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Abstract—Opportunistic navigation using cellular signals is
appealing for scenarios where other navigation technologies face
challenges. In this paper, long-term evolution (LTE) downlink
signals from two neighboring commercial base stations (BS) are
received by a massive antenna array mounted on a passenger
vehicle. Multipath component (MPC) delays and angle-of-arrival
(AOA) extracted from the received signals are used to jointly
estimate the positions of the vehicle, transmitters, and virtual
transmitters (VT) with an extended fast simultaneous localization
and mapping (FastSLAM) algorithm. The results show that the
algorithm can accurately estimate the positions of the vehicle
and the transmitters (and virtual transmitters). The vehicle’s
horizontal position error of SLAM fused with proprioception
is less than 6 meters after a traversed distance of 530 meters,
whereas un-aided proprioception results in a horizontal error of
15 meters.

Index Terms—MPC delay, AOA, LTE, massive antenna array,
positioning, localization, SLAM, FastSLAM.

I. INTRODUCTION

Intelligent transportation systems hold promise for traffic
safety and efficiency. Localization performance is important
for such systems, from use cases ranging from traffic op-
timization [1] to autonomous driving [2]. A broad sensor
suite has been developed for the localization problem for
these challenging use cases, but the limitations like weak
signal strength and multipath in the city urban for the global
navigation system (GNSS), and the dim light for the camera
and lidar systems, etc., have motivated efforts toward finding
additional sensors to provide localization information.

Cellular communication also has a long history of use
for localization as an alternative or complement to satellite-
based navigation [3], and cellular technologies are expected to
further develop towards joint communication and sensing [4].
Not only does this offer benefits for optimizing communication
system performance [5], but also can play a role in addressing
even the most demanding localization use cases such as au-
tonomous driving [6]. The manner in which the cellular signals
are generated and utilized for positioning can take many
forms, and various classification schemes have been suggested,
e.g. in [7], it is categorized into three types: triangulation
and multilateration, machine learning based positioning, and
simultaneous localization and mapping (SLAM) [8].

SLAM has multiple uses, including for tracking purposes [9]
or in augmenting proprioception sensors on vehicles [7], but

successful implementation requires associating measurements
from different snapshots, which can be difficult depending on
the type of sensor used and data quality. Significant effort has
been spent on achieving accurate data association, and many
advanced algorithms have been developed, e.g., joint prob-
ability data association (JPDA) [10], and belief propagation
(BP) [11]. On the other hand, FastSLAM [12] takes another
approach to simplify the data association problem. It uses a
particle filter mechanism, and for each particle, only a simple
maximum likelihood data association is applied independently.
During the update of the FastSLAM, only the particles with
the highest likelihood of data association can survive. In this
way, it can keep the effective data association in general.

In this paper, the FastSLAM algorithm is applied to the
parameters extracted from the cellular signals including mul-
tipath component (MPC) delays, azimuthal angle-of-arrival
(AOA), and elevational AOA. The parameters are extracted
from the signals of multiple commercial long-term evolution
(LTE) base stations (BS) received by a massive antenna array
mounted on a passenger vehicle in an urban environment. Fast-
SLAM is extended to work with observations from multiple
antenna ports and BSs. This extended FastSLAM can further
simplify the data association problem by further factoring
the posterior model and processing each port independently.
Results from field measurements show that the extended
FastSLAM algorithm works well in complicated urban envi-
ronments, and the vehicle’s positioning error is less than 6
meters after a traversed distance of 530 meters.

The structure of the paper is as follows. Sec. II intro-
duces the wireless signal system model. Sec. III describes
the extended FastSLAM model using the estimated MPC
parameters, Sec. IV describes the iterative update of the
extended FastSLAM algorithm applied to localize the positions
of the vehicle, the transmitters and the virtual transmitters.
Sec. V presents the measurement setup and analysis of the
results from the measurement data and the proposed algorithm.
Finally, Sec. VI summarizes the paper.

Notation: Matrices and vectors are denoted as uppercase
and lowercase boldface letters, e.g., A and a. The identity
matrix is denoted as I. The matrix transpose and matrix inverse
are denoted as superscripts (·)T and (·)−1 respectively. The
Euclidian norm is denoted as ∥·∥. The speed of light is c ≃
3 · 108 m/s.



