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ABSTRACT 

 
Tuberculosis (TB) is a global health threat that has led to approximately 1.5 million deaths 

annually. According to the World Health Organization (WHO), TB is among the top ten deadly 

diseases and is the leading cause of death due to a single infectious agent. The main challenge in 

the effective treatment and control of TB is the ongoing emergence of resistant strains of 

Mycobacterium tuberculosis (Mtb) which lead to multi-drug resistant (MDR) and extensive-drug 

resistant (XDR) TB. Hence, the identification and characterization of novel drug targets and drugs 

that modulate the activity of the pathogen are an urgent priority. The current situation even 

necessitates the reengineering or repurposing of drugs in order to achieve effective control. The β-

ketoacyl-acyl carrier protein synthase I (KasA) of Mycobacterium tuberculosis is an essential 

enzyme in the mycobacterial fatty acid synthesis (FAS-II) pathway and is believed to be a 

promising target for drug discovery in TB. It is one of the five main proteins of the FAS-II pathway 

and catalyzes a key condensation reaction in the synthesis of meromycolate chains, the precursors 

of mycolic acids involved in cell wall formation. Although this protein has been extensively 

studied, little research has been devoted to the allosteric inhibition of potential drug compounds. 

The main aim of this research was to identify the allosteric sites on the protein that could be 

involved in the inhibition of substrate binding activities and novel drug compounds that bind to 

these sites by use of in-silico approaches. The bioinformatics approaches used in this study were 

divided into four main objectives namely identification of KasA homolog sequences, sequence 

analysis and protein characterization, allosteric site search and lastly virtual screening of DrugBank 

compounds via molecular docking. Fifteen homolog sequences were identified from the BLASTP 

analysis and were derived from bacteria, fungi and mammals. In order to discover important 

residues and regions within the KasA proteins, sequence alignment, motif analysis and 

phylogenetic studies were performed using Mtb KasA as a reference. Sequence alignment revealed 

conserved residues in all KasA proteins that have functional importance such as the catalytic triad 

residues (Cys171, His311 and His345). Motif analysis identified 18 highly conserved motifs within 

the KasA proteins with structural and functional roles. In addition, motifs unique to the Mtb KasA 

protein were also identified and explored for inhibitor drug design purposes. Phylogenetic 

analysis of the homolog sequences showed a distinct clustering of prokaryotes and eukaryotes.
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A distinctive clustering was also observed for species belonging to the same genus. Since the 

mechanism of action of most drugs involves the active site, allosteric site search was conducted on 

Mtb KasA and the human homolog protein using a combination of pocket detection algorithms with 

the aim of identifying sites that could be utilized in allosteric modulator drug discovery. This was 

followed by the virtual screening of 2089 FDA approved DrugBank compounds against the entire 

protein surfaces of Mtb KasA and Hsmt KasA,  performed via molecular docking using AutoDock 

Vina. Screening of the compounds was based on the binding energies, with more focus on 

identifying ligands that bound exclusively to the acyl-binding tunnel of Mtb KasA. This reduced 

the data set to 27 promising drug compounds with a relatively high binding affinity for Mtb KasA, 

however, further experiments need to be performed to validate this result. Among these compounds 

were DB08889, DB06755, DB09270, DB11226, DB00392, DB12278, DB08936, DB00781, 

DB13720 and DB00392, which displayed relatively low binding energies for Mtb KasA when 

compared to the human homolog protein. 
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THESIS OVERVIEW 

 
The purpose of this research was to use in silico (computer-based) approaches to virtually screen 
DrugBank compounds to evaluate their potential as inhibitory compounds against Mycobacterium 
tuberculosis (Mtb) β-ketoacyl-acyl carrier protein synthase I (KasA) for drug discovery and design. 
This thesis consists of a total of five chapters that detail the approaches used in this study. 
 

CHAPTER ONE 

This chapter sets forth an introduction into the Tuberculosis disease (TB), one of the leading causes 
of morbidity and mortality worldwide. The main focus of this chapter is the Mtb KasA protein, 
which plays an essential role in the mycolic acid biosynthesis pathway. The structure and 
mechanism of action of the protein are detailed in this chapter.  
 

CHAPTER TWO 

This chapter details sequence and structural analysis of the Mtb KasA protein and its homologs, in 
order to identify conserved regions that are structurally and functionally important in the protein 
family. Different in silico approaches were used to analyze the similarities and differences in 
sequence, structure, and evolution. 
 

CHAPTER THREE 

This chapter introduces allosteric site search on the Mtb KasA and human homolog protein for 
allosteric modulation. A number of allosteric site search tools with different algorithms were used 
in the identification of potential allosteric sites. A consensus was drawn from the sites identified 
and these were further explored in drug compound screening. 
 
CHAPTER FOUR 

Chapter 4 describes the use of AutoDock v4.2, a molecular docking software that assists in the 
analysis of the conformation and orientation of the ligand molecule into the binding sites of the 
target protein. The chapter details the virtual screening of the identified drug compounds via blind 
docking to identify potential Mtb KasA inhibitors.  
 
CHAPTER FIVE  

In this chapter, a summary of the findings in the thesis are reported and the possible future aspects 
are presented. 
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CHAPTER ONE 

LITERATURE REVIEW 
 
1.1  INTRODUCTION 

Tuberculosis (TB) continues to reign as one of the leading causes of morbidity and mortality on a 

global scale. It is an airborne, communicable disease caused by the bacillus Mycobacterium 

tuberculosis (Mtb) [1]. Infection with Mtb can develop from a dormant state (latent TB), in which 

the host retains viable Mtb within their lungs and is asymptomatic, and in some cases can progress 

into a contagious state (active TB) in which a person exhibits clinical manifestations [2]. The disease 

typically affects the lungs (pulmonary TB) but can also affect other parts of the body such as the 

brain, kidneys, intestines as well as the spine. Clinical features associated with active pulmonary 

TB include severe weight loss, fever, night sweats, fatigue, chronic cough as well as chest pains [3]. 
 

1.2 PREVALENCE OF TB 
1.2.1 Global and National TB implications 
Approximately one-third of the world’s population is estimated to be infected with Mtb [4], with    

about 5-10% of the infected persons at a risk of developing active TB in their lifetime [5]. According 

to the World Health Organization [6], an estimated 10 million (range, 8.9 – 11.0 million) people 

contracted TB in 2019 worldwide. Among these 10 million individuals, 56% of the cases were 

reported from men, 32% from women and children accounted for 12%. A majority of the 

approximated number of cases recorded in 2019 were in the WHO regions of South-East Asia, Africa 

and the Western Pacific, with a smaller proportion occurring in the Eastern Mediterranean Region, 

the Americas and Europe [7]. About 87% of the universal cases recorded in 2019 were reported in 

30 high TB burden countries [8], and eight of these countries account for two-thirds of the total. 

These include India (26%), Indonesia (8.5%), China (8.4%), the Philippines (6.0%), Pakistan (5.7%), 

Nigeria (4.4%), Bangladesh (3.6%) and lastly South Africa (3.6%) [9].  

Drug resistance in TB treatment is a public health dilemma and health security threat. Globally, 

approximately half a million people developed rifampicin-resistant TB (RR-TB) [10], with 78% of 

the population having developed multi-drug resistant TB (MDR-TB). The countries that contributed 

the largest to this global burden in 2019 were India (27%), China (14%) and the Russian Federation 

(8%). Figure 1.1 shows the estimated TB incidence rates as reported by the World Health 



 
 

21  

Organization in 2019. The annual number of incident TB cases relative to the population size varied 

greatly among the different countries. A low incidence of TB (< 10 cases per 100 000 population 

per year) was noted mostly in the American, European,  Eastern Mediterranean and the Western 

Pacific regions [6]. On the other hand, more than 500 cases were discovered in the Central African 

Republic, the Democratic People’s Republic of Korea, the Philippines as well as South Africa. 

 

 
 

Figure 1.1: Estimated TB incidence rates, 2019 (Adapted from WHO Global TB Report 2020). 

 

There has been a significant decline in the annual number of TB-related deaths globally over the   

years. In 2019, a total of 1.4 million people succumbed to TB, and this included 208 000 deaths 

reported among people with HIV [11]. This is in comparison with 1.7 million deaths reported in 

2000, with 678 000 of these cases recorded among HIV-positive individuals [12]. In South Africa, 

an estimated incidence of 360 000 cases of active TB were reported in 2019, with 58% of the 

population being HIV-positive. The high rates of TB have been observed from the early 1990s, 

largely owing to the HIV epidemic that negatively impacted the control of TB in the country. It is 

believed that about 80% of the population of South Africa is infected with Mtb, with a vast majority 

with latent TB rather than the active TB disease.  
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The first national TB prevalence survey in South Africa was conducted by a collaboration of the 

South African National Department of Health TB Program, the Human Sciences National Council 

(HSRC) and the National Institute for Communicable Diseases (NICD), between 2017 and 2019 

[13]. This survey was performed on a sample size of 55 000 people aged 15 years and older in 110 

randomly determined clusters, with a total of 35 000 participants. The results of this survey revealed 

that TB is more common among males than females, reaching its peak in individuals aged 35 – 44 

years and those above 65 years [14]. This study also revealed that over two-thirds of the HIV-

negative patients showing classic symptoms of TB had not sought treatment. A greater percentage 

of HIV-negative persons were asymptomatic compared to HIV-positive individuals. This discovery 

shows that there is need to encourage people of all age groups to test for TB as previous studies 

have only focused on symptomatic and HIV-positive persons. 

In an attempt to exterminate the burden of TB on humanity, the 67th World Health assembly adopted 

a policy known as the End TB Strategy, which targets to end the global TB outbreak by 2035 [15]. 

This strategy provides a comprehensive approach to overcome the issues and challenges associated 

with the epidemic by aiming to reduce TB-related deaths by 95% and scale down new cases of TB 

by 90% between 2015 and 2035 [16]. Over the decades, TB medications have been used to combat 

the burden of this infectious disease. However, strains that are resistant to one or more of the 

medications have been documented and this has negatively impacted the current efforts to eradicate 

TB. While TB is present in every country, the majority of TB sufferers reside in low-and middle-

income countries, thus it is regarded as a disease of poverty [17]. Other factors leading to high 

prevalence of TB include the difficulty in accessing healthcare and TB tests, failure of patients to 

complete the recommended treatment regimens, inadequate contact tracing as well as high drug abuse.  

 
Despite free treatment services of TB in public clinics, the control of TB in South Africa is still a 

challenge and patients incur considerable direct and indirect costs prior to starting treatment. 

According to joint research conducted between South Africa and Britain in 2015, it was found that 

the average cost of a newly diagnosed TB case is approximately US$ 210 (equivalent to R2500), 

whilst an MDR-TB case costs up to US$ 9500 (equivalent to R115 000) [18].  However, the cost of 

treatment is dependent upon a number of factors which include socioeconomic status, health 

systems structure, TB service delivery model, insurance coverage and hospitalization costs [12, 19].  

It has been estimated that around R5 billion annually is needed to reach the target to eliminate TB 

by 90%, in addition to the current expenditure. This poses a very high economic burden and hence 
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the need to develop novel therapeutic ways of combating TB infection and managing treatment. 

1.3 PATHOGENESIS OF TB 
Tuberculosis is an ancient disease, whose causative agent was discovered by the German physician, 

Robert Koch in 1882 [20]. This disease, formerly known as consumption, can present itself in many 

forms including skeletal deformities (Potts disease) that have been found in remains of ancient 

Egyptians. A greater proportion of TB cases are attributed to Mtb whilst other closely related 

organisms that make up the Mycobacterium tuberculosis complex (MTC) such as Mycobacterium 

africanum, Mycobacterium bovis and Mycobacterium caprae only contribute to a smaller number 

of cases recorded. Tuberculosis may occur in 3 stages namely primary, latent and active infection. 

Primary infection by Mtb is acquired through inhalation of contagious aerosol particles (droplet 

nuclei). Mycobacteria-loaded droplet nuclei are released when a patient with active pulmonary TB 

coughs or sneezes, and they remain suspended in room air currents for hours which increases the 

chances of transmission. The tubercle bacilli develop infection as a result of the deposition of the 

droplet nuclei (1 – 5 µm in diameter) in the terminal airspaces of the lungs. The bacteria multiplies 

within the alveoli sacs for a period of 2 – 12 weeks until they reach a number that is adequate to 

evoke an immune response in the host. The infection that develops as a result of Mtb infection can 

lead to various outcomes: (1) clearance of the organism by the host’s immune system, (2) suppression 

into an inactive form called latent TB, (3) development of progressive TB disease and (4) 

reactivation of the disease several years later. 

The vital cells involved in the innate defense against Mtb are the alveolar macrophages and the 

dendritic cells [21]. In the event that the host’s defense system fails to eliminate the infection, the 

bacteria multiplies within the alveolar macrophages and eventually leads to cell death. The survival 

of infected macrophages results in the production of cytokines and chemokines that attract 

monocytes, other alveolar macrophages and neutrophils to form a granulomatous structure known 

as a tubercle [22]. When replication of the tubercle is uncontrolled, the structure enlarges, and the 

bacilli eventually lead into the lymph nodes and cause lymphadenopathy. This is a characteristic 

clinical representation of primary TB. 

Latent TB infection occurs mostly after a primary infection. This is a result of an effective immune 

response in the lungs that results in the successful inhibition in the growth of the bacteria, leading 

to the bacteria becoming dormant. This suppression of bacterial replication usually occurs before 

signs and symptoms develop and infected individuals are not capable of transmitting it to others 
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[3, 24, 25]. Tubercle bacilli can survive in the host for years and the microbial virulence condition 

whether the infection remains dormant, resolves without medical intervention or develops into the 

active TB infection. TB is known to affect any part of the body, however, 85% of the patients 

present with a pulmonary infection. Extrapulmonary TB occurs outside the lungs, as a result of 

hematogenous dissemination. The most common sites of extrapulmonary TB disease include 

mediastinal lymph nodes, vertebral bodies, adrenals, meninges and the gastrointestinal tract. 

Reactivation TB, also known as active TB, results from a proliferation of previously dormant seeded 

bacteria from the time of the primary infection. There is a 5-10% lifetime risk of developing active 

TB disease in healthy people with no underlying conditions, although this can be affected   by age 

and other risk factors. It is believed that immunosuppression is linked to reactivation TB as the 

secreted protein resembling resuscitation-promoting factor (Rpf) is activated in this state and the 

bacteria is reverted from a suppressed state to an active state [25]. Clinical manifestation of TB 

begins when it switches from a latent to an active state, and this is dependent on the proliferation 

rate of the bacteria. Any organ can become a site for reactivation, however, in most cases, 

reactivation occurs in the lung apices due to the favorable conditions such as high oxygen tension. 

Conditions that impair immune function facilitate reactivation TB. These include diabetes, HIV 

infection, gastrectomy, cancer as well as chronic kidney disease. Reactivation also occurs as a result 

of a reinfection rather than an activation of latency in some patients. 
 
1.4 SCREENING AND DIAGNOSIS OF TB 

An essential step in ensuring the effective treatment and cure of TB is rapid and accurate testing. 

Although there is no gold standard when it comes to TB diagnosis, various tools and technologies 

have been used to diagnose TB accurately over the years. Tuberculosis should be suspected when a 

patient presents with at least one of the four symptoms: (1) cough lasting longer than two weeks, 

(2) long-lasting fever, (3) night sweats and (4) weight loss. In addition to the above-mentioned 

criteria, epidemiological characteristics such as history of contact with a person with active 

pulmonary disease as well as other risk factors for TB reactivation ought to be considered. The 

diagnosis of TB is confirmed by the presence of the causative agent, Mtb in the biological specimen. 

The choice of a diagnostic test is dependent upon whether it is used to detect latent tuberculosis 

infection (LTBI), active TB disease or drug resistance [26]. 

The primary screening methods for LTBI are the Mantoux tuberculosis skin test (TST) and the 

Interferon gamma-release blood assays (IGRA). The TST was developed by Robert Koch more 
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than a 100 years ago and is also known as the ‘old tuberculin’ test. It is performed using the Mantoux 

technique, which involves injecting intradermal purified protein derivative (PPD) of 5 tuberculin 

units (5 TU) into the forearm of the patient. A pre-test of the probability of an Mtb infection is 

indicated by an induration of about 15 mm, after 48 – 72 hours of taking the test. This test is based 

on a delayed-type hypersensitivity (DTH) to reactivation of the skin to PPD. In spite of the fact that 

the TST has many advantages, including low reagent and equipment costs as well limited skill 

requirements, it has two serious limitations. Firstly, the specificity of the test is affected by late or 

repeated Bacille Calmette-Guerin (BCG) vaccination boosters in children, and to a lesser extent, 

subjection to non-tuberculosis mycobacteria species [27, 28]. Furthermore, it has a restricted 

prediction value as it does not usually distinguish latent and active TB and most patients with a 

positive TST result do not usually develop active TB. 

In an attempt to improve TB screening and replace TSTs, the IGRAs were introduced about two 

decades ago. The IGRA is a blood test that is dependent on the release of interferon-gamma by 

white blood cells exposure to antigens specific to TB in-vitro and is used in the diagnosis of Mtb. 

The Food and Drug Administration (FDA) approved IGRAs are the QuantiFERON®-TB Gold-In 

Tube test (QFT-GIT) and the T-SPOT®.TB test (T-Spot). The benefits of this test are that results 

are available within 24 hours, it requires a single patient visit, and a prior BCG vaccination does 

not cause a false-positive IGRA result. The limitations of this test are that the blood samples need 

to be processed within 8-30 hours when the white blood cells are still viable and like the TST test, it 

fails to accurately distinguish the type of TB infection. 

In order to detect active TB disease, the following technologies are used: imaging approaches (Chest 

X-ray and PET-CT), microscopy (sputum smears), culture-based methods and molecular tests. A 

chest radiography is used to search for a multinodular infiltrate above or behind the clavicle as this is 

the most predictable feature of active TB. Since X-rays lack specificity, it is imperative that an 

abnormal chest X-ray is followed up by microbiological tests. Sputum smear microscopy continues 

to be the widely used diagnostic test despite its numerous limitations. The first step normally 

involves microscopic examination to test for acid-fast bacilli (AFB). When a positive test is 

detected, a nucleic acid amplification test (NAAT) is used to further confirm the diagnosis. The two 

types of NAATs available are the Xpert MTB/RIF and the Line probe assay. Xpert MTB/RIF 

identifies Mtb DNA in sputum sample and detects resistance to rifampicin whilst the Line probe 

assay detects Mtb resistance to rifampicin and isoniazid. 
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1.5 TB TREATMENT AND MANAGEMENT 
Drug therapy in TB was initiated in the 1940s with the use of an antimicrobial agent, streptomycin. 

However, due to the rapid development in drug resistance and elevated failure rates, there was a 

need to implement combination therapy by using at least two potent drugs to combat drug resistance 

[28]. This led to the use of streptomycin and para-aminosalicylic acid in the early 1950s. Due to 

increased bacterial resistance and mortality, isoniazid was introduced as a third agent to the existing 

treatment regimen, thus creating an initial treatment regimen consisting of isoniazid, streptomycin 

and para-aminosalicylic acid, followed by the administration of isoniazid and para-aminosalicylic 

acid in successive months [29]. The administration of this regimen was for a total of 18 months. In 

the mid-1970s, TB treatment took an astounding turn when a short treatment regimen of 6 months 

was introduced, consisting of isoniazid (H), rifampicin (R) and pyrazinamide (Z) [30]. In 2009, 

ethambutol (E) was added to a fixed dose regimen of RHZ, due to increased resistance to isoniazid. 

This new regimen was then divided into two phases; an initiation phase of 2 months followed by a 

continuation phase of 6 months. Currently, patients with monoresistant TB and polyresistant TB are 

treated to a 2-month administration of RHEZ, followed by a 4-month administration of RH. 

Drugs used to treat Tuberculosis are divided into 5 groups in accordance with the WHO guidelines. 

