type II NADH dehydrogenases do not pump protons across the 

membrane in contrast to the type of NADH dehydrogenases present in humans, contributing to the 

membrane electrical potential (∆ψ) (Feng et al., 2012). 

 

One important property of NDH2 enzymes is that they are membrane-bound, and, in particular, are 

monotopically bound to the cell membrane (Lencina et al., 2019). NDH2 is non-proton pumping and 

bacteria, for example, prefer to use NDH2 instead of the proton-pumping NDH-1 in which both en-

zyme complexes are found in the genome, because there is higher rate of ATP synthesis at a lower 

energetic efficiency of the respiratory chain when NDH2 mediate NADH oxidation (Heikal et al., 

2014). NDH2 does not transfer protons across the membrane due to its structural and catalytic sim-

plicity and does not contribute to the generation of proton motive force, which might be advantageous 

for some organisms in the maintenance of the NAD+/NADH redox balance and generation of ATP 

because its catalytic function cannot be compromised by proton motive force back-pressure (Blaza et 

al., 2017). 

 

Membrane receptor proteins are responsible for signal transduction across membranes, for communi-

cation between cells and between a cell and its surrounding environment (Mori et al., 2016). Trans-

membrane proteins play a role in energy production, regulation, and metabolism in living cells; this 

might be a contributing factor why half of present-day drugs have some effect on transmembrane pro-

teins (Kozma et al., 2013). About 25% of the human genome might code transmembrane proteins 

(Fagerberg et al., 2010). Substrate transports and signal transductions are key functions of membrane 

proteins. Atomic structural information of membrane transporters and receptors contribute greatly to 

the understanding of the biological phenomena; however, structure determination using X-ray, NMR 

and cryo-EM techniques is challenging compared to soluble proteins (Kozma et al., 2013; White, 

2004). There are a few identified NDH2 inhibiters with moderate activities such as, Iodonium deriva-

tives, flavones, quinolones, phenothiazines, and nanaomycin A and polymyxin B (Biagini et al., 2006; 

Fang & Beattie, 2002). A well-validated, specific NDH2 inhibitor would provide a novel tool to study 

NDH2 function as well as enable preclinical pharmacological validation of NDH2 as a target for TB 

therapy, plasmodium malaria and other micro-organisms that causes disease in human beings (Harbut 

et al., 2018.). 
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NDH2 catalyses the transfer of electrons from NADH into the mycobacterial respiratory pathway and 

has been proposed to be targeted by several early-stage inhibitors (Murugesan et al., 2018). NDH2 

contains two Rossmann folds which are responsible for binding NADH and housing the co-factor 

FAD (noncovalently), and which are central to NADH oxidation. These domains are followed by a C-

terminal membrane-anchoring domain in which the quinone binding site (Q-site) is localised, allow-

ing electron transfer from the reduced FAD to the acceptor quinone pooled in the membrane (Bridges 

et al., 2018).  This is understood in the context that NDH2 is a peripheral membrane protein that oxi-

dizes NADH and reduces quinones; a central feature of the respiratory chain in many species except 

mammals (Blaza et al., 2017). The interface between the protein monomers is extensive, with a buried 

surface area of ca 1.920Å2 per monomer, which is ~9% of the solvent-accessible surface of each 

monomer and suggests that the homodimer is physiologically relevant (Iwata et al., 2012). 

 

 
Figure 1.4 The homodimer 5JWA NDH2 Plasmodium falciparum crystal structure, showing its 

different domains, chain A and H, the FAD cofactor in orange and the four magnesium ions 

represented as blue spheres ion each chain 

Two protein sequences are considered homologous if they descend from a common ancestor (Ponting 

& Russell, 2000). They tend to have similar structure, depending on the degree of divergence, similar 

functions, cellular localisation, or ligands (in our case cofactors) (Klim et al., 2018; Mills et al., 2018). 

The apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein oxidoreductase that contributes to 

cell death, programmes, and participates in the assembly of the respiratory chain (Romero-Tamayo et 

al., 2021; Sahu et al., 2021). AIF-M1 is considered a flavoprotein as it contains, as an electron 

acceptor flavin adenine dinucleotide (FAD) an electron carrier like NAD in its action (Hammerstad & 

Hersleth, 2021; Lienhart et al., 2013). Deficiency of AIF causes mitochondrial dysfunction causing 
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muscle atrophy and neurodegeneration in model organisms and humans (Bano & Prehn, 

2018).According to (Elguindy & Nakamaru-ogiso, 2015), Apoptosis-inducing factor 1 (AIF-M1) is an 

NDH2 enzyme which also functions as NDH2. They also showed that the human protein has NADH-

quinone oxidoreductase activity as such this protein was used as the human homologue in this study. 

AIF-M1 shown in figure 1.5 below is a mitochondrial FAD-containing monomer, NADH-dependent 

oxidoreductase that plays a role in oxidative phosphorylation (Delettre et al., 2006; Miramar et al., 

2001; Sevrioukova, 2011). AIF binds NAD(P)H and forms a long-lived charge-transfer complex 

(CTC) between its FAD cofactor and the NAD(P)H nicotinamide moiety and therefore is modulated 

(Brosey et al., 2016). AIF and NDH2 possess FAD and NADH molecules at similar binding regions, 

supporting that AIF may have a common functional ancestor with NDH2 (Trisolini et al., 2019). AIF 

has limited access to other cellular membranes and is constrained to the mitochondria, it can lead to 

severe mitochondrial diseases when mutated. According to (Martin Vabulas, 2021), the AIF-M1 is 

anchored in the inner membrane of mitochondria exposing its C-terminal part to the intermembrane 

space. The protein is proteolytically processed to be released from the membrane and subsequently 

translocated to the cytosol and the nuclei upon apoptosis induction. A substantial fraction 

approximately 30% of the protein residues at the outer mitochondrial membrane on the cytosolic side 

and might be sufficient to cause cell death even without an input from the intramitochondrial pool (S.-

W. Yu et al., 2009). 

AIF-M1 resides in the mitochondria and plays a role in mitochondrial regulation after hypoxia-

ischemia not only through the loss of the mitochondria‟s energy-producing function but also through 

the protein release into the cytosol and subsequent translocation into the nucleus where it induces 

apoptosis through chromatin condensation and large-scale DNA fragmentation in a caspase-

independent manner (Rodriguez et al., 2020). It is involved in cellular bioenergetics, assisting in 

stabilization and maintenance of the electron transport chain (ETC), the protein‟s mutation in humans 

has been associated with impaired ETC function resulting in mitochondrial encephalomyopathy 

(Kadam et al., 2020). The residue arginine (R201) found in the FAD binding pocket confers 

conformational stability to the flavoprotein. The protein can induce nuclear apoptosis in the absence 

of caspases by triggering chromatin condensation, its advantage is that its effects are not inhibited by 

pharmacological caspase inhibitors in the cytoplasm (H. Wang et al., 2020). Apoptosis inducing factor 

has a vital role in maintenance of mitochondrial morphology and energy metabolism (Letkovska et 

al., 2021). 
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Figure 1.5 The crystal structure of AIF-M1 protein and the FAD cofactor shown in red 

1.1.2 Proteins and membrane proteins  

Protein structures are 3-dimensional (3-D) arrangements of atoms from amino acid chain molecule 

derived from a combinations of 20 amino acids which build the protein structures. Alpha helices and 

beta sheets as shown in figure 1.5 above, are the stable folding patterns that make a secondary protein 

structure, and they adopt these 3-D structures due to the hydrogen bonding between amino groups and 

carboxyl groups in neighbouring regions of the protein chain. When the protein backbone adopts a 

right handed helical conformation with 3.6 residues per turn and a set of hydrogen bonds formed 

between the main chain carbonyl (CO) of the i th residue and the main chain NH of the (i+4)th residue, 

an alpha (α) helix is formed (Sun et al., 2004). A beta (β) sheet consists of at least two β‐strands, each 

approaching an extended backbone conformation with dihedral angles confined to the region where 

the φ torsion angle is between −60° and −180°, and the ψ torsion angle is between 30° and 180° (Sun 

et al., 2004). 

The function and structure of a protein will vary widely as determined by the arrangement of amino 

acids in a chain. There are components that can affect the function or conformation of the protein, for 

example temperature, pressure, or pH value. The final folded structure or conformation of a protein is 

usually the one in which the free energy is minimised. The cell unit expresses the protein with specific 

functionality, topology and different proteins will react differently to change in environment and this 

will affect their longevity and function (Consortium, 2019).  
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Membrane proteins position themselves in a lipid bilayer and contain stretches of residues that are 

exposed to the hydrophobic environment at the core of the membrane; these transmembrane segments 

usually have one of two structure types: α-helices or β-strands (Kelm et al., 2010; Smith et al., 2004). 

The structure and function differ from protein to protein, some are embedded completely and others 

partially in membranes, whereas some interact with other proteins or are standalones. The proteins 

under investigation in this study are membrane proteins (specifically peripheral membrane proteins) 

and studying membranes is important in the context of the effect of protein environment on the dy-

namics and behavior of the protein. There are many functions served by the biological membranes 

such as acting as permeability barriers, energy transduction in respiratory and photosynthetic systems, 

transporting information between the exterior and interior phases, they can be excitable, they can also 

give a cell its individuality and finally but not least they support catalytic functions, hence they are 

important drug targets (Engel & Gaub, 2008). Membrane proteins have a large variety of fundamental 

physiological functions. Different mechanisms control the formation of membrane proteins and their 

functionality, including post-translational modifications such as proteolytic ectodomain shedding 

which is a form of limited proteolysis and thus an irreversible post-translational modification 

(Lichtenthaler et al., 2018). There are more than 350 unique membrane protein structures solved by 

X-ray crystallography, available at Protein Data Bank (I. Moraes et al., 2014). Depending on the na-

ture of their interaction with the membrane, these proteins can be classified into two main categories: 

integral and peripheral membrane proteins. Peripheral membrane proteins are highly unique amphi-

pathic proteins that interact with the membrane indirectly, using electrostatic or hydrophobic interac-

tions, or directly using hydrophobic tails or GPI-anchors (Boes et al., 2021). Not many membrane 

proteins have been solved due to certain challenges such as extraction of the membrane proteins from 

the native lipid environment while maintaining structural and functional integrity. Structural charac-

terization has conventionally been achieved using detergents, which are amphipathic molecules that 

keep membrane proteins in solution by forming micelles around the hydrophobic domains, however 

this fails to mimic the complexity of the native membrane environment (Autzen et al., 2019). 

 

Each membrane is made up of a phospholipid double layer and houses proteins or protein complexes 

providing specific communication channels between the cell and its environment. Cell membranes are 

composed of hundreds of different lipid types that are asymmetrically distributed between the two 

surfaces, with many membrane proteins embedded covering an estimated membrane area as large as 

30% at a lipid/protein ratio of about 50-100 (Corradi et al., 2018). The native host environment of all 

membrane proteins is highly dynamic and heterogeneous and this constitutes a bottleneck for their 

direct structural analysis and poses a considerable challenge for the preparation of proteins for many 

biophysical methods (Hoi et al., 2021; Urner et al., 2020). 
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Peripheral membrane proteins (PMP) are located directly on the membrane surface and adhere 

temporarily to the biological membrane with which they are associated, membrane proteins comprise 

soluble domains that extend into the membrane (Fisette et al., 2016). Little is known about peripheral 

membrane protein mechanism of function, as they only bind transiently to a membrane, making it 

difficult to calculate binding conformations as they can be found in states attached to the membrane as 

well as completely solvated in water (Corey et al., 2020). PMP are attractive propositions in drug 

search for diseases such as tuberculosis, cancer and parasitic infections, however their highly 

amphipathic nature and their dependencies on lipid interaction limits structure and function 

investigation and ability to be drug design target (Boes et al., 2021). 

 In terms of computational work on membrane proteins, it is important to orient the protein correctly 

on the membrane before minimization or performing any MD simulation, Orientations of Proteins in 

Membranes (OPM) database can be used to find the correct orientation of the protein. This server or 

database provides spatial positions of membrane protein structures with respect to the lipid bilayer, 

the implicit solvation model of the lipid bilayer is used to calculate the position of the proteins and the 

results are verified against experimental studies of spatial arrangement of transmembrane and periph-

eral proteins in the membranes (Kutateladze & Overduin, 2001; A. L. Lomize et al., 2011; M. A. 

Lomize et al., 2012). How this database was used in this study will be discussed in chapter 4 of the 

document. MD simulations may be used to analyse the protein-membrane interaction (A. G. Lee, 

2018). There are different types of lipids which include dimyristoylphosphatidylcholine (DMPC), di-

lauroylphosphatidylcholine (DLPC), 1-palmitoyl-2-oleoyl-snglycero-3-phosphocholine (POPC), 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), dipalmitoylphosphatidylethanolamine (DPPE), 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE) (Jo et al., 2009). 

 

1.2 Methodology adopted and used in this study 

As this project aimed to identify hit compounds that could be used as anti-malarial drugs to eradicate 

the disease without harming or with less side effects to humans, bioinformatics techniques and 

procedures were applied and followed to achieve this goal. The figure 1.6 below shows the techniques 

that were used together with their associated tools using personal computers and servers; we will 

further explain how these techniques were applied together with their relevance. NCBI, RCSB and 

UniProtKB webservers were used to retrieve data. MAFFT, MUSCLE and PROMALS3D tools were 

used for multiple sequence alignment study and MEME was used to calculate the protein motifs. The 

MEGA tool was used to calculate and build phylogenetic trees. Homology modelling was performed 

in MODELLER whereas, AutoDock Vina was used for docking studies employing the SANCDB 

compounds. Molecular dynamics simulations was used to study of NDH2 free from the membrane 

using GROMACS, and with a membrane bound to the proteins CHARMM-GUI was used. MDM-task 

https://en.wikipedia.org/wiki/Membrane_protein
https://en.wikipedia.org/wiki/Protein_structure
https://en.wikipedia.org/wiki/Lipid_bilayer
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was used to calculate the Principal Component Analysis (PCA) and MD-task was used to calculate the 

dynamic cross correlation of the proteins. 

 

Figure 1.6 Methodology applied in the study, together with the tools and webservers used 

1.2.1 3-D protein structure prediction 

In this study we focused on five plasmodium species that causes malaria in humans, P. falciparum had 

a crystal structure with (PDB ID: 5JWA) solved in the databases and in the absence of the crystal 

structures for the other plasmodium it was necessary to generate appropriate models. Homology 

modelling is a structure prediction method dependent on the observation that the structural 

conformation of a protein is more conserved than its amino acid sequence (Cavasotto & Phatak, 

2009). Crystal structures present in the databases can be used as templates for predicting the 3-D 

structure of target sequences and the sequence identity between the template and target must be higher 

than 30% to be considered reliable (Dalal & Atri, 2014). Template selection is very important as it 

impacts the quality of the calculated homology models (Muhammed & Aki-Yalcin, 2019). Inspecting 

the probability values, E-values, identities, secondary structure scores and alignment to identify the 

best templates is necessary. The best template is generally represented by high scores with similar 

length to the query, few gaps in the pairwise query template alignment (Fiser, n.d.). Alignment 

algorithms are used in the multiple sequence alignment between the target and the template, together 

with other relevant homologs to obtain more accurate results. There are many tools for personal 

computers and webservers that can be used to perform homology modelling, ranging from automated 

webservers, downloadable programs, interactive webservers, and standalone programs mainly in 
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Fortran and Python (Vyas et al., 2012). Homology modelling (HM) is an important molecular 

modelling technique to model 3-D structures of scientific importance in drug discovery, as 

determining the atomic and molecular structure of a crystal using Nuclear magnetic resonance 

spectroscopy (NMR), cryo-electronic microscope (cryoEM) and X-ray crystallography which can be a 

long and costly process (Er et al., 2018; Nwanochie & Uversky, 2019; Vénien-Bryan et al., 2017). 

HM method allows one to use single or multiple templates depending on the need and aim of the 

study.  

MODELLER (Šali & Blundell, 1993), HHpred (Söding et al., 2005), SWISS-MODEL (Waterhouse et 

al., 2018) and PRotein Interactive MOdeling (PRIMO) (Hatherley et al., 2016) are some of the tools 

and programs used in 3-D structure prediction. Many of these programs are reported to be reliable, 

fast, and accurate, however it is recommended to validate the quality of the stereo-chemical properties 

of the generated models are assessed using external tools such as PROSA (Wiederstein & Sippl, 

2007), VERIFY3D (Eisenberg, 1997), ERRAT, PROCHECK (Laskowski et al., 1993) and AMOEBA 

(Laury et al., 2015). Figure 1.7 below summaries the comparative modelling process. Some of these 

tools used to validate the models were also adopted in this study and will be used and explained in the 

following chapter. 

 

 

 Figure 1.7 Flow chart of the homology modeling process 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiLm9Ch3fD0AhWMT8AKHZVlCawQFnoECAMQAQ&url=https%3A%2F%2Fprimo.rubi.ru.ac.za%2F&usg=AOvVaw0FwY1bdQuoo5LrNVpmStUN
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiLm9Ch3fD0AhWMT8AKHZVlCawQFnoECAMQAQ&url=https%3A%2F%2Fprimo.rubi.ru.ac.za%2F&usg=AOvVaw0FwY1bdQuoo5LrNVpmStUN
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiLm9Ch3fD0AhWMT8AKHZVlCawQFnoECAMQAQ&url=https%3A%2F%2Fprimo.rubi.ru.ac.za%2F&usg=AOvVaw0FwY1bdQuoo5LrNVpmStUN
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiLm9Ch3fD0AhWMT8AKHZVlCawQFnoECAMQAQ&url=https%3A%2F%2Fprimo.rubi.ru.ac.za%2F&usg=AOvVaw0FwY1bdQuoo5LrNVpmStUN
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiLm9Ch3fD0AhWMT8AKHZVlCawQFnoECAMQAQ&url=https%3A%2F%2Fprimo.rubi.ru.ac.za%2F&usg=AOvVaw0FwY1bdQuoo5LrNVpmStUN
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiLm9Ch3fD0AhWMT8AKHZVlCawQFnoECAMQAQ&url=https%3A%2F%2Fprimo.rubi.ru.ac.za%2F&usg=AOvVaw0FwY1bdQuoo5LrNVpmStUN
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1.2.2 High throughput virtual screening 

The completion of the human genome project has led to the availability of a vast sequence database 

and expansion of sequential and structural bioinformatics. Bioinformatics techniques are used to 

model and analyse protein targets, virtual screening can be performed with large compound libraries 

to identify hit and effective compounds that can be used to combat disease at a cost effective rate 

(Brown & Tastan Bishop, 2017; F. Moraes & Góes, 2016). There are three important steps involved 

in modern drug discovery which include identification of targets related to the disease discovery, 

novel lead discovery and optimisation, and drug development using target or ligand (Liu et al., 2018).   

The behaviour of small molecules in the binding site of a target protein is explored using the 

molecular docking method. For this, protein structures may be obtained from X-ray crystallography or 

nuclear magnetic resonance (NMR) spectroscopy, which are the experimental procedures, together 

with homology modelled structures for determining structures that have not yet been solved. Docking 

predicts the orientation of the ligand bound to the protein receptor using shape and electrostatic 

interactions to quantify the interaction based on scoring sampling and scoring function algorithms. 

Formation of hydrogen bonds and van der Waals interactions also play a vital role (Pagadala et al., 

2017). The docking score approximates the sum of all the interactions, representing the binding free 

energy values. There are more than 60 different docking tools and programs that have been developed 

for academic and commercial use; examples include DOCK (Venkatachalam et al., 2003), AutoDock 

(Österberg et al., 2002), FlexX (Rarey et al., 1996), Surflex (Jain, 2003), GOLD (Jones et al., 1997), 

ICM, Glide (Friesner et al., 2004), Cdocker, LigandFit (Venkatachalam et al., 2003), AutoDock Vina 

(Trott & Olson, 2009) and  rDock (Ruiz-Carmona et al., 2014). 

 Emil Fischer in 1894 explained the „lock-key‟ model to interpret the binding of a ligand to a protein 

(Fischer, 1894). The docking algorithm finds the optimal binding mode of the ligand to the active site 

of the protein target, identifying drugs that can bind to the protein target more strongly than the 

natural substrate, drugs that could potentially alter or prevent the biochemical reaction that the target 

molecule catalyses (Thomsen & Christensen, 2006). The conformation/orientation sampling (pose 

generation) and a scoring function that associates a score to each predicted pose are the two stages of 

molecular docking (Huang & Zou, 2010). Scoring functions play the role of a pose selector, used to 

discriminate putative correct binding modes and binders from non-binders in the pool of poses 

generated by the sampling engine. There are three types of scoring functions: force-field based 

scoring functions; empirical scoring functions; and knowledge-based scoring functions (Salmaso & 

Moro, 2018). 

Virtual screening (VS), identifies the potential drug leads for a given protein target by searching a 

large ligand database (Li et al., 2019). Virtual screening speeds up the discovery process to reduce the 

number of candidates to be tested experimentally, however does not replace in vitro and in vivo assays 
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(Neves et al., 2018). VS can be categorised in two groups: ligand-based methods and receptor-based 

methods (Gimeno et al., 2019). Ligand based virtual screening uses features of molecules derived 

from chemical structures of known binders to score new molecules from a chemical library (Cournia 

et al., 2020). Structure-based virtual screening attempts to predict the best interaction between ligands 

against a molecular target to form a complex, the ligands are ranked according to their affinity to the 

target and the most promising compounds are shown at the top of the list (Maia et al., 2020). 

To evaluate the binding ability of arbitrary poses at the respective protein target scoring functions are 

used, the functions select potential active candidates from large chemical libraries and are used to 

rank different compound orientations based on their binding scores (Aggarwal & Koes, 2020).  

The use of a crystal structure is recommended to validate the molecular docking technique by 

redocking the protein‟s co-factor or a known ligand; the pose of the redocked system should match 

the experimental crystal structure pose (C et al., 2020). As large libraries of drugs are used in virtual 

screening using docking, one must narrow down the ligands to the specific ones that are considered 

hit compounds (Issa et al., 2019). Dibenziodolium chloride (DPI), diphenyliodonium chloride (IDP), 

1-hydroxy-2-dodecyl-4 (1H) and quinolone (HDQ) are some of the previously characterised NDH2 

inhibitors, however they do not inhibit PfNDH2 activity (Dong et al., 2009). There are many NDH2 

inhibitors that have been identified, however the lack of information regarding their mode of action 

and associated inhibitor-bound NDH2 structure has impeded rational drug development (Petri et al., 

2018). 

1.2.3 Molecular dynamics simulation 

To study the progression of molecular systems at temperature and physiological conditions, molecular 

dynamics simulations are applied. During molecular dynamics, trajectories are generated by 

numerically solving the Newton‟s equations of motion, and the atoms interact during the simulation 

showing the proper dynamic evolution of the system. For MD, temperature, pH and pressure and 

residue mutations can be adjusted in separate simulations to demonstrate the effect of these 

environmental changes on structural variation; as such it can show events such as misfolding or 

change in conformation of the protein throughout simulation (Campos et al., 2010). 

