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Dark and difficult times lie ahead. Soon we must all face the choice between what is right
and what is easy.

 Albus Dumbledore

Asking for help is the opposite of failure. It is the only way to succeed.

 Beatrix Franklin
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Popular summary

On November 12, 1732, a man named Henri Pitot showed his new invention to the Royal
Academy of Sciences in Paris. He showed two tubes. One tube was straight while the
other was shaped like an L. What was it supposed to do? It was developed to measure
the flow speed of water in rivers. At the time, the standard methodology was to put an
object (typically an orange for its excellent floating abilities) in the river and observe its
speed. It worked like a charm but there was a fundamental limitation. One could only
measure the flow speed at the surface. Pitot’s tube worked in a unique way that made it
possible to measure the velocity at different depths in the river. Suddenly a new dimension
was available. With his new measurement device, Pitot challenged the prominent theory
at the time that flow speed in a river increase with depth. He correctly found that the
opposite was the case. This basic knowledge of fluid dynamics was discovered because of
the groundbreaking measurement tool.

This thesis has quite some similarities with the novelty of the tube. Here, measurement
techniques are presented that unlocks another dimension of liquids. This other dimension
is the third dimension. The third dimension that we are all living in, the third dimension
that you perceive in the distance, the third dimension in which all liquid phenomena take
place. Currently many measurements on liquids use imaging which is a 2D measurement
approach that has given significant insight into fluid dynamics. However, it can never give
the complete picture since, as mentioned, all liquid phenomena take place in 3D. Therefore,
3D measurements are important. I present three different kind of 3D measurements in
this thesis that have been performed on three different liquid phenomena: a water jet,
a hollow cone water sheet and respiratory droplets. The first two are phenomena with
major industrial applications. They are both closely connected to sprays and sprays are
used in more places than you might think. Examples are painting, cooling, food processing,
firefighting, combustion engines, and more. An improved understanding of the water jet
and hollow cone water sheet can give a higher precision and efficiency for both applications
in jets and sprays.

The third phenomenon was respiratory droplets who are connected to the way too well
known COVID19 pandemic. We can all probably say where we were when the world shut
down (probably at home learning how to use zoom). To lower the risk of overfull hospitals,
it was important to delay the spreading of the virus. The first suspect of this spreading was
direct contact between people and contaminated surfaces such as keyboards and measures
were taken to lower the probability of spreading the virus in this way. Later, research sug
gested that this path was not as probable as first suggested since a virus cannot survive on
surfaces long enough. The next spreading suspect was then the infamous aerosols. Aerosols
are small particles that can float for a long time in the air to then be inhaled and infect when
containing viruses. In the fall of 2020, we wanted to help so we employed our laboratory

ix



skills in spray imaging to extract information of 3D velocity and size of these small droplets.
This is essential information in understanding what measures should be taken to prevent
the spreading of the virus.

In this thesis I present the 3D measurement techniques we have developed that are unlock
ing the third dimension of all these phenomena. Just like the Pitot tube did in its time,
I hope that these measurement techniques will produce knowledge previously beyond our
grasp and both improve sprays for specific applications and our ability to fight future pan
demics.
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Populärvetenskaplig sammanfattning

Den 12e november 1732 visade en man vid namn Henri Pitot sin nya uppfinning för den
Kungliga franska vetenskapsakademin i Paris. Han visade två rör. Det ena röret var rakt
medan det andra var format som ett L. Vad var poängen med uppfinningen? Jo, den ut
vecklades för att mäta flödeshastigheten av vatten i floder. På den tiden var det standard att
mäta flöde genom att placera ett föremål (vanligtvis en apelsin för dess utmärkta flytförmå
ga) i floden och observera dess hastighet. Det fungerade bra men det fanns en grundläggan
de begränsning. Man kunde bara mäta flödeshastigheten vid ytan. Pitots rör fungerade på
ett annat sätt som gjorde det möjligt att mäta hastigheten på olika djup i floden. Plötsligt
öppnades en ny dimension. Med sin nya mätanordning utmanade Pitot den då framstå
ende teorin att flödeshastigheten i en flod ökar med djupet. Han fann, med rätta, att det
motsatta var fallet. Denna mycket grundläggande kunskap om vätskedynamik upptäcktes
som ett resultat av det banbrytande mätverktyget.

Denna avhandling har en hel del likheter med Pitot’s rör. Jag presenterar här mättekniker
som låser upp ytterligare en dimension av vätskor. Denna dimension är den tredje dimen
sionen. Den tredje dimensionen som vi alla lever i, den tredje dimensionen som du upp
fattar i fjärran, den tredje dimensionen där alla vätskefenomen äger rum. För närvarande
appliceras främst 2D mätningar på vätskor som har gett betydande insikter i vätskedyna
mik. Det kan dock aldrig ge den fullständiga bilden eftersom alla vätskefenomen som sagt
sker i 3D vilket gör 3Dmätningar viktiga. Jag presenterar tre olika typer av 3Dmätningar i
denna avhandling som har utförts på tre olika vätskefenomen: en vattenstråle, en vätskeyta
formad som en ihålig kon och respiratoriska droppar. De första två är fenomen med stora
industriella tillämpningar. De är båda nära förbundna med sprayer som används på fler
ställen än man kan tro. Exempel är målning, kylning, livsmedelsförädling, brandbekämp
ning, förbränningsmotorer med mera. En förbättrad förståelse av vattenstrålen och den
ihåliga konens vattenskiva kan ge en högre precision och effektivitet för både applikationer
i jetstrålar och sprayer.

Det tredje fenomenet var respiratoriska droppar som är kopplade till den alldeles för väl
kända COVID19pandemin. Vi kan nog alla säga var vi var när världen stängdes av (mest
troligt hemma försökte förstå sig på zoom). För att minska risken för överfulla sjukhus var
det viktigt att fördröja spridningen av viruset. Den första misstänkta för spridningen var
direktkontakt mellan människor och förorenade ytor som exempelvis tangentbord och sty
rande vidtog åtgärder för att minska sannolikheten för att viruset skulle spridas på detta
sätt. Senare antydde forskning att denna väg inte var så trolig som först antyddes eftersom
virus inte kan överleva på ytor tillräckligt länge. Nästa misstänkt för spridning en var då
de ökända respiratoriska dropparna. Dessa droppar skjuts ut när vi pratar, hostar eller lik
nande och de kan sväva länge i luften där de sedan kan andas in och infektera en annan
människa. Hösten 2020 ville vi hjälpa till att förstå denna spridningsväg så vi använde våra
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laboratoriekunskaper i spraybildbehandling för att extrahera information om 3Dhastighet
och storlek på dessa små droppar. Hastighet och storlek är viktig information för att förstå
vilka åtgärder som bör vidtas för att förhindra spridning av viruset.

I denna avhandling presenterar jag de tre 3Dmättekniker vi har utvecklat som låser upp
den tredje dimensionen av alla dessa fenomen. Jag hoppas att dessa mättekniker kommer
att producera kunskap tidigare utom vårt räckhåll, precis som Pitotröret gjorde, och både
förbättra sprayer för specifika applikationer och vår förmåga att bekämpa framtida pande
mier.
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Chapter 1

Introduction

The everpresent liquid dynamics in nature and the importance of liquid dynamics to civ
ilization cannot be understated. A liquid dynamic that is both practically important and
one of the most challenging to study is spray formation. In nature, sprays can be found in
for example waterfalls, clouds, fog and rain. Artificial sprays can be found in fuel injection
systems for automobiles and aircraft, pesticide and herbicide delivery in agriculture, phar
maceutical delivery, drying in food processing or painting in manufacturing to name a few
[1]. A spray is a collection of small spherical droplets distributed in 3D space and character
ized by various parameters. These include the number density of droplets as well their size
and velocity distributions. Different spray applications have unique optimal characteris
tics of the spray and deviations from this optimum can greatly reduce the effectiveness and
increase environmental contamination. For example, too small droplet sizes in agriculture
pesticide spray increase the drift of pesticides to areas beyond the crops that comes with a
negative impact on residents and ecosystems [2]. To produce the optimal spray for each
application, a detailed understanding of the underlying processes that produce the spray
is essential. This understanding will assist in predicting what spraysystem and boundary
parameters are likely to create the sought characteristics of the spray.

Another spray example are the droplets exhaled when people are active in respiratory events
such as speaking, yelling, singing, coughing, and sneezing. These respiratory droplets have
been found to be one of the main drivers in the spread of COVID19 via the virus SARS
CoV2 [3]. The pandemic has had a substantial impact on societies all over the world,
partly due to the millions of fatalities caused by the disease, but mainly through the massive
restrictions that were put in place to limit the spreading of the virus. Initially, it was thought
that the spreading of COVID19 mainly went through direct contact between people or
indirect via surfaces that were contaminated. However, the fast spreading together with
research on how the surfaces were unlikely to host viruses for longer periods of times led to
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the conclusion that small respiratory droplets who can endure in the air for longer periods
of time was the more probable spreading agent [4, 5]. The increased understanding of the
production and spreading characteristics of these droplets thereafter became a high priority.
In the context of spreading disease, the relevant characteristics of respiratory droplets are
their quantity, velocity, ejectionangles, and size.

The understanding of liquid dynamics, such as sprays and respiratory droplets, require
detailed experimental work that can discover new phenomena and provide accurate data for
liquid dynamic modelling research. In the modelling, this data is typically used to validate
and improve simulation models. These simulation models are then used to explore the often
large parameter spaces for specific applications that aid in the development of improved
spray apparatus or, in the context of COVID19, in what restrictions are efficient. There are,
however, multiple challenges in the experimental characterization of liquid dynamics that
are obstacles on the path towards fully understanding these processes. The main challenges
are:

• The deformations and breakups of liquid bodies are intrinsically stochastic where
each event is unique as a result of chaotic creation of instabilities and turbulence.

• The turbulence processes found in liquid flows injected at relatively high pressures,
are occurring at very short time scales and are therefore hard to capture. Typically,
highspeed cameras of kHz frame rates are used even though faster recording would
be preferred. Cameras with MHz recording rate exist, but they can only record a few
hundred frames that corresponds to short periods of time. In addition, such cameras
are expensive and therefore less accessible.

• The visualization of liquid structures is usually performed using a diffuse white light
or a collimated laser beam illumination. As many liquids are transparent, photons
are mainly refracted and specularly reflected from the surfaces and complex light
effects are created. Typical effects include light focusing and beam trapping. In the
case of spherical curvature, commonly observed with drops, a strong focusing occurs
that leads to the appearance of glare points which does not correctly represent the
liquid shape.

• Unwanted artefacts leading to some image blurs are occurring when photons interact
multiple times with several droplets, prior to image detection. This is called multiple
light scattering which is significant for liquids injection systems, such as atomizing
sprays, that create a droplet cloud of high density. Light that is sent through a dense
spray is scattered multiple times, creating a blur of the imaged object, just like the
situation of imaging through a fog.

The use of experimental data for validation and improvement of simulation models is also
challenging which is partly caused by how experiments and simulations have a gap in out
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put quantities. The output of experiments are often quantities such as scattering intensity,
Laser Induced Fluorescence (LIF) intensity and extinction. In simulation models the quan
tities are instead 3D positions, sizes, and velocities. One can bridge this gap by converting
the simulation quantity to the experimental one that enable direct comparison [6], how
ever, this quantity gap remains to be an obstacle on the path towards understanding liquid
processes [1].

Laser measurement techniques are most commonly employed to characterize liquid pro
cesses. These include point measurement techniques such as Phase Doppler Anemometry
(PDA) [7] that can simultaneously measure droplet size and velocity. Such point measure
ments require scanning to extract spatial variation in the liquid phenomenon. To avoid
scanning, imaging techniques have been extensively used that give 2D information. Shad
owgraphy [8] is a basic technique where a background illumination is obstructed by the
liquid and the imaged shadow give information of the liquid structure. Schlieren measure
ments [9] are employed to image gradients of refractive index typically used in hot air flow
measurements but can also be used for analysing liquid fuel combustion.

Planar Laser Imaging have been extensively used since it can extract information from cross
section slices of the liquid. It can be used to extract fluid flow velocities using Particle Image
Velocimetry (PIV) [10, 11] and Particle Tracking Velocimetry (PTV) [12]. Both techniques
can be applied in the same setting where droplets or tracer particles are tracked over two
or more frames. Planar laser imaging has also been extensively applied with LorenzMie
scattering and LIF [1]. The LIF/MIE ratio of such images is often employed to estimate
droplet size (Sauter Mean Diameter) [13]. These planar laser techniques are all affected by
multiple scattering for larger droplet densities and some advanced techniques can reduce
these effects. One such technique is called Structured Laser Illumination Planar Imaging
(SLIPI) that create a spatially modulated intensity pattern that look like the teeth on a
comb. With postprocessing, the single scattered or fluorescence intensity can be extracted
from the blurred images [14, 15].

Measurements in the 2D domain can only increase our understanding of liquid processes
up to a limit. For full characterization, 3D measurements are required where there are
fewer examples found in the literature. A common 3D measurement approach is to use
Computed Tomography (CT). Then, multiple views (typically ∼ 10 or more) are used and
a lineofsight inversion is employed to extract 3D information. CT examples applied on
sprays have used visible light and SLIPI to reduce multiple scattering [16], and xrays [17].
3D can also be produced through stacking of multiple 2D slices [18]. All these examples
use average imaging to improve signal to noise ratio in the recorded data.

Averaged data can give general liquid properties, but the stochastic nature of these liquid
phenomena require instantaneous measurements to be fully understood. In addition, high
speed (>kHz) temporal resolution is required to better resolve complex 3D flow features
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such as turbulence and small surface waves. Examples that fulfil these requirements use
CT with Xrays on spray where multiple highspeed cameras are employed [19]. Plenoptic
imaging has been applied to droplet fields where an array of microlenses is added in front
of the camera [20, 21]. The array enables postprocessing to refocus the images and particle
locations are estimated by finding the refocusing distances where objects are optimally in
focus. Holography has been applied on a swirl spray that can reconstruct object 3D location
and shape from the interference pattern created when a laser interacts with droplets [22].
Highspeed shadowgraphy imaging has been used on a dilute spray where the degree of
droplet blurring due to out of focus is used to estimate the 3D position [23]. Shape from
refraction was applied on short wind waves where a pattern is placed at a known location
below a liquid surface. The distortion of this pattern caused by refraction of light is then
used to estimate the surface topology [24]. 3DPTV has also been employed with multiple
views to resolve turbulence of a water jet injected into a liquid environment impinging
on a cylinder [25]. Here, the advanced 3DPTV technique called ShakeTheBox is used
that enables tracking of high particle densities [26]. The high particle density is of great
importance because of the improved spatial resolution and increased details of complex flow
features it enables. The research presented in this paragraph are limited to specific working
conditions. Either many highspeed cameras are required as in tomography, or the 3D
reconstruction is only possible for separated droplets which is the case for the plenoptic
imaging and digital offaxis holography.

Respiratory droplets have also been analysed through experiments where used techniques
largely overlap with the previous examples. Velocity measurements of respiratory droplets
have often been indirect by means of measuring air flow. Examples include the spirometer,
a point measurement device that estimate air volume per unit time [27]. Other work have
used schlieren imaging [28, 29, 30], PIV [31, 32, 33, 34, 35, 36, 37, 38] and CO2 imaging
[39]. Subjects that exhale smoke, or flour have also been applied in measurements to follow
air flow [27, 40, 41, 42]. Measurements on the actual droplets have among other been
performed with shadowgraphy [43, 38], and droplet scattering of laser light [42, 44, 45, 46].
To measure the size and concentration of droplets there are a few common apparatus’ that
have been used. The Aerosol Particle Sizer (APS) is a point measurement device that size
particles through a time of flight measurement [47, 48, 49, 50, 51, 52] which have a a sizing
range of 0.5 to 20 μm. Sizing techniques using scattering intensity in point measurement
devices, including different commercial devices such as the Optical Particle Sizer (OPS), is
also commonly used [53, 54, 55, 56] with size ranges around 0.3 to 10 μm. The Scanning
Mobility Particle Sizer (SMPS) is a device that can measure very small droplet sizes between
0.01 and 0.4 μm [53, 54, 52]. Not seldom is the combination of devices with different sizing
ranges used to be able to detect a larger span of particle sizes. Imaging approaches for sizing
respiratory particles have also been used where shadowgraphy [57], Interferometric Laser
Imaging for Droplet Sizing (ILIDS) [32], holography [53, 58] can be found. In the context
of respiratory droplets, 3D measurements are rare. However, Shake The Box has been used
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in a 3DPTV measurement to track the air flow by means of helium filled soap bubbles
inside a room where synthesized breathing and thermal heat convection flow is created by
a manikin [59].

The aim of this thesis is to apply and validate new combinations of optical techniques that
enable instantaneous highspeed 3D measurements of liquid phenomena. The methodol
ogy to achieve this aim is focused on the image postprocessing to extracts 3D information
where both estimation performance and computational optimization is important. The
new use of these techniques will diversify the toolbox of which liquid phenomena can be
imaged in 3D. In addition, the measurement techniques will provide experimental data
directly compatible for validation, tuning and development of liquid simulation models.
The thesis contains three different 3D imaging techniques applied to three different liquid
phenomena each with its own specific aim.

• The aim of the first technique is to estimate liquid thickness from LIF intensity
applied on water jets (Chapter 2 and Paper I).

• The aim of the second technique is to use structured illumination and a single camera
view to 3D reconstruct the surface of a hollow cone liquid sheet (Chapter 3 and Papers
II and III).

• The aim of the third technique is to use stereoscopic PTV to find 3D velocities, sizes
and number of respiratory droplets ejected when speaking, yelling and coughing
(Chapter 4 and Papers Iv and v).

The chapter for each of these three imaging techniques is outlined similarly. The first section
describes the liquid phenomenon that is followed by a description of the 3D imaging ap
proach. Thereafter, the experimental setup and image postprocessing routines are detailed.
When applicable, there are socalled ”Software boxes” that informs the reader of python
scripts, modules and functions connected to the described postprocessing and analysis of
data. Each chapter ends with results and analysis of the measurement technique. After the
chapters on the techniques, Chapter 5 summarises this thesis together with an outlook of
future considerations.
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Chapter 2

Highspeed volumetric imaging of
liquid jets

2.1 Characteristics of liquid jets

Liquid jets have applications in multiple areas such as cooling, cutting, cleaning, medicine,
agriculture painting, food drying and delivery of fuel for combustion. The most common

Liquid core

Nozzle orifice

Primary breakup

Detached blobs/ligaments
Secondary breakups

Smaller drops created 

Droplet transport 

and evaporation

(a)

(b)

Figure 2.1: Liquid jet breakup. Two different liquid injection pressures are illustrated where (a) is relatively low and (b) is high.
The higher pressure corresponds to faster breakup and smaller produced droplets.

7



application is internal combustion engines where the fuel is injected under high pressure
into a combustion chamber to produce a spray of small droplets. The small fuel droplets
evaporate and burn more efficiently and cleaner than their liquid counterpart.