The first group contains first-line anti-tuberculosis drugs whilst subsequent groups consist of second 

line agents. Group 1 contains isoniazid, rifampicin/rifabutin and pyrazinamide as core drugs whilst 

ethambutol is added as a companion drug. Streptomycin is not commonly used. If rifampicin 

resistance is detected, rifabutin is added to the regimen [31]. Treatment of patients with MDR-TB 

and XDR-TB involves the use of second line agents. Group 2 includes parenteral anti- TB drugs 

such as amikacin, kanamycin, streptomycin and capreomycin. These drugs have bactericidal 

activity only  compared to Group 3 agents which have both bactericidal and sterilizing activity, and 

hence their safety profile is low. Compounds in this category are structurally similar therefore only 

one compound can be used. However, streptomycin is not recommended for treatment of 

MDR/XDR-TB even in the event that a drug susceptible isolate is found because the test is not 

always accurate [32]. Capreomycin is usually the first choice of drug in treatment, followed by 

kanamycin and lastly amikacin. Fluoroquinolones are broad-spectrum antibacterial agents that are 

used to treat TB and make up Group 3. Drugs in this group include levofloxacin, ciprofloxacin, 

ofloxacin, gatifloxacin and moxifloxacin. Properties such as excellent oral bioavailability, 

bactericidal activity as well as lack of cross resistance make fluoroquinolones favorable and safe to 

administer. Levofloxacin has the first preference in this group, succeeded by moxifloxacin, 
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gatifloxacin and ofloxacin. Ciprofloxacin is the least effective anti-TB agent in this group therefore 

it is avoided. 

The fourth group includes drug compounds from three classes of drugs: thioamides (ethionamide 

and protionamide), cycloserine/terizidone and an aminosalicylic acid. Since drugs in this group 

have different mechanisms of action, the use of more than one drug is warranted. Thioamides have 

first preference over cycloserine and aminosalicylic acid because of the bactericidal activity as well 

as low toxicity profile. Cycloserine and aminosalicylic acid are added last and this order of 

administration is based on the effectiveness, side effects and cost. Group 5 drugs are very diverse 

and consists of agents with little known clinical evidence in humans and high toxicity. These drugs 

are considered as adjuvant agents and are counted as only half of one of the four basic drugs used 

in the treatment of MDR/XDR-TB [33, 34]. Drugs in this category include linezolid, clofazimine, 

thioacetazone, co-amoxiclav, clarithromycin, delamanid, imipenem, bedaquiline and a high-dose 

isoniazid. These drugs are only used when all other drugs have failed. Table 1.1 gives a summary 

of the drugs used to treat Tuberculosis according to the WHO guidelines and recommendations.   

 

Table 1.1: Summary of classifications of anti-TB drugs according to the WHO guidelines. 

Groups Drugs 

1 
 

 

 
 

Ethambutol, Isoniazid, Pyrazinamide, Rifampicin 
  

2 Amikacin, Capreomycin, Kanamycin, Streptomycin  
 

3 Gatifloxacin, Levofloxacin, Motifloxacin, Ofloxacin  
 

4 Cycloserine, Ethionamide, p-amino salicylic acid, 
Thioacetone 

 
5 Bedaquiline, Clarithromycin, Clofazimine, Co-amoxiclav, 

Delamanid, Imipenem/cilastatin, Isoniazid (high dose), 
Linezolid  
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1.6  TB DRUG RESISTANCE 
1.6.1 Intrinsic Resistance in Mycobacterium tuberculosis 
Various mechanisms lead to the development of intrinsic drug resistance in bacteria. These include 

the presence of a thick, waxy, hydrophobic cell wall, activation of the efflux pump on the surface 

of the bacterial cells, modification of the drug target, inactivation of a drug by use of enzymes as 

well as reducing drug uptake. The cell wall of Mtb is thicker and more hydrophobic compared to 

other gram-positive bacteria. It consists of three key structural components: (1) a network of 

peptidoglycan (PG), (2) the arabinogalactan (AG) polysaccharide, and (3) long chain mycolic acids (MA) 

[34]. The peptidoglycan consists of N-glycolylmuramic acid rather than the usual N-acetylmuramic 

acid found in most bacterial cells. The lipid nature of the cell wall renders it hydrophobic, thus 

preventing the permeation of hydrophilic compounds. However, it is believed that small 

hydrophilic compounds active against Mtb can traverse the cell wall via water- filled porins. The 

diffusion of many hydrophobic antibiotics such as rifampicin, tetracyclines and fluoroquinolones 

is dependent on the molecule hydrophobicity; the more hydrophobic the molecule, the more readily 

it passes through the cell wall [35]. 

Efflux pumps are important components of bacterial and eukaryotic systems. The genome of Mtb 

encodes various putative efflux systems which are divided into five superfamilies, based on 

sequence homology. These include the ATP-binding cassette (ABC), the major facilitator 

superfamily (MFS), the multi-drug and toxic compound extrusion superfamily (MATE), the 

resistance-nodulation-cell-division superfamily (RND), and the small multi-resistance superfamily 

(SMR) [36]. Approximately 2.5% of the Mtb genome consists of genes encoding the ABC 

superfamily transporters. The increased transcription of Rv0194, Rv1819c (BacA) and 

Rv2936/Rv2937/Rv2938 (DrrABC), has led to increased multidrug resistance involving the 

extrusion of substrates such as chloramphenicol, macrolides and tetracyclines. According to a 

study conducted by Li et al., 19 MFS-type transporters encoded in the Mtb genome are correlated 

with drug resistance [37]. The MFS pump Rv1258c (Tap) confers resistance to a vast array of 

substrates such as clofazimine, ethambutol, erythromycin, ethidium bromide, fluoroquinolones, 

isoniazid, rifampicin and tetracyclines. The upregulation of the RND transporter, MmpL5 and its 

periplasmic accessory protein MmpS5 has been linked to increased resistance to bedaquiline and 

clofazimine. In clinical strains of Mtb, overexpression of efflux pumps has been attributed to 

antibiotic stress. Therefore, understanding the mechanisms controlling the overexpression is 

essential to the search and design of novel therapeutics to combat drug resistance [36]. 
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The most common mechanism of resistance in Mtb is drug target alteration. Modifications in the 

drug-drug target interaction sites can inhibit successful binding of the drug and therefore confer 

resistance [38]. Non-synonymous mutations in drug target encoding genes and nucleotide 

substitutions in the operon encoding the ribosomal RNA confer resistance in Mtb. For instance, 

mutations in the active sites of DNA-dependent RNA polymerase confer resistance to rifampicin 

by lowering the affinity of the drug for the target. Drug target modification can also occur as a 

result of enzymatic action, in which the bacteria express resistance to antibiotics by producing 

enzymes that prevent the binding of the drugs. 

Overexpression of the drug target may overthrow inhibition due to an abundance of the target. 

Drug target overexpression leads to low level resistance, as is the case with isoniazid and 

cyclosporine. This can be overcome by increasing the frequency of dosing of the drugs. However, 

an increase in drug dose can result in severe adverse effects and this contradicts overcoming 

resistance due to drug target overexpression. 

 

1.6.2 Acquired drug resistance in Mycobacterium tuberculosis 

The World Health Organization has categorized drug resistance in TB into 5 main classes namely 

monoresistance, polydrug resistance, multi-drug resistance, rifampicin resistance and extensive 

drug resistance [6]. Mono-resistant TB arises as a result of Mtb strains that are resistant to only one 

first line anti-TB drug. Poly-resistant TB refers to resistance to at least one of the first line 

antitubercular agents, but not to both isoniazid and rifampicin. When Mtb strains become resistant 

to at least two of the potent frontline TB drugs, isoniazid and rifampicin, this is called multidrug 

resistant TB. Phenotypic and genotypic methods can be used to detect rifampin resistance with or 

without resistance to other anti-TB drugs and this is termed rifampicin resistance [39]. Mtb strains 

that are resistant to isoniazid and rifampicin, with the addition of any fluoroquinolone and any one 

of the three second-line injectables (i.e., amikacin, kanamycin and capreomycin) gives rise to 

extensive drug resistance. In recent studies, it has been discovered that there is a new case of Mtb 

strains that are resistant to all antibiotics that have been tried and tested, and this is known as totally 

drug resistant TB (TDR) [40]. 

Two types of drug resistance are associated with Mtb, namely phenotypic and genetic resistance. 

Genetic drug resistance arises as a result of chromosomal mutations  in proliferating bacteria whilst 

phenotypic resistance is due to changes in gene expression that leads to tolerance to drugs in slowly 
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growing bacteria [41]. Drug resistance can happen in two ways, i.e., primary and secondary 

resistance. Primary drug resistance occurs when a person who has no history of first-line anti-TB 

treatment develops MDR-TB, usually via exposure to an already resistant drug strain whereas the 

latter, also known as acquired drug resistance, develops as a result of poor adherence to treatment, 

drug malabsorption as well as insufficient regimens [43, 44]. Most cases of MDR-TB and XDR-

TB develop as a result of acquired resistance, although a portion of some cases have been caused 

by nosocomial infections. 

Despite the advances in the control of TB in South Africa and worldwide, rifampicin-resistant and 

multidrug resistant cases of TB are still on the rise. According to the WHO, 558 000 cases of RR- 

TB and MDR-TB were recorded globally in 2017 [15]. In spite of this large number, only 25% of 

the cases were detected and started on treatment. The End TB strategy focuses on the diagnosis 

and treatment of any susceptible forms of drug resistant TB. Universal access to drug susceptibility 

testing (DST) is one of the recommended guidelines used in the initiation and successful delivery 

of treatment. Table 1.2 summarizes the existing anti-tuberculosis agents, genes known to infer 

resistance as well as their mechanism of action. 
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Table 1.2: Common genes involved in acquired resistance in Mycobacterium tuberculosis and 
associated anti-TB drugs. Modified from Dookie et al. 2018 [44]. 

Drug involved Resistance 

Genes 

Gene function Mechanism of action 

Isoniazid katG 
inhA 
kasA 

Catalase peroxide Enoyl 
ACP reductase 
β-keto acyl ACP synthase 

Inhibition of mycolic 
acid biosynthesis 

Rifampicin rpoB Β-subunit of RNA polymerase Inhibition of RNA 
synthesis 

Ethambutol embCAB 
embR 

Arabinosyltransferases 
embCAB transcription 
regulator 

Inhibition of cell wall 
arabinogalactan 
synthesis 

Pyrazinamide pncA 
rpsA 

Pyrazinamidase 
S1 ribosomal protein 

Inhibition of trans- 
translation, inhibition 
of pantothenate and 
coenzyme A synthesis 

Streptomycin rpsL 
rrs 
gidB 

S12 ribosomal protein 16S 
rRNA 
16S rRNA methyltransferase 

Inhibition of protein 
synthesis translation. 

Amikacin, 
Kanamycin 
and 
Capreomycin 

rrs 
eis 
tylA 

16S rRNA 
Acetyltransferase 
rRNA methyltransferase 

Inhibition of protein 
synthesis translation 

Ethionamide ethA 
inhA 
mshA 
ndh 

Flavin monooxygenase 
Enoyl-ACP reductase 
Glycosyltransferase 

Inhibition of cell wall 
mycolic acid synthesis 

Para-
amino 
salicylic 
acid 

ethR 
thyA 
folC 
ribD 

NADH dehydrogenase II ethA 
transcription repressor 
Thymidylate synthase A 

Inhibition of folic acid 
and thymine 
nucleotide metabolism 

Fluoroquinolones gyrA 
gyrB 

DNA gyrase subunit A DNA 
gyrase subunit B 

Inhibition of DNA 
synthesis 

Bedaquiline/ 
Clofazimine 

pepQ Hydrolase Inhibition of 
mycobacterial 
ATP 
synthesis 

Linezolid rplC 
rrl 

Ribonucleoprotein 23S 
rRNA 

Inhibition of protein 
synthesis 

 

The emergence of drug resistant tuberculosis has aggravated the TB public health burden and in 

order to curb the issue of resistance, new drugs and drug targets are constantly being discovered. 

Three primary approaches have been used been used in the development of therapeutic agents and 
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these include: (1) modification of the existing agent classes, (2) inference with resistance 

mechanisms and (3) searching for agents with novel mechanisms of action. The antibiotic 

development pipeline that began in the early 1940s reveals that all the drug compounds that are 

currently used to treat TB are either chemical modifications of existing structures or repurposed 

drugs. The model of mycobacterial cell wall structure which has emerged from studies conducted 

by Brennan Patrick et al., revealed that the fatty acid synthesis pathway presents several potential 

drug targets [45]. This existing pathway has been explored for potential drug targets over the years 

and is detailed in the section below. 

 
1.7 FATTY ACID SYNTHESIS PATHWAY AND KAS ENZYMES 

Fatty acid synthesis (FAS) is a critical anabolic pathway essential for the formation of membranes 

and viability of cells. There are two basic types of FAS pathways present in M. tuberculosis, namely 

the eukaryotic, multifunctional FAS I and the prokaryotic and discrete FAS II. FAS I is responsible 

for the de novo synthesis of C16 - C24  fatty acid chains, which are then passed to the FAS II pathway 

for elongation and formation of mycolic acids [46]. The multifunctional protein domains of the FAS 

I pathway include acyltransferase, enoyl reductase, dehydratase, malonyl/palmitoyl transferase, 

acyl carrier protein, ketoacyl reductase and ketoacyl synthase. FAS II of Mtb includes β-keto-acyl 

carrier protein synthase I (KasA), β-keto-acyl carrier protein synthase II (KasB), β-keto-acyl ACP 

reductase (MabA), β-hydroxyacyl ACP dehydrase (HadABC) and enoyl-ACP reductase (InhA). 

FAS II is a dissociated system, whereby protein is encoded for by a separate gene and catalyzes one 

step in the pathway. This pathway has also been partially characterized in eukaryotic mitochondria. 

The FAS I complex of mycobacteria is an essential enzymatic complex, which catalyzes the de novo 

synthesis of C16 and C18 acyl-CoAs from acetyl-CoA using malonyl-CoA [47]. The acyl-CoAs can 

be used in the synthesis of membrane phospholipids or can be further elongated by the FAS I 

pathway into C24 and C26 fatty acid chains. FAS I is a single polypeptide that usually produces only 

palmitate, whereas FAS II has a diverse number of intermediates, owing to the presence of the acyl 

carrier protein (ACP) intermediates, which can be diverted into other biosynthetic pathways. 

The elongation of the fatty acids in the FAS II pathway is initiated by fadD, a gene that encodes 

malonyl-CoA:AcpM that catalyzes the formation of malonyl-AcpM, the two-carbon substrate 

which forms the basis of the synthesis of mycolic acids. FabD catalyzes the transacylation of 

malonate from malonyl-CoA to phosphopantothenylated holo-AcpM [48]. AcpM shuttles the 
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growing acyl chains between the discrete monofunctional enzymes that catalyze single-step 

reactions in the FAS II pathway. The elongation process is carried out by β-keto-acyl-AcpM 

synthase enzymes encoded by kasA (Rv2245) and kasB (Rv2246). KasA and KasB catalyze a 

condensation reaction of acyl-AcpM and malonyl-AcpM, which results in the elongation of the 

growing meromycolic acid chain  by two carbons. Meromycolic acids are the precursors of the final 

product, mycolic acids. When condensation is complete, the β-keto-acyl-AcpM product undergoes 

a series of reactions catalyzed by β-keto-acyl-AcpM reductase (MabA), β-hydroxyacyl- AcpM 

dehydratase complex (HadABC) and the enoyl-AcpM reductase (InhA). Figure 1.2 shows the steps 

involved in the biosynthesis of mycolic acids in Mtb. 

KasA and KasB are members of the thiolase superfamily, established on the three-dimensional fold 

characterized from Saccharomyces cerevisiae [49]. These enzymes are known to catalyze Claisen 

condensation reactions in the FAS II pathway. KasA and KasB are both specific to the elongation 

of acyl-AcpM primers. The crystal structures of these enzymes have been solved and polyethylene 

glycol was used to mimic a long (C40) fatty acid chain to characterize the hydrophobic acyl-binding 

tunnel of KasA, in order to accommodate the growing fatty acid chains [50]. KasA and KasB have 

similar roles, however, KasA has been found to be involved in the initial elongation of mycolate 

chains whereas KasB is involved in the full-length extension, to give rise to meromycolic acids (up 

to C56 chains). The Mtb KasA enzyme is as such a promising drug target which plays a role in the 

mycobacterial cell wall development and has contributed to the resistance of this pathogen against 

antibiotics. The structure and mechanism of action of this enzyme are detailed below. 

 

Figure 1.2: Schematic diagram showing the intermediates and products involved in the synthesis 
of fatty acids by the FAS II pathway. Adapted from Luckner et al. 2009 [50]. 



 
 

34  

 
 
 
 

His345 
 

Phe404 

Lys340 

Cys171 

 

His311 

 
1.7.1 Structure of M. tuberculosis KasA 
KasA, the mycobacterial β-ketoacyl-AcpM synthase, is a homodimeric assembly in its crystal 

structure. Each monomer is composed of two core domains and a capping region, with each core 

domain consisting of a mixed five-stranded β-sheet covered on each face by α-helices. The two core 

domains (N-terminal and C-terminal) are arranged into a five-layered αβαβα structure, 

characteristic of the thiolase superfamily [51, 52]. All members of this family have at least one 

catalytic cysteine in the catalytic triad, which is subjected to covalent modification during catalysis. 

In Mtb KasA, the catalytic triad is composed of Cys171, His311 and His345 (CHH). The cysteine 

residue is located in the N-terminal domain and lies at the N-terminus of an α-helix, whereas the 

other catalytic residues are located in the C-terminal domain. The N-terminal half consists of 

residues 2 – 259, whilst the C-terminal domain consists of residues 260 – 416. The hypothetical 

gate segment (GS), also known as the helix-turn-helix (HTH) region consists of residues 115 – 147, 

essential for the opening of the acyl cavity for substrate binding (Figure 1.3).  

  

 
                                                                          C-terminal 

Figure 1.3: Overall structure of dimeric Mtb KasA (PDB ID: 6P9K). Each monomer of KasA is 
represented as a cartoon colored in blue and yellow, respectively. The active site residues are shown 
as a space filling representation on both monomers in wheat. The gate segment (GS) region is shown 
in pale cyan and the acyl-binding tunnel is represented as a closed surface in pale-yellow. 

 

The acyl-binding channel of KasA is accessible through two openings: the malonyl binding pocket 

and the opening of the acyl channel at the surface of the protein [50]. This hydrophobic acyl binding 

GS region 
terminal 

Chain B  Chain A 
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cavity is lined with hydrophobic amino acids that accommodate the growing fatty acid chain. The 

short hydrophobic side chains of Ala209, Ile122 and Ala119 facilitate fatty acid binding. The acyl 

binding tunnel poses two challenges in the mechanism of action of KasA: (1) migration of acyl 

chains through the malonyl binding pocket and past the hydrophilic and charged catalytic triad 

residues is energetically unfavorable, and (2) movement of the pantetheine group via the 

hydrophobic environment of the tunnel to the active site Cys171 residue causes steric hindrance. 

However, the gate segment of the protein is highly flexible and upon substrate binding, the scissor-

like motion of residues contained in the gate segment (115 – 147 ) provide direct access to the acyl-

binding tunnel by opening the channel. In addition, the acyl carrier protein (ACP) also facilitates 

the binding of the substrate and its interaction with the tunnel. The acyl binding tunnel thus serves 

as a shuttle to transport substrates to the active site for catalysis and moving products out of the 

active site and transferring them to other enzymes in the fatty acid synthesis pathway. 

The lipophilic pocket comprises of the loop residues Asp273-Pro280  and two water molecules that 

are present in all KAS enzymes, that are under scrutiny for the role they play in the decarboxylation 

process. An important active site residue, Phe404 is presumed to act as a gatekeeper and facilitates 

the widening of the malonyl-binding pocket upon binding of an inhibitor. The second gate keeper, 

Lys340, in its protonated form is responsible for the formation of a salt bridge with adjacent 

deprotonated Glu345 residues. Its role as a functionally important residue was proven by mutational 

studies that revealed that the substitution of Lys340 resulted in diminished catalytic activity. Thus, 

this residue is believed to play an important role in maintaining the structure of the active site [53, 

54]. 

