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Abstract i

Abstract

Program analysis tools, from simple static semantic analysis by a compiler, to
complex dynamic analyses of data flow and security, have become commonplace
in modern day programming. Many of the simpler analyses, such as the afore-
mentioned compiler checking or linters designed to enforce code style, may even
go unnoticed or unconsidered by most users, ubiquitous as they are. Despite this,
and despite the obvious utility that such programming tools can provide, many
warnings provided by them go unheeded by programmers most of the time.

There are several reasons for this phenomenon: the propensity to produce false
positives undermines confidence in the validity of warnings, the tools do not in-
tegrate well into the normal workflow of the developer, sometimes the warning
message is simply too esoteric for most users to understand, and so on. A com-
mon theme can be drawn from these reasons for ignoring the often-times very
useful information given by a programming tool: the tool itself is difficult to use.

In this thesis, we consider ways in which we can bridge this gap between users
and tools. To do this, we draw from observations about the way in which we
interact with each other in the most basic human-to-human context. Applying
these lessons to a human-tool interaction allow us to examine ways in which tools
may be deficient, and investigate methods for making the interaction more natural
and human-like.

We explore this issue by framing the interaction as a "conversation" between a
human and their development environment. We then present a new programming
tool, Progger, built using design principles driven by the "conversational lens"
which we use to look at these interactions. After this, we present a user study using
anovel low-cost methodology, aimed at evaluating the efficacy of the Progger tool.
From the results of this user study, we present a new, more streamlined version of
Progger, and finally investigate the way in which it can be used to direct the users
attention when conducting a code comprehension exercise.
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2 Introduction

1 Introduction

In contemporary software development, tools have become ubiquitous at every
stage of the development process. In the context of this work, we consider a "de-
veloper tool" to be any computer program which may assist in any activity related
to programming. These tools exist across multiple levels of abstraction within the
software development process, with the most concrete being at the level of actual
programming and the most abstract being collaboration and organisational tools.

In this thesis, we will discuss tools used by programmers: code editors and
analysis tools. The most integral of these are compilers, which conduct semantic
checks on code to ensure it is properly formed, and then translate it into bytecode
to allow it to run. Developers may also make use of static analysis tools such
as SpotBugs' and SonarQube? which can be used to analyse semantically correct
code for known bug patterns that can cause issues beyond compile time. "Static"
analysis is analysis that can be made without running the program, however dy-
namic analysis tools exist which analyse code at run-time, although these tools are
outwith the scope of this thesis. Various different programming tools, such as code
editors and analysis tools, are often combined together into a single integrated de-
velopment environment (IDE) for ease of use. An example of a modern IDE can
be seen in Figure 1. These programming tools provide a myriad of benefits, and
are often explicitly integrated into development practices at large companies such
as Google [Sad+15].

Despite the obvious utility of analysis tools in being able to point out bugs and
vulnerabilities, the results of their analyses are commonly not put to use [Joh+13].
The reasons for this under-use have been explored in past-research, with a number
of interesting findings. One such reason is that false positives are often common-
place, where lines are marked with a warning despite the fact that they do not
contain the issue for which they were flagged. Result understandability is also a
cause of frustration, with users often finding warning messages too confusing or
vague to act upon the information [Bec+19]. A final such concern, although this
is by no means an exhaustive list, is that the tools tend to integrate poorly into the
developer workflow, forcing them to switch contexts to run the analysis and taking
them out of the flow of programming.

A common thread can be drawn through these reasons for not engaging with
analysis tools: usability. False positives clutter up the user interface and make re-
sults less trustworthy; esoteric warning messages require the user to dedicate time
to investigating the warning message before they can even begin investigating how
to fix the problem itself; poorly integrated tools force users to switch to a differ-
ent application to make use of them, rather than being available directly in their
development environment. Though we chose not to directly address these specific
issues they ultimately became the basis for choosing the direction of this thesis, the

"https://spotbugs.github.io/
Zhttps://www.sonarsource.com/products/sonarqube/
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Figure 1: The IntelliJ IDE. The IDE displays a package explorer (middle left), a
code editor (middle right), and the results of a static analysis conducted by Spot-
Bugs (bottom).

primary goal of which is to investigate the analysis and design techniques which
may be used for developing more usable programming tools.

In searching for a way to make interactions more natural, we delved into the
mechanics of what we believe is the most innately human way in which we com-
municate information: conversation. Conversations, the act of speech between
multiple human participants, predate all written methods of communication. Our
most ancient extant written works, such as Homer’s Illiad, are thought to have
come not from an initial written manuscript, but rather from the transcription of
an oral composition [Wes11]. Indeed, oral tradition is responsible for vast swathes
of folklore, mythology, and cultural canon. For millennia before the advent of
writing, ideas and history were shared through speech and conversation.

In this thesis, we present first our investigation into the mechanical aspects of
conversation. From this research, we then developed a so-called "conversational
lens" as a way of viewing a given interaction as though it were a conversation
between equal parties. This allowed us to deconstruct the interaction between
a human programmer and their programming tools, with particular focus on the
compiler, and analyse the shortcomings of the computer in the context of a con-
versational partner. From this analysis, we developed our own programming tool,
named Progger, drawing on the principles of conversation in its design. We then
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conducted a user evaluation of Progger, the results of which further informed the
development of an updated version of the tool. Finally, we investigated the use
of eye movement and gaze attention as a means of non-verbal communication in
conversations, and how this may be applied to Progger.

Each of the presented papers draws from the core idea of conversation as a
basic unit of interaction, and uses this archetype to explore techniques for making
the interaction with programming tools more "human". We finish this introductory
section by presenting our conclusions and possibilities for future work based on
this approach.
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2 Conversations and Interactions

The idea of applying a conversational lens to a non-human interaction is not a
novel one. The initial genesis of conversational theory, defined by Pask [Pas76],
was based on his understanding of cybernetics, and was an attempt to model the
learning process through the framework of a conversation. This idea has been ex-
pounded upon by various authors, particularly by Dubberly and Pangaro [DP09],
who define the structure of a conversation and propose methods for applying con-
versational theory to the design of interactions. As outlined by Dubberly and Pan-
garo [DP09], conversation in its most basic form consists of a number of distinct
stages:

* Opening of a channel: where participants in the conversation establish the
grounds for communication. For example, one person (Participant A) asking
another (Participant B) the question "How are you doing?" clearly defines
the communication channel as verbal English.

* Commitment to engage: the second participant acknowledges the opening
of a communication channel and indicates their receptiveness to a conversa-
tion. This takes the form of an indication that attention is being paid to the
conversational partner, and usually the beginning of a turn-taking exercise,
either explicitly or implicitly. E.g., Participant B responds to the question of
Participant A with the statement: "I’'m good, thanks. How are you?"

¢ Construction of meaning: the participants must now work collaboratively
to establish the overall meaning of the conversation. This meaning making
can occur from the ground up with explicit transfer of information, however
it may also draw upon context given by a number of factors such as location,
previous interactions, social norms, etc. If the previous conversation were
to continue with the question "Did you see the football match last night?",
the meaning constructed from this sentence would differ greatly based on
geographical location. A pair of colleagues in Liverpool having a conversa-
tion the morning after the local derby would have a vastly different mental
model to people in the USA on the morning after the Super Bowl. In this
instance, the meaning differs not just by the specific match but even in the
sport itself.

* Evolution: in a meaningful conversation, the internal states of the partici-
pants evolve throughout the process, affecting a change upon them between
the beginning and ending of the conversation. This may be trivial, for in-
stance in the expansion of a relatively inconsequential knowledge base: "No,
I didn’t see the match. What happened?" "Liverpool won 2-0." From this ex-
change, the participants evolve in the following ways:
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— Participant A now knows Participant B did not watch the football match.
They can therefore deduce that it is pointless asking for opinions on the
quality of play or discussing specific incidents.

— Participant B now knows the result of the football match: Liverpool
won 2-0.

The internal evolution of participants may be much more significant, how-
ever. Significant discoveries can be made during this process, leading to
important decisions, the changing of relationships, or even the altering of
entire systems of belief.

* Convergence on agreement: this stage describes the process of participants
coming to a mutual understanding. To do this, they continue the turn-taking
exercise, perhaps asking questions with the aim of clarifying each other’s
positions, and the exchanging of more ideas and information. As in other
phases of the conversation, agreement may range from the relatively mun-
dane - perhaps the participants agree that with their latest win, Liverpool
are now well placed to win the league - to the deeply significant, such as an
alignment of spiritual beliefs.

* Actions or transactions: a conversation often closes with the decision to
take some action based upon the outcome of the discussion, for example
deciding to watch the next football match together in the pub.

With this basic understanding of conversational structure established, we con-
tinued our investigation into the various aspects of a conversation. There are a
number of such aspects, detailed descriptions of which can be found in Paper 1,
however in the interest of brevity only the most salient will be explained here.

2.1 Breakdowns

As can be seen from the model of conversation stages, a key facet is the way
in which participants come to a shared understanding. Often components of this
understanding are implicit, and we sacrifice precision for the sake of speed and flu-
idity. An overly specific and clunky sentence such as "Did you see the association
football match between Liverpool FC and Everton FC that was played last night,
the 13th of February?" is condensed down to "Did you see the football match last
night?" In fact, even "football" and "last night" may be considered extraneous in
this example, with perhaps the maximally concise question being simply "Did you
see the match?".

In being so economical with words, however, it is inevitable that misunder-
standings occur. Assumptions can be mistaken and mental models can diverge,
leading to confusion as participants are no longer "on the same page". We previ-
ously illustrated how context can have a significant effect on the understanding of
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a statement: consider if in our example Participant B held the mistaken assump-
tion that Participant A was in fact an avid tennis fan, and the Australian Open had
just concluded. Given this context, the "match" in question may be understood as
entirely different events by each participant.

With a misunderstanding as severe as this, the conversation may encounter a
"breakdown". At this point, no constructive continuation can occur and partici-
pants must either abandon the conversation in bemusement or acrimony, or they
must attempt to repair the conversation [SSJ74]. One mechanism for repair is that
of a "meta-conversation" [DP09], wherein participants enter into a conversation
about the conversation itself, clarifying details and assumptions until the cause of
the breakdown can be identified and resolved.

2.2 Side channels: Gaze

Understanding in conversation is also developed through means other than words.
These so-called side-channels are varied, and include factors such as tone and
cadence of speech, body language and expression, and the direction that someone
is looking, amongst others. For our research we chose the last of these, which we
shall call gaze direction, as worthy of further exploration. Looking at something
can attribute it with special importance in the context of a conversation, and while
gaze can be explicitly directed ("look at that!"), humans also have a tendency to
follow another person’s gaze without instruction.

This behaviour begins developing at a very young age [FBTO7], and holds an
important role in social relationships. When two people are looking at the same
thing, it is indicative of an aligned "joint attention". It can be safely assumed that
both are consciously observing the object of attention, and any changes to its state
will be registered. When considering a conversation, this means that when the
participants are both looking at something it can now be considered to contribute
to the context.
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3 Conversations and Programming Tools

With the main aspects of conversation that we are interested in now outlined, it is
possible to re-frame a programming interaction as a conversation between the pro-
grammer and their programming tools. The communication channel is the code ed-
itor, analogous to speech in a human-to-human conversation, and a programming
language is used rather than a natural language. In most programming interac-
tions, the programmer has an idea of what they want the code to do. Convergence
on agreement can therefore occur by way of a turn-taking exercise that takes on
a written character rather than a verbal one: the programmer inputs lines of code,
and the programming environment attempts to compile and, if hot loading is used,
to run it.

In this conversation, agreement can be reached in terms of both form and func-
tion. When an agreement of form is achieved, the compiler contained within the
programming environment® is able to validate the syntactical and semantic cor-
rectness of the code, and execute it. To reach agreement of function, the executed
program must do what the programmer intends for it to do. In our research, we
elected to focus on means for achieving agreement of form.

3.1 Breakdowns

In this context, a breakdown can occur when the programmer expects the code
to execute, but compilation fails: the compiler is unable to understand the form
of the communication used by the programmer. This results in a compiler error
message, which is indicative of the beginning of a meta-conversation. In order to
repair the breakdown, the compiler signals to the programmer the section of code
that is causing confusion.

If we compare what happens now with the expected actions of a human con-
versational partner, deficiencies begin to appear. A human partner would likely ask
probing questions about the statements that they had failed to understand, whereas
the compiler simply points at the statement and says, "I don’t know what you
mean". From this point on, the normal turn-taking operation that we expect of
a conversation breaks down, and the programmer takes on sole responsibility for
repairing the breakdown.

This repair mechanism is not only inconsistent with the conversational proce-
dure, but is also often ineffective. Error messages have been studied for decades,
and have consistently been found to be a source of difficulties, particularly for
novices [Bec+19]. Attempts at improvement have been made, however they still
adhere to the pattern in which the compiler prints its error messages and then pro-
ceeds to abdicate all further responsibility. We hypothesised that a more fruitful
method for tackling this problem may lie not in re-wording the error messages,

3Henceforth when discussing the ability to compile a program, the term "compiler" will be used,
however it should be noted that compilation usually occurs within a larger development environment.
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but by instead introducing a conversational element. To do this, we sought to re-
introduce the turn-taking aspect of a conversational interaction and implement a
way for programmers to "ask questions" of the compiler to gain more information
about its understanding of the error. This ultimately took the form of a prototype
development environment, Progger. The technical background and implementa-
tion details can be found in Paper 2.

3.2 Side-channels: Gaze

In the context of a programming tool, gaze as a side-channel is easy to define and
measure for the human user: the part of the screen at which they are looking is
equivalent to where their gaze may fall in a human-to-human conversation. By
contrast, the computer lacks anything which may be considered "eyes", making
the idea of its "gaze" much more nebulous.

During the development of Progger however, it was discovered that tracing
data could be used to track the sections of code that the compiler "looked at" during
compilation, and how often it did so. This provided an opportunity to align the
gazes of the human and compiler conversational partners, which we attempted with
highlighting. In Progger 2.0, the design process for which is outlined in Paper 3,
a "heatmap" is displayed when a compiler error occurs. This heatmap highlights
the areas of code looked at by the compiler, with the highlighting increasing in
intensity as the compiler passes over the same code multiple times.

Using Progger 2.0, we then conducted an eye-tracking study to determine
whether the gazes of programmer and compiler were indeed aligned. The out-
come of this research is presented in Paper 4.
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4 Programming Interactions as a Conversation

In this section, we present our attempt to implement a programming tool, Progger,
founded on the principles of conversational design. This was undertaken with the
use of an iterative, cyclical methodology as outlined in Section 4.2.

4.1 Objectives

When considering programming tool interactions through the conversational lens,
it became clear that there were deficiencies. A human partner, when faced with a
conversational breakdown, will take active steps to remedy the situation. A com-
puter partner, however, will just say "no" or "don’t know" [Bla+18] and abruptly
end the interaction, placing the onus of repair squarely on the shoulders of the hu-
man. We hypothesised that introducing conversational elements to the interaction
could help to solve these deficiencies, however the effectiveness of this strategy
was unknown. This led us to the following over-arching research question:

* RQ;: To what extent is the humanisation of a programming tool through
conversational design beneficial to end-users?

4.2 Method

To address this question, we adopted a cyclical research process as shown in Figure
2. This consisted of four stages:

* Ideation: the collaborative process of creating a novel interaction design
centred around conversational theory and previous work.

* Implementation: the implementation of the selected design as a program-
ming tool.

» User Study: the conducting of a user study to validate the design choices
and gain insight into their usage.

* Analysis: analysis of data gathered from the user study, with the intention
that insights gained from this stage would feed into a new ideation session.

To this point, this process has been completed in its entirety twice, resulting
in two distinct versions of a prototype tool and two separate user studies examin-
ing their respective efficacies. For the first cycle, following ideation we elected to
design and build a research tool (implementation) for use in a user study and subse-
quent analysis. The initial focus of intervention was in the domain of breakdowns,
which manifest as errors in the programming environment as related in Section
3.1. For this reason, the tool was named "Programming by Errors", which ulti-
mately coalesced into the name Progger. This research tool would take the form
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Ideation

Analysis Feere |Papert A Peer2 | Implementation
. Paper 4 : AN
Paper 3 T
User Study

Figure 2: The cyclical process of research methodologies used throughout this
thesis. The asterisk (*) represents the starting point of the thesis work.

of a simple code editor for use with the Java programming language, which would
contain additional features for the resolution of breakdowns. In order to offer more
information about compiler errors, we decided to first build an extension of a Java
compiler. In order to achieve detailed tracing, we extended a compiler based on
the reference attribute grammar formalism, which is described in Section 4.3.

Following the first cycle of research, we undertook a second cycle with the
initial ideation process informed by our previous work. This again led to further
implementation work on Progger, producing Progger 2.0, and a new user study and
analysis, this time with a focus on gaze. The positioning of each paper within the
stages of this cycle is illustrated in Figure 2.

4.3 Reference Attribute Grammars

Reference Attribute Grammars (RAGs) are an extension of the Attribute Grammar
(AG) formalism introduced by Knuth [Knu68]. AGs are a means of extending
abstract syntax trees (ASTs), which are data structures that act as models of a
program. This extension takes the form of attaching attributes to the AST nodes,
where each attribute contains a formula for calculating its value. RAGs extend
this with the addition of reference attributes [Hed00O] which can hold references to
other attributes located at an arbitrary distance in the AST. A number of different
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attribute types can be specified. In the following list, bold monospaced text
indicates AST nodes, and monospaced text indicates attributes or their equations
attached to the nodes:

* Synthesized attributes: attributes which have a value computed from nodes
lower in the AST. For example, an Add node may contain two child nodes,
Left and Right, each of which contains an attribute denoting their value
as the natural number 1. The value of the Add node may be derived from
the equation: getLeft () + getRight (), which would resolve to 2.

* Inherited attributes: attributes which have a value computed from nodes
higher in the AST. For example, children of a Block node may inherit
the lookup (String name) attribute*. Child nodes that make use of a
variable name, IdUse, may then call 1ookup (name) in order to search
for the variable declaration within the scope of the parent Block. If no such
declaration is found, the use of the variable name is considered invalid.

* Reference attributes: attributes containing a reference to another attribute
within the AST. For example, the 1ookup attribute mentioned above may
return a reference to the variable declaration node, IdDecl, which can be
stored in a reference attribute, decl, within IdUse. From this point on, the
IdDecl may be easily retrieved by accessing the decl attribute, instead
of calling 1ookup each time.

* Collection attributes: attributes which have a value calculated from multiple
contributing nodes [MEHO09]. For example, an error collection attribute
may be stored at the root of an AST. Each time an error is encountered (e.g
the occurrence of an IdUse without a corresponding IdDecl), an object is
added to the error collection, thereby compiling a list of errors throughout
the AST.

For further development, we selected the Java compiler ExtendJ [Oqv18] which
is built using the meta-compilation system JastAdd [HMO3], an implementation
of the RAG paradigm. JastAdd includes several features which are of use when
attempting to glean more information from the compiler, and which were of par-
ticular importance when selecting the compiler for extension:

e On-demand evaluation: as the evaluation of attributes occurs on demand in
JastAdd, accessing a specific attribute results in a traversal of the AST in
order to analyse each node which the origin is dependent upon [SH12]. As a
consequence, when the evaluation of an attribute results in an error, we can
use the evaluation tree to determine all of the AST nodes that factored into
this decision.

