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Abstract: 
Oats (Avena sativa) is a versatile crop grown worldwide for animal feed and human consumption. Human 
oat consumption has recently risen due to its various health benefits. However, oats are susceptible to 
Fusarium head blight (FHB) caused by various Fusarium fungi. FHB reduces yield and leads to mycotoxin 
accumulation. The most commonly reported mycotoxins in oat are trichothecenes deoxynivalenol (DON) 
and T-2/HT-2 toxins. Trichothecenes inhibit eukaryotic protein biosynthesis and cause acute and chronic 
toxicoses in human and animals.  Effective control of FHB is important for ensuring safety and quality of 
oats. This thesis examines various aspects of FHB in oats, relevant to the development of better FHB 
control strategies. 
Accurate FHB symptom identification is crucial for breeding resistant oats, but the symptoms of FHB are 
cryptic, causing errors in scoring the disease during trials. This work presents an affordable method for 
assessing FHB symptoms in oats by de-hulling mature seeds. Symptoms of blackening and discoloration 
of the oat kernels significantly correlate with Fusarium DNA and mycotoxin accumulation and thus can 
be used as quantitative disease indicators.   
To enhance pathogen resistance, identifying and characterizing plant resistance genes is key. In this 
work two oat genes coding for DON-detoxifying UDP-glucosyltransferases (UGTs) were identified and 
characterised. Transcripts of two oat UGTs were highly upregulated in response to DON treatment and 
F.graminearum infection. The genes conferred resistance to several trichothecenes when expressed in
yeast.  Both UGTs, recombinantly expressed in E.coli were confirmed for their ability to detoxify DON.
These genes could potentially be used for developing genetic  markers for FHB resistance in oat.
Further in this thesis, biocontrol possibilities for FHB in oats are investigated. The fungal BCA 
Clonostachys rosea's potential against FHB is examined. Treating oat spikelets with C. rosea reduced 
Fusarium DNA and DON content in mature kernels.  C.rosea enhanced both rate of DON detoxification 
and expression of DON-detoxifying UGTs. Furthermore, there was significant upregulation of markers of 
induced resistance, including PR proteins and the WRKY23 transcription factor, indicating that the 
biocontrol effect of C. rosea is attributed to the induction of plant defences.  
Additionally, oats' own endophytes were explored for FHB biocontrol. Fungal endophytes from oat 
spikelets were isolated and tested for reducing FHB in greenhouse trials. The most successful isolate 
Pseudozyma flocculosa significantly reduced FHB symptoms, F. graminearum biomass, and DON 
accumulation in oat. Treatment of oat with P. flocculosa induced expression of genes encoding for PR 
proteins, known to be involved in FHB resistance. 

Key words: Oat, Avena sativa, Fusarium head blight, Fusarium graminearum, biocontrol, BCA, 
Clonostachys rosea, endophytes, mycotoxins, thrichothecenes, deoxynivalenol.  

Classification system and/or index terms (if any) Supplementary bibliographical information 
Language: English ISSN and key title: 
ISBN: 978-91-7422-980-6 (print), 978-91-7422-981-3 (PDF) 
Recipient’s notes Number of pages: 
Price Security classification
I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, 
hereby grant to all reference sources permission to publish and disseminate the abstract of the above-
mentioned dissertation. 

Signature  Date 2023-08-16 



Controlling Fusarium head blight in oat 

Alfia Khairullina  



Coverphoto by Alfia Khairullina 
Copyright pp 1-108 Alfia Khairullina  

Paper 1 © by the authtors (Manuscript unpublished) 
Paper 2 © Khairullina, Tsardakas Renhuldt, Wiesenberger, Bentzer, Collinge, Adam, Bülow 
Paper 3 © Khairullina, Micic, Jørgensen, Bjarnholt, Bülow, Collinge, Jensen 
Paper 4 © by the Authors (Manuscript unpublished)  

Faculty of Engineering 
Department of Chemistry 

University of Copenhagen, Department of Plant and Environmental Sciences 

ISBN 978-91-7422-980-6 (print) 
ISBN 978-91-7422-981-3 (PDF) 

Printed in Sweden by Media-Tryck, Lund University 
Lund 2023 



Table of Contents 

Popular summary ................................................................................................... 7 
List of Papers .......................................................................................................... 9 

Papers not included in the thesis: .......................................................... 9 
My contribution to the papers ...................................................................... 10 

Abbreviations ........................................................................................................ 11 
Introduction .......................................................................................................... 13 
Oat .......................................................................................................................... 17 
FHB epidemiology ................................................................................................ 21 

Causal agents of FHB in small cereals ......................................................... 21 
FHB disease cycle ........................................................................................ 24 

Symptoms of FHB in oat ...................................................................................... 25 
Mycotoxins, produced by Fusarium species causing FHB ................................ 29 

Structure and toxicity of Fusarium mycotoxins ........................................... 29 
Methods of identification of Fusarium species and  
analysing mycotoxins ................................................................................... 33 
Regulations of mycotoxins ........................................................................... 34 

Detoxification of mycotoxins in plants ................................................................ 37 
Host-pathogen interactions .................................................................................. 45 
FHB disease management .................................................................................... 49 

Agronomical practices.................................................................................. 49 
Utilisation of FHB-resistant cultivars. ......................................................... 50 

Resistance to FHB in wheat and barley ............................................... 50 
Oat resistance to FHB .......................................................................... 52 

Fungicidal control of FHB ........................................................................... 54 
Predictive tools for FHB outbreaks .............................................................. 55 
Novel approaches in manipulating active FHB resistance in plants ............ 56 
Biological control ......................................................................................... 57 



Biological control: modes of action of BCAs and 
examples of BCAs used against FHB .................................................................. 59 
Clonostachys rosea as BCA against FHB in cereals ........................................... 63 
Endophytes in FHB disease control .................................................................... 67 

Isolation and selection of endophytes for biocontrol ................................... 68 
Endophytes with antagonistic effect against FHB ....................................... 70 

Conclusions and future prospects ....................................................................... 75 
Acknowledgements ............................................................................................... 79 
References ............................................................................................................. 81 



7 

Popular summary 

Oats (Avena sativa) are a versatile cereal crop cultivated worldwide. Accounting for 
2% of global grain production, they rank as the seventh most important cereal. 
Approximately 23 million tonnes of oat grain is produced annually, with the 
majority stemming from spring-sown cultivars in Canada, Russia, and Northern 
Europe. Although used mostly for animal feed, oats have increased in their 
popularity for human consumption over the past 25 years due to their numerous 
health benefits. High in protein, unsaturated lipids and soluble fibre beta-glucan, 
oats promote cholesterol reduction, improved glycaemic control, and 
gastrointestinal health. They are also safer than, e.g., wheat for individuals with 
celiac disease. In addition, oats have high nitrogen use efficiency, making them 
suitable for organic crop systems. 

However, oats are vulnerable to Fusarium head blight (FHB), a disease caused by 
various fungal species in the genus Fusarium. FHB not only reduces crop yields but 
also results in accumulation of harmful mycotoxins in grains. The most common 
toxins produced by Fusarium fungi belong to a class of compounds called 
trichothecenes, including deoxynivalenol (DON) and T-2/HT-2 toxins. These 
mycotoxins can cause vomiting, diarrhoea, and other gastrointestinal symptoms in 
humans and animals upon ingestion. Trichothecenes exert their harmful effects by 
interfering with protein biosynthesis in eukaryotic cells. Mycotoxin levels in food 
and feed commodities are regulated by governing bodies, including European Food 
Safety Authority and the US Food and Drug Administration. As mycotoxin 
contamination due to FHB poses a significant public health concern, effective FHB 
disease control is crucial for farmers and food producers. 

Managing FHB in cereals is challenging, with integrated pest management (IPM) 
strategies offering the best approach for controlling FHB. IPM combines multiple 
control methods, such as use of disease-resistant cultivars, agronomic practices, and 
chemical or biological control strategies, tailored to the specific needs and 
environmental conditions of each growing region. However, no oat varieties are 
completely resistant to FHB. Genetic resistance to FHB disease is a complex trait, 
influenced by multiple genes and environmental factors, making breeding for FHB 
resistance challenging. The absence of a complete oat genome sequence had further 
impeded progress in this area. Fortunately, in 2022, two high-resolution genome 
sequences were made public, offering invaluable tools for researchers and breeders 
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to understand the genetic basis of important oat traits and develop new technologies, 
such as gene editing, to enhance resistance of oat against diseases. 

When it comes to breeding disease-resistant oats, correctly identifying FHB 
symptoms is essential. However, unlike wheat and barley, in oat FHB symptoms are 
hidden beneath thick hulls, and to complicate matters further, these symptoms are 
easily confused with signs of natural ripening of oats. This often leads to guesswork 
and errors in disease scoring, resorting to costly chemical and molecular biological 
analyses. Consequently, the quest continues for a quicker, affordable, and 
dependable method to reveal these elusive FHB symptoms in oat.  

To improve genetic resistance against pathogens, it is crucial to identify plant 
resistance genes and study their functions. One example is the genes encoding UDP-
dependent glucosyltransferases (UGTs), which detoxify mycotoxins and other 
harmful compounds. UGTs bind DON and other trichothecenes with a glucose 
molecule, transforming the resulting compound into a much less toxic substance. 
Enhanced activity of such enzymes was directly linked to FHB resistance. In cereal 
crops like barley, wheat, and rice, researchers have identified several genes, 
including UGTs, that contribute to FHB resistance. However, the genetic foundation 
of oats' resistance to FHB has yet to be explored thoroughly.  

Together with utilizing moderately resistant cultivars, agronomic practices such as 
crop rotation and soil tillage can effectively control FHB. In addition, fungicides 
can reduce FHB severity and prevent mycotoxin production in wheat and barley, 
but they are largely ineffective against FHB in oats. Even if effective fungicides 
against FHB in oat could be developed, there is a considerable risk of pathogens 
developing resistance against fungicides as well as growing societal concerns of 
negative environmental impacts of excessive fungicide use. 

Sustainable and eco-friendly alternatives to fungicides include microbial biological 
control agents (BCAs), which have been found to reduce FHB symptoms and 
mycotoxin accumulation in wheat and barley. BCAs encompass bacteria, fungi, and 
other microorganisms that protect plants through various modes of action, including 
direct pathogen destruction, competition for nutrients and space, production of 
antifungal compounds, and induction of plant resistance mechanisms. Recently, 
endophytic microorganisms, have been gaining interest as potential BCAs. 
Endophytes, a mix of fungi, bacteria, and other microorganisms, reside within living 
plant tissues without causing harm. Instead, these quiet inhabitants often boost plant 
growth and help their hosts fend off pathogen attacks and abiotic stress, while using 
the plant as a shelter and food source. Although research on BCAs and endophytes 
against FHB in oats is scarce, studies have shown promising results in wheat.  

This work examines different aspects of controlling FHB in oats, such as more 
accurate disease symptom assessment, identification and functional characterization 
of DON-detoxifying UGT genes in oats, and the use of BCAs and endophytes for 
FHB control.  
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Introduction 

Oats (Avena sativa), a member of the Poaceae family, are a versatile crop grown 
worldwide for animal feed, human consumption, and non-feed applications. While 
74% of oats are used for animal feed, the crop has experienced a shift in usage over 
the last 25 years [1,2]. Particularly, human consumption of oats has surged due to 
its array of health benefits, with a standout feature being its high content of the 
unique soluble fibre, beta-glucan.  Oat beta-glucan is believed to actively contribute 
to reducing cholesterol levels, enhancing glycaemic control, and promoting better 
gastrointestinal health [3–6]. Moreover, oats are safer for individuals with coeliac 
disease due to their lower prolamin (gluten) protein content [3,7]. Oats' nitrogen 
efficiency make them useful in low-input crop rotation  [1,8]. The oat genome has 
been sequenced recently, providing valuable insights into the genetic basis of 
important traits such as yield, disease resistance and nutritional content [9,10].  