 

1.7.2 Mechanism of action of Mtb KasA 
KasA catalyzes the formation of mycolic acids via a ping-pong reaction mechanism. This reaction 

pathway has three main steps, namely acyl transfer, decarboxylation and condensation. In the first 

step, the active site cysteine is acylated by either an acyl-ACP or an acetyl-CoA molecule. The 

nucleophilic attack of the active site cysteine is facilitated by the dipole of the active site helix and 

an oxyanion hole composed of two backbone NH group atoms [51]. This is followed by a 

decarboxylation reaction, in which the active site residues His311 and His345 function in the 

decarboxylation of malonyl-AcpM. In addition to decarboxylation, the two catalytic histidine 

residues also play a role in stabilization of the acetyl-AcpM carbanion that is formed as a result of 
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decarboxylation. The condensation reaction results in the formation of a C-C bond between 

malonyl-AcpM and the acyl enzyme carbonyl group. Lastly, the acetyl-AcpM carbanion reacts with 

the acetylated enzyme thioester, leading to the formation of β-ketoacyl-ACP as a product. The 

hypothesis behind the mechanism of action of the KasA enzyme is supported by the fact that 

mutation of the active site cysteine residue leads to an increased decarboxylation of the malonyl- 

AcpM substrate by the two histidines [55, 56]. The reaction mechanism steps are shown in Figure 

1.4. 

 

 

Figure 1.4: β-ketoacyl-ACP synthase I mechanism. (I) Acyl transfer of pantetheine-bound acyl 
primer to cysteine residue in the active site, (II) Decarboxylation of malonyl-AcpM to yield an 
acetyl-AcpM carbanion and (III) condensation reaction and two-carbon bond formation to give β- 
ketoacyl-ACP. Adapted from Bhatt et al. 2007 [56]. 
 
1.7.3 Inhibitors of Mtb KasA 

Inhibitors of KasA have been reported in literature and  these include platensimycin, thiolactomycin 

and its derivatives and cerulenin (Figure 1.5) [58–60]. Platensimycin is a natural product that has 

been isolated from Streptomyces platensis, and is known to inhibit KasA and KasB by binding to 

the acetylated form of the enzyme. It targets fatty acid synthesis by inhibiting FabH, the enzyme 

that performs the initial elongation of fatty acid chains from the FAS-I system.. Platensimycin 

targets the active site of the KasA enzyme, however, its mechanism of action is unknown. Alkyl-

based substituents such as dihydroxybenzoate are known to interact with the catalytic histidines and 

occupy the area that the malonyl-AcpM substrate binds to. Binding of dihydroxybenzoate is believed 

to affect the decarboxylation stage of the mechanism of action of Mtb KasA. Thiolactomycin (TLM) 
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is also known to bind to the malonyl-binding pocket, thus acting as a competitive inhibitor of 

malonyl-AcpM [50]. Due to its favorable physicochemical properties, TLM is more sensitive to 

KasA than KasB [60]. TLM is known to form hydrogen bond interactions with Thr315 and His345 

of the active site, thus inhibiting the decarboxylation stage of mycolic acid synthesis by Mtb KasA 

[61]. A mycotoxin-based inhibitor, cerulenin is produced by the fungus Cephalosporium caerulens. 

This molecule covalently interacts with and alkylates the active site cysteine residue via an epoxide 

opening of the ring. Structural analysis of KAS-cerulenin complexes reveal that cerulenin mimics 

the transition state of the condensation reaction by inhibiting the acyl-transfer stage of the 

mechanism of action of Mtb KasA [62]. 

However, further research has shown that the currently known inhibitors of Mtb KasA perform 

poorly in-vitro. In addition, a recent study revealed an overexpression of the kasA gene in treatment 

cases involving TLM in combination with a first-line anti-TB drug, isoniazid. Although cerulenin 

causes a growth inhibitory effect in Mtb KasA, it lacks stability and thus cannot be used for 

successful inhibition. Culture inhibition studies and in-vitro assay data indicate that platensimycin 

targets Mtb KasA and Mtb KasB, with a preferential targeting of the Mtb KasB protein [59]. This 

presents a research gap in the identification of compounds that can successfully inhibit Mtb KasA 

and produce the desired therapeutic outcome.  

 

 

Figure 1.5: KAS inhibitors. Adapted from Zhang et al. 2010 [51]. 
 
 
 
 



 
 

38  

1.8 DRUG REPURPOSING 
Due to the costly and lengthy process of drug discovery and development, repurposing and the 

revival of drugs has become an attractive alternative strategy in TB treatment. Drug repurposing, 

also known as drug reprofiling, is a technique used to identify new uses for approved or 

investigational drugs apart from the already known indication of the drug [63]. This strategy offers 

numerous advantages over developing a new drug entirely. Firstly, the risk of failure is lower 

because the drug has already been approved for use and has been safe for use in humans after 

sufficient clinical trials. Furthermore, the time taken in drug development is sufficiently reduced as 

most of the time-consuming stages of pre-testing, formulation development and safety assessment 

have already been done. Thirdly, a minimal investment will be required in approving the drug for 

an alternative use, however, this is dependent on the stage of development of the drug. It has been 

noted that approximately 30% of the US Food and Drug Administration (FDA) approved drugs and 

vaccines are repositioned drugs [64]. Drug repurposing consists of three main steps: (1) 

identification of a candidate molecule for a particular indication, (2) assessment of the effects of the 

drug in preclinical models, and (3) evaluation of efficacy in phase I and II clinical trials. The most 

important step of this pipeline is the identification of the right drug for an indication of interest, 

which utilizes both in-silico and experiment-based methods. 

Repurposing is not new to the treatment of TB. In the early 1930s, sulfonamides and sulphanilamide 

were used as anti-TB drugs but were discontinued due to the reduced efficacy compared to the first-

line streptomycin and isoniazid. However, the revival of sulfamethoxazole (SMX) showed its 

efficacy in HIV-TB coinfections. Clofazimine is a repurposed molecule used in the management of 

MDR-TB and was initially used as an anti-leprosy drug in the early 1950s. It is recommended as a 

second-line agent used in combination with other anti-TB drugs. Linezolid, an antibiotic used in the 

treatment of gram-positive bacterial infections has now been repurposed for the treatment of MDR-

TB and XDR-TB. Other repurposed drugs used in TB treatment include antibiotics such as biapenem 

and minocycline, antifungals such as artemisinin and chloroquine as well as antivirals such as 

isoprinosine [65]. As repurposing has been successfully performed in the past, this approach could 

assist with the identification of alternative drugs to treat TB and hence combat drug resistance. 

  

1.9 PROBLEM STATEMENT 
Most research in Mtb KasA drug discovery has reported on potential inhibitors that disrupt protein 

function by targeting the active site. Although recent studies have explored the inhibition of the 
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protein at sites distinct from the active site, there has been a loss of efficacy noted against Mtb 

strains with KasA mutations [66]. The current antibacterial drugs used in the treatment of TB target 

macromolecular synthesis; involving cell wall, protein and nucleic acid synthesis. Of these targets, 

cell wall biosynthesizing enzymes have historically proven to be effective because they are unique 

to bacteria, thereby limiting toxicity to mammalian cells. However, most of the promising inhibitors 

of Mtb KasA target more than one protein in the fatty acid synthesis pathway, thus lowering enzyme 

specificity.  

This presents three major research gaps in relation to the identification of novel therapeutics that 

can be used to treat TB and alleviate the issue of drug resistance. Firstly, there is need to discover 

drug compounds that can successfully inhibit Mtb KasA with high enzyme specificity. In addition, 

the currently known inhibitors of Mtb KasA are not FDA-approved drug compounds and are still 

undergoing clinical evaluation. To combat this challenge, drug repurposing of FDA-approved 

compounds can be used to identify potential inhibitors and reduce the time and costs involved in 

developing new antimycobacterial agents. Lastly, exploring allosteric inhibition of the Mtb KasA 

protein would be beneficial to the field of research as it has been less explored and could provide 

valuable insights and aid in the identification of novel compounds that can be used to treat TB. 

Allosteric drugs are highly specific and do not bind to the active site, which is highly conserved in 

protein families. Furthermore, they have improved selectivity and a lower potential for side effects, 

as seen with orthosteric drugs.  

In order to accomplish the aims of the End TB strategy and improve the quality of life, extensive 

research and the development of new drugs is essential. This study focuses on the identification of 

allosteric sites on the Mtb KasA protein and selective compounds displaying preferential binding 

for these sites for inhibitor drug design purposes.  
 
1.10  HYPOTHESIS 
This study hypothesizes that the mycolic acid synthesis pathway of the KasA enzyme in M. 

tuberculosis provides an excellent target for inhibitory compounds that could potentially be used as 

anti-mycobacterial agents against MDR-TB. 

1.11 AIM OF THE STUDY 
The aim of this research is to virtually screen DrugBank compounds against the allosteric sites of 

Mtb KasA via molecular docking and identifying selective  hits of interest using the binding energies 

as well as the protein-ligand interactions. 
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1.12 STUDY OBJECTIVES 

1. Protein characterization via sequence analysis methods to understand the structural and 

functional relationships between Mtb KasA and homologs derived from diverse species. 

2. Allosteric sites identification on the Mtb KasA and human homolog protein (Hsmt KasA) 

by using various computational approaches. 

3. Identification of potential DrugBank compounds that bind to the allosteric sites of Mtb KasA by 

performing molecular docking studies using AutoDock Vina. 

4. Screening of docking analysis outcome according to the binding affinities.
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CHAPTER TWO 

SEQUENCE AND STRUCTURAL ANALYSIS 
 
The complexity of the mycobacterial cell wall has enabled it to be one of the most successful targets 

of Mtb drug discovery. The unusually complex, lipid rich coat of the cell wall has been proposed to 

be critical for its pathogenicity and it is believed to provide inherent resistance to many antibacterial 

agents. Mycolic acids are a distinctive feature of the Mtb cell wall and are characterized by long 

chain α-alkyl (C60 - C90), β-hydroxy fatty acids that are responsible for the low-permeability, acid-

fastness and virulence of Mtb [68, 69]. Enzymes involved in the biosynthesis of mycolic acids thus 

represent fascinating targets for the novel development of anti-tubercular agents. 

KasA, the mycobacterial β-ketoacyl- [acyl-carrier protein] synthase is an essential enzyme in the 

fatty acid synthesis II (FAS-II) pathway responsible for the biosynthesis of mycolic acids. Inhibition 

of the mycolic acid synthetic pathway thus serves as a starting point in the development of potential 

inhibitory compounds in drug discovery. This chapter is aimed at analyzing homolog protein 

sequences of KasA, derived from different species by use of various bioinformatics search tools and 

methods. Fifteen sequences of KasA were obtained in total, eight of these obtained from bacteria, 

three from fungi and four from mammals. A better understanding of the sequence and structure of 

the KasA enzymes, particularly Mtb KasA, is essential in extracting knowledge about the biological 

function of the enzyme and this also paves a way for the development of therapeutic agents. This 

chapter also focuses on the evaluation of the similarities and differences between Mtb KasA and the 

human homolog in terms of sequence and structure in order to identify regions that are unique to 

Mtb KasA that could serve as a drug target. 
 

2.1 INTRODUCTION 

Biological sequence data has displayed an exponential growth over the years. The availability of 

expansive databases on DNA, RNA and protein sequences as well as computational tools for 

sequence analysis has positively impacted the field of research in that data retrieval and analysis 

can be conducted for a wide range of scientific projects. Protein sequence analysis involves 

subjecting an amino acid sequence to in-silico methods in order to study its function, structure and 

evolution. Analytical methods employed in this process include sequence alignment, motif 

discovery, phylogenetic analysis and other methods. This is particularly important as it permits for 
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the recognition of conserved residues and residue groups that are structurally and functionally 

important. Substitution of amino acids with similar physicochemical properties also allows for the 

preservation of the protein structure within the protein families. Sequence alignment plays a vital 

role in identifying regions of similarity that could reflect biological relationships among the input 

sequences [69]. In addition, alignment of protein sequences also assists in the development of 

homology models as well as in the construction of phylogenetic models. Motif analysis entails 

identifying conserved patterns within protein families that are important for structure and function. 

These patterns are represented either as sequence logos or as regular expressions [70]. These 

identified patterns have structural and functional properties that are used in the characterization of a 

protein of interest. Phylogenetics involves the study of evolutionary ties among biological species 

to gain an understanding of the relationship between the ancestral sequence and the descendants 

that arose from evolution. Detailed protein sequence analysis and the specific programs used for 

the aforementioned processes are outlined below. 

 
2.1.1 Protein Sequence Alignment and Algorithms 
Sequence alignment plays a vital role in the analysis of newly determined DNA and protein 

sequences. There are fundamentally two types of alignments, namely global and local alignment. A 

global alignment is an end-to-end alignment of sequences performed to find the best alignment 

across the entire length of the sequences, whereas local alignments focus on aligning local regions 

with the highest level of similarity between the sequences [72, 73]. The optimal alignment of two 

sequences is a computationally exhaustive task that incorporates a technique called dynamic 

programming. This is an algorithmic approach that involves matching two sequences in search of 

all possible pairs of characters and produces a scoring matrix that accounts for matches, mismatches 

and gaps. The alignment scores generated from the scoring matrices also take into consideration the 

gap penalties as well as the pairwise substitution scores obtained from the matched residue types. 

The commonly used substitution matrices are the PAM (Point Accepted Mutations) and the 

BLOSUM (BLOck SUbstitution Matrix). 

The PAM matrices were first developed by Margaret Dayhoff and colleagues in the early 1970s 

using a set of closely related proteins with a minimum 85% sequence identity [73]. Dayhoff 

calculated the probability of an amino acid being replaced by another at a set evolutionary distance. 

A PAM unit is 1% amino acid change per 100 residues. The increasing PAM units represent an 

increase in the evolutionary distances as denoted by the Markov model in which the PAM1 matrix 
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can be multiplied by itself N times. Thus, a PAM250 matrix represents 250 mutations per 100 

residues. As such, the PAM250 matrix is used for divergent sequences whereas the lower PAM 

matrices are used for short alignments that are highly similar. The BLOSUM matrices were 

developed by Henikoff from an inspection of every possible substitution of amino acids in multiple 

sequence alignments. Ungapped alignments (blocks) of less than 60 amino acids, derived from 

divergent sequences were used to calculate the frequencies of residue substitutions in order to 

produce a block substitution matrix [75, 76]. The alignment blocks represent conserved regions 

within related proteins and are used to compute the log odd (LOD) scores. BLOSUM62 is the most 

commonly used matrix and it illustrates that the sequences used for the construction of the matrix 

share an identity of 62%. Higher BLOSUM matrices are used for highly similar, short alignments 

whilst lower matrices are applied to divergent sequences. Other commonly used matrices include 

the VTML matrix developed by Vigron and Mueller using alignments from highly divergent 

sequences [76]. 

 

2.1.2 Database Similarity Search 
Sequence similarity search is predominant in the analysis of biological data in bioinformatics. It is 

used primarily to identify homologous sequences in order to provide information on the protein 

structure, function and phylogeny. In addition, the information derived from the homologous 

sequences can be used to characterize and annotate the query sequence. In order to understand how 

this approach works, knowledge on sequence similarity and homology is required. Sequence 

similarity refers to the measure of degree in which two sequences are alike or similar. It is a 

quantitative measure that is represented as score or percentage. On the other hand, sequence 

homology refers to the inference of an evolutionary relationship between two sequences based on 

similarity and is used to deduce a common ancestral relationship. Database similarity searching 

involves the submission of a query sequence and conducting a pairwise comparison of the query 

sequence with all the sequences in the database . In order to implement the algorithms used in 

database similarity search, a stringent criterion is followed. Firstly, a sensitivity search method is  

performed  to identify as many correct hits as possible and to avoid missing distant homologues. 

This is followed by a specificity test, to exclude any incorrect hits or ‘false-positives’. Another vital 

requirement in database similarity search is the speed at which the results from the computation are 

displayed. Databases may also contain very large families of repeated sequences or motifs thus it is 

important to conduct similarity search against non-redundant databases to avoid bias and misleading 
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scores.  

Specialized programs have been developed to perform database similarity searching. These include 

BLAST [77], PSI-BLAST [78], FASTA [79], SSEARCH [71]and HHpred [80]. These 

programs produce statistical estimates which are used to infer homology to sequences that share 

significant similarity. Basic Local Alignment Search Tool (BLAST) is a heuristic that attempts to 

find short matches from two sequences and aligns the identified matching regions. Several 

variations of the BLAST program are used to search for sequence similarity in protein and DNA 

databases. These include BLASTP, BLASTN, BLASTX, TBLASTN and TBLASTX. BLASTP 

compares protein queries to protein databases and is a prototype of the BLAST family. This 

program requires time relative to the lengths of the sequences of the query sequence and the 

database. 

Position Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST) is an iterative form of 

the algorithm used in BLAST that begins with a regular BLASTP search then builds up a position 

specific scoring matrix (PSSM) from the best hits. This approach is highly sensitive and is used to 

detect distant homologs in protein databases [79, 82]. HHpred applies a pairwise comparison of 

profile Hidden Markov Models (HMM) for remote protein homology and structure prediction. 

Statistical measures such as E-value, p-value, percentage identity and sequence coverage are used 

to identify the homologous sequences from database similarity searching. 

 

2.2 MULTIPLE SEQUENCE ALIGNMENT 
Multiple Sequence Alignment (MSA) involves the comparison of more than two homologous 

sequences in order to perform phylogenetic reconstruction, structural and functional prediction 

analysis.  The accuracy of MSA results is essential in the analysis of biological data as this process 

is a prerequisite of other bioinformatics approaches used in the identification of conserved regions 

of functional importance. A multiple sequence alignment arranges protein sequences in such a way 

that there is a maximum number of matches and integrates this into a scoring function based on the 

sum-of-pairs (SP). When calculating the SP scores, factors such as pairwise matches, mismatches 

and gaps are included. Gaps in an MSA represent insertions and deletions of biological information 

within sequences as a result of evolution. Most MSA techniques use a global alignment, however, 

when there is a large difference in the lengths of the sequences being compared, a local alignment is 

used instead. The most accepted heuristic used in MSA is a progressive alignment. This approach 

uses a pairwise alignment from algorithms such as Needleman-Wunsch and Smith-Waterman to 
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solve a complex MSA task [82]. The sequences are clustered together and similarity scores are 

calculated from pairwise comparisons. Guide trees are built based on the similarity scores using  methods 

such as Neighbor-Joining (NJ) [83] and Unweighted Pair Group Method with Arithmetic Mean 

(UPGMA) [84]. The drawback of this heuristic is that it only focuses on two sequences at a time, 

therefore an optimal result is not guaranteed. In addition, any mistakes in the initial pairwise 

alignment cannot be rectified in the later stages and remain fixed. An improved version of the 

progressive alignment called the iterative method was developed to enhance the accuracy of the 

MSA. This method performs post-processing of the progressive alignment by modifying the guide 

tree construction. The benefit of this approach is that any errors made initially can be corrected, 

thus improving the quality of the alignment. The algorithms that employ the progressive alignment 

technique include Clustal Omega [85], MAFFT (Multiple Alignment using Fast Fourier Transform) 

[87, 88], PROMALS3D (PROfile Multiple Alignment with Local Structures and 3D constraints) 

[88] and MUSCLE (MUltiple Sequence Comparison by Log Expectation) [89], among others. In 

addition, all the aforementioned algorithms with the exception of PROMALS3D also employ an 

iterative alignment technique.   

The quality of the alignment produced can be determined in various ways. One way is to utilize 

refined repositories such as BAliBASE [90] and SABmark [91] as benchmarks upon which 

simulated alignments can be compared to gauge performance of the alignment programs and 

determine accuracy. The disadvantage, however, of using this approach is that benchmarks do not 

cover the full range of scenarios of protein evolution and require high level expertise to generate 

them. To overcome this problem, several programs and webservers have been developed to evaluate 

the alignment accuracy using different scoring techniques, with the assumption that the alignment 

with the highest score outperforms the others. The Transitive Consistency Score (TCS) webserver 

is part of the T-Coffee web platform and uses a  pre-computed MSA to estimate the reliability of 

every pair of aligned residues (PairTCS), every MSA column (ColumnTCS), every MSA sequence 

(SequenceTCS) and the whole alignment (AlignmentTCS) [92]. These metrics can be used to 

identify aligned positions most likely to contain structurally analogous residues that can be used for 

homology modelling and phylogenetic reconstruction purposes. 