4A pattern defined by Fors et al. [FSH20]
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* Tracing: the JastAdd tracing mechanism, first introduced by Soderberg and
Hedin [SH10], allows for events to be logged and information extracted
from the compiler during the aforementioned evaluation process, including
details such as specific code tokens and locations attached to each node.

* Caching: once a given sub-tree of attributes is evaluated, the resulting value
of the top-level attribute is cached, allowing for quicker compilation [SH10].

More details about the mechanics of RAGs, including worked examples, can
be found in Paper 2.
4.4 Progger Design and Implementation

For the Progger research tool, we decided to implement a web-based text editor
operating on the client-server model, as shown in Figure 3.

Progger Progger
Extendl Compiler Service -~ Client
+ AE A,
Jastadd "lava Compiter [

Small Traca It Trace:
Extension T Infa

to Error: | Tracing Config J | Tracing Management |

Figure 3: Architecture overview of the Progger prototype. Starting from the right,
the Progger Client contains a code editor that allows the user to input code. To
compile, this code is transmitted via REST API to the Progger Compiler Service
which contains an extended Java compiler built upon JastAdd and Extend]J. The
code is compiled with tracing information collated by the Tracing Management
system. This information is then passed back to the Progger Client via REST API,
where it is displayed to the user.

Client

The client is web page written in the Dart® programming language, with use of the
CodeMirror® library to provide basic features such as syntax highlighting. Code
written within the provided code editor is sent via JSON to a REST service, either
by clicking a "Compile" button, or automatically after a short delay when editing
the content. If a compiler error is encountered, the server responds with a JSON
object representing the attribute evaluation tree’ as constructed from tracing in-
formation in the compiler, with the node which threw the error as the root. This

Shttps://dart.dev/
Shttps://codemirror.net/
"Henceforth, the UI rendering of the evaluation tree will be referred to as simply the "trace tree".
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tree is then rendered on the screen with additional Ul elements in the form of a
collapsible tree, with each level inviting the user to ask the compiler to "tell me
more" about the error. As the user explores the tree, mousing over AST nodes
which contain direct links to locations in the code results in the highlighting of the
relevant section. The client with an expanded error tree is shown in Figure 4.

Progger
i itialised.java | Compile

. While | was considering your code, | found these
package examples; prob/ems:

public class VariableNotInitialised {
Local variable x is not assigned before used

Tell me more about this

1 was considering the following aspects of the code:

int y;

public int example() {

int x;

if 3
if (y <3) { | was checking if this definite assignment is valid:
CompilationUnit_p @hashCode:

x=1;

. | was checking if this definite assignment is valid:
VarAccess.definiteAssignmentProblems() @hashCode:3b6eb2ec

}

return x + y;
}

.. | was checking if this definite assi 1t is valid: Expr.i )
@hashCode:3b6eb2ec

@hashCode:3b6eb2ec

.. | was propagating a variable's scope: VarAccess.decl()
@hashCode:3b6eb2ec

... | was propagating a variable's scope: VarAccess.decls()
@hashCode:3b6eb2ec

.. | checked the attributes of a variable: VariableDeclarator.isField()
@hashCode:66d33a (S

[ ]
[ ]
{ )
} { . I was propagating a variable's scope: VarAccess.decl() ]
{ )
[ ]
[ ]
( ]

.. | was checking if this definite assignment is valid:

Figure 4: Screenshot of the Progger prototype showing an expanded error view.
The highlighted variable (x) corresponds to the code location investigated while
evaluating the attribute where the cursor is hovering.

Server

The server takes the form of a REST service which consumes JSON objects con-
taining Java code. Upon reception of a POST call, the content of the message is
first passed to a Java 8 parser. If the code is syntactically valid, it is then passed
to a custom Java compiler based on Extend]. At this stage, the inherent benefits of
using a RAG-based compiler come into play: instead of just a call stack as would
be available in a non-RAG based compiler, we are able to track the more infor-
mative attribute evaluation stack. This highlights dependencies between units of
computation, grouped into aspects which describe rough collections of attributes
and behaviour, for example "type analysis". Due to this, we can map these as-
pect names to stages in the compilation process and therefore assign each node in
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the attribute evaluation stack a "conversational" description of the actions being
undertaken by the compiler.

To gain access to the underlying information during this process, we made
extensive use of the tracing system in JastAdd, including updating the JastAdd
project itself to include extra trace events. The most significant of these additions
was the ability to trace specific stages in the evaluation of collection attributes.
This was key to our purposes, as ExtendJ uses a "problems" collection attribute,
defined at the root of each compilation unit, to gather together all of the warnings
and compiler errors encountered during compilation. When a contribution to this
collection attribute is registered, we are therefore able to analyse the evaluation
sub-tree related to this computation.

After constructing an evaluation tree for each compilation error, the trees are
transformed into JSON and relayed to the client. The root node conveys the fol-
lowing information:

"message": [compiler error message],
"fileName": [file name],

"location": [line number],

"severity": [warning/error],

"rootNode": [originating attribute node]

Every subsequent child of the root note takes the form:

"name" : [attribute name],

"aspect": [name of aspect the attribute is associated with],
"location": [token locations associated with the attribute],
"children": [array of child attribute nodes]

An example of the JSON constructed from a given error message is shown in
Figure 5.

4.5 User Study

With an initial version of Progger implemented, we made the decision to conduct a
user study. At this stage, we were not interested in the efficacy of the tool in terms
of helping users to resolve errors more quickly or easily, but rather in acquiring
broad sentiment data about how users felt about and used the additional informa-
tion presented to them. For this reason, we deemed a full-fledged user study to be
too heavy-duty and time consuming for our purposes. Instead, we opted to try a
novel, light-weight and low-cost study method which was dubbed a "café study".
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;| package examples;
{| public class variablenotinitialised {
int y;

public_int example() {

int

Figure 5: Example JSON excerpts of an attribute error tree. The coloured lines
indicate which sections of the source code each attribute refers to.

Café Study

The main requirement for the café study protocol was that it should facilitate rapid
iteration. As a consequence, this necessitated that the study protocol be low-cost
in terms of time investment for planning, set-up, and execution. As our target
demographic for Progger was novice programmers (i.e persons with little to no
industrial experience, although with some experience in an academic context) we
were able to make use of a large and immediate pool of potential participants: the
Lund University student body. To this end, and to satisfy the requirement for at
least a rudimentary understanding of programming, we decided that the location
of the study should be a booth in the foyer of the E building at Lund University.
Participation would be open to all students passing through the foyer, with promise
of a free lunch ticket in compensation for their time. This was motivated by the
knowledge that students passing through the E building would likely be enrolled in
one of the science and engineering departments housed in the building, including
computer science, and thus would likely have had exposure to programming in
some capacity.

Study participants were invited to investigate a single-class Java program, pre-
sented in Progger, which had several different compiler errors built into the pro-
gram. In total, three such programs were synthesised, based on publicly available
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solutions to the Kattis programming puzzle archive®®. After receiving informed
consent, participants were tasked with correcting the compiler errors extant in the
code. We asked participants to verbalise their thought process during this exercise,
with probing questions also used to gather more information. The screen and au-
dio were recorded for each participant for future analysis, with data collected from
13 participants in total. A picture of the booth as used in the study is presented in
Figure 6.

FOOD

for

Figure 6: The booth used in the Progger café study. One of the task programs is
visible on the screen, with compiler errors shown on the right hand side.

Data Analysis

After having transcribed the interviews, a thematic analysis exercise was under-
taken based on the process described by Braun and Clarke [BC06]. We began
by individually undertaking the task of generating a set of codes. This entailed a
detailed reading of each transcript, and assigning descriptive codes for an interac-
tions that seemed to reveal something interesting. We made a deliberate attempt to
be as specific as possible when coding interactions, with a large set of codes being
seen as more desirable than a smaller set of coarse-grained codes. For example, the
following statements both describe the highlighting of different sections of code
when exploring the Progger trace tree:

8Kattis problem archive available at: https://open.kattis.com/
9Solutions were taken with kind permission from the GitHub repository of Pedro Contipelli:
https://github.com/PedroContipelli/Kattis
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o Participant A: "it’s very good with the highlight system, because you know
exactly where you want to look at initially"

* Participant B: "it’s highlighting everything, it’s too much"

While both make reference to highlighting, they take different stances: Partic-
ipant A praised the functionality as helpful in directing them to relevant areas of
the code, whilst Participant B found that the amount of highlighting was confus-
ing. For this reason, these statements were coded as "helpful highlighting" and
"unhelpful highlighting", respectively. A full list of codes, including examples
of coded statements and frequency of code occurrence in each transcript, can be
found in Paper 3.

After completing the initial coding, we then met to compare and combine
codes into a single unified set. Once we had settled on a unified code set, we
performed a collaborative test coding of a set of 2 transcripts, in order to ver-
ify that codes were being interpreted correctly by all parties. After an agreement
was confirmed, the codes were applied to the remaining transcripts individually.
Throughout this iterative process, we took notice of several themes emerging in
the analysis. The theme map can be seen in Figure 4.

Results

Despite the informal nature of the café study, we found the data gathered to be of
great interest. Two main findings resulted from the data:

* The code highlighting functionality offered by Progger was key to the inter-
action. When it worked well, for example highlighting specific lines such
as variable declarations, it drew significant praise for it’s ability to direct
the study participants to useful information. When it worked poorly, for
example highlighting entire methods or even the whole class, it drew criti-
cism for being too vague. Although the overall sentiment was positive, the
mixed nature of the feedback revealed an interesting facet of the highlight-
ing: regardless of it’s usefulness in each individual case, it always drew the
attention of the user.

* The trace tree rendered in the sidebar was of no use. This was due to a
general lack of compiler knowledge, making the knowledge base of the par-
ticipant set (novice programmers with no industrial experience) inconsistent
with the information provided by the trace tree (detailed and technical na-
ture). Couched in terms introduced by Norman [Nor13], the gulf of eval-
uation was too large for the information to be useful due to difficulty of
interpretation and failure to match the way in which the participants thought
about the compiler.
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Figure 7: Identified themes, represented by circles, and associated codes, repre-
sented by boxes.
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In these two findings, the café study effectively achieved what we had hoped
for from the outset. We were able to identify components to strip out (the trace
tree), and re-focus on an area that participants found of particular interest (high-
lighting and locality).

Design Ideation Workshop

The removal of the trace tree was a simple undertaking, however the way in which
a focus on locality could be operationalised was an open question. In an attempt
to answer this question, we proceeded to undertake a divergent design exercise
[Cro05][Dub04][Pug81] to create a large spread of new ideas for consideration.
This took the form of a two-phase workshop.

During the first phase, each workshop participant sketched out a number of
user interface ideas with the centre focus of the Ul being code locations. It should
be noted that though some of the concepts build upon the initial Progger layout of
a code editor with an information sidebar, this was not a requirement and many
designs diverged significantly from this formula. Following phase 1, participants
took turns presenting and explaining their concepts to the group. We then pro-
ceeded to repeat the ideation process in a second phase, taking inspiration from
each other’s phase 1 designs, to create a final set of concepts for future develop-
ment. A selection of the sketches resulting from this exercise can be seen in Figure
8, with the full set available in Paper 3.

Figure 8: A selection of design concepts as produced by the ideation workshop.
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After the conclusion of the workshop, we took some time to mull over the
different ideas and plan our next steps. This led to a selection of 3 candidates
for further refinement, from which we produced storyboards detailing the exact
process of the interaction. After discussing the storyboards, a single design was
selected for implementation. All three storyboards can be found in Paper 3, how-
ever only the storyboard which was selected for further development is shown here
in Figure 9.

I
I
I
|

— Storyboard 2 Compiler errors and the associated lines of code checked by the compiler —
are highlighted with ellipses, with "elastic bands" connecting them. When the error node is
clicked and dragged, the associated code sections are pulled out of the code pane alongside
it. The number of times a code fragment is checked by the compiler is used to assign
"weight" to the elements, with more frequently checked elements "sticking" to the code

pane.

Figure 9: Storyboard of an expanded concept from the ideation workshop.
Though more storyboards were produced, this particular one was selected for fur-
ther development.

The main idea behind Storyboard 2 was that when an error occurs, all rele-
vant code sections are highlighted simultaneously, with "elastic band" elements
rendered on the interface connecting the lines to the line where the error occurs.
The user can then click and drag on the error line, and the connected lines are also
dragged out from the main body of the code. The aspect that made this partic-
ular storyboard interesting to us was the idea that different code segments could
be weighted differently, based on their relationship to the compiler. Specifically,
we decided that elements of code would "stick” more closely to the main code
pane based on the number of times that the compiler had passed over that element
during the compilation process. If a section of code had been visited many times,
it would move only a little, while sections of code that had been visited very few
times would be dragged out alongside the error, separating them more significantly
from the main body of code.

To accomplish this, it would be necessary to implement a means of assembling
a compiler "heat map", where we count the number of times that each line is
"looked at" by the compiler. Our interest in this particular facet of the design
was born out of discussions about how exactly this information would correlate



22 Exploring Programming Interactions as a Conversation

with the underlying reason for each error. To our eyes, there were three possible
results, each as likely as the other:

* Lines with a low heat map score (i.e few instances where the compiler
looked at them) would be significant in the evaluation of the error.

* Lines with a high heat map score would be significant in the evaluation of
the error.

* There would be no correlation between heat map score and relevancy to
error evaluation.

We were unable to come to a consensus as to which of these outcomes were
most likely, and this ultimately proved a deciding factor in the selection of Sto-
ryboard 2. With this decision, we started work on Progger 2.0, with the initial
focus being the construction of a heat map based on information extracted from
the JastAdd tracing system as related in Section 4.3.

The "elastic band" component of the design has yet to manifest, as during the
process of implementation and discussion around the new version of the proto-
type, we found ourselves returning to questions centred around the conversational
framing of the tool. We know that the place in which a person looks is indicative
of them paying attention to whatever is in that location. Therefore, if we take the
lines of code that the compiler 1ooks at as a sign of where its attention lies, can we
use this information re-focus the programmer’s attention, and is this alignment of
attention useful in the debugging process? To answer these questions, we paused
development of Progger 2.0 with only the underlying heat map technology com-
plete, visualised with highlighting that becomes darker with a greater number of
hits and shown in Figure 10, and embarked upon a new study.

4.6 Eye-tracking Study

Having updated Progger to include heat map information, we made the decision
to test our theories about attention by way of an eye-tracking study. Eye-tracking
has been used many times in the context of programming and program compre-
hension [CS90][Feil9], however a recent study by Busjahn et al. [Bus+15] drew
our attention due its comparison of novice and expert gaze behaviour. They found
that when presented with unfamiliar code, novices tend to read it in a much more
linear fashion, scanning the code line by line, whilst in contrast experts were found
to read non-linearly, with their gaze jumping around to different non-consecutive
sections of code.

This line of research synchronised well with our previous work on Progger, as
the tool was intended to aid novice programmers to debug code more efficiently.
For this reason, we decided to incorporate a similar analysis of linearity into our
work, albeit without the direct comparison to expert behaviour. To accomplish this,
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import java.util.HashSet;
import java.util.Scanner;

public class GeneticSearch {
public static int occurences(Strin
int count;
int index = str.indexOf (find);
while (index 1= -1)
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index = str.index0f(find , inde

}

return count;

public static int setSum(HashSet<s{
int sum = 0;

for (String find : checks)
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public static char dna(int x) {

return 'C';
return T;
public static void main(String[] a
Scanner scan = Scanner (System.in
while (true)
String S = scan.next();

if (S.equals('0'))
break;
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Figure 10: An example of a heat map generated on a one of the Java code snippet
that was presented in the user study. As the mouse pointer is hovering over the first
error ("local variable count is not assigned before use"” on line 14) the attention

of the compiler when finding that error is shown is visualized as a line-based heat
map.

we would conduct a study once again focusing on novice programmers, with the
difference in their gaze behaviour between highlighted and non-highlighted ver-
sions of code analysed. To accomplish this, we again chose to recruit participants
from the Lund University student body, although the hardware required to collect
accurate data meant that we were unable to use the simple café study setup ex-
plained in Section 3. We therefore undertook a more active recruitment approach,
advertising to students taking a computer science class on agile methodology as
well as to the wider student body via Facebook groups.

As the study procedure (more details of which can be found below) would
involve a closer reading of programs than in the previous user study, therefore ne-
cessitating at least a basic understanding of programming concepts, we made the
completion of at least one programming class a requirement for participation. Tim-
ings were also more restrictive due to the necessity of asking participants to come
in person to the Lund University Humanities Lab at a specific time slot for data
collection, so to encourage participation we offered compensation for time spent
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by way of a gift card for a Swedish cinema chain. In all, 15 students participated
in the study.

Study Design

To conduct the study, we created an experimental procedure using the Tobii Pro
Lab eye-tracking software [Tob23]. This procedure consisted of an initial calibra-
tion step (common in eye-tracking studies, and used to ensure that eye-tracking
data is accurate), followed by the presentation of eight stimuli. Each stimulus was
a screenshot of a small (between 8 and 17 lines) Java program containing a single
compiler error, presented within Progger 2.0. Four of the stimuli had a basic ver-
sion of the code presented - with just the error line highlighted and error message
shown in the sidebar - and the other four with the addition of heatmap highlight-
ing. Participants were asked to try to understand the code in each stimulus and to
determine why the error occurred and how it might be fixed.

After they felt like they were able
to answer these questions, participants
were asked to press a key that would
take them to a text-input page, where
they could answer these questions in
their own words. The order of stimuli
was randomised per participant, and
two stimuli sets were created: Set A
containing stimuli 1 to 4 showing a ba-
sic code view and stimuli 5 to 8 show-
ing the heat map view, and Set B con-
taining the inverse of this. A picture
of the setup can be seen in Figure 11.
A side-by-side comparison of a basic
vs. heat map highlighted stimulus is
not presented due to space concerns,
however they resembled the two dif-
ferent code views presented in Figure
10. For a direct comparison of a stimulus in its basic and heat map highlighted
forms, please refer to Paper 4.

Figure 11: The experimental setup. The
apparatus is contained within a booth,
with the eye-tracker visible below the
screen and a chin- and forehead rest in
the foreground.

Data Analysis

For the analysis of the data collected during the study, we made use of several
features of Tobii Pro Lab. Most significantly, Tobii Pro Lab provides the ability to
define parts of a stimulus as "areas-of-interest" (AOIs). In the context of our study,
we deemed every individual line of code to be an AOI, with a screenshot showing
this within the software shown in Figure 12. This allowed the recordings to be
analysed within Tobii Pro Lab such that every gaze fixation (when the eye rests on
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a specific point) was categorised as falling either within an AOI or without, and if
falling within an AOI we were able to specifically relate that AOI to the relevant
line of code.

4 lineo 1) ¢ While | was considering your code, | found these problems:

in line1 )7 Error at 56,9:: Local varil ErrorMessage | assigned before used

string S (|ine |-next();
if (S.equa’|jne3 ) break;
string L | ine4 -next();

1£(L.cont{ | nes PNA"))
co— 0;
) Line6

HashSet<string> ty ~ new HashSet<>();
BashSet<string> 1187 ney Rashset<>();

for (int i = 0; Lines Jlength(); i++)
type2.add(S.substring (0 [jneg [+ S-substring(i + 1));
for (int ¢|jne1q) < 4; o)
for (int i = 0;(Line11}length(); i++)
type3.add(S.substring(0 (Lline12 dna(c) + $.substring(i));
int indey |jne13 idex0£(S);
while (Line1d > 0) {

Einers)

index = L.indexOf(S , index + 1);

) Line16

Figure 12: The areas-of-interest for a stimulus, as defined in Tobii Pro Lab.