Highly optimized software packages on HPC resources are used to perform MD simulations, 

trajectories produced are generally large in size ranging from gigabytes to terabytes making it difficult 

to impractical, to convert trajectories into a range of different formats, therefore the trajectories are 

produced as a frame by frame description of the motion of particles in the simulation (Richard et al., 

2019). Using long simulation times and realistic boundary conditions, together with increasing 

computational power, simulations can now be performed on even larger systems, and complex 

systems such as membrane protein structures can also now be successfully and accurately simulated 

(Gordiz et al., 2015; Hansson et al., 2002). Due to the complexity of the simulation, large systems 
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require significant computing resources to capture behaviour of the system in full atomic detail 

(Dreher et al., 2013; Hollingsworth & Dror, 2018). There are fundamental challenges due to the high 

computational cost of evaluating forces between all particles combined with integrating over short 

time steps (~2 fs). The structural motions of the atoms are obtained by solving the classical Newton 

equations for the systems, over time forces acting on the atoms are computed, depending on the 

particle position and total potential energy of the system (Vtot) (Liguori et al., 2020).  

The steps taken in MD simulations are shown in figure 1.8 below in which step 1 involves solvation 

of the system, providing a force field that is reliable for the type of simulation (Jiang et al., 2018; 

Schuetz et al., 2019). Energy minimisation in step 2 is used to release steric clashes using classic algo-

rithms such as steepest descent and conjugate gradient methods; in step 3 a periodic boundary condi-

tion is applied, the ensemble to sample from is chosen and proper thermostat and barostat is set. Be-

fore the production run periodic boundaries on all sides are activated and initial simulations in canoni-

cal ensemble (with a constant number of particles, volume, and temperature (NVT)) and isothermal-

isobaric ensemble (with a constant number of particles, pressure, and volume (NPT)), with harmonic 

position restraints on all heavy atoms are conducted to equilibrate the systems. Step 4 involves equili-

bration of the system and, in simulations with membranes, relaxes the membrane, protein and water 

with position restraints on selected molecules to minimize perturbation. Step 5 produces the trajectory 

or analysis, that may be checked for convergent results and in step 6 more detailed analysis, such as 

root mean square deviations (RMSD), root mean square fluctuation (RMSF), radius of gyration, dy-

namics cross correlations (DCC) and Principal component analysis (PCA) are performed for full anal-

ysis of the MD results (Lemkul, 2019; Sheik Amamuddy et al., 2021a).   

1.2.3.1 Analysis for the MD simulations 

The root mean square deviation (RMSD) is the measure of average distance between atoms of super-

imposed proteins and are represented in angstrom (Å), the equation below is used to calculate root 

mean square deviation (RMSD) where the averaging is performed over the n pairs of equivalent atoms 

and di is the distance between the two atoms in the i-th pair (Kufareva & Abagyan, 2012).  

     √
 

 
∑  

 

 

   

 

 

Equation 1.1 The equation used to calculate the RMSD 

The root mean square fluctuation (RMSF) measures the average deviation of a residue over time from 

a reference position, it analyses the structure portions of structure that are fluctuating from their mean 

structure the most (Benson & Daggett, 2012). In the root mean square fluctuation (RMSF) equation 
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below T is the time over which root mean square fluctuation (RMSF) is averaged, ri
ref is the reference 

position of particle i and the time averaged position of the same i particle will be the reference 

position. 
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Equation 1.2 The RMSF equation 

The radius of gyration (Rg) measures the compactness of a protein structure and the size of the protein 

molecules (Arnittali et al., 2019). The equation below shows mi as the mass of atom i and ri the 

position of i with respect to the center of mass of the molecule. 
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Equation 1.3 The equation used to calculate the Radius of gyration 

Principal component analysis (PCA) calculates the relationship between statistically meaningful 

conformations sampled during the trajectory, the dataset variables are narrowed down to “principal 

components” preserving still the differences between the data (Martínez, 2015). Principal components 

are new variables that are constructed as linear combinations or mixtures of the initial variables.  

Dynamic cross correlation (DCC) calculates the degree to which residues move together and this can 

be represented in an NxN heatmap, where N is the number of Cα atoms of the system each element 

corresponds to the dynamic cross-correlation between each i,j atom (Brown et al., 2017a). The nature 

of a protein is dynamic and this change in conformation can be inspected using DCC, regions of high 

correlation reflect motions in the same direction and anti-correlated motions show atoms moving in 

opposite direction (H. Yu & Dalby, 2020). In the equation below ri(t) denotes the vector of the ith 

atom‟s coordinates as a function of time t (Kasahara et al., 2014). 
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Equation 1.4 The Dynamic cross correlation equation 
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Figure 1.8 The workflow of molecular dynamics simulations 

There are a number of programs and software used to perform MD simulation programs like NAMD 

(Phillips et al., 2020), GROMACS (Berendsen et al., 1995), AMBER (Salomon-Ferrer et al., 2013), 

CHARMM (Lamoureux & Roux, 2003), OpenMM (Eastman et al., 2017) and LAMMPS (Thompson 

et al., 2022). Visualisation programs such as VMD (Humphrey et al., 1996), CHIMERA (Pettersen et 

al., 2004) or PyMOL (Yuan et al., 2016) can be used to visually inspect or make measurements on the 

MD simulations. MD simulations hold great promise in characterising the structural and dynamical 

aspects of protein-ligand interactions important in the functioning of a membrane protein; atomistic 

simulations allow for temporal resolutions of about 1fs and spatial resolutions of sub-angstrom level 

(Muller et al., 2019).  

1.3 Project motivation and knowledge gap 

Due to the emergence of drug resistance in the parasite against current anti-malarial drugs there is a 

need to develop new and effective drugs that can be used to eradicate malaria. Type II NADH: 

quinone oxidoreductase (NDH2) a protein that catalyses the electron transfer electrons from NADH to 

quinone through the FAD cofactor has been proven to be a new drug target. 

As malaria is still a cause of concern around the world and claiming many lives each year especially 

in children under the ages of 5, there is a need for more studies and drug discoveries to conquer this 

disease. Further, studying the 5 plasmodium species that causes malaria in human beings is necessary 

as it allows one to compare the mechanism of action across these species. The inclusion of a 

membrane in this study is to explore and understand the purpose of the membrane towards the 

functioning of the NDH2 protein. There have not been many NDH2 studies where the membrane has 

been included in simulation. To understand the biological function of a protein it is vital to gather the 

knowledge of the atomic motions and their collective correlated character (Karplus & Ichiye, 1995). 
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Little is known about how membrane proteins function and how their structure is defined by amino 

acid sequences. We seek to understand the functional mechanism of NDH2 and possibly identify 

compounds that can be used to interrupt its function in electron transfer.     

1.4 Research aims and objectives 

Bioinformatics tools and techniques will be used to study the NDH2 protein in the context of drug 

discovery. We aim to identify lead compounds, explore the protein-ligand interactions, and compare 

the plasmodium species that causes malaria in human beings. The aims of the project include:  

1. Sequence analysis of the plasmodium species, the human homologue and 11 other species, 

using Multiple sequence analysis, motif analysis, phylogenetic analysis, and sequence 

analysis 

2. 3-D structural construction of NDH2 models for the four plasmodium species that causes 

malaria in human beings, where crystal structures have not yet been solved.  

3. Perform high throughput virtual screening on all six species against the 623 SANCDB 

database and select hit compounds for further analysis. 

4. Calculate the physical movements of the atoms using Molecular Dynamics simulations, first 

without a membrane and secondly with a membrane as NDH2 is a peripheral membrane 

protein.  

5. Other techniques such as PCA and DCC will be used in analysing the MD trajectories to 

investigate the protein-ligand interactions.  
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2 
Sequence analysis 

Chapter overview 

Proteins perform most of the work in living cells; they control cell division, metabolism, and the flow 

of materials and information in and out of the cells (Frauenfelder & McMahon, 1998). It is essential 

for one to study how proteins function to understand how cells work (Zhang et al., 2013). In Chapter 1 

we have addressed that type II NADH: quinone oxidoreductase catalyses the electron transfer from 

NADH (electron donor) to a quinone (electron acceptor). However, this information is not complete 

in the understanding of the functioning of this protein in an organism. In this study investigations have 

been taken with added aim to understand the context in which the biochemical activity is used and to 

know the role that the protein has on the growth or development of the organism. The study starts 

with sequence analysis, which was performed in which the FASTA sequence of the NDH2 was 

compared with sequences of other species and of the human homologue. Multiple sequence alignment 

(MSA), motif analysis, phylogenetic analysis and sequence identity were the bioinformatics methods 

used to study the sequences. The MSA results allowed us to compare between the NDH2 and AIF-M1 

protein so to find similarity and homologous between the two proteins and phylogenetic analysis was 

also conducted to assess the shared evolutionary origins and genetic diversity in the sequences.  

2.1 INTRODUCTION 

2.1.1 Data retrieval 

The first step in solving and studying protein as primary sequence, this data retrieval or sequence 

search and sequence similarity is widely accepted as the best marker for substantiating homologous 

relationships (Gabler et al., 2020). The name of the protein or its sequence can be used as a query in 

sequence databases, and the advantage of these retrieval systems is that they also add additional 

important information in related databases. The NCBI website, for example, uses some measure of 

similarity between sequences to distinguish biologically significant relationships from chance 

similarities. BLAST, a tool in NCBI, finds regions of similarity between biological sequences and 

https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4937/
https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5449/
https://en.wikipedia.org/wiki/NADH
https://en.wikipedia.org/wiki/Quinone
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compares nucleotide or protein sequences to sequence databases and calculates the statistical 

significance. BLAST uses a heuristic method to identify homologous sequences. This method finds 

short matches initially between two sequences, the algorithm then finds all common words between 

the query sequence and the hit sequences (Vej & Telephone, 2007).  BLAST programs use the 

statistical methods of Karlin and Altschul and were designed for fast database searching without 

affecting the sensitivity for distantly related sequences (Altschup et al., 1990). BLAST (Ladunga, 

2017; Zhuang et al., 2012), HMMER (Potter et al., 2018; Prakash et al., 2017), HHblits (Remmert et 

al., 2012), HHpred (Söding, 2005; Steinegger et al., 2019) protein sequence and domain databases 

SCOPe (Fox et al., 2014), ECOD (Cheng et al., 2014; Schaeffer et al., 2018), Pfam (Coggill et al., 

2008; El-Gebali et al., 2019), RefSeq (O‟Leary et al., 2016), UniProt (Pundir et al., 2016), National 

Center for Biotechnology Information Web Resources (NCBI) (Agarwala et al., 2018; Gibney & 

Baxevanis, 2011; M. Yang et al., 2020) are some of the high quality and reliable sequence search 

engines. 

 

2.1.2 Multiple sequence alignment and motif analysis 

Multiple Sequence Alignment (MSA) is generally the alignment of three or more biological sequences 

(protein or nucleic acid) of similar length. This process forms the basis of a wide ranges of biological 

data analysis, including the description of the relationship between protein sequences assumed to have 

a common ancestry, descendance and protein structural and functional similarity (Rozewicki et al., 

2019). For comparison sake and accuracy, in our study three multiple sequence alignment tools 

MAFFT, MUSCLE and PROMALS3D were used to study the sequences of interest using default 

parameters. 

 

MSA using fast Fourier Transform (MAFFT) is a method in which the initial alignment is constructed 

by the method and refined by the iterative refinement method. In the method a rough distance between 

every pair of input sequences is rapidly calculated based on the number of 6-tuples shared by the two 

sequences and iterative refinement optimizes the weighted sum-of-pairs (WSP) score, using an 

approximate group-to-group alignment algorithm and the tree-dependent restricted partitioning 

technique (Edgar et al., 2004; Gotoh, 1995; Hirosawa et al., 1995; Katoh et al., 2002, 2005). The 

latest version of MAFFT incorporates pairwise alignment information into the objective function, 

using the following different algorithms: the G-INS-i method which incorporates global pairwise 

alignment information; the H-INS-i algorithm which incorporates local pairwise information from the 

fasta34 program in FASTA and; finally, the F-INS-i option which uses the fasta34 program without 

the Smith–Waterman optimisation (Pearson & Lipman, 1988; Reigosa et al., 2001).  

Multiple Sequence Comparison by Log-Expectation (MUSCLE) uses two distance measures for a pair 

of sequences - a k-mer distance which is a contiguous subsequence of length k-tuple (for an unaligned 
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pair) and the Kimura distance correction for multiple substitutions at a single site (for an aligned pair) 

(Edgar et al., 2004). The first step in MUCSLE is to rapidly generate a rough draft of the alignment 

using a very crude guide tree, and the tools also implement the log expectation (LE) score to align 

profiles during the progressive alignment; this has been shown to outperform other scoring functions 

in homology searches (Wallace et al., 2005). Refining the rough draft by generating a more accurate 

guide tree, based on the initial alignment is the second stage in the process, generating a second pro-

gressive alignment. New pairwise profile alignments are calculated only for those subtrees that have 

changed relative to the initial tree to increase speed, and to further improve the alignment quality an 

optional tree-based iteration step has been factored in (Hirosawa et al., 1995). 

Profile Multiple Alignment with local Structures and 3-D constrains (PROMALS3D) is a tool for 

protein MSA construction enhanced with additional evolutionary and structural information from 

database searches (Pei & Grishin, 2014). This method integrates advanced alignment techniques such 

as probabilistic consistency of profile–profile comparisons, and additional information from database 

homologs and predicted secondary structures to derive consistency-based alignments (Pei et al., 

2008). PROMALS3D uses the scoring function of weighted sum-of-pairs of BLOSUM62 to align 

similar sequences (Henikoff & Henikoff, 1992). The output is a consensus alignment enriched with 

sequence and structural information about input proteins and their homologs. The PROMALS3D 

webserver allows input of sequences and structures; it extracts sequences from input structures 

combining them with other input sequences to form the final input sequence set. 

 

Proteins are polymers from the combinations of twenty amino acids linearly connected and are com-

plete biological molecules when in their stable conformation. The chemical interactions and physico-

chemical properties of amino acid residues determine the conformation of proteins and form a rela-

tionship between protein sequences and structures (Kim et al., 2011). Understanding the close rela-

tionship between protein sequences and has been one of the primary interests in bioinformatics re-

search. A motif is an amino acid sequence pattern that is widespread and contributes to the biological 

function of the sequence in which it resides, biological significance such as, binding sites and con-

served domains (Grant et al., 2011). For example, motif discovery plays an important role in identifi-

cation of Transcription Factor Binding Sites (TFBSs) that help in learning the mechanisms for regula-

tion of gene expression (Hashim et al., 2019). Sequence motifs can predict other protein‟s structural 

or functional behaviours and discovering sequence motifs is a key task to comprehend the connection 

of sequences with their structures. Biological sequence motifs are short, with a fixed length, and in-

clude sequence patterns that may represent important structural or functional features in nucleic acid 

and protein sequences such as transcription binding sites, splice junctions, active sites, or interaction 

interfaces (Mohamed et al., 2016). To discover the protein sequence motifs a MEME algorithm, from 

the Multiple Expectation Maximisation for Motif Elicitation MEME suite was used. The MEME suite 
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was used as it is freely available for academic use and is a powerful tool for studying sequence motifs 

in proteins, DNA and RNA. 

2.1.4 Sequence identity and phylogenetic analysis 

The Maximum Likelihood (ML) statistical method was used to infer evolutionary relationships while 

calculating trees for the top three models for each gap deletion option for each protein families. The 

Molecular Evolutionary Genetics Analysis (MEGA) is a software that provides a biologist centric, 

integrated suite of tools for statistical analyses of DNA and protein sequence data from an evolution-

ary standpoint, was used to calculate the phylogenetic trees (Tamura et al., 2011). In this package, for 

nucleotide substitutions, the GTR and five nested models are available, whereas six models with and 

without empirical frequencies (+F) have been programmed for the amino acid substitutions (Tamura 

et al., 2011). MEGA5 provides the goodness of-fit of the substitution models with and without assum-

ing the existence of evolutionary rate variation among sites, which is modelled by a discrete Gamma 

distribution (+G) (Yang, 1994) and/or an allowance for the presence of invariant sites (+I) (Fitch & 

Margoliash, 1967; Shoemaker & Fitch, 1989). The Bayesian information criterion (BIC, Schwarz 

1978) measures the goodness-of-fit of each model to the data and is corrected by the Akaike infor-

mation criterion (AICc), (Hurvich & Tsai, 1989; Posada & Buckley, 2004). 

2.1.5 Structure prediction (3-D) 

Structure prediction is the prediction of the three-dimensional structure of a protein from its amino 

acid sequence, predicting its folding, and its secondary, tertiary and quaternary structure from its 

primary structure (Mattea et al., 2018). Experimental and computational methods can be used for 

protein structure prediction, in which the experimental methods include X-ray crystallography. NMR 

spectroscopy and cryo-EM, and the computational methods include homology modelling, fold 

recognition and Ab initio modelling (Kuhlman & Bradley, 2019).Comparative or homology 

modelling constructs a useful 3-D model for a protein that is related to a known protein structure, if 

the experimentally determined structure is not yet available (Bradley et al., 2005; Eswar et al., 2014; 

Fiser, 2004; Misura et al., 2006; Petrey & Honig, 2005). This computational modelling method is 

used to cover the gap between number of known protein sequences and Protein data bank (PDB) 

entries, by complementing the experimental structure determination (Studer et al., 2021). Comparative 

modelling interpolates structural information from homologous structural information from 

homologous structures providing protein models that are of sufficient high quality and accuracy to 

guide structure-based research. There are four main steps involved in comparative modelling: (1) fold 

assignment which identifies similarity between the target and at least one known template structure, 

(2) alignment of the target sequence and the template or templates, (3) building a model based on the 

alignment with the chosen template or templates, (4) predicting model errors (Eswar et al., 2014). 

There are several computer programs and Webservers that automate the comparative modelling 

process, and, in this study, MODELLER was used. This program automatically calculates a model 
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containing all non-hydrogen atoms, within minutes on a reasonable processor and with no user 

intervention (Eswar et al., 2006). MODELLER can calculate additional auxiliary tasks such as fold 

assignment (Eswar et al., 2003), alignment of two protein sequences or their profile (Marti-Renom, 

2004), multiple alignment of protein sequences (Madhusudhan et al., 2006), phylogenetic tree 

calculation and de novo modelling of loops in the protein structure, apart from model building 

(Watanabe et al., 2004).    

MODELLER generates protein 3-D structures by satisfying spatial restraints imposed by the sequence 

alignment with the template structure and applying the terms of the CHARMM-22 force-field. From 

this a 3-D protein model is obtained by optimising the molecular probability density function while 

simultaneously minimising input restraint violations (Bernard R. Brooks et al., 1983; Evers et al., 

2003). Several homology models are generated in this step, to guarantee sufficient conformational 

sampling of each active-site residue.  

The following external evaluating tools were used for structure quality assessment of the selected 

model, Verify3D, PROCHECK and Protein Structure Analysis (PROSA) webservers (Eisenberg, 

1997; Laskowski et al., 1993; Wiederstein & Sippl, 2007). Verify3D compares the 3-D protein model 

to its amino acid sequence to check the accuracy of the model by using a 3-D profile computed from 

atomic coordinates of the structure, 3-D profiles of the correct protein structures match their own with 

high scores (Eisenberg, 1997). This program enables one to locate parts of the protein that are likely 

to have the correct conformation or to look for misfolded regions through assessment of structures on 

the residue level (Von Grotthuss et al., 2003). 

The PROCHECK program provides a detailed check on the stereochemistry of the protein structure; 

the output is comprised of several plots in postscript format and a comprehensive residue by residue 

listing giving an overall quality of the structure as compared with well refined structures of the same 

resolution and highlights regions that may need further investigation (Laskowski et al., 1993). 

PROCHECK is a suite of separate Fortran and C programs that run successively via a shell script. 

Hydrogen and atoms with zero occupancy are not included in the analyses and only the highest-

occupancy conformations are retained where atoms are found in alternate conformations. 

The ProSA program (Protein Structure Analysis) is a tool widely used to check 3-D models of protein 

structures for potential errors, its range of application includes error recognition in experimentally 

determined structures, theoretical models, and protein engineering (Wiederstein & Sippl, 2007).  

Besides the fact that each of the tools used in the construction of a model, template selection, 

alignment, model building, and refinement have their own internal measures of quality, ultimately, the 

most meaningful criterion for the quality of a model is its conformational energy (Petrey & Honig, 

2005). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sequence-alignment
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sequence-alignment
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2.2 METHODOLOGY  

2.2.1 Data retrieval 

The Plasmodium falciparum NDH2 sequence with primary accession number (Q8I302) was retrieved 

from Universal Protein Resource Knowledgebase (UniProtKB) database and the crystal structure 

(PDB ID: 5JWA) was retrieved from RCSB Protein Data Bank (Consortium, 2019; Rose et al., 2011). 

The PfNDH2 protein is expressed by the PF3D7_0915000 gene. The known crystal structure 

(ID:5JWA) was used as the query sequence to retrieve the sequences of the other four plasmodium 

species that cause malaria in human beings using the Basic Local Alignment Search Tool (BLAST) 

from the National Center for Biotechnology Information (NCBI) (Altschup et al., 1990) 

(http://www.ncbi.nlm.nih.gov/). The protein blast (blastp) algorithm was used, the Protein Data Bank 

proteins (PDB) database was selected, and the FASTA sequence obtained from RCSB was pasted into 

the webserver query search box. 