Oat is susceptible to Fusarium head blight (FHB) which not only affects yield but 
also leads to the accumulation of mycotoxins. These mycotoxins are harmful to both 
human and animal health and can result in reduced feed quality, food safety issues, 
and economic losses for farmers [11,12]. Therefore, controlling FHB is crucial to 
ensure the safety and quality of oat-based products, and several strategies have been 
developed, including crop rotation, breeding for resistance, fungicide applications 
and biocontrol [13,14].  

FHB in oat can be caused by several species of Fusarium, with F. graminearum, F. 
culmorum, F. poae, F .avenaceum and F. langsethiae identified as the main causal 
agents in recent years [15–20]. Composition of the Fusarium species involved in 
FHB outbreaks varies based on factors such as geographic location, crop type and 
cultivar, weather conditions, agricultural practices, and niche-competition with 
other pathogens [21,22]. 

Symptoms of FHB in oats are rarely apparent and can be easily confused with 
senescence of glumes and hulls covering kernels, leading to errors and biases during 
the greenhouse and field trials. [23]. Paper I in the current work describes how 
symptoms of Fusarium infection of oat can be more accurately accessed when de-
hulling the mature seeds upon harvest. The symptoms of blackening and 
discoloration of the kernels correlate with high amounts of Fusarium DNA and 
accumulated mycotoxins and thus can be used in scoring of the FHB disease.   
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The most prevalent mycotoxins produced by FHB-causing fungi in oat are group A 
and B trichothecenes [7–9]. In oat grains, the commonly reported group A 
trichothecenes are T-2 and HT-2 toxins, while the group B trichothecenes include 
deoxynivalenol (DON) and nivalenol (NIV). Apart from most common mycotoxins, 
several others such as Zearalenone (ZEA), Beauvericin (BEA), moniliformin 
(MON) and Enniatins (ENNs) are often reported in oat grains [10–13]. As 
mycotoxins cause acute and chronic toxicoses in human and animals, specific 
regulations dictating permitted mycotoxin levels are proclaimed by the authorities, 
such as European Commission, the Food and Drug Administration of United States 
(U.S. FDA) and others [14,15].  

Trichothecenes exert their toxicity by inhibiting eukaryotic protein biosynthesis 
through their interaction with ribosomes [16–18]. In F. graminearum pathogenicity, 
DON plays an important role by acting as a virulence factor [19–21]. Plants have 
different molecular mechanisms to detoxify mycotoxins, of which, conjugation of 
trichothecenes with glucose seems to be the principal detoxification mechanism[22–
25]. Conjugation of DON into DON-3-glucoside (DON-3G) is catalysed by uridine 
diphosphate-glucosyltransferases (UGTs), a large superfamily of enzymes involved 
in specialised metabolism in plants [26,27]. DON-detoxifying UGTs were 
characterized in different cereal species, such as Brachypodium, wheat, barley and 
rice [28–31]. The increased glycosylation of DON with the help of UGTs has been 
directly linked to resistance of plants to F.graminearum infection.  It was shown 
that the transgenic expression of barley HvUGT13248 gene  in wheat conferred 
resistance to both DON and NIV and decreased disease severity of FHB and 
Fusarium crown rot (FCR).  

In the present work, paper II describes identification and characterization of two 
oat UGT genes, AsUGT1 and AsUGT2, orthologous to barley HvUGT12348. Both 
UGT genes were strongly upregulated following treatment with DON and 
F.graminearum infection and conferred a high level of resistance to trichothecenes 
DON, NIV and HT-2 in yeast. Both enzymes, expressed recombinantly in E.coli, 
showed the ability to convert DON into DON-3G. AsUGT1 and AsUGT2 aid in 
effective mycotoxin detoxification and thus potentially could serve as markers for 
the selection of FHB resistant lines and cultivars. 

Spraying fungicides at anthesis is another control method for FHB in cereals. 
However, this carries the risk of fungicide resistance in the pathogen[32,33]. The 
effectiveness of fungicides against FHB in oats varies widely, often proving 
inefficient, and greatly relies on the specific oat cultivars and Fusarium species 
involved [34–37]. Recently, there has been a growing focus on using biological 
control agents (BCAs) as sustainable alternatives to chemical fungicides [38]. BCAs 
demonstrate diverse modes of action to control pathogens, including the activation 
of the plant's own defence genes, which hinders pathogen infection [39]. Paper III 
describes the ability of the fungal BCA Clonostachys rosea IK726 to substantially 
reduce Fusarium DNA (79%) and DON accumulation (80%)  in oat kernels. C. 
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rosea-treatment resulted in higher conversion of DON to DON-3G and in a 
significant enhancement of expression of two oat UGT-glycosyltransferase genes. 
Furthermore, the treatment with C. rosea activated the expression of genes encoding 
four PR-proteins and a WRKY23-like transcription factor, signifying that C. rosea 
induces resistance in oat. The paper proposes that C. rosea IK726 has a strong 
potential to be used as a BCA against FHB in oat.  

In the ongoing search for new and effective BCAs, endophytic microorganisms have 
emerged as a promising source. Endophytes reside within living plant tissues, 
promoting plant growth and stress resistance while utilizing the plant as a habitat 
and nutrient provider [40]. Many endophytes have been found to offer protection 
against plant pathogens.  Paper IV focuses on isolating fungal endophytes from oat 
spikelets and examining their effect on reducing FHB and mycotoxin content in 
mature oat grain. Furthermore, the most promising BCA candidate, Pseudozyma 
flocculosa, is studied for its ability to induce resistance in oat spikelets.   

The thesis is organized as follows: a comprehensive literature review covering 
various facets of managing FHB in oats is compiled. Overview of resent studies are 
provided into the causal agents of FHB and the mycotoxins they produce, along with 
the mechanisms underlying their toxicity. A particular focus is directed towards 
elucidating the detoxification of mycotoxins within plants. Aspects of breeding of 
oats that are resistant to FHB are included, as well as  other FHB controlling 
strategies (agricultural practices, use of fungicides, etc). The thesis further explores 
aspects of biological control. The modes of action of different BCAs are discussed, 
highlighting the most effective ones within the context of FHB.  Finally, the 
utilization of endophytes as BCAs is examined, focusing on essential practices 
during their isolation and testing. The experimental findings presented in papers I-
IV are integrated into the corresponding chapters, aligned with the relevant topic. 
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Oat  

Oats (Avena spp.) are annual grasses belonging to the Poaceae family, which 
includes economically important cereal crops such as wheat, rice, barley, and maize. 
Oats are found in nature as diploids, tetraploids, and hexaploids [1]. The greatest 
genetic diversity of Avena species is observed in regions around the Mediterranean, 
Middle East, Canary Islands, and Himalayas. The oat plant exhibits a panicle-type 
inflorescence, which enables it to regulate the number of grains during the grain 
filling stage [41]. The primary cultivated oat species is hulled oat Avena sativa. 
Other agricultural species, such as A. strigosa, A. byzantina and A. abyssinica are 
also grown in some regions for animal feed and fodder [4]. The oat spikelet of a 
hulled oat (Figure 1) typically comprises one to three florets arranged in a primary, 
secondary, and tertiary hierarchy according to their position within the spikelet [42, 
43]. Each floret is confined within two overlapping protective bracts - lemma and 
palea and the whole spikelet is protected by two outer glumes [1, 46]. 

  
Figure 1. Oat (Avena sativa) panicle (A), a spikelet (B), a dissasembled spikelet (C). Images B and C 
are by K. Chayka and by P. M. Dziuk, modified (https://www.minnesotawildflowers.info/). 

Oats are versatile crop that are grown worldwide for animal feed, human 
consumption, and non-feed applications [2]. Historically, oats had great importance 
due to its traditional use as animal feed, especially for workhorses and on-farm 
animals. Farm mechanizations, which required less horsepower and a shift for high-
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input crops such as maize, wheat, and soybean led to decrease of oat cultivation 
from 46.9 to 26.3 million metric tons from early 1970s and on (Figure 2). Currently, 
worldwide production of oat grain is approximately 24 million metric tons per year, 
grown over 9.5 million hectares [44]. Oats account for a mere 1.3% of global grain 
production and thus represent the seventh most important cereal [1,44]. Of this, 77% 
of the world's oat is produced in Europe, Canada, Russia and Australia. Most oat 
production comes from spring-sown cultivars in Northern Europe, Russia and 
Canada, while autumn-sown cultivars are grown in the UK, Southern USA, and 
Australia [1]. Poland, Finland, UK, Spain and Sweden are the leading oat producers 
in Europe [44]. In Sweden over last decade between 363.5 thousand tons and 815.5 
thousand tonnes oats had been harvested yearly (Figure 3) (data from 
Statistikmyndigheten SCB). Sweden is the third largest oat exporter in the world 
after Russia and Finland [44].   

 
Figure 2. Production of oat in the word, Northen America and Europe from 1961 to 2021 (FAOSTAT) 

Approximately 75% of the oat crop is utilized as animal feed for cattle, sheep, 
horses, and to a lesser extent, poultry [1,45,46]. The majority of oats in the world 
are used as feed on the same farms where they are grown [1]. Hulled oats are utilized 
as a feed source for ruminant animals, as the hulls contribute valuable fibre content 
to their diet [47]. To be used as feed for pigs, oats need to be de-hulled (or naked 
varieties can be used) as pigs do not have the digestive enzymatic system to process 
the tough fibres. The same is true for specialized feed for racehorses, which require 
a high-energy diet [47]. Additionally, oats are used as a forage crop, particularly in 
subtropical regions [48,49]. 
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While usage of oat for feed has decreased worldwide during last 30 years, its usage 
for human consumption has been increasing due to the discovery of many health 
benefits [2]. Oats contain 7–14% of dietary fibre including 3–5% of β-glucan 
((1→3), (1→4)-β-D-glucan), which is one of the important functional components 
of oats. β-glucan is a water-soluble fibre with high viscosity and  located in the outer 
layer (aleurone) of an oat grain. Four approved European Food Safety Authority 
(EFSA) health claims apply to oat beta-glucans. These include the ability to reduce 
cholesterol levels, as well as to delay carbohydrate absorption, leading to improved 
glycaemic control and reduced risk of diabetes type II [2,3,6,50-52]. Moreover, 
beta-glucans act as a prebiotic, promoting gastrointestinal health through the 
stimulation of beneficial bacteria growth in the gut and improved bowel 
regularity[6]. Another type of oats soluble fibres, arabinoxylans, similarly, 
contribute to good digestive health, controlled blood sugar levels and a favourable 
gut microbiome [53].  

 
Figure 3. Crop production and cultivated area for oat in Sweden during 2012-2021.  

One more notable attribute of oats is their high unsaturated lipid content, which 
varies between 6-12% across different varieties [54]. One more EFSA approved 
health claim is related to the high content of unsaturated fatty acids in oat [3, 55].  

Oats have a high protein content compared to other cereals, ranging from 12-22% 
and the best amino-acid balance among cereals [4,56,57]. In fact, oats are known to 
contain the highest levels of lysine compared to other grains, making them an 
important source of this essential amino acid in vegetarian and vegan diets [2,57]. 
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Additionally, oats are abundant in antioxidants such as vitamin E, avenanthramides 
(exclusive to oats), phenolic acids, flavonoids, sterols, and phytic acid [50,52]. 

Oats are safer for the majority of people affected by coeliac disease, as they have 
much less prolamins (gluten), which trigger coeliac disease and food allergies (15% 
compared to 40% in wheat)[3,57]. Recently, a number of new value-added food 
products have been emerging in the market, such as oat milk, oat yogurt etc.[55,58]. 
These products are often marketed as healthy and sustainable alternatives to dairy-
based products and are suitable for individuals with lactose intolerance or dairy 
allergies. In terms of environmental impact, oat milk has a lower carbon footprint 
than cow's milk, as it requires less water and land to produce [59]. Oats are a 
common ingredient in the cosmetics industry due to their natural soothing and 
moisturizing properties [2].  