Liquid jets are inherently unstable and will breakup [60]. Depending on the application,
it is either advantageous to hasten or suppress this breakup process. Two parameters that
largely affect the breakup is the geometry of the nozzle that injects the liquid and the in
jection pressure. Figure 2.1 illustrate two liquid jets with different injection pressure. The
higher pressure gives relatively both faster breakups and smaller resulting droplets. The
process of these breakups involves the following. Initially, the jet is continuous as a liquid
core and instabilities are created further downstream from the nozzle. The instabilities grow
until they eventually induce the primary breakup where large drops, blobs and ligaments
are created. The created particles might interact through collision and merging but with
large enough injection velocity, the socalled secondary breakups will eventually divide the
liquid into small spherical droplets, a spray. Here, the regions involving primary and sec
ondary breakups is commonly called the spray formation region which is followed by the
spray region. Jet nozzles are commonly used in for example diesel injection systems where
injection pressures of hundreds of bar are required to quickly vaporize the injected fuels be
fore ignition [61, 62]. For highpressure injection systems, one relevant effect to mention
is cavitation that is connected to the design of the nozzle. Cavitation occurs when there
is a local drop in pressure below the liquid vapor pressure. The vaporized liquid is then
thought to induce ripples in the liquid that can hasten the breakup of the liquid core. The
local drop of pressure is common when there are fast changes of the crosssection area for
the liquid inside the nozzle.

2.2 Volumetric imaging approach

The fluorescence intensity emitted using LIF is connected to the concentration of the fluo
rescent molecule. By imaging the fluorescence from multiple views together with a proper
calibration, the 3D variation of this concentration can be extracted, called Volumetric LIF
or VLIF. VLIF has been used in gas flows to image for example turbulence and mixing pro
cesses [63] and it can also be used in highspeed measurements [64]. VLIF is here applied
to liquid processes which has also been applied in the literature [65, 66].

To extract the volume of the liquid, a first step is to extract the liquid thickness d for an
imaged pixel intensity. This liquid thickness is defined as the distance of liquid a beam
would cross when sent out from the camera in the direction the camera is viewing. The
model of imaged intensity ILIF can be realised through the following equation plotted in
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Figure 2.2: Simplified models of how the imaged fluorescence intensity is connected to liquid thickness. The models either
assume a homogeneous fluorescence throughout the liquid body (a) or a non-homogeneous fluorescence (b). Curves
of liquid thickness as a function of fluorescence intensity for both models are shown in (c). The function for model
(a) and (b) is described by equation (2.1) and (2.5) in the text, respectively.

Figure 2.2(c),

ILIF = d · Kopt · I0laser · c · σa(λlaser)

∫ λ2

λ1

F(λ)dλ, (2.1)

whereKopt is a constant taking the collection angle and the response of the camera in a single
pixel into account, I0laser is the illumination intensity, c is the concentration of fluorescent
dye in the liquid, σa(λ) is the absorption crosssection probability of the dye at a specific
wavelength and F(λ) is the emission spectrum. The emission spectrum is integrated over
the wavelengths that are transmitted by the bandpass filters. In this work, λ1 = 465.5 nm
and λ2 = 554.5 nm. The resulting simplified model give a linear dependence between the
fluorescent signal and liquid thickness d.

The two effects, attenuation of the laser and reabsorption of the fluorescence are not taken
into account by equation (2.1) even though both effects are significant in this experiment.
The attenuation of the laser is caused by the absorption of light by the fluorescence tracer as
the laser light travels through the liquid. The laser intensity is here assumed to be relatively
low compared to the concentration of fluorescent dye which means that the reduced laser
intensity will also reduce the intensity of fluorescent light. This is also known as the fluo
rescence dye is unsaturated. The laser attenuation is described using the BeerLambert law
and the extinction coefficient μe(λlaser) = cσa(λlaser) where the laser intensity is reduced
after travelling from the liquid interface z1 to position z as,

Ilaser(z) = I0lasere
−μe(λlaser)·(z−z1). (2.2)

Reabsorption of the fluorescent light is caused by a relatively high concentration of the
fluorescent dye used in this experiment. The reabsorption will in a similar way to the laser
attenuation reduce the probability of fluorescence deep in the liquid to reach the camera
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because of extinction as follows,

Ifluorescence(z)
Ilaser(z)μe(λlaser)

=

∫ λ2

λ1

F(λ)e−μe(λ)·(z−z1)dλ, (2.3)

where Ifluorescence is the amount of fluorescent light that reach the camera for each position
z.

The attenuation and reabsorption are illustrated in Figure 2.2(b) and can be modelled by
updating equation (2.1) to,

ILIF = Kopt ·
∫ z2

z1
I0lasere

−μe(λlaser)·(z−z1) · μe(λlaser)

∫ λ2

λ1

F(λ)e−μe(λ)·(z−z1)dλdz. (2.4)

Rearranging and solving the z integral,

ILIF = Kopt · I0laser · μe(λlaser)

∫ λ2

λ1

F(λ)
∫ z2

z1
e−(μe(λlaser)+μe(λ))·(z−z1)dzdλ

= Kopt · I0laser · μe(λlaser)

∫ λ2

λ1

F(λ)

[
e−(μe(λlaser)+μe(λ))·(z−z1)

−(μe(λlaser) + μe(λ))

]z2
z1

dλ

= Kopt · I0laser · μe(λlaser)

∫ λ2

λ1

F(λ)
(
1 − e−(μe(λlaser)+μe(λ))·d

)
μe(λlaser) + μe(λ)

dλ,

(2.5)

where d = z2 − z1. There is a clear diminishing return with increasing liquid thickness
where eventually change in thickness will not be detected as change of intensity as is illus
trated by the blue curve in Figure 2.2(c). There is from this model a clear limitation in how
thick liquid one can measure using VLIF. Note that these equations in Paper I have for
some reasons been jumbled so they are mostly wrong.

The model in equation (2.5) is useful for understanding the fluorescence signal as a function
of liquid thickness, however, this model is still too simplified for these experiments. Firstly,
the illumination is assumed to be in the same direction as the detection direction when it
actually is at a relative 45 degree angle. In addition, there will be significant refraction effects
and internal reflections at the irregular liquidair interface. These complexities not included
in the model make equation (2.5) not suitable to use for liquid thickness prediction. Instead,
a nonparametric calibration curve will be extracted.

2.3 Description of the experimental setup

The experimental setup used for the VLIF experiments is illustrated in Figure 2.3 and briefly
described below. More details can be found in Paper I.
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Figure 2.3: The experimental setup. The illumination (a), the injection system (b) and the high-speed cameras for imaging (c).
Examples of recorded raw images are shown in (d).

(a) Illumination: In this work, a blue continuous wave laser at 447 nm wavelength and
4 Watt average power is shaped into an illumination volume that is 6 mm thick and 40
mm. The shape is chosen to verify that all liquid that is imaged. Care was taken to make a
homogeneous tophat illumination profile using the enlargement optics and aperture, but
a postprocessing correction is also performed, detailed in section 2.4.1.

(b) Liquid: A liquid jet is produced by a custommade nozzle built for this experiment. This
nozzle is designed to minimizes complex flow features inside and at the exit of the nozzle
such as nonuniform exit velocity, turbulence inside the nozzle and cavitation. Such a nozzle
will simplify modelling of this experiment. The nozzle was realized by applying methods
for designing windtunnel contraction sections. The created nozzle has a liquid chamber
with the shape of a wine glass where the foot of the glass is the exit point of the liquid.
The nozzle is made from transparent acrylic that enables inspection of the liquid inside
the nozzle. The injection pressures 10, 20, 30 and 40 bar are used for the experiments,
and it is possible to move the nozzle vertically to image the liquid at different distances
from the nozzle. The liquid is doped with the fluorescent dye Fluorescein that is a key
component for extracting volumetric information. Fluorescein was chosen since it has
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Figure 2.4: Estimated laser profiles in each camera (a) and example corrections (b) of two different cases with 5 bar and 30 bar
injection pressure, respectively.

a high quantum yield and absorption cross section at the used illumination wavelength
that produce enough fluorescent light for the highspeed measurements. This fluorescent
dye is also watersoluble, nontoxic, and inexpensive which makes it ideal for this kind of
experiment.

(c) Imaging: Two highspeed cameras are recording the liquid jet simultaneously with or
thogonal views to one another. They are recording at 50 000 frames per second for a dura
tion of around 8 ms (∼ 400 frames). Both cameras are equipped with highperformance
bandpass filters that will reject scattered light from the laser illumination and transmit the
fluorescent light. When the nozzle is translated vertically, the cameras image the liquid at
positions from 0 cm to 330 cm distance from the nozzle. An example image of the liq
uid at 30 bar injection pressure and a distance of 150 mm from the nozzle is shown in
Figure 2.3(d).
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2.4 Fluorescence to liquid thickness calibration

2.4.1 Laser sheet profile correction

The laser profile correction is found using recordings of a lowpressure water jet that is
approximately cylindrical. For each camera, the following procedure is performed to find
the profile. The jet is recorded for 20 single shots at seven different horizontal positions.
All of these, 20 × 7 = 140, images are averaged in the vertical Y direction to extract a raw
laser profile. A final convolutional smoothing with a gaussian (σ = 5 pixels) result in the
laser profiles shown in Figure 2.4(a). Note that some artefacts induced by the nozzle has
here been removed after averaging. Example corrections for a 5 bar case and 30 bar case
are shown in Figure 2.4(b).

2.4.2 Corrupt LIF peaks correction

Volumetric LIF of water induce artefacts of the imaged intensity that are here called LIF
peaks. The peaks are areas in the image with unproportionally large pixel intensities that
cannot be explained by the liquid thickness, seen in Figure 2.5(a). The peaks are gener
ally found close to the edges of the liquid as seen from the cameras. These artefacts can
be explained by the refraction effects of both the laser and fluorescence light crossing the
irregular liquidair interface. In paper I, this effect was contributed to microlenses created
by strong local curvatures on the surface. The microlenses focus laser light into a small
volume and, in conjunction with the fluorescence dye being unsaturated, emit strong local
fluorescence signal. The work by Gomez et al. [66] performed a similar experiment of
highspeed VLIF but with eight views of the liquid enabled by two cameras equipped with
quadscopes. The LIF peak artefacts were found here as well, and raytracing simulations
were performed to find their origin. The simulations found that fluorescence light emitted
close to the liquid surface has a higher probability of being trapped by internal total reflec
tions. All trapped fluorescence then escapes at a position where the surface shape allows
refraction instead of total reflection which result in the observed large intensity. Since the
trapped signal travels along the surface inside the liquid, the escaped signal with a direction
toward the camera will be imaged close to the liquid edge. The signal trapping theory can
explain why the peaks are found to cover larger areas of pixels than what would be expected
from the microlenses which makes it the more common effect even though microlens
peaks can still be present.

The first step in correcting the corrupt peaks is to detect which pixels intensities ILIF are
corrupt. The detection is done through an outlier detection algorithm similar to a Bayesian
classifier with the main assumption that a majority of the data does not include peaks. In
addition, the assumption is made that the liquid is generally thicker when it is wider in
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Figure 2.5: Detection and correction of corrupt LIF peaks. In (a), instances of corrupt LIF peaks are shown and the key values
x1 and x2 used to detect them. In (b), the estimated conditional probability distribution p(ILIF|x1, x2) for the data
is shown. The unproportionally large LIF peaks are defined as intensities larger than the 95th percentile for each
combination of x1 and x2 shown as the red areas in the plots. In (c), the full process from profile corrected image to
detected LIF peak pixels to corrected results is shown.

the current camera view which is captured through two key values. The key values are
correlated with liquid thickness since there is a general rotational symmetry of the liquid
around the Y axis. The key values are,

• x1, liquid width for the row of the current pixel.

• x2, normalized horizontal distance of the current pixel from the left edge of the liquid,
value between 0 and 1.

The key values are illustrated for a single pixel in the left image of Figure 2.5(a). To cal
culate x1 and x2, a segmentation of the images is required that describes where the liquid
is in the image. The segmentation is estimated from a threshold at 5% of the maximum
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imaged intensity per camera of all recorded 10 bar images. Now all data for the 10 bar in
jection case with vertical positions between 120 and 270 mm are analysed to extract around
80 million correspondences per camera between imaged intensity ILIF and the key values
x1 and x2. The found correspondences is used in a 3D histogram algorithm to estimate
the joint probability distribution p(ILIF, x1, x2). The marginal distribution p(x1, x2), the
frequency of liquid widths and normalized pixel distance, does not here contribute infor
mation to whether a pixel is a corrupt peak, and when removed the conditional probability
p(ILIF|x1, x2) remains as,

p(ILIF|x1, x2) =
p(ILIF, x1, x2)

p(x1, x2)
. (2.6)

This conditional probability describes how frequent LIF intensities are given a liquid width
x1 and a normalized horizontal distance from edge x2. Relatively lower LIF intensities are
expected given both small x1 values and x2 values close to 0 and 1. The found distribution
inhibit these properties as is seen in the histograms in Figure 2.5(b). For the largest widths
(rightmost column of Figure 2.5(b)), a skew of the intensity distribution is visible. The skew
is on the right side in the Z− Y view and on the left in the X− Y view that aligns with the
side that the laser enters the liquid for each camera. The skew verifies that laser attenuation
and fluorescence reabsorption affect the thickest liquid structures and will cause minor bias
in the results.

The corrupt LIF peaks are defined as the LIF intensities larger that the 95th percentile of
the estimated cumulative distribution function F(ILIF).

F(ILIF) ≥ 0.95 → ILIF|x1, x2 ∈ corrupt LIF peak

F(ILIF) =
ILIF∑
f=0

p(f|x1, x2)
(2.7)

The dark red areas in Figure 2.5(b) show where equation (2.7) is true for the estimated
conditional distribution. The probability of the high LIF intensities in the red areas is very
low and those intensities are therefore likely to be outliers. Example of pixels identified as
corrupt is shown in Figure 2.5(c). The ratio of found corrupt pixels to the total number of
segmented pixels in the images are commonly between 5% and 20%.

The detected corrupt LIF peaks should now be corrected. Here, an interpolation using
a Gaussian Markov Random Field (GMRF) is performed. An introduction of what the
GMRF is and how the interpolation works is found in appendix A. The GMRF inter
polation is here used with a larger correlation horizontally compared to vertically since the
liquid structures generally are elongated vertically. This weighting is done through the local
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Figure 2.6: Extraction of calibration points and calibration curve. The maximum LIF intensity row wise in (a) is combined with the
liquid width in (b) of the opposite camera since this width is the maximum liquid thickness for the first camera. This
combination forms a calibration point wheremore than amillion points were found for each camera. The distribution
of these points is found in (c) where the non-parametric calibration curve in green is found as the expectation of
liquid thickness given the LIF intensity. The dotted lines form a 80% confidence interval of the calibration data.

neighbourhood matrix g introduced in section A seen below,

g =

 0 −1.3 0
−0.7 4 −0.7

0 −1.3 0

 . (2.8)

The used parameters of the GMRF are κ2 = 1e − 4 and τ = 1 and μ is calculated as
the mean value of each image. Note that a side effect when using GMRF here is that
values outside the segmentation is assumed to have the mean value μ as intensity in the
interpolation. This is not wanted for the pixels at the edges of the liquid and therefore the
segmentation is dilated with one pixel in all direction to add neighbouring pixels that are
not LIF peaks and push edge intensities towards zero.

2.4.3 Extraction of calibration curve

The maximum fluorescence value horizontally in one camera view is connected to the thick
ness of the liquid in the other view since the views are orthogonal to each other as is illus
trated in Figure 2.6(a) and (b). The thickness is here calculated in the same way the width
x1 was calculated for the corrupt LIF peak detection. Care is here taken to avoid rows
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Figure 2.7: Comparison of the calibration curves with and without peak correction.

where multiple blobs of liquid are found. The combination of a maximum fluorescence
value and a liquid thickness is called a calibration point. More than 1 million calibra
tion points for each view are extracted from the 10 bar case and vertical positions from
120 − 270 mm. A 2D histogram of the distribution of the calibration points are found in
Figure 2.6(c). From the histogram of the calibration points, a calibration curve is estimated
as the expected value of liquid thickness for each fluorescence bin found in the histogram
E[thickness|ILIF]. The calibration curve for each camera together with an 80% confidence
interval is shown in green in Figure 2.6(c). The cameras are not positioned symmetrically
around the laser which is the reason for why a calibration curve was estimated for each cam
era. Now all fluorescence intensities can be inserted into the calibration curve to estimate
a liquid thickness.

2.5 Artefact peak correction performance

Calibration curves when no peak correction was applied has been estimated for comparison
and the results are found in Figure 2.7. The main difference between the curves is visible for
the larger LIF intensities as expected. The expected liquid thickness plateaus for intensities
above 0.4. This means that the LIF intensities between 0.4 and 0.9 have been corrupted
by the LIF peaks to give almost no information of the liquid thickness. With the peak
correction, the expected diminishing return of liquid thickness is clearly visible for the
largest intensities. The correction also enables prediction of larger liquid thickness.

The peak corrected calibration has varying performance when compared to the calibration
without correction as can be seen in Figure 2.8. One example is here shown for the 10
bar and 20 bar injection pressure, respectively. On the left for each pressure curves show
the expected liquid thickness from the other camera, and the predicted thickness both
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with and without peak correction. For the 10 bar pressure, three areas are indicated. The
top and the bottom one show examples of how the peak corrected calibration can more
accurately predict larger thickness. However, the indicated centre area show how the peak
corrected calibration is more sensitive to minor changes in intensity for intensities above
0.4. This is the result of the mentioned the diminishing return of the calibration where a
slight change in intensity give a substantial change in predicted thickness. On the images
of liquid thickness in the same figure, the same observation can be made. The calibration
without peak correction predicts a more spatially smooth thickness that is the result of the
plateau in the calibration curve. This experiment is clearly challenging given the refraction
effects that are at play. Even though the peak detection algorithm from observation is
found to be accurate in finding areas with unproportionally large intensities, there is a loss
of information for every pixel that is interpolated. This loss of information seems however
to be an improvement since the peak correction adjust the calibration curve to better follow
the expected theory.

2.6 Database of highspeed 3D jet volumes for different injection
pressures

https://spray-imaging.com/water-jet.html

This experiment was created with modellers in mind. The nozzle is designed to avoid com
plex liquid dynamics, the volumetric data is a quantity readily available from simulations
and care has been taken to estimate the limitations of the predicted liquid thickness. The
last step is to give these results to modellers who can use it as validation of simulation re
sults with the same boundary conditions as the experiment. The results are openly available
for download at the link above. On this page, a detailed video description of the experi
mental setup and volumetric imaging approach is shown. One can then navigate to a tab
called ”Results overview” where short videos shown the whole volumetric dataset or the
tabs with specific measurement results. The data can be downloaded either as a whole or
only a single injection pressure and position distance from nozzle. If this page for any rea
son is no longer available, the data can also be found in a longterm available repository at
https://doi.org/10.17605/OSF.IO/CG3DF.