 
2.3 MOTIF ANALYSIS 
Motifs are defined as a short, conserved sequence patterns that are used to identify vital structural 

and functional regions within a group of closely related proteins. These regions are generally more 
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conserved than other regions of a protein and tend to evolve as a unit [93]. Motifs are used to predict 

sites that are essential for the functioning of the protein such as active sites, ligand binding sites, 

post-translational modification sites as well as cleavage sites. The identification of motifs 

immensely relies on multiple sequence alignment (MSA) as well as profile hidden Markov models. 

Two models have been used to facilitate the identification of unknown patterns in protein sequences 

and these are deterministic [94] and probabilistic [95] models. 

Deterministic models use consensus sequence patterns, also known as regular expressions, to find 

the number of matches against a sequence of interest and determine a potential functional site. A 

regular expression is a string of characters comprising of exact and ambiguous symbols as well as 

flexible gaps. Two mechanisms are used to match regular expressions with a query sequence: exact 

and fuzzy matching. Exact matching uses a strict matching of sequence patterns and no variations 

are permitted. Fuzzy matching is an approximate which allows more flexible matching of residues 

with similar physicochemical properties. Probabilistic models employ a position-specific scoring 

matrix (PSSM), whereby each entry (i, a) is the probability of finding the amino acid a, at its ith 

position in a sequence motif [96]. Information from the PSSM can be represented as a sequence 

logo; a stack of letters at each position in the motif, where the size of the letters indicates their 

frequency in the sequence. 

Various databases are used in the characterization of proteins to help identify motifs and domains. 

Commonly used motif databases include PROSITE [97] and Pfam [98]. The MEME suite tools 

[99] are widely used for the discovery of protein motifs. The Multiple Expectation Maximization for 

Motif Elicitation (MEME) discovers ungapped motifs in sequences by using a probabilistic 

algorithm. It uses statistical modelling techniques to select the best width, number of occurrences 

and description of each motif [100]. The Motif Alignment Search Tool (MAST) determines the 

best match in the sequence based on the MEME results. The scores for the best matches are 

combined into E-values, and motifs with values below 0.001 are considered. Motifs with MAST 

pairwise correlation values greater than 0.6 are disregarded [101]. 

 

2.4 PHYLOGENETIC ANALYSIS 
Phylogenetics is a process used to estimate the evolutionary relationships by examining biological 

data such as DNA, protein sequences or morphological data from taxa [102]. This process was 

initially studied in order to evaluate the historical relationships between protein sequences but has 
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diversified into the study of mechanisms involved in microbial outbreaks, prioritizing the 

conservation of endangered species as well as inferring the function of genes that have not been 

studied experimentally [101, 102]. A phylogenetic tree is a diagrammatic representation with tree-

like resemblance built in four main steps, namely: (1) identifying a set of homologous DNA/protein 

sequences of interest, (2) performing a multiple sequence alignment, (3) selecting a phylogenetic 

reconstruction method and (4) identifying and evaluating the best tree. Phylogenetic trees can be 

constructed via distance-based or character-based methods [105]. When using the distance-based 

approach, pairwise alignments are converted to distant values that are used to generate a distance 

matrix. The distance matrix is incorporated into the tree building approaches such as UGPMA, 

weighted pair group methods with arithmetic mean (WGPMA), neighbor-joining (NJ), least squares 

(LS) and minimum evolution (ME). As for the character-based method, approaches such as 

maximum parsimony (MP),  maximum likelihood (ML) and Bayesian inference have been used in 

the tree construction process. The Molecular Evolutionary Genetics Analysis (MEGA)  software is  

widely used in the statistical analysis of molecular evolution and in the construction of phylogenetic 

trees[106]. It utilizes both distance-based and character-based methods in the tree construction 

process and allows for visualization of the constructed tree in a tree explorer. The evaluation of the 

reliability of the constructed tree is performed using the bootstrap test and the standard error test. 

Other commonly used programs used for phylogenetic analysis include MrBayes [107], 

Randomized Axelerated Maximum Likelihood (RAxML) [108] and Bayesian Evolutionary 

Analysis Sampling Trees (BEAST) [109]. 

 

 

2.5 METHODOLOGY 
The flow diagram of the web-based bioinformatics tools and databases used in the analysis of the 

Mycobacterium tuberculosis KasA protein at sequence and structural level is presented in Figure 

2.1. 
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Figure 2.1: Summary workflow of analytical approaches used in the identification of KasA protein 
homologues. 

 
 
2.5.1 Data retrieval 

2.5.1.1 Protein sequence retrieval 

Mtb KasA protein sequence (accession number : P9WQD9) was obtained from the UniProtKB 

database by searching using the key words: M. tuberculosis and KasA [110]. Using Mtb KasA as a 

query sequence, homologous sequences from various organisms such as bacteria, fungi and 

mammals were derived using the BLASTP algorithm in UniProt [111], together with a BLOSUM62 

matrix and E-threshold value of 1000. A gap penalty of 11 and an extension penalty of 1 was also 

used. All the retrieved protein sequences were obtained from 8 bacterial, 3 fungal and 4 mammalian 

species, inclusive of the query sequence. The statistical measure, E-value, was vital to selection of 
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addition to the criteria used for sequence selection, query coverage was also considered. The 

BLAST details used on the data set used in the analysis are shown in Table 2.1. 

 

Table 2.1: KasA homologues sequence details. The sequence identities are given relative to M. 

tuberculosis. 

Source Organisms E-value Sequence 

Identity (%) 

Accession code 

(UniProt) 

Residue 

Count 

     

M.bovis 0.0 100 P63455 416 

M.tuberculosis 0.0 100 P9WQD9 416 

Arthrobacter sp. 0.0 85.6 A0A542NQV0 416 

Rhodococcus sp. 0.0 71.6 A0A5A7SCX5 416 

Norcadia cyriacigeorgica 0.0 70.6 A0A5R8NXG2 416 

Gordonia paraffinivorans 0.0 67.7 A0A2YIZNN7 422 

Willimsia limnetica 0.0 66.8 A0A318RJO0 421 

Segniliparus rotundus 0.0 64.4 D6ZB28 419 

Verticillium dahliae 1.2e-85 39.8 A0A366NG543 424 

Epicoccum nigrum 2.3e-84 37.9 A0A1Y2LXX4 430 

Mus musculus 2.8e-67 36.5 Q9D404 459 

Botytis porri 9.3e-77 35.9 A0A4Z1K683 430 

Homo sapiens 1.3e-66 35.8 Q9NWU1 459 

Bos taurus 1.7e-65 34.9 F1MXW5 460 

Rhinolopus 

ferrumequinum 

5.4e-67 34.7 

 

A0A671ENN5 459 

 

2.5.1.2 3-D protein structure retrieval 
The crystal structure of Mtb KasA (UniProt accession code: P9WQD9), strain ATCC 25618/H37Rv 

has been solved in 10 structures and the Homo sapiens mitochondrial KasA (Hsmt KasA) (UniProt 

accession code : Q9NWU1) has been solved in 3 structures. Co-ordinate files for the crystal 
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structures of Mtb Kas A (PDB ID: 6P9K) and Hsmt KasA (PDB ID: 2IWY) were retrieved from 

the Protein Data Bank (PDB) [112]. Both structures were determined via X-ray diffraction and the 

resolutions are 1.70Å and 1.65Å respectively. These structures were visualized in PyMOL [113].  

 

2.5.2 Multiple Sequence Alignment (MSA) 
Multiple sequence alignment of Mtb KasA and the retrieved homolog sequences was performed 

using  three alignment tools: PROMALS3D, MAFFT and Clustal Omega. Crystallographic 

secondary structure information obtained from the PDB file of Mtb KasA was added to 

PROMALS3D to enhance alignment quality, producing a consensus alignment with sequence and 

structural information of the input protein and its homologs. The sequence alignment parameters 

used for the MAFFT alignment included a BLOSUM62 matrix as well as a gap opening and extension 

penalty of 1.53 and 0.123 respectively. Default parameters were used for the Clustal Omega 

alignment. Visualization and editing of the alignments was performed using the  Jalview vs. 2.11.1.4 

software [114]. The TCS webserver  was used to evaluate the resultant alignments from the different 

tools and determine the best performing alignment from the calculated scores.  

 

2.5.3 Motif analysis  
In order to identify the distribution of motifs within the KasA proteins in the dataset, the online 

MEME suite vs. 5.3.3 was used to conduct motif discovery. The MEME parameters used included a 

minimum and maximum motif width of 3-20 amino acid residues and a zero-order model of 

sequences [115]. A total of 100 motifs was set for discovery. Overlapping motifs were detected 

using the MAST tool [116]. Validation of the discovered motifs was performed using the MAST 

file and E-values in order to meet the criteria required for inclusion or omission. Motifs with 

pairwise interaction greater than 0.6 were discarded from the MAST results and only motifs that 

had an E-value less than 0.001 were retained. The final data set was reduced to 44 motifs.  In-house 

python scripts were used to calculate motif conservation heatmaps and map motifs onto their 

respective 3D structures using PyMOL.  

 

2.5.4 Phylogenetic analysis 
The evolutionary relationships of living organisms are generally inferred through molecular 

phylogenetic analysis, which employs various mathematical methods. The MEGA X  software was 

used to study the evolutionary relationships within the KasA protein sequences. The MAFFT 
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alignment was used as an input file and the evolutionary models were calculated using three gap 

deletion options (90%, 95% and 100%). The best three models for each deletion option were 

selected based on the lowest Bayesian Information Criterion (BIC) scores. The Maximum 

Likelihood (ML) statistical method was used to construct phylogenetic trees for the top three models 

for each gap deletion option. The Le and Gascuel model with gamma distribution (LG+G) [117], Le 

and Gascuel model with gamma distribution and invariable sites (LG+G+I) and the Whelan and 

Goldman model (WAG+G) [118] were used for phylogenetic tree construction. A total of 9 trees (3 

x 3 x 3) were generated. Bio-NJ and Neighbour Join algorithms were used for a matrix of pairwise 

distances to obtain the initial trees for the heuristic search and the topology with the highest log 

likelihood. A strong branch swap filter and 1000 bootstrap replicates were used in each tree 

construction. Lastly, the comparison of the trees generated to the bootstrap consensus tree was 

performed in order to determine the reliability of the construction process and to ensure that the 

branching patterns were accurate [119]. The best model and gap deletion was then selected for 

further analysis. 

 

2.6 RESULTS AND DISCUSSION 
2.6.1 Sequence Analysis 

A total of fifteen homologous sequences were retrieved from the UniProt database using Mtb KasA 

as a query sequence. These homolog sequences belong to the bacterial, fungal and mammalian 

classification of organisms. Eight of these sequences were bacterial in nature, three were fungal and 

the rest were mammalian. The BLAST search results displayed the query sequence as the first hit 

and this had a 100% sequence identity, together with M. bovis which is a member of the same genus 

(Table 2.1). The bacterial sequences had the highest sequence identity when compared to the query 

sequence (> 60%), followed by fungal sequences and lastly mammalian sequences. Both the fungal 

and mammalian sequences had a sequence identity below 40%. From the sequence identities, it can 

be deduced that the sequences obtained using M. tuberculosis KasA as a query sequence are 

homologous. Most of the bacterial sequences had similar lengths, however, the fungal and 

mammalian sequences were longer, and this also explains the low sequence identities and divergent 

nature as regions of local similarity decrease with sequences of varying lengths. 

 

2.6.2 Multiple Sequence Alignment 
Multiple sequence alignment of the homologous sequences was carried out to identify highly 
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conserved sequence regions, postulated to have structural and functional significance within the 

KasA family, as well as unique sequence regions in the Mtb KasA protein that can be exploited for 

inhibitor drug design purposes. In order to evaluate the best alignment, a comparison of the outcomes 

produced by the different alignment tools was performed on the TCS webserver. Generally, all the 

alignment programs produced a high overall alignment score, suggesting their accuracy in 

identifying conserved regions of structural and functional importance. The N-terminal region was 

less conserved in the PROMALS3D and Clustal Omega alignments, as shown in Figure S1 and 

Figure S2 respectively. The inserts in the alignments, largely concentrated in the N-terminal region, 

were observed to be occurring in the loop regions when mapped to the crystal structure of Mtb 

KasA. The MAFFT alignment produced the highest alignment score and was selected as the most 

suitable alignment for subsequent analyses. This alignment is shown in Figure 2.2.  

 

2.6.2.1 Areas of conservation and insertions 
The multiple sequence alignment generated showed a conservation of residues among the homolog 

sequences, but with some areas of non-conservation as well (Figure 2.2). The columns are colored per 

percentage identity. The MSA of  Mtb KasA showed a high conservation of the active site residues, 

particularly the key catalytic active site residues, namely Cys171, His311 and His345. In addition, 

the gate keeper residues, Phe404 and Lys340 were also conserved. These residues are believed to 

be involved in maintaining the integrity of the active site and previous studies have revealed that 

mutations involving any of these residues result in diminished catalytic activity [53]. Other highly 

conserved residues include the hydrophobic residues which are located in the acyl-binding tunnel 

and interact with the substrate, namely Phe237 and Phe239. Phe237 is highly conserved in all the 

KasA sequences, whilst Phe239 is highly conserved in the bacterial KasA sequences but is 

substituted by a Val or Ile residue in fungal KasA sequences and a Met residue in mammalian 

sequences. In addition, the acyl-binding cavity forming residues Ile347 and Ala349 are also highly 

conserved in KasA sequences, with Ile347 showing high conservation in bacterial KasA sequences 

but is substituted by a Lys residue in fungal and mammalian sequences. The residues Thr313 and 

Thr315 involved the ACP-substrate binding were also highly conserved in all sequences. Another 

highly conserved residue is Ser41, which is interacts with the growing fatty acid chains in the acyl-

binding cavity. This residue is highly conserved in bacterial and mammalian KasA sequences but 

is substituted by a Cys residue in fungal sequences. All in all, the active site residues as well as 

residues involved in key interactions with the substrate of KasA were highly conserved, thus 
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denoting their importance in protein function. 

Clearly visible from the MSA is the N-terminal insert I, made up of ≈ 40 residues at the start of the 

alignment, as a result of the mammalian sequences. The Hsmt KasA protein has an N-terminal 

mitochondrial target peptide that includes 38 amino acid residues [116, 117]. This feature is 

believed to be only unique to mitochondrial KAS enzymes. Previous studies on Hsmt KasA 

revealed that the target peptide has an overall positive charge resulting from the relatively high 

proportion basic amino acids and a lack of negatively charged residues. Other inserts that were 

identified across the alignment are shown in red boxes. The second largest insert, II made up of 7 

residues is located between residues Pro93- Phe102 in mammalian sequences. According to previous 

studies on the protein, this is a loop region that connects the first and fourth strands of the N-terminal 

β-sheet and is only found in mitochondrial KAS enzymes, as shown in Figure S4 [121]. Relatively 

small inserts in the alignment were located in the C-terminal region. These inserts of about 3 

residues were due to both mammalian and fungal sequences. 

 

 

 
 

 
 
 



54 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: MAFFT multiple sequence alignment of Mtb KasA and its homologs. Residue numbering is given for M. tuberculosis. Residues of 
the catalytic triad are depicted by green asterisks. The inserts due to the mammalian sequences are shown in red boxes. These residues were 
conserved across the homologs of KasA. The alignment is colored by percentage identity. 

 II 
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2.6.3 Motif Analysis 
Protein sequence motifs are signatures of protein families used as tools for the prediction of protein 

function. The MEME software is widely used to identify motifs in DNA or protein sequences. The 

MEME parameters were set to find motifs of 3-20 residues in length in order to cater for motifs that are 

longer than the short linear average of 3-11 residues [101]. MEME identified a total of 18 highly 

conserved motifs across all the sequences. These results were displayed as a heatmap using an in- house 

python script as shown in Figure 2.3. MEME was set to discover 100 motifs, however, the pairwise 

correlation analysis in MAST reduced the final data set to 39 motifs. Motif conservation in the KasA 

homologs is represented as the number of sites per total number of protein sequences. The motifs 

identified were numbered according to the MEME output. A value of zero on the heat map indicates 

the absence of the motif in any of the protein sequences whereas a value of 1 indicates a 100% 

conservation of the motif in all sequences. 

 

 
Figure 2.3: Motifs identified in KasA homologs presented as a heatmap. The colours represent the 
conservation of motifs identified. Conservation increases from blue to red, while the absence of 
motifs is shown by a white colour. 
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The E-values of the highly conserved motifs (M1-M14,M17-19 and M22) are shown in Table 2.2. From 

the table, it was observed that all the highly conserved motifs have an E-value less than 0.001. These 

motifs were selected for further analysis. Motif 1 contains residues involved in the binding of acyl-fatty 

acid products of catalysis. This motif contains hydrophobic residues such as Phe237 and Phe239, which 

are positioned to interact with the substrate or inhibitor, as is the case with Thiolactomycin [50]. Motifs 

2, 8 and 4 are involved in the catalytic function of the enzyme. The active site Cys171 is located in motif 

4 whilst the other catalytic triad residues, His311 and His345 are located in motifs 2 and 3 respectively. 

The histidines play an important role in the decarboxylation of the malonyl-AcpM substrate as well as in 

the stabilization of the acyl-carbanion intermediate. In addition, nitrogen atoms of the histidines are 

involved in hydrogen bonding, which is believed to help stabilize the loop region between Asp273-

Pro280. In addition to the catalytic function, Lys340 in motif 8 plays an important role as the ‘second 

gatekeeper’ residue to the malonyl-binding pocket. This residue helps to maintain the integrity of the 

active site thus aiding in enzyme stability. Residues 347 and 349 of this motif are also involved in the 

formation of the acyl binding cavity. This cavity connects the active site and the pocket at the surface of 

the protein and is responsible for accommodating the growing fatty acid chain.  

Thr313 and Thr315 of motif 2 are highly conserved residues in the KAS family and are proposed to be 

involved in ACP-substrate binding [52]. Motif 7 contains the lipophilic pocket residues (Asp273- 

Pro280), and Motif 9 contains a Ser41 residue that interacts with the growing fatty acid chains in the 

acyl-binding tunnel. Arg135, Lys136, Val142 and Met146 in motif 6 are positioned to interact with the 

malonyl-AcpM substrate. In this orientation, the bound acyl-carrier protein permits the entrance of 

substrates via the phosphopantetheine tunnel opening. Another key interesting observation is that the 

HTH region of the KAS proteins is associated with this motif. This region is responsible for opening the 

acyl-binding tunnel during catalysis in order to shuttle substrates and products in and out of the active 

site. Motif 10 and 17 contain residues that make up the acyl-binding tunnel, which acts as a shuttle 

between KasA and other enzymes in the fatty acid synthesis pathway. The arginine residues in motif 14 

(R74, R78 and R79) are essential for ACP-substrate binding. Some conserved motifs such as M5,M11-

13,M18-19 and M22 had no related known function from literature. However, it would be interesting to 

further investigate the functionality of these motifs. Mapping of the highly conserved motifs onto the 3D 

structure of Mtb KasA is shown in Figure S5. 
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Table 2.2: Highly conserved motifs in KasA homologs. The starting and ending positions of the motifs in Mtb KasA, constituent residues, values 
and contribution to function is displayed. Residues with important functionality in the motif are underlined and highlighted in bold. 

 
Motif Residue Range Residues E-Values Residue Count Function 

1 220-240 NDDPKAASRPFDKDRDGFVF 7.4E-169 20 Hydrophobic pocket 

residues 

2 307-327 HVNAHATSTPLGDAAEAKAI 4.4e-151 20 Catalytic mechanism and 

ACP-substrate binding. 