Agronomically, oats have greater nitrogen use efficiency, therefore they require 
relatively low fertilizer input and are productive in a wide range of soils [1,59]. Oats 
are often grown in minimal land area thereby inhibiting the soil from eroding. They 
can be used in crop rotations and as a winter cover crop, as sustainable agriculture 
practices for soil conservation [1,59]. The ability of oat roots to synthesize saponins, 
possessing strong fungicidal activity against a range of soil-borne fungal pathogens 
make oat an attractive crop rotation plant [60].  

The genome of oat has been sequenced and assembled recently, providing a valuable 
resource for studying the genetic basis of important traits such as yield, disease 
resistance, and nutritional characteristics [61,62]. The genome of hexaploid oat has 
an estimated size of 12.5 Gb, which is more than three times larger than the human 
genome. It contains seven chromosome pairs originating from each of its three 
diploid progenitors, which  harbour at least 120,000 protein-coding genes [61,62]. 

Although oats are considered to be more resistant to pests and diseases compared 
with other cereals, they are prone to a number of diseases, mostly fungal, that can 
impact yield and quality significantly. Some of the most common fungal diseases 
affecting oat include Crown rust (Puccinia coronata f.sp. avenea), Powdery mildew 
(Blumeria avenea), Leaf spot (Pyrenophora avenea), Leaf blotch 
(Parastagonospora avenae) and Fusarium head blight (FHB) [1,4,63,64]. While the 
first four affect yield, FHB leads not only not only to yield reduction but also 
accumulation of mycotoxins. These mycotoxins are harmful to both human and 
animal health and can result in reduced feed quality, food safety issues, and 
subsequent economic losses for farmers [8,65]. Therefore, controlling FHB is 
crucial to ensure the safety and quality of oat-based products. The best way to 
control FHB, both economically and ecologically, is via integrated disease 
management, which combines several strategies such as use of resistance genotypes, 
crop rotations, chemical and biological protection, monitoring and predicting 
disease outbreaks and others.  

  



21 

FHB epidemiology 

Causal agents of FHB in small cereals 
The genus Fusarium belongs to the phylum Ascomycota, class Sordariomycetes, 
order Hypocreales, family Nectriaceae. It is one of the most frequently occurring 
genera of plant-pathogenic fungi in the world and one of the most important 
mycotoxin-producing genus [66]. Fusarium species cause disease losses in cereals 
worldwide, such as Fusarium head blight (FHB) and  Fusarium crown rot (FCR) 
[33,67,68]. FHB is a particularly devastating disease of small cereal crops, including 
bread wheat (Triticum aestivum), durum wheat (Triticum turgidum subsp. durum),  
oat (Avena sativa), barley (Hordeum vulgare) and triticale (x Triticosecale), and can 
result in significant yield losses, reduced grain quality and contamination of grain 
with mycotoxins [33,69–71].  

Since its initial description in the beginning of 1800s, the taxonomic classification 
of the genus Fusarium has undergone numerous revisions and refinements [66]. This 
genus is a challenging group to classify due to the high level of morphological and 
genetic diversity among its species and the fact that many are only known from the 
anamorph (asexual) phase [76]. Currently, there are at least 300 phylogenetically 
distinct species recognized, of which almost half are not formally described [76]. 
Additionally, new species of Fusarium are continuously being discovered, 
particularly in regions with high levels of crop diversity and fungal activity [10]. 
Recent progress in molecular biology and genetics has led to a more profound 
comprehension of the evolutionary connections and genetic variability present 
within the genus Fusarium [72,73] [74]. Thus, the genus Fusarium has been 
reclassified into 23 species complexes, which comprise closely related lineages of 
multiple species, grouped based on common phenotypic characteristics and toxin 
production [76, 81, 82]  [74]. According to this classification, causal agents of FHB 
in small cereals belong to Fusarium sambucinum species complex (FSAMSC) [75]. 
The new classification has not been widely accepted yet, and this could cause some 
confusion especially in the case of several species under broad term Fusarium 
graminearum sensu lato, which have been previously grouped to Fusarium 
graminearum species complex (FGSC). Many species among FSAMSC produce a 
wide range of mycotoxins, varying in their chemical structure and degree of toxicity 
for plants and animals [76]. 
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FHB was first documented, in England, by W.G. Smith in 1884, and since then 
numerous severe epidemics have occurred worldwide, resulting in extensive crop 
damage and yield losses [65,77–79]. FHB in cereals can be attributed to a minimum 
of 17 Fusarium species [80]. Two non-toxicogenic fungi belonging to  genus 
Microdochium (M. nivale and M. majus) are often co-occur with Fusarium 
pathogens [70,81,82]. Prevalent Fusarium species and accumulated mycotoxins in 
oat worldwide over last twenty years are listed in Table 2. F. graminearum, F. 
langsethiae, F. poae and F. avenaceum have been dominating in oat FHB.  The 
mycotoxins most often found in oat are deoxynivalenol (DON) and T-2/HT-2 
toxins, produced by F. graminearum and F. langsethiae, respectively. Oat is more 
susceptible to F. langsethiae infection compared to wheat and barley  and infections 
by F. langsethiae in oat are symptomless, even when they cause accumulation of 
high level of T-2/HT-2 toxins produced by this fungus [83–86].  

F. graminearum is regarded as the most virulent causative agent of FHB, while F. 
langsethiae is considered a weak pathogen [87], although the strain of a Fusarium 
species may also play a role [88–90]. Some Fusarium species, such as F. poae, are 
known to act as opportunistic pathogens, as the presence of other Fusarium species 
can enhance their ability to infect plants, and they may work synergistically to 
undermine the plant's defences [82,91]. The specific composition of Fusarium 
species involved in FHB outbreaks can vary based on geographic location, crop type 
and cultivar, weather conditions, agricultural practices and niche-competition with 
other pathogens [82,92–95]. Main FHB causing agents have been shifting over the 
last 20 years depending on environmental conditions and agricultural practices used 
in cultivation [94,96]. The severity of the FHB disease for a given cereal depends 
on the aggressiveness of the main causal agent, cultivar resistance and the 
environmental factors, specially the relative humidity around anthesis of the cereal 
crops [71,95,97]. F. poae and F.avenaceum are found to co-occur with 
F.graminearum [91], while F. graminearum and F. langsethiae occurrences are 
negatively correlated [90].  

It is worth noting that Fusarium species can colonize plants as endophytes without 
inducing any disease. Notably, several mycotoxin-producing Fusarium species, 
including F. graminearum, F.poae and F.avenaceum  were found in asymptomatic 
grasses in North American prairies [98].  
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Table 2. Fusarium species and mycotoxins, reported in oat worldwide during the period from 2004 to 
2020 (NA - not analysed in this work). Symbols equal = and more > are used to indicate relative 
quantitative differences.   

Years of 
survey 

Country Prevalent Fusarium spp. Prevalent 
Mycotoxins 

Refs 

2004-2009 Norway F. graminearum = F. langsethiae = 
F. avenaceum > F. poae > F. 
culmorum 

DON, ZEA, 
ENNs, T-2/HT-2, 
MON 

Hofgaard et al.  
2016 [99] 

2007 Denmark F. langsethiae > F.graminearum > 
F. avenaceum > F.poae   

T-2/HT-2 > DON 
> NIV 

Nielsen et al. 
2011 [70] 

2010-2011 Sweden  F. poae, F. langsethiae,  F. 
avenaceum  

DON, NIV, BEA,  
ENNs 

Fredlund et al. 
2013 [100] 

2004-2018 Sweden  F. graminearum, F.poae, 
F.langsethiae, F.culmorum  

DON, NIV, T-
2/HT-2, ZEA 

Karlsson et al  
2022 [101] 

2007-2008 Belgium  F. poae and F. graminearum NA Audenaert et al. 
2009 [102] 

2005–
2014 

Finland  In 2005: F. avenaceum;   
in 2006: F. langsethiae = F.poae > 
F. graminearum > F.culmorum  

In 2006: T-2/ 
HT-2, DON;  
In 2012-13: 
DON 

Hietaniemi et al. 
2016 [103] 

2002-2005 
2006-2008 

UK NA T-2/HT-2 > DON 
T-2/HT-2 

Edwards 2009,  
Edwards 2017  
[35,104] 

2013-2014  Switzerland  F. poae > F. graminearum, F. 
langsethiae, F. avenaceum, F. 
culmorum.  

T-2/HT-2, NIV, 
DON 

Schöneberg et al. 
2018 [105] 

2016-2019 Spain NA T-2/HT-2, ZEA, 
DON 

Tarazona[106] 

2001-2017 Ontario, 
Canada 

F. poae > F. graminearum, F. 
sporotrichioides, F. avenaceum, F. 
equiseti 

NA Xue et al. 2019  
[107] 

2014-2017 Canada NA BEA, DON, CUL Tittlemier et al. 
2020 [108] 

2016-2018 Manitoba, 
Canada 

F. poae > F. graminearum, F. 
sporotrichioides, F. avenaceum, F. 
culmorum 

DON, NIV, BEA Islam et al. 2021 
[109] 

2015-2016  Ireland  NA T-2/HT-2, ENNs, 
BEA 

Colli et al. 2021 
[10] 

2020 Spain 
 
UK 

F.poae, F.langsethiae  
 
F.poae, F.lansethiae, F.cerealis, 
F.tricinctum species complex 

DON, T-2 
 
BEA, NIV, T-2 

Gil-Serna et al. 
2022 
[110] 
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FHB disease cycle  
Fusarium fungi survive the winter by colonizing on the crop debris from the 
preceding season (Figure 4). In spring, they grow saprophytically on plant residues 
[69]. Under warm and moist conditions, fungi produce abundant sexual ascospores 
or asexual conidia. Of prevalent pathogen species only F. graminearum and F. 
avenaceum are known to possess  the sexual stage [111]. Depending on the species, 
three types of asexual spores can be produced, namely macroconidia in sporodochia, 
microconidia on conidiophores, and chlamydospores within hyphae [112,113]. The 
existence of a sexual stage in F. graminearum promotes genetic recombination, 
thereby increasing the possibility of emergence of new strains with enhanced 
virulence [67]. 

 
Figure 4. Disease cycle of Fusarium on oat (adopted from Rojas et al., 2018 and modified).                 
A) Saprophytic phase on crop residues, B) Production of macroconidia or ascospores, C) Infection of 
flowering cereal spikelets, D) Fusarium damaged kernels with mycotoxin contamination, E) Infected 
grains can be used as seeds and may produce Fusarium crown rot on seedlings.  

Ascospores and conidia are spread by wind and water splashing during the rain. 
Fusarium species primarily infect small cereal heads during the period spanning from 
anthesis to the soft dough stage. In oats, the most severe infections occur during 
anthesis [114,115]. The development and progression of fungal growth, infection, and 
disease in head tissues are highly favoured by a warm and moist environment. In oat, 
germinated fungal mycelium enters floret cavity via floret mouth. An alternative 
pathway for infection occurs through the crevices located between the palea and lemma 
[114]. It is worth noting that the spread of infection in oat is restricted to a single 
spikelet and does not spread between separate spikelets [116].  
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Symptoms of FHB in oat 

In wheat and barley, FHB damage to spikes, i.e., “blighting”, is normally distinct 
and can be quantified [117–119].  Mature wheat and barley kernels affected by FHB 
often exhibit discoloration and abnormal, shrunken form [71,120,121]. In contrast, 
symptoms of FHB in oat are not apparent due to thick oat hulls concealing the 
kernel. In addition, bleaching of glumes and hulls of oat can be easily confused with 
the appearance of natural senescence. This makes the assessment of disease less 
reliable and prone to error. Current methods to access FHB in oat are rather 
elaborate and costly. As visual methods, the  examination of germination capacity 
of the seeds or the of appearance of Fusarium growth on the seeds placed on agar 
plates are used. More exact methods such as LC-MS/MS and immunoassays  to 
quantify mycotoxins [132,133, 134],  or qPCR to quantify Fusarium fungal biomass 
[130,131] need specialized equipment and/or expensive chemicals.  

In the present work, paper I describes how symptoms of Fusarium infection of oat 
can be more accurately accessed when de-hulling the mature seeds upon harvest. 
FHB in oat manifests itself as blackening and discoloration of the kernels (Figure 
5).  