18

https://spray-imaging.com/water-jet.html
https://doi.org/10.17605/OSF.IO/CG3DF


Liquid thickness from 

the other camera view

peak correction
WithoutWith

peak correction, 

max calibrated thickness

WithoutWith

Liquid 
thickness 

[mm]
1.3

0.9

0.5

0.1

0.3

0.7

1.1

10 bar
1.0 2.0

140

145

150

155

160

[mm] 20 bar
1.0 2.0

140

145

150

155

160

peak correction
WithoutWith
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Chapter 3

Highspeed 3D reconstruction of
liquid surfaces
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Figure 3.1: Hollow cone liquid sheet produced by a pressure swirl atomizer. Inside the nozzle the liquid rotates around the air
core while moving towards the exit. The rotational and vertical momentum creates the hollow cone after exiting
the nozzle. The liquid along the cone gets increasingly thinner when the liquid is dispersed over a larger area
downstream from the nozzle. Eventually the liquid is so thin that it becomes unstable and breaks creating drops,
blobs, and ligaments.
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3.1 Characteristics of liquid sheets

Liquid sheets, just like liquid jets, are unstable and will eventually break to form droplets
and the applications of liquid sheets are also similar to the liquid jet [60]. A liquid sheet can
be produced in multiple ways where the pressure swirl nozzle, illustrated in Figure 3.1, is
one common nozzle design that is used in this thesis. The liquid is here injected into a swirl
chamber through one or more tangential ports. This injection creates a vortex motion of
the liquid and if the injection pressure is high enough, an air core is created that blocks part
of the nozzle exit. The liquid vortex with air core is a hollow liquid structure that have both
rotational velocity and velocity downstream from the nozzle. These two velocities combined
create the hollow cone liquid sheet. The radial expansion of the conical sheet downstream
from the nozzle result in decreased sheet thickness that will rupture and breaks into drops,
ligaments and blobs. These structures will then further break with high enough injection
pressure. The pressure swirl atomizer is often used because of the simplicity in its design
and operation. For example, with this nozzle one can avoid extra control devices that add
cost, weight, and reduce reliability, crucial aspects in for example aerospace applications.
The nozzle also efficiently creates small droplets relative to the pressure used for injection
[67] which is preferred in combustion applications.

3.2 Liquid surface 3D reconstruction approach

The 3D reconstruction approach in this chapter is based on the Fringe Projection tech
nique [68]. This is a structured illumination technique where fringes (parallel lines) are
projected onto an object. When the fringes are observed from an angle, they curve as a
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Figure 3.2: Illustration of the 3D recontruction approach. A cross-section of the liquid shape is here viewed from the top and the
laser fringe projection is indicated. The laser induces fluorescence mainly on the surface of the liquid and specular
light is rejected by the band-pass filter when imaged. It is seen how the 3D structure (a), shifts the cosine illumination
modulation (b) when imaged (c) from the angle θ. A comparison of the magnitude of these shifts, as is illustrated
in the plots on the right, can give quantitative 3D reconstruction values.
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function of the surface structure. The deformation of these fringes can be quantified using
a postprocessing procedure to extract the topological structure of the object. A conceptual
illustration of the 3D reconstruction procedure is shown in Figure 3.2. Fringe projection
3D reconstruction has previously been applied to both static [69], moving objects [68] and
highspeed measurements [70] and the concept of Fringe Projection enable 3D reconstruc
tion from a single snapshot image [71, 72]. Applying fringe projection 3D reconstruction
on liquids is not straight forward since liquids typically are both transparent and induce
significant amount of specular reflections which are problematic since the fringes should
in an optimal case only reflect of the liquid surface and be proportional to the illumina
tion intensity. The approach in this work solves the problem by adding fluorescent dye to
the liquid at a fairly high concentration. With this solution, a LIF signal will mainly be
emitted close to the liquid surface. In addition, a bandpass filter attached to the camera
will sufficiently reduce specular scattered light and mainly transmit the fluorescent light
from the surface. This technique we call Fringe Projection  Laser Induced Fluorescence
(FPLIF). FPLIF is suitable for measurements on any liquid surfaces where also waves or
other deformations found in phenomena outside of liquid sheets can be reconstructed.

3.3 Description of the experimental setup

FPLIF is here applied with the experimental setup illustrated in Figure 3.3 and briefly
described below. More details can be found in Paper II.

(a) Illumination: An illumination is here, similar to the Volumetric LIF experiment in the
previous chapter, used to induce fluorescence in the liquid where a blue continuous wave
laser at 445 nm and 3W is used. The fringe structure is here created using a Ronchi grating
and spatial filtering to get a sinusoid modulation. Note that it is nowadays often preferred
to create the structured illumination using a Diffractive Optical Element (DOE) instead of
a Ronchi grating since the DOE has a lower loss in the optical transform.

(b) Liquid: A hollow cone liquid sheet is here 3D reconstructed that is created by a pressure
swirl injector. The injector is a 10x enlarged model of an injector used in aircraft engines.
The enlargement of the injector simplifies imaging of smaller details in the created hollow
cone structure. More details on the nozzle can be found in Paper III . The water used in
the experiment is doped with a fairly high concentration of fluorescent dye (Fluorescein,
1 : 100 ratio). The high concentration limits the fluorescence to the surface of the liquid.
This is important since only the surface should be imaged, and 3D reconstructed.

(c) Imaging: A single highspeed camera is used recording at 20 000 frames per second. The
fact that only one camera is required makes this highspeed 3D reconstruction technique
more accessible both in simplification of experimental setup and with regards to cost. To
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Figure 3.3: The experimental setup. The illumination (a), the liquid to reconstruct and injection system (b) and the high-speed
camera (c). A simulated example recorded image is shown in (d) called a fringe pattern.

extract 3D, the camera must have a nonzero angle θ relative to the illumination direction.
The camera is mounted with a Scheimpflug adaptor that rotates the focus plane of the
camera to follow the conical surface of the liquid. The camera is also equipped with a
bandpass filter that transmits the fluorescent green light and rejects the scattered blue laser
light.

Image postprocessing is required to extract 3D coordinates from a fringe pattern image.

3.4 FPLIF postprocessing

In Figure 3.3(d) a simulated fringe pattern is seen that is called a fringe pattern. This pattern
can be modelled by equation (3.1).

I(x, y) =

{
A(x, y) + B(x, y) cos(φ(x, y)) + ϵ(x, y), (x, y) ∈ fg

ϵ(x, y), (x, y) ∈ bg
(3.1)
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Software box 3.1

The whole described FPLIF postprocessing routine is implemented in the open
source python package called fp23dpy (short for fringe pattern to 3D python). For
information on installation and usage with example code, see the gitlab repository
https://gitlab.com/roth.adrian/fp23dpy.

This model contains two parts where the first is the foreground (fg) where A is the back
ground illumination, B is the modulation amplitude andφ is the phase of the fringe pattern.
The second part is the background (bg) that is modelled as noise ϵ. The phase φ of a fringe
pattern contains information of the imaged objects third coordinate. The first step towards
a 3D reconstruction is to extract the phase using phase demodulation.

3.4.1 Phase demodulation with the Continuous Wavelet Transform method

The kind of fringe pattern that is recorded with the FPLIF technique is called an open
fringe pattern. The opposite, a closed fringe pattern, have areas where the fringes connect
to themselves and create circular patterns. The simplest approach for demodulating an
open fringe pattern is to record three or more images where the fringe projection is shifted
with a known phase for each image. The imaged phase for a pixel can then be estimated
by only using information of the same pixel in the phaseshifted imaged. Since multiple
images are required, this is not a suitable approach for highspeed imaging where only one
image is preferred. With one image, a spatial area around each pixel must be considered
to estimate its phase and different phase demodulation techniques have been developed
that are reviewed in Paper II . The phase demodulation using the Continuous Wavelet
Transform (CWT) method is applied in this work.

The CWT method is based on wavelets which is a wavelike oscillation package. In this
work, one of the most common wavelets called the 2D Morlet wavelet is used which is
simply a real cosine and imaginary sine multiplied by a gaussian as seen in equation (3.2).

ΨMorlet(x, y) = exp

(
ik0x−

1
2σ2

(
x2 +

y2

ε

))
. (3.2)

Here, 2π/k0 is the base period length of the wavelet, σ is the standard deviation of a Gaus
sian envelope and ε controls the degree of anisotropy of the envelope where ε = 1 is
isotropic. A wavelet has the requirement of a close to zero amplitude at the zero frequency.
To fulfil this requirement the inequality k0 ≥ π

√
2/ ln(2) ≈ 5.34 must be satisfied for

the Morlet wavelet [73]. A value of ε greater than 1 is used to enable demodulation of a
wider range of wave directions in the fringe pattern. The used parameters for the Morlet
wavelet are k0 = 6, ε = 3 and σ = 0.6.
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The Morlet wavelet is chosen as the socalled mother wavelet Ψ in the CWT jargon. This
wavelet can now be given three degrees of freedom through scaling and translation.

Ψa,b(x) =
1
a
Ψ

(
x− b

a

)
. (3.3)

Here, a is the scaling parameter and b is the translation vector. a is in this application a
real positive nonzero value and b is a 2 value vector with integer values corresponding to a
pixel in the image to demodulate. The daughter Morlet wavelet will have a period length
of 2πa/k0. Note that one can also add another degree of freedom in rotation. The rotation
add accuracy in the demodulation for large phase gradients parallel to the fringe direction,
but it also adds a significant computational cost. The open fringe patterns do as mention
generally not have significant changes in wave direction that could not be handled by the
choice of ε parameter. One exception is for some areas in simulations that is discussed in
section 3.6.2.

Now to the definition of the 2DCWT of a function f.

Wf(a,b) =
∫ ∫

f(x)
1
a
Ψ∗
(
x− b

a

)
d2x, (3.4)

where f is here the recorded image. The three degrees of freedom of the wavelets, scale a
and translation in two dimensions b, are the input parameters to the CWT. The value of
the CWT for each combination of a and b is denoted wavelet coefficient.

With the CWT, this work demodulates the phase of a fringe pattern by first finding the
socalled ridge of the CWT. It is calculated as follows,

R(b) = argmaxa(|Wf(a,b)|). (3.5)

The ridge is the wavelet scale a, and in continuation period length, that best match the
fringe pattern frequency at pixel b. The ridge is then used to estimate the wrapped phase
as,

φ̂wrapped(x) = arg(Wf(R(x),x)). (3.6)

Wrapped in this context means that the phase only has values in the interval (−π, π]. The
next step is then to unwrap this phase where the unknown multiple of 2π is found and
added for each pixel to extract a continuous phase. The phase unwrapping is an important
step of the demodulation since an unwrapping error in one part of the image can propagate
to other areas. Phase unwrapping can be performed by recording multiple images with
different fringe period lengths, called temporal phase unwrapping. The unwrapping can
then be performed on a pixel level in the image [68]. This is however, once again, not
preferred in highspeed imaging and therefore an algorithm using spatial information is
applied instead. In this work, the phase unwrapping algorithm implemented in the scikit
image python package [74] is used. This unwrapping is a reliability guided unwrapping
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Software box 3.2

The CWT phase unwrapping is implemented in the python function:

def demodulate(
signal: np.ndarray,
calibration: dict,
return_amplitude: bool = False,
return_ridge: bool = False,

):

in the module fp23dpy.demodulation. Here, the input arguments are the fringe
pattern image (signal), the calibration with information of fringe period length
and orientation. Optionally this function can return an estimation of fringe am
plitude (B in equation (3.1)) and/or the ridge that correspond to an estimate of
the local frequencies of the pattern. All implementation of the continuous wavelet
transform is found in module fp23dpy.wavelets. The other common phase de
modulation technique called the Fourier method is also implemented in the func
tion fp23dpy.demodulation.ft2.

method that first finds a reliability map of where the wrapped phase is most reliable. Then,
the algorithm starts to unwrap the phase in areas with high reliability to avoid creating
problems that propagate through the unwrapping [75]. This phase unwrapping technique
work sufficiently for this data. The unwrapped phase is relative which means that it has an
added unknown constant. To extract the absolute phase, required in the next section, one
can correct the phase by knowing the absolute phase in at least one pixel. In this work, it is
assumed that one pixel close to the injection source is always at the same 3D position with
a known absolute phase. Note that if the phase is not continuous throughout the image,
the absolute phase must be known in one pixel for each continuous area.

3.4.2 Triangulating 3D coordinates from image phase

The fringe projection has a socalled global phase¹ that is a function of the world coordinate
system X,Y,Z. The connection between the global phase φ(X,Y,Z) and the imaged phase
φ(x, y) enables the 3D reconstruction of a surface. The global phase is here modelled as,

φ(X,Y,Z) =
2π
Tg

X, (3.7)

¹Note that all phases in this section are absolute.
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where Tg is the period length of the fringe projection in a world length unit. Meters is used
in this theory, but any length unit can be used as long as it is consistent. Note that this
is a simplification. Generally, fringes produced by either a laser or a projector will diverge
with distance from the projection source. In the case of fringes produced with lasers, this
change will be negligible and is therefore not included in the model. However, a simple
calibration together with an added parameter for the divergence can be added to the model
if required.

The fringes are projected onto an object with a topography d(X,Y) which can be described
by a set of homogeneous coordinates,

{D = [X,Y, d(X,Y), 1]T, (X,Y) is on object }. (3.8)

The homogeneous coordinates simplify projective geometry since affine and projective
transforms can be represented as a single matrix. The final number with value 1 is here
called the homogeneous coordinate. After scaling this coordinate with a nonzero value it
will still represent the same Cartesian coordinate. The extraction of the Cartesian coordi
nate from homogeneous coordinates is performed by first scaling all four coordinates so
that the homogeneous coordinate equals to 1. The Cartesian coordinates are then the first
three values in the vector.

In this reconstruction model, it is assumed that the camera is orthographic. In an ortho
graphic camera, an object will have the same imaged size no matter the distance between
the camera and the object. This can be contrasted to the more commonly used perspective
camera where objects further away appear to be smaller. To get an orthographic camera
one can use a telecentric lens. An orthographic camera can also be approximated if the
distance from the camera to the object divided by the size of the object is large enough.
This approximation is analysed further in section 3.6.5. The orthographic camera matrix is
here modelled as using a modified pinhole camera matrix² P,

P = KC =

 s 0 x0
0 s y0
0 0 1

cos(θ) 0 − sin(θ) 0
0 −1 0 0
0 0 0 1

 . (3.9)

P consists of two parts, the intrinsic matrix K and the extrinsic matrix C. The intrinsic
matrix converts the world coordinate lengths to the camera coordinates in pixels. Here, s is
the scale in pixels/meter and x0 and y0 are the principal image point. The extrinsic matrix
rotates and translates the world coordinate system to the cameras orientation. In this case, a
rotation of θ degrees is performed around the Yaxis and then no translation is performed.
The orthographic part of this camera can be seen in the final row of C. If it were to be
perspective, the first three numbers would be a vector with Euclidean norm 1.

²The pinhole model and camera matrix is a common way of modelling imaging systems in computer vision
[76]
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Software box 3.3

Calibrating the fringe pattern base period length can be performed using the script
fp23dpy.__calibrate_main__. If the fp23dpy package is installed one can
in the terminal run:
python -m fp23dpy calibrate <path-to-calibration-image>
where a graphical interface helps you and create a calibration file typically called
calibration_<calibration-image-path>.txt. This calibration file needs
more information of scale s and camera angle θ to be fulfilled.

Figure 3.2 illustrates how the topography coordinates of the object D is projected onto the
orthographic camera plane. This process can be described with a matrix multiplication of
the camera matrix P and the homogeneous coordinates D. The result is the following,xy

1

 = PD =

s(cos(θ)X− sin(θ)d(x, y)) + x0
s(−Y) + y0

1

 . (3.10)

Here one can see for the first equation row that the projection of the fringes from an angle
θ that is nonzero results in encoded information of both the world X and Z coordinate in
the image x direction. Solve for X in the first row of equation (3.10) gives,

X =
x− x0 + s sin(θ)d(x, y)

s cos(θ)
, (3.11)

Then the expression for X is inserted into the global phase equation (3.7) which gives the
image phase,

φ(x, y) =
2π
T
(x− x0 + s sin(θ)d(x, y)). (3.12)

Here, Tg has been exchanged to the more practical T = Tgs cos(θ) which is the base
period length of the fringe pattern where T is measured in pixels. This is the phase that was
demodulated in the previous section. Now, equation (3.12) is solved for d,

d(x, y) =
T

2πs sin(θ)

(
φ(x, y)− 2π

T
(x− x0)

)
. (3.13)

This is the third coordinate of the object that would in ordinary imaging not be accessible.
All 3D topology coordinates of the object are calculated as,XY

Z

 =


x−x0+s sin(θ)d(x,y)

s cos(θ)
− y−y0

s
d(x, y)

 , [x, y] ∈ fg. (3.14)
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Software box 3.4

The full postprocessing routine is run through the function:
def fp23d(signal: np.ndarray, calibration: dict):
Required input is the fringe pattern and calibration and the output is the estimated
3D coordinates for each pixel. To estimate correctly scaled output coordinates, the
calibration must at least contain values for: T, gamma (fringe direction in the im
age), scale, theta, and absolute_phase (or absolute_threed). Note here that a masked
numpy array can be used as input fringe pattern to avoid demodulation of the
masked pixels and therefore also unnecessary errors in the phase unwrapping.

To use this model for 3D reconstruction the parameters θ, s, x0, y0 andTmust be calibrated.
θ is measured by appropriate means from the setup. s can be found by measuring the pixel
size using for example a ruler and inverting it. x0 and y0 are typically set to the centre of the
image, half of the image shape. Finally, a calibration image of a flat 3D object orthogonal to
the illumination direction, d(x, y) = 0 can be used to estimateT. Either the frequency peak
in the Fourier transform or the pixel length between fringes can then be used to estimate
T. A script has been written to assist in this process described in Software box 3.3

Note that it is important to have vertical fringes in this setup, the phase change in the X
direction. A horizontal or diagonal phase will give none or less information respectively of
the hidden dimension. However, if horizontal fringes are preferred, one can put the camera
above or below the object instead.

3.5 The hollow cone liquid sheet

The experimental results of the hollow cone liquid sheet created with the pressure swirl
atomizer is discussed extensively in Paper III and only a brief discussion is given here. The
calibration parameters for this experiment were a camera angle θ = 16°, period length T ≈
6.9 pixels and a scale s = 18 pixels/mm. The liquid sheet produced by the pressure swirl
nozzle is in the form of a hollow conical structure when stabilized. However, the structure
has temporal variations that can be detected and analysed with this 3D measurement at
20 000 frames per second. Figure 3.4 show, in addition to example fringe pattern and
segmentation, five 3D reconstructed timepoints with 50 μs time increment. Here, the
initial phase of a sheet rupture is seen where the hole is expanding. The five reconstructions
are part of a 1000 frames long sequence that can be interactively viewed at https://3d.
spray-imaging.com/cone4d/. In this sequence, surface waves, ruptures and breakups
are found. In addition, there is a sequence of 3D reconstructions from the start of injection
to stabilised sheet that can be viewed at https://3d.spray-imaging.com/cone4d_
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evolution/. To access all data used in Paper III see the repository https://doi.org/
10.17605/OSF.IO/ZT97W. In this repository there is also a backup solution to view the
3D results interactively if the links above are dead.