The query search had a percentage identity of 100%, an E-value of 0.0, query coverage of 100% and 

the length of the protein was 521 amino acids. The X-ray diffraction method was used to extract the 

protein, it had a resolution of 2.16 Ǻ, an R-value free of 0.228, R-value work of 0.188 and R-value 

observed of 0.190. With alternative NADH dehydrogenase (NDH2) being absent in human beings, it 

was necessary to retrieve a human homologue as mentioned in literature (Elguindy & Nakamaru-

ogiso, 2015). For this homologue the protein sequence of the Apoptosis-inducing factor 1 (AIF-M1) 

with an accession number of (O95831) was retrieved from UNiProtKB and the crystal structure (PDB 

ID: 1M6I) was retrieved from RCSB Protein Data Bank (Consortium, 2019; Rose et al., 2011). The 

crystal structure of apoptosis inducing factor (AIF-M1) under the classification of oxidoreductase 

enzyme was extracted using the X-ray diffraction method, it had a resolution of 1.80 Ǻ, R-value free 

of 0.241 and R-value work of 0.225. 

http://www.ncbi.nlm.nih.gov/
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Figure 2.1 (a) The X-ray crystal quality of PfNDH2 (PDB ID: 5JWA), (b) Apoptosis inducing factor 

(PDB ID: 1M6I) 

2.2.2 Multiple sequence alignment 

A multiple sequence alignment calculation of proteins was performed in which the sequences of the 

Plasmodium, human being, bacteria, and fungi were included. Three multiple alignment tools were 

used to perform the calculations for comparison and accuracy reasons, and a total of 17 sequences 

were included in the multiple sequence alignment. National Center for Biotechnology Information 

(NCBI) and Universal Protein Resource Knowledgebase (UNiProtKB) was used to retrieve the 

sequence of the bacteria and fungi (http://www.ncbi.nlm.nih.gov/) and 

(https://www.uniprot.org/uniprotkb/). The FASTA format file, NCBI or UNiProtKB accession 

number of the 17 sequences for NDH2 which included Plasmodium falciparum (5JWA), Plasmodium 

knowlesi (OTN67496), Plasmodium malariae (SBT70925), Plasmodium ovale (SCQ16138), 

Plasmodium vivax (SGX76671), Homo sapiens (1M6I), Mycobacterium tuberculosis (L7N5D1), 

Escherichia coli (P00393), Corallococcus corraloides (QAT82924), Staphylococus aeureus 

(Q2FZV7), Neurospora crassa (Q7S1W8), Pseudomonas aeruginosa (AZP62247), Saccharomyces 

cerevisiae (S288C NP_010198), Yarrowia lipolytica (VBB82463), Aspergilluus thermomutatus 

(RHZ55328), Aspergillus turcosus (RLL97513) and Caldalkalibacillus thermarum (F5L3B8), were 

uploaded as an input to the multiple alignment tool webservers 

(https://www.ebi.ac.uk/Tools/msa/mafft/, https://www.ebi.ac.uk/Tools/msa/muscle/ and 

http://prodata.swmed.edu/promals3d/). These species cause disease and health problems in humans 

http://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/Tools/msa/mafft/
https://www.ebi.ac.uk/Tools/msa/muscle/
http://prodata.swmed.edu/promals3d/
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and contain the alternative NADH: ubiquinone oxidoreductases that catalyses the same redox reaction 

as respiratory chain complex 1 (Kerscher, 2000). The output files from the multiple alignment 

webservers were visualised, analysed, and edited using Jalview version 2.10 software (Alzohairy, 

2014; Hirosawa et al., 1995).  

2.2.3 Motif discovery 

MEME version 4.11.2 was used to identify significant patterns in the data sequences that may repre-

sent important structural or functional features (Bailey et al., 2009). An in-house motif analysis py-

thon script was run using a cluster (YODA) to perform motif calculations, the script contained the 

parameters of the run in which 50 motifs with a motif width of 6-20 residues were run for each class. 

The input file was the FASTA file consisting of the 17 sequences mentioned earlier. The first 30 mo-

tifs were considered significant for further analysis.  

An in-house MATLAB script was used to create a heatmap, to show the conserved motifs in the 

NDH2 sequences. To identify overlapping motifs the Motif Alignment and Search Tool (MAST) was 

used; this tool takes a group of motifs as the query and compares it to each sequence in the database 

of sequences (Bailey et al., 1998). An alignment free method was applied, so to find all motifs that 

satisfies the input constraints (Aneja et al., 2016). MEME gives two output text files the mast.txt and 

meme.txt, in which the mast.txt output consist of three representations of the results, excerpts of 

which are shown in the three figure panels. The E-value score of the overall match of the motifs in the 

input, followed by the relative locations of significant matches of the motifs in the sequences and fi-

nally a detailed picture of the motif matches, showing the exact location and p-value score of each 

motif match aligned above the target sequence (Bailey et al., 2009). The meme.txt file was used as the 

input file to create a heatmap showing the motifs.  

The mast.txt file advised that motifs that had correlations above 0.60 should be removed from query 

because this could cause some combined p-values and E-values to be underestimated and reduce ac-

curacy (Bailey et al., 2009). The E-value of a sequence is the expected number of sequences in a ran-

dom database of the same size that would match the motifs as well as the sequence does and is equal 

to the combined p-value of the sequence times the number of the sequences in the database. The com-

bined sequence of a sequence measures the strength of the match of the sequence to all the motifs and 

is calculated by: (1) finding the score of the single best match of each motif to the sequence, (2) calcu-

lating the sequence p-value of each score, (3) forming the product of the p-values and (4) taking the p-

value of the product. Each of the 17 sequences selected as best motifs for further analysis had an E-

value of less than 10 and a p-value of 0.0001. 

 

2.2.4 Sequence identity and phylogenetic analysis 

A separate in-house python script was used to calculate sequence identity of the 17 sequences. Phylo-

genetic tree calculations were carried out to study evolutionary relationships using the Molecular Evo-
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lutionary Genetic Analysis (MEGA) vs7.0 tool (S. Kumar et al., 2016). Three gap deletion options 

90%, 95% and 100% were used to calculate the models, and the best three evolutionary models for 

each deletion option were selected based on the lowest Bayesian information criterion (BIC) scores. 

The Maximum Likelihood (ML) statistical method was used to infer evolutionary relationship while 

calculating trees for the top three models for each gap deletion option for each protein families 

(Tamura et al., 2011). A strong branch swap filter and 1000 bootstrap replicates were used for each 

tree calculation. The trees were then compared to the bootstrap consensus trees to ensure that branch-

ing patterns were accurate and the best model and gap deletion for each case was, chosen.  

 

 2.2.5 Construction of Plasmodium species (3-D) 

The 3-D structures of NDH2 for P. knowlesi, P. malariae, P. ovale and P. vivax which do not current-

ly have crystal structures in the PDB were constructed by homology modelling using MODELLER 

version 9.21 (Sali, 2013). The PfNDH2 with accession number (ID:5JWA) was used as the template 

in structural modelling, the models were homodimers and included the FAD cofactor and four magne-

sium ions (Mg2+).  

Before MODELLER automatically calculates a model containing all non-hydrogen atoms the target 

sequence was converted to a PIR file format, which is a readable MODELLER format. Appropriately, 

we named the files (name of plasmodium species-5JWA.ali) which MODELLER used to read and 

write sequences and alignments. The first line in the PIR formatted sequence consisted of >P1; (name 

of the protein), the second line, had ten fields separated by colons, containing details about the struc-

ture and the rest of the file contained the sequence of the target sequence and specific plasmodium 

species with an asterisk (*) marking its end. The chains were separated by a backslash, and the two 

FAD cofactors and four magnesium ions (Mg2+) were included in the modelling file by adding eleven 

backslashes followed by a full stop after every slash (/./. /…) just before the asterisk (*). The amino 

acids in the sequence were represented using a standard uppercase single letter.  

A python script named model2.py was used to perform the actual building of the models, the script 

loaded standard Modeller classes and the auto-model class, following which it requested a verbose 

output, creating a new MODELLER environment to build the model. The (plasmodium species-

5JWA.ali) was used as the input file. 100 models were built at a very slow refinement; the top model 

which had the lowest z-DOPE (Discrete Optimized Protein Energy) score was selected for further 

analysis and validation. A text file was produced with the z-DOPE score of the template and all the 

models created. DOPE is an atomic distance-dependent statistical potential calculated from a sample 

of native protein structures; it is grounded entirely in probability theory (Shen & Sali, 2006). 

Internal evaluations using MODELLER were considered before using external evaluation or validat-

ing tools, the z-DOPE score was used to evaluate the fold of the selected model and there were no 

errors or restraint violations in the log file (evaluate_model.log) produced after running the python 
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script evaluate_model.py (Eswar et al., 2014). The following external evaluating tools were used for 

structure quality assessment of the selected model, Verify3D, PROCHECK and Protein Structure 

Analysis (PROSA) webservers (Eisenberg, 1997; Laskowski et al., 1993; Wiederstein & Sippl, 2007).  

 

2.3 RESULTS AND DISCUSSION 

This chapter aimed to study the protein sequences of the Plasmodium species (NDH2), together with 

the Apoptosis inducing factor (AIF-M1) homologue, using MSA, phylogenetic analysis and motif 

analysis. The 3-D structure determines the function of the protein; thus, the determination of a 

protein‟s structure is a vital step in understanding how the protein achieves its function. Experimental 

structure determination can be long and difficult, and errors can occur, the determined structure may 

adopt a non-physiological fold due to non-physiological constraints imposed by the crystal in the case 

of a X-ray crystallography (Kalman & Ben-Tal, 2010). Therefore, it is of importance to calculate the 

accuracy of the models created. 

 

2.3.1 Data retrieval and Sequence alignment 

The PfNDH2 protein structure with accession number (ID:5JWA), was coded for by the gene 

PF3D7_0915000, it was extracted using the X-ray method, with a resolution of 2.16 Ǻ, two chains (A 

and H) and a length of 494 amino acids starting from position 39-533. The Blastp output contained 

the local alignment, statistics of the score, sequence length and a hit score with number of identical 

residues. 

Multiple sequence alignment identifies common features between species and identify residues that 

serve an important function, this technique is the foundation for a range of computational methods 

including the prediction of protein secondary structure and solvent accessibility, functional sites, 

active sites, and interaction sites.  

There is no perfect multiple alignment tool and hence it is important to use a variety of available tools 

and compare the results that best suit your situation and obtain the best alignment possible 

(Waterhouse et al., 2009). The results obtained in MAFFT were visualised in the Jalview tool as 

shown in figure 2.2 below, the conserved regions were highlighted, in which the blue showed 

hydrophobic regions (A, I, L, M, F, W, V), orange depicted the glycines (G), green showed the polar 

regions (Q), cyan showed the aromatic regions (H, Y), pink showed the cysteines groups (C), magenta 

depicted (D) the negative charges and yellow showed the prolines (P).  

Figure 2.3 below shows the alignment results from MAFFT, MUSCLE and PROMALS3D 

webservers visualised in Jalview software. MAFFT was selected as the tool that had the best 

alignment, as it had fewer gaps. 

 

 



35 
 

 

 

Figure 2.2 MAFFT multiple sequence alignment output visualized in Jalview version 2.10 software 
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Figure 2.3 The multiple sequence alignment output results from (a) MAFFT, (b) MUSCLE and (c) 

PROMALS3D visualized in Jalview version 2.10 software 

2.3.2 Motif discovery and phylogenetic analysis 

Motif analysis for the 17 sequences of NDH2 from different organisms was performed. An in-house 

python script was used to create a heat map shown below of the first 30 motifs. The motifs that were 

prominent in all sequences were mapped on the structures as shown in the figure 2.4 below. The 

MEME suite numbers the motifs and 0.0 on the legend depicts that there is no motif conservation in 

the proteins and 1.0 value indicates that there is 100% motif conservation in the protein sequences. 

The naming on top of the heat map shows the names of the organisms and the species group, they fall 

under. Motif 1, 9 and 10 showed 100% conservation in all sequences. Motif 2 had 95% preservation 
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in all sequences excluding the human. Motif 3-6, 8 and 11 had 90% preservation in all sequences 

except the human and N. crassa fungi. Motif 12 had 75% motif conservation in most sequences 

except C. thermanum, P. aeruginosa and N. crassa. The motifs that had 100% conservation in all 

protein sequences were mapped on the plasmodium NDH2 and human AIF-M1 structures. 

 

 

Figure 2.4 (a) A heatmap showing the first 30 motifs calculated by MEME, (b) the common motifs 

mapped on the plasmodium and human structures  
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Figure 2.5 The map depiction of the 50 motifs that were calculated and the three Motif 1, 9 and 10 

prominent motifs in all sequences 

Figure 2.5 above shows the motif map, the name of the sequences as given in the FASTA file. The 

motif map showed the location of motif sites, with each block showing the position and strength of a 

motif site. Motif 1, 9 and 10 showed taller blocks proving the significance of the sites. The logo of the 
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motifs that appeared in all species was shown, the height of the letter indicates the relative frequency 

at the given position in the motif (Bailey et al., 2006). 

The combined match p-value in the next column after the sequence name is defined as the probability 

that a random sequence (with the same length and conforming to the background) would have posi-

tion p-values such that the product is smaller or equal to the value calculated for the sequence under 

test. The position p-value is defined as the probability that a random sequence (with the same length 

and conforming to the background) would have a match to the motif under test with a score greater or 

equal to the largest found in the sequence under test. The map shows the location of motif sites. Each 

block shows the position and strength of a motif site. The height of a block gives an indication of the 

significance of the site as taller blocks are more significant. The height is calculated to be proportional 

to the negative logarithm of the p-value of the site, truncated at the height for a p-value of 1e-10. 

 

 

Figure 2.6 (a) Heatmap showing the sequence identity in all sequences and (b) showing the 

phylogenetic analysis of the sequences. Blue is low sequence identity and dark brown representing 

high sequence identity 

In figure 2.6 above, there was a 65% identity amongst the plasmodium sequences, and a 90% identity 

between the P. vivax and P. knowlesi. A. thermomutatus had a sequence identity of 95% with A. 

turcosus. P. aeruginosa had a sequence identity of 55% with E. coli.  

 Phylogenetic trees contain a lot of information about the inferred evolutionary relationships between 

a set of sequences. The human species position has a longer branch in the horizonal dimension 

proving to be having large amount of change in comparison to the other species. The number close to 

the nodes indicated bootstrap value; it represented the phylogenetic confidence of the tree topology. 

Normally bootstrap value above 70 is considered a plausible score for branch validation. The number 

of bootstraps replicated was set at 100 and 65-90 number on the branch of the tree means that the tree 

is reliable. 
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Homology modelling is a technique that models the most accurate structure of a protein from its 

amino acid information based on the similar template (Moult et al., 2005). Pairwise sequence identity, 

secondary structural similarity and structural completeness characteristics were considered in 

selecting the most eligible template. 3-D structure modelling was performed using MODELLER tool, 

100 models were created at very slow refinement. The model that had the lowest z-DOPE score was 

considered as the best model and was adopted for further studies and analysis. Homodimer models 

that had an FAD cofactor and four magnesium ions on each chain were created. 

Table 1.1 The table below shows the models that were selected as the best from the 100 models that 

were created together with their z-DOPE score 

Plasmodium species 3-D model se-

lected 

z-DOPE 

score 

UniProtKB ac-

cession number 

Plasmodium knowlesi 03 -0.78 OTN67496.1 

 

Plasmodium malariae 01 -0.88 SBT70925.1 

 

Plasmodium ovale 04 -0.83 SCQ16138.1 

 

Plasmodium vivax 03 -0.88 SGX76671.1 
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Figure 2.7 The four validated models, superimposed with the PfNDH2 crystal structure. Green is the 

PfNDH2, in yellow is the PkNDH2, in cyan is the PmNDH2, in pink is the PoNDH2 and in purple is 

the PvNDH2 structure. 

The quality of the models was assessed using Verfiy3D, PROCHECK and ProSA webservers as 

shown in table 2.2. In ProSA, the energy of the structure is evaluated after parsing the coordinates 

using a distance-based pair potential and a potential that captures the solvent exposure of protein resi-

dues (Sippl, 1993a). All calculations are carried out with Cα potentials, and the output on the web 

page displays a z-score and a plot of the residue energies. The z-score measures the deviation of the 

total energy of the structure with respect to an energy distribution derived from random conformations 

and indicates overall model quality (Sippl, 1993b). The value for each of the models was displayed in 

a plot that contained the z-scores of all experimentally determined protein chains in the PDB, this plot 

was then used to survey if the z-score of the models were within the range of scores typically found 

for the proteins of similar size belong to one of the groups. 

PROCHECK produces several output files in a default directory and provides assessment of the gen-

eral quality of the model by comparing the model with well refined structures of the same resolution. 

The Ramachandran plots created classify the residues as favoured, allowed, or disallowed confor-

mations, and in the table below majority of our residues were in the favoured or allowed regions vali-

dating the models. The quality of the crystal structure was also calculated using the same tools as 

those used for the 3-D models. 
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Table 2.1 Results obtained from the three webservers that were used to validate the quality of the 

models created, the quality of the crystal structure highlighted in green was also calculated 

Protein 

structure 

MODELLER 

Z-DOPE score 

ProSA z-

score 

Verify3D 

(%) 

PROCHECK (%) 

Ramachandran residue locations 

Favored Allowed Disallowed 

PfNDH2 -1.56 -9.82 91.11 90.50 9.40 0.00 

PkNDH2 -0.78 -10.03 88.15 90.70 8.60 0.20 

PmNDH2 -0.88 -9.62 84.74 91.40 7.09 0.20 

PoNDH2 -0.83 -9.97 88.69 90.50 8.80 0.20 

PvNDH2 -0.88 -9.98 88.76 91.80 8.50 0.00 

  

2.4 Conclusion 

This chapter focused on the sequence and structure analysis of PfNDH2, PkNDH2, PmNDH2, 

PoNDH2, PvNDH2 and AIF-M1 protein structures. NCBI and RCSB webservers were used to 

retrieve the crystal structures of the plasmodium falciparum (NDH2) and Apoptosis inducing factor 

(AIF-M1), and the former structure was used to create the 3-D models of the other four plasmodium 

species that causes malaria in human beings. To identify the conserved sequence patterns within the 

17 sequences of different species, motif analysis was applied. Motifs 1, 9 and 10 were found in all 17 

sequences. Motifs 1, 6, 10 and 11 were in the NADH binding site which form part of the NDH2 active 

site. ASP354 which formed conventional hydrogen bond with one of the oxygen in the FAD cofactor 

was present in motif 9, CYS355, Gly353, LEU316, THR211 and THR314 were some of the residues 

that form part of the enzyme‟s active site and were in motifs 1 and 9. Accurate 3-D models were 

constructed using MODELLER at a very slow refinement and three popular webservers were used to 

validate the quality of these structures. A low negative z-DOPE score value is considered a good 

native overlap. 

Further experiments were later performed using these models and this was presented and discussed in 

the following chapters. The following chapter calculated and discussed molecular docking, molecular 

dynamics, PCA and DCC analysis of the structures without being bound to the membrane.   
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3 
Structural analysis and compound search 

Chapter overview 

This portion of the study focuses on the mechanism of the NDH2, and how this protein interacts with 

the SANCDB compounds (Hatherley, Brown, Musyoka, Penkler, Faya, Lobb, & Tastan Bishop, 

2015). Sequence analysis was performed in which we looked at the FASTA sequence of the NDH2, 

sequences of other species and the human homologue. In the previous section, multiple sequence 

alignment, motif analysis, phylogenetic analysis and sequence identity were the bioinformatics 

methods used to study the sequences. 3-D structure construction of the plasmodium species that 

causes malaria in humans but do not have crystal structures in the databases yet were also constructed. 

This section follows by describing the virtual screening of 623 geometrically refined and minimised 

SANCDB compounds against the plasmodium species and AIF-M1 protein structures. Molecular 

dynamics of the hit compound complexes were performed and analyzed to study the evolution of the 

systems at temperature; Principal component analysis (PCA) and Dynamic cross correlation (DCC) 

were the final methods applied in this study, looking at the residue behavior of the complexes, when 

ligand-bound or ligand-free. 

3.1 INTRODUCTION 

3.1.1 Virtual screening 

In the early stages of drug discovery, virtual screening can provide an advantage to identify com-

pounds with potential inhibitory activity towards the target of interest; optimisation of many parame-

ters that combine the target properties (biological space), and ligand properties (chemical space) is 

essential to ensure the success of the drug discovery programme (Sandra et al., 2018). Autodock Vina 

requires receptor and ligand representations in a PDBQT file format, which is a modified protein data 

bank format containing atomic charges, atom type definitions and for ligands and topological infor-

mation (rotatable bonds) (Berman et al., 2000). Molecular docking involves two conceptual stages: 

sampling and scoring; for sampling a large number of ligand poses are generated on the surface of a 

protein and these poses are then scored for their predicted binding affinities (Rentzsch & Renard, 

2015). Natural compounds play a crucial role in drug discovery: they provide unique chemical struc-

tures, show more drug-like ADMET (absorption, distribution, metabolism, excretion, and toxicity) 

properties and are well suited to phenotypic screening (Huggins et al., 2016). Some studies have fo-
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cused on developing different rational drug design protocols including structural-based virtual screen-

ing for identifying novel candidates or have developed understanding of the most important chemical 

elements that guide ligand-protein interactions in relevant biological targets (Kellenberger et al., 

2004). The accurate predictions of binding orientations and affinities are the principal issues of mo-

lecular docking, with docking algorithms exploring different ligand poses corresponding to different 

conformations and orientations within the receptor binding site and detecting the “best docking solu-

tion” among the orientations by using a scoring function which evaluates binding energies (Elokely & 

Doerksen, 2013). In order to optimize and rank results, scoring functions are used that are able to 

evaluate intermolecular binding affinity or binding free energy, choosing the best orientation after the 

docking procedure (Gutberlet & Rudolph, 1996). The scoring function defines the correct poses from 

incorrect poses or binders from inactive compounds during its computation (Meng et al., 2011). The 

formular below in Equation 3.1 shows the scoring function formula from AutoDock, for two atoms i, 

j; the pair-wise atomic energy is evaluated by the sum of van der Waals (vdw), hydrogen bond 

(hbond), coulomb energy (elec) and desolvation (sol). W’s are weight factors used to calibrate the em-

pirical free energy surface (Morris et al., 1998). 

 

 

Equation 3.1 Autodock formular, each of the pair-wise energetic terms includes evaluations for 

dispersion/repulsion, hydrogen bonding, electrostatics, and desolvation 

3.1.2 METALizer 

The NDH2 protein has four magnesium ions on each chain, hence it is important to know if these ions 

interact with the protein, in terms of if parameterization is required in preparation for molecular 

dynamics simulations (Y. Yang et al., 2017). METALizer predicts the coordination geometry of 

metals in metalloproteins, potential coordination geometries of metals are matched onto the found 

metal interactions in the examined structure (Schöning-Stierand et al., 2020). The predicted 

coordination geometries and the observed metal interaction distances can be compared interactively to 

statistics calculated on the PDB. METALizer is available on the ProteinsPlus server together with 

other tools such as SIENA (Bietz & Rarey, 2016). This tool allows the comparison of the predicted 

coordination geometries and metal interaction distances to statistics calculated only on related protein 

metal binding sites, and it also explores different binding models of ligands to the metal within the 

protein. Another available tool in this suite that is of use is the EDIA filter which detects atoms that 

are poorly supported by electron density (Meyder et al., 2017). 
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3.1.3 Molecular dynamics of protein structures without the membrane 

Molecular dynamics simulations of the apo proteins, and simulations of the complexes with the hit 

compounds were performed using GROMACS (without embedding the complexes in a membrane) on 

the supercomputer at the Centre for High Performance Computing (CHPC) in Cape Town. For the 

protein structures, PDB text file of the PfNDH2 crystal structure was downloaded from the RCSB 

website, while for the other structures the homology modelled structures were used. For the crystal 

structure, the crystal structure waters were stripped out using Discovery studio version 2020. All sys-

tems were visualised using the PyMOL program. GROMACS gmx pdb2gmx version 5.1.2 was used 

to prepare the protein structures for molecular dynamics simulations. As such, the five plasmodium 

species and the human homologue were prepared for molecular dynamics, and pdb2gmx was used to 

create the protein topology. The GlycoBioChem PRODRG2 server was used to prepare the ligand 

topology files (Schüttelkopf & Van Aalten, 2004). GROMACS was used to perform molecular dy-

namics with stages of optimization, equilibration, and production dynamics to produce simulation tra-

jectories. 