3 397-417 AINNSFGFGGHNAALAFGRY 5.0e-150 20 Active site pocket 

4 166-186 TPVSACSSGAEAIADAWRFI 9.5e-132 20 Catalytic mechanism 

5 367-382 LPPTLNLENPDPEID 1.2e-108 15 - 

6 132-152 GGYRKVSPLAVPMIMPNGAA 1.5e-137 20 ACP-substrate binding 

7 261-281 IYARLLGAGLTSDAFHLVAP 3.3e-125 20 Lipophilic pocket residues 

8 336-356 VYAPKGALGHSLGAVGAVEA 2.7e-123 20 Catalytic function, enzyme 

stability and acyl-binding 

cavity 

9 24-44 PLGVDVESTWKGLLAGESGI 7.8e-114 20 Binding of acyl-fatty acids 

10 187-207 MGDADVMVAGGVESCIDPLP 6.9e-113 20 Acyl-binding tunnel 

11 240-260 GEGAALMVLEEEEHAKARGA 1.2e-112 20 - 

12 286-306 GAARAMTRALKTAGLSPEDI 2.7e-088 20 - 

13 95-115 WEPAGEPEVDPTGVAVGIGT 1.4e-070 20 - 

14 69-89 DNFVSRVEMRRMSYVERMAI 4.0e-070 20 ACP-substrate binding 

17 207-219 LAAFSMMRALST 1.0e-051 12 Acyl-binding tunnel 

18 382-394 LBVVPGEPREGK 1.6e-046 12 - 

19 153-165 VVGLRYGARGGV 4.3e-032 12 - 

22 356-365 VLTVLALRD 4.9e-013 9 - 
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Mapping of highly conserved motifs as well as motifs unique to a particular species group onto the 

multiple sequence alignment was also done and this is shown in Figure S3. Differences at residue level 

were observed upon mapping of the motifs despite the high level of motif conservation across the KasA 

homologs. Prokaryotic specific motifs such as motif 15 and 16 were identified and motif 21 was unique 

to eukaryotes. In addition, motifs 20, 24, 25, 26 and 27 were found to be unique only to mammalian 

species. The functional role of these motifs has not been revealed in literature, however, an investigation 

into these motifs could also provide new insights in understanding the mechanism of KasA proteins. In 

an attempt to gain a better understanding of the function of the identified unique motifs, mapping of 

these motifs onto the respective structures (Mtb KasA and Hsmt KasA) was done using an in-house 

python script in PyMOL (Figure 2.4). The individual motifs are colour-coded onto the corresponding 

protein structures. It can be noted however that even though the motifs are unique to a particular species 

at sequence level, the 3D structures of these proteins are highly similar, and this forms  a basis to which 

more insights of drug discovery can be explored, and this is discussed in Chapter 3. All in all, motif 

analysis accurately identified regions of functional and structural importance in the KAS protein family 

such as the active site and substrate binding sites and this is consistent with previous literature. 
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Figure 2.4: Crystallographic structures of Mtb KasA (PDB ID:6P9K) and Hsmt KasA (PDB ID:2IWY) 
and the identified unique motifs mapped to the respective 3D structures. A) The location of identified unique 
motifs on Mtb KasA and B) Unique motifs of Hsmt KasA. 
 
 
2.6.4 Phylogenetic Analysis 
In order to evaluate the deeper phylogenetic relationships between Mtb KasA and its homologs, the 

MEGA X software was used to infer evolutionary differences among the sequences. This was done in 

order to unveil the differences among the sequences which could provide insights on designing 

inhibitors that only target Mtb KasA and not the human homolog, for inhibitor selectivity purposes 

[122]. 
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Figure 2.5: Phylogenetic analysis for 15 KasA protein sequences constructed using the MEGA X 
software. The Maximum Likelihood method was used to infer evolutionary relationship using the Le 
and Gascuel 2008 model at 100% site coverage. Initial trees for the heuristic search were obtained 
using the BioNJ and Neighbour-Join algorithms to a matrix of pairwise distances calculated using the 
JTT model. 
 
The LG+G, LG+G+I, and WAG+G models were selected for the construction of the phylogenetic 

trees as these models had the lowest BIC scores. The LG+G model at 90% deletion was selected as 

the best tree as it had the highest log likelihood (-6180.23) and is shown in Figure 2.5. The most 

notable observation from the phylogenetic tree is the distinct clustering of the KasA protein sequences 

into two groups namely prokaryotes and eukaryotes. The bacterial species cluster together while the 

fungal and mammalian species also cluster together. This distinct clustering is consistent with low 

sequence identities observed between Mtb KasA and the fungal and mammalian sequence homologs. 

In addition, the phylogenetic tree also shows a distinct clustering of the rodent KasA (Mus musculus) 

sequence from the human  analogue despite the similarities at sequence level. This clustering is 

vital as most in-vivo TB drug testing is done on rodent specimens. KasA proteins belonging to the 

same genus were observed to be clustered together, as is the case with M. tuberculosis and M. bovis. 

This observation is supported by the sequence alignment as they share a 100% sequence identity. 
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2.6.5 All-versus-all sequence identities 
All vs all sequence identity calculations were assessed in order to investigate the extent of sequence 

conservation in all KasA sequences. This calculation was done using an in-house python script and the 

results were presented as a heatmap. The clustering of sequence groups observed in Figure 2.6 and the 

behavior of the sequences was compared to the sequence alignment and phylogeny results. The 

clustering of the sequences in the heatmap was consistent with the phylogenetic tree results. The 

magnitude of identity between sequences increases from 0, shown by a white colour to 1, indicated by 

a red colour. The heatmap shows high sequence identities in KasA proteins of the same species. Bacterial 

species share a high sequence identity (> 60%), followed by fungal species (40-45%) and lastly 

mammals (32-38%). In addition, it is important to note that proteins belonging to the same genus/family 

were clustered together, as is the case with the Mycobacterium sequences. These sequences share a 100% 

sequence identity and the heatmap visibly shows the clustering of these sequences separately from the 

other bacterial species from different families. A pairwise sequence comparison of a sequence to itself 

gave a sequence identity value of 1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: The pairwise sequence identity heatmap of the KasA proteins. The heatmap shows the 
pairwise sequence identity scores of the MSA as a colour-coded matrix. Identity scores  increases from 
white to red (least to most conserved sequences) in the heatmap. 
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2.7  CHAPTER CONCLUSION 
This chapter provides an in-depth sequence and structural analysis of the KAS (Keto-acyl-ACP 

synthase) proteins. Fifteen protein sequences were retrieved from the UniProt database from a diverse 

range of species namely bacteria, fungi and mammals. The sequences identities and coverage of the 

homolog sequences with respect to the query sequence (Mtb KasA) revealed that the sequences were 

true homologs (sequence identity > 30%). Multiple sequence alignment of these protein homologs 

revealed the high conservation of residues that infer functionality of the protein such as active site 

residues. MSA also identified an N-terminal insert in the mammalian sequences, with particular 

reference to Hsmt KasA, that has characteristics of a mitochondrial transit peptide. Motif analysis was 

employed in order to identify conserved sequence patterns within proteins of the KAS family as well as 

to investigate whether these motifs played an important role in the structure and function of the 

proteins. Eighteen highly conserved motifs were identified across the homologs and these were explored 

at residue level for protein characterization. In addition, the HTH region of the KAS proteins was also 

identified and is associated with Motif 6. Motifs unique to Mtb KasA were also identified and these 

could serve potential as targets for allostery and drug repurposing. Phylogenetic analysis highlights the 

evolutionary relationships and distinct clustering of the prokaryotic-based sequences from the 

eukaryotes. The results of this clustering are also consistent with the all-versus-all sequence identity 

heatmap observations. 

In the next chapter we explore the identification of potential allosteric sites on the Mtb KasA protein by 

use of various allosteric site search tools in order to further explore these sites for structure-based drug 

design as well as to further validate the suitability of Mtb KasA as a potential drug target. 
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CHAPTER THREE 

ALLOSTERIC SITE IDENTIFICATION 
 

The mechanism of action used by most drugs involves altering the action of enzymes, receptors 

and transporter molecules by binding directly to the orthosteric sites, commonly known as the 

active sites. These drugs have been designed to mimic the body’s natural substrates and binding 

of these molecules can either result in an activation or deactivation of the receptor [123]. However, 

an insight into the binding of drug molecules to sites away from the orthosteric sites is believed to 

be a step that can potentially revolutionize drug discovery. Allostery is an approach that involves 

the binding of a potential drug molecule (termed allosteric modulator) to an allosteric binding site, 

altering the conformation of the active site of the protein [124]. The use of allosteric modulators 

in drug discovery have advantages that include increased target specificity, selectivity as well as 

the enabling the design of therapeutic agents with fewer side effects [125, 126]. 

In this study, the 3D structures of Mtb KasA  and Hsmt KasA  were explored for potential allosteric 

sites using various allosteric site identification tools. The tools used included CavityPlus [127], 

AutoLigand [128], Protein Plus DoGSiteScorer [129] and SiteMap [130, 131]. The above-

mentioned tools employ different detection algorithms in the identification of probable allosteric 

sites, including but not limited to the following: structural geometry, machine learning, grid-based 

and energy-based methods. This chapter focuses on the discovery of potential allosteric sites on the 

Mtb KasA protein and its homolog, Hsmt KasA by utilizing several pocket detection tools as well 

as exploring these sites for inhibitory drug design purposes. 
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3.1 INTRODUCTION  

3.1.1 Overview of Allostery  
Allostery is a key regulatory cellular process that involves modifying the nature of a biological 

target (DNA or protein). In relation to proteins, this process involves altering the conformation of 

the protein at the active site or other sites as a result of distant perturbation of the protein [132]. 

The term allosteric originated from the Greek word allos, meaning other, and steric, which refers 

to the spatial arrangement of atoms in a molecule [ 1 3 3 ] . Simply put, allostery is a change in shape. 

Allosteric perturbation is not only limited to the binding of a ligand molecule but can also arise as 

a result of other non-covalent modifications such as a change in pH, temperature and concentration 

[134]. In addition, covalent alterations such as phosphorylation, glycosylation, ubiquitination [135] 

and point mutations also result in allostery [132, 136]. Allosteric modulators can either function 

as a positive allosteric modulator (PAM), a negative allosteric modulator (NAM) or as a neutral 

allosteric modulator (NAL). PAMs increase the binding affinity of the ligand to the orthosteric 

site, which in turn results in boosted activity. NAMs result in a decreased affinity for the agonist 

to the receptor, thus leading to a decrease in activity. NALs work by binding to a receptor’s 

allosteric site but do not introduce any change to the behavior of the receptor or the orthosteric 

ligand [123, 137]. It must be noted that the NAL group has a very small number of molecules and 

hence it is not commonly used. 

The allosteric behavior of multimeric proteins is best explained by two main models: the concerted 

Monod-Wyman-Changeux (MWC) model and the sequential Koshland-Nemethy-Filmer (KNF) 

model [138]. The MWC model hypothesizes that allosteric oligomeric proteins exist in two 

interchangeable states, T or R, that are in thermal equilibrium, with all the subunits in the protein 

either adopting the T state or the R state. The R state, which is also known as the active/relaxed 

state has a higher free energy and in the presence of an allosteric ligand, the free energy is lowered, 

and this enables the ligand to bind tightly to the protein [134]. In addition, the ligand affinities for 

the orthosteric and allosteric sites vary between the two states, thus  permitting preferential binding. 

The KNF model on the other hand postulates that in the absence of a ligand, the protein is found 

in a single state, usually the T state. Ligand binding prompts a conformational change to the 

subunit that it binds to, which in turn induces a conformational change in the neighboring subunits 

[139]. This model represents the theory of induced fit, by which binding of substrates to the active 

site result in a conformational change in the residues constituting the active site, which are essential 
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for the protein’s functioning. Other models that have been used to substantiate the hypotheses of 

the two models described above include the Population Shift Model, Morpheein Model as well as 

the Dynamically Driven Model [140]. 

 

3.1.2 Properties of Allosteric Proteins 
Over the decades, various experimental techniques have been used to characterize allosteric 

proteins. These include X-ray crystallography, Nuclear Magnetic Resonance (NMR), Fluorescence 

and Hydrogen-deuterium exchange mass spectrometry [134]. These techniques have given rise to 

high resolution structures which have been used to determine the structural characteristics of 

allosteric proteins. According to a study conducted by Li et al., it was reported that allosteric 

proteins exist as monomers and even-numbered multimers such as dimers, tetramers, hexamers 

etc. [141]. Moreover, predicated on the sequence compositions, it was found that allosteric sites 

are more hydrophobic than active sites due to the proportion of hydrophobic residues that make up 

the sites. Charged residues such as lysine, histidine, glutamic acid and aspartic acid are usually 

found in the active sites whereas residues such as proline, tryptophan, leucine, isoleucine, valine 

and methionine are largely concentrated in the allosteric sites. Hydrophobic residues provide a 

binding pocket for the ligand; hence these residues usually make up the allosteric sites. Hydrophilic 

residues on the other hand are usually involved in hydrogen bond formation to facilitate bond 

formation or breakage [142]. Another characteristic feature of allosteric proteins is that ligand 

binding sites, both active and regulatory are located at subunit interfaces. This enables 

communication between subunits as sites at the interface of subunits respond to the alterations in 

the interactions of the subunits, which is a key step in allosteric regulation. Ligand binding sites 

can also be located between two domains in the same subunit. This is characteristic of the active 

site in allosteric proteins, which can change the size and shape of the protein due to induced 

conformational changes. 

Yang et al., discovered that allosteric sites are less conserved than active sites [143]. This is because 

allosteric sites allow for ligand binding but are not involved in the catalytic conversion of the 

ligand. Active sites on the other hand are highly conserved as they are involved in the binding and 

conversion of substrates, therefore mutations of the active site residues usually result in the loss of 

catalytic function of the enzyme. Allosteric binding sites have been found to be located in the low-

stability regions of the protein. To support this notion, it has been noted that binding of a ligand to these 
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regions stabilizes the protein, with respect to salt bridges and hydrogen bonds formed at the subunit 

interfaces. 

3.1.3 Benefits of Allosteric Drugs 
Allosteric drugs have several advantages over orthosteric drugs that target the functional site of 

the protein. Firstly, they are highly specific as they do not bind to the active site, which is highly 

conserved in protein families, but tend to bind to sites away from the active site. This is particularly 

advantageous in drug design as this lowers the chances of side effects that most orthosteric drugs 

are associated with. Most drugs that bind to the orthosteric sites of one protein are also capable of 

binding to the orthosteric sites of the homologous protein family. Secondly, allosteric drugs can 

activate a target protein directly or indirectly. For instance, the binding of a ligand to one receptor 

molecule’s subunit can allosterically modulate the response of another subunit to a ligand, thereby 

creating a mechanism of specificity [132]. In addition, allosteric drugs allow for the modulation of 

a protein’s activity without completely terminating it. This does not hold true for orthosteric drugs 

that stop the protein’s activity entirely [144]. Allosteric modulators do not compete with the 

endogenous ligand; therefore, they can impact their influence even in the presence of an 

endogenous ligand that is bound to a different site on the same target protein, hence acting like co- 

factors [145]. However, due to the challenges posed by drug resistance, a combination of allosteric 

and orthosteric drugs can be beneficial. 

 
3.1.4 Identification and Characterization of Allosteric Inhibitory Sites 

The identification of allosteric sites in a protein is the first and important step in allosteric drug 

discovery. A vast number of allosteric sites have been identified using various biochemical 

experiments such as high throughput screening, disulfide trapping, X-ray crystallography as well 

as fragment-based screening [146]. Although these methods have successfully identified allosteric 

sites, the vast increase in the number of allosteric drug targets has made it tedious to detect potential 

allosteric sites. In an effort to identify allosteric sites more efficiently and effectively, a number of 

in-silico methods have been used to provide platforms to identify these sites based on sequence, 

structure and dynamics. In this study, allosteric site prediction was achieved by use of a 

combination of prediction tools that employ different algorithms in the identification of potential 

allosteric sites based on druggability of the sites. CavityPlus uses the protein’s 3D structural 

information to detect potential binding sites on the surface of the protein. AutoLigand, a site  

detection tool of the AutoDock Tools package uses a grid-based representation to identify fill 
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points, which are the proposed binding sites on the protein. Protein Plus DoGSiteScorer uses a 

support vector machine (SVM) technique to detect the grid points used to characterize the binding 

site. SiteMap, a package of the Schrödinger Suite, identifies ligand binding sites using the 

Goodford’s GRID algorithm [147]. In order to improve accuracy in the allosteric site search, the 

consensus regions  identified by the combination of the different algorithms were used as a basis to 

state that these regions were most likely allosteric sites. 

 

3.2 METHODOLOGY 
Figure 3.1 shows the steps used in allosteric site prediction in Mtb KasA and Hsmt KasA. 

 

Figure 3.1: Detailed workflow of the analytic approaches used in this study. A flowchart showing 
the sequence of steps used in this analysis, starting with retrieval of protein structures through 
protein preparation and lastly performing allosteric site search using various pocket detection tools. 
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3.2.1 Data Acquisition 
Binding cavities on a protein’s surface are essential for protein function because these are the 

regions at which ligands bind to the protein, either to the allosteric site or active sites. Therefore, 

a target protein of interest is required in order to identify these sites. The 3D structures of Mtb 

KasA and Hsmt KasA were retrieved from the Protein Data Bank using the PDB IDs: 6P9K and 

2IWY respectively. The 3D structure of the wild type Mtb KasA protein has a resolution of 1.70 

Å, a co-crystallized sulfonamide inhibitor and is made up of two chains (A and B) with 414 residues 

in each chain. Glycerol, isopropyl alcohol and sodium ions were crystallized with the protein. The 

wild type Hsmt KasA crystal structure has a resolution of 2.06 Å and consists of two chains of 438 

residues each. In addition, ammonium ions were also crystallized with the protein. This structure 

had no co-crystallized ligand and had missing side chain atoms. Both structures were prepared 

using X-ray crystallography. 

 

3.2.2 Structure Preparation 

3.2.2.1. Homology Modelling 

In order to fill in the missing side chain atoms in the Hsmt KasA crystal structure, homology 

modelling was performed using Schrödinger Prime [148, 149]. To initiate the process, homology 

modelling was performed using the protein’s 3D crystal structure as a template. ClustalW was 

selected as an alignment tool to align the query and template sequences as it is suitable for instances 

where there is a high sequence identity between the query and the template. After alignment, the 

unaligned first 16 residues were trimmed off as the template did not cover these residues. 

Before the model building process began, all ligands, cofactors and waters were deleted. A 

knowledge-based model building method was selected for model construction and a total of five 

models were then calculated using MODELLER v.9.19 [150]. The Homo-multimer multi template 

model type was used to build the query sequence on each of the selected templates. This allowed  

for the models to be built with each chain being constructed and refined in the presence of others. 

To validate the model and to assess the accuracy of the model building process, z-Dope scores for 

each model were calculated and ranked according to the best score (lowest score). Positive values 

depict poor quality models whereas scores less than -1 are an indication of a good quality model, 

similar to the native protein. All the models generated had z-Dope scores lower than -1, however, 
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the model with the lowest score was then selected for further analysis. 

3.2.2.2. Protein Preparation and Protonation  
The 3D structures of Mtb KasA and Hsmt KasA were prepared using the Protein Preparation 

Wizard of Maestro version 12.9 of the Schrödinger Suites software [151]. This process is divided 

into three main stages: preprocessing the structure, optimizing the hydrogen-bond network and 

minimizing the structure. To kickstart the process, the target protein’s 3D structure was imported 

into Maestro using the PDB ID. In the preprocessing step, unwanted groups from the protein’s 

structure were removed. This included the co-crystallized ligand, ions and other molecules that 

were added to help crystallize the structure. In addition, hydrogens were added to all atoms that 

originally had none and waters were removed from the structure. This step also involved the 

assigning of bond orders as well as the creation of disulfide bonds and zero-order bonds to metals. 

All other parameters were kept at default settings. Overlapping atoms and atoms that had alternate 

positions in the structure were also removed. 
 