 
Figure 5. Dee-hulled oat symptoms with  (A) no FHB symptoms, (B) with clear FHB symptoms (paper I). 

We have accessed  Fusarium damaged kernels by dehulling samples obtained from 
3 different sources: greenhouse trials, artificial field trials and naturally 
contaminated farmers’ fields. Seeds with visible symptoms contained considerably 
larger quantities of both Fusarium DNA and corresponding mycotoxins compared 
to the symptomless seeds (Figures 6 and 7).  
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Figure 6. Amount of DNA of four different Fusarium species in 20 sorted samples: (a) greenhouse trial, 
(b) field pawn inoculation trial, (c) farmers samples.  Fractions with no symptoms is marked with letter 
N, fraction with visible symptoms is marked with letter S (paper I). 

 
Figure 7. Levels of mycotoxins in 20 sorted samples: (a) greenhouse trial, (b) field spawn inoculation 
trial, (c) farmers samples.  Fractions with no symptoms is marked with letter N, fraction with visible 
symptoms is marked with letter S (Paper I). 

The correlations  between the symptoms and the amount of Fusarium DNA and 
mycotoxins accumulated in such damaged kernels were significant (paper I). In the 
samples analysed, F. graminearum, F. culmorum, F. avenaceum and F. poae 
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contributed to the appearance of symptoms. Analysis of Fusarium DNA content in 
single kernels confirmed these observations (Figure 8). Most of the kernels with 
symptoms contained high amounts of Fusarium DNA. The symptoms of the seeds 
where Fusarium DNA was not detected were most probably caused by other fungi 
(Microdochium spp) or insect infestation (Paper I). 

Fusarium damaged kernels (FDK) of oat have much lower density compared to 
healthy ones, due to the amount of air trapped under the lemma and palea. This 
allows separation of damaged kernels from healthy ones by density, as described in 
paper I. This difference in density of fusarium-damaged and healthy seeds 
potentially could be used to develop inexpensive industrial application.   

 
Figure 8. Amount Fusarium DNA in individual oat kernels with  damage symptoms (kernel No. 1-24) 
and kernels without visible symptoms of damage (kernel No. 25-41). Kernels were de-hulled for 
assessment of symptoms. Paper I. 

Assessment of FDK by dehulling oat kernels is a rapid and reliable ad-hoc tool to 
evaluate Fusarium infections prior to using more precise but expensive and time-
consuming methods. In paper IV, we have successfully used de-hulling to evaluate 
the effect of biocontrol agents on F. graminearum infection in oat.  
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Mycotoxins, produced by Fusarium 
species causing FHB 

Structure and toxicity of Fusarium mycotoxins  
Mycotoxins are low-molecular-weight specialised (also known as secondary) 
metabolites produced by fungi and toxic to other organisms [23]. During seasons 
when Fusarium fungi do not actively colonize living plants, they have to survive 
saprophytically on crop debris from previous seasons. In such environments 
mycotoxins significantly aid mycotoxigenic fungi's defensive strategies against 
resident microbes, often serving as essential chemical mediators in these 
competitive or cooperative interactions [22,137–139]. Fungi also potentially can use 
mycotoxins as signalling molecules to modulate host responses and enhance 
colonization. Moreover, mycotoxins often make fungi more effective in their role 
as plant pathogens by increasing  pathogenicity in plants [22,137,139].  

The most prevalent mycotoxins found in oat grains during recent years are 
trichothecenes, which are produced by several causal agents of FHB. 
Trichothecenes are heterocyclic sesquiterpene molecules, containing epoxy-group 
which is crucial for the stability of the molecule and its toxicity (Figures 9 and 
10)[140] [60]. More than 200 trichothecenes have been described and they are 
divided into four types (A–D) according to their chemical structure. Trichothecenes 
produced by Fusarium fungi belong to Types A and B, while Type C and D 
trichothecenes are not associated with FHB [8,141][23,60].  

A and B  types differ by the presence of different functional groups in the C-8 position 
of the molecule backbone (Figure 10). Most important Type A trichothecenes include 
T-2 and its hydrolysed form HT-2, produced mainly by F. langsethiae and F. 
sporotrichoides [9,141,142]. As was mentioned earlier, oat is more susceptible to 
infection by F. langsethiae and F. sporotrichoides, therefore T-2/HT-2 toxins have 
been found to accumulate in oat in high quantities [83–85,143]. Main type B 
trichothecenes found in oat are deoxynivalenol (DON) and nivalenol (NIV). DON is 
produced by F. graminearum and F. culmorum [7,22,76,144], while the main 
producers of NIV are F. culmorum and F. poae [140,145]. DON has been the most 
prevalent trichothecene accumulating in cereals, including oat, and is also one of the 
most studied mycotoxins in regard to its toxic effects in plants and animals [9,22]. 
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Figure 9. Backbone structure of trichothecenes (Adapted and modified from Chen et al., 2019 [7]) 

 

 
Figure 10. Chemical structures of some of the type A and  B trichothecenes (Adapted from Michlmayr 
et al. 2018 [30]) . 
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The genetics and biochemistry underlying trichothecenes, as well as the genetic 
bases for chemotype variation among strains have been elucidated over the recent 
decade [146]. The synthesis of trichothecenes involves a series of up to 15 
enzymatic modifications of the primary metabolite, farnesyl diphosphate.  
Trichothecene-producing Fusarium species harbour a cluster of TRI-genes, which 
participate in the enzymatic stages of this process. The presence or absence of 
specific genes within this cluster results in a diverse array of structurally distinct 
trichothecenes [146]. In addition, differences in function of allelic variants of the 
same TRI gene produce trichothecene chemotype variation. For example, different 
alleles of TRI-gene clusters are responsible for producing different chemotypes of 
F. graminearum: 3-acetyl-deoxynivalenol (3-ADON) or 15-acetyl-deoxynivalenol 
(15-ADON) and F. culmorum: 3-ADON or NIV. Recently, F. graminearum isolates 
possessing the novel NX-2 chemotype (type A trichothecene), were found in USA 
and Canada. Such toxin diversification on the molecular evolution of trichothecene 
genes may be important in niche adaptation of the fungus [147]. 

Fusarium strains initially synthesize acetylated forms of trichothecenes. As was 
mentioned above, in the case of DON-producing F. graminearum, 3-ADON or 15-
ADON is synthesized. Similarly, NIV-producing Fusaria excrete 3-,15-diacetyl 
nivalenol into plants tissues. These acetylated forms are later deacetylated into DON 
or NIV in the plant by either plants own or fungal carboxylesterases [146,148]. 
Producing acetylated form of trichothecenes is a self-protection mechanism in 
Fusarium, as acetylated (at C3 or C15 positions) forms are much less toxic to the 
eukaryote cells [149]. Efflux of mycotoxins out of the cells is an additional self-
protection mechanism utilized by toxin-producing microorganisms. Integral 
membrane proteins belonging to the ATP-binding cassette (ABC) superfamily or 
the major facilitator superfamily (MFS) transporter classes are involved in the efflux 
process [150]. Production of mycotoxins by Fusarium fungi is very much affected 
by environmental conditions such as temperature, pH and light [144].    

Trichothecenes hinder eukaryotic protein synthesis by binding to the peptidyl 
transferase centre of the ribosome, thereby disrupting the elongation process of 
protein translation and causing ribotoxic stress [16–18]. This interaction with the 
ribosome ultimately leads to a reduction in protein production and can result in 
severe cellular dysfunction [149]. On an organism level, this translates to both acute 
and chronic toxicoses of digestive, immune and central neural systems of 
vertebrates [149]. According to toxicological studies, among the Fusarium 
mycotoxins, T-2 is found to be the most toxic in humans [142,151]. This is followed 
by NIV [152], and then DON [153].  

In wheat, DON production by F.graminearum is found to be crucial for the efficient 
spreading of the disease across the tissues and therefore DON is considered a 
virulence factor [19,154]. DON non-producing F.graminearum disruption mutant 
in the TRI5 gene could establish infection in the plant cells but was not able to 
spread across the spike [19–21,154]. Plants with a panicle structure of the spike, like 
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barley and oat, display natural high resistance against the spread of the disease, as 
it is hindered by the narrow and fibrous rachis separating the spikelets in a panicle 
[116,155]. DON does not seem to enhance fungal spread in barley, however 
infecting barley with DON-nonproducing mutant of F. graminearum, resulted in 
lower disease severity and decreased fungal biomass accumulation compared to 
infection with a wild type [156,157]. Therefore, DON can be assumed as a factor 
increasing pathogenicity not only in wheat but in barley too.  

Another important mycotoxin produced by FHB-causative agents is zearalenone 
(ZEA) (Figure 11), a mycoestrogen (oestrogen mimic) causing reproductive 
disorders in mammals leading to infertility in livestock [13]. In oat, ZEA is mainly 
produced by F. graminearum and  F. culmorum, and the contamination often co-
occurs with DON. ZEA is produced rather late during the infection compared to 
DON, a problem in cereals if cool and humid weather delays harvesting [158]. This 
toxin has a worldwide distribution with various levels of contamination, which are 
generally lower compared to DON.  ZEA is not essential for disease development 
on wheat [76]. As phytotoxicity of zearalenone is low, its virulence during the 
infection seems questionable [137]. Nevertheless, there is a hypothesis that ZEA 
could  inhibit the activity of plant HSP90, an agent with prominent role in stress 
resistance [137].  

 
Figure 11. Chemical structures of some mycotoxins, frequently found in oats.  
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Apart from most common mycotoxins, several others have been reported in oat 
[10,12] and in large quantities they pose potential health threat (Figure 11).  
Beauvericin (BEA) and Enniatins (ENNs) are cyclic depsipeptides and their toxic 
effects caused by their ionophoric properties. More than 20 ENNs compounds are 
found, but the most frequently occurring are ENNs A1 and B1 [161]. BEA and 
ENNs can incorporate into cell membranes and create increased transport  of several 
metal cations (Ca+2 and others), altering normal physiological concentrations of 
these cations [12,161,162]. Increased efflux of Ca+2 due to BEA and ENNs was 
shown to impair cell cycle, cause mitochondrial dysfunction and to induce apoptosis 
in many cell lines [12,161]. In vivo studies of these mycotoxins have been limited, 
and although no acute human toxicoses been reported, the possible hazards from 
long-term exposure to these mycotoxins are unknown. BEA and ENNs are 
phytotoxic and induce necroses of plant tissues [161][162]. Accumulation of BEA 
in oat is attributed mainly to F. poae, but also to F. avenaceum and F. tricinctum  
[100,109]. Strongest producers of ENNs are F. avenaceum and F. tricinctum 
[12,76,161].  

Moniliformin (MON), a cyclobutane compound, a toxic action of which is 
considered to be due to the inhibition of tricarboxylic acid cycle, namely the 
incorporation of pyruvate. MON is phytotoxic, cytotoxic and causes acute toxicoses   
[11,161,163]. Bird cardiomyocytes are highly sensitive to MON, therefore high 
exposure to MON causes heart failure leading to death [164]. Frequently found in 
cereals, Fusarium species such as F. avenaceum and F. tricinctum appear to be the 
cause of contamination of these crops with MON [14,76,161].  

Methods of identification of Fusarium species and 
analysing mycotoxins  
The accurate identification of Fusarium species is essential for effective disease 
management, as different species can exhibit varying levels of virulence and 
produce diverse mycotoxins. The best methods to identify Fusarium species 
combine both morphological and molecular techniques. Morphological examination 
involves studying the macroscopic and microscopic features of fungal cultures, such 
as colony appearance, growth rates, and spore characteristics [66]. However, 
morphological identification can be challenging due to the high degree of variability 
and overlapping traits among Fusarium species. Molecular methods, on the other 
hand, provide a more reliable and precise identification. Polymerase chain reaction 
(PCR) and DNA sequencing, targeting phylogenetically informative genes regions 
like the translation elongation factor 1 (TEF-1) and DNA-directed RNA polymerase 
II largest (RPB1) and second largest subunit (RPB2) genes can resolve Fusarium 
identification at the species level [74]. In addition to the National Centre for 
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Biotechnology Information (NCBI) non-redundant nucleotide collection, two 
specialized Fusarium databases are available: FUSARIUM-ID v.3.0 at 
Pennsylvania state university and Fusarium MLST database at the Westerdijk 
Institute [73,165]. BLAST queries with sequences of TEF1, RPB1, RPB2 and other 
genes fragments can be executed through these regularly updated databases.  