3.1.4 Principal component analysis (PCA) and dynamic cross correlation (DCC) 

Principal component analysis (PCA) is the process of computing the principal components and using 

them to perform a change of basis on the data, sometimes using only the first few principal 

components and ignoring the rest. The principal components of a collection of points in a real 

coordinate space are a sequence of  p unit vectors, where the i-th vector is the direction of a line that 

best fits the data while being orthogonal to the first i-1 vectors. This is applied to molecular dynamics 

trajectories in the following manner. Before applying the PCA algorithm, first frame of trajectory is 

superimposed onto a reference structure. A matrix of atomic coordinates can be diagonalised by either 

Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) to obtain the collective 

modes (eigen-vectors) and associated eigenvalues which characterize the motion of proteins during 

the MD simulation. The magnitude of an eigenvalue represents the variance of the data covered by its 

eigenvector (Ross et al., 2018). The most important motions are extracted by calculating the models 

from a covariance/correlation matrix constructed from atomic coordinates in case of EVD which are 

ranked based on their ability to explain the variance in the data. The projections on the selected modes 

called Principal components (PCs) represent the dynamics of a protein in terms of a reduced set of 

orthonormal modes. 

To determine the degree to which any two atoms in a molecular dynamic simulation move together, 

dynamic cross correlation (DCC) is used (Borges et al., 2021). By extrapolating the motions along 

directions where major changes should occur, dynamic cross correlation can be used to understand the 

time-scale of a MD simulation (Karplus & Ichiye, 1995). The output is a matrix of all atom-wise cross 

correlations whose elements are displaced in a graphical representation. 

https://en.wikipedia.org/wiki/Change_of_basis
https://en.wikipedia.org/wiki/Real_coordinate_space
https://en.wikipedia.org/wiki/Real_coordinate_space
https://en.wikipedia.org/wiki/Unit_vector
https://en.wikipedia.org/wiki/Orthogonal
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3.2 METHODOLOGY 

3.2.1 Ion and cofactor interaction with the protein 

It was of importance to calculate and visualise the interaction between magnesium and the NDH2 

protein, so to parameterize the ions prior to molecular dynamic simulations. The NDH2 crystal 

structure and the models were inputs in the webserver https://proteins.plus/, the option “METALizer 

Metal complex geometry prediction” was selected prior to initiation of calculation. Calculation was 

made for each magnesium ion on each chain.  

Figure 3.1 METALizer calculating the geometry of the magnesium ions represented as green spheres 

on the NDH2 protein structure and the stick is the FAD cofactor 

3.2.2 Virtual screening 

AutoDock Vina was used to perform molecular docking, and its implementation of the Lamarckian 

Genetic algorithm (LGA) is considered as one of the best docking methods available (Allouche, 

2012). The PDB (ID:5JWA) structure was prepared first before performing molecular docking, in 

which to define the correct ionization and tautomeric states of the amino acid residues, hydrogen at-

oms were added to the enzyme using BIOVIA Discovery studio (Studio et al., 2020.) and to reduce 

complexities and steric hindrances, crystallographic water was removed using BIOVIA Discovery 

studio. A plugin tool in PyMol called AutoDock/Vina plugin was used to define the grid parameters 

and the grid for this study covered the interface region and part of the cofactor (FAD and NADH) 

binding site of the protein (Seeliger et al., 2010). The study aimed for a blind docking which had 

available as receptor the entire protein, so to allow for involvement of the interface region and the 

functioning or active sites. 

 

The protein is a homodimer consisting of R39-K533 amino acids, FAD cofactor and four magnesium 

ions (Mg2+) in each chain. FAD cofactor and the four magnesium ions that were present in the 

https://proteins.plus/
https://proteins.plus/5jwa#collapseSeven
https://proteins.plus/5jwa#collapseSeven
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PfNDH2, ID: 5JWA crystal structure and present in the modelled structures were included in the 

docking calculations. Blind docking of the 623 South African Natural Compounds (SANCDB) on the 

Plasmodium species and the AIF-M1 protein, was performed using Autodock Vina. The pre-

pare_ligand4.py script was used to prepare the ligands and the prepare_receptor4.py script was used 

to prepare the protein. Docking was performed identifying clusters with an energy range of 4, CPU of 

4 and exhaustiveness of 96 and the box size parameters are shown in table 3.1 below. To eliminate 

any bias, the FAD cofactor was removed from the crystal structure and redocked to validate the dock-

ing results. Hit compounds were inspected visually for non-bonded interactions using BIOVIA Dis-

covery Studio Visualizer. A rigid-protein flexible-ligand blind docking protocol was applied. Default 

torsional degrees of freedom were set in the ligands and Gasteiger atomic charges assigned.   

 

Table 3.1 The parameters, dimensions and coordinates used for molecular docking 

 Box dimensions (Å) Center coordinates (Å) 

Plasmodium X Y Z X Y Z 

P. falciparum 125 140 195 2.05 -35.95 -5.68 

P. knowlesi 120 140 185 2.08 -39.87 -0.70 

P. malariae 120 145 180 2.21 -40.87 0.41 

P. ovale 120 145 185 2.20 -39.9 034 

P. vivax 120 145 185 2.05 -38.87 -1.68 

AIF-M1 70 70 80 6.0 54.0 24.0 

 

LogP value, H-bond donors, H-bond acceptors, molecular weight, and rotational bonds which are the 

physicochemical properties of ligands were calculated using the free ADME/tox filtering tool and 

Lipinski rule of five. These properties are not absolute cut-offs but rather are viewed as guidelines; it 

is recommended that compounds should not have more than one violation of the properties for them 

to be considered safe for oral administration (Hossain et al., 2015). The five main parameters to test 

the drug likeness of compounds are absorption, distribution, metabolism, excretion, and toxicity 

which are calculated by the tools mentioned above. The ligands that bound to the desired regions, 

passed the physicochemical properties calculations, and those that had a lower binding energy were 

selected as hit compounds for further analysis. 

3.2.3 Molecular dynamics simulation 
Molecular dynamics simulation is well-established in the study of bio-molecular systems; this method 

provides key structural, energetic and thermo-dynamic information (Briones et al., 2019). 
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To elucidate the mechanism of action of the protein, and the structure exploration of the molecular 

nature of the protein, questions rose as to how the selected ligands could activate the protomers of the 

dimer. It is a challenging task to detect microscopic changes at the atomic level in the complex physi-

ological environment through experimental techniques (Lei et al., 2020). To assist experimental inves-

tigations in protein systems molecular dynamic simulations provide insight into structures and dynam-

ic behaviours at atomic levels (Fanelli & De Benedetti, 2011). GROMACS version 5.1.2 was used to 

perform the molecular dynamics and CHARMM36 (obtained from MacKerell lab website) was the 

force field used (Lindahl et al., 2021; Mackerell, 2004; Van Der Spoel et al., 2005). Pdb2gmx was 

used to prepare the protein topology and the GlycoBioChem PRODRG2 server was used to prepare 

the ligand topology files (Schüttelkopf & Van Aalten, 2004). There were no parameters available for 

the FAD cofactors in this force field, the cofactors were therefore extracted from the protein structures 

using BIOVIA Discovery studio and treated in the same way ligands during simulation. Hydrogen 

atoms were added to the ligands and the cofactors before processing them in PRODRG server. There 

were 4 complexes created and subjected to molecular dynamics for each plasmodium protein, the first 

being the apo and the remaining three for the hit compound complexes. Similarly, the AIF-M1 ho-

mology model was taken forward to dynamics with 4 systems, the first again being the apo and the 

remaining three were complexes with the three hit compounds (of PfNDH2 proteins, but docked to 

AIF-M1). 

Coordinates in the ligand.gro files were combined with those in the protein.gro files and the total 

number was adjusted according to the addition in the file. The parameters of the cofactors and the lig-

ands were included into the topology file by adding “#include “ligand.itp” line into the topology file. 

Under the molecules section in the topology file the cofactor and ligand name were included to 

acknowledge new molecules in the protein.gro file. The unit cell was defined as cubic and an SPC/E 

solvent model was used to define the water model during solvation of the unit cell. The solvated.gro 

file was visualised in VMD before proceeding. Ions were added such that each system was neutralised 

with sufficient (Na+) or negative (Cl-) ions. The systems were simulated under periodic boundary 

conditions. The steepest descent method was used in the energy minimisation of the systems with a 

convergence criterion of 1000 kJ.mol-1.nm-1. Two consecutive equilibration steps were performed on 

the minimised systems at 300 K and a pressure of 1 bar and, including position restraints of heavy 

atoms of the entire system excluding those of ions and water molecules. The make_ndx command was 

used in the application of restraints to both the cofactors and ligands, to define the atoms to be re-

strained. 

In the first step of equilibration, the number of particles, volume, and temperature were considered 

constant (NVT ensemble), while in the second step, the system was considered as isothermal-isobaric 

(NPT ensemble); this two-step equilibration allows the system to reach atom speeds compatible with 

the target temperature and pressure of the system (da Silva et al., 2020a). The position restraint of the 

protein-ligand atoms permits ions and water molecules to organize optimally along the surface of the 

http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs
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protein, forming more structured layers of solvation. Temperature control was achieved with the V-

rescale thermostat (Bussi et al., 2007) and pressure coupling using Berendsen “pcoupl” (Berendsen et 

al., 1984). The linear constrained solver (LINCS) algorithm was used to constrain the bonds to 

hydrogen atoms in the complex (Hess et al., 1997). The long-distance electrostatic interactions were 

treated using the Particle-Mesh Ewald (PME) algorithm and the cut-off radius applied to the van der 

Waals and Coulomb interactions was 1.2 nm (Darden et al., 1993; Essmann et al., 1995). Production 

MD simulation was performed on the Centre for high performance computing (CHPC) supercomputer 

for 100ns of simulation using 2 fs integration time and considering the NPT ensemble without any 

position restraint. 

3.2.4 Principal component Analysis (PCA) and dynamic cross correlation 
Normal Mode Analysis (NMA) and Principal Component Analysis (PCA) are two popular methods 

used to quantify large-scale motions, and to identify the „essential motions‟, as conventional analysis 

of (MD) trajectories may not identify global motions of macromolecules (Nizami et al., 2016; Ross et 

al., 2018). To detect correlations in large data sets (PCA) was used, which allows for the summarisa-

tion of information content by means of a smaller set of summary indices that can be easily visualised 

and analysed. The MD trajectories were stripped off the Periodic Boundary Condition (PBC), water 

and saved in a (.xtc) file. Mode-task was downloaded and installed under the Anaconda environment 

on the YODA cluster; only the Cα atoms of the protein were used as input, the MD trajectories and a 

PDB file that had the same residues as in the trajectory file was used. MDM-Task “com-

pare_essential_dynamics.py” tool implemented comparative essential dynamics run on the YODA 

cluster to assess the distribution of pocket conformational sampling across MD simulations of the pro-

tein structures (Sheik Amamuddy et al., 2021b). The output was the low energy basin and high energy 

PDB files and an essential dynamic plot picture showing the first (PC1) and second principal compo-

nent (PC2) axes. Along the axes were the percentages of total variance explained by each PC. The 

principal components (PCs) represent the dynamics of a protein in terms of a reduced set of or-

thonormal modes (Ross et al., 2018).  

Dynamic cross correlation (DCC) was calculated using the formula in equation 1.4 in chapter 1 (Di 

Marino et al., 2015).The MD-TASK program generates the heatmap showing the dynamic cross cor-

relation (DCC) between the Cα atoms of the selected frames in an MD trajectory to identify relative 

residue movements (Brown et al., 2017b). 

 

3.3 RESULTS 

3.3.1 Molecular docking 

The context of this study is the identification of compounds that could possibly alter the functioning 

of the Type II NADH: quinone oxidoreductase protein and possibly lead to the eradication of the 

plasmodium species that causes malaria in human beings. To this end, high throughput docking of 
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small natural compounds of the South African origin was performed on all the protein structures. 

Figure 3.2 below shows all 623 SANCDB (https://sancdb.rubi.ru.ac.za/) compounds docked on the 

homodimer proteins and the AIF-M1 protein. The proteins are oriented from chain A to chain H; 

compounds were binding mostly in the FAD and NADH binding domains, and in the interface region. 

Prior to screening, the FAD cofactor was redocked in the PfNDH2 protein to validate the quality and 

accuracy of the docking results. We observed changes in conformation of the FAD cofactor when it 

was redocked to 5JWA protein; however similar and same interactions with residues were spotted. In 

the crystal structure we observed the Mg2+ ions interacting with the diphosphate region of the cofactor 

and, under redocking, these ions also interacted with both the diphosphate and adenine group (Figure 

3.3). 

 

Figure 3.2 Docking results of the 623 SANCDB compounds viewed in PyMOL visualizer and the 

binding sites are circled in black broken lines 

 

 

Figure 3.3 A picture of the redocked FAD cofactor to validate docking results, (a) is FAD cofactor 

redocked on 5JWA crystal structure, (b) the FAD cofactor interaction with the 5JWA crystal structure 
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and (c) The FAD cofactor binding in the FAD binding region, red (redocked FAD) and cyan (crystal 

structure FAD) 

To get an overview of how well the SANCDB library was performing against each protein 

conformation, a binding energy heatmap of all protein structures versus the ligands was generated. R 

studio was used to map the binding energies of the protein and ligand interactions as shown in figure 

3.3 (RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL 

Http://Www.Rstudio.Com/). The heatmap shows the AIF-M1, P. falciparum, P. knowlesi, P. 

malariae, P. ovale and P. vivax. The ligands in general exhibited lower binding energies when bound 

to AIF-M1 as compared to the other structures; while not concordant with the aim to find compounds 

binding favourably to the plasmodium species, it is individual compounds that are of interest rather 

than the dataset. Generally, the ligands had very low binding energies across all species. 

 

 

Figure 3.4 Binding energy heatmap of protein structures versus ligands, red depicts the lowest 

binding energy (kcal/mol) and green depicts the highest binding energy 

The SANCDB is an accessible database that contains compounds isolated from the plant and marine 

life in and around South Africa, below are the 2-D representations of the most favorable hit 

compounds (Diallo et al., 2021a; Hatherley, Brown, Musyoka, Penkler, Faya, Lobb, & Bishop, 2015; 

SANCDB, URL https://sancdb.rubi.ru.ac.za/.). The ligands with the lowest binding energy, a small 
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sized ligand, binding in the active site of both chains and protein interface site and Lipinski rule of 

five score were considered when selecting the hit compounds shown in figure 3.5 below.   

 

Figure 3.5 2D representation of the hit SANCDB compounds 
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It is of importance to calculate the oral availability and toxicity of the ligands before further analysis. 

As pioneered by Lipinski, analysis of the structures of orally administered drugs and of drug candi-

dates has been the primary guide to correlating physical properties with successful drug development 

(Veber et al., 2002). The biological behaviour of the drug depends on several physiochemical proper-

ties such as water solubility, partition coefficient (LogP), melting point, boiling point, also including 

bio concentration factor (BCF); these properties affect various pharmacokinetic properties such as 

drug‟s bioavailability, transfer, permeability and others (Chandrasekaran et al., 2018a). The SCFBio 

Lipinski Rule of Five website (http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp) allows 

one to input data and calculate the druggability of the compounds (Lipinski, 2004). The lipinski rule 

of five helps to determine if the determined molecule has chemical and physical properties to be 

orally bioavailable. It is based on pharmacokinetic drug properties such as absorption, distribution, 

metabolism and excretion, but the specifics are: no more than 5 hydrogen bond donors, no more than 

10 hydrogen bond acceptors, a molecular mass less than 500 Da and a partition coefficient not greater 

than 5. The violation of two or more of the above conditions suggests the molecule is not appropriate 

as an orally available drug. In the screening in this study, none of our hit compounds had more than 2 

violations. Of course, molecular mass is the sum of the atomic masses of the atoms in a molecule. 

Lipophilicity  refers to the ability of a chemical compound to dissolve in fats, oils, lipids, and non-

polar solvents such as hexane or toluene, it also has a significant influence on various pharmacokinet-

ic properties such as the absorption, distribution, permeability, as well as the routes of drugs clearance 

(Chandrasekaran et al., 2018b; van de Waterbeemd & Gifford, 2003). A hydrogen bond is an intermo-

lecular force (IMF) that forms a special type of dipole-dipole attraction when a hydrogen atom bonded 

to a strongly electronegative atom exists in the vicinity of another electronegative atom with a lone 

pair of electrons. In biochemistry and medicinal chemistry the hydrogen bond is a key non-covalent 

interaction, a single hydrogen bond can decide the potency of drug-like molecules for a target when 

all other interactions stay constant (Bauer et al., 2019). In high throughput virtual screening the fitness 

is the total interaction energy of the ligand with the protein, and is evaluated using the energy function 

(Morris et al., 1998). Table 3.2 shows the physicochemical properties of the hit compounds from 

SANCDB. 

 

Table 3.2 Lipinski rule of five results for the hit compounds together with the docking binding energy 

on the protein structures. PfNDH2 shows the binding energy for P. falciparum and human homologue, 

respectively 

Plasmodi

um 

SANCDB 

compound and 

their binding 

region 

Molecula

r mass 

High 

lipophilicit

y (logP) 

Hydroge

n bond 

donor 

Hydroge

n bond 

acceptor 

Lipinski 

violation

s 

Binding 

energy 

(Kcal/mo

l) 

http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp
https://www.thoughtco.com/definition-of-atomic-mass-weight-604375
https://www.thoughtco.com/definition-of-atom-and-examples-604373
https://www.thoughtco.com/what-is-a-molecule-definition-examples-608506
https://en.wikipedia.org/wiki/Chemical_compound
https://en.wikipedia.org/wiki/Fat
https://en.wikipedia.org/wiki/Oil
https://en.wikipedia.org/wiki/Lipid
https://en.wikipedia.org/wiki/Non-polar_solvent
https://en.wikipedia.org/wiki/Non-polar_solvent
https://en.wikipedia.org/wiki/Hexane
https://en.wikipedia.org/wiki/Toluene
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/pharmacokinetics
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/pharmacokinetics


54 
 

 

 

PfNDH2 

SANC101 

(chain A) 

290.27 0.51 5 6 0 -8.6 and -

7.7 

SANC344 

(chain H) 

420.45 5.52 3 6 1 -10.0 and 

-9.1 

SANC418 

(interface) 

508.73 4.18 3 6 1 -8.8 and -

8.2 

 

PkNDH2 

SANC263 

(chain A) 

272.25 2.52 3 5 0 -8.0 

SANC435 

(chain H) 

374.34 3.72 3 6 0 -10.5 

SANC342 

(interface) 

418.44 4.87 2 6 0 -10.2 

 

PmNDH2 

SANC101 

(chain A) 

290.27 0.51 5 6 0 -8.6 

SANC119 

(chain H) 

545.04 3.2 1 5 1 -9.4 

SANC422 

(interface) 

456.7 6.24 1 3 1 -10.4 

 

PoNDH2 

SANC252 

(chain A) 

274.01 4.97 0 0 0 -6.1 

SANC174 

(chain H) 

498.74 8.4 1 4 1 -9.8 

SANC590 

(interface) 

472.7 4.2 1 4 0 -10.6 

 

PvNDH2 

SANC121 

(chain A) 

467.15 1.26 2 5 0 -8.8 

SANC317 

(chain H) 

302.24 1.54 5 7 0 -8.9 

SANC152 

(interface) 

416.51 3.65 0 6 0 -8.0 

 

 

3.3.2 Molecular docking protein-ligand interaction 

Molecular docking requires efficient sampling across the entire range of positional, orientational, and 

conformational possibilities and it is a difficult optimisation problem (Morris et al., 1998). AutoDock 

vina was the package used to perform high throughput virtual screening. Drug discovery programs 
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employ high throughput screening paradigms with the intent to identify high affinity binders to target 

macromolecules (Gleeson et al., 2011). In this study, the docked ligand poses in all six protein 

structures were visually inspected using PyMOL. The protein structures were oriented from chain A 

to chain H. The hit compounds as shown in table 3.2 above were mapped on the 3-D structures in 

their respective binding sites. Only compounds that were hit compounds in PfNDH2 were visualised 

and analysed in the human homologue. Although the plasmodium species were similar structurally, 

we observed difference in ligand binding and interaction, hence compounds that were hit compounds 

in one structure were not necessarily hit compounds in the other.  

 

 

Figure 3.6 Visualization of the hit compounds docked on the protein structures. The magenta stick 

bound to chain A, the cyan stick bound to chain H and the green stick bound in the interface region of 

P. falciparum. The orange stick bound to chain A, the green stick bound to chain H and the pink stick 

bound in the interface region of P. knowlesi. The cyan stick bound to chain A, the pink stick bound to 

chain H and the dark pink stick bound in the interface region of P. malariae. The green stick bound to 

chain A, the pink stick bound to chain H and the orange stick bound in the interface region in P. ovale. 

The orange stick bound to chain A, the brown stick bound to chain H and the red stick bound in the 

interface region of P. vivax 
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BIOVIA discovery studio was used to analyse the protein and ligand interaction as shown in figures 

3.7-3.9 below; we focused on hydrogen bonds (conventional hydrogen bond and carbon hydrogen 

bond) and hydrophobic bonds (Pi-Pi stacked, Pi-sigma, Pi-alkyl and alkyl). Van der Waals interac-

tions are distance-dependent interactions between atoms, they are comparatively weak and can be eas-

ily broken (Nielsen, 2009). Conventional hydrogen bonds are a specific type of electrostatic interac-

tion between a proton attached to an electronegative atom such as a nitrogen or an oxygen and a lone 

pair of electrons on an electronegative atom such as N, O, or F, they are very important in drug–

receptor interactions as well as the structural integrity of many biological molecules, including pro-

teins (Arunan et al., 2011). The carbon hydrogen bonds are non-covalent interactions that are weaker 

than heteroatom-hydrogen bonds, however when activated by electron withdrawing groups such as C-

H groups that are covalently bound to a cationic nitrogen at (N+-C-H), they may become strong as 

heteroatom hydrogen bonds and could be important for molecular recognition (Itoh et al., 2019). Pi-Pi 

stacking interactions occur between aromatic rings containing π orbitals and can be used in broad ap-

plications such as immobilisation and specific recognition (Chen et al., 2018). Pi-alkyl interactions are 

non-covalent interactions involving Pi systems. Alkyl interactions have some relevance in biology and 

chemistry and are weak interactions (Giese & Albrecht, 2020). The hit compounds, possessing the 

lowest binding energies, were taken in complex with the target, to all atom molecular dynamics simu-

lation studies. 

 

PfNDH2 interacted with the following ligands as follows SANC00101 formed conventional hydrogen 

bonds with Thr152, Pro434 and Thr211, and it had a much weaker carbon hydrogen bond with 

Ala308. SANC00344 formed a conventional hydrogen bond with Ser472 and carbon hydrogen bond 

with Thr211. SANC00418 formed conventional hydrogen bonds with Gly87, Thr88 and Leu89. For 

PkNDH2 the ligand interactions were as follows: SANC00263 formed conventional hydrogen bonds 

with Tyr507; SANC00435 formed conventional hydrogen bonds with Lys167H and Gly310H; while 

SANC00342 formed conventional hydrogen bonds with Thr100A, Asn97A and Arg515. PmNDH2 

interacted with SANC00101 forming conventional hydrogen bonds with Thr437 and Gly312. 