II. SYSTEM MODEL

In LTE systems, orthogonal frequency division multiplexing
(OFDM) is used and the baseband signal transmitted from one
antenna port of one BS is described as [13]

sj,k(t) =

n=−1∑
n=−Nsc/2

xj,k[n+Nsc/2]e
i2πn∆ft

+

n=Nsc/2−1∑
n=0

xj,k[n+Nsc/2]e
i2π(n+1)∆ft

(1)

here xj,k[n], n ∈ {0, Nsc − 1} is the transmitted signal at the
n-th subcarrier from the j-th antenna port of the k-th BS,
j ∈ {1, . . . , 4} is the antenna port number of the cell-specific
reference symbol (CRS), k ∈ {1, . . . ,K} is the number of BSs
transmitting signals, and Nsc is the number of subcarriers in
the OFDM symbol. Further, t is limited to [−TCP, Ts] denoting
continuous time, TCP is the duration of the cyclic prefix (CP),
and Ts = 1/∆f is the duration of one OFDM symbol with
∆f being the subcarrier spacing. CRS xj,kCRS are transmitted
on specific subcarriers and symbols depending on the cell
ID, antenna port number, CP type, and bandwidth of the
LTE system [14]. CRS are appealing for positioning because,
unlike synchronization signals, they span the full channel
bandwidth (giving time resolution) and are transmitted more
frequently. In this paper, they are used exclusively to estimate
the position of the vehicle and those of the transmitters and
virtual transmitters.

A 128-port stacked uniform circular antenna array is used
with the receiver. The antennas are switched in a fixed se-
quence with a switching interval of 0.5 ms, and all 128 ports
are sampled for a complete snapshot every 75 ms including
11 ms for automatic gain control. The receiver moves at a
relatively low average speed of 1.0 m/s because of the switched
nature of the measurement system [13].

The channel frequency response from the j-th port of the k-
th BS is modeled as a summation of M MPCs parameterized
by their delay τm,j,k, direction-of-arrival (DOA) Ωm,j,k, and
Doppler shift νm,j,k. The DOA is further divided into azimuth
AOA φm,j,k and elevation AOA θm,j,k. The time-varying di-
rectional transfer function at the n-th subcarrier is represented
as

hj,k[n] =
∑M
m=1 bR(Ω

m,j,k)Γm,j,kbj,kT e−i2π(n∆fτ
m,j,k−νm,j,kt) (2)

where bR(Ω
m,j,k) ∈ C128×2 is the receive antenna array

pattern, bj,kT ∈ C2×1 is the j-th port of the k-th BS antenna
response. Γm,j,k is the polarimetric path weight matrix defined
as

Γm,j,k =

[
γm,j,kHH γm,j,kVH
γm,j,kHV γm,j,kVV

]
. (3)

The matrix elements represent different polarization combina-
tions of the transmitter and the receiver, e.g., HV is horizontal-
to-vertical.

The aggregate received CRS in the frequency domain at the
n-th subcarrier is given as follows

y[n] =

K∑
k=1

J∑
j=1

hj,k[n] · xj,kCRS [n] . (4)

Using the channel parameter estimation and interference can-
cellation methods described in [13], signals from different
antenna ports of different BSs are separated and the MPC
parameters delay, azimuth AOA, elevation AOA and signal-
to-noise ratio (SNR) are estimated by the improved RIMAX
algorithm.

The estimated MPC parameters can be used for positioning,
and for this purpose, the MPC delays are converted into the
distance domain by adding the unknown and fixed clock offset
between the k-th BS and the vehicle tkoffset and then multiplying
with the speed of light

dm,j,k(t) =
(
τm,j,k(t) + tkoffset

)
· c. (5)

The estimated parameters of all the MPCs at time index t
can be represented as

Zt =
[
z1,1,1(t), . . . , zM,J,K(t)

]
(6)

zm,j,k(t) =
[
dm,j,k(t), φm,j,k(t), θm,j,k(t)

]T (7)

and the SNR of all MPCs at time index t can be represented
as

λt =
[
λ1,1,1(t), . . . , λM,J,K(t)

]
. (8)

III. EXENDED FASTSLAM MODEL USING THE ESTIMATED
MPC PARAMETERS

MPCs from BSs with direct line-of-sight (LOS), or MPCs
from reflectors and scatters in the environment with non line-
of-sight (NLOS) are considered as synchronized and inde-
pendent transmitters and virtual transmitters (VT) respectively
[15]. For convenience of representation, the term VT is used
to refer to all transmitters. The problem to be solved is to
use all the parameters extracted from the wireless signals and
fuse with the velocity information from the vehicle to estimate
the positions of the vehicle and the VTs accurately, and also
associate VTs across measurements at different times. The
posterior can be represented as

p (V, c1:t, r1:t | Z1:t,u1:t) (9)

here V represents positions of the VTs, r1:t is the time series
of the vehicle state vector, Z1:t are the measurements, c1:t is
the association between measurements and VTs, and u1:t is
the input velocity from the vehicle. The index 1 : t represents
the time from time index 1 to t.