Optimization of the hydrogen-bond network involved reorienting hydroxyl and thiol groups, water 

molecules, amide groups as well as the imidazole ring [152]. Furthermore, this step also predicts 

the protonation states of histidine, aspartic acid and glutamic acid. Tautomeric states of histidine 

are also generated. The final step was the minimization of the protein structure, which involved 

optimizing the positions of the hydrogen atoms in order to avoid steric clashes in the protein. The 

protein structures were then protonated at a neutral pH (pH 7.0) using PROPKA [153]. This 

allowed for the generation of pKa values for the protein residues at the specified pH. 

 

3.2.3 Pocket Analysis and Allosteric Site Search  

3.2.3.1 CavityPlus  
The protonated protein structures of Mtb KasA and Hsmt KasA (excluding ligands, ions and waters) 

were uploaded onto CAVITY, a submodule of CavityPlus [127]. The program starts by importing 

the protein’s co-ordinates from a PDB file and performing a validity check on the number of chains 

in the protein’s structure. This was followed by the generation of a 3D grid on the surface of the 

protein. This computation outputted the cavities identified by the server, alongside properties that 

define the identified cavities such as predicted maximal pKd, drug score and druggability. Only 

cavities with a medium to strong druggability were considered and were used in subsequent 

calculations. 
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To identify the allosteric sites, the cavities discovered by the previous computation were used with 

another submodule of CavityPlus, CorrSite [154]. This was achieved by firstly selecting a known 

orthosteric site from the cavities. Since the protein structure has two monomers with an orthosteric 

site on each monomer, the second orthosteric side was excluded from the computation by specifying 

it according to the cavity it corresponded to from the CAVITY results. Cavities that had 

overlapping residues with the orthosteric sites were excluded and residues that were shared with 

the active site were removed. This computation resulted in the generation of Z-scores which were 

used to  identify probable allosteric sites.  

 

3.2.3.2 AutoLigand  
The prepared protein structures without the ligands, ions and waters were imported into AutoDock 

Tools (ADT). This was followed by adding polar hydrogens, merging nonpolar hydrogens, adding 

gasteiger charges as well as assigning AutoDock type atoms to the protein structure by use of a 

‘prepare_receptor4.py’ script in ADT. In order to determine affinity potentials, default AutoGrid 

parameters were used [155]. The grid box was centered on the receptor protein and set to cover the 

entire protein by using a 1Å grid spacing. The grid box size for the x, y and z dimensions were set 

to 70 x 60 x 84 Å respectively for the Mtb KasA structure while the dimensions for Hsmt KasA 

was set to 82 x 72 x 84 Å respectively (Figure 3.2). The output of this computation was saved in a 

grid parameter file format for use with AutoLigand. In order to generate the flood-fill points, an in-

built python script of the AutoDock Tools named AutoLigand.py was used with default settings.  
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Figure 3.2: Grid box dimensions set to cover the entire protein for binding site search in AutoDock 
Tools. A) Mtb Kas A protein represented as a transparent surface and the atomic level shown in 
green. B) Hsmt KasA protein shown as a transparent surface with atomic detail of the protein in 
blue. The x-,y-,z- centers and dimensions parameters as well as the spacing used in grid generation 
are shown adjacent to the grid for both proteins. 
 
 
3.2.3.3 Protein Plus DoGSiteScorer 

Allosteric site search in DogSiteScorer was initiated by uploading the protonated structures of Mtb 

KasA and Hsmt KasA onto the webserver in PDB format. A validity check was then performed to 

evaluate the reliability of the 3D structures supplied. Both chains of the protein were selected, and 

the program was set to calculate pockets and sub-pockets in the protein structure. The output of 
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this computation included physicochemical properties such as volume, surface area, lipophilic 

surface area, depth as well as druggability for each pocket identified.  

 

3.2.3.4 SiteMap 

Binding site prediction in SiteMap was initiated using the protonated Mtb KasA and Hsmt KasA 

structures. SiteMap was set to identify the top ranked potential receptor binding sites. In addition, 

the program was set to identify at least 15 site points per binding site as well as detecting shallow 

binding sites. A default standard grid and a more restrictive hydrophobicity were used as search 

parameters. Sites that had a SiteScore > 0.8 were selected for further analysis.  

 

3.3 RESULTS AND DISCUSSION 
3.3.1 CavityPlus results on Mtb KasA and Hsmt KasA 

Cavity, a submodule of CavityPlus identified a total of 22 possible cavities in both Mtb Kas A and 

Hsmt KasA. However, four of these cavities were classified as ‘druggable’ in Mtb KasA whereas 

only three cavities were druggable in Hsmt KasA (Table 3.1). The selection criteria for these 

cavities included the predicted maximal pKd, drug score and druggability. A predicted pKd value 

less than 6 indicates that the site identified is not suitable as a binding site. Cavity detection was 

performed with protein structures with no ligands bound to them. This is because ligand binding 

causes a conformational change in the protein structure that could bias the binding site detection 

process. Two key terms are utilized by the algorithm during protein cavity detection and these are 

‘ligandability’ and ‘druggability’. Ligandability refers to the possibility of designing small ligands 

with high binding affinity to a certain binding site whereas the latter refers to the possibility of a 

cavity being a good target for drug-like molecules [156]. Only sites that had medium to strong 

druggability were considered for further analysis. 
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Table 3.1: Output of the CAVITY module on Mtb KasA and Hsmt KasA. 
 

Protein Cavity Predicted 

maximal pKd 
Drug score Druggability 

Mtb KasA 1 
2 
3 
4 

11.36 
11.56 
9.76 
9.42 

2450.00 
2418.00 
861.00 
864.00 

Strong 
Strong 
Strong 
Strong 

Hsmt KasA 1 
2 
3 

10.46 
10.34 
10.64 

293.00 
108.00 
-71.00 

Medium 
Medium 
Medium 

 
The Cavity drug score is influenced by factors such as cavity volume, hydrophobic volume, cavity 

surface area as well as hydrogen-bonding surface area. Cavities 1 and 2 on Mtb KasA were 

identified as potential allosteric sites whilst cavities 3 and 4 constitute residues of the active site. 

In Hsmt KasA, cavities 1 and 2 were identified as the active site cavities whilst cavity 3 is a potential 

allosteric site. Cavities 1 and 2 in Mtb KasA constitute  hydrophobic residues that make up the 

acyl-binding pockets which are connected to the active site via an acyl-binding tunnel.  However, 

it is interesting to note that the program failed to detect these cavities in Hsmt KasA, thus bringing 

the reliability of the program in accurately identifying cavities of structural and functional 

importance into question.   

The cavity drug scores calculated for Mtb KasA are higher than those of Hsmt KasA. This provides 

a good foundation for structure-based drug design as inhibitors are designed based on selectivity. 

The druggability of the identified sites is strong in Mtb KasA  and moderate in the human homolog 

protein. This suggests that Mtb KasA is more likely to be therapeutically modulated by a drug 

compound than Hsmt KasA. This is important because it enables the design of novel compounds 

with a high affinity for the pathogen, thus minimizing the risk of adverse effects in humans. Figure 

3.3 shows the identified druggable cavities on the structures of Mtb KasA and Hsmt KasA. 
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Figure 3.3: Detected cavities in Mtb KasA and Hsmt KasA by CavityPlus. A) Mtb KasA 
represented as a cartoon in pale cyan and the identified cavities shown as a closed surface 
numbered according to the Cavity output and colored in blue, green, red and orange respectively. 
B) Hsmt KasA represented as a cartoon in pale yellow and the identified cavities shown as a closed 
surface in orange, red and yellow respectively. 
 
In order to validate the Cavity output, Z-scores were generated for each site using CorrSite. Values 

greater than 0.5 suggest that the cavities are potential allosteric sites. All the predicted cavities 

used for this calculation (orthosteric sites excluded) had Z-Scores greater than 0.5 as shown in 

Table 3.2. The Z-scores for the cavities identified in Mtb KasA are higher than those of Hsmt 

KasA. These sites are of interest as they do not compete with the endogenous substrate during 

catalysis.  

 
Table 3.2: Predicted Z-scores of the potential allosteric sites identified by CorrSite. 

Protein Cavity Z-Score 

Mtb KasA 1 

2 

1.97 

1.95 

Hsmt KasA 3 1.27 
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3.3.2 AutoLigand results on Mtb KasA and Hsmt KasA 
AutoLigand identified 10 binding sites on both the Mtb KasA and Hsmt KasA protein. The FILL 

files with the co-ordinates of the residues were used to characterize the binding sites. What is interesting 

to note is that most of these sites were clustered together upon visualization. In Mtb KasA, fills 7 

and 10 clustered together to form pocket 4, fills 2,4 and 5 cluster to form pocket 2, fills 1,3 and 6 

form pocket 1 and fills 8 and 9 form pocket 3 (Figure 3.4). Pockets 3 and 4 in Mtb KasA are the 

active site pockets and pockets 1 and 2  are potential allosteric sites. However, in Hsmt KasA, an 

interesting observation is made when fill 5 forms a stand-alone pocket 4 while the rest cluster 

together to form separate pockets. This pocket consists of hydrophobic residues that make up the 

acyl-binding tunnel. It is also important to note that while the program identified the acyl-binding 

tunnel, it failed to accurately identify the acyl-binding pockets located at the surface of the protein 

in Hsmt KasA, thus raising concerns on the reliability of the algorithm used. The active site 

pockets, pocket 1 and 2 are formed by the clustering of fills 7 and 10 as well as fills 2, 3 and 4 

respectively. Pocket 3 is formed by the clustering of fills 1, 9, 6 and 8 and this is the largest pocket 

identified by the algorithm. 

 

Figure 3.4: Detected cavities in Mtb KasA and Hsmt KasA by AutoLigand. A)Mtb KasA 
represented as a cartoon in pale cyan and the identified cavities shown as a closed surface in blue, 
green, orange and red. B) Hsmt KasA represented as a cartoon in pale yellow and the identified 
cavities shown as a closed surface in orange, red, yellow and pale-green respectively. 
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3.3.3 DoGSiteScorer results on Mtb KasA and Hsmt KasA  
DogSiteScorer identified 18 probable binding pockets on both Mtb KasA and Hsmt KasA. The 

identified pockets were characterized by various geometric and physicochemical parameters such 

as pocket volume, surface area, lipophilic character as well as the pocket enclosure. The simple 

score and drug score were used to rank the pockets. Out of the 18 pockets identified by the 

algorithm, only seven pockets were found to be druggable in Mtb KasA whereas only four 

druggable pockets were found in Hsmt KasA. Pockets were only deemed druggable if the 

druggability score was greater than 0.5. Figure 3.5 shows the identified pockets on the 3D 

structures of Mtb KasA and Hsmt KasA. 

 
      Figure 3.5: Detected cavities of Mtb KasA and Hsmt KasA by DogSiteScorer. A)Mtb KasA 
       represented  as a cartoon in pale cyan and the identified cavities shown as a closed surface and  
      numbered accordingly. B) Hsmt KasA shown as a cartoon in pale yellow and the identified cavities 
      shown as closed surfaces. 
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 Pockets with a greater volume and surface area had a higher drug score and simple score compared 

to  those with a lesser volume and surface area. What was interesting to note however is that some 

pockets had a relatively low simple score and a reasonably high drug score. This was the case with 

pockets 5, 6 and 7 in Mtb KasA and pocket 4 in Hsmt KasA (Table 3.3). The reason for this is that 

pocket volume is an important descriptor and indicator of druggability. Drugs are known to bind at 

large surface cavities and large pocket volumes increase the chances of finding the ligand in the 

probable pocket. In both cases, the algorithm correctly identified the active site pockets namely 

pockets 3 and 4 in Mtb KasA and pockets 2 and 3 in Hsmt KasA. An interesting observation made 

was that although the algorithm accurately identified the acyl-binding pockets in Mtb KasA 

(Pockets 1 and 2), it failed to identify these pockets in Hsmt KasA. However, the program correctly 

identified a connecting tunnel (Pocket 4) that serves as a shuttle between the active site and the 

acyl binding site. It is important to note that  although most endogenous ligands are known to 

interact with the active sites, these pockets have a slightly lower drug score compared to other 

potential allosteric sites identified. This result allows us to explore allosteric drug design in an effort 

to develop therapeutic agents that have a different mechanism of action compared to the 

conventional orthosteric drug design. 

  

Table 3.3: DogSiteScorer identified pockets and main pocket descriptors for the input structures 
Mtb KasA and Hsmt KasA. 
 

Protein Pocket Volume(Å3) Surface 

Area(Å2) 
Drug score Simple score 

Mtb KasA 1 
2 
3 
4 
5 
6 
7 

1366.59 
1126.00 
880.96 
778.71 
449.95 
353.88 
351.58 

1224.69 
1051.47 
1112.74 
909.89 
864.91 
618.17 
611.47 

0.82 
0.81 
0.84 
0.85 
0.71 
0.87 
0.86 

0.63 
0.66 
0.57 
0.48 
0.31 
0.15 
0.16 

Hsmt KasA 1 
2 
3 
4 

834.54 
894.54 
892.15 
478.62 

920.26 
766.57 
822.13 
512.50 

0.84 
0.82 
0.84 
0.83 

0.51 
0.52 
0.55 
0.2 
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3.3.4 SiteMap results on Mtb KasA and Hsmt KasA 
SiteMap identified the top five sites on both Mtb KasA and Hsmt KasA via a combination of 

properties calculated at each site point. These properties include the site score (S-score), drug score 

(D-score), size and volume. In addition, physicochemical parameters such as hydrophobicity, 

hydrophilicity, enclosure as well as hydrogen bond donors and acceptors were also used to 

characterize the pockets. SiteMap employs a S-score threshold of 0.80 to discriminate sites that 

bind ligands from those that do not. The druggability of the site is referred to as the D-score and 

this is used to categorize sites as being “druggable”, “undruggable” or “difficult to drug” [130, 

131]. D-score incorporates terms that promote ligand binding such as hydrophilicity and degree of 

enclosure. Using the D-score, sites with a score value less than 0.83 are deemed undruggable, those 

with a D-score in the range 0.83<D-score<0.98 are difficult to drug and those with a D-score 

greater than 0.98 are druggable. Table 3.4 shows the top 5 sites identified by SiteMap in both Mtb 

KasA and Hsmt KasA. 

 

Table 3.4: Binding sites identified by SiteMap on Mtb KasA and Hsmt KasA. 
Protein Sites S-score D-score Size Volume 

Mtb KasA 1 
2 
3 
4 
5 

0.869 
0.892 
0.973 
0.991 
0.895 

0.988 
0.994 
1.086 
1.098 
1.111 

476 
358 
710 
702 
2186 

289.492 
302.869 
582.412 
536.412 
1342.501 

Hsmt KasA 1 
2 
3 
4 
5 

0.909 
0.911 
0.899 
0.898 
0.918 

1.024 
1.006 
1.01 
1.018 
0.998 

559 
526 
2027 
1237 
658 

379.701 
443.156 
1134.301 
834.519 
568.694 

 

From these results, it can be clearly observed that all the sites identified in Mtb KasA and Hsmt 

Kas A have an S-score greater than the threshold value of 0.8. This indicates that these sites are 

indeed potential ligand binding sites. In addition, the D-score also reveals that all the sites 

identified by the algorithm in both proteins are druggable. However, it is important to note that the 

D-score is influenced by the size and volume of the identified sites. Sites that had a greater size 

and volume in Mtb KasA (Sites 3,4 and 5) also had corresponding high druggability scores. What 



 
 

79  

was interesting to note however is that in Hsmt KasA, contrary to size and volume, Site 1 had the 

highest druggability score despite the relatively small size and volume when compared to other 

sites. This indicates that size is not overtly a factor in the Cheng approach used by SiteMap because 

it takes into consideration the ratio of non-polar residues rather than the nonpolar surface itself and 

thus scales all sites to a common size [130]. Figure 3.6 shows the sites identified  mapped onto the 

respective protein structures. 

SiteMap identified the greatest number of residues constituting a binding site compared to the other 

algorithms, as shown by the area of coverage of the binding sites on the respective protein 

structures. In Mtb KasA, site 5 has the greatest D-score and is the largest site that was identified. 

In Hsmt Kas A, site 3 was the largest site identified, however site 1 had the largest D-score. These 

results show that in Hsmt KasA, the active site (Site 1) has a greater druggability compared to other 

potential allosteric sites and this is also true for sites 3 and 4 in Mtb KasA. In addition, the 

druggability of the potential allosteric sites is higher in Hsmt KasA compared to Mtb KasA. 

This provides useful insights in competitive inhibitor drug design as drugs that bind selectively to 

the Mtb protein are preferred over the drugs that have a similar binding affinity to the human 

homolog. All in all, this algorithm correctly identified the key functional pockets (active site and 

acyl-binding site) in both Mtb KasA and Hsmt KasA.   
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Figure 3.6: Binding sites identified by SiteMap on A) Mtb KasA and B) Hsmt KasA. 

 

3.3.5 Validation of the pocket detection algorithms 
In order to validate the protocol used by the various webservers in the detection of putative pockets 

in Mtb KasA and Hsmt KasA, a consensus prediction of the druggable sites was used. This involved 

identifying the pockets that were detected in at least 3 of the pocket detection tools used. This 

validation is important because the different pocket detection tools used in this study employ 

different algorithms, and hence discovering the residues making up the consensus sites would be a 

useful and unbiased method of characterizing the probable allosteric pockets in the respective 

protein structures. An ad hoc python script was used to assess the residues that constitute the 

consensus sites, and the result of this analysis yielded a total of 2 potential allosteric sites in Mtb 

KasA and only 1 potential allosteric site in Hsmt KasA as shown in Figure 3.7. The active site 
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pockets were excluded from this result. 

 

Figure 3.7: Mapping of the consensus binding pockets on the structures of Mtb Kas A and Hsmt 
KasA. A) Mtb KasA structure shown as a grey cartoon and the identified pockets colored in blue, 
green, red and orange and numbered accordingly.  B) Hsmt KasA structure shown as a grey cartoon 
and the identified pockets colored in orange, red and yellow and numbered accordingly. The 
allosteric site is represented in yellow and the active sites are shown in orange and red. 

 

The residues constituting the respective pockets are shown in Table S1. To further validate the 

allosteric site search results, the residues constituting the respective pockets were investigated for 

their contribution to the functionality of the protein. In Mtb KasA, pockets 1 and 2 are lined with 

hydrophobic residues that make up the acyl-binding tunnel, which stems from the surface of the 

protein and extends and terminates into the malonyl-binding pockets (pockets 3 and 4). Pockets 3 

and 4 make up the active site and the catalytic residues Cys171 and His311 are also found in these 

pockets. In Hsmt KasA, the active site residues make up the active site pockets 1 and 2. Motifs 

that are associated with the identified pockets in both proteins include motifs 2, 3, 4, 7, 8 and 17  

that are found in the active site as well as motifs 4, 10, 11 and 14 in the allosteric sites. These 

motifs and their contribution to function have been discussed in Chapter 2. Figure 3.8 shows the 

position of the acyl-binding tunnel relative to the active and allosteric sites in Mtb KasA. 
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Figure 3.8: The position of the acyl-binding tunnel relative to the allosteric pockets and the active 
site pockets in Mtb KasA. A) Mtb KasA represented as a transparent surface in grey and the acyl 
binding tunnel shown as a closed surface in yellow. B) Rotations of the surface representation of 
Mtb KasA at 90° and 180°. The allosteric pockets are colored in green and blue whilst the active 
sites are represented in red and orange. The acyl-binding tunnel is shown in yellow  

 
  

3.4 CHAPTER CONCLUSION 
Allostery is a key molecular mechanism supporting the control and modulation in various cellular 

processes. Identifying druggable sites is a crucial step in structure-based drug design as it enables 

the design of small drug-like molecules to bind to these sites and induce the required therapeutic 

effects. The protein structures used in this study were Mtb KasA (PDB ID: 6P9K) and Hsmt KasA 

(PDB ID: 2IWY). Allosteric site search on these protein structures was conducted via a 

combination of computational tools. Various tools were used in order to increase the chances of 

accurately predicting the presence of putative allosteric sites of interest. These tools employ 

different algorithms in the prediction of allosteric sites, and this includes geometry-based, grid-

based, energetic as well as machine learning models. A search for consensus pockets predicted by 

90° 

180° 

B)  

A) 

 

 

 
 

 

 

 

 

 
 

 

 

 
 



 
 

83  

at least 3 out of the 4 programs used was done and the result of this computation revealed that 

two allosteric sites were identified in Mtb KasA and only one site in Hsmt KasA. In order to 

further validate the results, the residues constituting the sites were analyzed for the role they play 

in the functioning of the protein. In addition, common sequence patterns (motifs) that are 

associated with these pockets also gave insights into the function of the identified pockets.  All in 

all, it is evident that all of the tools used accurately predicted the probable allosteric sites in Mtb 

KasA. However, three out of the four tools used failed to predict the acyl-binding pockets of the 

human homolog protein, revealing that the algorithm employed in these tools cannot be fully 

relied on in  predicting binding sites. What is also interesting to note is that both AutoLigand and 

DogSiteScorer identified a pocket with residues that constitute the acyl-binding tunnel in Hsmt 

KasA (Pocket 4), and this was not detected by the other tools. DogSiteScorer  predicted the 

greatest number of pockets in Mtb KasA compared other tools. In addition, the program also 

identified two surface pockets in Mtb KasA that were not predicted by the other tools. A further 

investigation into these sites could provide important insights  for use in drug discovery and 

design. Of all the programs used, SiteMap accurately identified the key pockets in Mtb KasA and 

Hsmt KasA and also had the greatest number of residues per binding site.  