Sprayangles are an essential spray characteristic since it defines the dispersion of the liquid
for different situations. Typically sprayangles are measured using shadowgraphy or planar
laser imaging. Then only a single sprayangle is extracted from each image. With the 3D
reconstruction, it is possible to extract multiple angles along different azimuthangles along
the sheet as is shown in Figure 3.4(e) and (f ). These angles are important since they define
the dispersion of the liquid in spray applications and temporal variations give information
of the flow stability. To estimate the angle, the radial variation of the 3D reconstructed
surface along the 3D Ycoordinate is extracted for different azimuthangles as is shown in
Figure 3.4(f ). Then a line is fitted to the radius curve for Y values between −1 and −12
mm where Y = 0 mm is the approximate position of the nozzle. The angle of the fitted line
is defined as the sprayangle. The 2D sprayangle is also estimated from the same images to
have as comparison. Note that this angle corresponds to the azimuthangle −16° because
of the camera angle. Time resolved sprayangles are shown for two azimuthangles together
with the 2D sprayangle in Figure 3.4(g). Generally, the sprayangle varies between 40° and
50° where the fluctuations are found to be connected to the previously observed surface
waves. An analysis of the accuracy of the estimated sprayangles are found in the next
section.
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Figure 3.4: High-speed 3D reconstructions of the hollow cone liquid sheet together with spray-angle results. In (a), the raw
fringe pattern is shown and the same image with areas of overlayed brighter pixels are seen in (b). These pixels have
been manually segmented by the criteria of having clear enough fringes to be reconstructed. The dark orange colour
represents areas that could not be reconstructed but are interpolated in 3D to clearly show where liquid is. This is
for example important to show the actual edge of the liquid sheet holes. A single 3D reconstruction is shown in (c)
from an angle indicated by the coordinate axes. Then 5 consecutive 3D reconstructions are shown in (d) with a time
increment of 50 µs. The absolute time in the figure is here relative to the start of the pump for injection where the
high-speed recording started. The reconstructions are used to estimate spray-angles along different azimuth-angles
where two are shown in (e) together with the definition of the 2D spray-angle. The estimation of the spray-angle
for each azimuth-angle is shown in (f) for a single time point. Finally, (g) show the time evolution of the spray-angles
along the two azimuth-angles together with a spray-angle estimated directly from the 2D image.
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3.6 Validation using simulations of conical structures

3.6.1 Cone structure and fringe pattern simulation

A simulated cone has been produced to validate the accuracy of the 3D reconstructed liquid
sheet from the pressure swirl nozzle. The simulation setup parameters are chosen to match
the experiment on the pressure swirl atomizer which means that conclusions from these
simulations should be mainly drawn for this specific experiment. Only limited conclusions
can be drawn for other experimental setups and liquid structures. The simulated structure
can have a varying coneangle that is connected to the sprayangle. The coneangle α is
modelled by the following equation of how the radius r change with the vertical world
coordinate Y as,

r(Y) = − tan(α) · Y+ r0, (3.15)

where r0 is the initial radius. Note that the world Y vector is up which is the reason for
negating the first term. To represent an observed surface wave, a bump with different widths
and heights on the conical surface is added with the following gaussian profile,

r̂(Ŷ) = h · exp

(
−(Ŷ− Ŷ0)

2

w2

2 log(2)

)
, (3.16)

where h is the height of the wave, w is the width (full width half maximum) and Ŷ0 is here
set to place the wave at the vertical centre of the structure. The wave is then rotated to the
chosen coneangle by,

r(Ŷ) = cos(α)̂r(Ŷ)− sin(α)Ŷ

Y(Ŷ) = sin(α)̂r(Ŷ) + cos(α)Ŷ
. (3.17)

Since the second equation is hard to solve for Ŷ, instead the solution for r(Y) is found by
calculating r and Y for many Ŷ and estimating r(Y) through interpolation.

Software box 3.5

The fp23dpy package has several example structures that can easily be simulated.
A cone with wave can for example be simulated using the function:
fp23dpy.examples.example_cone_bump.render()
See the examples folder for code on how to generate and 3D reconstruct the exam
ples. Note that the GMRF noise used here is not part of the package but if you can
produce the GMRF sample (there is example code on this in the appendix A), it
can be used as input to the function fp23dpy.simulation.render_from_map
to simulate a fringe pattern.
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The radius function is used to extract a rotationally symmetric structure in the XZ plane
for each Y coordinate as,

d(X,Y) = r(Y) sin
(
arccos

(
X

r(Y)

))
, abs(X) < r(Y). (3.18)

Values of absolute X larger than the radius are outside of the structure. Examples of cones
without and with wave are shown in Figure 3.5(a) and (b) respectively.

The simulated 3D cone structure is then virtually imaged in a fringe projection setup. The
setup assumes a camera angle of θ = 16°, a fringe period length T = 6.9 and scale s = 18
pixels/mm, the same as was used in the experiments. The 3D structure is first projected
from the world coordinates (X, Y, Z) into the coordinate system of an orthographic camera
(x, y).

x = sX
y = −sY

d(x, y) = −X sin(θ) + d(X,Y) cos(θ)
(3.19)

A grid of 1024x1024 x and y pixel coordinates are used to calculate the phase φ in each
pixel using equations (3.19) and (3.12). The imaged fringe pattern is then finally estimated
through equation (3.1).

A simulated fringe pattern with constant values of A and B in equation (3.1) is shown in
Figure 3.5(c). This simulated image is not realistic when comparing to the experimental
image in Figure 3.5(e). To make the simulation more realistic, two types of noise are added,

• Background noise ε is sampled as Gaussian noise with aσϵ ≈ 10% of the modulation
amplitude.

• Amplitude (B) noise sampled from a Gaussian Markov Random Field (GMRF) that
here adds a spatial correlation to the sampled values where two neighbouring pixels
has a higher probability to have similar values. The used parameters of the GMRF are√

1/τ = σGMRF ≈ 30% of the modulation amplitude and κ2 = 0.05. The param
eters are chosen to give similar amplitude variation as is found in the experimental
data. More information of the GMRF sampling is found in section A.

An example simulated fringe pattern with sampled background noise and amplitude vari
ation is shown in Figure 3.5(d).

3.6.2 General reconstruction performance

The simulated fringe pattern is 3D reconstructed using the described postprocessing where
example reconstructions are shown in Figure 3.5(f ) and (g). To get an overall understand
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Figure 3.5: Simulation and reconstruction of fringe patterns with realistic noise. (a) and (b) are 3D structures of a cone without
and with a surface wave (width 7 mm, height 1.2 mm). From (a), a fringe pattern is simulated without noise,
shown in (c), that is less realistic than the simulated fringe pattern with background and amplitude noise in (d)
when compared to the experimental image in (e). (f) and (g) are 3D reconstructions of the structures in (a) and (b)
respectively with simulated fringe pattern including noise.

ing of the reconstruction error depending on the pixel position in the image, 300 simulated
fringe patterns without any wave and with α = 45° are reconstructed. Each reconstruc
tion is subtracted by the correct 3D structure to extract the error in each pixel for all three
dimensions. Then the Root Mean Square of the Errors (RMSE) for each pixel is calculated.
The distribution of these errors both spatially and in histogram format are shown in Fig
ure 3.6 categorized by reconstruction dimension. The Y dimension is here omitted since
it does not depend on the quality of the phase demodulation and will always be perfectly
reconstructed.

The spatial distribution of the RMSE shows larger errors on the horizontal edges of the
structure. On the left edge the problem is connected to the shorter local fringe period
length in these areas since the surface structure is moving away from the camera. These
short period lengths are more problematic for the phase demodulation when there is noise
and will therefore induce larger errors. At some point the local fringe period will exceed
the Nyqvist frequency limit where the fringes no longer can be resolved nor demodulated.
The problem on the right edge is instead connected to the almost horizontal direction of
the fringes. Mainly vertical fringes are searched for in the phase demodulation and vari
ation can be handled only up to some extent by the chosen ε for the Morlet wavelet. As

35



x [mm]

y 
[m

m
]

20

15

10

5

25

0

0 10 20 30 40 50

(a)
X dimension

d
is

tr
ib

u
ti

o
n

Reconstruction RMSE [mm]

0.00 0.05 0.10 0.15 0.20 0.25

0.1

0.2

0.3

0.4

0.5

0.0

0.05 0.10 0.15 0.20

x [mm]

y 
[m

m
]

20

15

10

5

25

0

0 10 20 30 40 50

(b)
Z dimension

d
is

tr
ib

u
ti

o
n

Reconstruction RMSE [mm]

0.00 0.05 0.10 0.15 0.20 0.25

0.1

0.2

0.3

0.4

0.5

0.0

0.05 0.10 0.15 0.20

Figure 3.6: Error in 3D reconstruction of simulated fringe patterns. 300 fringe patterns are simulated with the same procedure
as the one found in Figure 3.5(d) and each image is then reconstructed. The RMS of the error between the correct
structure and the reconstruction is calculated for each pixel is calculated for each dimension and the resulting values
for the X-dimension are shown in (a) and Z in (b). The Y-dimension is not included since its reconstruction does not
include the phase estimation is always correct. On the top is the distribution of RMSE over the image and on the
bottom are the histogram of all pixel RMSE. The speckles in the Z-dimension results is most probably because the
RMSE did not converge after only 300 samples.

was mentioned in the postprocessing, one can add a rotation dimension in the CWT to
handle this but at a computational cost. The errors in the 3D reconstruction are also caused
by the sampled amplitude variation. Amplitude variation is problematic for fringe projec
tion 3D reconstruction since it introduces frequencies in the imaged intensity that are not
connected to the 3D structure [68]. If the amplitude variation is reduced, either experimen
tally or in postprocessing, the convolutional envelope of the CWT can be shrunk which
will reduce the smoothing and improve reconstruction resolution. Another side effect of
the convolutional envelope is that a consistent bias is induced for this conical structure.
The bias is caused by how the phase of each pixel is estimated through an average of the
local phases found spatially around the pixel. On the left and rightmost areas of the cone
structure, this weighting is biased toward the outer areas of the structure since the surface
gradients are increasing away from the camera. This bias will have a minor effect of the
sprayangle estimations as is discussed in the next subsection.

The RMSE ofX andZ dimension is generally around 0.04 and 0.12 mm, respectively. These
uncertainties are propagated from the uncertainty of the phase demodulation procedure.
The X uncertainty is 30% of the Zwhich can be explained by that the X calculation multiply
the phase with a sine and Z a cosine and sin(θ)/cos(θ) = 0.29. To receive the lowest
uncertainty for all dimensions θ should be set to 45°. The problem with this approach is
that a larger θ has a penalty in that a larger part of the object is shadowed in the recorded
images. For example, with θ = 45°, 25% of the illuminated area of a rotationally symmetric
object will be hidden behind itself while only 9% is hidden with θ = 16°. The used θ was
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Figure 3.7: Spray/cone-angle simulation and estimation to find accuracy and uncertainty. In (a) the lines following three azimuth-
angles are shown in a simulated fringe pattern. For each of these azimuth-angles, a spray-angle is estimated 300
times and the median error and variation (16th and 84th percentile) are shown in (b) for 5 different actual spray-
angles.

found to be a good tradeoff both in this work and from others using fringe projection
techniques [68]. The base period length T should, however, be slightly larger (above 10
pixels) for improved reconstruction.

3.6.3 Spray/coneangle analysis

Cones with different angles are simulated to examine the accuracy of sprayangle estimation
used in the experiments. Cone structures with angles ranging from 35° to 55° are simulated
and for each angle, 300 simulated fringe patterns were sampled and reconstructed. The
coneangle of the three different azimuthangles 40°, 80° and 120° for each reconstruction,
shown in Figure 3.7(a), was estimated with the exact same procedure as for the experimental
case where median bias and standard deviation of estimated angles is shown in Figure 3.7(b).
All biases are larger than zero with a maximum around 1% of the simulated angle which
indicate overestimation of angles. The smallest bias is for the centre 80° azimuthangle and
the side azimuths have larger bias. The reason for this is found to be the bias caused by
the convolutional envelope of the CWT, described in section 3.6.2. The sprayangle in the
centre of the image (azimuthangle 80°) is least biased since the centre pixel of the image has
been calibrated to the correct 3D coordinates. A final observation is that larger azimuth
angle give a larger variation in estimated angle which was also observed for the experimental
sprayangles. This is connected to how the phase demodulation is more sensitive to noise
in these areas as was also discussed in section 3.6.2.
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Software box 3.6

The code used to estimate spray/coneangles can be found in the examples folder of
the fp23dpy gitlab repository.

3.6.4 Surface wave analysis

Reconstruction of simulated conical structures with waves of different widths and heights
give important information of the FPLIF technique limitations. One such surface wave
was found to have an approximate width of 7.6 mm and a height of 0.7 mm as is shown
in Figure 3.8(a), (b) and (c). Conical structures are here simulated with waves of certain
width and height. Example fringe patterns and reconstruction of cones with two different
waves are shown in Figure 3.8(d). The ratio between the height and the width of the wave
is an important heuristic connected to the maximum 3D gradient of the waves. A limiting
Height/Width Ratio (HWR) is expected where the reconstruction can no longer resolve
the large gradients of the wave. To explore this limitation, conical objects with different
simulated wave widths from 0.4 to 20 mm are applied together with 40 HWRs between
0.25 and 1. A fringe pattern is simulated, and 3D reconstructed 100 times for each combi
nation of width and HWR where the reconstructed wave height is estimated. The median
height of all 100 simulations is used as the estimated height for this combination of width
and HWR. The HWR is then extracted when the error between the estimated height and
the simulated height is larger than 2%. This HWR is defined as limiting value of the recon
struction. The performance of the reconstruction is found by dividing the limiting HWR
with the theoretical maximum and the result for all widths is shown in Figure 3.8(e). The
overall performance lies around 65% of the theoretical maximum and is then decreasing
for wave widths thinner than 4 mm. The decrease here is most likely connected to the
convolutional envelope effects of the CWT. One can conclude that the observed surface
wave in the experimental data can clearly be resolved in the 3D reconstruction and is no
artefact.

The found limiting HWRs for waves are not limits for the FPLIF technique itself. The
limits are what can be reconstructed with the implemented postprocessing and the simu
lated experimental parameters. In theory this limit is at 0.57 where waves above this ratio
will no longer have continuous phase. Some improvement can be made with the post
processing by attempting rotations of the mother wavelet during the phase demodulation
as was discussed earlier. However, if the wave on the cone has a height above 57% of the
width, other approaches must be attempted to correct the noncontinuous phase. With
noncontinuous phase, the challenge is to extract the absolute phase for the disconnected
areas of continuous phase. The mentioned multiframe technique called temporal phase
unwrapping can be used with a cost of reduced recording frame rate, If this is not possible,

38



Not resolved

Simulated width [mm]
0 5 15 2010

W
a
ve

 d
e
te

ct
io

n
 p

e
rf

o
rm

a
n

ce

Observed Wave

0.0

0.2

0.4

0.6

0.8

1.0

Simulations

(b)(b)

Relative radius [mm]

Surface wavesŷ

Frame: 1 5 1510 Frame 1 

= 295.5 ms

y 
[m

m
]

0

-5

-10

-15

-20

0 5 10 15 20 25 30

height = 0.4 mm

width = 7 mm   

height = 1.2 mm

width = 7 mm   

height [mm]

(d)

(a)

Azimuth angle = ��°

Experiment

Wave

Simulation

ŷ
 [

m
m

]

Relative height [mm]

10 15

0 1 2 43

0

5

10

15

20

(e)

(b)

(c)

Wave:
width ~ 7.6 mm
height ~ 0.7 mm

(d)

0

1

2

ŷ [mm]
0 10 20 30

ŷ [mm]
0 10 20

Simulated topology

Estimated topology

Estimated height

Theoretical limit

Figure 3.8: Surface wave simulation and estimation to find reconstruction limitations. (a), (b) and (c) show experimental obser-
vations of a surface wave and how it is moving over time. This wave has an approximate width of 7.6 mm and a
height of 0.7 mm. In (d), example of simulated waves is shown with their corresponding reconstruction. In (e), the
wave detection performance is found that is relative to the theoretical limit of when the wave creates unresolvable
fringes. The performance is found for different wave widths by iteratively increase the height until the reconstruc-
tion fails to estimate the wave height within 2% of the correct value. This height is then divided by the theoretical
maximum of around 57% maximal.

another approach is to approximate the absolute phase in at least one pixel of each area by
use of temporal information. The 3D structure at the previous timepoint in the recording
can be used if the absolute phase is known there. This approach was used in a few areas
of the recorded data of the pressure swirl atomizer just after starting the pump. However,
for temporally deforming liquid processes, it is both hard to track where the same liquid
was previously, and the liquid deformation will induce errors even for a perfect track. The
final possibility to be able to resolve higher HWR’s is to tune the experimental parameters.
Typically, it is not possible to change the object to be 3D reconstructed but one can often
position the camera and illumination so that they align with the object’s surface. It is pre
ferred to have a surface as much perpendicular relative to the illumination and camera as
possible. This enables the reconstruction of larger surface gradients and in addition have
the advantage of reducing out of focus effect, making the use of Scheimflug configuration
redundant, and reduce perspective projection effects that are discussed in section 3.6.5. To
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increase possible resolved HWR’s one can also increase the fringe period length T or reduce
the camera angle θ. However, both these changes come at the cost of larger uncertainty of
3D coordinates.

3.6.5 Perspective camera analysis

The implemented reconstruction algorithm assumes that an orthographic camera is used
which is not the case for the pressure swirl experiment. The impact of this assumption is
evaluated here through simulated fringe patterns using a projective camera instead of an
orthographic one. The following procedure is performed to simulate these fringe patterns.

The first step is to calculate the projective camera matrix that describes the cameras position
and rotation according to the pinhole camera model [76]. The projective camera is placed
at a projection distance r from the centre of the object³ to reconstruct and is rotated with

³The centre of the object is also the origin of the coordinate system.
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Figure 3.9: Perspective projection simulations to understand how the assumptions of orthogonality affect the reconstruction
and spray-angle accuracy. Simulations are visualised for three different ratios of projection distance and size. Larger
value here corresponds to a better assumption of orthogonal projection. In (a), the simulated depth coordinate of
the projected 3D structure is shown, (b) show the simulated fringe pattern, (c) the reconstructed depth and (d) the
error. In (e), the RMSE of all pixels has been plotted in relation to different distance/size ratios. Finally, (f) show the
estimated spray-angle for different distance/size ratios and azimuth-angles.
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an angle θ = 16° around the Yaxis. The position of the camera is then,

c0 = r
[
sin(θ) y0 cos(θ)

]T
, (3.20)

where y0 is chosen so that the object is in the centre of the image. The camera should look
at object which gives the camera rotation matrix R,

R =

− cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 − cos(θ)

 . (3.21)

The extrinsic camera matrix C that describes both the position and rotation is,

C =
[
R −R · c0

]
. (3.22)

The intrinsic camera matrix K that transforms camera coordinates to pixel coordinates is,

K =

 f 0 x0
0 f y0
0 0 1

 . (3.23)

This is the same as was used for the orthographic camera with the change of notation from
scale s to focal length f. The focal length is here calculated so that the object fills the whole
image at the chosen r and θ. The projective camera matrix P is then calculated as P = KC

With the projective camera matrix, the 3D coordinates of a simulated structure, in this
case a cone, are projected to estimate the pixel coordinates for each 3D coordinate on the
surface. Some parts of the structure are behind other parts from the view of the camera.
Since we have a rotationally symmetric structure and a camera rotated around the Yaxis,
one can find these parts from a horizontal pairwise difference operation on the projected
camera xcoordinates. The negative differences are areas where the structure is behind other
areas and are therefore removed. A 2D interpolator is produced that enables estimation of
3D coordinates from camera pixel coordinates and the world coordinates is found for all
pixels in a 1024x1024 image. The Zcoordinate for three example projections are shown
in Figure 3.9(a). The difference between the examples is the radial distance between the
camera and the coneobject. Note that the important heuristic for understanding how
large role perspectivity plays is the ratio between the distance r and the size of the object.
The projected X world coordinate in each pixel can now be used with equation (3.7) to
estimate the imaged phase. The global period length Tg is here calculated as,

Tg =
T

cos(θ)
, (3.24)

with the same parameter values as in the experiments. The phase is then used with equation
(3.1) to produce the simulated fringe pattern where examples are shown in Figure 3.9(b).
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Software box 3.7

Projective camera simulation is also implemented in the fp23dpy python package.
See the example code of the gitlab repository to get you started.