However, for the SANC00119- PmNDH2 there were conventional hydrogen bonds formed with 

Gly474 and Gln439, and SANC00422- PmNDH2 showed conventional hydrogen bonds with 

Asn92A, Arg176H and Arg526H. The interaction between PoNDH2 and SANC00252 was without 

conventional hydrogen bonds; however there were alkyl bond interactions with Leu473, Val503, 

Tyr504, Ala436, Trp50, Pro79 and Leu507; with SANC00174 there were conventional hydrogen 

bonds with Ser433 and Ala308 and with SANC00590 conventional hydrogen bonds formed with 

Leu89. Finally, PvNDH2 interacted with SANC00121 forming conventional hydrogen bonds with 

Gly474, and carbon hydrogen bonds with Leu510, Lys442 and Lys473; with SANC00317 there were 

conventional hydrogen bonds with Ala149 and Pro436, (although this ligand had an unfavourable 

metal-donor interaction with Gly310 and an unfavourable acceptor-acceptor interaction with 



57 
 

Mg2+546, we still considered it as a hit compound worthy of further investigation); and SANC00152 

formed conventional hydrogen bonds with Ser90H, Lys92A, Ala91A and Arg526.  

We looked into the interaction of the PfNDH2 hit compounds in AIF-M1 and, for SANC00101 ob-

served an unfavourable donor-donor interaction with Leu311, but favourable Pi-Pi stacked (with 

Phe482) and Pi-Alky (with Ala494) interactions. For SANC00344-AIF-M1 we observed a conven-

tional hydrogen bond with Glu453, and for SANC00418-AIF-M1 we observed a Pi-sigma interaction 

with Phe482. The ligands selected as hit compounds in P. falciparum had more favourable protein-

ligand interactions and showed more conventional hydrogen bonds in comparison to when bound to 

the human homologue.  

 

 

Figure 3.7 Protein-ligand interaction of the hit compounds in P. falciparum and AIF-M1 visualized in 

Discovery studio 
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Figure 3.8 Protein-ligand interaction of the hit compounds in P. knowlesi and P. malariae, visualized 

in Discovery studio 

 

Figure 3.9 Protein-ligand interaction of the hit compounds in P. ovale and P. vivax, visualized in 

Discovery studio  



59 
 

3.3.2 METALizer 

It is interesting to note that throughout the PDB an octahedral arrangement around Mg2+ is most 

common. However, from the output results when studying the Mg2+ in our Plasmodium NDH2 

structures, the METALizer webserver suggests that in our case, the magnesium ions are free from the 

protein structure and only interact with the FAD cofactor. Due to this finding, it was of no need to 

parameterise the Mg2+ ions as coordinated to the protein before initiating molecular dynamic 

simulations. 

 

Figure 3.10 Results from the METALizer webserver showing the geometry value between the NDH2 

protein structure and the magnesium ions 

3.3.3 Molecular dynamic simulations without the membrane 

Following production dynamics, the trajectories were analysed. The RMSD, RMSF and Rg was 

calculated from the MD simulation results. RMSD measures the structural distance between 
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coordinates, and for the protein this relates to the distance change during dynamics of the backbone 

atoms; RMSF on the other hand measures the average deviation of a particle over time from a 

reference position, allowing the identification of portions of structure that most fluctuate from their 

mean structure. 

MD simulations for both the apo protein and the complex when bound to each of the hit compounds 

was calculated for a total simulation time of 100 ns. The MD trajectories were stripped of water and 

the protein was centred with respect to the periodic boundary conditions prior to analysis. The VMD 

tool was used to visualise the protein dynamics and changes occurring throughout simulation. The 

RMSD values for P. falciparum were below 0.5 nm (Figure 3.11), the deviation patterns for both the 

apo and complex protein were stable from 6 ns until the end of the simulation. Note that a stable 

RMSD for the complex is not necessarily favourable as we are interested also in compounds that 

destabilise the protein and potentially affect its functioning. 

The RMSD values for the P. knowlesi (both apo and complexes) were below 2 nm; however, it took 

some time before these systems stabilised. The RMSD for this protein, PkNDH2 with ligands bound, 

showed a lower value in general compared to the apo case. In general, the RMSD values for the P. 

malariae simulations were below 1.0 nm; the systems stabilised after about 6 ns. For the P. malariae 

complex with ligand SANCDB119 (where the binding is to chain H), there was a greater deviation in 

this complex and stabilisation was observed after 80 ns. The RMSD values following simulation of P. 

ovale (apo and complexes) were below 2.6 nm and general stability in the complexes after 48 ns; 

however, the apo protein did not exhibit this stability. The RMSD values of P. vivax in all systems 

was below 5.0 nm; in general, a lower RMSD is better than a higher one - we observed a high RMSD 

in the SANCDB152 complex with PvNDH2, while the other complexes and the apo protein showed 

stability. In this study only the PfNDH2 hit compounds were docked on the AIF-M1 protein, since it 

is this plasmodium that is responsible for the more death in humans. The RMSD plots for AIF-M1 

(apo and complexes) showed the complexes as stable with no significant difference in comparison to 

the apo. However, an interesting aspect of these systems is the effect of each ligand on the functioning 

of the homodimer. 
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Figure 3.11  RMSD results from the complex and the apo proteins, F represents the PfNDH2, A 

represents the AIF-M1, K represents PkNDH2, M represents PmNDH2, O represents PoNDH2 and V 

represents PvNDH2 

  

The protein at study is a homodimer and it was of interest to observe the residue behavior during 

simulation for both chains. From the RMSF calculations, differences in the residue fluctuations for 

each chain could be identified. Residues R39-I146 make up the FAD binding domain, residues D171-

Q313 cover the NADH binding domain, residues T314-Q359 form the linker region, P360-N428 

define domain C and residues A436-K533 cover the C-terminal domain. As the other protein 

structures were homology modelled from the P. falciparum crystal structure, this meant the 

description of the binding domains above were slightly different for these structures in terms of 



62 
 

change in residue number. The FAD and NADH binding domains are responsible for the association 

of cofactors, the biological function of domain C is not clearly defined and the C-terminal domain 

promotes the dimerization and immobilization of the enzyme on the inner mitochondrial membrane 

(Xie et al., 2019).  

The RMSF of all residues for P. falciparum was below 0.5 nm in all simulations but observed were 

higher fluctuations between residues G343-N438 of both chains which are residues in the linker, 

domain C and C-terminal region; the SANC344 complex showed the higher fluctuations. The RMSF 

of P. knowlesi and P. malariae also showed high fluctuations, but in a narrower range between 

residues G343-H419 in both chains, these residues form part of the linker and Domain C region. 

There were higher fluctuations in the RMSF of the apo P. ovale system in comparison to when the 

ligands were bound to the protein, particularly between the residues N191-F286 found in the NADH 

binding domain in chain A and residues K40-Q114 found in the FAD binding domain of chain H.  

There was high fluctuation in the RMSF of the P. vivax when SANCDB152 was bound to the 

interface region of the protein; meanwhile, the apo system and the other protein complexes had a low 

RMSF below 0.6 nm. We observed a higher RMSF value of 0.34 nm in the residue N583 when 

SANCDB418 was bound to AIF-M1 protein, the RMSF values in general in AIF-M1 were below 0.35 

nm. 
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Figure 3.12 RMSF results of the complex and apo proteins, J represents the PfNDH2, A represents 

the AIF-M1, K represents PkNDH2, M represents PmNDH2, O represents PoNDH2 and V represents 

PvNDH2. The red and blue dotted lines separate the chains 

3.3.4 Essential dynamic (ED) presentations and dynamic cross correlation (DCC) heatmaps 

Essential dynamics (ED) is the process of applying PCA to a protein trajectory, where the “essential” 

motions are extracted from the set of sampled conformations (Tan et al., 2014). Molecular dynamics 

simulations produce large complex datasets showing the dynamic changes proteins go through and it 

is challenging to analyse all spatial variables and their relation to each other. PCA extracts the pro-

tein‟s most dominant modes of motion from the simulation trajectory, it is performed on the mole-

cule‟s mass-weighed Cartesian coordinates. It accounts for the essential dynamics of the system, and 

this account is on a low-dimensional free energy landscape (Sittel et al., 2014). Comparative ED ap-

plies k-means to sample centroid conformations from the first 2 principal components in standard 

PCA and features auto-mated conformation extraction from lowest energy basins (Sheik Amamuddy 

et al., 2021b). Data shows that most of the conformational sampling is covered by PC1 and PC2 

which represent the largest and second largest possible variances of the structures respectively. More 

stable protein conformations are expected to be associated with lower free energy. 

 

The essential dynamics of the complexes were explored using standard PCA for the apo protein and 

for the protein-ligand complex MD trajectories, and for this only Cα atoms were selected. The dots on 
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the PCA plots produced (see Figure 3.13a PCA for example) correspond to individual protein 

conformations and are coloured by the time of sampling. In these plots, the kernel density contour 

plots are coloured from blue (lowest density) through yellow to red (highest density); this is a visual 

guide for the energy surface and is independently scaled (Sheik Amamuddy et al., 2021b). Further, 

these plots include both red (high energy basins) and blue labels (low energy basins) with data 

obtained from the k-means algorithm, and these are obtained from the probability density maxima. 

The k-means algorithm is non-deterministic, even though sampling is repeated a moderately large 

number of times to mitigate this effect. 

The MD simulation was 100 ns long for all protein complexes and the PCA plots are shown in figures 

below (Figures 3.13, and 3.15-3.19). PCA was done to analyse, through the 3-D Cα, the 

conformations; while the RMSD showed the conformational changes in a 1-D representation, the 

PCA shows information from a multidimensional analysis. (Table 3.3) below shows the low energy 

basin for PfNDH2 protein together with their PC1 and PC2 percentages. The protein-ligand 

complexes showed change in structure conformation at low energy basins at the middle of the 

simulation in protein-ligand structures, and in the apo protein low energy basin was towards the end 

of simulation. The PCA results agreed with the RMSD results as the lowest energy basins showed a 

low RMSD and a stable deviation. 

Table 3.3 The PCA low energy basin results together with their PC1 and PC2 percentage ranges for 

the human homologue and plasmodium species 

Plasmodium 

complex 

Low energy basin 

(ps) 

PC1 (%) PC2 (%) 

PfNDH2_apo 71550 28.29% 12.30%. 

PfNDH2_101 56350 23.54% 19.35% 

PfNDH2_344 5380 and 25000 34.76% 11.82% 

PfNDH2_418 40150 26.36% 11.32% 

AIF-M1-apo 73520 23.81% 7.12% 

AIF-M1-101 102470 20.34% 7.83% 

AIF-M1-344 75810 24.33% 7.69% 

AIF-M1-418 65840 18.20% 10.24% 

PkNDH2_apo 86 050 73.55% 9.20% 

PkNDH2_263 31040 66.39% 9.36% 

PkNDH2_342 21240 and 87030 76.15% 6.12% 

PkNDH2_435 14720 and 44060 76.60% 14.51% 

PmNDH2_apo 64500 57.38% 8.45% 
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PmNDH2_101 13350 42.47% 16.14% 

PmNDH2_119 79820 56.17% 15.02% 

PmNDH2_422 42920 29.55% 18.81% 

PoNDH2_apo 19270 89.53% 4.73% 

PoNDH2_174 92380 80.91% 7.71% 

PoNDH2_252 54960 and 91490 69.96% 9.40% 

PoNDH2_590 39550 38.17% 24.63% 

PvNDH2_apo 78800 32.32% 17.10% 

PvNDH2_121 50400 and 89140 27.66% 21.58% 

PvNDH2_152 43810 and 13480 73.90% 14.92% 

PvNDH2_317 47350 60.34% 9.68% 
 

To calculate the extent in which protein residues interact together, dynamic cross correlation was 

used. The dynamic cross correlation plots (in Figure 3.13b) show the apo, PfNH2-101, PfNDH2-344 

and PfNDH2-418 results respectively. The DCC is represented from a range of -1(blue) to 1(red) in 

which 1(red) is high correlation, the X and Y axes show the residue index from 0-500 residues; the 

relationship between this number and the residues Arg39-Lys533 is as follows: 0 = R39, 100 = L139, 

200 = S239, 300 = L339, 400 = A439 and 500 = 539. A high correlation was noted between residues 

Lys299-His479 (260-440) and Lys299-His479 (260-440) that form part of the NADH domain, the 

linker region and part of the C domain, in both axes in the PfNDH2-apo and protein complexes. There 

were slight differences in all DCC results, the FAD (R39-I146) and NADH (D171 and Q313 binding 

domain had DCC values ranging from 0.25-1 and the DCC for the C-terminal had a value from 0.2-1. 

The residues G343-H419 that showed high RMSF fluctuations in PfNDH2 also showed positive 

correlation at positions 382 and 458 on the DCC heatmap. It is apparent that the ligands did not 

change the residue interaction in the protein as they have similar DCC results as in the apo protein, a 

result that is reflected in the protein RMSD.  

The low energy basin of the essential dynamic calculations were superimposed against the PCA for all 

including the PfNDH2-apo low energy basin. The green cartoon structures in figure 3.13c below 

show the apo protein, and this is overlayed (after superimposition) with the protein from the final 

frame of dynamics of each of the complexes. This shows the change in conformation during dynamics 

in certain regions of the protein. In all complexes there was good alignment with the apo, yet 

flexibility at the arms of the protein (or the outer regions), which is in good agreement with the b-

factor representations (shown in the figure 3.14 below), where the mid-section of the protein shows 

enhanced rigidity. 
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Figure 3.13 (a) Essential dynamic (PCA) analysis in the first column with PfNDH2-apo in the first 

row, PfNDH2-101 in the second row, PfNDH2-344 in the third row and PfNDH2-418 in the last row, 
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with the simulation ranging from 0 to 100000 (ps). (b) Dynamic cross correlation (DCC) analysis in 

the middle column with PfNDH2-apo in the first row, PfNDH2-101 in the second row, PfNDH2-344 

in the third row and PfNDH2-418 in the last row, with the correlation ranging from -1 to 1.(c) 

PfNDH2 protein-ligand superimposed structures with the green cartoon structure being the final frame 

from the dynamic simulations of the apo protein. 

The b-factor of the 5JWA crystal structure (in Figure 3.14) was calculated using the PyMOL 

visualising program. The b-factor shows the displacement of atoms from their mean position in a 

crystal structure, which diminishes the scattered X-ray intensity; this displacement may be the result 

of temperature-dependent atomic vibrations or as a result of static disorder in a crystal lattice (Carugo, 

2018). These thermal motion paths may indicate dynamic and transient channels that allow molecules 

to enter or exit from protein internal cavities (Carugo & Argos, 1998). As shown in the figure 3.14 

below, blue represents rigid residues and yellow to red represents the residues that are likely flexible.  

 

Figure 3.14 P. falciparum (5JWA) b-factor representation visualized in PyMOL visualizer, blue being 

rigid and red being flexible  
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Figure 3.15 (a) Essential dynamic (PCA) analysis in the first column with AIF-M1-apo in the first 

row, AIF-M1-101 in the second row, AIF-M1-344 in the third row and AIF-M1-418 in the last row, 

with the simulation ranging from 0 to 100000 (ps). (b) Dynamic cross correlation (DCC) analysis in 

the middle column with AIF-M1-apo in the first row, AIF-M1-101 in the second row, AIF-M1-344 in 

the third row and AIF-M1-418 in the last row, with the correlation ranging from -1 to 1 (c)AIF-M1 

protein-ligand superimposed structures with the green cartoon structure being the final frame from the 

dynamic simulations of the apo protein and the AIF-M1-b-factor representation 
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(Table 3.3 and Figure 3.15a) above shows the low energy basin for AIF-M1 protein together with 

their PC1 and PC2 percentages. Change in structure conformation at low energy basin occurred 

towards the end of the simulation in all structures. 

The dynamic cross correlation plots (Figure 3.15b) show the apo, AIF-M1-101, AIF-M1-344 and 

AIF-M1-418 results respectively. The DCC is represented from a range of -1(blue) to 1(red) in which 

1 is high correlation, the X and Y axes show the residue index from 0-500 residues and this will be 

translated from Ala128-Phe608 to correctly number the residues, meaning 0 = A128, 100 = L228, 200 

= T328, 300 = Q428, 400 = I528 and 500 = 628. There was a high correlation in the AIF-M1-101 

complex in all residues, and correlation ranged between 0.2-1 in the apo and the AIF-M1-344 and 

AIF-M1-418 complexes. The residues that showed high fluctuations in the protein‟s RMSF had a 

positive correlation of 1. There was more residue positive correlation when the ligands were bound to 

the human homologue in comparison to when bound to PfNDH2.  

The b-factor value of the crystallised (AIF-M1) structure visualized in PyMOL showed the flexible 

regions of the protein as red (Figure 3.15c). The low energy basin PDB structures from the Essential 

Dynamics calculations were superimposed against the apo protein, and the difference in conformation 

is clearly visible, particularly around loop and some beta sheet regions.  
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Figure 3.16 (a) Essential dynamic (PCA) analysis in the first column with PkNDH2-apo in the first 

row, PkNDH2-263 in the second row, PkNDH2-342 in the third row and PkNDH2-435 in the last row, 

with the simulation ranging from 0 to 100000 (ps). (b) Dynamic cross correlation (DCC) analysis in 

the middle column with PkNDH2-apo in the first row, PkNDH2-263 in the second row, PkNDH2-342 

in the third row and PkNDH2-435 in the last row, with the correlation ranging from -1 to 1. (c) 

PkNDH2 protein-ligand superimposed structures with the green cartoon structure being the final 

frame from the dynamic simulations of the apo protein 
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(Table 3.3 and figure 3.16a) above shows the low energy basin for PkNDH2 protein together with 

their PC1 and PC2 percentages. The change in conformation at low energy basin occurred early in 

simulation of protein-complex structures in comparison to the apo protein. The low energy basins in 

the PCA calculations, showed a low RMSD with unstable deviations.  

The dynamic cross correlation plots (figure 3.16b) show the apo, PkNH2-263, PkNDH2-342 and 

PkNDH2-435 results respectively. The DCC is represented from a range of -1(blue) to 1(red) in which 

1 is high correlation, the X and Y axes show the residue index from 0-500 residues and this will be 

translated from R39-K533 to correctly number the residues, meaning 0 = R39, 100 = A139, 200 = 

V239, 300 = L339, 400 = Q439 and 500 = 539. High correlation was observed in the residues Q299-

I479, the plot showed correlation from a range of -0.5-1. The region Q299-I479 of high correlation 

showed high fluctuations in the RMSF results.  

The low energy basin PDB outputs from the PCA calculations were superimposed against the 

PkNDH2 apo protein and we observed difference in conformations even in rigid regions, the green 

cartoon structure was the apo protein. 
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Figure 3.17 (a) Essential dynamic (PCA) analysis in the first column with PmNDH2-apo in the first 

row, PmNDH2-101 in the second row, PmNDH2-119 in the third row and PmNDH2-422 in the last 

row, with the simulation ranging from 0 to 100000 (ps). (b) Dynamic cross correlation (DCC) analysis 

in the middle column with PmNDH2-apo in the first row, PmNDH2-101 in the second row, 

PmNDH2-119 in the third row and PmNDH2-422 in the last row, with the correlation ranging from -1 

to 1. (c) PmNDH2 protein-ligand superimposed structures with the green cartoon structure being the 

final frame from the dynamic simulations of the apo protein. 
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Table 3.3 and figure 3.17 show the low energy basin for PmNDH2 protein together with their PC1 

and PC2 percentages. PmNDH2-119 and apo protein showed change in conformation at low energy 

basin towards the end of simulation, and the PmNDH2-101 and PmNDH2-422 showed change in 

conformation at low energy basin at the beginning of the simulation. The low energy basins in P. 

malariae had a low RMSD in the specific time intervals. 

The dynamic cross correlation plots (figure 3.17) show the apo, PmNH2-101, PmNDH2-119 and 

PmNDH2-422 results respectively. The DCC is represented from a range of -1(blue) to 1(red) in 

which 1 is high correlation, the X and Y axes show the residue index from 0-500 residues and this 

will be translated from R39-K533 to correctly number the residues, meaning 0 = R39, 100 = M139, 

200 = L239, 300 = S339, 400 = Q439 and 500 = 539. Correlation ranged from -0.5-1, with residues 

K299-I479 showing high correlation. The residues between K299-I479 that had a positive correlation 

covered the region with high fluctuations in the P. malariae RMSF. In general, the DCC values 

showed a positive correlation between residues.  

The low energy basins of the PCA results were superimposed with the apo protein. The green cartoon 

structure is the PmNDH2 apo protein and it was superimposed with the ligand complexes to observe 

and understand any changes in conformation. There was difference in conformation at the arms or 

outer residues of the protein. 
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Figure 3.18 (a) Essential dynamic (PCA) analysis in the first column with PoNDH2-apo in the first 

row, PoNDH2-174 in the second row, PoNDH2-252 in the third row and PoNDH2-590 in the last 

row, with the simulation ranging from 0 to 100000 (ps). (b) Dynamic cross correlation (DCC) analysis 

in the middle column with PoNDH2-apo in the first row, PoNDH2-174 in the second row, PoNDH2-

252 in the third row and PoNDH2-590 in the last row, with the correlation ranging from -1 to 1. (c) 

PoNDH2 protein-ligand superimposed structures with the green cartoon structure being the final 

frame from the dynamic simulations of the apo protein. 
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Table 3.3 and figure 3.18 shows the low energy basin for PoNDH2 protein together with their PC1 

and PC2 percentages. PoNDH2-174 and PoNDH2-252 had change in conformation at low energy 

basin towards the end of the simulation and the apo protein and PoNDH2-590 showed change in 

conformation at low energy basin at the beginning of the simulation. The RMSD of the protein 

showed low values in low energy time intervals presents in the P. ovale PCA plots. 

The dynamic cross correlation plots show the apo, PoNDH2-174, PoNDH2-252 and PoNDH2-590 

results respectively. The DCC is represented from a range of -1(blue) to 1(red) in which 1 is high 

correlation, the X and Y axes show the residue index from 0-500 residues and this will be translated 

from K39-K533 to correctly number the residues, meaning 0 = K39, 100 = F139, 200 = I239, 300 = 

L339, 400 = A439 and 500 = 539. High correlation was observed between the residues K299-H479 

which was also similar in the other plasmodium DCC plots. The region K299-H479 had peaks in the 

RMSF, however not necessarily the residues of highest fluctuations in the protein. 