We then exported the raw data with AOI information to a tab separated values
(TSV) file, a text-based representation of a table, and constructed a set of Java
programs to perform additional analysis on the data. This involved defining a sub-
set of AOIs that corresponded to lines which would be highlighted by Progger, so
that comparisons could be made between highlighted and non-highlighted stimu-
lus versions. The variables that were analysed in this way are as follows:

* Time to completion: the time taken to solve a given stimulus task.

* Correctness: a binary grading of whether the suggested solution was cor-
rect or incorrect. This was carried out as an iterative process between au-
thors in order to ensure that we reached an agreement over the grading of
each answer.

* Hit-rate: the number of AOI fixations calculated as a percentage on lines
that would be highlighted by Progger 2.0, regardless of what version of the
stimulus was shown. This allowed us to assess whether the highlighting
functionality drew the users attention to lines that the compiler focused on,
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Resu

by comparing user attention on these lines between basic and highlighted
states.

Dwell duration: the average length of time that participants fixated on an
AOI before looking somewhere else. As with hit-rate, this was calculated
only for the sub-set of highlighted AOIs in order to determine whether high-
lighting affected how length of attention was affected by highlighting.

Saccade length: the average distance between gaze fixations.

Linearity: the percentage of eye movements that could be considered a
linear forward change. This was achieved by analysing pairs of fixations
before and after saccades, and determining whether this amounted to moving
from one line of code to the next immediate line.

Its

A detailed breakdown of the results of data analysis, including a description of
the methods used for analysis and specific p values, can be found in Paper 4.
However, in the interest of brevity only a high-level overview of main findings are
presented here. In each of the following plots, data for individual participants is
shown by thin lines, while the mean across all participants is shown by a single
thick line. Standard errors of the mean are indicated by error bars.

Of the 6 dependent variables specified, the first 2, completion time and cor-

rectne

ss, can be categorised as "performance metrics". The remaining 4 variables

fall into the category of "gaze metrics".
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(a) Mean completion times per partici- (b) Mean correctness score per partici-
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stimuli. stimuli.

Figure 13: Charts detailing the completion time and correctness metrics.

As can be seen in Figure 13(a) and Figure 13(b) respectively, neither comple-
tion times nor correctness were significantly affected by toggling highlighting on

or off.
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Figure 14: Charts detailing the collected eye-tracking data. An asterisk (*) indi-
cates a statistically significant effect of highlighting change.

Similarly to the performance metrics, saccade length (Figure 14(c)) and lin-
earity score (Figure 14(d)) were not significantly affected by the highlighting
state. Hit-rate (Figure 14(a)) and dwell time (Figure 14(b)), by contrast, saw
significant statistical effects as a result of the highlighting, with p values of 0.002
and 0.036 respectively.

Discussion

From the data gathered, we are able to conclude that highlighting does not have
a significant effect on performance when undertaking a program comprehension
task, nor does it affect reading linearity or the related metric of saccade length
(where a short saccade is indicative of the eyes moving between contiguous loca-
tions). This suggests that heat map highlighting is an ineffective method for in-
fluencing the gaze patterns of novice programmers to make them more consistent
with those of expert programmers. The validity of these findings may have been
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influenced by the low number of participants leading to a small overall sample
size. The context may also have been a factor, as the participants were instructed
to attempt to understand the stimulus code with no consideration for time. This,
along with the broader context of program comprehension, may have encouraged
subjects to adopt a more methodical reading approach than if they were under time
constraints, resulting their scanning the text line-by-line.

In contrast to this, the findings related to the development of joint attention
were much more interesting. We found that by adding highlighting to different
sections of the code, novice programmers:

* Look at the highlighted sections more frequently.

» Look at the highlighted sections for longer.

This is consistent with the behaviour of the compiler: highlighted sections
represent areas that the compiler looked at more frequently, for a greater amount
of compilation time. This suggests that the use of highlighting within the interface
design is indeed an effective way of making the user aware of the compilers focus,
and ultimately fostering joint attention.
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5 Conclusions and Future Work

In this thesis, we have described the development of a design paradigm for pro-
gramming tools centred around the mechanics of human conversation. Drawing
from research into the mechanics of human conversations, we have selected spe-
cific aspects, namely breakdowns and gaze as a side channel, for exploration in the
context of programming tools. With an initial focus on breakdowns, we applied
this perspective to programming interactions in an effort glean insight into why
compiler errors, specifically, often prove to be confusing and frustrating, particu-
larly from novice users. From this analysis, we developed the Progger prototype,
a tool which attempted to draw from otherwise hidden details of the compilation
process in order to externalise the "thought process" of the compiler, in much the
same way that a human could more precisely explain their reasoning when con-
fronted with misunderstanding from a conversational partner.

Using the initial implementation of Progger, we then put to test our design
assumptions by way of a lean user study methodology, the café study. Despite the
low-cost nature of this study, it proved to reveal broad insights into the design of
Progger that allowed us to strip out ineffective elements and re-focus on aspects
considered to be of significant interest to study participants. This allowed for a
rapid design iteration, effectively achieving the goals for the study and proving the
method to be effective when searching for coarse grained sentiment feedback.

Following the design iteration occasioned by the café study, Progger 2.0 was
implemented with a particular focus on code locality and highlighting through
the compiler heat map. This work continued the exploration of conversational
design: it constituted a refinement of the method for solving breakdowns via the
approach of gaze and joint attention alignment. A further study resulted from
this work, this time making use of eye-tracking technology. This study revealed
that, though compiler heat map highlighting did not have an effect on performance
metrics in a code comprehension and bug finding task, it was an effective means of
directing the programmer’s gaze. In this way, it appears to be an effective means of
encouraging the user to direct their attention to code sections where the compilers
attention was focused.

Our attempts to humanise programming tools by conversational design (RQ;)
have led to interesting results, however the over-arching research question is yet
to be fully addressed. At this point, it is unclear how "beneficial" this method of
design is to users as it appears to have limited effect on performance metrics as
discussed in Section 4.6. This may have been affected by the study design, how-
ever, and therefore warrants further investigation. Despite this, the effectiveness
of highlighting as a means to foster joint attention has shown promising results.

For future work, we intend to further investigate the ways in which the conver-
sational lens may be applied to interaction design in the domain of programming
tools. One key feature of conversations that we have not fully explored is the idea
that meaning is constructed intersubjectively [Sea96] - that is, all conversation par-
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ticipants take an active role in establishing conversational alignment. In our work
thus far, the computer component has taken a less active role in the conversation
than the human user, with static elements computed at compile time, such as the
compiler heat map, used to elaborate on its intentions.

With the recent rapid development of large language model (LLM) based Al
chatbots, such as ChatGPT'?, it may be possible to use these technologies to have
the programming environment take a more active role in the conversation. For
instance, one strategy for resolving a conversational breakdown is that of active
listening [RF15]. This entails one participant summarising in their own words
their understanding of what the other person is talking about, or repeating certain
parts of the content. With use of LLM technology, it may be possible to have
both the user and the programming environment state, in human language, what
they believe the code should accomplish. This can help highlight divergence in
understanding, and give insight into methods for repairing the breakdown.

Side-channels also remain a rich avenue for further exploration, as gaze is
just one example of a side-channel. It may be of interest to investigate the use
of sensors to attempt to interpret other side-channel mechanisms such as body
language in an effort to gauge understanding and frustration. In general, we believe
that the application of a conversational lens to programming interaction has the
potential to offer many more insights into their design. By further studying this
most human form of communication, we hope to continue progressing towards the
humanisation of programming tools.

10https://chat.openai.com/
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BREAKING DOWN AND
MAKING UP - A LENS FOR
CONVERSING WITH
COMPILERS

Abstract

This paper proposes a ‘tool for thinking with’!: that we can describe the interaction
between people and computers, and especially people and developer tools, as a
form of conversation. We outline this perspective, construct a work in progress
analytical frame, and use it to talk about a couple of different examples and draw
implications for future work.

1 Introduction

Most professional software engineering is currently done around a textual repre-
sentation of a program in one or more languages. This representation, the code
itself, acts as the central focus of a number of interactions. It’s typed into IDEs
and text editors, reviewed in version management tools, copied and pasted as snip-
pets into collaboration tools and online forums, sworn at with colleagues, and
applauded when it works. It’s the focus of cultural events, legal disputes, and
Hollywood fantasies.

In other words, code is significant, both in the professional practice of soft-
ware engineers and more generally. The social status of code, and its performative
role has been the centre of increasing writing in recent years [CM12], whilst our

I'A phrase coined by Steven Clarke at the industry panel, PPIG 2016, Cambridge.
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[Sad+18] and others’ previous work [BB13], looking at the role that conversations
around code in review tools shows a complex set of social processes, including
education, status signalling, and cultural norm building. But despite all of this, the
interactions with typical contemporary developer tools in use are rather limited
(edit, compile, debug) and originate from tools (compiler, static analyser, virtual
machine) having fairly fixed and historic roles. Compared to other software where
the interaction patterns have evolved considerably these are starting to look in-
creasingly anachronistic.

A developer might write some code, and when they press the compile button
- as many build infrastructures still make them do - they get back an error. If
they don’t understand the error then all of the burden of what to do now falls on
them and their social network to fix. If they try again, they’ll just get the same
error again, a particularly stubborn interaction of which one side not only can’t
change its answer, but won’t even provide any more information. Previously, we
used either the metaphor of the friend who won’t read your book because of the
missing full stop on page 237 [Chul8], or the computer that just says ‘no’ (or don’t
know) [Bla+18], to describe this kind of interaction.

What these show is a conversational dynamic, or rather a lack of one, between
the developer and the programming infrastructure they use. The strict, pedantic,
and fixed nature of this interaction contributes to a catalogue of problems, from us-
ability issues with static analysis [Joh+13], to problems in CS Education [Bec+19],
but it may also have a broader effect. It localises all of the challenges of the in-
teraction with the formal system of code, into the code itself. This very much
centres the interactions onto the terms of the computer, not the people doing the
development.

This paper describes a work in progress at more closely describing this con-
versational dynamic, starting off with a description of some of the existing work
on the analysis of conversations, building that into the beginnings of an analytical
tool, applying the tool first to the description of interaction in general, then to in-
teraction with a compiler, and finally as a motivation for building an experimental
platform.

2 Aspects of Conversations

In this section, we list an initial selection of aspects of conversations which we
later use as an analytical perspective to describe the exploration of a conversational
form of interaction with tools like compilers’>. Whilst the notion of considering
interaction as a conversation has been considered earlier by, for instance, Hugh

2For convenience we’ll refer to this as ‘conversations with a compiler’, this is expanding the role
of the compiler to be the technology that handles all the underlying information structure behind an
IDE offering services such as code completion, and the build process - there wasn’t a particularly good
name for all those things, so we’ll use compiler in the broadest possible sense of programming language
interaction, tooling and infrastructure.
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Dubberly and Paul Pangaro [DP09] building on the work of Gordon Pask [Pas76],
it has not to our knowledge been further explored in the context of programming
tools.

Our starting point for this exploration is an informal selection of previous
work related to conversations; conversation theory [Pas76], conversation analysis
[SSJ74], interaction design and conversations [DP09], conversational alignment
[HH11], communication breakdown [Ben+19] and properties of good conversions
[Cla+19], we consider the following groups of aspects: (1) “Turns & Temporality”,
(2) “Intersubjectivity, Alignment & Active Listening”, (3) “Tolerance, Breakdown
& Repair”, (4) “Explicability”, and (5) “Side-channels & Deixis”. We will de-
scribe these aspects here in terms of normal person-to-person conversations and
connect them to the selected literature and other work describing programming
language tooling.

2.1 Turns & Temporality

Conversations have a cadence to them, often one person speaks and leaves pauses
for the other person to speak. If they want to, the other person then starts speaking
and takes ‘their turn’. If people want to interrupt they will often signal this implic-
itly, or start to speak if there is a gap and back off if the other person isn’t done.
In some cases (small children, large conferences) this logic is explicitly supported.
Sometimes by having a physical token (‘you can talk when you have the ball’),
other times by structured ‘question and answer’ times. In closer conversations be-
tween friends, the conversational structure can become a little more informal with
people taking over conversations midway through sentences.

Dubberly & Pangaro [DP09] describe the structure of a conversation as a pro-
cess where participants open a channel, commit to engage, construct meaning,
evolve, converge on agreement, then act or transact. A central aspect of this pro-
cess is turn-taking, described in a model by Sacks et al. [SSJ74]. This turn-taking
model includes turn-constructional components (how a speaker constructs a turn),
turn-allocation components (how to allocate who gets the next turn), and rules,
such as if the current speaker selects the next speaker, then the selected speaker is
obliged to take the next turn to speak.

The closest analogy to turn taking that we are aware of in the study of pro-
gramming tools is the descriptions of liveness and the temporal nature of interac-
tion within the live programming community. Tanimoto’s framework [Tan90], and
the broader live programming communities have studied the intertemporal nature
of the interaction between developers and their tools about the code, and whether
these are primarily episodic (traditional build compile cycles) in nature or more
continuous such as the example above, and whether these timing characteristics
are for interaction with the code, or with the running program.

While our reading of the models of Pask and Sacks et al. is at an early stage, we
note that they have different origins. The conversational model by Pask stems from
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cybernetics and is not directly bound to human-to-human conversations, while the
turn-taking model by Sacks et al. originates from studies of human conversation.
In relation to the intersection of these two models, a recent study by Clark et
al. presents a difference in expectations on a human-to-human conversation and
human-to-agent conversion, comparing the latter with that of a conversation with
a stranger [Cla+19]. How these models overlap has interesting applications to the
domain of interacting with compilers but at this point represents future work that’s
beyond the scope of this paper.

2.2 Meaning Making: Intersubjectivity, Alignment & Ac-
tive Listening

The construction of meaning within a conversation is obviously a complicated
topic of epistemology, and we can only present a very preliminary and high-level
way of thinking about it here, focussed on the end of understanding conversations
with computers.

Meaning is sometimes described as being constructed intersubjectively
[Sea%96], that is between the people in the conversation, and that a number of
mechanisms are used to determine conversational alignment [HH11] - whether
they are "on the same page”. Utilization of conversations to create a shared
understanding (“meaning making”) and to reach agreement [DP09] is central
in conversation theory [Pas76], where conversations are seen as interactions
between cognitive processes and as key drivers for learning, as different models of
understanding are reduced to a shared model. In a recent empirical study by Clark
et al., mutual understanding was found to be one aspect of a good conversation,
alongside trustworthiness, active listening, and humour [Cla+19].

This implies that the conversation might not be meaningfully interpretable out-
side the context of the conversation, for example, when reading what was written
after a substantial period of time has passed, or if others that weren’t part of the
original conversation read it. For example a reference to shared experiences such
as ‘where did I put the thing that we brought back from that holiday in the moun-
tains?’ might make complete sense to your friend, but wouldn’t mean anything to
someone else. Some techniques for having conversations elevate these practices
from instinctive to intentional habits. For example, in active listening [RF15] one
of the techniques used to ensure alignment between participants is for one of them
to summarise the content of what is being said, or repeat what they heard. This
gives the other participants a chance to see whether they’re ‘getting it’.

2.3 Tolerance, Breakdown & Repair

As the meaning is intersubjective in the conversation between two people it’s in-
evitable that their understanding won’t be exactly the same. To keep the conversa-
tion going, we suspend trying to build a precise shared understanding until it really
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matters. We may, for instance, tolerate that we don’t have a definition for some of
the terms, or a precise description of what they do or don’t include.

Sometimes however, it becomes clear that the misunderstanding is significant
enough that you’re actually talking about completely different things, at which
point the conversation ‘breaks down’. At a point of this communication break-
down, the normal flow of the conversation stops and instead either the conversation
ends, somewhat acrimoniously, or, more commonly, the participants in the conver-
sation attempt to repair it [SSJ74]. In this repair, they enter what may be referred
to as a meta-conversation [DP09], where the participants attempt to establish what
the source of the misunderstanding is, clarify, and then go back and proceed with
the conversation.

In a recent study by Beneteau, et al. [Ben+19], studying human-to-agent con-
versation by observing how families interact with the conversational agent Alexa,
they found that the burden of the repair was primarily on the humans. Alexa could
signal a breakdown (e.g., “did you mean X or “sorry I’'m not sure”), but provides
next to no assistance with repair (e.g., could indicate a need for assistance with a
definition). The participants in the study used several repair strategies, e.g., ad-
justing their cadence to that of the agent, exaggerating sounds (hyperarticulation),
adjusting sentence structure to clarify (e.g. from “alexa, thank you, stop” to “alexa,
stop”), and repeating the previous utterance again.

In relation to programming tools and compilers, in a study by Johnston et al.
on why software developers don’t use static analysis tools [Joh+13] they found
usability issues connected to false positives, workflow integration, overflow of re-
sults, and comprehensibility of results. In a related study by Imtiaz et al. in ana-
lyzing questions about static analysis tools on the popular StackOverflow platform
[Imt+19] found the most common question to be about how to ignore results. With
the lens of conversations, several of the found usability issues with static analysis
results can be considered as breakdowns. Again, the primary burden of the repair
is on the human and based on the common practice of ignoring results there is not
much of a conversation. In Basman et al. [Bas+16] we have discussed the various
technical sources from which this breakdown will occur, but primarily from the
perspective of structurally avoiding them rather than building mechanisms through
which they can be repaired.

2.4 Explicability

The repair mechanism outlined above is a form of explicability - where one side
(if possible) asks for more details or more description on a phenomena that has
occurred. This explicability may be guided, where one party asks questions in
order to shape the information they are seeking (or, in the case of a Socratic di-
alogue, encouraging self-reflection about), or it may be a description that one of
the participants of the conversation leads. The explanation does not have to be a
repeat of the information. It might be achieved by trying to say the same thing in a
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different way, providing a different example of the same thing, or analogy between
the object being described and another item. This may then be coupled with active
listening techniques where they try and describe what they have just heard to see
if they have now understood.

As a form of repair [SSJ74], explicability is closely related to the construction
of a shared understanding [Pas76] and meaning making [DP09], where it helps to
bring about conversational alignment [HH11].

Explicability has recently gained prominence in Software Engineering through
the drive to create ‘explainable Artificial Intelligence’, that is statistical systems
that are legible in the processes they used to make decisions. Nachtigall et al.
[NNQDB19] apply a similar terminology for characterising interaction with static
analysis, listing a number of explainability challenges incorporating usability chal-
lenges such as incomprehensible messages, workflow integration, and false posi-
tives, also reported in, for instance, Johnson et al. [Joh+13].

2.5 Side-channels & Deixis

So far the description above has been focussed on the linguistic content of the
channel. However this is by no means sufficient as a description of the phenomena
of a conversation. There are many other things happening in the conversation;
participants will be observing each others’ body language, facial expressions, tone
of voice, and cadence of speech. All of these are used to give cues as to whether
the conversation is making sense, whether it contains too much information or too
little, whether it’s an enjoyable discussion or whether it’s frustrating.