The next chapter will focus on the identification of ligands that interact with the identified 

allosteric sites in an attempt to identify potential hits that can be used in the successful inhibition 

of the Mtb KasA protein. 
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          CHAPTER 4 

STRUCTURE-BASED VIRTUAL SCREENING 
 

Virtual screening (VS) is an approach that has gained popularity over the decades and is seen as a 

complementary approach to the experimental high throughput screening (HTS). However, the high 

cost and low hit rate associated with HTS has motivated the need to develop computational 

alternatives that utilize in-silico approaches in drug compound screening [157]. Structure-based 

drug design (SBDD) aims at understanding the molecular basis of a disease by utilizing the 

knowledge of the three-dimensional (3D) structure of the biological target. The structure-based 

screening process involves a variety of sequential computational stages such as target preparation, 

docking and post-docking analysis as well as hierarchizing compounds of interest for testing [158]. 

The implementation of computer-aided drug design has led to positive outcomes in drug discovery. 

New biologically active compounds have been predicted along with their receptor-bound structures 

at high hit rate success compared to the conventional HTS. In addition, the VS workflow can greatly 

shorten the cycle of hit discovery [159, 160]. 

This chapter aims at discovering novel allosteric modulators by virtually screening DrugBank 

compounds against the Mtb KasA and Hsmt KasA protein structures [161]. The entire surface of 

the protein structures was screened against 2089 drug compounds retrieved from the DrugBank 

provided by Sheik Amamuddy et al., [162] using AutoDock Vina [163]. Protein and ligand 

preparation was done using AutoDock 4.2 [164]. N-(2-cyano-3-methyl-1H-indol-5-yl)butane-1- 

sulfonamide (Ligand ID: O6G) was used as a control and the docking parameters were validated 

by redocking O6G on the wildtype Mtb KasA. The ligand poses and interactions were then 

evaluated, and the promising candidate compounds were selected based on their binding energies 

relative to Mtb  KasA  and their interaction with the allosteric sites identified in Chapter 3. 
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4.1 INTRODUCTION 
The development of new drugs is characterized by long development cycles, high costs as well as 

low success rates [165]. Several medical conditions have treatment regimens that are inadequate 

or missing, and this has prompted the need to use artificial intelligence, virtual screening and 

machine learning approaches in the development of new therapeutics. This is because the 

traditional high-throughput technologies are unable to fully address the novel challenges that come 

with huge data being generated with respect to understanding the molecular mechanisms involved 

in numerous diseases. 

In silico approaches have contributed vastly to drug discovery as they assist not only the wet-lab 

researchers but also computer experts who specialize in developing tools that are used to integrate 

the different types of biological data [166, 167]. Virtual screening was first coined in literature in 

1997 and this technique is used to search small libraries of small molecules that are likely to bind 

to one or more drug targets. This approach usually generates a large data set of about 30-500 

compounds that need to be validated experimentally for their suitability as inhibitors [168]. Despite  

several advances of in-silico screening, there are also pitfalls associated with this technique. 

Firstly, the high number of false-positives limits virtual screening to initial screening only. 

Structure-based virtual screening lacks reliable scoring systems that estimate the free binding 

energy as well as identifying inactive compounds that do not bind to the target to produce the 

desired therapeutic outcome [169]. Furthermore, this technique remains only a theoretical 

approach that requires validation by empirical means.  
 

4.2 VIRTUAL SCREENING IN STRUCTURE-BASED DRUG 

DISCOVERY 
The general scheme of a SBVS workflow begins with the processing of a 3D target structure that 

has been solved experimentally (X-ray, NMR, neutron scattering spectroscopy and cryo-electron 

microscopy) or computer modelled (homology modeling). Before considering a structure for 

SBVS, factors such as the druggability of the receptor, the choice of the binding site, selection of 

the appropriate protein structure, the identification of ligand binding sites as well as assigning the 

appropriate protonation states have to be considered [160]. This is followed by the careful selection 

of the compound library of small molecules that are to be screened according to the target in 

question. Each compound in the library is virtually docked into the target binding site(s) via a 
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docking program. 

The aim of docking is to predict the protein-ligand complex structures by analyzing the 

conformational space of the ligand within the binding site of the protein. A scoring function is then 

used to evaluate the free binding energy between the docked compound and the target in each 

docking pose. This produces ranked compounds which are then subjected to post-processing by 

examining the calculated binding scores, validity of the generated poses and desired 

physicochemical properties. Post-processing produces a small group of top-ranked compounds that 

will be selected as candidates for experimental assays. 

 
4.3 MOLECULAR DOCKING 
Molecular docking is an important tool used in drug discovery and molecular modelling 

applications, that attempts to find the best binding orientation of a ligand into a protein molecule 

[170]. Docking can be achieved via two interconnected steps namely sampling the conformations 

of the ligand in the protein and ranking them via a scoring function. The molecular docking is thus 

split into two: the searching algorithm and the scoring algorithm. The searching algorithm looks 

into all the conformations of the ligand within the space available. However, this is a time-

consuming process and it is practically impossible to sample all possible conformations for a 

compound, therefore, each compound is investigated within a given threshold of conformations. 

The conformational search seeks for structural parameters of the ligand such as torsional, 

translation and rotational degrees of freedom. The second feature of the docking algorithm is the 

scoring function. The purpose of the scoring function is to characterize the correct poses from the 

incorrect poses or binding of inactive compounds. The scoring algorithms estimate the binding 

affinity between the protein and the ligand as well as predicting the energy profiles [171]. Low 

energy profiles are generally preferred as they provide more stable interactions. Scoring functions 

are classed according to physics-based, empirical, knowledge-based and machine learning based 

methods. The first three methods are known to use linear regression whilst the fourth one uses non-

linear regression methods [170]. 

In order to perform molecular docking, two types of approaches are generally used. These are the 

simulation approach in which the energy profiling is estimated for the protein-ligand complex and 

the complementarity approach that calculates surface complementarity between the ligand and the 

protein. In the simulation approach, the ligand and the protein are separated, and the ligand is then 
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allowed to bind into the grooves or binding sites of the protein in its conformational space. As the 

ligand moves within its conformational space, it generates energy that is known as the “total energy 

of the system”. The shape complementarity approach uses the ligand and target as a set of surface 

structural features in order to enable molecular docking [172]. The molecular surface of the target 

is evaluated for its solvent accessible surface area and the ligand is described in terms of how best 

it matches the surface. 

4.3.1 Types of Molecular Docking 
Following protein and ligand preparation, the type of molecular docking to be formed must be 

considered. The two types of molecular docking experiments are flexible and rigid docking. Rigid 

docking treats both the receptor and the small molecule as rigid whilst flexible docking can involve 

either a flexible ligand and a rigid receptor or both the ligand and protein being flexible [173]. Rigid 

body docking produces a large number of docked conformations with suitable surface 

complementarity. This type of docking uses the fast Fourier transform (FFT) correlation approach to 

analyze the space of docked conformations by use of electrostatic interactions and solvent terms. Rigid 

docking resembles the ‘lock and key’ model and is mainly used for protein-protein docking. Docking 

using the rigid body docking approach is much faster than flexible ligand docking because the size of 

search space is smaller. However, if the incorrect conformation of a ligand is used, the chances of 

finding the best complementary fit are lowered. 

Flexible docking on the other hand takes into consideration the flexibility of the ligand side chains. 

The flexibility of the side chains is known to play an important role in protein-ligand complexes. 

These changes allow for the alteration of the binding site of the receptor according to the orientation 

of the ligand [174]. Four strategies are currently used to dock flexible ligands namely: (1) Monte 

Carlo methods, (2) in site combinatorial search, (3) ligand build-up and (4) site-mapping and fragment 

assembly. This technique is computationally expensive; however, it provides better accuracy at 

reasonable speed. 

4.3.2 AutoDock 4.2 and AutoDock Vina 
 

Docking experiments are performed using various programs such as AutoDock vs 4.2.6 [155], 

AutoDock Vina vs 1.1.2 [163], Glide vs 7.7 [175] and Dock vs 6.8 [176], only to mention a few, 

and these have gained popularity over the years due to the accuracy of the docking algorithm. 

AutoDock Tools (ADT) is part of MGL Tools, from the Molecular Graphics Laboratory at the 

Scripps Research Institute, built on the Python Molecular Viewer (PMV) [177]. AutoDock utilizes 
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the Lamarckian genetic algorithm (LGA) for conformational searching. A number of conformations 

are created but only those with the lowest binding energy are selected. AutoDock4 uses a semi-

empirical free energy force field in order to predict free binding energies of ligand molecules to 

receptor proteins [178]. This force field is based on a detailed thermodynamic model that 

incorporates intramolecular energies into the predicted free binding energy. In addition, terms of 

desolvation are also included in the model that use a set of atom types and charges. AutoDock4 allows 

for flexible protein and ligand docking, and during simulation, these are treated categorically to 

allow for the rotation of the ligand around the torsion degrees of freedom. AutoDock facilitates the 

input of molecule files and subjects them to a set of methods that the user specifies for protonation, 

calculating gasteiger charges, specifying rotatable bonds and torsions in the ligand molecule and 

launch docking calculations. 

AutoDock Vina was designed to be used with the file format type of AutoDock4, pdbqt file format 

which is an extension of the PDB file. This program uses an iterated local search global optimizer 

that is based on stochastic global and local optimization methods. Since protein-ligand docking 

experiments require the availability of a 3D structure of a target protein and a library of small 

compounds (databases) in order to identify potential hits, the DrugBank database was explored for 

FDA approved compounds that could potentially have inhibitory effects against Mtb KasA for the 

purposes of drug repurposing. 

 
4.4 DRUGBANK DATABASE 

 

DrugBank is a freely available web database that contains extensive molecular information about 

the drug, drug target, mechanism of action of drug and drug interactions of FDA approved drugs as 

well as drugs that await the FDA approval process [161]. This database is the most commonly used 

reference drug resource worldwide as it contains high quality information of primary origin. 

DrugBank 1.0 was first released in 2006 and primarily provided the physicochemical data on a few 

chosen FDA approved drugs and their drug targets. In 2008, a new version was released, and it added 

pharmacological, pharmacogenomic as well as molecular biological data [179]. DrugBank3.0 was 

developed in 2010 and included drug-drug and drug-food interactions. Furthermore, the 

pharmacokinetic information of the data was released. This is followed by the subsequent addition 

of drug metabolism data, qualitative structure activity relationships (QSAR) and ADMET 

(absorption, distribution, metabolism, excretion and toxicity) data in 2014. The current DrugBank 
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database, DrugBank 5.0 contains 2358 FDA approved drugs and 4501 drugs still undergoing clinical 

trials. This new version has additional information such as pharmacometabolomics, gene expression 

levels and protein expression levels. The information contained in this database is routinely used by 

educators, biologists, pharmaceutical researchers, bioinformaticians as well as the general public. 
 

4.5 METHODOLOGY 
Figure 4.1 outlines the procedure followed in the molecular docking of Drug Bank compounds 
onto the KasA protein structures. 

 
 

Figure 4.1: Summarized workflow of the molecular docking procedure showing all the steps and tools used. 
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4.5.1 Data Retrieval 
The crystallographic structures of Mtb KasA (6P9K) and Hsmt KasA (2IWY) were retrieved 

from the Protein Data Bank. The inhibitor ligands used were a data set of minimized 2089 

DrugBank compounds provided by Sheik Amamuddy et al. [162]. These structures are all 

FDA-approved compounds that were provided in pdbqt file format. Prior to molecular 

docking, all crystallographic water molecules and ligands were removed from the target 

protein structures using the Protein Preparation Wizard of Maestro vs 12.9 of the Schrödinger 

Suites software [151]. 

4.5.2  Structure Preparation 

The protonated protein structures of Mtb KasA and Hsmt KasA were prepared for docking 

using AutoDock Tools by firstly adding polar hydrogens, merging non-polar hydrogens and 

adding gasteiger charges using the python script, “prepare_receptor4.py”. The distinct 

parameters of this script also allow for assigning of AutoDock type atoms to the structures 

as well as to remove waters if any [180]. The resulting structure was saved as a pdbqt file 

format for both proteins. 

As the Mtb KasA protein had a co-crystallized ligand in its structure, N-(2-cyano-3-methyl- 

1H-indol-5-yl) butane-1-sulfonamide (O6G) was used as a positive control for the docking 

procedure. This molecule was prepared for redocking using the python script of the 

AutoDock Tools software, “prepare_ligand4.py”. This script adds polar hydrogens, merges 

non-polar hydrogens, adds gasteiger charges as well as assigns AutoDock type atoms to the 

ligand structure. In addition, the torsion degrees of freedom, aromatic carbons and rotatable 

bonds are also calculated [181]. The 2089 DrugBank compounds were prepared following 

the same procedure as the control ligand. 

4.5.3  Initial Docking Validation 

Validation of a docking protocol is a necessary step in the analysis of biological data as it 

determines the reproducibility of the results as well as to validate the docking parameters 

used [182].  Since the 3D structures of Mtb KasA and Hsmt KasA are similar, it was imperative 

to validate the initial docking procedure on both structures. This was done by redocking the co-

crystallized ligand of Mtb KasA, O6G onto the 3D structures of Mtb KasA and the human 

homolog using AutoDock Vina. Both proteins and the ligand were prepared for docking using 

the receptor and ligand preparation tools of the AutoDock Suite. A docking box size of 70 x 
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60 x 84 Å was centered at co- ordinates (-32.669, 0.001, -23.471) on the Mtb KasA protein 

whilst a box size of 82 x 72 x 84 Å was centered at co-ordinates (15.168, 34.154, 26.261) on 

Hsmt KasA. A grid spacing of 1.0 Å and an exhaustiveness of 320 was used. The redocked 

ligand poses were analyzed and the one with the best pose was selected based on its nature 

to imitate the pose of co-crystallized ligand. The interactions of the redocked ligand with the 

proteins were visualized in PyMOL and BIOVIA Discovery Studio. The parameters used in 

the redocking experiment were then used for docking of the 2089 DrugBank compounds. 

 
4.5.4  Docking Parameters and Grid Evaluation 
Blind docking was performed using AutoDock Vina. Two docking experiments were set up: 

blind docking on Mtb KasA and another on Hsmt KasA. The AutoGrid package of 

AutoDock Tools was used to generate a grid box of interaction energies based on the receptor 

co- ordinates [122]. The grid box was set to cover the entire surface of the protein structures. 

The grid parameters shown in Table 4.1 were generated for the x, y, z dimensions and a grid 

spacing of 1.0Å was used. An ad hoc python script was used to write the grid parameters to 

the vina configuration file for each ligand. 

Table 4.1: Molecular Docking parameters used for Mtb KasA and Hsmt KasA. 
 

Protein Box size Centre co-ordinates 

Mtb KasA X = 70 
Y = 60 
Z = 84 

x = -32.669 
y = 0.001 
z = -23.471 

Hsmt KasA X = 82 
Y = 72 
Z = 84 

x = 15.168 
y = 34.154 
z = 26.261 

 
4.5.5  Docking Simulation 
For each DrugBank compound, a vina configuration file containing the grid parameters was 

created in preparation for docking. A python script was used to create commands to run Vina 

on each of the vina format files by creating a “gnu_parallel.jobs” file, which uses gnu parallel 

to execute jobs in parallel depending on the number of central processing unit (CPU) cores 

assigned [183]. In this analysis, 8 cores and an exhaustiveness of 320 was used. The high 

exhaustiveness allows for the prediction of crystallographic poses of the ligand in order to 

select the best conformational pose for binding. Docking was initiated on the Center for High 
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Performance Computing cluster (CHPC) by running the job file using the command “vina – 

config ligand_name. vina” for the protein-ligand pairs. The job was then submitted onto the 

cluster using a “docking.pbs” file, with a walltime of 48:00:00 and a normal queue. 

Following this computation, the output files were then subjected to the command “vina_split 

–input ligand_name_vina.pdbqt”, which generated nine poses for each compound docking 

on the receptor. Log files were also generated for each ligand showing the poses ranked 

according to the binding affinities. 

4.5.6  Docking Analysis 
Docking analysis was done using python scripts in order to extract ligand poses with the 

lowest binding energies. Further screening was done by utilizing the Jupyter Lab software 

[184] to extract ligands with binding energies less than or equal to the binding energy of the 

control. A python script running PyMOL commands was used to visualize the poses of the 

docked ligands onto the protein structures. Due to the protein structures being homodimers, 

the script enabled the superimposition of both chains and pockets identified in Chapter 3 so 

as to compare the ligands accurately. Ligands binding to the allosteric site of the Mtb KasA 

protein were extracted using PyMOL commands by selecting ligands within 10Å of the 

pocket. The protein-ligand interactions of promising candidate compounds were visualized in 

BIOVIA Discovery Studio. 

 

4.6 RESULTS AND DISCUSSION 

4.6.1 Docking Validation  

The quality of reproducibility of a known ligand binding pose is used to validate the docking 

protocol. In addition, validation is an essential step used to authenticate the docking parameters 

used. This step was performed by redocking O6G onto the crystal structures of Mtb KasA and 

Hsmt KasA and comparing the resulting RSMD value on all the atoms. The redocked ligand 

was selected based on its ability to imitate the pose and interactions exhibited in the wildtype 

structure. The RMSD value between the two binding poses was computed in PyMOL and this 

gave a value of 0.218Å for Mtb KasA and 2.623Å  for Hsmt KasA. A low RSMD value (less 

than 1Å) indicates less divergence from the expected pose, thus the more similar the two 

structures. Figure 4.2 shows the superimposed 3D structures of the redocked ligand and 

original co-crystallized ligand in both protein structures. The redocked ligand assumed a 
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similar orientation as the as the co-crystallized ligand in Mtb KasA (Figure 4.2A), however a 

slightly different orientation was observed for Hsmt KasA (Figure 4.2B). This result is also 

further validated by the high RSMD value obtained. However, what is interesting to note is 

that the ligand binds to both protein structures with a binding energy of -7.7kcal/mol, which 

poses a great challenge as there is need to identify compounds that bind preferentially to Mtb 

KasA and having little to no effects in Hsmt KasA. 

 

 

 

 
 
 
                                                                                                                                                                                                                                                                                      

                                                                                                                                                                                                                 
 

Figure 4.2: Docking validation of O6G onto the crystal structures of Mtb KasA and Hsmt KasA as 
visualized in PyMOL. A)Mtb KasA dimer represented as a cartoon in pale cyan, with the superimposed 
redocked O6G ligand (blue) against the reference ligand (green). B) Hsmt KasA dimer represented as a 
cartoon in wheat, with the superimposed redocked ligand (pink) against the reference ligand (purple).  
 