The low energy basins of the PCA results were superimposed with the apo protein. The green cartoon 

structure is the PoNDH2 apo protein and it was superimposed with the ligand complexes to observe 

and understand any changes in conformation. There was difference in conformation even at regions 

considered rigid by the b-factor calculation of the 5JWA protein. Correlation was between -0.5-1 in 

all plots.  
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Figure 3.19 (a) Essential dynamic (PCA) analysis in the first column with PvNDH2-apo in the first 

row, PvNDH2-121 in the second row, PvNDH2-152 in the third row and PvNDH2-317 in the last row, 

with the simulation ranging from 0 to 100000 (ps). (b) Dynamic cross correlation (DCC) analysis in 

the middle column with PvNDH2-apo in the first row, PvNDH2-121 in the second row, PvNDH2-152 

in the third row and PvNDH2-317 in the last row, with the correlation ranging from -1 to 1. (c) 

PvNDH2 protein-ligand superimposed structures with the green cartoon structure being the final 

frame from the dynamic simulations of the apo protein. 
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Table 3.3 and figure 3.19 shows the low energy basin for PvNDH2 protein together with their PC1 

and PC2 percentages. PvNDH2-apo and PvNDH2-121 had change in conformation at low energy 

basin towards the end of simulation, and PvNDH2-152 and PvNDH2-317 had change in conformation 

at low energy basin towards the beginning of simulation. The low energy basins in the PCA plots 

showed low RMSD values. 

The dynamic cross correlation plots show the apo, PvNH2-121, PvNDH2-152 and PoNDH2-590 

results respectively. The DCC is represented from a range of -1(blue) to 1(red) in which 1 is high 

correlation, the X and Y axes show the residue index from 0-500 residues and this will be translated 

from G39-K533 to correctly number the residues, meaning 0 = G39, 100 = S139, 200 = V239, 300 = 

L339, 400 = Q439 and 500 = 539. There was high correlation in residues H299-I479 and PvNDH2-

152 showed positive correlation of 1 in all residues and in other complexes DCC ranged between -0.5-

1. PvNDH2-152 showed high correlation in all residues in comparison to other complexes which 

agreed with its RMSD and RMSF values as they were very distinct.  

The low energy basins were superimposed with the apo P. vivax. The green cartoon structure is the 

apo protein superimposed with the ligand complexes. We observed flexibility in the outer regions the 

arms of PoNDH2-121 and the mid-section was rigid. There was flexibility when SANC152 and 

SANC317 were bound to the protein even in residues that are considered rigid. 

 

3.3.6 Chapter conclusion 

This chapter focused on high throughput virtual screening of 623 SANCDB natural compounds on the 

5 NDH2 protein structures and the human homologue, hit compound selection, molecular dynamic 

simulation without the membrane, the PCA calculations and DCC analysis of the MD trajectories. We 

aimed to study the effect of the ligands on the protein function. It was observed that the ligands bind 

on different sites in all four plasmodium species, hence the hit compounds were also different for each 

structure. 

The ligands docked mainly in the FAD and NADH binding domain, and at the interface of the 

homodimer. Hit compounds were selected for further analysis based on their binding energy, size, 

binding site, ligand interaction with the protein and Lipinski rule of five score. The results obtained 

from the ProteinsPlus (METALizer) webserver showed that the Mg2+ ions were not interacting with 

the protein, hence there was no need to parameterize the ions prior to MD calculations. MD 

calculations were run at 100 ns using GROMACS package, using the CHARMM36 force field; we 

focused on the change in conformation caused by ligands bound to the proteins. The RMSD values of 

PfNDH2 were generally stable in the apo protein and ligand complexes throughout the simulation. In 

general, it took time for the PkNDH2 apo and complexes to stabilise and we observed in the RMSD 

results, the protein deviation, both when ligands were present or absent. The PmNDH2 protein had a 
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more stable RMSD when SANC101 and SANC422 were bound. PoNDH2 RMSD stabilised after 48 

ns when the ligands were bound, and we observed the apo protein deviating until towards the end of 

the simulation. SANC152 bound in the interface region caused a high RMSD of 4.8 nm, tending to 

destabilize the protein relative to the apo and other ligand bound complexes with the PvNDH2 

protein. The PfNDH2 hit compounds were analysed in the AIF-M1 homologue and they caused a 

stable RMSD for the complex throughout the simulation, the ligands seem to change slightly the 

conformation of the protein from the structure superimpositions, and the apo and complex proteins 

had a stable RMSD deviation throughout simulation, which was favourable as the ligands are not 

supposed to affect or change the AIF-M1 protein. 

In general, the RMSF of the structure‟s trajectories showed high fluctuations between residues V343-

Q419 in both chain A and chain H, except for PoNDH2 which showed high peaks between residues 

S153-K229, and where the highest RMSF peaks were in the apo protein simulation. We observed a 

high RMSF at residue N583 when SANC418 was bound to the human protein AIF-M1. There was no 

significant difference between the RMSD values on AIF-M1 and PfNDH2, the ligands had the same 

deviation as the human homolog apo meaning they did not change the conformation of the human 

protein which was favourable. The ligands bound close to the FAD binding region of AIF-M1 and the 

protein-ligand complexes when superimposed showed less alignment in loop regions and outer parts 

of the protein. 

The PCA calculations showed the time frames in which there was change to conformations within low 

energy basins. The DCC calculations showed residues that correlated, and we observed high 

correlation in most of the protein residues (39-145 and 329-459) regions (0-110 and 280-420) of the 

structures. In this chapter we have identified strong binders to the range of NDH2 targets, while also 

exploring their interaction with the human protein. In the next chapter we will explore the ligand 

performance in the presence of the protein membrane. This will more accurately show the effect of 

the ligand on the protein within the expected environment for this trans-membrane protein. 
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4 
Molecular dynamics and compound interaction study 

Chapter overview 

  4.1 INTRODUCTION 

4.1.1 Molecular dynamics 

Proteins perform various essential cellular functions, and they are able to recognise small molecules 

with specificity and bind them (Guterres et al., 2021). Computational structure-based techniques have 

amazingly transformed in silico drug discovery studies, helping lead compounds identification, opti-

misation, protein-ligand interaction analysis at a lower cost (Allouche, 2012). In this study ligands 

bound to the local regions of the protein surface when molecular docking was performed, and com-

plexes with these hit compounds were taken for further investigations in molecular dynamic simula-

tions.   

MD simulation have also become an important technique in studying lipid membrane systems, com-

putational resources and appropriate empirical force fields have also advanced to allow for meaning-

ful simulations of these systems to better understand their physical properties and functions (Lee et 

al., 2016). To investigate the structure of membrane proteins in ways that are complementary to ex-

perimental procedures the MD simulation approach is used (Goossens & De Winter, 2018). Mem-

brane proteins within the membrane are within a complex environment. The heterogeneity in the spa-

tial distribution of lipids and proteins in the cell membrane and between bilayer leaflets lead to the 

complexity of biological membranes, and some of these complex chemical systems further contain 

sugars such as glycolipids or lipoglycans (J. Lee et al., 2019).   

 

Empirical force fields (FF) have been refined and developed, such that they are an accurate mathemat-

ical description of the relationship of conformation to energy, both in and between molecules, and 

these are used extensively in MD simulation. MD is a simulative technique that has been traditionally 

perceived to be difficult to implement and automatize, because it relies on a complex theoretical 

background. Similarly, analysis of long MD trajectories can be a difficult task that in some cases fails 

to return clear and specific insights into how to design and synthesize new and more effective com-
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pounds (Cavalli, 2018). The CHARMM-GUI Membrane builder a web-based tool 

(http://www.charmm-gui.org/input/membrane) released in 2007, that has been developed and updated 

to support heterogeneous bilayers using more than 400 lipid types (such as phospholipids, phospho-

inositides, cardiolipin, sphingolipids, sterols and fatty acids), allows users to build biologically realis-

tic and experimentally comparable membrane systems (Additive et al., 2016). The membrane builder 

tool provides well-validated topology files or simulation input files for various molecular dynamics 

simulation programs such as CHARMM (B. R. Brooks et al., 2009), GROMACS (Abraham et al., 

2015), AMBER (Biller et al., 2013), GENESIS (Jung et al., 2015), NAMD (Phillips et al., 2016) and 

OpenMM (Eastman et al., 2017). An initial system configuration must be given prior to simulation, 

and this includes initial positions, velocities and topologies and, further, conversion of elements to suit 

the native format of the simulation package is essential before simulation commences (Vermaas et al., 

2016). The CHARMM-GUI graphical user interface is an important tool as it provides various func-

tional modules with broad capability, used to prepare complex biomolecular systems and input files 

for molecular simulations (Park et al., 2019). The CHARMM-GUI platform has modules such as So-

lution builder, Membrane builder, Nano disc builder, HMMM builder, Monolayer builder, and Mi-

celle builder (Qi et al., 2020). To allow general usage of CHARMM36 FF, the CHARMM-GUI 

Membrane builder, for example, incorporates the option to generate minimisation, equilibration, and 

production inputs with simulation parameters for each simulation program. 

 

There is an increased usage of molecular simulations, with software able to make use of a wide range 

of hardware to achieve this purpose,, and the accessibility to multicore CPU and GPU technologies 

has allowed users to extend simulation times of many different experiments. MD simulations provide 

the dynamics and energetics of membrane-associated proteins at the atomic level, which is generally 

difficult to obtain from experiments (Jo et al., 2009). Simulations continue to be a powerful method to 

comprehend the detailed lipid-protein interactions, responsible for protein activity in signal transduc-

tion and disease (Ash et al., 2004). The membrane is a thin double layer that keeps the cells intact and 

controls the transport of matter to and from the cells; it is also involved in other important processes 

such as protein anchoring and cell fusion and division. The membrane in this study was constructed in 

the study using CHARMM-GUI as the NDH2 is a peripheral membrane protein (Wiederstein & Sippl, 

2007).  
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4.1.2 CHARMM36 force field and POPC lipid 

As has already been mentioned, computer simulations offer molecular insight into the structural 

organisation of membrane systems including those of lipid-protein complexes. However, it is the 

quality of the force field used that determines the quality and accuracy of simulation (Allouche, 

2012). GROMOS (Oostenbrink et al., 2004), OPLS (Jorgensen et al., 1996), AMBER (Hornak et al., 

2006) and CHARMM (A. D. MacKerell et al., 1998) are the force fields mostly used in simulation 

studies of biomolecules and they differ in systems and protocols used in parameterisation stage. Force 

fields are developed by fitting parameters describing the molecular interactions to the results of highly 

detailed quantum-mechanics (QM) calculations of small peptides molecules, to obtain the parameters 

necessary to match experimental results (Smith et al., 2015). 

It is very important to consider certain factors when choosing the force field that will satisfy the needs 

of one‟s system. Biomolecular force fields have different functional forms, different combination 

rules for non-bonded interaction parameters, different ways to treat non-bonded interaction exclu-

sions, diverse ways of handling long-range electrostatic forces and diverse ways of defining torsional-

angle interactions (Gebhardt et al., 2018). 

The CHARMM force field parameters in recent years have provided for good properties of lipid 

bilayers, although derivation and validation of the forcefield for certain molecules may be 

monotonous and time consuming (in particular the derivation of the torsional potential), yet these 

parameters are a key factor of molecular structure in simulations (Kulig et al., 2015). The empirical 

force field is an accurate mathematical description of the relationship between conformation and 

energy in molecules and is important in MD simulations. In particular, the CHARMM36 FF was 

designed to accurately represent experimental bilayer properties using the constant particle number, 

pressure and temperature (NPT) ensemble (J. Lee et al., 2016). The CHARMM community developed 

CHARMM36 FF applies the long-range non-bonded interactions as follows: the Lennard-jones (LJ) 

6-12 (van der Waals) interactions smoothed over 10-12 Å using the force-based switching function; 

the particle mesh Ewald (PME) method used for long-range electrostatic interactions; and 1-4 non-

bonded interactions (coulombic and LJ interactions) (B. R. Brooks et al., 2009). The GROMACS 

package has the functionality needed to work with the CHARMM36 FF and its single-core code is 

faster with mixed point precision (previously called single-point precision), than in CHARMM and 

NAMD.  

In this study the CHARMM36 FF was used, which covers biological systems and many important 

lipid types and is well validated for properties such as bilayer areas, compressibility, spontaneous 

curvature and bending constants (Venable et al., 2015). Found in the CHARMM36 force field are 73 

distinct sugar residues, 5 nucleic acids, 20 amino acids and 35 lipids (Guvench et al., 2008). This 

force field was chosen for this study as it is well known to produce excellent membrane properties, 

together with a high quality of simulation of globular proteins (Domański et al., 2018). The potential 
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energy function of the CHARMM36 force field is composed by bonded and nonbonded terms; thus, it 

is necessary to add to it the force constant K, the equilibrium values b0 (bond), θ0 (angle) and φ0 

(dihedral) for the bonded terms, the dihedral phase δ, the partial atomic charges q, and the Lennard-

Jones terms ε and ζ (da Silva et al., 2020b; Alexander D. MacKerell et al., 1995) (Equation 4.1). 

 

Equation 4.1 The potential energy function of CHARMM36 force field 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a phosphatidylcholine that is a diacyl-

glycerol and phospholipid, is naturally present in eukaryotic cell membranes and is important for bio-

physical experiments, used in systems mimicking the cell membrane. POPC is a zwitterionic phos-

pholipid, with a single C=C double bond in the longest (oleoyl acyl chain) of its two hydrocarbon tails 

(Bingham & Ballone, 2012). We chose POPC to be our model bilayer system because most of eukar-

yotic cells of PC/cholesterol mixtures often have a high concentration of unsaturated lipids, several 

studies of PC-bilayer systems have led to the conclusion that different chain conformations create a 

fluid phase micro-immiscibility leading to the cholesterol-rich and cholesterol-poor microdomains, 

rich in unsaturated chains and may be important for the stabilisation of specific protein functions in 

biological membranes (Rappolt et al., 2003). POPC is a synthetic monounsaturated phospholipid with 

a phosphocholine head group and two fatty acid chains, one of which is saturated (16:0), while the 

other is unsaturated (18:1) combined with two ester carbonyls as shown in the figure 4.1 below 

(Wanderlingh et al., 2017). 
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Figure 4.1 Chemical structure of POPC lipid, with an empirical formular of C42H82NO8P and a 

molecular weight of 760.08 Da 

 

4.2 METHODOLOGY 

4.2.1 Molecular dynamics 

CHARMM-GUI (Chemistry at HARvard Macromolecular Mechanics – Graphic user interface) 

Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface de-

signed to interactively build all-atom protein/membrane or membrane only systems for molecular dy-

namic simulations through an automated optimized process (Wu et al., 2014). 

The membrane builder (Bilayer builder) option which incorporates the Glycolipid Modeler and LPS 

Modeler into the lipid selection was used to construct the membrane, embed the protein onto the 

membrane and to create files that were later used in the simulation. Residues were protonated as per 

their expected states at pH 7. The membrane builder performed the job in 6 steps: Step 1: reading the 

protein structure and manipulating it. The OPM (Orientations of Proteins in Membranes) server, 

which orients the protein with respect to membrane normal (the Z axis by definition) and which de-

termines the rotational and translational position of the transmembrane region (M. A. Lomize et al., 

2012) was used. For this entire step the PDB format for files was used, and accordingly this step was 

managed by the PDB reader & Manipulator. Through reading the PDB files in CHARMM-GUI, there 

were options to select the chains, cofactors, ions, or ligands to be included in the job run.  

Step 2: orienting the protein. The membrane builder provides the option to change orientation and 

position of the protein along the membrane. Accordingly, we used the PPM server orientation option 

that submits the input structure to the PPM server (https://opm.phar.umich.edu/ppm_server). The 

PPM server is the sister server to the OPM database and is used to calculate the rotational and transla-

tional positions of transmembrane (peripheral) proteins in membranes using their 3-D structure (PDB 

coordinate file) as input (M. A. Lomize et al., 2012). Figure 4.2 shows the resulting orientation of the 

crystal structure PfNDH2 (5JWA), as a result of processing through this server. 

http://www.charmm-gui.org/input/membrane
https://opm.phar.umich.edu/ppm_server
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Figure 4.2 The OPM server output showing the orientation of 5jwa protein on the membrane, with a 

hydrophobic thickness or depth of 7.6 Å, tilt angle of 90  and ΔGtransfer
 of -11.3 kcal/mol. The residues 

in contact with the membrane are PHE495-VAL502 in chain A and GLY493-PHE518 in chain H 

Step 3: determining the system size. This is based on specified parameters, these being the number of 

lipids in the bilayer membrane, system shape and the water thickness on top and bottom of the entire 

system. The cross-sectional area was calculated and the plot of Area (x100) versus the Z- axis were 

shown in the figure 4.3 below, 
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Figure 4.3 The cross-sectional area of the protein structures, Aif-M1, P. falciparum, P. knowlesi, P. 

malariae, P. ovale and P. vivax 

 

 A heterogenous lipid bilayer was used, with a water thickness of 22.5 Ǻ, this being the minimum wa-

ter height on the top and the bottom of the system for all the proteins in this study. The system size 

along the X and the Y axis was set to be identical, and these were set to be 145 Ǻ for the Plasmodium 

species, while they were set to be length of 140 Ǻ for the human homologue. Having an accurate val-

ue of the surface area is important because the surface area of a lipid type is directly related to the sys-

tem size calculation. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) a phosphatidylcho-

line which is a class of phospholipids that incorporate choline as a headgroup was used in the study. 

For all protein structures a 1:1 upper leaflet and lower leaflet was used respectively, with a surface 

area of 68.3 Ǻ2. The calculated area of lipid contact and XY system size for the lipid layer is shown in 

the table 4.1 below. 

 

 

https://en.wikipedia.org/wiki/Phosphatidylcholine
https://en.wikipedia.org/wiki/Phosphatidylcholine
https://en.wikipedia.org/wiki/Phospholipid
https://en.wikipedia.org/wiki/Choline
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Table 4.1 The calculated lipid contact area (Å2) and XY (Å) system size for all the protein structures  

Protein Top area Bottom area X extent Y extent Z extent 

AIF-M1 0 453.07 -32 to 36 -29 to 36 -68 to -17 

P. falciparum 0 3015.74 -69 to 69 -38 to 38 -62 to -8  

P. knowlesi 0 3736.39 -72 to 70 -38 to 36 -62 to -6 

P. malariae 0 3000.88 -69 to 69 -39 to 35 -63 to -8 

P. ovale 0 2922.80 -71 to 69 -38 to 38 -65 to -8 

P. vivax 0 2888.43 -70 to 72 -35 to 334 -61 to -8 

 

Step 4:  the building of components. Components of the system such as the lipid bilayer, bulk water, 

and ions were generated. A replacement method was used for system building and an ion concentra-

tion of 0.15 M of KCI was used; neutralizing ions were added to make the system neutral for long-

range electrostatic interactions using the particle-mesh-Ewald method (Essmann et al., 1995). 

Through a Monte Carlo simulation, the initial configuration of ions was then determined using a prim-

itive model including, for example, van der Waals and scaled Coulombic interactions. As mentioned 

above a heterogeneous lipid bilayer was used which was generated by the replacement method. This 

method uses a lipid-like pseudo atoms to generate lipid packing around a protein, and these pseudo 

atoms are replaced with lipid molecules from the lipid conformer library (T. B. Woolf & Roux, 1994; 

Thomas B. Woolf & Roux, 1996).  

Lipid penetration was checked; in this the protein surface penetration check finds the lipids that go 

beyond the protein surface and the lipid ring penetration check detects the lipid tails that passed 

through the cyclic groups in the simulation systems. No protein surface penetration or lipid ring pene-

tration was found. The membrane components were generated and then assembled. The GROMACS 

input generator was selected, the grid information for PME FFT was automatically generated, and, 

following equilibration, an NPT (constant particle number, pressure, and temperature) ensemble and a 

temperature of 303.15 K was applied for molecular dynamics. Table 4.2 below shows the setup re-

strains for protein and lipids; we equilibrated the system to reduce the possible problems with the nu-

merical integration with the uncorrelated systems.  

A significantly improved new building algorithm was used, which did not replace pseudo atoms ran-

domly but rather replaced those that were closer to the protein first, using a systematic translation (XY 

plane) and rotation (around the Z-axis) rigid-body search for each lipid molecule. This search contin-

ued until the optimal orientation was found. Following this the algorithm tried and rejected or accept-

ed different lipid conformers (Wu et al., 2014). These algorithms are known to significantly optimize 

the lipid packing around the embedded protein. 
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Table 4.2 The calculated XY system size for each protein structure, the lower and upper leaflet 

number and the lipid type that was used in the study  

 
 

Step 5 and 6: this stage assembled the components and equilibrated the system. Membrane builder 

does not provide the equilibrated structure due to the significant computing resources required. Six 

Consecutive CHARMM input files for system equilibration and production are produced. In this case 

CHARMM-GUI produced GROMACS formatted CHARMM36 force fields, a pre-optimized PDB 

structure and GROMACS inputs. The GROMACS input files consisted of .pdb/.gro files that con-

tained the atomic coordinates, the “top” system topology file which had force field parameters, 

“.mdp” files that had the simulation parameters and the “.tpr” file which was the binary run input file 

(Vermaas et al., 2016). The Verlet cut-off scheme was applied for all minimization, equilibration, and 

production steps since this is faster and more accurate than the group scheme. Energy minimisation of 

the system was performed locally using 5 000 steps to remove any steric clashes using a single preci-

sion version of GROMACS, followed by an equilibration protocol which included periodic boundary 

conditions. The equilibration protocol was provided by the CHARMM-GUI web server and consisted 

of 6 steps with harmonic positional restraints applied, while the production run were performed in 
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tend steps accounting for 50 000 ps simulation. Equilibration and production runs were performed at 

the Centre for High Performance (CHPC) cluster in Cape Town South Africa. An in-house script was 

used to extend the simulations from 500 000 ps to 75 000 000 ps (150 ns).  Acpype was used to pa-

rameterise the ligands in their docked regions on the protein and were submitted to CHARMM-GUI 

as input files and the procedure as mentioned above was followed. 

Each system was equilibrated, using the equilibration input files generated by Membrane Builder. The 

MD trajectories of each system were generated, using the all-atom parameter set of optimized lipid 

parameters and the modified TIP3P water model (Jorgensen et al., 1983), Nose´-Hoover temperature 

control (Kassir et al., 1985) maintained a constant temperature of 303.15 K, and the Langevin-piston 

algorithm (Feller et al., 1995) was used to maintain constant pressure at 1 atm along the Z direction, 

while the XY area varied, with a constant surface tension g of ¼ 0 dyn/cm for NPgT (constant pres-

sure, surface tension, and temperature) dynamics. The production runs produced (trr) files which con-

tain information on the particle positions, velocities, and forces, as well as on the size of the simula-

tion box with high precision. The (trr) files were used to perform MD analysis and trajectory calcula-

tions. Figure 4.4 summarizes the full setup of the system using CHARMM-GUI. 

 

 
Figure 4.4 Summary of the CHARMM-GUI workflow 

4.2.2 Essential dynamic calculations and dynamic cross correlation analysis 

To detect correlations in large data sets a standard mathematical tool called Principal Component 

Analysis (PCA) is used; it also allows one to summarise the information content by means of a 

smaller set of summary indices that can be easily visualised and analysed. PCA is a popular method 

performed on the molecular dynamics simulation trajectories, accounting for the essential dynamics of 

the system in a low-dimensional free energy landscape (Sittel et al., 2014). This technique represents a 
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linear transformation that diagonalizes the covariance matrix and thus removes the instantaneous 

linear correlations among the coordinates (Jollife & Cadima, 2016). 

