

#### State-of-the-art capabilities in LPJ-GUESS

Eckes-Shephard, Annemarie; Nieradzik, Lars; Pugh, Thomas; Gustafson, Adrian; Lindeskog, Mats; Wårlind, David; Smith, Benjamin; Olin, Stefan; Papastefanou, Phillip; Pongrácz, Alexandra

2022

Document Version: Other version

Link to publication

Citation for published version (APA):

Eckes-Shephard, A., Nieradzik, L., Pugh, T., Gustafson, A., Lindeskog, M., Wårlind, D., Smith, B., Olin, S., Papastefanou, P., & Pongrácz, A. (2022). *State-of-the-art capabilities in LPJ-GUESS*.

Total number of authors:

Creative Commons License: CC BY-NC

#### General rights

Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study
- You may not further distribute the material or use it for any profit-making activity or commercial gain
  You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

#### Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.



# State-of-the-art capabilities in LPJ-GUESS





ANNEMARIE H. ECKES-SHEPHARD, ADRIAN GUSTAFSON, MATS LINDESKOG, PAUL A. MILLER, LARS NIERADZIK, STEFAN OLIN, PHILLIP PAPASTEFANOU, ALEXANDRA PONGRACZ, THOMAS A. M. PUGH, BEN SMITH, JING TANG, DAVID WÅRLIND AND THE LPJ-GUESS DEVELOPMENT CONSORTIUM

Department of Physical Geography and Ecosystem Science Lund University, 223 62 Lund, Sweden

#### Overview

LPJ-GUESS is an advanced DGVM including detailed forest demography and management, croplands, wetlands, specialised arctic processes, emissions of non-CO<sub>2</sub> GHGs and a highly flexible land-use change scheme which tracks transitions between different land-uses. It is the vegetation component of the EC-Earth CMIP6 ESM, the RCA-GUESS regional ESM, and also has a European mode operating at tree species level.

### Dedicated high-latitude features

- High-latitude shrub and tundra PFTs
- Peatland PFTs and biogeochemistry, incl. CH<sub>4</sub>
- Improved soil physics and biogeochemistry, including permafrost, wetland hydrology, soil N<sub>2</sub>O emissions



Simulated annual  $CO_2$ -eq indicate an increased sink for a domain containing land points north of 60°N, from 1850-2100. Forcing from three bias-corrected CMIP6 ESMs and CRU-NCEP for reference.

Decadal-averaged CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O and net CO<sub>2</sub>-eq for the historical and end-of-century periods, showing that the net emissions are both ESM and SSP-dependent but uptake is greater in the warmer scenarios (Gustafson et al. in prep.)

• Annual  $CO_2$ -eq estimates indicate an increased sink, with increased  $CO_2$  uptake (treeline advance, increased tree and shrub growth) only partially counteracted by greater respiration and  $CH_4$  and  $N_2O$  emissions

#### Arctic cold-season focus:

- Dynamic, multi-layer snow scheme
- Improved permafrost extent
- Improved near-surface soil temperature



estimated permafrost extent

#### Forest management



Automated harvest examples and management changes.

- Forest initialization:
   Land-use history, species & age structure
- Harvest alternatives:
   Clearcut w. thinnings/ continuous

Automated/ fixed (detailed)

Management change

## Fire dynamics

#### The wildfire model SIMFIRE-BLAZE provides

- Daily burned-area and C,N turnover
- Fire-line Intensity (FLI) based on fuels and fire-weather
- Biome specific tree-mortality based on allometry and FLI
- Combustion completeness depending on FLI



# Plant hydraulics\*



- Based on Darcy's law and the water supply-demand principle
- Simulates different plant hydraulic behavior (e.g., early vs late stomatal closure) under drought stress
- New mechanistic drought induced tree mortality based on hydraulic failure

Impact of the 2005 drought event on the Amazon basin. **Top**: Simulated net change in aboveground biomass of LPJ-GUESS with new hydraulic architecture. **Bottom**: Simulated net change in aboveground biomass of standard LPJ-GUESS

\* Not included in release 4.1.

### Detailed forest demography

- Direct competition between tree cohorts of different sizes and functional type
- Explicit representation of stand age due to disturbance. (fire, wind, beetle) or land-use change





**Above**: Example tree size structure in a simulation with 10 replicate 1000 m2 patches. Cohorts compete for light, water and nutrients within the same patch.

**Left**: Example forest age structures simulated by LPJ-GUESS with natural disturbances only (blue) and including land-use and management (red). Carbon fluxes follow from the age distribution.

### Energy Balance\*

 New surface energy balance feature allows use as full Land surface model



#### Other developments, usage and collaboration

Full Atm-Canopy-Surface energy balance closure, coupling to regional climate model, BVOCs, P cycling, daily plant carbon allocation, flexible multi-layer OM-scheme.

We welcome collaborations for application of features under active development or new feature development. Please contact <a href="mailto:lpj-guess@nateko.lu.se">lpj-guess@nateko.lu.se</a>