The positions of the VTs are given as

V =
[
v1, . . . ,vL,J,K

]
(10)

vl,j,k =
[
vl,j,kx , vl,j,ky , vl,j,kz

]T (11)

here vl,j,k is the position of the VT with the index (l, j, k) in
Cartesian coordinates. The number of VTs is not necessarily
equal to the number of measurements due to the existence of



spurious measurements (false alarms that are not coming from
any VTs) and the absence of measurements (missed detections
that should have come from VTs). The association between the
measurement and VT cl,j,kt = m means that the VT vl,j,k is
associated with the measurement zm,j,k(t).

The state vector of the vehicle can be represented as

r1:t = [r1, . . . , rt] (12)

rt = [rx(t), ry(t), rz(t), rψ(t), rθ(t), rϕ(t)]
T (13)

here rp(t) = [rx(t), ry(t), rz(t)]
T is the position of the

vehicle in Cartesian coordinates at time index t, and
[rψ(t), rθ(t), rϕ(t)] are the yaw, pitch, and roll of the vehicle.

The vehicle’s velocity ut includes longitudinal, lateral,
vertical, yaw, pitch, and roll velocities. Rotational velocities
are observed by the inertial measurement unit (IMU), and
longitudinal speed can also be observed with wheel odometry.
The velocity can be represented as

ut = [ux, uy, uz, uψ, uθ, uϕ]
T
. (14)

The FastSLAM algorithm in [12] is adopted to solve the
posterior problem. If the data association is known (the method
to acquire the data association is described at the end of
Sec. IV), FastSLAM can decompose the posterior into a
factored form of

p (V, r1:t | Z1:t, c1:t,u1:t) = p (r1:t | Z1:t, c1:t,u1:t)∏
n∈{K,J,L}

p (vn | r1:t,Z1:t, c1:t) . (15)

Since MPCs from different antenna ports and different BSs
can be separated by cell ID, they are independent and should
not be associated, so the FastSLAM model is extended here
and the posterior can be further factored as

p (V, r1:t | Z1:t,u1:t, c1:t)

= p
(
r1:t | {Zj,k1:t , c

j,k
1:t}j∈J,k∈K ,u1:t

)
K∏
k=1

J∏
j=1

L∏
l=1

p
(
vl,j,k | r1:t,Zj,k1:t , c

l,j,k
1:t

) (16)

here vl,j,k represents the l-th VT from the j-th antenna port
of the k-th BS, and Zj,k1:t and cj,k1:t represent the measurements
and association of the MPCs from the j-th antenna port of the
k-th BS. {Zj,k1:t , c

j,k
1:t}j∈J,k∈K represents the combination of

the measurements and the correspondence that is constrained
to the MPCs from the same antenna port and BS. This method
can process the position estimation of VTs from different
antenna ports and BSs separately. It reduces computational
complexity and provides flexibility to add or remove BSs.

IV. EXTENDED FASTSLAM UPDATE WITH THE ESTIMATED
MPC PARAMETERS

Vehicle pose evolves as a function of control inputs and
physical motion constraints, and it is defined as the motion
model

p(rt | rt−1,ut) (17)

here rt is a probabilistic function of the vehicle’s control input
ut and the previous pose state rt−1.

The FastSLAM algorithm employs a particle filter [16] to
estimate the vehicle pose posterior. At each time index, it
preserves a set of particles representing the posterior p(r1:t |
{Zj,k1:t , c

j,k
1:t}j∈J,k∈K ,u1:t), and the set is denoted as R1:t. Each

particle ri,1:t represents the i-th hypothesis of the vehicle’s
path, i.e.,

R1:t = {ri,1:t}i = {ri,1, . . . , ri,t}i. (18)

The particle ri,t−1 at time index t− 1 is used to generate a
probabilistic hypothesis of the vehicle’s pose ri,t at time index
t by sampling from the probabilistic motion model

ri,t ∼ p (rt | ri,t−1,ut) . (19)

After each particle is generated, the FastSLAM algorithm
updates the posterior over the VT estimates associated with
each particle. For the VT connected to the i-th particle of
vehicle state, if there is no clearly associated observation, then
it will keep the status unchanged, otherwise, the posterior at
the time index t will be updated as follows

p
(
vl,j,ki | ri,1:t,Zj,k1:t , c

l,j,k
i,1:t

)
=

ηp

(
z
cl,j,ki,t ,j,k

t | ri,t,vl,j,ki , cl,j,ki,t

)
p
(
vl,j,ki | ri,1:t−1,Z

j,k
1:t−1, c

l,j,k
i,1:t−1

) (20)

here η is the normalization factor, and the posterior of vl,j,ki at
the moment t−1 is assumed to be Gaussian with the following
mean and variance.