When it comes to identification to Fusarium mycotoxins, it is noteworthy that 
various mycotoxins frequently coexist within the same matrix. This complexity 
necessitates the development of analytical techniques designed for simultaneous 
detection of multiple mycotoxins. Targeted methods based on  high-performance 
liquid chromatography (HPLC) and gas chromatography (GC) coupled with tandem 
mass spectrometry (MS/MS) and High-Resolution Mass Spectrometry (HRMS) 
[108,166] offer sensitive multi-mycotoxin analysis, and their selectivity allows for 
the development of simpler extraction protocols. As most mycotoxins undergo 
modifications in plant tissues by various plant detoxification mechanisms, it is 
important to accurately identify such modified (so called “masked”) forms [159].  
Moreover, as causative agents of FHB shift and adapt to changing climate and new 
hosts, new previously unknown mycotoxin groups are continuously  emerging 
[8,96,147,167]. Non-targeted methods of HRMS are handy for finding unknown 
and various masked forms of mycotoxins. These methods do not require previous 
knowledge about the compounds in the sample [166,168]. In situations where rapid 
mycotoxin analysis is essential, particularly for grain farmers and traders, 
immunoassay methods such as enzyme-linked immunosorbent assay (ELISA) and 
lateral flow immunoassay (LFIA) are popular, offering affordable and sensitive 
analyses [166,169]. Commercially manufactured ready-use ELISA plates and LFIA 
stripes are widely used for analysing DON, ZEA and T-2/HT-2.[167]. Recently, 
biosensors have emerged as a promising tool for mycotoxin detection, in particular 
aptasensors, which are utilized for identifying T-2 toxin and ZEA [166,170]. 
Aptasensors are based on aptamers, synthetic nucleic acids or peptides, selected 
through a combinatorial screening process for their affinity and specificity for a 
molecular target [166]. 

Regulations of mycotoxins  
To safeguard public health and livestock production from the potential damage 
caused by mycotoxins, specific regulations both at global, multinational and single 
country levels are proclaimed by corresponding authoritative bodies, such as Word 
Health organization (WHO), Food and Agriculture Organization (FAO), The 
European Commission, Food and Drug Administration of United States (U.S. FDA) 
and others. The European Union (EU) regulation comprises the most extended list 
of commodities and mycotoxins, compared to other regulations, and specifically 
includes oat. Thus, the established maximum residue levels (MRL) for DON in 
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unprocessed oats is 1750 µg/kg  [171]. MRL for ZEA is 100 µg/kg  [172]. For the 
combined levels of T-2 and HT-2 toxins in unprocessed oats, an indicative limit of 
1000 µg/kg has been established  [173]. For NIV, only tolerable daily intake (TDI) 
value is determined at 1.2 µg/kg b.w. per day [175]. 

According to the published reports by European Food Safety Authority (EFSA) on 
exposure assessment and hazard characterizations of BEA, ENNs, MON [164,174], 
as well as modified forms of ZEA and T-2 toxins [175,176] these mycotoxins are 
not of concern, because of their low occurrence. Thus, these food and feed 
contaminants are not regulated at the moment. However, attention should be given 
to the fact that emerging mycotoxins and numerous modified mycotoxins often are 
not included in routine analyses set-ups because of the unavailability of commercial 
standards. 

At the moment, regulations throughout the world concern only toxicities of single 
mycotoxins, while numerous surveys report co-occurrence of several mycotoxins in 
crops and commodities [143,177,178]. Frequently occurring are combinations of 
DON with ZEA, NIV, ENNs, BEA and MON as well as mycotoxins produced by 
fungi other than Fusarium [143,178,179]. Predicting the toxicity arising from the 
interplay of various mycotoxins is a complex task. Yet, scenarios may emerge where 
the cumulative effects of low levels of individual mycotoxins manifest as a 
significant health risk [177,178]. 
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Detoxification of mycotoxins in 
plants  

As was noted earlier, mycotoxins produced by fungi may provide protection from 
abiotic stress and competitive advantage among other microbes co-occurring in soil 
and on plant debris. Some mycotoxins are shown to act as virulence factors in 
various plant diseases [139]. Regardless of the impact of mycotoxins on the 
pathogen infection, most mycotoxins are phytotoxic, and it is beneficial for plants 
to be able to neutralize the toxicity of these compounds.  

Plants have different molecular mechanisms to detoxify mycotoxins. As an initial 
protective reaction, an active efflux of mycotoxins could reduce the concentration 
of mycotoxins at a given site. To perform this task, plants may employ various 
membrane-bound Multiple Drug Resistance (MDR) transporters [180]. However, 
the most effective detoxification of mycotoxins in plants occurs via chemical 
modification of mycotoxins and their subsequent compartmentation. Over recent 
years, numerous products of plant biotransformation of the Fusarium mycotoxins 
such as DON, ZEA and T-2/HT-2 toxins have been analysed [181]. Thus, 9 DON-
metabolites were identified in DON-treated wheat heads [39], 16 HT2 and 17 T2 
metabolites were annotated in oat [25], 18 putative ZEA metabolites were reported 
in micropropagated durum wheat [182]. Reported metabolites of mycotoxins consist 
of their conjugates with sugars, malonic acid, glutathione (GSH), cysteine, sulphate, 
ferulic acid and other chemical groups. The conjugation of mycotoxin molecules 
with hydrophilic groups dramatically diminishes their toxicity and increases their 
water solubility [15, 181]. Consequently, water soluble conjugates can be 
transported through various MDR transporter systems, e.g., ATP-binding cassette 
(ABC) superfamily transporters [137,159]. As a result, conjugated mycotoxins, 
transported to vacuoles, apoplasts, and bound within the plant matrix become 
spatially isolated from vital cellular processes.  

Glucosides of DON, NIV, ZEA, T-2 and HT-2 toxins in cereals are found to a 
significantly greater extent compared to other conjugates, therefore glycosylation is 
considered the primary detoxification mechanism [23–25,183–185].  Glycosylation 
of DON in cereals has been studied extensively during recent years, both because 
DON has been most frequently found mycotoxin and because DON adds to the 
virulence of F.graminearum in wheat. DON-3-O-glucoside (DON-3G) is the major 
DON glycosylation product found in cereals [23]. Oligoglycosylated DON is 
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reported in cereal products ([186]. In paper III of this work di- and tri-glucosides 
of DON were detected, although in minor quantities.  

In plants, the conversion of DON into DON-3G (Figure 12) is catalysed by uridine 
diphosphate-glucosyltransferases (UGTs), a large superfamily of enzymes involved 
in specialised metabolism [26,187]. Numerous UGTs are upregulated in responses 
to biotic and abiotic stresses. They are involved in glycosylation  of phytohormones, 
secondary metabolites and exogenous substances, including microbial toxins or 
pesticides [27]. UGTs catalyse the transfer of a glucose molecule to the C3 hydroxyl 
group of DON, which dramatically reduces its toxicity. Large numbers of family-1 
UGTs have been identified in plant genomes, including 159 in Brachypodium 
distachyon, 179 in wheat, and 147 in maize [29,188,189]. Multiple UGT genes are 
expressed in response to both Fusarium infection and DON treatment as was 
demonstrated by transcriptomic studies in wheat and barley [156,190,191]. 
Treatment of wheat with DON-producing F. graminearum resulted in expression of 
twice as many UGTs compared to the treatment with DON non-producing strain 
[188]. 

 
Figure 12. Conversion of DON into DON-3-glucoside by UDP-glucosyltransferase (UGT). 

The first DON-detoxifying UGT was identified in Arabidopsis thaliana  [192] and 
later similar enzymes where found in B. distachyon [29], barley, rice [193] and 
wheat [189]. Barley glucosyltransferase HvUGT13248 is the most studied UGT, 
especially with respect to its effect on conferring FHB resistance. When 
transgenically expressed in wheat, this gene  provided resistance to both DON and 
NIV, reducing the severity of FHB and FCR  [194–196]. Furthermore, mutations  in 
UDP-binding site of HvUGT13248 resulted in diminished glycosylation of DON in 
roots and spikes of barley. On the contrary, the constitutive expression of 
HvUGT13248 in susceptible barley lines provided resistance to DON [157]. 

Although a number of homologous UGT genes in plants reported to be highly 
induced by DON application or during F. graminearum infection, not all these genes 
are potentially involved in conjugation of DON into DON-3G. In barley, only 
HvUGT13248 conferred resistance to DON of total four genes induced during F. 
graminearum infection [44]. In B. distachyon, of six genes, highly upregulated in 
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response to DON, only Bradi5g03300 conferred tolerance to DON in yeast [45]. In 
wheat, several UGT genes were found to be activated during the F. graminearum 
infection and while some of them contributed to FHB resistance, such as TaUGT3,  
TaUGT5, TaUGT6  , only the latter has been reported to [188,197–200] conjugate 
DON into DON-3G. Recently an orthologous to barley HvUGT13248 gene 
AET5Gv20385300 from Aegilops tauschii, the diploid progenitor of the wheat, was 
shown to detoxify DON and confer DON resistance to Ae. tauchii. Wheat 
orthologues of AET5Gv20385300 were found to be involved in DON-detoxification 
[201]. 

The substrate specificities and the kinetic properties of recombinant enzymes from 
barley (HvUGT13248), B. distachyon (Bradi5g03300) and rice (OsUGT79) have 
been recently studied [30], and the crystal structure is determined for the latter [202]. 
All three enzymes conjugate both DON and NIV, although HvUGT13248 enzyme 
preferers NIV over DON. Furthermore, while HvUGT13248 can glycosylate low 
quantities of C-4 acetylated trichothecene, like T-2 toxin, neither OsUGT79 nor 
Bradi5g03300 exhibit this capability. Interestingly, the hydroxylated forms of T-2 
toxins, such as  HT-2 toxin and T-2 triol were kinetically preferred substrates for 
HvUGT13248 and Bradi5g03300. It has been shown that T-2 toxin in cereals is 
promptly metabolized into HT-2, which could be conjugated by UGTs to form HT-
2-3-O-β-glucoside [25,185]. 

In the present work, paper II describes identification and characterization of two 
oat UGT genes, AsUGT1 and AsUGT2, orthologous to barley HvUGT12348. 
(Figure 13). Both UGT genes were strongly upregulated when DON was inoculated 
to oat spikelets and during  F. graminearum infection (Figure 14). Similar to their 
barley orthologue, AsUGT1 or AsUGT2 provided effective resistance in yeast to 
DON, NIV and HT-2, but not to T-2 toxin and DAS (diacetoxyscirpenol) (Figure 
15). 

Preliminary study showed that two more genes 
(AVESA.00010b.r2.5DG0945080.1, AVESA.00010b.r2.4CG1260040.1) from the 
neighbouring branch from the same orthogroup provided resistance to DON in yeast 
cells (Figure 16) (unpublished data). 

The recombinant enzymes expressed in E. coli very rapidly lost their activity upon 
purification, thus we could not study their kinetic properties. Yet, when DON was 
added to intact E. coli cells, expressing either AsUGT1 or AsUGT2, approximately 
25% of DON was converted to DON-3G, which clearly shows that both enzymes 
are active with DON as a substrate [203].  

To explore the role of these genes in oat during Fusarium infection, we attempted 
to identify potential polymorphisms in these genes among FHB-tolerant and 
susceptible oat cultivars using Sanger sequencing. Unfortunately, due to the 
hexaploid nature of the oat genome and the presence of the multitude of highly 
homologous UGTs, we could not reliably identify differences in the sequences. The 
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upcoming oat pangenome (https://wheat.pw.usda.gov/GG3/PanOat) that will 
encompass 29 genomes of hexaploid oat cultivars as well as tetraploid and diploid 
oat relatives, might provide a potential solution to this issue. 