The reconstruction and error to the correct structure is shown in (c) and (d) of the same
figure.

The projection plays a larger role for large objects relative to the projection distance (smaller
projection distance size ratios) which correspond to larger errors as is seen in Figure 3.9(e).
From this error, the reconstruction will underestimate sprayangles for azimuthangles be
low around 75° and overestimate the remaining sprayangles as is seen in Figure 3.9(f ).
For the pressure swirl nozzle experiment, the ratio between projection distance and hollow
cone liquid sheet size is approximately 35. This gives a bias of up to 0.9° that has a size
comparable to the uncertainty of the measured sprayangles and can easily be compensated
for in measurements using the FPLIF technique. Another solution is to implement fringe
projection 3D reconstruction with projective cameras as is described in [68] that requires a
more complex calibration and postprocessing to successfully perform.
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Chapter 4

Highspeed 3D velocimetry and sizing
of respiratory droplets

4.1 Characteristics of respiratory droplets

Since the COVID19 pandemic started, a large amount of research has been delved into un
derstanding the virus SARSCoV2 and its spreading. However, there are still questions to
answer regarding the respiratory droplets. Information of the droplet velocity distribution,
size distribution and number concentration are here of great interest since these quantities
largely affect where the droplets end up and their risk of infecting other people. An illus
tration of a spreading event via coughing is shown in Figure 4.1. The droplet spreading

Jet phase:

large velocity

Subject 

coughing

Mucus/saliva particles 

detaching due to airflow
Inhalation,

Possible disease spreading Puff phase:

After significant

evaporation and

decelleration

Figure 4.1: Illustration of airborne disease spreading via respiratory droplets. An infected subject cough where the large airflow
detaches droplets of mucus and saliva. The droplets exit the respiratory system through the mouth and nose where
there typically is an initial jet phase with high velocity of the ejected droplets. The droplets are then decelerated
and expand into a cloud called the puff phase where slower velocities are found and evaporation shrinks the size of
droplets. Finally, the droplets might be inhaled by another subject that is then at risk of infection.

43



quantities are especially important for modellers to use as boundary conditions in simula
tions of disease spreading where risks of different situations can be compared [77]. Several
types of respiratory events are here of interest such as speaking yelling and coughing.

The research on droplet velocities have been mainly measured indirectly by estimating air
flow velocities. The air flow speeds found for coughing measurements alone show a large
variation from 2 m/s to 29 m/s [78]. The main reason for the large variation is how differ
ent measurement techniques and metrics¹ are presented and more work is needed to fully
characterize the velocity of different types of respiratory events.

The size of respiratory droplets is often discussed in connection to a 5 μm limitation that
has been used to define whether a droplet is an aerosol that contribute to airborne disease
transmission. This limit has been challenged during the COVID19 pandemic because
of how larger droplets have been found to remain suspended in still air for more than 5
seconds [3]. Similar challenges to the velocity are apparent for measurements on respiratory
droplet size distribution. Different measurement techniques have been applied that have
different sizing ranges and counting efficiencies² which makes comparisons challenging. In
addition, evaporation is a significant effect for most measurements where then the estimated
droplet sizes are underestimated. This is important to be aware of when comparing size
measurements that have compensated by using an evaporation model [53] and the ones
that have not. A vast majority of number of exhaled droplets have sizes below 5 μm [54,
53]. However, the number of virions within a droplet is connected to the volume of the
droplet. Since droplet volume increases by the cube of size, droplets larger than 5 μm can
contain significant more numbers of virions and are therefore also of interest for the full
characterization of disease spreading.

Previous research have found large variations in the concentration or number of produced
droplets from both person to person for the same type of respiratory event and the same
person and same type of respiratory event [50, 47, 53]. The number of produced droplets
seem to be correlated to whether a subject is infected with a respiratory tract infection [54]
and with age [53]. Here, infected, and older subjects produce more droplets. The number
of droplets does also seem to be correlated to the volume of a vocal activity [53].
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Figure 4.2: The experimental setup. The illumination (a), the person ejecting respiratory droplets (b) and the high-speed cameras
(c). Example recorded images are shown in (d). For these experiments, two alternative configurations are used, the
horizontal shown at the top and the vertical shown in (e).

4.2 Respiratory droplet 3D velocimetry approach and experimen
tal setup

In this work stereo 3D Particle Tracking Velocimetry (3DPTV) is applied to track respi
ratory droplets and extract their velocity. 3DPTV is a technique of tracking individual
particles where multiple different approaches have been previously developed [12]. Even
though the tracking approach described in this work is applied on respiratory droplets it
can also be used on other droplets or particle dynamics of interest. The experimental setup
illustrated in Figure 4.2 is used in this work described below. For more details on the
experimental setup, see Paper v.

(a) Illumination: Lasers are used to illuminate the droplets that will scatter the laser light
and the scattered light is used for detection. In this work, two continuous wave lasers with
a total of 9 W power are combined using a dichroic mirror and the beam is then shaped
to create a homogeneous laser beam that illuminates a volume with cross section height

¹For example, some use the maximum speed, others the average and measurements are performed at dif
ferent distances from the mouth.

²The counting efficiency is the percentage of number of actual particles that are found for different particle
sizes.
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120 mm and width 15 mm. This area can be varied depending on the requirements of
the measurement. However, the fluence of the illumination will decrease with a larger
illumination volume which means that the minimum detectable droplet size will increase.

(b) Liquid: Respiratory droplets ejected by a subject performing one of the three respiratory
events: speaking, yelling, and coughing. In the speaking and yelling events, the subject will
say ”Protect better against COVID” to further clarify the goal of this work and to illustrate
the use of specific vowels discussed in the results. There are two different configurations
in these experiments where the subject is either ejecting droplets from the side relative the
illumination volume, horizontal configuration, or from the top, vertical configuration. The
advantage of the horizontal configuration is that in principle all droplets will cross the illu
mination and can be tracked. The vertical configuration instead enables detection of some
droplets for a longer time where velocity changes can be detected. For the horizontal con
figuration seen in Figure 4.2, measurements of all three respiratory events were performed
while in the vertical configuration only measurements of coughs were recorded. The reason
for this was the challenge of consistent aiming into the 15 mm thick sheet when speaking
and yelling.

(c) Imaging: Two highspeed cameras are used in a stereo configuration with an approx
imate 23° relative angle between them. Both cameras image the scattered laser light by
droplets inside the illumination volume. The stereo configuration enables 3D triangulation
of droplet positions. The cameras are placed in a semiforward 52° angle relative to the il

Software box 4.1

The algorithms described in detail below have been implemented in python and
are available as open source software in the python package called ptv3py (parti
cle tracking velocimetry in 3D python). For more information on installation and
usage see https://gitlab.com/roth.adrian/ptv3py. This package is based
on pandas.DataFrame to store information of particles. This datatype stores tab
ular data like what you find in spreadsheets where for example a single 2D track is
represented by the following:
id_track id frame coordinates coordinates

0 0 0 1.590874 4.587343
0 1 1 2.207410 4.887104
0 2 2 2.826070 5.172979
0 3 3 3.433815 5.484175
0 4 4 4.053660 5.797738

More columns and rows are added when required. There is a folder with example
code in the repository to get you started.
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Figure 4.3: Illustration of post-processing in step 1, finding particle pixel coordinates. Here, an overlap detection algorithm is
also applied that find discontinuities in the pixel values and in continuation particles that are too close to one another
in the images.

lumination direction that gives a stronger scattering signal and enables detection of smaller
droplets. The cameras record at 15 000 frames per second with an exposure time of 50 μs
per frame.

4.3 Postprocessing, from raw images to 3D particle tracks

This process of finding velocity is developed for droplets but can be generalized to other
particles which is why the term particle is used throughout this section. The postprocessing
3DPTV used here is divided into three consecutive steps.

1. Finding the pixel coordinates of particles in both cameras, Figure 4.3.

2. Using a camera calibration to triangulate the particle positions in 3D, Figure 4.4.

3. Use tracking in 3D to extract particle tracks and particle velocities, Figures 4.5 and 4.6.

4.3.1 Finding particle pixel coordinates

The finding process is illustrated in Figure 4.3. First some pixels are masked because of the
lamp used to illuminate the face of the subject. The lamp is important to find when in
time the cough or speaking events start and end, however, this also adds light that should
not be considered as particles. For the remaining pixels, a threshold is used to binarize the
image. The used threshold was 25 counts for the horizontal and 40 counts for the vertical
configuration of the 12bit pixel depths. The binary image is then processed by a connected
components algorithm, with 8 connectivity, which finds areas of neighbouring pixels with
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Software box 4.2

The finding algorithm is implemented in the module
ptv3py.particle_finding. The function that does the most work in
detecting particle positions is,
def find_particles_single_frame(

images,
threshold: int,
connectivity: int = 8,
gradient_threshold: float = None,
relative_gradient_threshold: bool = False,
...

):

where a sub function divide_label_subpeaks_gradient is used to detect and
split overlapping particles. Note that one can supply a function as parameter to
this function to extract features from each particle island in addition to the coor
dinates. In this work the island integrated intensity is calculated and added as a
column in the dataframe to be used for both triangulation matching and particle
sizing described in section 4.7. Another note is that you typically use the function
ptv3py.particle_finding.find_particles that iterates through all frames
in your recording and returns all found particles as a single dataframe.

values above the threshold, here called particle islands. Some particles are here overlapping
and then two or more particles are found in the same particle island which will create errors
in 3D triangulation and tracking. In this work, the overlap detection algorithm described
by Maas et al. [79] is used. The overlap can be detected by assuming that pixel values
should generally be decreasing with radial distance from the maximum pixel value. Here,
a Breadth First Search (BFS) algorithm with 4 connectivity in the image is employed that
starts from the maximum pixel value of a particle island. The search continues as long
as the pixel value gradients are negative or below a slightly positive threshold to account
for noise. If any pixels within an island is not reached in this BFS, a new BFS round is
initiated from the maximum value of the remaining pixel values. This is repeated until all
pixels in the island have been reached. Finally, the particle island is split into new particle
islands according to the number of performed BFS rounds. Pixels that can be connected
to multiple different new islands are classified to the closest particle island. Each one of
the newfound islands are now defined as a particle where the intensity weighted centroid
defines the pixel coordinates for the found particle. The process of finding particle pixel
coordinates is repeated for both cameras and all frames in the recording.
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Figure 4.4: Illustration of post-processing step 2, camera calibration and 3D triangulation. In (a), a description of the calibration
procedure if found where a checkerboard pattern is imaged at 13 various positions along a rail. Then a polynomial
transform L is estimated for each position to go from pixel coordinates (x, y) to world coordinates (X, Y). The
transform for each position is applied to estimate the world (X, Y) for all pixel coordinates in the camera. Finally,
the 13 3D coordinates for each pixel is used to estimate a 3D line where all 3D lines are the camera calibration. The
previously found pixel positions seen in (b) are then used to triangulate the 3D coordinates in (c) of particles using
a matching algorithm described in the text.

4.3.2 Camera calibration and 3D triangulation

The second step is to triangulate 3D positions using the found image positions and a camera
calibration. In this work, the camera calibration scheme explained in [80] is used. Here, in
contrast to the common pinhole approach [76] that estimate a camera matrix, a 3D line is
found for every single pixel in both cameras. A particle or particle found anywhere along
this 3D line will then be imaged in the corresponding pixel. The 3D lines are estimated
from calibration images of a known pattern (here a checkerboard pattern with 19x10 in
tersections is used). The pattern is fastened on a rail and calibration images are recorded
with decided spacings on the rail. The pattern should be fastened so that the plane of the
pattern defines two of the world coordinates axes, here X and Y. The direction of the rail is
then the third world base direction Z. In this work 16 images with 1 mm spacing between
Z = 0 and Z = 15 was used. In each calibration image, the 190 corners of the pattern
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are located where each corner also represents a world (X,Y) coordinate. All 190 correspon
dences are used to estimate a 2D polynomial transform LZ to go from pixel coordinates to
world coordinates. The order of the polynomial is chosen to 3 as suggested by [80] where
10 coefficients are estimated for each dimension. At least a firstdegree polynomial is re
quired to take the perspective aspect of the cameras into account and with a third degree,
distortion coefficients are also implicitly considered.

LZ(x, y) =
(
aX0 + aX1x+ aX2y+ aX3x

2 + aX4y
2 + aX5xy+ aX6x

3 + aX7y3 + aX8x
2y+ aX9xy

2,
aY0 + aY1x+ aY2y+ aY3x

2 + aY4y
2 + aY5xy+ aY6x

3 + aY7y3 + aY8x
2y+ aY9xy

2

)
.

(4.1)
One set of coefficients for the transform LZ is estimated for each of the 16 calibration im
ages. Each transform is now used to estimate world X and Y coordinates for all pixels in the
corresponding calibration image. Now, each pixel in each camera has 16 3D coordinates, X
and Y from the transform, and Z from the known rail position. These 3D points are finally
used to fit a 3D line in a total least squares algorithm for each pixel in both cameras. With
a recorded particle pixel coordinate, it is now known that the particle must be positioned
somewhere close to the 3D line for that position. Note that noninteger pixel positions are
linearly interpolated from the surrounding pixel 3Dlines.

The calibration can be used to triangulate 3D positions. If one position in each of the two
cameras are known to be the same 3D particle the following calculations estimate its 3D
position. The pixel positions found in the previous sub section are here denoted xci where
c is the camera 1 or 2 and i is the index of the position in a single frame. Each position
is translated to a 3D line lci with the calibration where each line is a combination of a 3D
point qc

i and a direction vc
i . All points on the line can be found in the following set:

lci = {pc
i | pc

i = qc
i + λc

iv
c
i , λ

c
i ∈ R}. (4.2)

With one position and then also 3D line from each camera l1i , l2j , there exists a 3D point that
minimizes the sum distance to both lines. This point can be found by equivalently finding
the point on each line where the lines are closest to one another. These points correspond
to λ1,closest

i and λ1,closest
j which are calculated as,[
λ1,closest
i

λ2,closest
j

]
=

[
||v1

i ||2 −v1
i · v2

j
−v2

j · v1
i ||v2

j ||2
]−1 [

v1
i · (q2

j − q1
i )

v2
j · (q1

i − q2
j )

]
. (4.3)

Here u · v is the scalar product between vectors. The points on the lines are found to be,

p1,closest
i = q1

i + λ1,closest
i v1

i

p2,closest
j = q2

j + λ2,closest
j v2

j
. (4.4)

The distance between the points is ||p2,closest
j − p1,closest

i || which is defined as the triangu
lation error.
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Software box 4.3

The calibration is implemented in the module
ptv3py.camera_calibration_module where either the described cali
bration process or a classic pinhole camera matrix calibration can be performed
using OpenCV functions.
The matching of particles is implemented in the module
ptv3py.particle_3d_matching where the main function is:
def threedmatch_particles(

particles: pd.DataFrame,
camera_calibration: camera_calibration_module.

CameraCalibration,
max_error: float,
camera_to_keep: int = 0,
coordinate_limits: list = None,
feature_column: tuple = None,

):

The particles parameter is a pandas.DataFrame with the output from the
particle finding function and camera_calibration an object of a class described
in the calibration module. The mentioned intensity matching is defined by the
feature_column argument, see Table 4.1 for more information. Note that the
implementation can only handle two cameras at the time of writing this thesis.

The challenge in the particle triangulation is that it is not known which two particle indexs
i, j in each camera that corresponds to the same particle in 3D space. Here a matching
algorithm is required. The matching algorithm used in this work attempts every single
combination of positions in the two cameras. For each combination, a triangulation error
is calculated, and all combinations create a triangulation error matrix E. The row of the
matrix corresponds to the particle positions found in camera 1 and the column camera
2. The index corresponding to the minimum value of this matrix (i′, j′) is found. If the
triangulation error is smaller than a max triangulation error εmax threshold the closest 3D
point (p1,closest

i′ + p2,closest
j′ )/2 is calculated. If this is inside the known coordinates of the

illumination volume, the match is valid and added as a triangulated 3D point. The max
triangulation error threshold is set from a calibration sensitivity analysis to εmax = 0.2 mm
as is detailed in the next section. After the match, all values in row i′ and column j′ of the
triangulation error matrix are set as occupied to not be reused in a different 3D position. The
procedure is repeated in finding minimum index and extracting the 3D particle position
until the triangulation error exceeds the max triangulation error. This was the process for a
single frame, and it is repeated for all recorded frames of the recorded event.
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A final improvement to this matching algorithm can be implemented for this data since the
particles have a large variance in size and therefore also imaged intensity. Since one particle
should be imaged with roughly the same intensity in both cameras, the intensity can be
used to guide the matching similar to what has been done in [81]. The intensity here refers
to the integrated intensity of all pixels in the found particle island. The intensity guiding
is implemented by first calculating a relative intensity error matrix ∆I where each element
∆Iij is calculated by,

∆Iij = abs(Ij − Ii)/max(Ij, Ii), (4.5)

where I is the imaged intensity. The resulting matrix contains values between 0 and 1 of
how similar the intensities of the possible match are. The triangulation error matrix is now
redefined as,

∆M = E/εmax + ∆I (4.6)

This puts equal weight on the matching error and the relative intensity error that has been
found to be suitable in the simulation in section 4.5. The new matrix is used in the algorithm
above to improve the priority of the matching.