PCA was performed on apo and protein-ligand complexes to comprehensively assess the effects of 

the ligands on NDH2 conformation. The MD trajectories were stripped of the Periodic Boundary 

Condition (PBC) (proteins were centred without discontinuities), water was removed and the resultant 

system saved in a (.xtc) file. Mode-task was downloaded and installed under the Anaconda environ-

ment on the YODA cluster (the in-house Linux cluster associated with the Rhodes University Bioin-

formatics Research Unit, RUBi). Only the Cα atoms of the protein were used for analysis; the MD 

trajectories and the PDB file that had the same residues as in the trajectory file were used for input. 

The MDM-Task “compare_essential_dynamics.py” tool (implementing comparative essential dynam-

ics) was run on the YODA cluster to assess the distribution of pocket conformational sampling across 

MD simulations of the protein structures (Sheik Amamuddy et al., 2021b). The output was the low 

and high energy basins (together with associated PDB files) and an essential dynamic plot heatmap 

showing the first (PC1) and second principal component (PC2) axes. Along the axes is the percentage 

of total variance explained by each PC. The principal components (PCs) represent the dynamics of a 

protein in terms of a reduced set of orthonormal modes (Ross et al., 2018). Dynamic cross correlation 

(DCC) is calculated using the formular in equation 1.4 in chapter 1 (Di Marino et al., 2015). The MD-

Task program generates the heatmap showing the dynamic cross correlation between the Cα atoms of 

the selected frames in an MD trajectory to identify relative residue movements (Brown et al., 2017b). 
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4.3 RESULTS 

4.3.1 Molecular dynamics trajectories analysis 

MD simulations of membranes and membrane proteins have produced insights into these 

biomolecular structures and their processes; simulations are considered a standard tool to guide, 

interpret and understand the atomistic details of molecular structure and kinetics (Y. Yu et al., 2021). 

In this study, we seek to understand the dynamics of the bound hit compounds to the protein 

structures, and the influence this binding has on the motions of the protein within the context of the 

membrane.   

The MD simulations were run for 150 ns with the protein structures embedded in the membrane, 

using the CHARMM-GUI (membrane builder) generated GROMACS topology files. The 

GROMACS folder contained the GROMACS formatted CHARMM force fields, pre-optimised PDB 

structure and input files optimised for GROMACS 2019.2 or above. The Verlet cut-off scheme was 

used for all minimisation, equilibration, and production steps, as it ran parallelised simulation. A 

single precision in GROMACS was used in minimisation. MD simulation for systems embedded in 

the membrane was run for 50 ns longer than previous simulations in chapter 3 due to the size of the 

system. 

Subsequent to dynamics simulations, the proteins were centred in the simulation box, water and the 

periodic boundary box was removed, and the trajectories were visualised using the VMD tool. The 

PDB files at the beginning and end of the simulation were generated for comparison, root mean 

square deviation (RMSD), root mean square fluctuation (RMSF) and radius of gyration (Rg) of the 

proteins were calculated using the gmx_mpi rms command.  

The RMSD results in the study when the membrane was included in the simulation are shown in the 

figure 4.5 below. 

4.3.1.1 RMSD analysis 

RMSD is commonly used for comparing different conformations of given molecular systems, this 

measure is essential for analysing and validating simulation results (Velázquez-Libera et al., 2020). 

PfNDH2 within the membrane, with and without coordinating ligands, had an RMSD below 0.6 nm; 

the structures started stabilising after 20 ns. However, deviation occurred again after 50 ns in the apo 

protein. The protein stabilised rapidly when SANC418 was bound; however, it took 110 ns for the 

SANC101 complex to stabilise. Further, it appeared that the SANC101 and SANC344 ligands 

destabilised the protein, which is positive in terms of the aims of this project. We believe these 

induced conformational changes will affect the functioning of the NDH2 protein. There were 

significant difference between the RMSD of the protein when the membrane was present and absent. 



91 
 

Unexpectedly, there was stability in the complexes in the absence of the membrane and deviations 

when the membrane was present, although this could be influenced by the size of the system.  

Only the P. falciparum hit compounds were analysed in the human homologue and we observed an 

increase in terms of RMSD of the AIF-M1 apo protein after 100 ns; the complex AIF-M1-SANC101 

had an increase in RMSD after 20 ns, and AIF-M1-SANC344 and AIF-M1-SANC418 had a RMSD 

decrease after 90 ns and 140 ns respectively and RMSDs observed was below 0.5 nm. As the human 

homologue is not a membrane protein, we extended the simulations on the non-membrane bound 

systems to 150 ns to match the time interval of that of the plasmodium complex with a membrane. As 

a matter of interest, we ran the AIF-M1 protein through the CHARMM-GUI membrane builder; 

however, this was rejected since the membrane builder only assigns a membrane, to membrane 

proteins.  

The RMSD of all simulations with PkNDH2 was below 1.0 nm; however, and the apo protein was 

more stable than the complexes, stabilising after 55 ns. Conversely, the protein-ligand structures 

showed high RMSD deviations when the complexes were bound to the membrane. This ligand-based 

destabilisation of the protein was evident as deviations in RMSD right through to the end of 

simulation. Although the apo structure was stabilized, the results for the complexes were similar to 

those in the absence of the membrane.  

In PmNDH2 the RMSD for all simulations was below 1.0 nm; the membrane-bound complex with 

SANC119 showed a greater relative stability in comparison to the rest of the complexes. With 

observed stabilisation after 85 ns. However, the complexes for P. malariae were more stable in 

simulation when free from the membrane. The apo protein stabilised after 80 ns, SANC101 and 

SANC422 proved to be destabilising the protein as we observed deviations in RMSD right to the end 

of simulation.  

The RMSD of all simulations of PoNDH2 structures in the presence of the membrane were below 1.2 

nm. The membrane-bound complex with SANC174 had a higher RMSD, stabilizing late in the 

simulation (after 120 ns). In any case the generally the protein structures appeared to show greater 

stability when the ligands were bound. The simulation of P. ovale structures in complexes resulted in 

a low observed RMSD when these complexes were bound to the membrane.  

Simulations of PvNDH2 in the presence of a membrane resulted in a protein RMSD below 0.9nm. 

However, in the apo case there was deviation in observed RMSD until the end of simulation. This is 

in contrast to the ligand complexes. In the absence of a membrane the complexes with SANC121 and 

SANC317 were stable, however we observed change in the process of stabilization in the presence of 

a membrane. The complex with SANC152 was similar in terms of the progression of RMSD (in the 

presence of a membrane) to that of the membrane bound complex with SANC121. 
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Figure 4.5  RMSD plots of the protein structures; J represents the PfNDH2, A represents the AIF-M1, 

K represents PkNDH2, M represents PmNDH2, O represents PoNDH2 and V represents PvNDH2 

 R studio was used to plot the graphs (RStudio Team (2020). RStudio: Integrated Development for R. 

RStudio, PBC, Boston, MA URL Http://Www.Rstudio.Com/. - Search, 2020)  

The helix, beta-sheets and loops of the secondary protein elements can have an impact on the dynamic 

behaviour of structural and conformational aspects of the structure (Mirza et al., 2018). The apo 

RMSD results were different from the protein-ligand RMSD results, proving the ligands can have a 

conformational impact on the proteins and therefore, can possibly affect their functioning. 

Regions of the protein that go through conformational changes to facilitate ligand binding are known 

as ligand-binding-sites (Guterres et al., 2019). However, to evaluate the binding stability of the 

ligands the ligand RMSD was calculated, in order to understand further the behaviour of the hit 

compounds in the binding cavity of the target proteins. This is important as many studies have used 

small molecules binding in the active sites of proteins, where mechanism is either by inhibition or 

activation, to cure a range of acute diseases. 



93 
 

In figure 4.6a, the RMSD value of the ligands throughout simulation was below 1 nm, PfNDH2-

SANC101, PfNDH2-SANC3444, PkNDH2-SANC263 and PkNDH2-SANC435, showed a gradual 

increase in deviation after 105 ns time interval of the simulation. PfNDH2-SANC418, AIF-SANC101, 

AIF-SANC344, AIF-SANC418, had stable ligand RMSDs; generally, the ligands showed a stable 

RMSD, evidence that they did not change in conformation during the MD simulation, proving the 

quality of the docked pose and justifying further investigation. PkNDH2-SANC342 showed increase 

in ligand RMSD deviation after 120 ns, signifying a change in conformation. In figure 4.6b, the ligand 

RMSDs of PmNDH2, PoNDH2 and PvNDH2 were stable showing no significant conformational 

changes during simulation.  

 

Figure 4.6 RMSD results of the ligands, F represents PfNDH2, A represents AIF-M1, K represents 

PkNDH2, M represents PmNDH2, O represents PoNDH2, V represents PvNDH2 and the numbers 

are representing the specific ligand 
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4.3.1.2 RMSF analysis 

The NDH2 protein is a homodimer and both chains A and H were included in the MD simulations. 

The RMSF results in the study, of the protein in the context of a membrane present during simulation, 

are shown in the figure 4.7 below. The RMSF of the residues in NDH2 complexes for P. falciparum 

were below 0.9 nm; there were high fluctuations between residues G343-N438 of both chains which 

were in the linker, domain C and C-terminal region, in particular with both the apo protein and the 

SANC344 complex showing high fluctuations in both chains A and in H. In general, the residues had 

high fluctuations when the protein was bound to the membrane, with particularly notable fluctuations 

in the same G343-N438 region. 

The RMSF of all residues for AIF-M1 complexes was below 2.3 nm; the complex with SANC418 had 

a high RMSF fluctuation of 2.2 nm for N583. In PkNDH2 complexes the RMSF for protein residues 

was below 1.5 nm and high fluctuations were seen between residues G343-Q419 in both chains which 

form part of the linker and Domain C region. In PkNDH2 complex with SANC342 within the mem-

brane had a high RMSF in both NDH2 chains. Similar behavior was observed in complexes of P. 

knowlesi with low fluctuations in the absence of the membrane. 

The RMSF of residues in the membrane-bound PmNDH2 were all below 1.0 nm; however high fluc-

tuations were observed between residues V343-Q419 in both chains which form part of the linker and 

Domain C region. The SANC422 complex had high fluctuations; although in general the membrane 

bound complexes had higher RMSF values compared to the absence of the membrane. The greatest 

fluctuations were observed in chain A for the SANC101-bound complex and in chain H for the 

SANC422-bound complex. For the SANC119 complex high fluctuations were observed in both 

chains. 

 The RMSF of residues of PoNDH2 across all simulations, apo and complexed, was below 1.1 nm, 

but the highest fluctuations were between residues G343-E419 in both chains which form part of the 

linker and Domain C region. The SANC174 complex showed high fluctuations in chain A, while for 

the complex with SANC590 high fluctuations were observed in chain H. 

The RMSF for residues across all PvNDH2 simulations as membrane-bound systems was below 1.4 

nm, with the highest fluctuations being observed between residues G343-Q419 in both chains (which 

form part of the linker and Domain C region). The membrane bound apo protein demonstrated rela-

tively high fluctuations in both chains, which was a change from the membrane free simulation.  

Generally, the residues 343-419 showed high RMSF fluctuation in plasmodium species both in the 

presence and absence of the membrane. 
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Figure 4.7 RMSF plots of the protein structures, J represents the PfNDH2, A represents the AIF-M1, 

K represents PkNDH2, M represents PmNDH2, O represents PoNDH2 and V represents PvNDH2 

 R studio was used to plot the graphs 

4.3.1.3 Rg analysis 

The radius of gyration calculates the compactness of the protein, increase in protein compactness 

would result in key residues moving closer together, and conversely decrease in compactness would 

result in protein residues moving away from each other. Calculating the dimensions of the protein in 

terms of radius of gyration (Rg) allows for initial assessment of the level of compactness that 

contributes to conformational selection. The distance between the axis of rotation and a point where 

total mass of the system is supposed to be concentrated, so that the moment of inertia around the axis 

may stay the same is known as the radius of gyration (Pirhadi & Amani, 2020). In essence, gyration 

shows the distribution of components of an object. The effect of the ligands on the radius of gyration 

of the NDH2 protein was studied.  

The total simulation time was 150 ns, and through this time the Rg plots show the change in 

compactness of the complexes (figure 4.8). The Rg for all PfNDH2 complexes (in the context of the 

membrane) was below 3.75 nm; however, there was gradual increase noticed in the compactness of 

the apo protein, The SANC101 complex was stable between 50-130 ns, SANC344 was stable until 90 

ns, after which an increase in Rg was observed. The SANC418 complex proved to be stable in terms 

of a relatively constant Rg throughout simulation. For simulations involving AIF-M1 the Rg remained 
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below 2.38 nm, interestingly with the apo protein decreasing the Rg value after 90 ns. However, for 

the SANC101 complex an increase in gyration was observed, while the Rg in the SANC344 complex 

continued to decrease until the end of the simulation. Conversely the SANC418 complex showed 

relative stability although there was a decrease in Rg after 100  ns. The hit compound complexes in P. 

falciparum NDH2 proved to increase the compactness of the system; this contrasts with the behavior 

of the AIF-M1 complexes. 

The Rg for the PkNDh2 complexes remained below 4.0 nm, and while the apo protein and the 

SANC263 and SANC342 complexes showed an increase in Rg value, the SANC435 complex showed 

relative stability with a decrease in Rg after 50 ns. On the other hand, the Rg of the PmNDH2 was 

below 3.9 nm, with the apo protein showing an increase and then a decrease of compactness (the latter 

towards the end of the simulation), but the three SANC101, SANC119 and SANC422 complexes all 

showed an increase in compactness during simulation. The radius of gyration of PoNDH2 was below 

4.1 nm, with both the apo protein and the SANC590 and SANC252 complexes showing a stable plot 

(although the Rg for the SANC252 complex increases after 125 ns), but with the SANC174 complex 

increasing in Rg through simulation. Finally, the radius of gyration in PvNDH2 complexes was 

consistently below 4.0 nm, the apo protein, SANC121 and SANC317 complex showed increase in 

radius of gyration, while the SANC152 complex decreased in compactness after 50 ns.  

 



97 
 

Figure 4.8 The radius of gyration for all structures, F represents the PfNDH2, A represents the AIF-

M1, K represents PkNDH2, M represents PmNDH2, O represents PoNDH2 and V represents 

PvNDH2 

4.3.2 Essential Dynamic calculations (PCA) and Dynamic cross correlation (DCC) 

RMSD projections represent conformational changes in a single dimension; on the other hand, PCA is 

used to show and analyse 3-D conformational sampling through multidimensional analysis, as such 

through the calculation of PCA internal dynamics, and association of Cα protein conformations can be 

explored. The PCA calculation is a multivariate statistical approach to excerpt the important motions 

from the MD trajectories, by removing the rotational and translational movements (Nizami et al., 

2016). The principal component calculations were calculated on the MD trajectories and conformation 

populations were analysed based on the first two principal components (PC1 and PC2), since the 

combination of both components explained majority of total variance across the models.  

 

By diagonalising the covariance matrix of atomic fluctuation, eigenvalues and eigenvectors are ob-

tained. The eigenvector with the largest possible variance in the dataset is the first principal compo-

nent (PC1). The eigenvalues represent the extent of motion, while the eigenvector defines the direc-

tion of motion (Amadei et al., 1993). The plots show the conformational sampling covered by PC1 

and PC2 (that represent the largest and second largest possible variances of the structures). In the PCA 

plots created for each 150 ns molecular dynamics simulation (figures 4.9-4.14), the energy plot with 

the low energy basin, superimposed, shows the more stable protein conformations and their position-

ing during molecular dynamics. In the essential dynamic plots, the dots correspond to individual pro-

tein conformations and are coloured by the time of sampling. The kernel density contour plots are 

from blue (lowest density) to yellow (highest density) and serve as a visual guide for the energy sur-

face and are independently scaled based on the respective samples. The red and blue labels are results 

of two separate methods for extracting conformations found at the estimated energy minima.  

 

Dynamic cross correlation was performed to analyse the extent to which protein residues move 

together, and the protein-ligand complexes were also visualized to monitor the positioning of the 

ligands with respect to the target during simulation.  

In the membrane-bound apo PfNDH2_we observed low energy conformations (in the lowest energy 

basin) at three points during the simulation (20100 ps, 29900 ps and 73300 ps). In the PCA plot, there 

was observed a percentage variance of 17.32% along PC1, and along PC2 a total variance of 9.99%. 

In the simulation of complex PfNDH2-101, the conformation in the low energy basin was observed 

once at 9000 ps, while the percentage variances in the PCA plot of the first two components were 

14.87% along PC1 and 10.04% along PC2. Similarly, for the PfNDH2-344 complex we observed a 

conformation from the lowest energy at 114700 ps, while percentage variance of 13.59% along PC1 
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and 10.48% along PC2 was evident. In the final simulation for this structure, that of complex 

PfNDH2- 418 we observed the lowest energy conformation early in the simulation (at 1200 ps), and 

in its PCA plot 14.29% variance accounted by PC1 and 10.19% for PC2 (figure 4.9a). It was 

interesting to relate the PCA results with the RMSD results, as the lowest energy basins correlated 

with a low RMSD and stability during dynamics. 

To calculate the extent to which protein residues interact together, dynamic cross correlation was 

used, and this produced heatmaps that are shown in figure 4.9b below. The DCC is represented from a 

range of -1(blue) to 1(red) in which 1 is high correlation, the X and Y axes show the residue index 

from 0- 500 residues and this will be translated from Arg39-Lys533 to correctly number the residues, 

meaning 0 = R39, 100 = L139, 200 = S239, 300 = L339, 400 = A439 and 500 = 539. There were 

slight differences in all DCC heatmaps, the FAD, and part of the NADH binding showed high 

correlation in the heatmap. The DCC for P. falciparum complexes ranged from -0.25 to 1.0; the 

SANC101 and SANC344 complexes reduced residue correlation in comparison to the membrane-

bound apo protein; conversely the SANC418 complex exhibited a high residue correlation. Of note is 

that residues that showed high fluctuations in the RMSF (the range G343-N438) showed a low cross 

correlation. In comparison to the simulations in the absence of the membrane, it was apparent that 

residue correlation was reduced in the presence of the membrane.  

In figure 4.9c below, the complete system of PfNDH2 within the membrane is shown, showing the 

orientation chosen by the OPM server within the workflow in CHARMM-GUI. In figure 4.9c below, 

the first image shows the peripheral membrane protein embedded on the membrane, the second image 

shows the complex structure solvated and the third image shows the top view of the complex.  
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Figure 4.9 (a) Essential dynamic (PCA) analysis in the first column with PfNDH2-apo in the first 

row, PfNDH2-101 in the second row, PfNDH2-344 in the third row and PfNDH2-418 in the last row, 

with the simulation ranging from 0 (purple) to 150000 (yellow) ps. (b) Dynamic cross correlation 

(DCC) analysis in the middle column with PfNDH2-apo in the first row, PfNDH2-101 in the second 
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row, PfNDH2-344 in the third row and PfNDH2-418 in the last row, with the correlation ranging from 

-1(blue) to 1(red). (c) PfNDH2 oriented on the membrane 

Comparison of the complexes of PfNDH2 with the human homologue are of particular interest. In the 

membrane-bound AIF-M1_apo we observed the lowest energy conformation about halfway through 

the simulation at 73520 ps. For the apo AIF-M1, in the PCA analysis of the simulation, PC1 

accounted for 23.81% of the total variance, while for PC2 this was 7.12% (figure 4.10a). For the 

complex AIF-M1- 101 the lowest-energy conformation was observed slightly later in simulation at 

99479 ps, and the PCA analysis provided a percentage variance of 20.34% along PC1, and 7.83% 

along PC2. For the second complex, In AIF-M1-344 again we observed the lowest-energy 

conformation about half-way through simulation at 75810 ps; for PCA the percentage of total 

variances was 24.33% along PC1, and 7.69% along PC2. For the final AIF-M1 complex, AIF-M1-

418, the lowest energy conformation was observed slightly earlier than in other simulations with the 

membrane-bound AIF-M1, at 65840 ps, while the PCA plots showed percentage of variance of 

18.20% and 10.24% along PC1 and PC2 respectively. In figure 4.10a the low energy basins are 

superimposed on the PCA; these correlate with the RMSD results in terms of stability. As expected, 

we observed differences when the ligands were bound to P. falciparum and apoptosis inducing factor 

(AIF-M1), in terms of the PCA behaviour, and in terms of the appearance of low-energy 

conformations during dynamics.  

Again, the DCC is represented (figure 4.10b) with a range of -1(blue) to 1(red) in which 1 is high 

correlation; in this figure the X and Y axes show the residue index from 0-500 residues and 

corresponds to Ala128-Phe608, meaning 0 = A128, 100 = L228, 200 = T328, 300 = Q428, 400 = I528 

and 500 = 628. In the DCC, there was a high correlation in the AIF-M1-101 complex in all residues, 

and the correlation ranged between 0.2 and 1 in the three simulations: apo AIF-M1, AIF-M1-344 and 

AIF-M1- 418 complexes. Of note was that the residues in the protein that showed high fluctuations in 

the RMSF analysis had a positive correlation close to 1 in the DCC. There was a greater residue 

positive correlation in the DCC when the ligands were bound to the human homologue in comparison 

to when bound to PfNDH2. We observed a correlation value of 1 on residue N583 that had a high 

fluctuation in RMSF. 

In figure 4.10c the membrane/solvent/AIF-M1 construct is shown, as produced by CHARMM-GUI 

(Membrane builder) webserver. Note that the human homologue was used as a control, as it is not a 

transmembrane protein. Figure 4.10c illustrates that the AIF-M1 protein is not bound to the membrane 

and is neither interacting nor touching the membrane.  
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Figure 4.10 (a) Essential dynamic (PCA) analysis in the first column with AIF-M1-apo in the first 

row, AIF-M1-101 in the second row, AIF-M1-344 in the third row and AIF-M1-418 in the last row, 

with the simulation ranging from 0 (purple) to 150000 (yellow) ps. (b) Dynamic cross correlation 

(DCC) analysis in the middle column with AIF-M1-apo in the first row, AIF-M1-101 in the second 

row, AIF-M1-344 in the third row and AIF-M1-418 in the last row, with the correlation ranging from 

-1 (blue) to 1 (red). (c) AIF-M1 oriented on the membrane 

For two of the PkNDH2 simulations the lowest energy conformation occurred at the start of 

simulation (figure 4.11a). For PkNDH2-apo we observed a conformation from the lowest energy 
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basin at 2500 ps, while for PkNDH2-263 the lowest conformation was observed at 6900 ps. For 

PkNDH2-apo and PkNDH2-263, the observed percentage variances along PC1 and PC2 were 15.97% 

and 9.21%, and 17.37% and 8.01% respectively. For the membrane bound PkNDH2-342 complex, the 

lowest energy conformations were observed at 64400 ps and 105400 ps; and PCA analysis of this 

simulation resulted in PC1 and PC2 describing 15.98% and 11.31% of the total variance. Finally, for 

this system, for the complex PkNDH2-435 the lowest energy conformation was observed at 15450 ps, 

and the respective variance percentages in the PCA plot were 17.36% and 8.56%. In this last case, it is 

of note that an increase in RMSD was observed well after the appearance of the low energy 

conformation. 