p
(
vl,j,ki | ri,1:t−1,Z

j,k
1:t−1, c

l,j,k
i,1:t−1

)
∼ N

(
vl,j,ki ;µl,j,ki,t−1,Σ

l,j,k
i,t−1

)
. (21)

To ensure that the estimate of VT at the time index t is Gaus-
sian, FastSLAM linearizes the perceptual model p(z

cl,j,ki,t ,j,k

t |
ri,t,v

l,j,k
i,t , cl,j,ki,t ), and the measurement function can be ap-

proximated by Taylor expansion as

h
(
vl,j,ki , ri,t

)
= ẑl,j,ki,t +Hl,j,k

i,t

(
vl,j,ki − µl,j,ki,t−1

)
(22)

ẑl,j,ki,t = h
(
µl,j,ki,t−1, ri,t

)
(23)

here the function h is defined to estimate the distance, azimuth
AOA, and elevation AOA from the positions of the vehicle
and the VT, and Hl,j,k

i,t is the Jacobian of h. The function h
is defined as follows

d̂l,j,ki (t) =
∥∥∥µl,j,ki,t−1 − ri,p(t)

∥∥∥ (24)

φ̂l,j,ki (t) = atan
(
ŷ

x̂

)
(25)

θ̂l,j,ki (t) = asin

(√
x̂2 + ŷ2

ẑ

)
(26)

here [x̂, ŷ, ẑ]
T is acquired by applying Euler’s rotation theorem

[17] with the rotation matrix R (ri,ψ(t), ri,θ(t), ri,ϕ(t))

[x̂, ŷ, ẑ]T = R (ri,ψ(t), ri,θ(t), ri,ϕ(t)) (µ
l,j,k
i,t−1 − ri,p(t)). (27)



With the approximation, the mean and covariance of the VT
at time index t can be updated with the standard EKF [18] as
follows

Kl,j,k
i,t = Σl,j,k

i,t−1H
l,j,k
i,t

T
(
Hl,j,k
i,t Σl,j,k

i,t−1H
l,j,k
i,t

T
+Qt

)−1
(28)

µl,j,ki,t = µl,j,ki,t−1 +Kl,j,k
i,t (z

c
l,j,k
i,t ,j,k

t − ẑl,j,ki,t ) (29)

Σl,j,k
i,t = (I−Kl,j,k

i,t Hl,j,k
i,t )Σl,j,k

i,t−1. (30)

After the posterior of the VTs is updated, the importance
factors of all the particles are calculated and used to resample
the particles proportionally. The calculation of the importance
factor of the i-th particle is given as follows

wi,t =
target distribution

proposal distribution

=
p(ri,1:t | {Zj,k1:t , c

j,k
i,1:t}j∈J,k∈K ,u1:t)

p(ri,1:t | {Zj,k1:t−1, c
j,k
i,1:t−1}j∈J,k∈K ,u1:t)

∝
∏
k∈K

∏
j∈J

∏
l∈L

∫
p

(
z
cl,j,ki,t ,j,k

t | ri,t,vl,j,ki , cl,j,ki,t

)
p
(
vl,j,ki | ri,1:t−1,Z

j,k
1:t−1, c

l,j,k
i,1:t−1

)
dvl,j,ki .

(31)

The last part in the equation is already defined in eq. (21). With
the same linearization as in eq. (22), the importance factor can
be calculated as

wi,t ≈ η
∏
k∈K

∏
j∈J

∏
l∈L

∣∣∣2πQl,j,k
i,t

∣∣∣− 1
2

e−
1
2 (z

c
l,j,k
i,t

,j,k

t −ẑl,j,k
i,t )T (Ql,j,k

i,t )−1(z
c
l,j,k
t ,j,k

t −ẑl,j,k
i,t )

(32)

and the covariance is

Ql,j,k
i,t =

(
Hl,j,k
i,t

)T
Σl,j,k
i,t−1H

l,j,k
i,t +Qt (33)

here Qt is the covariance matrix of the measurement. Since
the SNR is related to the accuracy of the estimated parameters,
it is used to update the covariance matrix of the measurement,
and Qt can be written as

Qt = Q · diag(λt) (34)

here diag(λt) is the diagonal matrix constituted of the ele-
ments of the SNR vector λt.