These side-channels vary in different conversational settings. In one-to-one
conversation you might notice your conversation partner glancing at the clock as
an indication that the discussion might need to wrap up soon, while in a conference
setting this more likely is signalled by the participants reading their email. As well
as providing meta cues about the conversation, these channels can also be used to
directly provide information, such as deictic pointing at an object and saying ‘let’s
put the book on the shelf over there’, or to direct turn-taking in a conversation
[NHW96].

We aren’t aware of a significant literature applying communicative side chan-
nels within programming tools, as we’ll see later, without a larger conversational
frame it’s hard to know how the information gained via a side channel would be
used by the tool. There have been some experiments introducing anaphora into
existing programming languages [Loh16], however these remain largely experi-
mental.

3 Frame: Interaction as a Conversation

Having now outlined the overall view of the conversational approach we will take,
we will now apply this to describing a general interaction design problem before
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using it to describe the interaction with a compiler. In the time honoured tradition
of PPIG, we will describe a microwave oven. Following the lessons of operational-
ising the Cognitive Dimensions using a questionnaire [BG00] we performed this
description by asking a series of questions about the context and each of the prop-
erties. We list these questions in Appendix 1. As with other analytical perspectives
that are used to describe the interaction with programming such as Cognitive Di-
mensions [GP96] and The Patterns of User eXperience [Blal5], it is important to
also describe the context in which the interaction is occurring.

Context: In the case of the microwave interaction, the conversation is between
a hungry person and a microwave. The conversation is happening in the person’s
kitchen at eye level where the microwave is mounted on a wall. They are having the
conversation because the first author would like some warm soup. The language
they are speaking in is wattage and time in minutes. Now we can consider the
interaction in terms of the properties we described earlier.

Temporality: The interaction is initiated by the person pressing the power
button, at which point the microwave responds by suggesting how long it’s going
to cook for. It’s then the person’s turn to twirl a dial and press start.

At which point the microwave will begin its cooking until it’s done, it will then
signal that it’s turn is over with a loud beeping noise. This will continue from
time to time until the person acknowledges it by opening the door and closing it
again. Interruptions are a one way flow with this model of microwave, if the person
opens the door, cooking stops straight away. Resuming the ‘microwave’s turn’ is
an explicit action - closing the door and pressing the start button. On the other
hand, whilst the person can interrupt the microwave at any point, the microwave
does not interrupt, it does the same thing until it’s completed its turn and then waits
- possibly forever.

Meaning Making: The interaction is held on pretty fixed terms, four separate
power levels (60, 360, 600, 1000) and the time. Whilst the person using the mi-
crowave may not be able to assign meaning to these beyond (a little amount of
heating, not much heating, a fair amount of heating and a lot of heating), there
is no notational change occurring on the microwave side and no tolerance of any
variation from the set pattern of interaction. If it is not followed, nothing will hap-
pen. In this sense whilst there is some intersubjectivity, the person does all the
learning, and if a piece of metal is introduced into the microwave there might be
another opportunity for learning.

Breakdown & Repair: As suggested above, there are various things that the
person can do to interrupt the normal usage of the microwave, for example opening
the door. This will cause the microwave to stop everything it is doing, and peri-
odically make alarm noises until the door is closed and the start button is pressed.
This is the one and only way in which the conversation can be repaired, and is
explicitly signalled on the user interface of the microwave.

Explicability: The microwave is fairly inscrutable. Whilst there is a display
that explains the state (cooking, cooling, waiting for the door to be closed) there



48 Breaking Down and Making Up - A Lens For Conversing With Compilers

isn’t any way of requesting more information, from the significant - “why did
sparks come out when I cooked my fork?” to the more mundane “how long have
you been cooking for?”. The former might only be discoverable by reading an
encyclopedia, the latter is just a feature that isn’t implemented though it of course
could be with relative ease. The microwave also never requests more information
from the person.

Side-channels: However whilst the conversation isn’t subject to any form of
direct elaboration, it’s rich in side channels. When the microwave is running it
makes a deep rumbling noise, vibrates slightly and illuminates the compartment.
Over time you can see the food start to boil, and if ignored long enough this will
be coupled with an olfactory side-channel as well. There are no side channels by
which information can flow from the person to the microwave, it is ignorant of the
world it sits in, and just performs the same series of actions in response to the same
series of input, independently of happiness, hunger, or impatience waiting for the
soup.

What is all this telling us? This description has shown what a conversation
with a relatively fixed appliance looks like, and how even with a very simple device
the lens of interaction turn taking, interruptions and repairs and the richness and
characterisation of the side channels is an informative description of the interaction
and highlights possibilities for improving explicability. We will now apply the
same lens to describe interactions with a compiler.

4 Conversations with Compilers

Having now seen what it looks like to think of using a microwave as a conver-
sation, we can now move on to considering a compiler. Just as there is variation
in the context of use of an oven (using a domestic microwave to cook soup is
different from using an industrial autoclave to cook a spacecraft fuel tank), there
is also variation in the nature of software being written. In order to consider the
conversation we need to be specific about the context of interaction, not just the
technologies involved.

Context: For the purpose of this conversation, we’ll try and describe a circum-
stance that is specific but likely to be representative of a number of activities that
software engineers in the wild do. The conversation is between a software engi-
neer and their tooling around an application written in Java. The conversation is
mainly happening in an IDE such as IntelliJ or Visual Studio. They are having this
conversation as the engineer has been tasked with adding another feature to the
application, in a hurry but not a desperate one. The conversation is happening in
multiple languages, firstly and most obviously in the Java programming language
- but the story of the use of language in an IDE is complicated. Even depicted
simplistically as in Figure 1, there are a lot of languages involved.
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IntelliJ

Code IntelliJ Code Editor

Java 8 with
CorpX’s style guide

CorpX's Other
Library Library

Application
code

App config
XML

CorpX’s plugin

Git tools

Figure 1: A schematic outline on the number of different languages, both nota-
tional and interactional that are involved in a notional commercial software devel-
opment context (called CorpX).

Though we said that the program was ‘written in Java’, as might be a com-
mon statement in a discussion on hiring, it’s really more complicated than that.
Whereas Java imposes a standard syntax and how it is interpreted?, organisations
often decide to make use of only a subset of the possibilities through using tools
like corporate style guides, producing a dialect of Java. The IDE will have a partic-
ular way of rendering the code with syntax highlight and font etc. For any software
of any size within that dialect, a specialist vocabulary or jargon for the purpose of
the software is constructed. For a furniture maker this might be the types of panels
they are using to construct their pieces, for music software it might be about the
acoustics of various instruments. Whilst these are both written in the grammar
and syntax of Java, the libraries that express them rapidly form their own little
language that isn’t easily understood. Anecdotal evidence suggests that more of
the work of onboarding a new software engineer into an organisation is taken up
learning these ‘little’ languages, than learning the ‘big’ language.

Apart from the ‘primary’ language , there are a whole host of peripheral lan-
guages involved. These include configuration languages: both the package man-
agement and build system, which will be fairly conventionalised between organ-
isations and contexts, and the configuration, that will be application specific, as
well languages for documentation, automation and other process support. Aside
from these obviously linguistic artifacts, there are many other elements, including

3Even this turns out not to be true often, as organisations and frameworks build code transformation
tools that mean that the code that appears in the editor is not the same as the code that is actually
executed.
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the language used on the buttons and interactive elements of the IDE, the language
used in organisation specific plugins and tools like static analysers, and the lan-
guage used to interact with other tools, such as unit testers (green circles meaning
good), and elements of the build process such as version control (the commands
used to make Git do things)

This complex linguistic environment has a number of effects, it can be fairly
overwhelming for new speakers. It also creates a very viscous [Gre90] ecosystem
where any improvement has to be supported across a number of different tools
in order to achieve practical usability within an organisation. This partially con-
tributes to why the infrastructure for professional development so significantly lags
behind research prototypes for improved programmer experience.

As would be expected for such a complex environment, there are many aspects
of temporality to consider, with the different notations having different levels of
liveness [CNB10]. For the purpose of this discussion and motivating our subse-
quent experiment, we will focus on the conversation between the developer and
their code in the primary code view, including syntax highlighting and the presen-
tation of any errors and warnings that occur.

Temporality: The cadence of the conversation is primarily led by the devel-
oper who makes a change to the code. In some cases the editor responds pretty
much in between keystrokes, for example updating syntax highlighting. In other
cases the compiler waits for a short pause where the developer is no longer typ-
ing and does the more arduous work of computing errors etc. However once that
process has started they are just blurted as soon as they are ready, potentially inter-
rupting the flow of a further conversation that’s started. So the developer’s activity
is partially used as a way of signalling when it would be a good time for the com-
piler to do something.

It is not necessarily the case that systems that are more live are better, for ex-
ample some editors insert keystrokes on behalf of the developer, such as closing
quotes for them. This results in the developer needing to enter into a closed loop
interaction, monitoring what the editor is doing for potential incorrect interrup-
tions that need to be fixed up, a known design flaw in adaptive text entry systems
[Oul+18].

The processes that take more time on the other hand are often explicitly sig-
nalled. The developer presses a button that begins a compilation process. At which
point the compiler infrastructure does its work pretty much regardless of any fur-
ther input, apart from an explicit instruction to cancel, and returns the results to
the developer when it’s done.

Meaning Making: Meaning making in programming systems is a topic of
considerable historical focus of the programming language community, and be-
yond. We suggest a part of the interaction that has a strong conversational aspect
is code completion. If the developer introduces a new method successfully (‘here’s
an idea - musical instruments can be played’), in subsequent interactions the com-
piler will refer back to that ‘idea’ (‘if you’re talking about an instrument, would
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you like to play it?”). If on the other hand the compiler didn’t understand the
method, for example if it had unbalanced braces, then this suggestion won’t occur.

Likewise when new elements are added to the program, such as methods or
classes, these often appear in an adjacent area of the display. This can be thought
of as another form of ‘active listening’ where the tool confirms that it has correctly
understood some of the intention of the programmer by showing where in the
structure of the program they have entered the new element.

We suggest that one of the conversational properties that the useful awk-
wardness [Bla00] of strong type systems brings, is that it is easier to support the
meaning-making properties of the conversation by allowing the tooling to more
completely model the program without executing it.

Tolerance, Breakdown & Repair: Different aspects of the conversation with
a compiler have different levels of tolerance to mistakes. As we suggested above,
many aspects are highly intolerant to the slight syntactic slips that occur frequently
in day-to-day conversations between people, refusing to do any significant work
with code before it is in a grammatically perfect state.

However whilst this is the case for the conversations about compilation, the
other conversations that happen have wider variation in their degrees of tolerance.
For example, syntax highlighting one function typically wouldn’t be prevented by
another function containing a mistake like a missing semicolon, however such a
mistake would stop compilation happening.

As would be expected in a situation where there are a number of different lev-
els of tolerance, there are also different ways of signalling that the conversation
has broken down, and different ways of repairing it. One example is listed above,
where the divergence [Bas+16] between the developers expectation as to the ele-
ments that are available to the program and the compiler’s model is revealed by the
code completion mechanism. Experienced developers use the change in behaviour
that code completion is no longer suggesting ‘the right things’ as an indication
that there is a problem in the code [MCB15], and look to fix the issue determin-
ing whether it has been fixed by whether code completion starts working properly
again or not. This is an example where sensitivity to their alignment with their
compiler appears to be an indicator of expertise.

Another example of the implicit signalling of the breakdown of alignment be-
tween the developer and the compiler occurs when the syntax highlighting goes
awry. For example in the case where the developer has forgotten to close a string
literal quote, suddenly all the text in front of them changes colour, which signals
that the compiler is interpreting the code differently to the developer, and for an
experienced developer is often a quick fix.

In other cases however the breakdown is more explicitly communicated, for
example by the compiler indicating an error. This kind of breakdown is indicated
by adding red squiggles underneath the text where the compiler thinks there’s an
error, displaying an error in the error list beneath the text, and changing the colour
of the file.
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However, as with the repairing
Compiler: ‘there is a problem ', code Completion the burden is very
S::]?]]},CT:.‘,E:{”.r'l‘”" do anything about it?" much on one side. The developer

prer e needs to find and fix the problems

Developer: ‘what?’ . . .
Compiler: ‘insert a missing semicolon’ with little assistance from the com-
Developer: ‘please do that’ piler. Some compilers such as Dart

Compiler: ‘there is no problem’ in Visual Studio Code have ‘suggested
fixes’ that they can perform, but these
have to be explicitly requested, as
shown in Figure 2.

Figure 2: A notional conversation
where the compiler knows of a correc-
tion. As well as the burden of fixing the

problems falling heavily on the devel-

oper, the tone of the indication of the
breakdown is often terse compared to the way in which normal conversations
would be held, with error messages such as ‘variable cannot be used before de-
clared’. The nature of the interaction tends to be one sided with the compiler
having no way of sensing whether the developer’s understanding of the model of
the compiler has broken down, and no way of addressing it.

Explicability: Part of this lack of a way of addressing the potential breakdown
between the compiler and the developer is associated with a lack of the ability to
finesse the description of an error. Most compiler error messages are delivered
complete to the user associated with the point in the code that they occur at. This
typically adds to both the terseness described above and a barrier to the amount of
conversational repair that is possible.

There is no way for a developer to ask the compiler basic questions like “why
is that a problem?”, or “what were you doing when you had this problem?”, or
“can you show me another example of this problem?”. These requests would be
part of a normal conversation with an experienced developer in understanding why
something was going wrong and what could be done about it, however the conver-
sation with the compiler shows much more limited interactivity. It simply repeats
its statement about what the problem was with no variation. This means that if
the original error message didn’t help, the developer is reduced to performing trial
and error to see if it changes the message that the compiler gave rather than being
asked to ask for any form of refinement. This lack of explicability is the starting
point for our experiment below.

Side-channels: Compared to the richness of the interaction with the mi-
crowave, the compiler has very limited side channels. There isn’t much indication
that the compiler is doing something other than if it happens for a long time the
fans start to make noise. There have been a number of attempts to use physio-
logical data rather from eye tracking to skin salinity to observe the state of the
developer but these techniques have broadly not been adopted.
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5 Prototype: Mitigating Breakdowns in Com-
piler Interaction

The analysis in Section 4 paints a picture of a rather limited conversational inter-
action within a very complex environment. Many of the limitations in the con-
versational interaction occur due to the static nature of the communication with
the compiler*, the developers provide code and the compiler is given the opportu-
nity to respond, but there is no possibility of further interaction with respect to the
information provided. This creates a number of problematic dynamics where the
compiler stubbornly replies with the same answer as before, and offers no help, as
it has no memory of the history of the conversation, or how the information that
it has about the code could be used to support better explicability. How would
the interaction look if we explicitly designed for breakdowns in the conversational
alignment between the developer and the compiler?

In order to experiment with this
question, we built a prototype where
we explore how the “compiler con-
versation” can continue beyond an er-
ror and the breakdown it incurs. A
literal application of the conversa-
tional metaphor would result in an in-
teraction that was similar to a con-
versational agent, whilst interesting
as a possibility this would create a
very significant implementation chal-
lenge to avoid uncanny valley effects
[MMK12]. Instead we aim to implic-
itly support the conversational nature
of the interaction outlined in the prop-

package exanmples;
public class VariableNotInitialised {

int y;

int x;

i (NED 07

X = 154
' g

public int example() {
int x;

WENn B wa R

if (y < 3) {
x =1

)i

return Iﬂ+ ¥3
}

J
return x + y;

variable x may not have
been assigned when used

Figure 3: Java code example with the
compiler and its view illustrated with
blue figures.

erties above.

Figure 3 illustrates an example where a breakdown in the “compiler conversa-
tion” may occur. In it, a small method is used to return the sum of two variables,
x and y, where v is declared as a field within the class and the value of x is set
depending on the value of y. Given a default value of zero for y, we can see at
a glance that the condition in the if statement would evaluate to true, and as a
consequence x would always be assigned. The compiler however, represented by
the blue robot, sees things differently - although it considers the declaration and
assignment of x, it is unable to determine the result of the conditional, and there-
fore throws an error that may come as a surprise to the developer. To solve this

“In order to help highlight the conversational nature of the interaction with a compiler we’re going
to talk as if the compiler is a person having the conversation with the developer. However this is not to
imply that we think that a compiler has agency beyond the engineers that created it.
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breakdown, we have built a prototype web application that attempts to act as a
visualisation of the behaviour represented in Figure 4.

This prototype, named ‘“Programming by Errors”, or “Progger” for short, con-
sists of an extension of ExtendJ [EHO7a], a compiler built upon the JastAdd meta-
compilation system [HMO3]. JastAdd is an implementation of the referenced at-
tribute grammars formalism, as described in [Hed0O], which introduces declara-
tively defined objects called attributes that may be attached to nodes in the abstract
syntax tree and evaluated at an on-demand basis. This gives the advantage of al-
lowing access to the attribute evaluation stack, as opposed to just the call stack, and
allows us to track the evaluation of an error through different sections of the syntax
tree and their corresponding tokens in the source code. With this information in
hand, we present a list of errors generated by the compiler, which can be further
expanded into a tree showing all of the attribute dependencies which were needed
to compute each error. These attribute nodes may be hovered over to highlight the
section of code that the attribute relates to in the abstract syntax tree.

Progger
Choose file i itiali java Compile
While | was considering your code, | found these
package examples; problems:
public class VariableNotInitialised {
int Local variable x is not assigned before used
int y; >
Tell me more about this
public int example() {
int & | was considering the following aspects of the code:
if
iy I was checklng if this definite assignment is valid:
x = 1; Jnit_p
} . lwas checklng |f this detlnne assignment is valid:
g tProblems() @hashCode!
return x + y;
- I was checking if this definite assi 1t is valid: Expr.i )
} @hashCode 3b6eb2ec
} .. | was propagating a variable's scope: VarAccess.decl()
@hashCode:3b6eb2ec
.. | was propagating a variable's scope: VarAccess.decl()
@hashCode:3b6eb2ec
. | was propagating a variable's scope: VarAccess.decls()
@hashCode:3b6eb2ec
.. | checked the attributes of a variable: VariableDeclarator.isField()
@hashCode:66d33a (S
( . I was checking if this definite assignment is valid: ]

Figure 4: Screenshot of the Progger prototype showing an expanded error view.
The highlighted variable (x) corresponds to the code location investigated while
evaluating the attribute where the cursor is hovering.
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6 Discussion and Implications for Future Work

In this work we have sketched out an initial framework for describing conversa-
tional aspects of an interaction, and applied that to characterising how conversa-
tions with compilers currently proceed. Based on this analysis we briefly outline
how an alternative might be constructed.

This alternative is not conversational in the sense of a conversational agent, but
rather is conversational in terms of structural properties of the interaction, such as
turn taking and explicability. Whilst it is a work in progress it shows a number of
possibilities, and also highlights the technical and interaction challenges.

The primary challenge in the conversation remains bridging the different mod-
els involved. That is, between the informal models and learnt patterns of the de-
veloper and the formal representation that the compiler uses in order to compute
properties of the program that it needs to compile the code. The success or failure
of this bridge either allows conversational alignment mechanisms to take place, or
interferes with them. The purpose that the analytical lens provides is a tool for
thinking about what properties such an interaction needs and where the shortfall
compared to a person-to-person conversation will create a significant opportunity
for novel interaction design.

Future Work One possibility for future work is to look for intermediary arte-
facts that are well suited to tracking alignment and detecting breakdowns. This is
part of the role we saw type systems and code completion playing where they acted
as a mechanism by which the developer could make sure that the compiler’s rep-
resentation was aligned to what they had expected. There may be other properties
that could be designed like this.