4.3.3 Particle tracking

The final step is to find tracks from the particles 3D positions³. The tracking algorithm
used in this work is largely inspired by the Four Frame Best Estimate (FFBE) method [82]
and an extension of how to initialize a track [83]. The tracking algorithm presented below
is called the Recursive FFBE since the main change to the previous versions is the addition
of a deeper recursion. First some notation is introduced. FFBE extensively use estimates
of the velocity vn and the acceleration an of a track which are calculated as follows,

vn =
xn − xn−1

∆t
, (4.7)

an =
xn − 2xn−1 + xn−2

∆t2
. (4.8)

Here, n is the relative frame of the track, xn is the position of the particle at frame n and ∆t
is the time between two frames. The tracking use extrapolation to guess where the particle
will end up in the next frame where either only the velocity is used in frame three of the
track x̂2,

x̂2 = x1 + v1∆t, (4.9)

or both velocity and acceleration to perform this extrapolation x̂n+1 ,

x̂n+1 = xn + vn∆t+ an∆t2. (4.10)

³Note that this tracking algorithm works just as well for 2D tracks.
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Figure 4.5: Illustration of the post-processing tracking from a single starting position. A recursion is initiated in the top left
of (a) that in the first step locates all particle positions within a maximum speed ||vmax||. For each of these a
track is continued by extrapolating the track’s next position using the estimated velocity. All positions inside a
maximum absolute acceleration ||amax|| and maximum speed are here chosen recursively. In the next recursion step,
both previous velocity and acceleration is used in extrapolation. Here, droplet positions closer than the maximum
extrapolation error emax and within the max acceleration and max speed limits is added to the recursion. This process
is then continued until no more positions are found. With the full recursion tree in (b), the Figure of Merit (FM)
showed on the bottom right in the figure is used to find the optimal track from a single starting position. An
extension to the tracking and FM that can be used is described in the text.

After an extrapolation, a new position in the track is chosen and what is called extrapolation
error en+1 is the euclidean distance between the guess and the actual point,

en+1 = ||xn+1 − x̂n+1|| (4.11)

The FFBE method starts with a single position x0 and generally no knowledge of where the
particle is heading and how fast it is. Initially it was suggested that the second position in
this track should be chosen as the nearest neighbouring position in the next frame. This
simplification was found to be the most error prone process in the tracking [83]. Clark
et al. then suggested that a recursive approach should be employed to attempt all particle
positions in the first four frames with certain limitation of distance from the initial posi
tion. This approach is also employed in this work, however, instead of just performing the
recursion in the starting four frames, the recursion is used all the way to the end of the track
as is illustrated in Figure 4.5(a). From a position x0, all positions in the next frame within
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a distance of max speed are tried in turn. The max speed is a value set to be appropriate
for the tracking situation. For each of the tried positions x1 of the track, a velocity v1 is
estimated and a position is extrapolated x̂2 using this velocity. All particle positions in the
third frame of the track within the max speed limitation from before and now also a max
acceleration limitation from the extrapolated position is tried in turn. For each of the tried
positions, a new velocity v2 and an acceleration a2 is used to extrapolate a position x̂3. All
particle positions in the fourth frame within the max speed limitation and max accelera
tion from before and finally also the max extrapolation error are tried in turn. From here on
the recursive process of calculating new velocities and accelerations to find new positions
within the three limitations is repeated. Here, a tree is built with all the possible tracks as
branches from the starting position (the root) to the final position (the leaves) as seen in
Figure 4.5(b).

From this tree of tracks, the most probable track (the tree trunk) should be found. To find
this, each of the possible tracks are reduced to a single number called the track’s Figure of
Merit (FM), The FM of a track from the root to one of the leaves is calculated as the length of
the track subtracted by the sum of the extrapolation errors divided by the max extrapolation
error. A larger FM is better which means that it is defined that longer tracks are better, as
long as the extrapolated position of the track is close to the found positions. The track with
the largest FM is chosen as the most probable track from this starting position. An extension
has been added to the tracking procedure since it was found that some tracks have frames
with a missing triangulated value. The value could be missing for various reasons such as
particles that are leaving and reentering the illumination volume or through an error in
the matching. Then the tracking would wrongly produce two tracks instead of one. To
solve this, the possibility to jump frames in each recursion step is added where the track
still must follow the speed, acceleration, and extrapolation limits. An input variable called
max jumped frames decides how many frames in total a track is allowed to take. Jumping
should only be used when necessary and will therefore reduce the Figure of merit by 1 for
each jump. The figure of merit with the extension is found below.

FMt = Nt −

(
Nt∑

i=n+3

eti/emax

)
− Nt

jumps. (4.12)

The tracking procedure introduced in the previous paragraphs gives an algorithm for finding
a track from an already decided starting point. However, how should the algorithm know
which starting points are the best ones to use. A simple solution is to start with the earliest
positions in the recording and then continue. This, however, implies that tracks starting
earlier are more important in the case of a conflict where two tracks want one particle
position which is not always a good heuristic. It is also not clear which track to favor in a
conflict when two tracks start in the same frame, see Figure 4.6. The suggested solution is
here to let the mentioned Figure of Merit decide. The next step organizes the chosen starting
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Figure 4.6: Illustration of the optimization algorithm to decide which starting positions are the most probable according to the
previously defined Figure of Merit. A flowchart is shown in (a) of how tracks are found and prioritized. In (b), an
example is shown where there is a tracking conflict and (c) how the optimization handles the situation. The process
of finding an optimal track from a single starting position is described in Figure 4.5.

points as shown in the flowchart of Figure 4.6(a). First all positions are in turn selected as
starting positions and then a track is found from that position as previously explained.
Then, the tracks are sorted according to their FM value. In descending order, the tracks are
extracted as final tracks if they do not include any conflicts with the previously finalized
tracks. The tracks with conflicts are reprocessed until all positions have a final track.

The algorithm explained here to find tracks can be quite computationally intensive. The
limitations of max speed, max acceleration and max extrapolation error are important for
reducing the number of branches in the tree extensively. These parameters should be chosen
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Table 4.1: The used input parameters for the 3D-PTV algorithm. The parameter names correspond to the names of input
parameters found in the python package ptv3py.

Finding particle coordinates
threshold 25 counts

relative_gradient_threshold True gradient threshold is multiplied with the previous in
tensity in the breadth first search

gradient_threshold 0.2 if the intensity increases more than 20% compared to
the previous intensity, the breadth first search stops.

Triangulation
max_error 0.2 mm

coordinate_limits [[−50, 50],
[−80, 80],
[−15, 0]] mm

the limits of the illumination volume

feature_column (”intensity”, 1,
”relative”)

here is the instruction to use particle intensity in the
matching with weight 1 and relative comparison as de
scribed in equation 4.5

Tracking
max_speed 8 mm/frame

max_acceleration 1.4 mm/frame
max_extrapolation_error 1 mm

max_jumped_frames 1
min_track_length 6

with care by the person using this tracking algorithm. Too large numbers will give high
computational cost and possibly more erroneous tracks compared to stricter limitations in
the form or narrower limits. To further optimize the processing, the implementation of
this tracking in the python package ptv3py, use dynamic programming. Here, all found
tracks from a single starting point are stored and for new tracks it is checked whether the
current track has the same last three positions as a previously found track. Then, the ending
of the branch will be the same and a recalculation is not required. This optimization saves
a significant amount of computation time since there are many overlapping tracks with the
proposed algorithm.

4.4 Velocity results

The two experimental configurations have been applied to track respiratory droplets. Re
sults from the horizontal configuration can be seen in Figure 4.7. The advantage of this
configuration is that one can assume that all exhaled droplets cross the illumination and
will be detected. One measurement each of the respiratory event types speaking, yelling,
and coughing is here shown. The speaking and yelling were as mentioned of the phrase
”Protect better against COVID”. For each event there are multiple ways to present the
result that show the diversity of how this measurement technique can be used for under
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Software box 4.4

The tracking of particles is implemented in the module
ptv3py.particle_tracking. The following function is used for both
2D and 3D tracking:

def recursive_4frame_best_estimate(
particles,
min_speed: float = 0,
max_speed: float = -1,
max_acceleration: float = -1,
max_extrapolation_error: float = -1,
max_jumped_frames: int = 0,
min_track_length: int = 4,
...

):

There is an alias name for this function called track_particles and there are
more input parameters to this function found in the source code.
One of the main drivers in the tracking algorithm is the class
Parameter_derivative_tracking: that keeps track of the position, ac
celeration, extrapolation errors and feature of merit (called score in the code) of
each branch in the recursion. It can also be used to track other parameters than
coordinates of a track such as intensity that was used in the triangulation matching.
However, it is challenging to choose weights in the feature of merit calculation
between the columns such as intensity and the coordinates.

standing droplets. The purest presentation form of the results are the 3D tracks that are
shown in (a), (b) and (c) for each event type in Figure 4.7. The colour of the tracks repre
sents the estimated speed of the droplet according to the colorbar at each time point which
is calculated by the droplet 3D displacement divided by the time between frames. A general
downward angle can be seen for all three events and the fastest droplets are most commonly
found in the centre of the found tracks. The speaking and yelling cases have a relatively
larger count of slower droplets with larger variation of direction compared to the coughing
case. This variation can be explained by how the speaking and yelling have continuous vari
ation of exhalation speed during speech that give rise to complex air patterns together with
the fact that the speech events are around six times longer than coughs. For all three events,
there are no found droplets in the top right area of the 3D volume as is indicated in red for
the cough. This area is masked when finding droplets because of the illuminated face in the
background. The illumination is here used as assistance to see when the respiratory event
starts and for speaking and yelling it is extra important to locate when the specific words are
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pronounced. In the future one can improve the measurements by remove the background
light and replace it with an audio recorder that is synchronized with the recording.

From a found track the average of all interframe velocities represent how fast the droplet
was travelling through the volume. This average speed will in the worst case have an un
certainty of around 1.5 m/s given the estimated position uncertainty found in the next
section to be 0.2 mm and the median track length of 10 frames. However, this worst does
not seem to be representative since a variation found from the actual tracks give an esti
mated standard deviation of 0.3 m/s (corresponding to a position uncertainty of around
0.04 mm. The difference in found uncertainty is probably caused by a combination of that
the worstcase scenario in the simulation is not representative and that the tracking does
not allow tracks that have too high uncertainty in position.

The average droplet speeds can be analysed in the temporal domain that is shown in Fig
ure 4.7(d). Here, both the temporal evolution of average speed and number of found
droplets are shown. A general correlation of number of droplets and speed is visible. This
can be explained by how more droplets are produced by a larger air flow that will also ac
celerate droplets to a higher speed. The larger air flow is also found for yelling that have
a substantially higher count of produced droplets. The increased production of droplets
with speech loudness have been previously reported [50]. The speaking case show a rela
tively large speed and number of droplets for the letters P in ”protect” and B in ”better” and
the yelling mainly for P. These are letters that together with ”r” and ”t” have been found to
produce more droplets [47]. The cough shows two temporal peaks of produced number of
droplets during the event. A cough is expected to have a consistent high exhalation air speed
and the change in number of produces droplets then suggests that there are other drivers
for droplet production than air speed. One explanation can be the availability of saliva in
connection to the air stream. A study on singing noted that the sense of accumulated saliva
coincided with increased droplet generation [47]. Finally, the average speed for all found
tracks is visualised as a histogram in used in Figure 4.7(e). The average speeds are 4.2, 5.1
and 8.3 m/s for the three different events. It is expected that the speaking has the slowest
droplets and coughing the fastest and using this technique the actual difference in speed
can be quantified. The results shown here is a subset of what was used in Paper v where all
results can be found and downloaded at https://doi.org/10.17605/OSF.IO/R7YBD.
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Figure 4.7: Velocity results using the horizontal configuration. Three different kinds of respiratory events are shown including
speaking, yelling, and coughing from top to bottom. For each case multiple ways of visualizing the same data
are presented to show what information 3D-PTV can give from respiratory events. (a) show the tracked droplets,
projected into camera C2, found at a single timepoint. (b) and (c) show all tracks found for the whole event duration
in 3D from two angles. For the cough, the red area indicates where no droplets are found due to masking of pixels.
(e) show the time evolution of the average speed and number of found droplets. Note here that the actual time
resolution is at the camera frame rate with 67 µs between frames and the temporal data is here accumulated into
bins of 10 ms width. Finally, (d) show the distribution of estimated average speeds from these droplets.
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The horizontal configuration has the disadvantage of only capturing the droplets over a
short distance and time that makes it harder to extract information of droplet trajectories.
The vertical configuration is here more advantageous where example results of a cough can
be found in Figure 4.8. The vertical arrangement posed challenges in capturing the respi
ratory droplets since the illumination volume is quite thin together with how the subject
was left some freedom to perform naturally. For speech events, the movements of head and
mouth resulted in variation of exhalation direction where only parts or none of the droplets
hit the illumination. This means that the vertical configuration is not suitable for analysis of
such events. Instead, coughing events were found to be more suitable even though the aim
of the cough was still important. The long but thin illumination volume enables tracking
of droplets for up to 12 cm as can be seen in panels (a), (b) and (c) of Figure 4.8 which are
illustrated similarly as results from the horizontal configuration. Some longer tracks show
clear deceleration over the droplet trajectory. This is also seen in panel (d), where the spa
tial average of droplet speed and direction have been estimated for different 3D positions.
Along Y direction, the largest speeds are found close to the mouth and a reduction of speed
is seen further downstream that indicate the transition from jet to puff phase. The average
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show a spatial averaging of all tracks and at all time-points for different cross sections through the data. (e) show
the distribution of the average speed of all tracks found in this cough.
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Software box 4.5

The visualisation of the resulting tracks is important to validate the results and
the input parameter to the PTV algorithm. Multiple functionalities for this
is implemented in the ptv3py package. Below is an example view of the
visualisation created by the ptv3py.particle_tracking_visualization.
particle_tracking_parameters_helper function. Here, one can see the
tracks in 3D and projected 2D, interactively move through frames in the recording
and try different input parameters to optimize the tracking for the current situation.

Similar visualisation helpers are also implemented for finding pixel coordinates and
3D matching particles where either the input parameters can be tuned or just the
results are shown.

speed is calculated for each track and the distribution of these speeds is found in (e).

These are examples of what can be extracted and there are more possibilities such as finding
spreading angles, droplet cloud evolution that this experimental data enables. Due to the
small number of recorded events and few subjects it is hard to draw statistically significant
conclusions currently. However, with a rigorous study of multiple subject and events for
each subject, tracking results using this technique can add valuable information for a better
understanding of respiratory droplets. Before those measurements, it is of great importance
to perform a validation of the tracking technique.

4.5 Evaluation of the 3DPTV algorithm

The evaluation is performed for each of the three steps of the 3DPTV algorithm in turn.
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Figure 4.9: Example droplet scattering footprints together with the estimated weighted centroid positions as red dots in the
recorded image shown in (a). The long camera exposure relative to the speed of the fastest droplets result in
elongated shapes. In addition, a large variation of droplet size transfers to large variation of scattering intensity and
footprint sizes. Note that the colorbar in (b) is 10x shorter than the one in (c).

4.5.1 Particle finding evaluation

The finding particles approach use a combination of a threshold binarization, connected
components and weighted centroid to estimate pixel coordinates. As alternative to the
weighted centroid, gaussian fitting using both iterative least squares and the threepoint
algorithm were attempted [84]. Both methods were found to be insufficient for the parti
cles imaged in this experiment. The main problem for the gaussian is the large variation of
particle footprint sizes and shapes caused by the long exposure time of the cameras relative
to the particle speeds and variation in particle scattering intensity as seen in Figure 4.9.
Anisotropic gaussians with and without rotation were also attempted but the extra param
eters did even more damage. The weighted centroid algorithm with its high reliability and
simplicity was chosen as the best option for this data. The problems connected to long
exposure can be reduced with a pulsed laser that freezes the motion of the droplets during
an exposure. However, this requires an advanced laser source that can produce pulses at
the recording rate of the camera and will increase security challenges to protect the subject
ejecting droplets.

The pixel value discontinuity overlap detection algorithm described by Maas et al. [79]
was implemented to handle overlap cases mainly in the areas close to the mouth of the
person performing the respiratory event. Note that there are high degrees of overlap that
the algorithm does not detect. This missing position will propagate as errors in both the
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triangulation and tracking and further validation of its impact should be made. Then com
parison to other overlap detection schemes such as neural networks [85] or particle mask
correlation [86] can be made for this data.

The following validation scheme by use of simulation of the particle finding and overlap
detection algorithm is suggested. First extract a large number of particle footprints from the
data such as the ones found in Figure 4.9 that will represent the different situations that the
finding algorithm is facing in the actual data. The particle positions from each footprint is
then assumed to be the weighted centroid value. Note that this is an assumption since the
particle position of a footprint is not actually known. An alternative is to use a predefined
optical transfer function, such as a gaussian [87], as footprint for all particles. However, then
the large variation of particle footprints that are found in this data is not as accurately taken
into account in the simulation. The database of footprints should be manually verified to
avoid usage of footprints that are actually overlapping particles. Now random footprints
are given to sampled particle pixel positions and interpolations of the footprints is used
to simulate subpixel particle positions in the images. The finding algorithm’s sensitivity to
overlap can then be evaluated by using different distances between two or more simulated
particles. In addition, images with different number density of particles can be simulated
to find at what density the particle finding algorithm deteriorates.

4.5.2 3D triangulation evaluation

The 3D triangulation is challenging because of the limiting experimental situation. The
first limitation is that there is a requirement of highspeed cameras to temporally resolve
the movement of droplets and only two were available at the time of the measurement.
Typically, three or more cameras are employed to reduce problems with 3D position un
certainty and number of found ghost particles⁴ [12].

A second limitation is connected to the possible positions that were available for the cam
eras. The cameras must be positioned on the same side of the illumination volume. On
the other side of the illumination is the protection plate for the subject ejecting droplets.
The cameras should also preferably be positioned to have the same approximate scattering
angles. Then, similar scattering intensities will be recorded in the two cameras that give
the same limit on minimum detectable droplet size. In addition, this simplifies the use of
scattering intensity in the matching for triangulation. The resulting positions of the cam
eras was at a 52° semiforward detection angle with 23° between the cameras. The angle
between the cameras should in a stereo detection setup be 90° to optimize the triangula
tion precision and an increase of this angle is suggested for future experiments. Advanced
techniques for estimating particle 3D coordinates such as Iterative Particle Reconstruction

⁴Ghost particles are particles found in the triangulation even though they do not exist in the actual 3D
space.
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Figure 4.10: Simulation analysis of the 3D triangulation sensitivity and ghost particle detection. In (a), theMonte-Carlo approach
used to estimate the 3D triangulation sensitivity is illustrated. Panels (b) show the sensitivity results for Z = 8
mm in the three different dimensions. The maximum sensitivity in each dimension and the euclidean norm of all
dimensions is found in (c). In (d), the process of estimating how particle number density affect the number of
found ghost and missing 3D positions with the results shown in (e).

[87] have not been attempted. It would be interesting to see how these techniques cope
with the large variation of footprints in combination with only using two cameras.