In the FastSLAM with maximum likelihood data associa-
tion, the association cl,j,ki,t is determined by maximizing the
following likelihood

cl,j,ki,t = argmax
l′

p
(
zl

′,j,k
t | l′, cl,j,ki,1:t−1, ri,1:t,Z1:t−1,u1:t

)
= argmin

l′

(
(zl

′,j,k
t − ẑl,j,ki,t )T (Ql,j,k

i,t )−1(zl
′,j,k
t − ẑl,j,ki,t )

)
.

(35)

For multiple VTs and multiple measurements, the Hungarian
algorithm [19] is applied to find the maximum likelihood data
association among them.

Fig. 1: The massive antenna array on top of the measurement
vehicle [13].

TABLE I: Measurement system information

Parameter Name Value
Center frequency 2.66 GHz
System bandwidth 20 MHz
BS number 2
Cell IDs of BS A 375, 376, 377
Cell IDs of BS B 177, 178, 179
Tx antenna port number 2
Rx antenna port number 128
Snapshot interval 75 ms
Total snapshot number 6850
Total test time 8.5 minutes
Traversed distance 530 meters

V. MEASUREMENT SETUP AND SLAM RESULTS ANALYSIS

A measurement system with a USRP controlling the 128-
port stacked uniform circular antenna array mounted on the
roof of a vehicle is shown in Fig. 1. The system was used
to receive and log CRS symbols from commercial LTE BSs
in the city of Lund, Sweden. A rubidium standard disciplined
by GPS beforehand was used as a stable frequency reference
for the USRP to minimize clock drift, and the clock offsets
between different BSs and the vehicle were assumed to be
unknown constants. An OXTS RT3003G [20] was used for
ground truth position and orientation of the vehicle and the
antenna array. The GPS receiver inside the USRP was used
for time alignment between ground truth and data logging.
Yaw velocity observations from the IMU and the longitudinal
speed observations from wheel odometry were used as the
input velocity of the extended FastSLAM algorithm, and the
vertical, pitch, and roll velocities were assumed to be zero
owing to the flat terrain and constrained vehicle dynamics. The
parameters for the measurement system are listed in Table I.

The measurement trajectory is shown in Fig. 2. The outer
figure gives an overview of the relative positions of the BSs
and trajectory, and the inset plot gives a more detailed view
of the trajectories of the ground truth, SLAM estimation
fusing cellular signals with IMU and wheel odometry, and
proprioception using the IMU and wheel odometry alone. The
estimated positions of the virtual transmitters from SLAM are
mapped to physical reflectors with an assumption of first-order
reflection, and the physical reflectors are also shown in the
figure as dots. A particularly noteworthy long-lived NLOS
MPC is shown inside the red ellipse in Fig. 4a. This MPC



Fig. 2: The ground truth trajectory together with the SLAM estimation and proprioception-only, and the positions of reflectors
from one sector at one time index. The building that provides the long-lived VT is emphasized with a darker color and outline.

is mapped to the physical environment as a blue dot shown in
Fig. 2 and the associated building is plotted with darker colors.
The reflections come from a wall 230 meters away from the
BS, and they are 170-350 meters away from the vehicle as it
drives apart. It shows the potential of using NLOS MPCs for
positioning in complicated urban environments

The absolute error of the estimated vehicle trajectory from
SLAM and proprioception only are shown as a function of
time in Fig. 3. It can be observed that the extended FastSLAM
can greatly improve positioning performance. It has a maxi-
mum absolute horizontal error of 6 meters after 290 seconds
and has 3 meters of horizontal error after a total traversed
distance of 530 meters, while the absolute error of the IMU
and wheel odometry alone have a maximum horizontal error
of 20 meters and 15 meters at the end of the measurement.
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Fig. 3: The absolute error of SLAM and proprioception.

The MPC delay estimates from RIMAX for sector 376 of
BS A and sector 178 of BS B are shown in Fig. 4a and
Fig. 4b respectively. The associated MPC delays from one
particle of the SLAM are also shown in the corresponding
figures. It can be observed that the extended FastSLAM
can associate the estimated MPC delays accurately, while
effectively suppressing spurious measurements.

VI. CONCLUSION

In this paper, an extended FastSLAM algorithm using mul-
tipath component delays and angular information is developed,
which simplifies the data association problem and processes
the multipath components from different antenna ports and
base stations independently. The multipath component delays
and angular information extracted from the commercial LTE
signals received by the 128-port antenna array are processed
by the extended FastSLAM algorithm, and the results validate
the algorithm and demonstrate the capability of using cellular
signals for high accuracy positioning in complicated urban
environments.
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(a) Cell 376 multipath component delays estimated by
RIMAX and associated with SLAM.
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