A second potential avenue of further research could be the one that Progger
is outlining, of progressive explication of the causes of errors, led by a discussion
with the programmer rather than the all-or-nothing logic to date. In building the
prototype, we found the mapping of some of the activities being performed to be
challenging - work to clarify the activities of the compiler in terms of the model
that the developer holds of it will require further work.

In this work, we have focussed on errors, however there are many other ar-
eas of the compilers (in the broadest sense) activity that might potentially benefit
from further explication, these include package and version resolution or runtime
behavioural analysis.

A third potential avenue that could be pursued is to expand the richness of the
communication channels that are available between the developer and the com-
piler, including the addition of more signals. From the compiler to the developer,
this could include outlining the regions of code that have been read or changed, or
the current activity or phase of the compiler. From the developer to the compiler,
as our previous work on sensors and probes [CS19] suggests, it is possible to sys-
tematically approach the collection of data that shows the utility, or lack thereof,
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of the interactions that the compiler is providing and that opens the possibility for
supporting adaptation in the behaviour of the development environment.
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PROGGER: PROGRAMMING
BY ERRORS (WORK IN
PROGRESS)

Abstract

This paper describes a work in progress implementation of a programming tool
that puts errors and their provenance at the forefront of the interaction between a
developer and a compiler. We discuss the motivation for such a tool, its design
and implementation, and reflect upon avenues for further research which it can
facilitate.

1 Introduction

For novice programmers, compiler errors are a common occurrence as they work
through the process of familiarising themselves with the syntax of a programming
language. They write some code, execute it, and any errors that result can then be
used to inform their next steps. Sometimes, however, unclear error messages can
leave them at a loss as to how to proceed or, even worse, lead them down a wrong
path altogether if the actual source of the error ends up being in a different location
in the code from the line that the compiler flagged as problematic [Bec+19]. In
this case, the respective understanding of developer and compiler are no longer in
alignment [HH11] - looking at this interaction through the lens of a conversation
[DP09], it can be said that a communication breakdown [Ben+19] has occurred.
This conceptual approach is explored at length in [CSM21], which proposes a
theoretical ‘tool for thinking with’, this paper explores a possible application of
that framework.
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In the event of a breakdown in understanding between two human participants,
the focus would shift towards a meta-conversation about the conversation itself
[DPO09]. The participants would attempt to “repair” the breakdown, bringing all
parties back into alignment before returning to the primary topic. A compiler,
however, is much less forgiving. If a developer fails to understand a statement from
the compiler, the onus is on the developer to seek out clarification and decipher
exactly what is meant, with nothing from the compiler by way of assistance.

As an example, if we con-
/ \ sider the Java code in Figure 1,
1| package examples;
2
3
4
5
B
7
9
i@

it has a small method (exam-

public class VariableNotInitialised { . .
ple) using two variables; one

ity e field (y) declared in the class
pumcx;int example() { " (“'}“{’;_ and one local variable (x) de-
< L L5 A clared in the method. The lo-
u e s cal variable is “possibly as-
t + ¥ . N o X

13 =y signed” before it is used in the

14 return |£|+ ¥i varigble x may not have 1 14
15|} o e o return statement (on line 14).
Q ’ / If we know that the field (y) is

given a default value of zero
Figure 1: Java code example with the compiler Wwe can see that the condition
and its view illustrated with blue figures. in the if statement will always

be true, and consequently the
local variable will be assigned.

However, the compiler (the little blue robot-figure operating in the blue box)
has a different view, where it considers the declaration and uses of the local vari-
able (indicated with dashed lines) to see if it is assigned before it is used. When
considering this, the compiler can not determine the value of the condition! (the
black box with the question mark), and as a consequence it reports an error where
the local variable is used. If we let the javac compile process the code example via
its command line interface, we get the following result, providing a message and
pointing to a position:

VariableNotInitialised.java:14: error: variable x might not have been i1nitialized
return x + y;
A

1l error

This is where the interaction with javac ends - we get no more assistance and
the burden of determining that the fix may be to assign a value declared on line 8

'The compiler is performing a static analysis without running the code. One consequence is that
it has little knowledge about values of variables and results of expressions. It could possibly infer the
result of the condition in the example code but this kind of analysis is typically not done by compilers
for the Java language.
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is on us. If we consider this as a communication breakdown, how can we provide
assistance for repair?

With this in mind, we have developed a prototype for the exploration of the
provenance of errors that extracts extra information from the compiler about the
source of an error and presents it to the user. Given this relative wealth of infor-
mation, we will discuss how it can be used to repair a breakdown in understanding
and ask the question “how would the interaction look if we explicitly designed for
mitigation of breakdowns in the conversational alignment between the developer
and the compiler, as well as support for repair?” - In other words, can we design a
tool that enables the user to engage in “programming by errors”?

2 Background

For ease of access to additional information within the compiler, we decided to
build a small extension of a compiler based on a reference attributed grammar
(RAG). An explanation of this formalism will be provided in the following section,
as well as the motivation behind our selection of a RAG-based compiler as a basis
for the Progger system.

2.1 Attribute Grammars

The formalism of attribute grammars (AGs), as introduced by Knuth [Knu68], is
a means of extending a context-free grammar to allow for a declarative descrip-
tion of context-sensitive elements of the grammar. This is achieved by attaching
attributes to non-terminal nodes of the abstract syntax tree with rules for their eval-
uation, with attributes categorised as either synthesised or inherited depending on
whether they are used to propagate information upwards or downwards through
the tree respectively. For example, consider a simple context-free grammar de-
scribing addition and subtraction expressions. The notation used here is a simpli-
fied form of the JastAdd notation used to specify the abstract syntax tree (AST)
model. Some notation from the concrete grammar is also used for clarity, such
as the explicit inclusion of ‘+’ and ‘-’ tokens which would normally be omitted
from the abstract grammar. Certain object-oriented concepts are used, such as ab-
stract classes and the use of inheritance, denoted here in the form <Subclass>:

<Superclass>.
abstract Expr
Add: Expr -> Left:Expr + Right:Expr
Sub: Expr —> Left:Expr - Right:Expr

Numeral: Expr —> N
Where N is the set of all natural numbers, N=0, 1, 2, 3,4, .... To represent the
numerical value of an expression, a synthesised attribute (val) may be attached to
each of the Expr nodes and a corresponding equation defined for each production
in the grammar as follows:
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syn int Expr.value () ,'2

eq Add.value () = getLeft () .value() + getRight () .value();
eq Sub.value () = getlLeft () .value() - getRight () .value();
eq Numeral.value() = N;

Given the input string “1+2-3" within this grammar, the syntax tree in Figure 2
may be derived with the appropriate attribute values as defined by these equations.
The synthesised attribute, value,

I can be seen to be calculated based
ST ee0 + petRghtushe] on information provided by the child
of the node it is attached to, thereby

Sl -cetRighLvebel) propagating information up the tree.
i The evaluation of attributes occurs on-
demand, therefore the values of the
child nodes would not be calculated
until the result is required by the par-
ent node. It is also of interest to prop-
agate information downwards through
the tree, however. This is achieved us-
ing inherited attributes, where the equation is defined in an ancestor of the node
containing the attribute. This will be explained in greater detail in the next section.

Figure 2: Derived abstract syntax tree.

2.2 Reference Attribute Grammars

The AG formalism has been further extended by the introduction of reference at-
tributed grammars (RAGs) as described by Hedin [Hed0O]. The primary addition
in this extension is to facilitate the referencing of objects by attributes, thereby
allowing a reference attribute to form a link between one node of the tree and an-
other node at an arbitrary distance from it. This allows for multiple benefits, such
as the superposition of graphs over chains of use-def relationships or inheritance
structures.

Consider an extension to the previous example that allows for the assignment
of values to variables and a predefined print function. This can be achieved by
introducing the concept of a block (Block) composed of a list of statements
(Stmt). A statement may be a variable declaration (Decl), an assignment of
a value to a previously declared variable (Assign), a call to print the result of
an expression (Print), or an expression (Expr). We also introduce a Use node
to represent calling a variable by reference, and let ID correspond to a string of
arbitrary length:
abstract Stmt abstract Expr
Block: Stmt —-> Stmt* Add: Expr —> Left:Expr Right:Expr
Decl: Stmt —-> ID Expr Sub: Expr -> Left:Expr Right:Expr

2The notation presented here is a simplified form of the JastAdd syntax. A detailed description
can be found in the JastAdd reference manual: https://jastadd.cs.lth.se/web/documentation/reference-
manual.php
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Assign: Stmt -> ID Expr Use: Expr -> ID
Print: Stmt -> Expr Number: Expr -> N
In order to associate variable uses with their declarations, we must introduce

several new attributes. All Stmt nodes will require an attribute (declares),
that, given an ID as a parameter, will return true if evaluated to a Decl statement
with a matching ID node, or false for all other Stmt nodes:

syn boolean Stmt.declares(String id) = false;

eq Decl.declares (String id) = getID() .equals(id);

Another equation may now be defined on Use nodes, decl, that can be used to

calculate a reference to the variable declaration and thereby obtain it’s value. This
may be accomplished by the use of an inherited attribute, lookup, which we can
use to implement the lookup pattern which was previously defined for JastAdd-
style RAGs [FSH20]. This attribute is attached to the Use node, however its
equation is defined further up the tree, within the Block node:

syn Use.value () = decl.val();

syn Decl Use.decl () = lookup(getID());

inh Decl Use.lookup (String id);

inh Decl Block.lookup(String id);

eq Block.getStmt (int i) .lookup(String id) = {

for (Stmt s : getStmts()) {
if (s.declares(id)) {
return s;

}
return super.lookup (id);
3

As several attributes are dependent upon each other in this example, the dy-
namic dependencies must be calculated on-demand when a reference attribute is
evaluated. An evaluation stack is used during this calculation which can effec-
tively be compared to a call stack, where an attribute pushed on to the top of the
stack can be understood as having been called by the attribute immediately below
it.

Consider an input to the compiler in the form of a small program and the
resulting syntax tree as shown in Figure 3, with additional information included to
highlight dependencies. In the interest of clarity only the dependencies for a single
attribute are presented: those which can be used to return the matching declaration
for the last reference to “a” in the line: “print b + a;”

The ability of inherited attributes to propagate information down the tree is
highlighted here. The ID value “a” is first propagated up through the Block nodes

3 As can be seen, this code snippet includes some imperative code. This is considered to be valid
within the JastAdd system, as long as there are no externally visible side-effects.

“4The subscript numerals 1, 2, and 3 on the B1ock nodes in this diagram correspond to the level of
nesting that the respective Block occurs at. Subscripts a and b on Decl and Use nodes refer to the
variable name that is declared or used.
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var a = 1;
{
b =2;
lookup: \fal
b=3+a;
print b + a;
declares lookup

Figure 3: Extended abstract syntax tree with arrows showing dependencies.*

via the lookup (String id) attribute until a local declaration can be found.
A reference to the Decl node is then passed back down the tree and assigned to
the decl () attribute in the Use node. The call stack for this Use.decl attribute
instance is presented in Figure 4, where the stack is shown at points in the evalua-
tion immediately preceding the top-most object on the stack being popped. As the
computation and evaluation of attributes can be expensive in a large syntax tree,
caching has also been introduced in order to increase the efficiency of subsequent
calls to an already accessed attribute. It assumed for this example that none of the
attributes on the evaluation stack have been previously cached.

Stack
contents

REF
Decl,.decl "a"
ecly.declares("a") — return

Block;.child.lookup("a

Decly declares("a") ]

Assign.declares("a") ] [ Print.declares("a") [
[ Blocks.child.lookup("a")
[ Useg lookup("a")

Use,.decl()

Block,.child.lookup("a'

Use,.lookup("a")

( ") ]

") ] Block,-child.lookup("a") |
[ Blocks.child.lookup("a") ] [ Blocks.child.lookup(‘a") ]
[ Useglookup(a") ] | ]
( Use,.decl() ) ]

(
(
[ Useg.lookup("a")
(

Blocks.child.lookup("a") ]
)
Use,.decl() ]

Use,.decl()

Time

Figure 4: Evaluation stack.

Reference attributes can be used for various semantic analyses, for instance, in
the evaluation of compile time errors. RAGs have also been extended with several
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additional concepts, for instance, that of the collection attribute [MEH09]. These
are attributes where the value is defined by a combination of contributions from
other nodes within the tree. Other extensions include circular attributes, rewrites,
higher-order attributes, and incremental evaluation, however as they are not perti-
nent to this paper they will not be discussed here.

2.3 The JastAdd Systems

The efficacy of RAGs has been demonstrated by their implementation in the meta-
compilation system JastAdd [HMO3] and the subsequent implementation of, for
instance, the extensible Java compiler, Extend]J [EH07a], built upon the JastAdd
system. Due to the extensibility and modularity of JastAdd, the resultant imple-
mentation of the Java specification in ExtendJ provides a convenient entry point
to attribute evaluation within a full Java compiler, and is therefore a valuable tool
when seeking greater insight into error provenance.

The JastAdd system supports aspect-oriented programming [Kic+97], which
is reflected in the organisation of the Java specification implementation within Ex-
tendJ. Extension of existing classes within the AST, and the addition of new ones,
is supported by the use of inter-type declarations in JastAdd aspect modules, de-
fined in files using the .jrag extension. Aspects use a Java-like syntax to allow
for additional classes to be defined within the AST while attributes weave addi-
tional code into existing generated class files. Aspects are used to group common
behaviour together under an easily recognisable descriptor - for example, type
checking behaviour within the Extend] compiler is grouped together in the Type-
Check.jrag aspect file.

The tracing system within JastAdd, first introduced by Soderberg & Hedin
[SH10], provides trace events generated at various stages of compilation to per-
form this attribute tracking. For the previous example in Figure 4, this may be
illustrated as in Figure 5 by including the trace events generated at each stage of
the stack operations. A TOKEN_READ event is first generated upon scanning of
the token. Subsequently, as attribute evaluation occurs, a COMPUTE_BEGIN is
generated as each new attribute is placed on the stack. Once the reference is calcu-
lated, the attributes are popped one by one, generating a COMPUTE_END event
as they are to signify that a value has been obtained. At any point in the evaluation
an attribute that has been pre-calculated may have its value read from the cache, at
which point a CACHE_READ event would be triggered instead.

One benefit of using a RAG-based compiler to build the prototype is the aspect-
oriented nature of JastAdd, which groups computations by behaviour, the utility
of which we will elaborate on in Section 3.3. Another benefit is the evaluation and
subsequent tracing mechanism that is available. By being able to hook into the
evaluation stack, this allows us to present to the user not only an error message,
as in a conventional system, but also a tree structure showing exactly where in the
code the compiler was looking when the error occurred.
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Stack
contents
with trace events »‘{ Docly dedlares(a’) | — Rei::::m

| Decldeclares(‘a’) | + COMPUTE_BEGIN + COMPUTE_END
Blocky.child.lookup(*a") + COMPUTE_BEGIN ( Block.child.lookup(“a") ) » COMPUTE_END

" Blocky.child.lookup("a’) | - COMPUTE_BEGIN " Blockp.child.lookup("a”) - COMPUTE_END
[ Blocks.child ookup('a") — COMPUTE_BEGIN [ Blockg.chid.ookup('a’) | COMPUTE_END
Usey lookup('a’) - COMPUTE_BEGIN Use, lookup(‘a’) - COMPUTE_END
TOKEN_READ: "a" Usey deci() }— COMPUTE_BEGIN Usey decl()

COMPUTE_END

Figure 5: Evaluation stack with trace events.

3 The Progger Prototype

In this section, we will explain how we designed the prototype. A literal appli-
cation of the conversational metaphor in this design would result in an interaction
that was similar to a conversational agent, whilst interesting as a possibility this
would create a very significant implementation challenge to avoid uncanny valley
effects [MMK12]. Instead we aim here to implicitly support the conversational na-
ture of the interaction outlined in the breakdown and repair properties in Section
1. We present the prototype in terms of its client-server architecture (Section 3.1),
how we extract error details in the server (Section 3.2), and then how we bring out
the details from the compiler to the user in the client (Section 3.3).

3.1 Architecture

To facilitate experimentation in conversational compilers, we elected to build an
architecture based on the client-server model, illustrated in Figure 6. The client is
a simple web application with a file picker which allows the user to select a .java
file, which is then rendered in the client with some simple syntax highlighting
to emphasise Java keywords. When the “Compile” button is clicked, the file is
uploaded to the compiler service via REST which then compiles the source code
and returns a data structure with key information accessed during compilation and
the corresponding token locations in the code.

Progger . Progger

E‘—L Compiler Service o Client
+

e S| [—

| Traeing Config J | Tracing Management |

Figure 6: Architecture overview of the Progger prototype.
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3.2 The Progger Compiler Service

To extract and present a greater amount of information with regards to error prove-
nance, it is necessary to establish an understanding of what information the com-
piler was making use of when it encountered the error. For this purpose, a Java
compiler based on RAGs was selected. Where a non-RAG based compiler may
give us access to just the call stack, RAG based compilers make use of declara-
tively defined objects called attributes to perform computation, and consequently
can allow access to the attribute evaluation stack. This presents a finer level of in-
formation about the computation, with dependencies between units of computation
being exposed.

In the RAG-based compiler that we have selected, these computation units are
also grouped into aspects, which are clearly labelled collections of attributes and
behaviour. This allows us to link operations on the attribute evaluation stack to
logically named stages of the compilation process, and thus to map these oper-
ations to conversational statements that allow for a greater degree of exploration
by users regardless of their level of knowledge about compilers. The following
sections will give an overview of RAGs, as well as the attribute grammars that act
as their foundation.

Extracting Compiler Trace Details

During development of the prototype, the tracing system in JastAdd was updated
to contain additional aspect information within the trace events, as well as TO-
KEN_READ and several events related to the evaluation of collection contribu-
tions. As attributes are defined within aspects, COMPUTE events generated by
the tracer are now able to report the name of the aspect from which the attribute
that is being computed originates. This allows us to link more generic attribute
names to the context in which they are being accessed - any attribute defined in the
TypeCheck aspect, for example, may be easily inferred to have been accessed by
the compiler when checking the type of an object.

A key component of the prototype described in this paper is the ability to “hook
into” a compiler in order to extract more information relating to errors. Specifi-
cally, within ExtendJ a “problems” collection attribute is defined in the root node
of each compilation unit, which is typically a representation of the code within a
Java file. Upon failure of some check in the compiler, a Problem object is created
and contributed to the problems collection containing information such as an error
message, location where the error was discovered, severity etc. By tracking the
attributes that are evaluated in the calculation of a contribution to the problems
collection, it becomes possible to link an error to various contributing locations in
the code.

The prototype achieves this by listening for events triggered at the beginning of
a collection contribution check, signified by a CONTRIBUTION_CHECK_BEGIN
trace event. For example, a node in the tree may contribute a Problem to the prob-
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lems collection in the event that a return type does not match the method signature.
Upon reaching the return statement in a method block, the compiler will begin
evaluating this contribution and trigger a trace event signifying so. Once a
contribution check begins, we start constructing a tree of the attributes that the
contribution evaluation is dependent upon. To do this, any other attribute that
is calculated or that has it’s cached value accessed in the process of evaluation
is stored in an internal data structure. At the conclusion of the contribution
check a different event is generated depending on whether or not the contribution
condition is matched. In the event of a match, the dependency tree is saved and
returned to the application once compilation is complete, otherwise it is simply
discarded.