 
 

 

A) 

B) 

 



 
 

94  

The protein ligand interactions of the original co-crystallized ligand and the redocked ligand in 

Mtb KasA and Hsmt KasA were visualized in BIOVIA Discovery Studio and are shown in Figure 

S6.  In Mtb KasA, both Pro201 and Gly200 interacted with additional amide-pi bonds  with the 

redocked ligand  pose compared to only pi-pi interactions  as seen with the reference ligand . Key 

interactions included two hydrogen bonds formed  by Glu199 and  Gly200 (shown in green) as 

well as  the formation of a pi-sigma bond  with the aromatic ring by Gly200  compared to the pi-

alkyl bond it forms with the aromatic ring  in the reference ligand. All other proximal residues 

interacted with Van der Waals forces of attraction. In Hsmt   KasA, the reference ligand formed  

more hydrogen bonds with the protein compared to Mtb KasA,  as seen with  Gly323,  Ala324,  

Asn451,  Asp310 and  Thr352. However, the hydrogen bonds were reduced to only three in the 

redocked ligand pose. The orientation of the redocked ligand’s side chain allowed for the formation 

of a hydrogen bond with Thr350, which was absent with the reference ligand.  Phe445 forms a pi-

alkyl bond with the reference ligand and an amide-pi bond with the redocked ligand., whilst Pro317 

forms  a pi-sigma bond with the reference ligand and a pi-alkyl bond with the redocked ligand. 

The pi-alkyl bonds formed between Ala358, Gly355 and Phe274 with the reference ligand are lost 

in the redocked dose. An unfavorable donor-donor bond is formed between His348 and both the 

reference and redocked ligand pose. The formation of unfavorable bonds in protein-ligand 

complexes reduces the stability of the complex as these bonds indicate a force of repulsion 

occurring at atomic level. However, factors such as protein flexibility and the type of docking 

program used need to be taken into account before ruling out the compound as a potential inhibitor. 

 

4.6.2 Blind docking analysis  
   Blind docking refers to the docking of a ligand molecule to the whole surface of the protein 

without any prior knowledge of the target binding site. The 3D structures of Mtb KasA and Hsmt 

KasA were subjected to blind docking using 2089 prepared DrugBank compounds on the CHPC 

cluster using AutoDock Vina. Of these compounds, 9 failed to dock to the protein structures due 

to size constraints. These are DB0006, DB00638, DB01278, DB01284, DB05528, DB08869, 

DB09067, DB11322 and DB13928. The data set was further reduced to 1087 compounds after 

screening for compounds with binding energies less than or equal to -7.7 kcal/mol, the binding 

energy of the control ligand, O6G. The overall binding affinities of the initial 2080 docked 

compounds were represented on an heatmap produced using an ad hoc python script as shown 
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in Figure S7. The heatmap was centered on the binding energy value of -7.7 kcal/mol, which was 

the cut-off used in screening of the compounds. The binding energies of these compounds 

indicate the stability of the ligands when bound to the respective protein structures. A lower 

binding energy indicates a higher binding affinity for the receptor, which in turn leads to stable 

protein- ligand complexes. On the other hand, a higher binding energy indicates a lower binding 

affinity for the receptor, and this results in unstable protein-ligand complexes as the ligand can 

be easily displaced by other compounds of a relatively higher affinity. Many of the compounds 

shown on the heatmap had binding energies greater than that of O6G, whilst few compounds had 

binding energies lower than the control for both proteins.  The similarities in the binding energies 

of the DrugBank compounds to the respective protein structures could be attributed to the highly 

conserved and similar 3D structures of the proteins.  

 
4.6.2.1 Blind docking analysis on Mtb KasA 

  Figure 4.3 shows the blind docking results of the screened 1087 DrugBank compounds. Ligand 

binding was distributed across the identified allosteric and active site, with a few compounds 

binding to the peripheral regions of the protein. The docking analysis revealed that only four 

compounds were bound to the active site of Mtb KasA. These compounds included DB00922, 

DB01014, DB12954, and DB14086. What is interesting to note is that all these compounds were 

preferentially bound to the active site of one monomer of the protein structure, which questions 

the nature of similar active sites binding the same ligand. However, this result could be attributed 

to several factors. Could it be that one monomer is active at a given time in Mtb KasA? Recent 

studies on some homodimeric structures have revealed that while dimerization is crucial for 

enzyme activity, one protomer is active and the other is inactive [185]. This has not been 

investigated in Mtb KasA, and some insights into this phenomenon could help in understanding 

the inhibition mechanisms of the protein. To expound further, this finding could be associated 

with the ligands having adopted a conformation that is able to interact with one monomer of the 

dimer. It is also important to note that not all ligands are able to interact simultaneously with 

two protomers, as is the case with bivalent ligands. Nonetheless, these compounds displayed a 

higher binding affinity for Hsmt KasA compared to the Mtb protein, hence proving them 

unsuitable as potential inhibitors.  

Since the main focus of this study is exploring the compounds that bind to the potential allosteric 

sites of Mtb KasA, ligands binding within 10 Å of the identified allosteric sites were selected in 
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order to investigate ligands occupying the acyl-binding tunnel, which plays a crucial role in 

enzyme function.   

 

 

 

 
                  

Figure 4.3: Superimposed structures of Mtb KasA in surface representation. One monomer 
is shown in blue and the other in lime green. The allosteric and active site pockets are 
clearly labelled and colored in green and red respectively. The acyl-binding tunnel is 
colored in yellow. 

 
 

4.6.2.2 Blind docking analysis on Hsmt KasA 
Ligand binding in Hsmt KasA was not distributed evenly as seen in Mtb KasA as most of the 

ligands were scattered on the surface of the protein, with a number of the ligands occupying the 

active site and allosteric site regions (Figure 4.4). It is important to state that the potential 

allosteric site  identified in Hsmt KasA is not associated with the acyl-binding tunnel region. The 

docking analysis revealed a number of ligand compounds that bind to the active site of Hsmt KasA. 

Upon analysis, most of these compounds had a higher binding affinity for Hsmt KasA compared to 

Mtb KasA, where they were bound either to the identified allosteric sites or peripheral regions of 

the protein not characterized as potential allosteric sites. However, since the aim of this study is 

to investigate compounds that bind to the allosteric sites of Mtb KasA with more emphasis on 

those occupying the acyl-binding tunnel, the active site compounds were excluded. 
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Figure 4.4: Superimposed structure of Hsmt KasA in surface representation. One monomer is 
shown in cyan and the other monomer in green. The active site and potential allosteric site are 
clearly labelled and colored in red and yellow respectively.  

 
 

4.6.3  Binding energies of promising hit compounds 
Binding energies are used to determine the binding affinity between a ligand and a protein after 

docking. A cut off of -7.7kcal/mol was used to screen for potential hit compounds as this was the 

binding energy of the control ligand (O6G). The result of this computation yielded 27 hit  

compounds, based on their lower binding energies and slightly higher affinity for Mtb KasA 

compared to Hsmt KasA, as shown in Table 4.2. It is important to note that these compounds bind 

to the human homolog protein with appreciable affinity, thus posing a challenge in inhibitor drug 

design. Further screening was done by identifying compounds that had relatively low binding 

affinity for Hsmt KasA (high binding energy) and reasonably high affinity for Mtb KasA, with the 

assumption that at relatively high concentrations of the compound in-vitro, these compounds would 

preferentially bind to Mtb KasA and saturate the binding sites. This led to the identification of ten 

promising drug compounds highlighted in yellow in Table 4.2. DB08889 had the highest binding 

affinity for the Mtb protein in comparison with the human protein, with a binding energy of -9.9 

kcal/mol. This was followed by compounds DB06755 and DB09270, with binding energies -9.8 

kcal/mol and -9.1 kcal/mol respectively.  
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 Table 4.2: Binding energies of promising candidate compounds against Mtb KasA and Hsmt Kas A in 
kcal/mol. Compounds with relatively low binding energies (high affinity) for Mtb KasA were highlighted 
in yellow.  

 
Drug Compound Mtb KasA binding energy Hsmt KasA binding energy 

DB08889 -9.9 -6.6 
DB06755 -9.8 -6 
DB09270 -9.1 -6.6 
DB12278 -8.9 -6.6 
DB13720 -8.9 -6.7 
DB06720 -8.8 -6.5 
DB08936 -8.7 -6.5 
DB11226 -8.5 -6.1 
DB00392 -8.5 -6.3 
DB01625 -8.5 -6.6 
DB00343 -8.5 -6.7 
DB01105 -8.2 -6.2 
DB01246 -8.2 -6.4 
DB13225 -8.1 -6.4 
DB00420 -8.1 -6.7 
DB00290 -8 -6.3 
DB13854 -8 -6.5 
DB04711 -8 -6.6 
DB11583 -7.9 -6.3 
DB00887 -7.9 -6.3 
DB13179 -7.9 -6.4 
DB00449 -7.9 -6.7 
DB00539 -7.8 -6.4 
DB00781 -7.7 -5.6 
DB00777 -7.7 -6.4 
DB08887 -7.7 -6.6 
DB14104 -7.7 -6.7 

 
An interesting observation made when analyzing these results was that all the 27 candidate 

compounds were found to be  occupying the acyl-binding tunnel in Mtb KasA (Figure 4.5). The 

same compounds were investigated for their interaction with Hsmt KasA and it was found that 

none of these compounds occupied the acyl-binding tunnel of the protein. This means that the 

identified compounds exclusively bind to the acyl-binding tunnel of Mtb KasA, thus making 

them interesting compounds for further investigation. However, it is important to note that 

binding energies alone cannot be sufficiently used to determine ligand suitability in this case. 
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This is because binding energies are calculated from the scoring function used in docking 

programs, and these scoring functions are not always accurate for divergent ligands as those in 

the DrugBank database [186]. In addition, cross-docking of ligands to non-native protein 

structures has been associated with the prediction of the wrong binding mode, which in turn 

affects the binding energy generated [187]. As such, other factors such as the presence of  

conventional hydrogen bonds (strongest molecular bond) in the protein-ligand complexes and 

the molecular mass of the compound need be evaluated before a ligand is deemed suitable as a 

potential inhibitor.  

               

Figure 4.5:  Binding of the promising candidate compounds in the acyl-binding tunnel of Mtb 
KasA. The protein is represented as a transparent grey surface and the acyl-binding tunnel is 
shown as a closed surface in yellow. The ligand molecules shown as licorice sticks are seen to 
interact with the acyl-binding tunnel. 
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4.7 CHAPTER CONCLUSION 
Molecular docking is a widely used approach in computer aided drug design that enables us to predict 

the binding affinity between a ligand and a protein as well as the structure of the protein-ligand 

complex. In this chapter, 2089 FDA approved DrugBank compounds were screened against the 

structures of Mtb KasA and Hsmt KasA, with the aim of identifying potential allosteric modulators. 

The main focus was on the blind docking outcome associated with the consensus allosteric sites 

identified by the allosteric site search algorithms in Chapter 3. Attention was given to the compounds 

binding exclusively to the acyl-binding tunnel of  Mtb KasA, which is important for shuttling substrates 

into the active site for catalysis as well as accommodating the growing fatty acid chain products. A 

heatmap was constructed to show the overall binding energies of docked DrugBank compounds to 

Mtb KasA and Hsmt KasA. A binding energy threshold of less than or equal to -7.7kcal/mol was used 

to screen ligands as determined by the control ligand in the validation of the docking protocol. Twenty-

seven hit compounds were identified based on their relatively high binding affinity for Mtb KasA 

compared to Hsmt KasA. However, due to the appreciable affinity that these compounds displayed for 

the human homolog protein, binding energies alone could not be used to determine the ligands’ 

suitability as potential inhibitors, thus further screening experiments ought to be performed.  The 

identified compounds however serve as a starting point in screening for potential hit compounds with 

inhibitory activity against Mtb KasA.
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CHAPTER FIVE 

CONCLUSION AND FUTURE REMARKS 

 
Drug resistance in TB still remains a challenge and this prompts for the discovery of new drug 

targets and compounds with novel mechanisms of action. The main focus of this thesis was to 

provide insights into the Mtb KasA protein which has been identified as a potential drug target  by 

adding to the existing and expanding knowledge of TB drug discovery. In-silico based approaches 

were used to assess the attractiveness of Mtb KasA as drug target and to identify novel compounds  

that inhibit the protein’s allosteric sites. The approaches used to achieve this aim included sequence 

and structural analysis, pocket identification and allosteric site search as well as molecular docking. 

This chapter provides a summary of the key findings of this study and presents future work plans 

to validate the present results and discover new compounds that can be used to successfully inhibit 

Mtb KasA. 

 

5.1 CONCLUDING REMARKS 
This study details the analysis of Mtb KasA as a potential drug target in the treatment of 

Tuberculosis. Although this protein has been identified as an attractive target for the development 

of antituberculosis agents in literature, little is known about the protein at sequence analysis level. 

A total of 15 KasA homolog sequences were retrieved from the UniProt database, with 8 of these 

sequences derived from bacteria, 3 from fungi and 4 from mammals. Multiple sequence alignment, 

motif analysis and phylogenetic analysis revealed similarities of the homolog proteins at sequence 

level, showing the conservation of residues and sequence patterns that have structural and 

functional roles. 

Comparative multiple sequence alignment was carried out in order to observe the conservation of 

residues across the homolog sequences. Although there were variations at residue level, owing to 

substitutions and insertions in the alignment, the catalytic residues were conserved across all the 

homolog sequences. Motif analysis revealed common sequence patterns that play both structural 

and functional roles in the KasA protein family. Particularly outstanding was motif 6 that contains 

the helix-turn-helix or hypothetical gate segment of the KasA proteins. This region is essential as 
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it facilitates the opening of the acyl-binding tunnel during catalysis in order to accommodate the 

growing fatty acid chains. Phylogenetic analysis of the homolog proteins revealed a distinct 

clustering of the prokaryotic sequences from the eukaryotic sequences. These results were 

consistent with the sequence identities shared among the sequences and this was also further 

supported by the all-versus-all sequence identity heatmap. 

Chapter 3 focused on allosteric site search on the Mtb protein and the human homolog by firstly 

employing cavity calculations in order to identify binding pockets on the respective protein 

structures. A combination of allosteric site search tools were used for this computation namely 

CavityPlus, AutoLigand, Protein Plus DogSiteScorer and SiteMap.  These tools were used to 

determine consensus sites identified in at least 3 of the 4 programs used, in order to increase the 

accuracy of the results. Although all the programs correctly identified the functional sites of Mtb 

KasA, only one program correctly identified all functional sites in Hsmt KasA. All in all, two 

allosteric sites were identified in Mtb KasA and only one allosteric site was identified in Hsmt 

KasA. Allosteric site search was conducted in order to identify novel drug compounds that would 

be suitable as allosteric modulators, binding with a high binding affinity to the Mtb protein 

compared to the human homolog protein. 

Molecular docking of the 2089 FDA approved DrugBank compounds was performed in Chapter 4 

using the AutoDock Tools software. Firstly, validation of the initial docking protocol was 

performed by redocking the co-crystallized ligand, O6G, onto Mtb KasA and Hsmt KasA as a 

positive control. The protein structures and ligands were prepared for docking in AutoDock Vina 

and the docking simulations were performed on the CHPC cluster. The ligands were screened 

according to the binding energies, with -7.7kcal/mol used as the threshold. Main focus was given 

to ligands that bound exclusively to the Mtb KasA acyl-binding site, reducing the dataset to 27 hit 

compounds. However, due to the similarities in the binding energies of the compounds to both 

proteins, the use of binding energies alone as an indicator of ligand suitability was ruled out. Thus, 

the identified compounds serve as a starting point for further screening in order to identify potential 

inhibitors against Mtb KasA.   

Overall, the study presented in this thesis has provided useful insights in the structure and function 

of Mtb KasA, with particular reference to allosteric inhibition. Although previous studies have 

attempted to discover drugs that target the allosteric site, compounds inhibiting the acyl-binding 
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tunnel have not been studied before, which make this research novel and if further studies are 

performed, this could positively impact the field of research in overcoming the TB resistance 

problem. 

5.2 FUTURE REMARKS 
Further research and improvement of this study may include analyzing the hydrogen bonds formed 

between the ligand and the protein’s residues. Hydrogen bonds are the strongest molecular 

interactions and are a major contributor to the stability of the protein-ligand complexes. Thus, 

complexes with more hydrogen bonds would be more desirable compared to those with little to 

none. The molecular weight of a compound is also an important indicator of ligand suitability, and 

compounds with a molecular mass less than 500g/mol are preferred (Lipinski Rule of 5).  

In order to determine the stability of the protein-ligand complexes formed, molecular dynamic 

simulations must be employed and the protein-ligand trajectories can be analyzed using the Root  

Mean Square Deviation (RMSD), the Root Mean  Square Fluctuations (RMSF), Radius of gyration 

and hydrogen bond profiling. In addition, the effects of mutations on the Mtb KasA-ligand systems 

can also be explored by mutating Mtb KasA and analyzing how the ligands behave in comparison 

to the wild-type system.  
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SUPPLEMENTARY MATERIAL 
 

 

Figure S1: Multiple sequence alignment as predicted by PROMALS3D. The structural 
information was obtained from PDB ID: 6P9K. 
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Figure S2: Clustal Omega alignment of KasA homologs. Residue numbering is given for M. tuberculosis. The alignment is colored by 
percentage identity. 
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Figure S3: Mapping of discovered motifs in the KAS protein family onto the multiple sequence alignment. Motifs conserved in all 
sequences are colored in magenta, those unique to bacterial sequences are shown in blue, those unique to both fungi and mammals are shown 
in cyan and motifs only present in mammalian sequences are shown in green. Motif numbering is based on MEME results. The HTH region 
present in all KAS enzymes is shown in red. 
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Figure S4: Crystal structure of Hsmt KasA, with one monomer represented as a closed surface 
in blue and the other monomer as a cartoon in pale yellow. The loop region made up of 
residues Pro93-Phe101 that make up insert II of the multiple sequence alignment is shown in 
cyan.  
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Figure S5: Mapping of highly conserved motifs on the structure of Mtb KasA. 
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Table S1: Residues constituting the allosteric and active site pockets identified by the pocket detection algorithms. Residues in red for Mtb 
KasA represent the acyl-binding tunnel residues whilst those in red for Hsmt KasA represent the active site residues. 

 
Protein Pocket Residues 
Mtb KasA 1 Chain A : 64,82, 115,116,117,119,120,122,123,126,170,199,200,201,202,203,205,206,209,210,239,240,241,345,346,347,404 

Chain B: 141,142,143,145,146 

2 Chain A: 141,142,143,145,146 
Chain B: 64,82, 115,116,117,119,120,122,123,126,170,199,200,201,202,203,205,206,209,210,239,240,241,345,346,347,404 

3 Chain A: 171,213,215,273,278,279,280,281,287,311,315,317,318,321,322,325,402,403,406 

4 Chain B: 
171,213,215,273,278,279,280,281,287,311,315,317,318,321,322,325,402,403,406 

Hsmt KasA 1 Chain A : 39,40,41,218,221,222,224,225,226,227, 305 
Chain B: 39,40,41,218,221,222,224,225,226,227, 305 

2 Chain A: 
209,251,252,253,274,308,310,313,314,315,316,317,318,321,323,324,349,348,350,352,353,354,355,356,3598,359,385,445,446,447,44 
8,449, 451 

3 Chain B: 
209,251,252,253,274,308,310,313,314,315,316,317,318,321,323,324,349,348,350,352,353,354,355,356,358,359,385,445,446,447, 
448,449, 451 
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Figure S6: Protein-ligand interactions of the original co-crystallized ligand (O6G) and the 
redocked ligand as visualized in BIOVIA Discovery Studio. A) Interactions  formed between Mtb 
KasA with the reference and redocked ligand. B) Interactions formed between Hsmt KasA with the 
reference and redocked ligand.  
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Protein-Ligand Binding Energies 

 

 

Figure S7: A heatmap showing the binding energies of the DrugBank compounds to Mtb KasA 
and Hsmt KasA. The heatmap was centered on the binding energy of the control ligand O6G (-
7.7kcal/mol ) and this value was used as a cut-off value for screening purposes. 
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