 

 
Figure 13. Phylogenetic tree of OG0000783 orthogroup. Barley HvUGT13248 
(HORVU.MOREX.r3.5HG0464880.1) is marked in red. The two oat proteins, AsUGT1 
(AVESA.00010b.r2.6AG1068650.1) and AsUGT2 (AVESA.00010b.r2.6AG1068570.1) are marked in 
blue. The clade formed by the proteins phylogenetically closest to HvUGT13248 is marked with a 
dotted line. (Khairullina et al 2022 [203]) 
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Figure 14. Relative expression of AsUGT1 and AsUGT2 genes in oat spikelets after inoculation with 
either DON (A,C) or F. graminearum (B,D) (Khairullina et al. 2022 [203]). 

The reasons behind the apparent redundancy of UGTs  remain to be elucidated. The 
study of  substrate specificities of UGTs from the named orthogroup, could shed 
some light on this issue. Structurally different plant UGTs could have developed as 
an adaptation against constantly evolving mycotoxins as well as fungal inhibitors of 
these enzymes. Recently, a synergistic phytotoxic effect has been demonstrated for 
mycotoxins culmorin and DON in wheat [204,205], frequently co-occurring in 
Fusarium-infected grains. Interestingly, culmorin was found to selectively inhibit 
several plant UGTs, but not others (G.Adam, personal communication).  

Although glycosylation of mycotoxins  dramatically reduces its toxicity for plants, 
there is growing evidence that most commonly observed modifications of DON 
(DON-3G) and ZEA (ZEA-glucosides, ZEA-14-sulfate), to various degrees, are 
reconverted by the microbiota of the intestinal tract of humans and animals 
[149,206]. As modified forms of mycotoxins are difficult to screen for in food and 
feed samples, they are often termed “masked” mycotoxins [159,207]. Identification 
and quantification of these compounds are challenging both due to the unavailability 
of commercial standards and decreased extraction efficiency  [206,208]. Various 
modified forms of DON, ZEA, NIV and HT-2 toxin have been detected in cereals 
and cereal-based foods [13,206,209,210], although most toxicological studies are 
limited to DON-3G and ZEA-14G [149,206,211]. Modified mycotoxins are 
considered relevant for risk assessment for human and animal health by EFSA. 
There are published scientific opinions on food and feed regarding the derivatives 
of DON, ZEA, NIV and T-2/HT-2 toxins [175, 176]. These documents provide 
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guidelines on how to calculate the toxicity of the modified forms of certain 
mycotoxins in relation to the toxicity of their parent forms.  

 
Figure 15. Yeast transformants expressing oat glucosyltransferases AsUGT1 and AsUGT2 on plates 
with indicated concentrations of five different mycotoxins. Strains carrying barley HvUGT13248, yeast 
acetyltransferase ScAYT1 and the empty vector were used as controls. Control plates without toxin are 
SC-leu, where only transformed yeast cells can grow, and the rich medium YPD, which allows for 
growth of strains without a plasmid. Two independent transformants of each construct were spotted in 
two different dilutions. (Khairullina et al. 2022 [203]) 

 
Figure 16. Yeast transformants expressing oat glucosyltransferases AsUGT5D 
(AVESA.00010b.r2.5DG0945080.1) and AsUGT4C (AVESA.00010b.r2.4CG1260040.1) on plates with 
indicated concentrations of DON. Strains carrying barley HvUGT13248  and the empty vector were 
used as controls. Experiment is performed in similar way as one on Figure 15. 

In the context of masked mycotoxins, a distinct mechanism of mycotoxin 
detoxification in plants merits mention, namely, conjugation of DON with L-
glutathione (GSH). A number of adducts resulting from the reaction of DON with 
GSH have been identified in naturally contaminated grains [24]. This conjugation 
occurs primarily at the epoxide group (the 13-position of DON) and is irreversible, 
thus GSH conjugates are unlikely to be degraded in the digestive tract of animals to 
release the original trichothecenes mycotoxins. Discovery of several upregulated 
glutathione-S-transferases (GST) genes in response to DON suggests the occurrence 
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of an enzymatic GSH conjugation process [212,213]. Recently,  Fhb7 gene coding 
for GST was found in wheatgrass Thinopyrum elongatum and is believed to be 
acquired by this grass through horizontal gene transfer from an endophytic Epichloë 
species. Fhb7 is detoxifies trichothecenes through de-epoxidation and its transgenic 
expression in wheat is shown to confer FHB resistance [214].  

Despite the potential attractiveness of GSH-conjugation over glycosylation, the 
latter mechanism is employed for the detoxification of the larger bulk of the 
trichothecenes and characterized by much efficient metabolism kinetics [23]. There 
are several studies showing that FHB-tolerant cultivars are more efficient in 
converting DON into DON-3G [23,184,215]. According to Li et al. 2017 [196], 
rapid trichothecene detoxification is key to FHB resistance. Prompt and effective 
neutralization of mycotoxins plays a crucial role in preserving the plant ribosomes 
from translation inhibition, which in turn empowers the plant to restrain the 
pathogen. Paper 3 of this work shows how increasing the effectiveness of DON-
glycosylation in oat spikelets could be achieved by application of fungal biocontrol 
agent. Details are described in the chapter dedicated to the biological control of 
FHB.  
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Host-pathogen interactions  

The interaction between Fusarium species and cereals has been studied extensively.  
Transcriptomic analyses examining gene expression during F. graminearum 
interactions with wheat and barley have unveiled distinct patterns at various 
infection stages [216–218].  

FHB infection occurs in two phases: a biotrophic phase during which the fungus 
colonizes the intercellular space in the tissues and a necrotrophic phase where the 
fungus breaks down the infected tissues [217]. In wheat, a biotrophic phase is 
symptomless, while necrotrophic is characterized by symptoms such as bleaching 
and necrosis [217]. To initiate the infection, F. graminearum ascospores attach to 
the host surface using hydrophobin proteins   [219] and once attached, they develop 
into specialized unbranched hyphae called runner hyphae. These hyphae develop 
multicellular infection cushions, which penetrate plant cuticles [220]. In the 
infection cushions, numerous genes such as carbohydrate-active enzymes 
(CAZymes),  candidate effectors, and specialised metabolism gene clusters [220] 
are upregulated. During the colonization, fungal signalling pathways are actively 
involved in switching between different stages of plant infection [217]. 

ROS generated by plants can cause damage to fungal cells, prompting fungi to 
produce iron-scavenging molecules, called siderophores. Siderophores, such TAFC 
(triacetylfusarinine C) and malonichrome are essential for both the establishment of 
symptomless infection and the expansion of infection throughout the wheat head  
[217]. 

Additionally, many small cysteine-rich effectors are induced during both biotrophic 
and necrotrophic phases of infections. Effectors suppress host defence responses by 
manipulating plant physiology [221]. At least 357 secreted effectors of F. 
graminearum were identified [222].  

TRI genes are highly induced in symptomless tissues, indicating a crucial role of 
DON in modulating host defence and the establishment of infection [217]. 
Interestingly, F. graminearum can hijack biosynthetic pathways in plants to 
facilitate DON production . One such pathway is polyamine biosynthesis, employed 
by plants to generate defence-related compounds such as hydrogen peroxide and 
hydroxy-cinnamic acid amides . Another defence-related plant response, generating 
hydrogen peroxide (H2O2) also promotes the biosynthesis of DON [216,223]. 
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The necrotrophic phase of infection is characterized by predominant expression of 
cell wall-degrading enzymes (CWDEs)  [217], which liberate nutrients from plant 
tissues for the growth of the pathogen. In wheat, this phase is characterized by the 
appearance of bleached tissues. During the transition from the biotrophic to the 
necrotrophic phase, the fungus undergoes transcriptional reprogramming in 
response to host signals [217].  

When a pathogen invades a plant, pattern recognition receptors (PRRs) located at 
cellular membranes recognise conserved pathogen patterns (such as fungal chitin, 
mannans, glucans etc). These patterns are termed microbe- or pathogen associated 
molecular patterns (MAMPs or PAMPs). Upon this recognition, PAMP- triggered 
immunity (PTI) is induced [217,221]. It stimulates various immune responses, 
including the influx of calcium ions, reactive oxygen species (ROS) burst, 
transcriptional reprogramming, antimicrobial substance production, stomata closure 
and deposition of callose [224,225]. Unsurprisingly, highly susceptible and 
moderately resistant cultivars exhibit differential expression of various defence 
genes, encoding the functional agents of processes mentioned above [224,226].   

To withstand the penetration of fungus, plant reacts by enhanced lignification of the 
secondary cell wall. Metabolites synthesized via the phenylpropanoid pathway, 
including lignin, flavonoids, lignans, phenylpropanoid esters, and hydroxycinnamic 
acid amides (HCAAs), are known to contribute to FHB resistance in plants 
[227,228]. These metabolites play a critical role in both fortifying the cell wall and 
impeding the activity of plant cell wall degrading enzymes. Lignin aggregates at the 
site of pathogen infection to form a physical barrier to prevent the spread of 
pathogens. Production of lignin, flavonoids and HCAAs induced in higher degree 
in resistant cultivars [226,227]. Cytochrome P450 (CYP450) family enzymes which 
participate in the pathways of biosynthesis of lignin, plant hormones and anti-fungal 
metabolites are produced in in cereals higher quantities under Fusarium infection 
[229]. 

To mount a robust defence against Fusarium infection, plants must enhance their 
primary carbon and nitric metabolism. Consequently, the genes involved in these 
processes are among the most highly expressed in wheat plants following Fusarium 
infection [230]. The rapid ROS production in response to pathogen infection is 
thought to regulate programmed cell death (PCD). As excessive ROS at the later 
stages has a strong toxic effect on plant cells by inducing DON, involvement of 
antioxidant enzymes in ROS removal is especially important in resistance to 
pathogen infection [226,229,230]. Plant defence against microbial attack involves a 
complex signalling network, including salicylic acid (SA), jasmonic acid (JA), and 
ethylene (ET)[226].  

In the early stage of pathogen infection, pathogenesis related (PR) proteins, 
including PR-2 (β-1-3-glucanase), PR-3 (chitinase),  involved in degrading the cell 
wall components of pathogens are pronounced in plant response  [226,230]. Most 
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PR proteins have higher abundance in resistant wheat genotypes than in susceptible 
wheat genotypes [226,229]. Numerous transcription factors associated with 
pathogen interactions such as WRKYs and bZIPs, and protein kinases, such as 
leucine-rich receptor-like kinases, involved in signal transduction are also expressed 
during FHB [226,229].  

As was described earlier, to counteract the cytotoxic effects of mycotoxins during 
F. graminearum infection, cereals upregulate production of detoxifying enzymes, 
such as  UGTs and glutathione S-transferases (GSTs) [225][137]. Additionally, 
ATP-binding cassette transporters (ABC transporters) are strongly upregulated in 
resistant cultivars upon both DON treatment and F. graminearum infection and 
involved in active transportation of toxic compounds out of the cell . 
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FHB disease management  

The progression and severity of FHB infection are fundamentally influenced by 
three primary factors: (a) the abundance and aggressiveness of inoculum present 
during the anthesis, (b) the environmental conditions encountered during this pivotal 
period, and (c) the inherent susceptibility or resistance of the plant. Integrated 
disease management which allows combination of several pre-harvest disease 
controlling strategies is the most effective way for preventing the FHB in cereals. 
These strategies include a combination of agronomic practices, planting resistant or 
tolerant cultivars, chemical control, biological control and use of forecasting 
systems [33,112].  