Service REST API

Progger makes use of a simple REST service built upon the lightweight Spark
framework® to convey the results of a compilation back to the client. This consists
of an array of any errors encountered by the compiler mapped to a JSON format
as follows:

{

"message": [compiler error message],
"fileName": [file name],

"location": [line number],

"severity": [warning/error],

"rootNote": [originating attribute node]

}

The root serves as the starting point for the attribute dependency tree, with
each node containing the following information:
{

"name" : [attribute name],

"aspect": [name of aspect the attribute is associated with],
"location": [token locations associated with the attribute],
"children": [array of child attribute notes]

}

The location data of attributes within the dependency tree can be used to ren-
der annotations over the source code within the development environment. These
annotations show us exactly where the compiler was “looking”, in terms of the
lexical tokens in relation to the AST nodes hosting the attribute instance, when it
encountered the error (illustrated in Figure 7) - effectively a visual representation
of the code in a manner similar to that seen by the compiler robot in Figure 1.

Shttps://sparkjava.com/
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;| package examples;
{| public class variablenotinitialised {
int y;

public_int example() {

int

Figure 7: Example JSON excerpts of an attribute error tree. The coloured lines
indicate which sections of the source code each attribute refers to.

3.3 The Progger Client

The Progger client is implemented as a web UI. Appendix A, Figure 8 shows a
screenshot with the example presented in Figure 1. Again we have the error from
earlier (yet with a different formulation of the error message due to a different Java
compiler being used “under the hood”), but now we also have a “Tell me more
about this” button. If this button is clicked, we can get more details about what
the compiler was considering (approximately the dashed blue arrows in Figure 1)
in Appendix A, Figure 9.

Here, we are seeing that the compiler considered several aspects of the code
while trying to investigate whether the local variable had been assigned before
its first use (definiteAssignmentProblems). As we hover over the “error
details” to the right, the code related to the aspect being considered is highlighted
in the code to the left, for instance, at one point (marked by the cursor) the compiler
considered whether the local variable declaration was a field (isField).

The error nodes provided at the top level of the JSON output from the compiler
service act as a starting point for the visualisation of a conversational interaction
with the compiler. The error is rendered to the right of the code in an information
box, with the line of code corresponding to the error underlined in red when the
error element is moused over. At first glance, the meaning of the error may be
unclear to an inexperienced programmer, and it may be useful for them to be able
to ask a question of the compiler to help align their mental model - for example
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“What were you doing when you encountered this problem?”. To facilitate this
discussion, the client provides an option on the error element to “Tell me more
about this” (Figure 8).

On click, the first layer of the attribute tree is expanded and displayed to the
user (Figure 9). In keeping with the conversational tone, the aspect information
that is supported in JastAdd-style RAGs are used to more clearly explain what the
compiler was doing at each stage of the evaluation process. Since aspects are used
to group attributes by common functionality, we have mapped each aspect name
to a conversational statement giving a general overview of the purpose of that
aspect. In this example, the compiler encountered a problem while checking the
definite assignment of x + vy to the return value of the method. This problem was
flagged in the DefiniteAssignment aspect, which is mapped to a clarifying
statement in the client: “I was checking if this definite assignment is valid”, shown
in Appendix A, Figure 10. This “error details box” can then be clicked for more
details, at which time additional information from the trace is displayed (Figure 9)
and can be explored by further expansion of the error details boxes.

With this presentation of the error details, the interaction continues after the
error is presented. When the error does not make sense (conversation breaks down)
the developer can ask for more information (“tell me more about this”’) which then
results in a display of a list of the steps the compiler took to detect the error. The
user can follow the “train of thought” of the compiler by following along the list
of error details and hover over the boxes to see what parts of the code that were
considered, while also considering the names of the aspect and attribute of the
computational unit.

Appendix A, 11 includes the end of the error details from Figure 8 along with
the code highlighting connected to those error detail boxes. As the user gradually
hovers over the list of error details (all concerned with “definite assignment”) from
top to bottom, the “return statement” is highlighted (where the error is marked),
then the if statement, the assignment, and then the condition. The final box then
highlights the declaration. The compiler is trying to determine whether the “x”
variable has been assigned. With the highlighting we can follow along to the areas
in the code (away from the error location) that it had to consider.

4 Discussion and Implications for Future Work

This paper outlines a strategy for making the interaction around errors a foreground
part of the experience of a developer. In doing so it practically demonstrates the
work that is needed in order to create an environment with a closer alignment be-
tween a developer and a compiler. This work proceeds on two fronts. Firstly, the
internal processes and data structures of the compiler have to be exposed, and,
where possible, mappings created on top of them that are likely to be closer to the
model by which the developer thinks of what is happening in the compiler. Sec-
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ondly, the user interface by which the developer interacts has to be brought closer
to the compiler, with additional elements added to enable requests for additional
information in particular cases. This engineering work to ‘meet in the middle’
needs to be built on top of an architecture that can support allocation of different
pieces of work to the various components in the system. Doing this results in a
more conversation-like interaction with the compiler shifting away from an idem-
potent input/output model, to a question/answer model, and in doing so highlights
a number of possibilities for future work.

In order to empirically characterise the effects of this to a more conversational
interaction mode it will be necessary to support a wider range of features within
Progger, for example saving changes, introducing syntax highlighting and multi-
ple files in order to create a more representative interaction context. More signif-
icantly, there are further refinements that can be made to the presentation of the
errors themselves, hiding extraneous information and supporting the developer us-
ing Progger by focussing on the conversational interaction. Once these improve-
ments have been completed we propose to study in a representative commercial
context how developers go about doing their work when the focus is shifted to a
conversational interaction around error messages.

The tool in its current state may also lend itself well to an educational con-
text. While the information presented in the attribute tree view may not necessar-
ily solve a problem by itself, it will point the user towards relevant places in the
code - potentially highlighting to novice programmers the most relevant areas for
review when trying to resolve an error. In this way, Progger acts not as a problem-
solving tool, in that it does not actively suggest fixes, but rather as one that aids
our understanding and facilitates learning.
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While | was considering your code, | found these
problems:

Local variable x is not assigned before used

Tell me more about this

Progger
package examples;
public class VariableNotInitialised {
int y;
public int example() {
int x;
if (y < 3) {

x=1;

}

}
}

return x + y;
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Progger

i itialisedjava | Compile
While | was considering your code, | found these
package examples; problems,'

public class VariableNotInitialised {
Local variable x is not assigned before used

Tell me more about this

I was considering the following aspects of the code:

int y;

public int example() {

int X;

if <3
it v )4 | was checking if this definite assignment is valid:
CompilationUnit_j @hashC

x=1;

} . | was checking if this definite assignment is valid:

roblems() @hashCode:

return x + y;
m—— .. | was checking if this definite assignment is valid: Expr.isSource()
@hashCode:3b6eb2ec

.. | was propagating a variable's scope: VarAccess.decl()
@hashCode:

.. | was propagating a variable's scope: VarAccess.decl()
@hashCode:3b6eb2ec

... | was propagating a variable's scope: VarAccess.decls()
@hashCode:3b6eb2ec

.. | checked the attributes of a variable: VariableDeclarator.isField()
@hashCode:66d33a [

Declarator.isValue() @hashCode:66d33a

.. | was checking if this definite assignment is valid:
D i inal() @hashCode:

.. | was checking if this definite assignment is valid:
Expr.assignedBefore(Variable) @hashCode:3b6eb2ec

... | considered a rewritten version of the model:
ParseName.rewrittenNode() @hashCode:1e643faf

... | was checking if this definite assignment is valid:
Stmt.assignedBefore(Variable) @hashCode:7dc36524

.. | checked the attributes of a variable: VariableDeclarator.name()
@hashCode:66d33a

.. | was building the class path: CompilationUnit.relativeName()
@hashCode:18e8568

.. | was checking if this definite assignment is valid: Expr.isDest()
@hashCode:3b6eb2ec

N Y Y

)
)
)
)
)
)
}
.1 was checking if this definite assignmentis valid: }
)
)
)
)
)
)
)

Figure 9: Screenshot of the Progger prototype with the error details from Figure 8
expanded. The variable, x, highlighted in the code pane corresponds to the location
investigated while evaluating the attribute that the cursor is over.
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Progger

| Ghoose file | Vari it java | Gompile |

packsge examples; :\;'ffaﬂéfe ef'n t;as considering your code, | found these

public class VariableNotInitialised {

Local variable x is not assigned before used

int y; >
Tell me more about this

public int example() {

int x; 1 was considering the following aspects of the code:
if (y = 3) {

[ | was checking if this definite assignment is valid:
Ci Iniit @hashC

x = 13

}

return x + yi

"message": "Local variable x is not assigned before used"”,
"fileName": "./libs/VariableNotInitialised.java",
"location": "14,12:",
"severity": "error",
"rootNode": {
"name": "CompilationUnit problems BhashCode:le643faf",
"aspect": "DefiniteAssignment",
"location": "14,12-14,12",
"children™: [

Figure 10: Mapping of errors and attribute details to conversational statements.
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Figure 11: The error trace details shown in order of occurrence in the computation
with arrows pointing to how the highlighting in the code changes on hover over
error details.




VISUAL CUES IN COMPILER
CONVERSATIONS

Abstract

When people are conversing, a key non-verbal aspect of communication is the
direction in which the participants are looking, as this may convey where each
person’s attention is focused. In a programming context, for instance an inte-
grated development environment (IDE), the interaction design frequently directs
the programmer’s gaze towards specific locations on-screen. For example, syntax
highlighting and error messaging may be used to draw attention towards problem-
atic sections of code. However, error messages frequently direct the user towards
the compiler’s point of discovery as opposed to the actual source of an error. Pre-
viously we have applied a conversational lens considering the interaction between
the programmer and the compiler as a conversation, in this work we refine that
into an “attentional lens”. We consider via a prototype and small exploratory user
study the difference between where a developer chooses to spend their attention,
where the tooling directs it, and how the two might be aligned through the use of
visualisation techniques.

1 Introduction

For programmers, the act of programming is a primarily one-way relationship:
the programmer writes code, most commonly in an IDE; executes it through a
compiler; and receives limited feedback in the form of error messages. These error
messages are often obtuse and difficult to read [Ben+19], and may even mislead
the reader into looking at the wrong sections of code altogether [Bec+19; Kat+09].
This “feedback” is not only limited in form, but is also delivered in a purely binary
format - an error occurs, or it does not.

o
w
o
<
o
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User Study; light-weight Design Iteration;
Previous Work [CSM21; café study design fol- ideation workshop fol-
MSC21]; overview given lowed by a thematic anal- lowed by feature develop-
in Section 2. ysis described further in ment described further in
Section 3. Section 4.

Figure 1: Overview of the work presented in this paper and its disposition.

In our previous work, “Breaking down and making up - a lens for conversing
with compilers” [CSM21], we explored the consequences of expanding on this in-
teraction to allow for a more complete two-sided relationship between developer
and environment. This was achieved by analysing the interaction in the context
of a conversation between two participants, inspired by the work of Dubberly &
Pangaro [DP09] and Pask [Pas76], thereby applying a “conversational lens” to the
activity of programming. For instance, under the conversational lens, the partici-
pants of the conversation can be said to be the programmer and their development
environment, including IDE, virtual machine, compiler, and various other software
components. As stated by Dubberly & Pangaro [DP09], a key aspect of conver-
sation is the mutual construction of meaning and convergence upon agreement -
when applied to a programming activity, the meaning of the conversation can be
said to be agreed upon when the programmer expects their code to execute in a
certain manner, and the compiler performs this execution as desired. This activity
helped to highlight areas where programming as an interaction diverged signifi-
cantly from a familiar human interaction, and instances where the development
environment lacks the ability to properly engage in the conversational activity as
an equal partner. Based on these findings, a prototype development tool, Progger,
was created [MSC21], which will be described in more detail in Section 2.

In this paper, we present the second iteration of our exploration of applying
a conversational lens to interactions with compiler error messages. In this itera-
tion we narrow our conversational lens to that of attention. In a situation where
the conversation between programmer and compiler breaks down, the standard re-
sponse comes in a textual form. By contrast, in normal human interactions other
factors come in to play, such as facial expression, gaze, voice, and body language.
These can be used to introduce additional information into the interaction, such as
a participant’s disposition, or their focus of attention.

With this in mind, we present the results of our exploration of attention in
the form of visual cues in the interaction with the compiler. Figure 1 gives an
overview of the different components of the iteration presented in this paper. We
present results of a user study evaluating the Progger prototype (Section 3), the
results of a follow-up ideation workshop, building on insights from the user study
(Section 4), and finally we end the paper with a discussion of design implications
of this work (Section 5).
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2 Background and Related Work

In this section, we cover related work connected to the use of attention, either as
focus in an empirical study or as part of an intervention (Section 2.1). We also
provide a brief summary of our past work on the Progger tool where we applied a
conversational lens to the interaction with error messages (Section 2.2).

2.1 Attention in Software Development Tools

Software development is a complex task that requires high cognitive load
(CL) [Gon+19]. It also involves a wide variety of tooling, which further adds to
that. One CL-intensive activity during this process is reading and understanding
code. This often happens in a development environment, with some assistance
from the underlying tool(s). The assistance can manifest in multiple representa-
tions, for example, textual (e.g., error messages) and visual (e.g., coloring and
alignment). In order to digest such multi-modal information, attention is needed
from developers.

Based on the assumption that attention resting on code reflects the visual effort
developers take to read and understand it, several studies have focused on code
comprehension; e.g., [Bus+15; Sto05]; contrasting the behaviours of experienced
and novice programmers. Below we selectively elaborate on some work we deem
more relevant to this study.

Crosby et al. [CSWO02] employed eye tracking to examine the roles that bea-
cons play among programmers. A beacon could, for instance, be in the form of a
comment beacon or a line of code that contains a hint about program functionality.
Experienced programmers were more aware of and inclined to make use of bea-
cons in code to facilitate their reading. Novice programmers were less capable of
distinguishing between beacons and other areas of code, and thus made little use
of them.

Bednarik [Bed12] analysed the temporal development of visual atten-
tion strategies between novices and experts during debugging in a multi-
representational development environment. The study found that experts and
novices exhibited similar gaze behaviours in the beginning but diverged in the
later phases. Experts were more resourceful with the available information while
novices monotonously stuck to one strategy. For challenging bugs, experts more
actively related the output to code.

The presented work by Crosby et al. and Bednarik indicate that: 1) efficient
utilisation of visual cues elevates code comprehension and debugging, and 2) ex-
pert and novice programmers need to be treated differently when designing tools
for them; in particular, novices may be those who need help most.

Attention-based interventions have been explored in a couple of studies. For
instance, Ahrens et al. [ASB19] visualised developers’ attention in the form of heat
maps and coloured class names in Eclipse. In the context of software maintenance
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tasks, they reported that these two mechanisms provided little aid in orientation
and code finding for developers, although the heat map slightly alleviated the cog-
nitive demand. Most developers, especially experienced ones, did not find them
helpful. Instead, they found the visualisations to be a distraction from understand-
ing the code quickly and clearly.

Another example is the work by Cheng et al. [Che+22]. They empirically eval-
uated the usefulness of a tool that captures developers’ shared gaze in real time.
They found that shared visualisation mechanisms such as gaze cursor, area of in-
terest (AOI) border, grey shading, and connected lines between AOIs helped im-
prove the efficiency of code review. Assisted by these visual features, especially
the cursor and border, developers found it easier to identify where their collab-
orator looked and focused. Based on that, they could adopt either a follow- or
separated-strategy to find the bugs more quickly.

These two studies by Ahrens et al. and Cheng et al. demonstrate various ways
of approaching attention visualisation in a software development context and the
possible granularity of how attention can be visualised. Further, we gather that
there appears to be no existing best practises for the time being and the design
remains a largely open space.

2.2 The Evolution of Progger

In conversational theory, participants work collaboratively to create a meaningful
shared mental model of the on-going conversation [Pas76]. Frequently, however,
the understanding of the participants becomes divergent for some reason. For ex-
ample, something may be misheard or misunderstood by one actor, or an incorrect
assumption may be made about implicit knowledge [Ben+19]. When this occurs,
it is said that there is a "breakdown" in the conversation, at which point a meta-
conversation must be entered into in order to repair the fault [DP09].

When applying the conversational lens to the activity of programming, the
participants become the programmer and their development environment, which
may contain several tools such as a compiler, IDE etc. In this context, it can
be said that when a program does not perform as expected by the author then a
breakdown occurs [CSM21]. When such a breakdown occurs, a common form of
feedback to the developer is that of compiler error messages. However, unlike in a
natural conversation, the compiler error message is the end of the interaction - if it
is not understood by the programmer, there is no mechanism for further exploring
the breakdown. At this point the onus of repairing the conversation falls entirely
on the human participant.

In an attempt to bridge this gap between programmer and compiler, a research
tool was created in the form of a simple web-based Java IDE [MSC21]. This
tool, Progger, consists of a Dart' front-end communicating via a REST API with
a Java compilation server. The compilation service contains a small extension

!'The Dart programming language, https://dart .dev/.
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to the extendable Java compiler Extend)? [EHO7b], which itself is based on the
JastAdd® meta-compilation system [EHO07a]. The decision to base the tool on
Extend] was made for a number of reasons, the most significant being the fact
that it is a compiler that makes use of reference attribute grammars [Hed00]. An
explanation of this formalism is beyond the scope of this paper, however a detailed
description of reference attribute grammars and their significant within the Progger
system may be found in our previous work, "Progger: Programming by Errors
(Work In Progress)" [MSC21].

Progger
i itialised java | Compile

. While | was considering your code, | found these
package examples; problems:

public class VariableNotInitialised {

int y;

Tell me more about this

| was considering the following aspects of the code:

Local variable x is not assigned before used ’

public int example() {

int x;

if (v <3) { | was checking if this definite assignment is valid:
Ci ilationUnit_p! @|

x = 1;

} . | was checking if this definite assignment is valid:

roblems() @hashCode

return x + y;
}

.. | was checking if this definite assi is valid: Expr.i )
@hashCode:3b6eb2ec

@hashCode:

.. | was propagating a variable's scope: VarAccess.decl()
@hashCode:3b6eb2ec

... | was propagating a variable's scope: VarAccess.decls()
@hashCode:3b6eb2ec

.. | checked the attributes of a variable: VariableDeclarator.isField()
@hashCode:66d33a A

} [ .. | was propagating a variable's scope: VarAccess.decl() ]
( )]

T N

Figure 2: Screenshot of Progger version 1.0. The left side shows a small Java
code snippet with an error in it pointed out with a red squiggly line. The right side
shows the error with a "Tell me more about this" button which has been clicked
here to expand an attribute trace tree shown in the bottom right.

By use the tracing system inherent in JastAdd [SH10], the evaluation of at-
tributes is tracked by Progger. When a compiler error occurs, this evaluation tree
is logged and returned to the front-end for display to the user. This tree is then
displayed in the development environment as shown in Figure 2, with the error
message augmented by a button with which the user can ask the compiler to "tell
me more". As many nodes in the attribute tree are directly related to tokens in the
text of the code, this information is used to highlight the relevant code sections as
the user mouses over the tree. In this way, the user is able to follow the "thought

2The Extensible Java Compiler Extend], https://extendj.org.
3The meta-compilation system JastAdd, https://jastadd.org.
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process” of the compiler as it looked at various parts of the code in an attempt to
validate the line at which the error occurred.