In figure 4.11b the DCC is represented from a range of -1(blue) to 1(red) in which 1 is high 

correlation; for PkNDH2 the X and Y axes show the residue index from 0-500 and this corresponds to 

R39-K533, meaning 0 = R39, 100 = A139, 200 = V239, 300 = L339, 400 = Q439 and 500 = 539. The 

dynamic cross correlation of the residues ranged from -0.25 to 1 and the correlation pattern was 

similar across simulations for the PkNDH2 complexes. In terms of relation to the RMSF, residues in 

membrane bound PkNDH2 complexes with high RMSF fluctuations tended to have low DCC 

correlations when the ligands were bound.  

Figure 4.11c shows the membrane-bound PkNDH2 as prepared in CHARMM-GUI webserver; this 

visualization showing the protein orientation on the membrane was created using the PyMOL tool.  
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Figure 4.11  (a) Essential dynamic (PCA) analysis in the first column with PkNDH2-apo in the first 

row, PkNDH2-263 in the second row, PkNDH2-342 in the third row and PfNDH2-435 in the last row, 

with the simulation ranging from 0 (purple) to 150000 (yellow) ps. (b) Dynamic cross correlation 

(DCC) analysis in the middle column with PkNDH2-apo in the first row, PkNDH2-263 in the second 

row, PkNDH2-342 in the third row and PkNDH2-435 in the last row, with the correlation ranging 

from -1 (blue) to 1 (red). (c) PkNDH2 oriented on the membrane  
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Figure 4.12a shows the PCA analysis from simulations of membrane bound PmNDH2. For the apo 

system PmNDH2-apo there were two instances of conformations in the lowest energy basin at 23400 

ps and 127300 ps. These low energy occurrences were at 75700 ps for PmNDH2_101, at 16010 ps for 

PmNDH2-119 and quite late in simulation at 100400 ps for PmNDH2-422. For the observed 

variances in PC1 and PC2, these were 15.10% and 11.32% for PmNDH2, 14.73% and 9.79% for 

PmNDH2-101, 17.57% and 9.73% for PmNDH2-119 and 19.43% and 9.60% for PmNDH2-422. As 

was the case with previous sets of simulations, the low energy basins correlated with a stable protein 

RMSD.   

For the membrane bound PmNDH2 complexes the DCC is also presented in a range of -1(blue) to 

1(red) in which 1 is high correlation. In figure 4.12b the X and Y axes show the residue index from 0-

500 residues and now corresponds to residues R39-K533 in PmNDH2, where 0 = R39, 100 = M139, 

200 = L239, 300 = S339, 400 = Q439 and 500 = 539. The DCC values in all these PmNDH2 

complexes ranged from -0.26 to 1 and we observed a greater residue correlation in SANC101 and 

SANC119 complexes. Further, the membrane-bound systems again appeared to have lower DCC 

compared to the membrane-free systems. In residues with high RMSF fluctuation, we observed high 

residue correlation particularly when SANC101 and SANC119 were bound. Figure 4.12c below 

shows the full systems for membrane-bound PmNDH2 as produced through the use of the 

CHARMM-GUI webserver.  
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Figure 4.12 (a) Essential dynamic (PCA) analysis in the first column with PmNDH2-apo in the first 

row, PmNDH2-101 in the second row, PmNDH2-119 in the third row and PmNDH2-422 in the last 

row, with the simulation ranging from 0 (purple) to 150000 (yellow) ps. (b) Dynamic cross 

correlation (DCC) analysis in the middle column with PmNDH2-apo in the first row, PmNDH2-101 

in the second row, PmNDH2-119 in the third row and PmNDH2-422 in the last row, with the 

correlation ranging from -1 (blue) to 1 (red). (c) PmNDH2 oriented on the membrane  
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Figure 4.13a shows the PCA analysis for the membrane bound PoNDH2 complexes together with the 

energy basins, in which the lowest energy structures are at 131500 ps for PoNDH2-apo, 25700 ps and 

67200 ps for PoNDH2-174, 11200 ps for PoNDH2-252 and 7800 ps for PoNDH2-590. Also evident 

is the percentage variance accounted for by the respective PC1 and PC2, viz, 14.14% and 9.33% for 

PoNDH2-apo, 15.91% and 9.72% for PoNDH2-174, 15.77% and 10.24% for PoNDH2-252 and 

14.98% and 8.89% for PoNDH2-590. Change in conformation occurred towards the end of simulation 

in PoNDH2-590 and PoNDH2-apo.  

Figure 4.13b again shows the DCC with the same scales as before where 1(red) indicates high 

correlation. For PoNDH2 the X and Y axes show the residue index from 0-500 residues and this 

corresponds to residues K39-K533 (i.e., 0 = K39, 100 = F139, 200 = I239, 300 = L339, 400 = A439 

and 500 = 539). The correlation values in the complexes ranged from -0.25 to 1, where of particular 

note the residues in the FAD binding domain showed high correlation. In terms of RMSF, residues 

which had high RMSF also had low correlation here, although the correlation was higher when the 

membrane was absent. The CHARMM-GUI outputs are shown in figure 4.13c with the P. ovale 

protein oriented on the membrane.  
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Figure 4.13 (a) Essential dynamic (PCA) analysis in the first column with PoNDH2-apo in the first 

row, PoNDH2-174 in the second row, PoNDH2-252 in the third row and PoNDH2-590 in the last 

row, with the simulation ranging from 0 (purple) to 150000 (yellow) ps. (b) Dynamic cross correlation 

(DCC) analysis in the middle column with PoNDH2-apo in the first row, PoNDH2-174 in the second 

row, PoNDH2-252 in the third row and PoNDH2-590 in the last row, with the correlation ranging 

from -1 (blue) to 1 (red). (c) PoNDH2 oriented on the membrane 
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For the membrane bound PvNDH2-apo system we observed conformations from the lowest energy 

basin at 39700 ps and 64800 ps, along the axis we observed a percentage variance of 17.06% along 

PC1, and along PC2 a total variance of 11.48% (figure 4.14a). In terms of the complexes, for 

PvNDH2- 121, PvNDH2-152 and PvNDH2-317 the lowest energy conformation occurred early 

during simulation at 6200 ps, 400 ps and 5300 ps respectively. For PvNDH2-121 the PCA provided 

percentage of variance of 17.24% and 9.80% for PC1 and PC2 respectively. For PvNDH2-152 and 

PvNDH2-317 these percentages were 14.31% and 10.13%, and 15.06% and 11.81% respectively.  

Figure 4.14b shows the DCC for these systems, where 1(red) is high correlation. For PvNDH2 the X 

and Y axes show the residue index from 0-500 residues and corresponds to G39-K533where 0 = G39, 

100 = S139, 200 = V239, 300 = L339, 400 = Q439 and 500 = 539. The DCC ranged from -0.25 to 1, 

and we observed more residue interaction when the ligands were bound to the protein. Residues 

which had high fluctuations in RMSF showed low correlation and there was higher residue correlation 

when the membrane was absent. The CHARMM-GUI output for P. vivax was shown in figure 4.14c 

with the protein oriented on the membrane.  
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Figure 4.14 (a) Essential dynamic (PCA) analysis in the first column with PvNDH2-apo in the first 

row, PvNDH2-121 in the second row, PvNDH2-152 in the third row and PvNDH2-317 in the last 

row, with the simulation ranging from 0 (purple) to 150000 (yellow) ps. (b) Dynamic cross correlation 

(DCC) analysis in the middle column with PvNDH2-apo in the first row, PvNDH2-121 in the second 

row, PvNDH2-152 in the third row and PvNDH2-317 in the last row, with the correlation ranging 

from -1 (blue) to 1 (red). (c) PvNDH2 oriented on the membrane  
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4.3.3 Chapter conclusion 

This chapter focused on MD simulations of the type II NADH: quinone oxidoreductase (NDH2) 

protein structures and the Apoptosis inducing factor (AIF-M1), both apo and ligand complexed 

systems, in the context of a membrane. The analysis of these sets of MD trajectories was through the 

use of RMSD, Rg, and RMSF information, and through the use of Principal component analysis 

(PCA) and Dynamic cross correlation (DCC).  

The CHARMM_GUI (Membrane builder) was used to construct the membrane bound systems and to 

produce the geometry and topology files for GROMACS that were used to perform these molecular 

dynamic simulations. In in silico drug discovery studies, it is important to mimic the exact protein 

environment and OPM server was used to correctly position the NDH2 protein on the membrane. The 

FAD cofactors and four magnesium ions in both chains were included in the study. The system took 

time to equilibrate due to its size, but for production dynamics the total simulation time was 150 ns. 

Residues between 343-419 of the protein showed high RMSF fluctuations; this was expected as this 

region covers the linker region. In many cases the ligand influenced and changed the dynamic 

behaviour of NDH2 in the presence of the membrane, in which some compounds clearly destabilised 

the protein. In this project it was our aim to identify compounds that could disturb the electron 

transfer process or affect the functioning of NDH2 leading to the death of the plasmodium without 

affecting the human. It was interesting that the 5 plasmodium species had different hit compounds, 

and that these behaved differently, influencing the dynamics of NDH2 in a variety of ways. It is 

further interesting that compounds interacting well with P. falciparum NDH2 are not necessarily 

going to interact with NDH2 for other Plasmodium species, proving the need to also study these 

species individually.      

In essential dynamics (PCA) calculations, the highest probability density conformations (shown on 

our plots in blue) were extracted from the centroids of the highest contour level using the k-nearest 

neighbour algorithm. K = 1 for the points within that level, while the k-means algorithm was inde-

pendently used to estimate other n possible levels of interest as specified from the number of clusters. 

These conformations with the highest probability densities, for all the protein complexes were repre-

sented by the conformations observed at the time (ps) intervals (in blue) on the plots. The PCA results 

showed different low energy basins in for the apo membrane dynamics, and for when the ligands were 

bound in all protein structures, proving that the ligands had an impact on conformational changes of 

the proteins. The dynamic cross correlation results showed a greater residue correlation in the absence 

of the membrane. Altogether, the findings confirmed the relevance of mimicking the correct protein 

environment, for which the inclusion of a membrane was necessary.  

 



111 
 

5 
Conclusion 

CHAPTER 1 

In the first chapter we focused on general functioning and mechanism of spreading of the disease, un-

derstanding the protein under investigation and description, and learning of the computational tech-

niques applied to reach the aim of the study. The lifecycle and spreading mechanism of malaria was 

explained in this chapter. Understanding the malarial disease and how it is spread to humans is im-

portant, as it leads to development of alternative ways people can adapt to protect and treat this dis-

ease. The mechanism and protein structure studies of the species leads to discovery of effective anti-

malarial drugs.  

Malaria continues to be a burden worldwide claiming the lives of many, especially children under the 

ages of 5, and there is need to do further drug search studies with aim to eradicate this disease. The 

plasmodium species have become resilient to current anti-malarial drugs leading to the need of new 

and effective drugs that are affordable, can be easily accessed and have less to no side effects on the 

human. Drug-resistant malarial strains have been continuously emerging through mutations, causing a 

great global challenge on health. There are several avenues of research including focus on the muta-

tions and how they function; but aims are to find new anti-malarial drug targets such as the NDH2 

protein which is a viable target for anti-malarial drug development, and to find active agents against 

these targets. The Plasmodium falciparum, Plasmodium knowlesi, Plasmodium malariae, Plasmodium 

ovale and Plasmodium vivax NDH2 proteins were included in the project as the target. It was of im-

portance to study all five species as they all cause malaria in human beings, so to understand similari-

ties and difference in structure and functional mechanism. It was also vital to understand if there was 

need for drug design for a specific plasmodium or if a single drug could affect all plasmodium spe-

cies. As the NDH2 is not present in the human, apoptosis inducing factor (AIF-M1) protein was used 

as the human homologue.  

 

The general, aim of this project was to study and use bioinformatics techniques on the NDH2 protein, 

identify hit compounds and to analyse protein-ligand interactions of the five plasmodium species that 

causes malaria in human beings. The study looked at the importance and difference of including or 

excluding a membrane for this transmembrane protein. Details are given of the webservers, 

computational methods, tools, and packages which were used to achieve the goal of this study.   
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CHAPTER 2 

Data retrieval, sequence and structure analysis of the proteins were investigated. The beginning of 

many in silico studies begins with data retrieval, in which the sequence of the protein paves a way to 

multiple sequence analysis, phylogenetic analysis, motif discovery and 3-D structure creation of 

proteins whose crystal structure has not yet been solved. RCSB, NCBI and UNiProtKB webservers 

were used to retrieve the 5JWA (NDH2) P. falciparum crystal structure, together with the 1M6I 

apoptosis inducing factor (AIF-M1) crystal structure of the human homologue and the sequences of 

the other four plasmodium species.  

To assess sequence conservation and conservation of protein domains multiple sequence alignment 

was used; this allowed us to analyse the similarities and differences between the plasmodium species 

and the human homologue. Other species sequences were added to reduce bias and add volume or 

data to the alignment. In multiple sequence analysis 3 webservers (MAFFT, MUSCLE and 

PROMALS3D) were used for comparison sake and we observed conserved regions in all 17 

sequences, the MSA outputs of the 3 tools were similar with MUSCLE and PROMALS3D output 

having more gaps. The MEGA tool was used to calculate the phylogenetic trees and we observed the 

relationship of the species, with indications that the human homologue had the same ancestry as the 

plasmodium species proving a distance relation. The MAFFT MSA output was used as the input file 

to calculate the phylogenetic trees. The sequence identity heatmap that was calculated using an in-

house MATLAB script, and this correlated with the MSA results and the phylogenetic tree as it 

showed portions in the sequence that were highly conserved.  

A sequence motif is an amino acid sequence pattern that is widespread and has been proven or 

assumed to have a biological significance. The motifs were identified, and this was performed to 

understand if there were similar sequence patterns in the five plasmodium species and the human 

homologue, that might have been conserved during evolution to perform certain functions. The 

MEME tool was used to perform this calculation, and this was performed in the YODA cluster. 50 

motifs were calculated. In the output a consensus sequence (the string of most frequent letters) was 

produced as a graphical representation called the sequence logo. In this logo the residues were 

presented in different heights and the height of different letters at the same position was proportional 

to their frequency in the motifs, the higher the letters the better the base conservation in that position. 

Motif 1, 9 and 10 were common in all sequences and these sequence patterns were manually scouted 

for on the sequences and mapped on the protein structures. 

In the absence of the P. knowlesi, P. malariae, P. ovale and P. vivax NDH2 crystal structures in the 

databases, the crystal structure (PDB ID: 5JWA) of the PfNDH2 protein was used as a template in the 

3-D construction of these four NDH2 models. The MODELLER tool was used to create 100 models 

under very slow refinement and the best model with the lowest z-score was picked for further 
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investigations. The FAD cofactor and the four magnesium ions in each chain were modelled. To 

validate the quality of the models PROSA, Verify3D and PROCHECK webservers were used and 

they accepted the four models as of good quality. The models were superimposed with the 5JWA 

crystal structure to identify overlapping regions and assess the alignment. The sequence analysis of 

the protein structures was successfully performed and validated.  

CHAPTER 3 

An essential tool in drug discovery is molecular docking which is a computational method to predict 

the structure of a protein-ligand complex using conformational search and scoring techniques. 

Molecular docking of the 623 SANCDB compounds on the NDH2 structures (together with their 

human homologue) was performed, and the hit compounds were selected based on ligand size, 

binding energy, binding site and its interaction with the protein. The SANCDB is a free database that 

contains compounds isolated from the plant and marine life in and around South Africa, and this 

provided the ligands for screening. Natural products from this database have been shown to display 

antimicrobial, anticancer, against various neurological disorders and anti-diabetic activity. This was 

the first study to use this library against the type II NADH: quinone oxidoreductase. In future studies 

other ligand library databases can be used, to see how they affect NDH2 protein. 

 AutoDock Vina was used to perform molecular docking in a high throughput virtual screening 

approach. To this end, an Autodock plugin tool in PyMOL was used to calculate the box dimensions 

and size. As NDH2 is a homodimer the compounds were docked on all chains. The study was 

interested in finding hit compounds that bound to sites both on the two chains, and compounds that 

bound to the interface region. Each hit was analysed individually. To validate the docking method 

used, the FAD cofactor was redocked to the 5JWA protein structure, which resulted in very similar 

protein interactions. The compounds screened bound mainly in the FAD and NADH binding domains, 

and the linker region. Each of the five NDH2 protein structures had different hit compounds, as the 

ligands docked differently and with different binding energies. Hit compounds in the PfNDH2 were 

analysed by molecular docking to the AIF-M1 protein, as this parasite is the most prevalent malarial 

parasite in causing disease and death. BIOVIA discovery studio was used to calculate the 2D protein-

ligand interaction; for this we had as focus, an interest in conventional hydrogen bonds evident as a 

result of docking. The ligands screened both against plasmodium and human proteins showed better 

protein-ligand interactions in the parasite than the human homologue. METALizer, a ProteinPlus tool 

was used to calculate the interaction of the Mg2+ ions with the protein, so to determine if there was 

need for ion parameterisation before MD simulations. 

Molecular dynamics simulations of the protein complexes without a membrane were performed as a 

series of controls. The GROMACS package and the CHARMM36 force field were used. The 

molecular dynamics was performed for a simulation time of 100 ns using the CHPC cluster in Cape 
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town. The ligands and protein structures were prepared for production run using standard GROMACS 

methods. Upon completion of simulation, the trajectories were analysed using Root mean square 

deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (Rg), Principal 

component analysis (PCA) and Dynamic cross correlation (DCC). 

The MD simulation included the two chains, the FAD cofactor, four Mg2+ ions and the ligand of 

selection. The RMSD showed stability in general for PfNDH2. In general, the RMSD results of the 

plasmodium proteins showed deviations when the ligands were bound. For the compounds bound to 

AIF-M1 stability was evident, indicating that the hit compounds lent some stability to this system; this 

matched the apo AIF-M1 simulation which had a very similar RMSD to that of its complexes through 

simulation. Across all simulations in this study, the RMSD for the protein was low. There were 

similar RMSF fluctuations in all parasite proteins between residues 343-419; this region covers the 

linker region and part of domain C region, and this RMSF fluctuation was observed in both chains. 

Similarly, in general, the RMSF in the protein structures across all simulations was low. In the human 

homologue the residue 583 showed a high RMSF fluctuation.  

The essential dynamics (PCA) study showed the development of protein conformation during 

simulation, and the position during the simulation in which the system was in the low energy basin – 

this information correlated with the RMSD results. The PC1 and PC2 percentage values are detailed 

for all dynamics simulations and plotted accordingly. The structures from low energy basins were 

captured and superimposed against the protein apo protein, this superimposition is in harmony with 

the b-factor calculations of the crystal structures. The proteins showed greater flexibility around the 

peripheral regions of the protein, while the centre of the proteins remained aligned and rigid. The 

Dynamic cross correlation (DCC) of the plasmodium species resulted in values with a range from -

0.50 to 1, where most of the residues had a positive correlation even when ligands were bound. AIF-

M1-SANC101 had a positive correlation in all residues. Residue 583 which had a high RMSF 

fluctuation in AIF-M1 had a positive correlation of 1. In the parasite structures, the residues 343-419 

that showed high RMSF fluctuations had a positive correlation of 1.  

 

CHAPTER 4   

Molecular dynamics simulations can capture the movement and flexibility of both protein and the 

ligand. In this chapter the MD simulations for the proteins and their protein-ligand complexes were 

performed in the presence of a membrane, CHARMM-GUI was used to create the membrane with the 

help of the OPM server to orient the NDH2 protein on the membrane. GROMACS topology files 

were created by CHARMM-GUI and were used as input files for the MD simulation. The simulation 

was performed over a timeframe of 150 ns due to the size of the system. The trajectories were also 

analysed visually in VMD to see the relative positions of protein, ligand, and membrane during 
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simulation. From the visualisation the protein did not detach from the membrane and the protein-

ligand complexes remained intact throughout simulation. Due to the size of the trajectory (trr and xtc) 

files, the periodic boundary box together with water was removed prior to further analyses. 

RMSD, RMSF, Rg, PCA and DCC calculations were performed as analysis of the MD trajectories. 

These results showed interesting differences from the simulations which were in the absence of 

membrane. The hit compounds in PfNDH2 in general showed a destabilising influence on the protein, 

evident in the observed RMSD throughout simulation; results that were different from the AIF-M1 

protein. The ligands in the plasmodium species caused a deviation from the behaviour observed by the 

membrane-bound apo proteins, generally causing destabilisation of the protein. In the plasmodium 

protein RMSF high fluctuations were also observed between the residues 343-419, a similar 

observation as to when the membrane was absent. A high RMSF fluctuation of residue 583 in AIF-

M1 was also observed and the human homologue was not embedded in a membrane. In general, 

across other residues the RMSF of the protein structures were low when the membrane was present. 

To indicate the stability of the ligands in terms of conformation in the binding site, ligand RMSD was 

calculated. This showed general ligand stability across simulations in this dataset, with exception of 

SANC342 bound to membrane embedded PkNH2. The protein RMSD provided information on the 

ability of ligands to cause conformational change in the protein structures. The radius of gyration 

calculations showed generally an increase in Rg and decrease of protein compactness towards the end 

of simulations. However, for the AIF-M1 protein, compactness remained even when the ligands were 

bound.  

Also explored were the simulation time per system to reach low energy basins; this information was 

included as an overlay on the PCA plots; these results correlated with the observed protein RMSD 

during this set of simulations. In terms of dynamics cross-correlation, the residue correlation in the 

proteins was in the range of -0.25 to 1 and there was negative residue correlation observed between 

some residues in some simulations in the presence of the membrane.  

Future studies will focus on docking other ligand library datasets and will concentrate on identifying 

allosteric sites (looking for aspects such as selectivity and druggability) and further work will also 

study the NDH2 mutations. We seek also to perform in vitro tests of the hit compounds, since this will 

complement the computational work, potentially giving further insights into binding and relevant 

biological effects.      
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  Figure S1 Verify3-D output results for the homology modelled structures 
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Figure S2 PROCHECK output results for the homology modelled structures 

 

Figure  S3 Ramachandran Plots of the Homology models, black, dark grey, grey, light grey represents 

highly preferred conformations, Delta >= -2. White with black grid represents preferred 

conformations -2> Delta >= -4. White with grey grid represents questionable conformations Delta < -

4. Highly preferred observations shown as green crosses. Preferred observations shown as brown 

triangles and questionable observations shown as red circles. 
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Figure S4 PROSA output results for the homology modeled structures 

 

Figure S5 The total number of hydrogen bonds in each time step for the PvNDH2_apo, 

PvNDH2_152 (V152) and PvNDH2_317 (V317) 