Two simulations have been performed to understand the limitations of 3D triangulation us
ing this experimental setup. The first simulation estimate the 3D position sensitivity using
a MonteCarlo approach, illustrated in Figure 4.10(a). The main assumption here is that
the particle pixel position error is uniformly distributed ±0.5 pixels which corresponds to
the worst case when the particle is only found in a single pixel and also assumed that there
is no particle overlap. A known 3D point is now projected into each camera to receive two
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pixel positions. The pixel positions are randomly displaced 10 000 times by sampling pairs
of displacement vectors from the mentioned uniform distribution. All the pairs of random
positions are triangulated and the standard deviation error to the correct 3D point describes
the sensitivity of the setup to errors in found particle pixel coordinates. The process of esti
mating sensitivity is repeated for a range of 3D coordinates inside the illumination volume
and resulting sensitivities are shown in Figure 4.10(b) and (c). Generally, a larger sensitivity
is found for 3D positions further away from the cameras as is seen in (b). In (c), the lowest
sensitivity is found for the triangulated Y coordinate which is explained by how estima
tion of the Y coordinate have a small connection to the distance between the cameras and
the 3D position. This is in contrast to the X and Z dimension where the distance error
is propagated through a sine and cosine of the semiforward detection angle respectively.
The euclidean norm of the maximum sensitivities is found to be around 0.2 mm which
has been used as guidance for the max matching error parameter to the 3D triangulation
algorithm. Note that an increase of angle between the camera views (β) is expected to re
duce the triangulation sensitivity proportionally to 1/ sin(β/2) which is calculated from a
simplified geometrical model. β equal to 45° and 90° will results in halved and one third
sensitivity, respectively. To decrease the sensitivity further, more cameras must be used.

The second simulation, illustrated in Figure 4.10(d), is performed to estimate how well the
matching during triangulation performs under different particle seeding densities Nppp.
This will give information of how many particles are correctly triangulated and how many
ghost particle are found. A specific number of 3D positions, corresponding to a known
seeding density, are sampled inside a 3D volume with the same size as the laser illumination
volume (60x120x15 mm3). The positions are projected into the cameras, and they are
randomly displaced by a uniform distribution ±0.5 pixels. The pixel positions are used
with the exact same matching and 3D triangulation algorithm as has been detailed before
firstly without and then with intensity matching. The process is repeated 20 times to extract
the average performance and a standard deviation of the result as is shown by the errorbars
in the plots. As expected, there is a typical decrease in correctly found tracks and increase
in number of found ghost particles with increasing particles density Nppp. Note here that
the matching largely profits on that the illumination volume is known, all found possible
matches that triangulate to 3D positions outside this volume can simply be discarded which
improves the results significantly. One postprocessing solution that is implemented to
improve matching is the use of imaged particle intensity as guidance. To include this in the
simulation, one intensity was sampled for each 3D particle by inverse transform sampling
from the estimated cumulative distribution function of found particle intensities. Then,
independent normal noise with standard deviation at 12% of the intensity⁵ was applied to
each camera intensity of the same particle. The use of intensity as guidance in the matching
is clearly beneficial in both reducing the number of found ghost particles and increasing
the number of correctly matched 3D positions.

⁵This intensity uncertainty was found in Paper Iv when estimating particle size from intensity.

65



C2

count = 141

area = 46000 pixels 

Frame = 251

Nppp = 0.003

(a)

N
p

p
p

Frame

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0 500 1000 1500

(b)

Frame

0.00

0.05

0.10

0.15

0.20(c)

d
is

p
la

ce
m

e
n

t 
/ 
sp

a
ci

n
g

0 500 1000 1500

Figure 4.11: Particle density Nppp and displacement spacing ratio for coughs, the most violent events in this work. In (a), an
example frame for estimation of particle density is shown and (b) show the evolution of the particle density for
the cough results shown in Figure 4.7. (c) show the displacement spacing ratio that has been previously used in
tracking validation since it can be used to predict tracking error [83].

The number of particles per pixel Nppp have been estimated for a single cough in Fig
ure 4.11(a) and (b). A cough was chosen here since it is the most challenging of the three
respiratory events that have been recorded. Since this is not a homogeneously seeded vol
ume of particles, the calculation of Nppp here also estimates an area of the particles for each
frame as the convex hull of all found particles. As is visible in the example calculation in
panel (a), there is a significant variation of density inside this area which means that the
found Nppp is underestimated. In the example image, one can approximate that the high
est density is around 50% higher than the found value. In panel (b) of Figure 4.11, the
estimated Nppp is found for each frame of the cough. The peak value is at around 0.003
which is found to be the maximum Nppp for most cough events where the exceptions have
a lower maximum Nppp. With the 50% addition to a Nppp at 0.0045 as a worst case, the
rate of correctly matches is around 93% and the number of found ghosts reach around
5%. One can reduce the number of ghosts by reducing the maximum triangulation error,
however, that will also reduce the number of found correct 3D matches. The ghosts and
lost 3D positions will challenge the tracking procedure in producing correct tracks.

4.5.3 Tracking evaluation

The Four Frame Best Estimate algorithm was chosen for its simplicity and its intuitive ap
proach for tracking. After implementation, it was found that there were problems with
ghost particles that required an improved tracking. The natural step to improve the algo
rithm was to continue along the path that Clark et al. [83] had initiated with recursion.
The extended recursion attempts more possible paths for each track. This extension was
possible with respect to computational time because of the relatively few particles together
with the dynamic programming approach. The challenge was to create the feature of merit
function that can correctly differentiate between good and bad tracks. It was found that the
length of the track was an important feature. A longer track that followed the extrapolated
guesses within the boundaries of max acceleration and max extrapolation error was more
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Software box 4.6

The estimation of the temporal change of particle density in the images can be
found in the function:
ptv3py.particle_finding.estimate_particle_density

A similar function for the displacement/spacing ratio is found in:
ptv3py.particle_tracking.estimate_displacement_spacing_ratio

often correct. Then, as mentioned, to decide which of two tracks with equal lengths is
best, it is natural to choose the one that best follows the extrapolated coordinates. Another
extra complexity implemented by Clark et al. is to give a starting velocity to all tracks. This
should be suitable for this data since most droplets travel in the same direction. It has been
implemented in the ptv3py package but no major improvement could be seen with it and
therefore this feature was not used. No simulation has yet been performed to evaluate the
tracking algorithm developed here. However, Clark et al. performed an evaluation of their
extension to the FFBE tracking. They evaluated their tracking performance based on the
socalled displacement spacing ratio of the 3D tracks. Generally, larger displacement of par
ticles between two frames divided by the spacing between particles correspond to a harder
tracking problem and vice versa. This ratio has been estimated for the tracked coughed
droplets and the results are found in Figure 4.11(c). The maximum value of 0.20 is repre
sentative for most coughs and it corresponds to less than 2% of wrong tracks. Note that no
ghost particles nor missing 3D triangulated values was used in this simulation. In addition,
our algorithm is expected to have better performance than the one presented by Clark et al.
since it as mentioned attempts more possible paths to avoid infiltration of bad positions. A
suggested simulation scheme for the tracking is to use 3D particle tracks simulated by the
John Hopkins Turbulence database [88]. The tracking performance can then be evaluated
by randomly adding ghosts and removing 3D position to see how it affects the tracking. A
more advanced simulation can also be performed by use of the full 3DPTV algorithm. The
3D positions are then projected into the cameras through the camera calibration and then
recorded PTV images are simulated, suggestively using the particle footprint database pre
viously suggested. The errors of each step are then propagated to extract the performance
of the whole process.

4.6 Quantifying and comparing efficacy of facial masks

In the early part of the COVID19 pandemic there was a lack of protective medical equip
ment in Sweden which included facial masks. This led to imports of brands from previously
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Figure 4.12: Comparison between number of produced droplets for coughing in the three cases: without mask, with a low-
cost mask and with a hospital graded mask. Example images of the three cases are shown in (a). The average and
standard deviation of counted droplets are shown in (b) and microscope images of the middle layer of the two
different masks are shown in (c).

unused sources to fulfil the increased demands. To better understand the quality of these
masks an investigation was performed with coughing subjects to understand how well the
cheapest masks found in the supermarket in autumn 2020 (surgical mask type I) compares
to the masks used in the hospital (surgical mask typ IIR). The same setup was used here as is
detailed in Figure 4.2 with one difference that the laser was focused to a 1.5 mm thickness
along the Z dimension instead of the 15 mm previously used. With this setup there is a
10 times higher laser fluence which means that smaller particles can be detected. From
knowledge of the sizing calibration found in the next section, the calculation 100.5 ≈ 3
give the approximation that droplets three times smaller can be detected using this thick
ness compared to the 15 mm thickness. Given a slightly higher threshold at 40 counts for
finding droplets, this corresponds to a minimum detectable droplet size of approximately
1 μm. Two subjects were asked to cough in three different cases, when wearing no mask,
the type I mask, or the type IIR mask. Example images of the highspeed recordings are
shown in Figure 4.12(a).

The droplets are counted by finding areas in the images in the same way as explained in
section 4.3.1. Here, no correction is performed for overlapping particles since the thin
illumination volume significantly limits their occurrence. The recursive FFBE tracking
algorithm is also used to find slower droplets that stay in the illumination over multiple
frames. The detected droplets are counted where the tracks are counted as only one droplet.
This approach to identify face mask efficacy has also been used in [46]. Average result for
each case is found in Figure 4.12(b) that includes four coughs for subject 1 and six cough
for subject 2 per case. The error bars show the standard deviation calculated from the four
and six events, respectively.

Initial observations of the results show that subject 1 on average produce around 7 times
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more droplets than subject 2 and that there is a substantial variation between cough events.
For both subjects, the average number of droplets is reduced when using the type IIR
mask compared to the type I mask shown in Figure 4.12(c). An improved filtration can be
explained by the denser middle layer of the type IIR mask compared to the type I mask.
The estimated expectation of filtration efficacy for both masks and subjects are found in
Table 4.2. A single sided independent Welch Ttest is applied to test if the type IIR mask
filters droplets better than the type I mask with pvalue below 0.05. The test shows a
significant decrease for subject 1 (p=0.005) however no significance for subject 2 (p=0.054).
More measurements are required to further quantify the mask efficacy.

The facial masks reduce the number of droplets that is ejected when coughing that should
reduce spreading of disease as has been clear for a long time when used in hospital envi
ronments. During the pandemic, recommendations, and obligations to wear facial masks
were introduced in large scale in hope of reducing spreading of disease. Individual case
studies have shown correlation between regulation on facial masks and reduced spread
ing. However, the evidence for causality between large scale obligation of facial masks use
and reduced spreading is questioned by a review of studies concerning whether face masks
during COVID19 published by the Cochrane Library [89].

Table 4.2: Estimated filtering efficacy for the two facial masks tested. Note that the expected value of efficacy is estimated
as E[#mask/#no mask] = E[#mask] · E[1/#no mask] assuming independence between cases for the number
of estimated droplets. Here, # defines the number of detected droplets. The uncertainty of each expected value
is estimated from the data through for the two factors and propagated through the multiplication to get the final
uncertainty.

Type I Type IIR
Subject 1 0.74 ± 0.04 0.98 ± 0.01
Subject 2 0.82 ± 0.02 0.92 ± 0.01

4.7 Sizing respiratory droplets

The scattering intensity from respiratory droplets can be used to estimate the droplet di
ameter, here used as equivalent notation to droplet size. The sizing technique is presented
in great detail in Paper Iv and will be explained briefly here.

4.7.1 Sizing calibration procedure

The experimental setup used for the sizing calibration apply the horizontal configuration
with the same laser illumination as the velocimetry measurements. The main difference
as seen in Figure 4.13(a) is the addition of a red diffuse light source together with a high
resolution telecentric objective with an attached red band pass on the C1 camera. Together,
the red light and top camera form a shadowgraphy imaging configuration (C1S) where
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Figure 4.13: The experimental setup for the sizing calibration and the droplet sizing approach. The setup in (a) is almost identical
to the one used to find velocity with the major difference of adding a high-resolution telecentric lens and a red
background light that together form a shadowgraphy setup to size droplets. An example shadowgraphy image is
shown in (b). An illustration of the sizing setup and theoretical scattering intensities are shown in (c), (d) and (e).

droplets imaged in focus can be sized as seen in Figure 4.13(b). Camera C2 image the
scattered light as previously and the sizing approach is based on the fact that larger droplets
scatter more light as is illustrated in Figure 4.13(c), (d) and (e). Here, simulated scattering
intensities are used based on LorenzMie scattering theory [90, 91]. A theoretical calibration
curve fit well to the following parametric function,

� = a · Ib, (4.13)

where � is the size (diameter) of the droplet, I is the scattering intensity and a, b are the
parameters to fit.
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Calibration droplets are now required to scale the theoretical curve correctly for this exper
imental setup. The experimental configuration is then used to record an event of a person
saying the letter ”V” repeatedly to produce a large number of droplets. Calibration droplets
are found that are detected on both the cameras. Only droplets that are found to be suffi
ciently in focus are used where the sizing employs an automatic algorithm that take a rough
position of the droplet in the shadowgraphy image and estimate its size. This automatic
algorithm applies fitting of a circle to points that have been interpolated to extract the edge
of the droplet. The smallest size that the shadowgraphy can measure is around 30 μm (3
pixels) diameter. Below this, the imaging conditions cause underestimation of the droplet
size⁶. The recorded intensity and the size of an example calibration droplet is found in
Figure 4.14(a). The scattering intensity of droplets are often spread over multiple pixels in
C2 even though all droplets are smaller than the pixel size. The reason for this is droplet
movement during the exposure time and small out of focus effects. The sum of intensities
in all these pixels is calculated to extract the imaged scattering intensity of the droplet. This
intensity is varying when the droplet travels through the illumination volume. There are
here often peak intensity values when the droplet enters and exits the illumination. The
peaks were first thought to be caused by the variation of intensity at different scattering
angles. This theory was tested using the same size and trajectory scattering angles as was
found for the calibration droplet to simulate its theoretical scattering variation. This in
tensity is shown as the green curve in Figure 4.14(a). There are no clear variations of this
curve that can explain the peaks. The peaks are instead dealt with by calculating a median
of all intensity values above half the maximum value. The resulting intensity is found to be
robust in removing the effect of these peak intensities.

In total 65 calibration droplets were found where a valid correspondence between intensity
and size is here called a calibration point. The calibration points are plotted as black dots
in Figure 4.14(b). Here, red dots are calibration points that saturated the sensor and was
therefore invalid. The black points are used to estimate a scaling coefficient â to connect the
simulated LorenzMie intensity to the imaged intensity for this experimental setup. This is
achieved by the least squares estimation of the following function,

� = â · (a · Ibc ). (4.14)

The fit gives â ≈ 9.9 and the blue calibration curve shown in Figure 4.14. The minimum
possible intensity is 25 counts which corresponds to the minimum diameter of 3.4 μm
that this calibration curve can size. Note that in Paper Iv one calibration curve is calculated
for each pixel because of changing scattering angles over the image. Since the 3.4 μm is
found for a curve in the centre of the image, the minimum diameter that can be sized is
generally smaller than 3.4 μm in the left and larger than 3.4 μm on the right part of the
image. In addition, limiting size is larger for moving relative stationary droplets where

⁶The sizing limit was found by testing the sizing algorithm on a 1951 USAF chart.
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Figure 4.14: Experimental calibration results. An example calibration droplet is shown in (a) where the imaged intensity and size
from the shadowgraphy setup is shown. The calibration curve is shown in (b) together with all calibration droplets
that enables sizing of respiratory droplets. The red area in (b) corresponds to an estimated prediction uncertainty
of the sizing.

a more reasonable limit is estimated to 4 μm. The corresponding maximum sizing limit
before saturation is around 80 μm for moving droplets.

4.7.2 Correlation of respiratory droplet speed and size

This sizing technique can be combined with the 3DPTV as is shown in Figure 4.15. Here,
the speed and size are estimated simultaneously for the tracked droplets which are visu
alised in scatter plots for the same speaking, yelling and coughing respiratory event as was
shown in Figure 4.7. The marginal distributions are also plotted for both the speed and
size. The speaking and yelling show a tendency of an ”L” shape where the larger droplets
seem to generally have a slower speed and the smaller droplets have a larger variation of
speeds. The coughed droplets do not show this same pattern where also larger droplets
have a wide speed distribution. The marginal speed distributions are here the similar to
what has been previously shown. There is a slight difference since only tracked particles
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in the centre (5 < Z < 10 mm) of the illumination volume are sized to avoid erroneous
tracks at the illumination edges. The marginal size distribution show relatively larger sizes
for yelling compared to speaking and the coughing case is in between the two. In the lit
erature, the speech respiratory events with different loudness has in one study been found
to have approximately the same size distribution measured using the APS [50]. However,
another study using OPS show a higher concentration of droplets sizes below around 40
μm with higher loudness of speech [53]. To make this sizing technique useful for under
standing how the size distributions actually behave for different respiratory event types, it is
required to quantify performance of this sizing technique mainly by estimating its counting
efficiency. The counting efficiency is largely connected to the tracking performance where
the suggested validation for the PTV approach will be helpful. Otherwise, experimental
validation by use of particles with known sizes such as those created by droplet generators or
manufactured calibration particles are suggested. In addition, the large variation in num
ber of droplets and sizes between respiratory events as seen in Paper v and in the literature
require a large number of recorded events of multiple subjects to gain significant results.
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Figure 4.15: Results of how droplet speed and size correlate for one event of speaking (a), yelling (b) and coughing (c). The
chosen events are the same as the ones found in Figure 4.7.
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Chapter 5

Summary and outlook

This thesis has presented three measurement techniques for instantaneous highspeed 3D
imaging of three respective liquid phenomena. For each technique, analysis has been per
formed to evaluate the accuracy of the 3D results. Each technique is summarized below.

Highspeed volumetric imaging of liquid jets

• LIF intensity is used to estimate the liquid thickness of a water jet injected at four
different injection pressures and at different displacements from the nozzle.

• Refraction effects through the deformed liquidair interface create imaged artefacts of
unproportionally large LIF intensities. The artefacts are caused by refraction effects
which include local ejection of fluorescence light trapped by internal total reflection.

• An algorithm for finding and correcting the artefacts called corrupt LIF peaks have
been implemented. The finding algorithm is an outlier detection scheme similar to a
Bayesian classifier. Here, a pixel with high enough LIF intensity (conditioned on two
key features) to be sufficiently unlikely is classified as being corrupt. The correction
is an interpolation where only pixel values not found to be corrupt is used. The
correction is found to improve the calibration curve for estimating liquid thickness
from LIF intensity.

• The data produced from the experiments on the water jet can be viewed and down
loaded at https://spray-imaging.com/water-jet.html or https://doi.
org/10.17605/OSF.IO/CG3DF.
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Highspeed 3D reconstruction of liquid surfaces

• A technique called Fringe Projection  Laser Induced Fluorescence (FPLIF) is de
veloped as a combination of fringe projection 3D reconstruction and LIF. The LIF
is used to limit detection of light to the liquid surface. FPLIF is here experimentally
applied to a hollow cone liquid sheet recorded at 20 000 frames per second.

• The 3D reconstructed liquid surface enables the extraction of multiple sprayangles
for each recorded frame. They can reveal asymmetries in for example propagation of
surface waves that is of relevance for the characterization of the injection nozzle.

• Reconstruction of simulated FPLIF images with realistic noise show a general RMSE
around 0.001%, 0.000% and 0.004% for the estimated X, Y and Z coordinates, re
spectively.

• Estimated sprayangles from simulated data have an uncertainty below 0.2°.

• Simulated gaussian shaped waves on the surface of a conical structure are found to
be resolved up to 65% of the theoretical maximum.