3 User Study

In initial testing of the Progger research tool, the development team found the re-
sults to be of interest. Despite this interest, it was understood that the tool itself
worked on a very simple assumption: providing more information to the user is
inherently useful. Much of this information, however, came in a form which was
only intelligible to someone with a reasonable understanding of the internal work-
ings of RAG-based compilers. In contrast to this, we felt that the target audience
who stood to benefit most from a tool like Progger was that of relatively inexpe-
rienced programmers. Due to this disconnect, it was decided to undertake a user
study in order to determine the usefulness of the tool in it’s current state when
presented to the target audience.

3.1 Study Design

A light-weight exploratory study, here named a “café study”, was undertaken in an
effort to obtain initial design feedback for a relatively low time investment. As a
general target audience of fairly novice programmers was selected, the café study
was conducted on the grounds of Lund University. This took the form of a booth
set up in the foyer of the computer science building, as shown in Figure 3, where
students were offered the opportunity to complete a short task within Progger in
exchange for a lunch coupon.

Students deciding to participate in the study were asked to complete an in-
formed consent form, after which they were presented with a single-class Java
program, chosen randomly from a set of 3 pre-defined programs, each of which
contained several compiler errors. These programs were selected randomly from a
public repository* of solutions to Kattis> programs, with a selection of errors man-
ually inserted into the code by the first author. The error are representative of a
small set of semantic error patterns, selected to provide a instances where the pro-
totype was found to be particularly helpful in initial testing, and instances where it
was not. For example, uninitialised variable error rendered a set of localities that
were deemed to be interesting, while missing import statements did not return any
locations within the class file. Figure 8 includes an example of a Java code snip-
pet used in the study. Participants were then asked to attempt to fix the errors, to
the best of their abilities, while the screen and verbal interactions were recorded.
This method yielded a set of 13 recordings over a two day period. Of the set of

4Provided with permission by Pedro Contipelli: https:/github.com/PedroContipelli/Kattis, visited
at commit 30884ba
SKattis problem archive: https://open.kattis.com/
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Figure 3: The user study booth.

participants, none of them had industrial programming experience, with most of
their exposure to programming coming in an academic context of between 0 and 4
years of higher education. This information was obtained via a follow-up survey
distributed by e-mail, which yielded a relatively low response rate. In retrospect,
an immediate follow-up survey, to be completed on-site at completion of the study
task, would have been a more rigorous method of acquiring this data, a factor that
will be taken into consideration in future iterations of the café study methodology.

Ultimately, the study setup was considered to be a success by the authors.
Despite the low level of commitment required to set up and conduct the experiment
- in the region of hours of total work - the aforementioned assumption, that more
information is inherently useful, was effectively challenged by the study findings.
These findings will be discussed in detail in the following section.

3.2 Data Analysis

After an initial transcribing exercise, the transcripts were read through indepen-
dently by the first and second author, with the aim of completing a thematic analy-
sis. This entailed the identification of comments and interactions that were deemed
to be of interest. Depending on the content of the highlighted excerpts, a number
of codes were coalesced during this process. Once the initial reading and codify-
ing of the transcripts was completed, the first and second author met to compare
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the annotated transcripts, whereupon areas of overlap were identified and used to
inform a combined set of codes, shown as boxes in Figure 4.

Codes represented specific features like highlighting, capturing both positive
(e.g., "It’s very good with the highlight system because you know exactly where
you want to look initially") and negative aspects (e.g., "It’s highlighting every-
thing, it’s too much"), as well as whether the error messages were deemed to be
helpful (e.g., It’s putting human sentences instead of just like error codes and |[...]
more explained I would say, absolutely more explained") or unhelpful (e.g., "It
didn’t describe the error very well"). Another example of a feature represented by
a code was the attribute trace tree and, for instance, when it was found to not be
helpful (e.g., "All this text, it doesn’t really say anything to me"). Other codes cap-
tured broader aspects such as how beginner friendly the tool was (e.g., "if you're a
beginner programmer and you would get this kind of [...] feedback on your code,
it would be very much easier to [...] fix it"), or comments made when encountering
prototype bugs ("This isn’t showing anything").

Furthermore, a number of codes were introduced for the purpose of categoris-
ing interactions that were deemed to be less interesting, such as: instances where
the interview subject is verbalising their process of comprehension (e.g., "So, 1
have a couple of "if" statements, and if none of these are fulfilled I will returned
T"); asking the interviewer for instruction (e.g., "Do you want me to recompile
it?"); relating Progger to their experience of conventional debuggers (e.g., "Some
debuggers are [...] scary because they have an overwhelming amount of functions
that you’re not really accustomed to [...] while this one [...] generalises it more by
giving you the simple fact of ’this is where we think the problem is’"); making sug-
gestions for future improvements (e.g., "One step further could be |[...] to make a
suggestion how to fix it"); and relating that the tool may become more useful with
experience (e.g., "If you [...] get to know this tool I think it becomes easier").

These codes were then applied to two of the interview transcripts in a col-
laborative exercise involving the first and second authors, in order to come to an
agreement upon interpretation. After completing this exercise, the first author ap-
plied the combined code set to the rest of the transcripts individually. Certain codes
occurred frequently across all participants, with a breakdown presented in Table 1.

Across the codes, various loose themes began to emerge: neutral discussion,
positive comments about the tool, and negative comments about the tool. Within
the positive and negative themes, two sub-themes, helpful and unhelpful respec-
tively, were also constructed. The final theme map is presented in Figure 4 with
themes shown as circles connected to codes in boxes.

3.3 Discussion

Through reading of the transcripts and the thematic analysis exercise, two main
take-aways arose: 1) that the trace tree showing the internal workings of the com-
piler as it traversed the attribute tree was largely deemed to be unhelpful, with
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Figure 4: Identified themes, represented by circles, and associated codes, repre-
sented by boxes.
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Table 1: Overview of occurrence of codes per participant. Colour coding rep-
resents the theme which each code ultimately fell into (green for positive, red for
negative, and grey for neutral), and intensity in terms of percentage of total words
dedicated to each code by a participant (with color intensity increasing with per-
centage).

Participants
Code 1 2 3 4 5 6 7 8 9 10 11 12 13
Beginner friendly 5.5 239 259 6.4 3.1 7.6 20.1
Helpful Highlighting 20.4 30.3 5.7 17.4 14.6 242 14.1 8.7 10.6 11.9
Helpful Message 12.5 4.1 20.8 12.0 7.9
Unhelpful Trace Tree - 4.0 9.1 6.8 -
Unhelpful Highlighting 42 37 [ 14.7
Unhelpful Message 7.5 2.8 4.6
Prototype Bugs 2.6 10.1 4.0
Comprehension 28 19.7 30.7 [44.8493| 6.0 22.0 O 153 s.1 [5OM 430
Helpful Experience 7.5 12.9 24.1 9.8
Relation to Debugger 33 215 17.6 7.6
Suggestions 26.1 13.1 9.0
Instructions 5.8 53 19 55

no positive comments made regarding it, and 2) that the highlighting of localities
within the code was of particular interest to participants - when it worked well it
was praised highly, when it did not work well it was criticised as distracting. The
prevalence of these sentiments is lent credence by the incidence of the relevant
codes across the transcripts: out of 13 interviews, 11 participants made mention of
the highlighting feature in a positive light, with 5 containing a negative comment.
Similarly, the trace tree was mentioned in an unfavourable light in 6 out of the
13 transcripts - the highest incidence of any one negative code - while it was not
spoken of positively by any participant.

In light of the related work on attention, the positive feedback regarding high-
lighting drew comparisons to the results of the study by Crosby et al. [CSW02].
In this study, it was found that experts were more aware, and made more use, of
beacons in code, while novices were found to not be as adept at distinguishing
beacons from other less-relevant code. We hypothesise that the use of highlighting
may help to even out this distance by drawing the attention of novices to areas of
the code which may act as beacons for experts.

Regarding the dominantly negative feedback about the attribute trace tree, we
did not see anything close to an effect where a participant expressed that they
understood the compilers "train of thought" by using the trace tree. How we im-
plemented the feature together with the limited user study may be two reasons for
this. We further speculate that the effect we saw here may be related to Norman’s
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Figure 5: A selection of design concepts as produced by the ideation workshop.

gulf of evaluation [Nor13].

The consequences of these findings were discussed and a design ideation work-
shop scheduled in order to iterate upon the design of the prototype. The starting
point for the design iteration was ultimately decided to be a new version where the
trace tree was entirely removed, and where locality became the primary means of
interaction with the user.

4 Design Iteration

In order to operationalise the above data into a design process, we elected to per-
form a divergent design phase [Cro05; Dub04; Pug81]. During this phase we
attempted to generate as many broadly differing designs as possible in order to
create ideas that we could curate. These were done in the context of the original
design, but with the explicit intention of not being literally driven by it.

The design workshop was run in two phases with all the authors creating one
series of new designs, then a short presentation where each of the authors described
their ideas to each other, followed by another iteration to allow cross-pollination
of ideas, followed by a final discussion and wrap up.

The process was successful in generating a wide range of different designs and
interaction metaphors, which can be seen in Figure 6.
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Figure 6: A collage of the ideas conceptualised during the ideation session.
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4.1 Data Analysis

After the main ideation workshop session, a period of time was allowed for the
participants to consider the proposed ideas. Ultimately, the first author selected
three concepts for further development, based on both novelty and technical fea-
sibility. From these three design concepts, storyboards were drawn up to further
illustrate the design interaction. These storyboards are presented in Figure 7.

Following the creation of these storyboards, a final session was held between
the first three authors to narrow the selection down to a single final concept for
further development. Locality, one of the main takeaways from the user study, was
found to be a strong theme in each of the concepts, taking the form of obfuscating
non-relevant code in Storyboards 1 and 3 and the physical separation of relevant
code from the main body in Storyboard 2. Storyboard 2, however, also introduced
a physical relationship between the elements of the code. As described in Figure 7,
it was conceptualised that the information collected during the evaluation of an
error, specifically the token locations in the code, could be used to introduce a
"weight" to each considered element. This "weight" would be based on the number
of times the compiler passed over each token - in essence, a compiler "heatmap"
- and led to a discussion amongst the authors about what this information might
reveal. Ultimately, three theories emerged:

1. Locations that are frequently revisited by the compiler may indicate sections
of code that are critical to the calculation of an error.

2. Locations that are less-frequently visited by the compiler may indicate sec-
tions of code that the compiler struggles to parse correctly, leading to it
being visited very few times before an error is thrown.

3. Frequency of visitation of the compiler may have no significance when con-
sidering the source of an error.

As no consensus could be arrived at which of these three theories was most
likely to prove correct, it was decided that Storyboard 2 offered the most inter-
esting opportunity for exploration. For this reason, Storyboard 2 was selected for
further development.

4.2 Implementation

Building on the previous Progger work, a new version of the prototype was devel-
oped. The initial version of Progger, as described in Section 2, uses the JastAdd
tracing system to track the evaluation of attributes at the time of an error occur-
ring. From this, an evaluation tree is constructed, with many of the nodes directly
related to token locations in the code. As token locality was the primary focus of
the most recent iteration, this previous design meant that no further information
was required to be extracted from the compiler in order to determine the heatmap.
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Storyboard 1 When compiler errors occur, they are rendered in the side-pane with check-
boxes. When the box for a particular error message is checked, all code not directly
checked by the compiler is obfuscated. Multiple errors may be checked, with lines of

common interest highlighted.
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Storyboard 2 Compiler errors and the associated lines of code checked by the compiler
are highlighted with ellipses, with "elastic bands" connecting them. When the error node is
clicked and dragged, the associated code sections are pulled out of the code pane alongside
it. The number of times a code fragment is checked by the compiler is used to assign
"weight" to the elements, with more frequently checked elements "sticking" to the code

pane.

Storyboard 3 A permutation of story board 1. When the error box is checked, a "post-it

note" element is added to the display, showing only the code that is directly checked by
the compiler. These post-it notes may be moved around the screen at will.

Figure 7: Storyboards of expanded concepts from the ideation session.



Visual Cues in Compiler Conversations 93

import java.util.HashSet; l
import java.util.Scanner;

public class GeneticSearch { ﬂg:i: g:::::ﬁ:;::iz: l

public static int occurences(Strin
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public class GeneticSearch {
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public static int occurences(String find , String str) {

int index = str.indexOf (find);
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i int index = str.indexOf (£ind);
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index = str.indexOf(find , inde "{'hlle (index = -1)
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return count; index = str.indexOf (find , index + 1);
}
public static int setSum(HashSet<s{ return count;

}
int sum = 0;
public static int setSum(HashSet<String> checks , String str) {
for (String find : checks)
sum += occurences(find , str); int sum = 0;

return sum; for (String find : checks)
+= occurences(find , str);

public static char dna(int x) { return sum;

if (x == 0)
return 'A
if (x == 1) public static char dna(int x) {
return 'G if (x == 0)
if (x == 2) return 'A';
return 'C'; if (x == 1)
return 'G';
return T; if (x == 2)

return 'C';

public static void main(String[] a return T;
Scanner scan = Scanner (System.in

while (true) public static void main(String(] args) {

Scanner scan = Scanner (System.in);
String § = scan.next();
while (true)

if (S.equals('0'))

break; String § = scan.next();
String L = scan.next(); if (S.equals('0'))

break;
BashSet<string> type2 = new Ha

HashSet<String> type3 = new Ha: String L = scan.next();

ing> type2 = new HashSet<>();
HashSet<string> type3 = new HashSet<>();

Figure 8: An example of a heat map generated on a one of the Java code snippet
that was presented in the user study. As the mouse pointer is hovering over the first
error ("local variable count is not assigned before use"” on line 14) the attention

of the compiler when finding that error is shown is visualized as a line-based heat
map.

On reception of the attribute tree from the compiler, Progger v2.0 iterates
through the tree and logs each instance of a "location" attribute occurrence. These
location attributes come as a range, e.g: 14, 0-15, 12, which is of the for-
mat startLine, startColumn—endLine, endColumn. From this list of
ranges, a map is calculated where the key is a single location, e.g. 14, 0, and the
value is the number of times this token is visited across all location ranges. From
this map, highlighting can be applied to the code pane, with the darkness of the
highlighted code calculated from the number of times the token has been visited
by the compiler. An example of this is found in Figure 8.

5 Discussion

In this paper, we have presented the results of a user study evaluating the approach
implemented in the Progger prototype [MSC21]. We used a light-weight café style
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study, combined with a thematic analysis of transcripts, to gather design input for
an ideation workshop. The results from the user study played down the utility
of the attribute trace tree (which we had some hope for) while the utility of the
companion highlighting was brought to the surface. As a consequence, our focus
was geared toward that of attention and the role it plays in the kind of "compiler
conversations" we are considering in this work. With input from the sketches
generated in the ideation workshop, we explored one design direction focusing on
incorporating visual cues into Progger in the form of a "compiler attention heat
map" laid out on visual tokens in the source code.

Heatmaps & Attention As mentioned in Section 2, Ahrens et al. [ASB19]
have also explored the use of heat maps but with the goal of visualizing the atten-
tion of other developers. They found some issues in their method due to impre-
cision between the generated heat maps and the mapping to the source code, dis-
torting the locality of the attention, causing some of the experienced programmers
in their study to find the visualisation technique distracting. In our explored setup,
we consider the "thought-process" of the compiler where the heat map weights are
calculated and assigned based on the number of code element visits by the com-
piler during analysis. We speculate that we would not see the same distortion of
attention as when eye-tracking data is mapped to code lines as in the case with the
work by Ahrens et al., but we may on the other hand see distortions amounting
from the structure of the abstract syntax tree modelling the code.

Collaboration & Attention We find the work by Cheng et al. [Che+22], which
explores visualisation of other developers’ gaze in a collaborative setting, inspir-
ing. It may be worthwhile to explore a combination of the conversational lens, as
we are applying here, in a similar setting. For instance, questions like "how can
conversations within one group help another group?” or "how can the compiler’s
knowledge about experts enhance its communication with novices?" could be con-
sidered. As a possible exploration, we can imagine the compiler as a host that is
able to store all programming mistakes made, and visual attention given by, devel-
opers. When a new actor enters the environment, the most frequently looked parts
of code or the most possible problematic code regions are already marked out. In
that sense, there is a historical component to the conversation where past actors
remain present in the new conversation.

Programmers’ Attention Earlier work on Attention Investment [Bla02]
within the PPIG community has explored the way in which programmers consid-
ered the likely costs and rewards of expenditure of their attention with a notational
system. In starting to investigate effective mechanisms by which this attention can
be directed, we are seeking to understand how the broad strokes of the attention
investment model emerge. This could be helpful in exploring whether or not there
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are places where this could be done more efficiently - but doing so might also
generate information about the details of the Attention Investment framework; for
example, does the misdirection of attention play a significance role in the way in
which programmers perceive risk and reward?

The design of the Progger system also allows the possibility of integrating ana-
lyzers to further direct the programmers’ attention. Such analyzers may be used to,
for instance, facilitate a conversational-style interaction about considerations such
as control flow. This may be explored in future work, however one key distinction
to note between analyzers and the compiler is the inherent uncertainty of analysis
results. Where a compiler error is indicative of a critical error that prevents the
program from being executed, analysis tools are susceptible to false positives, and
as such may direct the programmer’s attention to an area of code that ultimately
does not require fixing. False positives have previously been related by analysis
tool users as one of the biggest factors in their low usage statistics, therefore the
benefits of introducing features prone to false positives into the Progger system
would need to be weighed carefully against the risks.

Concluding Remarks More widely our results indicate that in the context of
programming in the face of errors, it is difficult to build a general conversational
bridge between the programmers and compiler authors via the crude medium of
error messages. However, whilst error messages can be problematic, the compiler
directing the programmers attention to areas of the code, and the programmer be-
ing able to ask "what were you looking at when you did x" seem to be effective. It
feels counter intuitive at first to abandon the richer communicative possibilities of
error message text to focus only on the direction of attention, but it may prove a
productive route for further exploration. Sometimes in conversations, it seems that
less is more, especially when one of the participants (the compiler) does not really
know what they are trying to say, and can not empathise effectively with the other.
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INFLUENCING ATTENTION IN
CoDE READING: AN
EYE-TRACKING STUDY

Abstract

When interacting with other humans, we attempt to develop a shared understand-
ing using various means. One such method is through our eyes: when someone
is looking at something, we understand that their attention is focused on that ob-
ject. In this work, we present the results of an eye-tracking study built upon the
Progger tool, in which we used additional code highlighting in an attempt to influ-
ence the gaze behaviour of a human programmer, thereby focusing their attention.
We found that though it is possible to draw attention towards areas of particular
interest to the compiler, this has no apparent effect upon performance when con-
fronted with a bug-finding code comprehension task. We conclude that although
this strategy may be of use in the future when attempting to humanise the pro-
cess of programming, further research is required to establish the efficacy of such
interventions.

1 Introduction

In a series of recent research papers [MSC21; CSM21; MSC22], we have explored
the idea of viewing the activity of programming as a "conversation" between two
participants, namely the developer and their development environment. This "con-
versational lens" [CSM21], used as a "tool for thinking with"!, led to the develop-
ment of a prototype tool, named Progger [MSC21].