Agronomical practices 
Previous crop residues serve as primary sources of inoculum for pathogenic 
Fusarium spp., therefore, properly designed crop rotation can significantly reduce 
the incidence of FHB and grain contamination with mycotoxins [65]. As the same 
Fusarium species are found in wheat, barley and oats, any of these cereal species 
may make the Fusarium inoculum accessible for the subsequent year's crop. Several 
studies showed that the cultivation of cereals, particularly maize, increases the risk 
of FHB and mycotoxin contamination in subsequent cereal crops. On the contrary, 
crop rotations that include non-cereal crops (oilseed rape, potatoes, legumes, 
vegetables) have been shown to reduce Fusarium infection and after 2–3 years of 
growing a non-Fusarium host plant species, they are thought to effectively remove 
Fusarium pathogen inoculum from agricultural soils [36,231–233].  

A majority of studies investigating the impact of crop rotation have concentrated on 
its efficiency in reducing mycotoxins in wheat and barley. Predictably, crop rotation 
has also demonstrated a reduction in the accumulation of mycotoxins in oat, 
underlining its universal application across various grains. Oat crops grown in the 
fields with the previous cereal crop showed increased concentrations of T-2/HT-2, 
compared to oat grown in rotation with non-cereal crops [35,36,88]. In a recent 
study by Kolawole 2021,  higher levels of DON, ZEA, T-2 and HT-2 mycotoxins 
were found in oat crops grown after oat, while oats grown after grass and non-cereal 
crops were lowest in mycotoxin accumulation [89]. 
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Deep tillage practices, such as inversion ploughing, are often regarded as effective 
methods to reduce FHB incidence, severity, and mycotoxin levels, due to their 
ability to incorporate cereal stubbles and crop residues – major sources of Fusarium 
inoculum – into the soil. In several studies, deep tillage has been found potent in 
reducing levels of F. graminearum inoculum and DON in wheat, barley, and oat 
[33,233,234], as well as F. langsethiae and T-2/HT-2 toxins in oat [105,235].  

However, the picture is more complex. Despite the evident benefits in controlling 
Fusarium inoculum, heavy tillage practices can compromise soil structure and 
moisture content and consequently, adversely affect the balance of microbial 
communities  [236]. Soil with high biological activity or antagonistic microbial 
communities may exhibit disease suppressiveness and can reduce Fusarium 
inoculum and disease development [14,36]. Interestingly, higher levels of F. poae 
and NIV have been discovered in inversion ploughed fields when compared to 
minimally tilled ones in wheat [232] and barley [233,237]. It has been suggested 
that agricultural strategies that aim to target specific Fusarium species could 
inadvertently create vacant ecological niches, which potentially could be occupied 
by other FHB species   [232,233,237]. 

Organic and conventional cereal production methods differ in a range of agronomic 
practices. Organic farming practices typically feature more active use of crop 
rotation, reduced reliance on mineral nitrogen, less intensive tillage and lesser usage 
of fungicides compared to conventional farming. Several studies indicate that 
organically grown cereals tend to exhibit lower incidences and concentrations of 
Fusarium mycotoxins than cereals grown via conventional methods. As was 
reviewed by Bernhoft et al., 2022 [238], in 24 studies, mycotoxin levels were lower 
in organic production, in 16, differences were not significant and only in two cases 
were mycotoxin levels higher. On average, conventionally produced cereals had 
significantly higher levels of DON, ZEA, and T-2/HT-2 than organic cereals. For 
oats specifically, no significant reduction in levels of DON was found associated 
with organic cultivation [240] [239] but statistically significant decreases were  
observed in the accumulation of T-2/HT-2 toxin in organically grown oat 
[35,89,239,240].  

Utilisation of FHB-resistant cultivars. 

Resistance to FHB in wheat and barley 
Regarded as the most cost-effective strategy, genetic resistance plays a pivotal role 
in managing diseases in cereals. However, embedding a robust resistance to FHB 
within these crops is challenging, due to the complex and quantitative nature of such 
resistance. Elements contributing to FHB resistance can be categorized into two 
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groups. The first involves factors causing avoidance of infection (passive 
resistance), such as, for example, earliness (of flowering or plant development)  and 
plant height. The second group includes aspects of partial resistance. This partial 
resistance to FHB, which was initially modelled in wheat, is typically broken down 
into five key components: resistance to initial infection (Type 1), resistance to the 
spread of infection across the spike (Type 2), resistance to kernel infection (Type 
3), resistance to mycotoxins (Type 4) and tolerance, i.e., the ability  of  the  plant to 
endure the effects of pathogen infection (Type 5) [241]. Type 1 resistance (FHB 
incidence) is assessed by counting numbers of infected florets after spraying a spore 
suspension on flowering spikes, Type 2 resistance (FHB spread) quantified as the 
percentage of symptom spread within a spike after point inoculation of a spike, Type 
3 is measured as the percentage of infected mature kernels FHB within a spike. To 
evaluate Type 4 resistance, mycotoxin concentrations are analysed in infected 
spikes. Lastly, rarely used Type 5 resistance is represented by relative yield decline 
when infected and uninfected plants of the same cultivar are compared [241]. As a 
measure for overall FHB resistance types are used either singly or in combination.  

Morphological traits in wheat and barley, associated with avoidance mechanism 
/passive resistance to FHB include plant height, lodging, spike form and length, 
flowering time and flowering type [243]. Spikes of upright and tall plants are less 
exposed to the humidity and the source of inoculum in the soil, which slows the 
disease progression [242,244]. Given that FHB infections predominantly occur 
during the flowering stage, the duration of flowering and the type of flowering can 
significantly influence the susceptibility to this disease. A lengthy flowering period, 
which extends the exposure to pathogen spores, increases chances of infection [33]. 
As to the feature of flowering of cereals termed as anther retention /extrusion, 
multiple studies agree that anther retention is often accompanied by increased FHB 
severity [242,244].  

Resistance to FHB in cereals is quantitative and is controlled by multiple genes with 
individual alleles responsible for small levels of increased resistance. In wheat, these 
genes are scattered across chromosomes and exhibit strong genotype-by-
environment interactions. More than 500 QTLs (quantitative trait loci) associated 
with FHB have been reported in literature, but most require validation through 
reverse genetics experiments [245]. A handful of QTLs have been mapped in wheat 
in detail so far, of which only two, Fhb1 and Qfhb.mgb-2A have been cloned 
[113,242]. Fhb1, conferring type 2 FHB resistance is wheat, is derived from the 
Chinese wheat cultivar Sumai-3 and is considered to be the most durable and 
effective source of FHB resistance [113,242,245]. Various functional mechanisms 
of Fhb1 have been proposed, of which DON-detoxification is the most claimed, as 
this QTL is known to simultaneously reduce FHB severity in the spikes and DON 
content in the kernels [246]. Few studies to elucidate functional agents within Fhb1 
have shown contradictory results. Nevertheless, research on the functional 
components of Fhb1 is ongoing and recently gene WFhb1-1 encoding putative 
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membrane protein is proposed as key agent constituting to FHB resistance [242, 
246]. 

Similar to wheat, barley's FHB resistance QTL regions have been mapped and 
studied for gene expression. Significant QTLs have been identified on all seven 
chromosomes of barley, with the largest effect QTLs associated with FHB and 
DON, showing correlations with plant height, spike length, spike density, and 
flowering traits [113,218]. Moreover, several metabolomics studies have analysed 
specific compounds in resistant and susceptible barley genotypes. Metabolites 
associated with resistance are primarily represented by various phenylpropanoids, 
flavonoids, and terpenoids [218,228]. The combination of metabolomics data with 
transcriptomics has helped to identify several individual genes contributing to 
reduced FHB severity, including the transcription factor WRKY23, involved in 
modulating the expression of  defence genes [247], and isochorismate synthase ICS, 
responsible for SA-based immunity in barley [248].  

While QTLs with large FHB resistance effects are used in marker-assisted selection 
(MAS), Genomic selection (GS) is an alternative method of selection of multiple 
QTLs, which have small effects, but cumulatively contribute to FHB resistance 
[249]. Breeding efforts employing both MAS and GS have resulted in the 
development of wheat and barley cultivars with moderate resistance to FHB and 
DON [113,218,242]. 

Oat resistance to FHB 
In terms of morphology, oat panicles differ from wheat and barley heads by their 
long rachis. Infection has been rarely found to move from spikelet to spikelet, due 
to longer distance through rachilla, pedicles and rachis compared to the more 
compact heads [114]. Thus, oat exhibits high Type 2 resistance. On the other hand, 
oat flowering endures for a longer time, up to 10 days for a single panicle and up to 
one month for the whole plant [250], which prolongs the time of susceptibility.  

Similar to other wheat and barley, the most important passive resistance traits 
(avoidance mechanisms) related to FHB in oats in field conditions are the plant 
height, lodging  and earliness [251–253]. Hulled oat genotypes exhibit greater 
resistance than hulled ones [254]. Anther extrusion (AE) in oat, similar to wheat and 
barley, results in slower Fusarium infection rate [114,115,122] However, the impact 
of AE on mycotoxin accumulation is ambiguous, with other factors such as plant 
height, earliness, lodging, or hull content having greater effects [253]. 

To evaluate resistance to FHB in oats, several rankings of oat genotypes have been 
performed recently. In one of rankings,  performed in Norway, 543 Nordic breeding 
lines and cultivars from spawn-inoculated nursery experiments (resembling natural 
infection) where tested, relying on DON accumulations and germination capacities 
[122]. DON content showed a highly significant negative correlation with 
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germination capacity after Fusarium infection and with plant height. Later-
flowering lines showed a tendency for higher mycotoxin accumulation. In a study 
from Finland, 406 oat genotypes consisting of Nordic cultivars, breeding lines and 
gene bank accessions were analysed for both DON and Fusarium infected kernels 
(FDK) [123]. As with the previous study, days to maturity and the plant height of 
the genotypes both significantly affected the Fusarium infection and DON in the 
field. This study led to selection of a set of both highly susceptible and moderately 
resistant 30 oat genotypes [123]. 

Compared to number of studies reporting resistance against DON and its producers, 
there are fewer studies of T-2/HT-2 resistance in cereals.  As was pointed out earlier, 
oat is particularly susceptible to F. langsethiae infection and consequently 
accumulation of T-2/HT-2 toxins. Only few studies featuring oat resistance to T-
2/HT-2 managed to identify clear varietal differences. In an analysis of several trials 
of UK varieties [255], naked varieties had lower T-2/HT-2 compared with hulled 
oats and short oat varieties were more susceptible than tall varieties. In addition, 
winter oats showed to be more susceptible to T-2/HT-2 contamination than spring 
oats. Supported by several studies, the resistance against pathogenic Fusarium fungi 
in cereals is proclaimed to be non-species-specific [241,253]. A resent cultivar trial 
of Nordic spring oat varieties and breeding lines was performed based on their levels 
of both F. graminearum and F. langsethiae DNA, as well as the presence of their 
respective mycotoxins, DON and T-2/HT-2 [256]. Importantly, the ranking of oat 
varieties based on the analysis of F. langsethiae DNA/T2-HT+2 differed from the 
ranking based on the analysis of F. graminearum/ DNA /DON. This implies that 
separate tests are necessary to determine resistance towards T-2/HT-2 and DON 
producers.  

While numerous genomic studies have been conducted on FHB resistance in wheat, 
very few such studies have been reported for oats. One of the reasons is the absence, 
until very recently, of a genome sequence for oats' highly complex hexaploid 
genome [61,62]. Genomic studies can reveal important associations between 
measured traits and genetic markers and require availability of accurate 
measurements for FHB resistance and genotypic information on the tested lines. In 
a recent study, 424 spring oat lines from North America and Nordic countries were 
phenotyped [251]. Significant negative correlations were found between FHB and 
DON with phenological traits, among which  earliness had the biggest impact on 
FHB and DON, followed by plant height . Subsequent genotyping with nearly 3000 
SNP (single nucleotide polymorphism) markers and GWAS (genome wide 
association study) identified multiple QTLs associated  with FHB and DON. 
According to this study, DON accumulation in oat appears to be a heritable trait. 
Furthermore, the study provides a list of lines and cultivars with consistently low 
DON accumulation [251]. 