• Errors due to the assumptions of orthographic imaging is found to create a bias in
sprayangles by less than 0.9° for the experimental setup used.

• The python package fp23dpy that performs all postprocessing for the FPLIF tech
nique is published as opensource software and is found at https://gitlab.com/
roth.adrian/fp23dpy.

• The 3D data reconstructed for the liquid sheet hollow cone experiments can be in
teractively viewed at https://3d.spray-imaging.com/cone4d/ and
https://3d.spray-imaging.com/cone4d_evolution/ (takes a minute to load)
and downloaded at https://doi.org/10.17605/OSF.IO/ZT97W.

Highspeed 3D velocimetry and sizing of respiratory droplets

• A 3DPTV algorithm is developed and applied to respiratory droplets that enable
estimation of both spatial and temporal velocity distributions.

• The sensitivity of triangulated 3D coordinates is estimated to 0.2 mm from a worst
case simulation and the position uncertainty from the tracking results is found to be
0.04 mm.

• The matching for 3D triangulation is found to be correct for 93% of the particles
and create around 5% ghost particles. The droplet density used in this estimation
corresponds to the toughest experimental case in this work that is the cough.
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• A comparison between two surgical facial masks is performed using this detection
technique. It suggests that the type IIR removes more droplets relative to the type I
mask.

• The scattering intensity from the respiratory droplets can be used to estimate the
droplet size. This is combined with the 3DPTV algorithm to extract both the speed
and size for the same droplets.

• The python package ptv3py implements the 3DPTV algorithm described in this
thesis. It is published as opensource software and can be found at https://
gitlab.com/roth.adrian/ptv3py. The package also includes functions for in
teractive visualization of PTV results and tuning of postprocessing input parameters.

Future considerations

• Attempt Volumetric LIF with more views together with a postprocessing model that
take refraction processes into account.

• Implement projective 3D reconstruction using the FPLIF technique that can both
correct for depth in projective cameras and the projective properties of the illumi
nated fringes.

• Perform simulations and experiments to quantify the performance of the full 3D
PTV algorithm.

• Quantify the counting efficiency of the technique for sizing respiratory droplets.

• Apply 3D reconstruction using the developed 3D imaging techniques on experiments
where relevant parameters are varied and preferably in collaboration with modellers
to enable comparison, validation, and development of theoretical models.
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Appendix A

Gaussian Markov Random Field
(GMRF) introduction

The GMRF is a useful tool for both interpolation of unknown/corrupt data and simula
tion of realistic images. This chapter will focus on the practical aspects of the GMRF where
python code is provided below for the examples used in this chapter. For a detailed theo
retical understanding, see [92]. GMRFs is in this thesis used for operations where spatial
correlations in images are of importance. Images generally contain spatially correlated in
formation which means that two pixels that are close to one another in the image have a
higher probability of having similar pixel intensity and the probability drops with larger
distance between the pixels. There are cases where pixels further apart have a higher corre
lation as well but it is less common. To perform this kind of processing is heavy when it
comes to large images as will be shown below. The Markov property is used to simplify the
problem and increase efficiency of the computations. Practically the GMRF in this work
is used on images of size M x N that modelled as a matrix of pixel stochastical variables X
with the same shape,

X =


x0,0 x0,1 · · · x0,N−1 x0,N
x1,0 x1,1 · · · x1,N−1 x1,N
...

...
. . .

...
...

xM−1,0 xM−1,1 · · · xM−1,N−1 xM−1,N
xM,0 xM,1 · · · xM,N−1 xM,N

 . (A.1)
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This image is then column stacked into x for simplification when using matrix algebra,

x =



x0,0
x1,0
...

xM−1,0
xM,0
x0,1
x1,1
...

xM−1,N
xM,N


. (A.2)

With this notation we define x to be a Gaussian Random Field where,

x ∈ N(μ,Σ). (A.3)

Here, μ is an average value of the field that can be varying for different positions in the
image.

μ =



μ0,0
μ1,0
...

μM−1,0
μM,0
μ0,1
μ1,1
...

μM−1,N
μM,N



. (A.4)

In this work it is either set to a single average value or 0 for all pixels. Σ is the covariance
matrix of this field. It holds all the information connected to spatial correlations,

Σ =


V(x0,0) C(x0,0, x0,1) · · · C(x0,0, xM−1,N) C(x0,0, xM,N)

C(x1,0, x0,0) V(x1,0) · · · C(x1,0, xM−1,N) C(x1,0, xM,N)
...

...
. . .

...
...

C(xM−1,N, x0,0) C(xN−1,M, x1,0) · · · V(xN−1,M) C(xM−1,N, xM,N)
C(xM,N, x0,0) C(xN,M, x1,0) · · · C(xM,N, xN−1,M) V(xM,N)

 .

(A.5)
Here, V is the variance and C is the covariance of the corresponding two pixels. This
covariance function can be defined differently depending on the images that are modelled,
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but it is limited to forms that create a symmetric and positive semidefinite covariance
matrix. One challenge with the covariance matrix is its size ((M · N)2). For a typical
1 MegaPixel image one would require 1012 numbers or for double floats more than 7
TerraByte of memory which is typically not available and if it would be, calculating anything
would take tooo long. To be able to work with this, the inverse of the covariance matrix,
called the precision matrix, Q = Σ−1 is considered. For specific choices of the covariance
function C this matrix becomes sparse nonzero. Then it is only required to store the non
zero values and their positions that will reduce both memory usage and computation time.
The nonzero elements of Q will be the values on the diagonal and the rows and columns
connecting pixels that are neighbours in the original image. The neighbours are defined
through the socalled local neighbourhood matrix g that is here a 3x3 matrix,

g =

 0 −1 0
−1 4 −1
0 −1 0

 . (A.6)

The local neighbourhood matrix is used to create the large neighbourhood matrix G by
placing g over a pixel with index i, j in the field x. The values for index i′, j′ of surrounding
pixels at this location with nonzero value in g is inserted at the corresponding position in
the G matrix. This can also be defined as,

G[i, j] =


4 if i = i′and j = j′

−1 if i′, j′ ∈ neighbourhood of i, j
0 otherwise

. (A.7)

Below is an example G for a field x with shape 3x3,

G =



4 −1 0 0 0 −1 0 0 0
−1 4 −1 0 0 0 −1 0 0
0 −1 4 0 0 0 0 −1 0
0 0 0 4 −1 0 0 0 −1
0 0 0 −1 4 −1 0 0 0
−1 0 0 0 −1 4 0 0 0
0 −1 0 0 0 0 4 −1 0
0 0 −1 0 0 0 −1 4 −1
0 0 0 −1 0 0 0 −1 4


. (A.8)

Finally,
Q = τ(κ2I+G). (A.9)

τ is the inverse of squared correlation σ2. Generally, a larger value will give smaller values
of the sampled field and larger variance. κ2 must be strictly larger than zero and a large
value will result in less spatial correlation between pixels. I is the identity matrix with the
same shape as G. Note that there are different ways of defining the neighbourhood matrix
G to get different correlation patterns.

81



(b)  GMRF
0

50

100

150

250

200

i 
[p

ix
e
ls

]
(a)  N(0, 1)

j [pixels]
0 100 200 300 400 500

(d)  GMRF

0 100 200 300 400 500
j [pixels]

(c)  GMRF
0

50

100

150

250

200

i 
[p

ix
e

ls
]

Figure A.1: Showing the difference between a normally distributed random sample (a) and GMRF samples using different κ2

(b), (c) and (d). Larger κ2 gives less spatial correlation. τ is set to 1 for all samples.

A.1 Simulate a spatially correlated sample

With a μ and a Q a sample x∗ of our stochastical field x can be calculated as,

x∗ = Q−1ϵ, ϵ ∈ N(0, I), (A.10)

where ϵ is independent normally distributed values with standard deviation 1. Examples
of such samples are shown in Figure A.1.

A.2 Interpolating missing/corrupt pixel values

Noe let us say that our image x has some pixels that are corrupt/missing. An observation
vector a is defined to say which pixels are known.

a =

{
True, pixel is known,
False, pixel is unknown (missing/corrupt)

. (A.11)

The observation vector is used to extract the pixels that are observed,

xk = x[a]. (A.12)
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Figure A.2: Example interpolation of unknown pixels using the GMRF approach. A GMRF sample is calculated (a) and 75% of
the pixels are removed randomly. With the remaining pixels and known spatial correlation, the unknown pixels are
interpolated (c). One can see that some of the small-scale variations are lost in the interpolation that creates the
errors shown in (d).

We then know the τ and κ2 that best describe this data so a precision matrix Q is created
from that. Then two different subparts of the precision matrix are extracted.

Quu = Q[¬a,¬a],
Quk = Q[¬a, a].

(A.13)

¬ is here used to negate the a vector so that it instead extracts values that are unknown.
The unknown pixel values are then interpolated using the following equation,

x[¬a] = μu −Q−1
uu Quk(xk − μk). (A.14)

μ shoud be a known background of the field that can either be constant or varying. These
interpolated values are a maximum likelihood estimation given the assumption that the
data follows the GMRF model with the used τ and κ2. An example interpolation of a
GMRF sample is shown in Figure A.2.
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A.3 Example python code

"""
Example script for Gaussian Markov Random Field (GMRF) sampling and
interpolation of corrupt pixels
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as mcm
from scipy import sparse

np.random.seed(0)

def get_neighbourhood(shape):
# Shape of local neighbourhood g must be odd in both dimensions
g = np.array(((0, -1, 0), (-1, 4, -1), (0, -1, 0)))

mid_r, mid_c = (np.array(g.shape) - 1) // 2
n_diags = np.count_nonzero(g)
r, c = np.nonzero(g)

size = np.prod(shape)
data = np.ones((n_diags, size)) * np.expand_dims(g[g != 0], 1)
diags = (r - mid_r) * shape[1] + (c - mid_c)

G = sparse.spdiags(data, diags, size, size).tocsc()
return G

def get_precision_matrix(shape, tau, kappa2):
G = get_neighbourhood(shape)
Q = tau * (kappa2 * sparse.eye(G.shape[0]).tocsc() + G)
return Q

def sample_gmrf_field(shape, tau, kappa2):
Q = get_precision_matrix(shape, tau, kappa2)
invQ = sparse.linalg.splu(Q)
x = invQ.solve(np.random.randn(Q.shape[0]))
x.shape = shape
return x

def gmrf_interpolate_unknown_pixels(sample_unknown, unknown_inds, mu, tau,
kappa2):
known_inds = ~unknown_inds.ravel()
sample_interpolated = sample_unknown.copy()
sample_known = sample_interpolated.ravel()[known_inds]

Q = get_precision_matrix(sample_unknown.shape, tau, kappa2)
Quu = Q[~known_inds, :][:, ~known_inds]
Quk = Q[~known_inds, :][:, known_inds]
sample_interpolated[unknown_inds] = mu - sparse.linalg.spsolve(

Quu, Quk.dot(sample_known - mu)
)
return sample_interpolated
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def plot_sample_fields():
shape = (256, 512)
tau = 1

# normally distributed noise sample
e = np.random.randn(*shape)
plt.figure()
plt.imshow(e)
plt.savefig("gmrf_sample_e", dpi=300)
plt.xlim([250, 300])
plt.ylim([100, 50])
plt.savefig("gmrf_sample_zoom_e", dpi=300)
plt.close()

# gmrf samples
for i, kappa2 in enumerate([1e-5, 5e-2, 1]):

x = sample_gmrf_field(shape, tau, kappa2)
plt.figure()
plt.imshow(x)
plt.savefig(f"gmrf_sample_{i}", dpi=300)
plt.xlim([250, 300])
plt.ylim([100, 50])
plt.savefig(f"gmrf_sample_zoom_{i}", dpi=300)
plt.close()

def plot_interpolation_unknown_pixels():
vlim = 3.5
shape = (128, 256)
tau = 1
kappa2 = 5e-2

fraction_unknown = 0.75

mu = 0
sample_correct = mu + sample_gmrf_field(shape, tau, kappa2)

unknown_inds = np.random.random(shape) < fraction_unknown
sample_unknown = sample_correct.copy()
sample_unknown[unknown_inds] = np.nan

sample_interpolated = gmrf_interpolate_unknown_pixels(
sample_unknown, unknown_inds, mu, tau, kappa2

)

for label, sample in [
["correct", sample_correct],
["unknown", sample_unknown],
["interpolated", sample_interpolated],

]:
plt.figure()
plt.imshow(sample, vmin=-vlim, vmax=vlim)
plt.savefig(f"gmrf_interpolation_{label}", dpi=300)
plt.close()

mappable = mcm.ScalarMappable()
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mappable.set_clim(-vlim, vlim)
fig, ax = plt.subplots(

figsize=np.array((5, 0.4)) * 1.5,
gridspec_kw=dict(left=0.01, right=0.99, bottom=0.43, top=0.55),

)
fig.colorbar(mappable, ax, orientation="horizontal")
plt.savefig("gmrf_interpolation_colorbar", dpi=300)
plt.close()

sample_interpolated_error = np.abs(sample_interpolated - sample_correct)
plt.figure()
plt.imshow(sample_interpolated_error , cmap="cividis", vmin=0, vmax=vlim)
plt.colorbar()
plt.savefig("gmrf_interpolation_error", dpi=300)
plt.close()

if __name__ == "__main__":
plot_sample_fields()
plot_interpolation_unknown_pixels()
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Summary of papers

Paper I: Highspeed imaging database of water jet disintegration Part I: Quanti
tative imaging using liquid laserinduced fluorescence
A. Roth, D. Frantz, W. Chaze, A. Corber, and E. Berrocal

This article focuses on creating data for the fundamental study of liquid jet disintegration.
The article details two experiments on a water jet using fluorescence imaging, in contrast
to the traditional shadowgraph imaging, where all experimental results are openly available
in a database. The first experiment uses one highspeed camera recording at 40 000 frames
per second where the transition from the Rayleigh to the atomization regime is captured by
change of injection pressure. The second experiment employs two highspeed cameras si
multaneously recording at 50 000 frames per second. With two cameras in a perpendicular
configuration, it was possible to deduce a calibration that connects fluorescence intensity
to liquid depth. To assess the quality of the predicted liquid depths, an extensive analysis
of the liquid depth prediction accuracy, precision and volume preservation was performed.

E. Berrocal and W. Chaze performed the experiments and recorded all data where A. Corber
designed the used injector. I performed all the postprocessing with assistance from D. Frantz.
This included among other calibration for intensity profile, extraction of calibration data points,
estimation of calibration curve, the bias and variability analysis of the calibration curve, and
the velocity analysis. I also made figures 1025. E. Berrocal and A. Corber did most of the writing
with some assistance from me and D. Frantz.

Paper II: Snapshot 3D reconstruction of liquid surfaces
A. Roth, E. Kristensson, and E. Berrocal

This paper details the technique Fringe Projection Laser Induced Fluorescence (FPLIF)
that we have created by combining two previously existing techniques. The first part of the
paper details the Fringe projection technique that makes it possible to extract 3D informa
tion of a structure with a single camera and how the LIF part is required to image liquid
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surfaces. Then, information of the mathematical equations used in the 3D reconstruction
is detailed. The FPLIF technique is then validated on both a simulated drop structure and
experimental pending liquid drops.

I implemented all the 3D reconstruction postprocessing and created the open source fp23dpy
python package. This python package is generalized and can be used by others with different
data and calibration parameters. I also performed the simulations and uncertainty analysis in
connection to it. E. Berrocal recorded the data of the liquid drops, and I performed the post
processing on them. Finally, I wrote the manuscript with review and editing input from E.
Berrocal and E. Kristensson.

Paper III: Analysis of liquid surface deformation and breakups using threedimensional
highspeed data recorded with a single camera
A. Roth, M. Sapik, E. Kristensson, J. Jedelsky, and E. Berrocal

This article is a continuation of the work on the FPLIF technique introduced in paper II
. Here, it is applied in highspeed imaging of a hollow cone liquid sheet evolution. First
the experimental setup is described followed by the highspeed 3D reconstruction results.
The results show the evolution of the liquid surface from drop to jet to tulip to cone shape.
Then, results of the stabilised conical sheet are shown in the form of 3D surfaces and 3D
sprayangles where the latter has previously only has been extracted from 2D measurements.
Finally, the tuning possibilities of the technique and its challenges are discussed.

M. Sapik and E. Berrocal recorded all the data. I performed the postprocessing of all the data
and wrote the manuscript. J. Jedelsky, E. Kristensson and E. Berrocal assisted with review and
editing.

Paper IV: Highspeed scatteredlight imaging for sizing respiratory droplets
A. Roth, M. Stiti, D. Frantz, and E. Berrocal

In this paper an approach using LorenzMie scattering intensity to size respiratory droplets
is detailed. Two highspeed cameras are employed where one image the scattering light from
droplets and the other is used to image the droplet size from a shadowgraph image. Now
simultaneous detection of the droplet size and scattered intensity enables the estimation
of a calibration curve to go from scattering intensity to size. The cameras were placed in
the semiforward scattering direction to utilize the higher scattering intensity that enable
detection of smaller droplets. In addition, it is detailed how a too small illumination volume
is not suitable for sizing droplets. The calibration curve and the prediction uncertainty are
then explained with additional analysis of how the speed of droplets affect the range of
droplet sizes that can be estimated. The sizing technique is applied to one cough of three
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different subjects where the droplet size averages are presented in both time and space.
Finally, the experimental results are compared with a different sizing technique and tuning
possibilities of this sizing is discussed.

M. Stiti, D. Frantz and E. Berrocal developed the experimental setup and performed the ex
periments. I was involved in the study conceptualization and recording of calibration images.
I performed all postprocessing of the data, created all figures, and wrote the manuscript. E.
Berrocal, D. Frantz and M. Stiti assisted with review and editing.

Paper V: Exhaled aerosols and saliva droplets measured in time and 3D space:
Quantification of pathogens flow rate applied to SARSCoV2
A. Roth, M. Stiti, D. Frantz, A. Corber, and E. Berrocal

This work utilizes the sizing detailed in Paper Iv and stereoscopic Particle Tracking Ve
locimetry to extract 3D velocities of respiratory particles. The latter use a similar configu
ration with the two highspeed cameras described in Paper Iv where instead both cameras
image the scattering intensity. In addition, a deeper analysis is performed of multiple res
piratory events, where droplet deceleration and droplet virion content are included. Three
different subjects are in this study speaking, yelling, or coughing. For each type of event,
multiple recordings have been analysed to extract velocity and size. The velocity distri
butions are compared, and the size is used to extract the volume of ejected respiratory
droplets. This volume was translated to the number of virions from an analysis of SARS
COV2 concentration in saliva. The virion numbers were analysed with respect to the dif
ferent respiratory events to extract virion flow rate over time. For the coughs, both the
temporal and spatial domain were analysed.

M. Stiti, D. Frantz and E. Berrocal developed the experimental setup and performed the exper
iments. I was involved in the study conceptualization and recording of calibration images. I
performed all postprocessing of the data, created all data analysis figures. E. Berrocal wrote the
manuscript with assistance of A. Corber. I, D. Frantz and M. Stiti assisted with review and
editing.
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