I As coined at the industry panel during PPIG 2016 in Cambridge by Steven Clarke.
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With Progger, we have explored the consequences of making visible the se-
quence of actions taken by a Java compiler in the lead up to a compiler error. This
was an attempt to give the user a means of delving into the "thought process" of the
compiler: much as in a human-to-human conversation a misunderstanding could
be resolved by asking one participant to clearly and thoroughly explain what they
are thinking about. This approach for humanising the interaction between devel-
oper and development environment centred around the usage of a linguistic-based
strategy. Sections of code were highlighted and explicitly linked with descriptive
text in the sidebar, which served as a summary of the computations made using
attributes assigned to the code during compilation.

However, in our initial framing paper [CSM21], we also noted the use of so-
called side-channels in human interactions. These side-channels are non-verbal
cues which can greatly alter the meaning of speech, and can take on a variety of
forms: body language, tone of voice, facial expressions, where a person is looking,
and so forth.

Having built the Progger prototype, we conducted a pilot study [MSC22] with
the aim of validating the design choices made in the development of the tool. Two
interesting conclusions were drawn from this study: the additional descriptive text
— the linguisic component — was found to be too esoteric for the target demographic
of relative programming novices; and that the highlighting — the non-linguistic
component — was of significant interest, drawing praise when it worked well and
ire when it did not. In other words, Progger users were less interested in the
somewhat abstract and complex thought process of the compiler, and much more
interested in simply where the compiler was looking.

Being interested in where someone or something is looking is an innate char-
acteristic in humans. The following of another person’s gaze is a behaviour that
has been found to start developing at a very young age [FBT07], and is of great
significance in the development of social cognition. When two humans align their
gaze, it signifies a "joint attention", indicating that both participants in the inter-
action are focused on the same thing. By aligning the "gaze" of a compiler with
that of the developer, it may be possible to encourage the development of joint
attention, with a focus on the most relevant areas of code. With this new insight
an updated version of Progger was produced (Progger 2.0), stripping out extrane-
ous text information and focusing solely on highlighting as a means of conveying
information.

In this paper, we present the results of an eye-tracking study conducted using
Progger 2.0, with the aim of understanding how showing where a program analysis
tool is "looking" can influence the gaze and code reading behaviour of a human
partner in the programming conversation, and help foster joint attention.
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2 Background

Most visual tasks performed by humans are bottlenecked by the foveated nature
of their visual system. Because the area of highest visual acuity of the human
retina only spans a few degrees, visual tasks requiring resolving fine spatial detail
often also require eye movements. As such, the study of eye movements has been
fruitfully used to study the moment-to-moment unfolding of cognitive processes
such as reading [Ray98] and visual search [HE96; Rao+02; Nie+19].

When viewing static visual scenes, such as pages of text or displays of pro-
gramming code, humans predominantly exhibit two types of eye movements: fix-
ations (periods during which the eye is still so that a relatively constant area of the
visual scene is projected to the fovea to allow for fine visual processing) and sac-
cades (rapid eye movements to bring gaze to the next area of interest in the scene)
[Hes+18]. Eye trackers, devices that measure what a person looks at, are used to
study such gaze behaviors (Holmqvist et al., 2011). In this study, like many be-
fore us [SSG15; OAHCI18; Kua+23], we make use of eye trackers to study how
participants read programming code.

The act of program comprehension, when a person reads and attempts to un-
derstand unfamiliar code, has been the focus of multiple studies stretching across
decades of research [CS90; Feil9]. For instance, a recent study [Bus+15] found
that novices, as opposed to experts, have a tendency to read through code in a lin-
ear fashion, like how we would read a natural language text, and exhibited short
average saccade length due to their eyes moving through the code from one line
to the next. By comparison, experts were found to have a greater average sac-
cade length and lower element coverage of the code, meaning that they focused on
fewer lines of code and made larger jumps between lines as they read the code in
a non-linear fashion.

By highlighting multiple non-consecutive lines of code, we hypothesised that
analysis tools such as Progger 2.0 may have an affect on this phenomenon. Specif-
ically, we speculate that by visualising the non-linear compiler gaze, we may en-
courage the user to spend a a greater amount of time dwelling on highlighted lines,
leading to the adoption of a similar gaze pattern and a more closely aligned focus
of attention.

3 Method

With the aim of increasing our understanding of how showing the "attention" of a
program analysis tool can influence human gaze and performance, we conducted
an eye-tracking experiment. We broke down our objective into the following re-
search questions:

RQ; Does the addition of compiler heatmap highlighting affect bug finding per-
formance?
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RQ; Does the addition of compiler heatmap highlighting affect gaze behavior
when reading code?

3.1 Participants

In order to maintain consistency with the previous Progger study, as well as to
reduce the number of independent variables, we decided to target novice program-
mers for the experiment. The participants were recruited from the pool of un-
dergraduate computer science students at Lund University. An advertisement was
initially made to students taking a course on agile software development, however
the scope of the recruitment was later extended to include general advertising to the
student cohort using Facebook groups. The only requirement for participation was
the completion of at least one programming related class, and a total number of
15 students ultimately took part in the experiment. Of these participants, all were
studying at an undergraduate level and none had any industrial experience outside
of a summer internship. Participants were compensated for their participation in
the form of a gift card for a cinema chain.

3.2 Stimuli

A set of eight stimuli was presented using Tobii Pro Lab, consisting of screenshots
of small (8 to 17 lines) Java programs rendered within Progger, each containing
at least one compiler error. A single error was identified with a red outline in the
code, and the related error-message displayed in the side-bar.

Each stimulus contained either only a simple code snippet without highlight-
ing and with only the error location indicated, or additionally contained high-
lighting provided by Progger indicating different lines of code which the com-
piler considered during computation of the error. An example stimulus showing
both the non-highlighted and highlighted conditions is shown in Figure 1. Two
sets of eight stimuli were created, sets A and B, each of which contained four
non-highlighted code snippets and four with additional highlighting. The non-
highlighted/highlighted screenshots were swapped between sets A and B. Of the
15 participants, 7 were shown stimulus set A and 8 were shown stimulus set B.
The stimuli were presented in random order for each participant. It should be
noted that extra whitespace was added between lines of code in order to achieve
greater accuracy when determining exactly which line of code a fixation falls on.

3.3 Apparatus and Experimental Procedure

The experiment was conducted on-site at the Lund University Humanities Lab,
using a Tobii Pro Spectrum that recorded gaze at 600 Hz. Each participant was
seated at a booth which constricted their peripheral view, and viewed the stim-
uli from a viewing distance of approximately 63 cm on a 52.8 x 29.7 cm (47° x
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Scanner scan = new Scanner(System.in);
while (true) {

String a = scan.next();

if (a == "0") break;

String str = scan.next();

String strl;

for (int i = 0; i< str.length(); it+) {

int x = str.charht(i);

x -= 65;

if (x == 30)
x = 26;
if (x == -19) x = 27;

x 4= 26;
x %= 28;
x += 65;

if (x >= 65 8& x <= 90) strl += (char) x;

if (x == 91) serl += '_';

if (x == 92) strl 4= ".%;

System.out.println(strl);

While | was considering your code, | found these problems:

I Error at 53,22:: Local variable str1 Is not assigned before used

Scanner scan = new Scanner(System.in);
while (true) {

string a = scan.next();

if (a == "0") break;

String str = scan.next();

string strl;

for (int i = 0; i < str.length(); i*+) {

int x = str.charAt(i);

X -= 65;

if (x == 30)
x = 26;
if (x == -19) x = 27;

x 4= 26;
x %= 28;
X 4= 65;

if (x'>= 65 &5 x <= 90) BEEL += (char) x;

if (x == 92) strl 4= ".";

}

System.out.println(strl);

While | was considering your code, | found these problems:

Error at 53,22:: Local variable str1 is not assigned before used

Figure 1: An example of non-highlighted (top) versus highlighted (bottom) ver-
sions of a stimulus. In the stimulus, a compiler error has been thrown stating that
a variable has not been assigned before use due to the initial assignment being
dependent upon the results of a scanned input, which is indeterminate at compile

time.
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27°) computer screen (EIZO FlexScan EV2451, resolution 1920 x 1080 pixels) at-
tached to the eye tracker while their head was placed on a chin- and forehead rest
that was attached to the desk. The headrest and desk height were adjusted until
the participant was comfortable. A five-point calibration procedure was executed
followed by a four-point validation (mean accuracy 0.501 deg). An example of the
experimental setup can be seen in Figure 2.

The eight code stimuli were pre-
sented during eight separate trials us-
ing Tobii Pro Lab. Each trial, the par-
ticipants were asked to attempt to com-
prehend the code and determine both
why the error had occurred, and how it
might be fixed. Once they felt they had
a good understanding of these ques-
tions, they were instructed to press any
key in order to advance to a text-input
screen where they were asked to sum-
marise in their own thoughts why they
believed the error had occurred, and
how to resolve it. Once completed,
they were able to move on to the next
stimulus by pressing a key combina-
tion. In order to cater to the target
demographic of novices, no advanced
language constructs or external libraries were used within the code samples. The
whole experiment took approximately 15 to 50 minutes to complete, depending on
participant.

Figure 2: The experimental setup. The
apparatus is contained within a booth,
with the eye-tracker visible below the
screen and a chin- and forehead rest in
the foreground.

3.4 Data Analysis

The experiment contained one independent variable: the state of the highlighting,
either turned on or off for a given stimulus. Dependent variables included areas-
of-interest (AOIs) analyses. To perform these analyses, for each of the experiment
stimuli, areas-of-interest (AOIs) were created for each line of code and the error
message. In the event of inconsequential lines of code (for example, a trailing "}"
to close a block), these lines were grouped with the AOI defined for the preceding
line. An example of a stimulus with AOIs defined is provided in Figure 3.

We used Tobii Pro Lab software [Tob23] to classify gaze into fixations using
the default fixation filter with default settings, and then to annotate for each fixation
whether it was in an AOI or not.

The output from Pro Lab was analyzed using a custom Java program. The
program first reads in the data for a single stimulus and from this constructs a
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"timeline" of AOI hits, corresponding to a list of consecutive AOI fixations. Some
of the analyses listed below were performed using this timeline.
In total, six dependent variables are analyzed:

* Time to completion: how long a participant takes to solve a task, in sec-
onds.

* Correctness: Whether the participant successfully solved a task, with a bi-
nary grading of either correct or incorrect. To compute correctness values,
the documents where participants recorded their proposed solutions for each
problem were analysed by the first author. Each solution was marked using
a traffic light system, with red signifying an incorrect solution, yellow an
incomplete solution or one where the participant demonstrated understand-
ing but was unable to solve the issue, and green indicating a complete and
correct solution. The third author then checked the proposed solution grad-
ing for correctness, and any disagreement was discussed until there was a
consensus.. For statistical analysis purposes, the possible grades were then
recoded to a binary format by coding incorrect or incomplete solutions as
unsuccessful task solutions.

 Hit-rate: The percentage of AOI fixations that fell on lines that would have
been highlighted by Progger in a given stimulus. This means that the hit-
rate was calculated for the same lines regardless of whether the highlighted
or non-highlighted version of a stimulus was presented. For example, in
the stimulus shown in Figure 1 on line 23, the variable name is highlighted
by Progger in the declaration statement: String strl. This AOI was
therefore marked as an area of interest for both versions of the stimulus
(regardless of the stimulus treatment).

* Dwell duration: The average amount of time the participant looked at an
area of interest before moving their gaze to another part of the screen, in
milliseconds. Like for hit-rate, for the dwell duration calculation only high-
lighted lines or lines that would have been highlighted by Progger are con-
sidered. Dwell times were computed by summing together the duration of
consecutive fixations that fell in the same AOIL.

» Saccade length: The average distance between gaze fixations while reading
the code, in degrees. Specifically, the saccade classification output provided
by Tobii Pro Lab was used, and the distance between the two fixations that
are adjacent to each saccade computed.

* Linearity: The percentage of gaze movements corresponding to a linear
forward change. Specifically, we counted consecutive AOI fixation pairs
that represented a single-step forward-progression in corresponding lines.
For example, consecutive AOI fixations of lines 5 and 6 would constitute
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¥4 lineg 1) ¢ While | was considering your code, | found these problems:

in linet }7 | Error at 56,9:: Local vari ErrorMessage | assigned before used

String § (|jnep -next();
if (S.equa’|je3)) break;
string L (Lined J-next();

if(L.cont{|jne5 PYA")) {

co = 0;
) (Line6

JLine7) ncy

for (int i = 0; (Line8 length(); i++)

¥ Line9 J* i+1));

for (int o |ine10) < 47 o+
for (int i = 0;(Line11 }length(); i++)
type3.add(s.substring(0 | Line12 Hna(c) + S.substring(i));
int indey |jne13 JdexO£(S);
while (Line14r 0) {

index = L.indexOf(S , index + 1);

) Line16

Figure 3: The areas-of-interest for a stimulus, as defined in Tobii Pro Lab.

a linear change and thus contribute to this metric. Examples of pairs that
would not contribute are fixations on lines 5 and 7 (multiple-step) or lines 6
and 5 (backwards-progression).

The data were analyzed in Jamovi version 2.3 [pro22; R C21] with the GAML;j
module [Gall9]. Linear mixed effect modelling was performed with highlighting
as a fixed effect and participant and stimulus as random effects for five out of the
six dependent variables. Correctness was instead analyzed using a generalized
mixed model to perform a logistic regression using a logit link function. As for
the other analyses, highlighting was specified as a fixed effect and participant and
stimulus as random effects. Data plots were also created using Jamovi and show
data for individual participants along with the mean across participants. Error bars
denote standard errors of the mean.

3.5 Threats to validity

The primary threats to the validity of this study are the low sample sizes. To
ensure the greatest accuracy of the eye-tracking equipment, we found it necessary
to invite participants on-site to the Lund University Humanities Lab, which may
have been a deterrent for some people as they were impelled to go out of their way
to contribute. We attempted to offset this by offering an incentive, however the
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Figure 4: Charts detailing the completion time and correctness metrics.

total number of participants was ultimately quite low at 15. To improve the internal
validity of the study, it would be desirable to recruit a larger pool of participants.

Similarly, the relatively low stimuli number could have had an effect on the
data. This led to several participants completing the tasks very quickly, however
some participants also used the entire 1 hour allotted to them. For future studies, it
may be desirable to increase the number of stimuli, although with the caveat that
this could impact participation numbers.

Sample selection may also have affected the internal validity of the study, as
only novices were recruited for participation. This led to some difficulties for
specific tasks, and may have impacted the validity of the correctness metric in
particular.

4 Results

Here we present the results broken down into performance and gaze metrics on
AOIs.

4.1

In order to answer RQy, the time taken to solve each trial was analysed. As can be
seen in Figure 4 (a), highlighting had no significant effect on the completion time
(F(1,96.5) = 0.258,p = 0.613).

Time to complete tasks

4.2 Correctness

Across all participants, 101 of 120 trials (84%) yielded a correct solution. Statisti-
cal analysis was again performed to investigate whether the addition of highlight-
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Figure 5: Charts detailing the collected eye-tracking data. An asterisk (*) indi-
cates a statistically significant effect of highlighting change.

ing had an effect, as can be seen in Figure 4 (b). The influence of highlighting on
mean correctness was found to be insignificant (x2(1.00) = 0.401, p = 0.527).

4.3 Highlighted line hit-rate

The mean hit-rates across all participants were then calculated and analysed,
as seen in Figure 5 (a). Hit-rate was larger for highlighted stimuli than non-
highlighted stimuli (F'(1,95.8) = 10.6,p = 0.002), indicating that highlighted
lines of code are looked at more.

4.4 Dwell duration

The results of dwell time analysis can be seen in Figure 5 (b), and, consistent with
the hit rate metric, exhibit an increase of 80 ms in average dwell duration between
non-highlighted and highlighted versions of the stimuli (F'(1,96.2) = 4.53,p =
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0.036). This indicates that participants spent more time looking at lines of code
that the compiler considered to be of interest when the highlighted versions of the
stimuli were presented to them.

4.5 Saccade length

No significant differences in saccade length were found between highlighted and
non-highlighted stimuli (F(1,97.7) = 0.184, p = 0.669), see Figure 5 ().

4.6 Reading linearity

As can be seen from Figure 5 (d), there was no significant difference in linear-
ity scores between the non-highlighted and highlighted conditions (F(1,96.3) =
0.490, p = 0.486). Together with the saccade length metric, this finding suggest
that the way in which participants scanned the stimuli did not differ depending on
availability of highlighting.

5 Discussion

Of the six dependent variables which were analysed, we used the first two (comple-
tion time and correctness) to answer RQ; (compiler heatmap highlighting effect on
bug finding performance). We found that the addition of compiler heatmap high-
lighting did not have an effect on both the completion time (p = 0.613) and the
correctness (p = 0.527).

We used the analysis of dependent variables three to six (hit-rate, dwell dura-
tion, saccade length, linearity) to answer RQ, (compiler heatmap highlighting ef-
fect on gaze behaviour when reading code). Of these variables, the closely related
metrics of saccade length and linearity displayed no significant difference between
the two highlighting conditions. This may suggest that, in the act of program com-
prehension, novice programmers exhibit similar patterns of gaze movements when
reading unfamiliar code, regardless of additional compiler heatmap highlighting.

By contrast, the metrics relating to where (AOI hits) and for how long (dwell
duration) the participants looked show a marked difference. From the data, we
see that by adding highlighting to a line, novice programmers tend to look more
often, and for longer periods of time, at that line. Despite this, as related in the
discussion on RQy, this difference in gaze behaviour has no significant effect on
either time to complete a task or correctness of the solution when presented with a
code comprehension problem.

The effect of higher hit-rate and dwell duration ultimately warrants further in-
vestigation, as there were several confounding factors which may have influenced
the results. It may be that the experimental setup being focused on comprehen-
sion was not conducive to the highlighting aiding the participants: a desire to
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understand the code accurately may have led participants to reading in a very me-
thodical way. We believe that in the future it would be worth studying the effect
of compiler heatmap highlighting in different contexts, such as when examining
control flow, or when investigating a bug in an already familiar code base. The
relatively low number of participants may also have affected our ability to detect
effects of highlighting, and it may be worth attempting to re-run the study with a
larger number of subjects.

The low level of experience across all participants may also have fed into the
results due to their lack of familiarity with certain features of the Java language.
For instance, the stimulus which received most incorrect solutions (6 out of 15
responses, or 40%) was centred around the use of the final keyword. Some par-
ticipants were unsure how this would affect the mutability of the relevant variable,
and thus offered incorrect solutions.

Despite these factors, the experiment led to interesting findings when consid-
ering the concept of joint attention. The method in which the heatmap highlighting
is computed (as described in past papers, [MSC21; MSC22] is based on the lines
which are considered by the compiler in the code analysis resulting in a found er-
ror. When no highlighting exists on a line, the compiler did not consider it to be of
importance. In contrast, the darkness of the highlighting on a given line or term is
related to the number of times the compiler "gaze" passed over this area of code.
The fact that participants looked at highlighted sections more often, and for longer
periods, shows that this visualisation of compiler attention had a notable effect on
user attention.

One of the main motivations in developing the conversational lens for
analysing interactions with a programming environment was to draw upon human
characteristics to make the process more natural. We believe that in moving
towards more natural, instinctive methods of communication, many of the abstrac-
tions of human-computer interaction, for example hiding a complex compilation
process behind a simple error message, can be made more clear. In this study
we have shown that, although no effects were found on performance in this
experimental setup, it is indeed possible to use interaction design to encourage the
very human phenomenon of joint attention with a computer.
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