Regarding resistance of oat to F. langsethiae and T-/HT2 accumulation, a study 
reporting results of genotyping by sequencing of 190 spring oat varieties has been 
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published recently [257]. A genomic loci was identified, linked to the biomass of F. 
langsethiae DNA and  T-2/HT-2 accumulation. GWAS has associated T-2 + HT-2 
mycotoxin accumulation with five SNPs in a linkage group. A single QTL was 
identified, and one of the markers mapped within genes similar to a lipase-like or 
lipase precursor mRNA sequences and zinc finger proteins, which have previously 
been linked to increased resistance to Fusarium species [257].   

In conclusion, breeding FHB resistant cereals represents a complex challenge, 
especially in the case of oats. While there are oat cultivars that display reduced 
mycotoxin accumulation, only a few genetic markers associated with resistance 
against Fusarium infection are identified, and the genetic basis of FHB resistance in 
oat is largely unknown. Incorporation of marker assisted selection is essential for 
effective breeding programs. Identification of major resistance QTLs together with 
their constituent genes are of great importance in creating robust genetic markers. 
As presented in paper II, identification of two DON-detoxifying genes could be a 
first small step in unravelling mechanisms behind complex FHB resistance in oat.  

Fungicidal control of FHB 
Fungicides, known as demethylation inhibitors, like propiconazole, 
prothioconazole, and tebuconazole (or a combination like Prosaro®), are commonly 
used to combat FHB in wheat and barley during the early or mid-anthesis [32,33]. 
These fungicides target the fungal enzyme cytochrome P450, crucial for the 
biosynthesis of ergosterol a primary component of the fungal cell membrane. While 
applications of these fungicides  can reduce infection and mycotoxin contamination 
with a single application, their efficacy is typically less than 50% [32, 33]. The 
efficacy of Fusarium control is heavily dependent on the timing of application, spray 
coverage, weather conditions and cultivar susceptibility [258, 259]. Quinone 
inhibitors and succinate dehydrogenase inhibitors have low efficacy for controlling 
Fusarium and may even stimulate mycotoxin production in the infected plant [33]. 
They may also increase mycotoxin levels by inhibiting the colonization of cereal 
plants by commensal or other pathogenic fungal species [232,236].  

The use of fungicides for FHB is even more questionable in oat. As mentioned 
above, it takes up to ten days for all florets of an oat panicle to complete flowering. 
Moreover, it can take up to a month for all tillers of a single oat plant to go through 
anthesis. Thus, it is difficult to find optimal fungicide application times for the 
treatment of FHB in oat. The use of fungicides in oats has proven to be mostly 
unsuccessful, with inconsistent effects that depend on oat cultivars and the specific 
Fusarium species involved [34,36,37,260]. Few field experiments have shown that 
commonly used fungicides have very little or no effect on reducing HT2+T2 levels 
in harvested oat grains [260,261].  
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Regardless of the efficiency of fungicides, their indiscriminate use will inevitably 
lead to the development of fungicide-resistant strains of Fusarium. Natural 
resistance to fungicides has been observed in wild populations of Fusarium in China, 
Europe, and the USA [262] . Multiple genes associated with reduced sensitivity to 
fungicides and increased pathogenicity have been identified in Fusarium species 
[262]. Selective pressure from fungicides used to control FHB in the field is believed 
to have contributed to recent shifts within the FHB complex. F. poae and F. 
avenaceum have demonstrated lower sensitivity to fungicides, with F. avenaceum 
showing reduced sensitivity to metconazole in particular [93,262].  

Predictive tools for FHB outbreaks 
Forecasting systems have become an important instrument in the practical 
management of FHB as they provide near-real-time estimates of FHB disease risks 
throughout the growing season. Built primarily on local meteorological data, such 
as temperature, rainfall, and humidity, together with the information on history of 
FHB epidemics in the growing region, these web-based systems have been 
developed and implemented in several countries worldwide [33,113,263,264]. 
These systems require input from farmers regarding the resistance of the cultivar 
and the timing of flowering as well information about previous crops and soil/debris 
management. By combining this information with the local weather data, the 
forecasting system generates online estimates of the anticipated infection. These 
estimates are useful for making informed decisions about the necessity and optimal 
timing for potential fungicide or BCA application. The accuracy of FHB severity 
and DON contamination predictions varies depending on the specific country and 
local farming site. However, they generally claim to be around 80% accurate 
[263,264] . 

Airborne inoculum plays a crucial role in FHB epidemics and the accumulation of 
mycotoxins in grains. The use of spore traps makes it possible to identify major 
sources of Fusarium spore inoculum and to investigate the relationship between 
inoculum quantities and factors such as weather conditions, cropping systems, and 
plant developmental stage. Research focused on quantifying airborne inoculum has 
confirmed a strong correlation between high airborne inoculum quantities at the 
anthesis stage and F. graminearum infection, as well as DON production [265–267]. 
The primary sources of inoculum appear to be local and farm-based, influenced by 
a variety of cropping factors including crop rotation and tillage. The results derived 
from inoculum trap analysis can be used both in ad-hoc forecasting of an immediate 
FHB threat and as well as provide an indication for developing and refining 
sustainable cropping systems [265-267].  
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Novel approaches in manipulating active FHB resistance 
in plants 
Genetic engineering and biotechnologies are consistently expanding our toolbox for 
improving plant disease resistance. One of such instruments is the creation of 
genetically modified (GM), or transgenic, plants, which enables isolating and 
transferring strong functional genes to crops from sexually incompatible plants and 
other organisms [268]. In the past 25 years, GM crop production has increased over 
100-fold, although most GM crop products are typically not grown for human 
consumption [269]. Importantly, adoption of GM technology has shown to reduce 
pesticide use, cutting down environmental pollution and fuel consumption, leading 
to a significant drop in greenhouse gas emissions from GM cultivated areas [270]. 
Despite these advantages, GMO use still sparks great public concern due to 
perceived risks to human health (despite lack of evidence for this) and the 
environment, leading to strict regulatory controls around the world [269,271]. 
Compared to transgenic plants, the cis-genic approach—where crops are modified 
using genes isolated exclusively from sexually compatible plants, thus more closely 
resembling traditional breeding – is gaining more positive consensus from both the 
public and farmers  [268]. 

Recently, gene editing, using, e.g., CRISPR-Cas9 (clustered regularly interspaced 
short palindrome repeats, CRISPR associated protein 9) technology have been 
attracting researchers’ attention as the most versatile and powerful new breading 
technique. CRISPR-Cas9 allows precise genetic modifications of single or multiple 
gene targets without altering other regions [268,272,273]. Regarding crop 
protection, the most common and relevant use of this technique is producing knock-
out mutants of plants’ susceptibility genes  [272]. In the context of FHB in wheat, 
CRISPR-Cas9 was used to produce  loss of function mutants of TaLpx-1, which 
encodes for 9-lipoxygenase [274], and the transcription factor  [275] TaNFXL1  are 
shown to confer resistance to F. graminearum in wheat. Despite the potential and 
promises of CRISPR/Cas for practical applications in plant pathology and disease 
management, The European Court of Justice has imposed the same strict regulations 
for genetically edited plants as for conventional GM crops, which limits full benefit 
CRISPR/Cas technique for agriculture [276], though there are prospects that this 
might be lifted in the foreseeable future.  

Simultaneously, advancements in genomic tools targeted on the silencing of 
pathogen genes have opened new avenues for FHB control in cereals. RNA 
interference (RNAi) is an inherent mechanism in all eukaryotic organisms that 
modulates post-transcriptional gene expression [277]. This mechanism involves the 
action of small interfering RNA (siRNA) molecules, leading to the sequence-
specific degradation of mRNA. Through the use of transgenic technology, siRNA 
can be synthesized in plant cells, a process termed Host-Induced Gene Silencing 
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(HIGS). Alternatively, the non-transgenic RNAi approach known as Spray-Induced 
Gene Silencing (SIGS) utilizes the same process but involves the direct application 
of RNA molecules on the surface of the plants [268,278]. Both HIGS and SIGS have 
proven effective in controlling F. graminearum [279]. Several studies, featuring 
HIGS and SIGS, targeting sets of  F. graminearum genes have shown to effectively 
reduce FHB infection in wheat [278,280]. 

Biological control 
The recently published by European Commission  Farm to Fork Strategy [281], sets 
a target of reducing pesticide usage and risks from chemical pesticides by 50% by 
the year 2030. While fungicides commonly employed for FHB control may not be 
the most acutely hazardous, their documented toxic effects extend to all classes of 
organisms ranging from mammals to soil microbiota [282]. 

Growing concerns about adverse effects of fungicides on the environment and the 
health of humans and animals along with fungicide resistance, have prompted a shift 
towards more sustainable disease management practices. Biological control is a 
prominent alternative or complement to chemical measures in integrated disease 
management plans [38]. Biological control utilizes various microorganisms, 
including bacteria, filamentous fungi, yeasts, and mycoviruses, that possess the 
potential to hinder the growth and proliferation of pathogens and safeguard plants 
against infection  [38,283]. Such microorganisms are termed biocontrol agents 
(BCAs). Over the last decades numerous promising bacterial and fungal BCAs have 
been shown to significantly reduce FHB and mycotoxin content in cereals under 
field conditions [284,285]. A separate chapter is dedicated to the use BCA in 
management of FHB. 
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Biological control: modes of action 
of BCAs and examples of BCAs used 
against FHB 

An in-depth understanding the mechanisms of the tripartite interaction between 
BCA, host plant, and pathogen are important in order to optimise the selection and 
utilisation of biocontrol microorganisms. Four types of action modes are generally 
recognised for BCAs: (1) direct inhibition through antibiosis, where BCA inhibits 
the pathogen via effects of toxic secondary metabolites (2) hyperparasitism, where 
the antagonist acts as a predator and exploits the pathogen as a prey, (3) competition 
for space and essential resources (oxygen, carbon, nitrogen and others) and  (4) 
induced resistance in the plant by activation of its own defence system, such as the 
oxidative burst, accumulation of PR-proteins, and enzymes involved in the 
phenylpropanoid pathway among others. Additionally, growth promotion through 
nutrient acquisition (nitrogen, phosphorous and essential minerals) or modulating 
plant hormone levels can also improve general plant health and thereby protection 
against diseases [38,39]. Several mechanisms could be activated simultaneously. It 
is assumed that the most efficient BCA will employ a combination of different 
modes of action for pathogen control at any given time [38,39,286, 375]. 

Main mechanism of inhibition of F. graminearum by of most bacterial BCAs  is 
attributed to be their ability to produce antibiotic compounds, as demonstrated for 
numerous strains of Bacillus, Pseudomonas, Lactobacillus and Streptomyces 
[284,287]. For example, strains of B. amyloliquefaciens are shown to produce 
fengycin and iturin, which have strong antagonistic effects against F. graminearum 
(Gong et al., 2015a). In addition to antibiosis, bacterial BCAs antagonistic to 
Fusarium spp., may potentially employ several mode of actions [287]. Competition 
with Fusarium spp. for essential minor elements, such as iron is reported for several 
bacterial isolates, particularly for fluorescent Pseudomonas spp.  [284]. 
Siderophores, which are expressed by most microorganisms, help acquire iron due 
to its low bioavailability in aerobic environments. This competition for essential 
nutrients is partly responsible for the Fusarium disease suppressive nature of certain 
soils [38]. Finally, there has been an increasing body of evidence regarding bacterial 
BCAs being able to induce active resistance mechanisms in plants [284,287] .  
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When it comes to fungal BCA isolates, suppressing Fusarium spp., the most 
effective studied antagonists are found among fungi of the order Hypocreales, 
exhibiting mycoparasitic lifestyle.  In particular, the genera Trichoderma and 
Clonostachys offer many effective BCA candidates [284,288,289, 375]. In vitro 
studies showed that these fungi make direct contact with the hyphae of their prey 
and during these contacts, the mycoparasite produces compounds for nutrient 
release and acquisition, including cell wall degrading enzymes (CWDEs), 
antibiotics, and toxins [288,290,291]. However, the biocontrol mode of action of 
these fungi are not limited to mycoparasitism.  

Trichoderma spp. are shown to produce specialized metabolite 6-pentylalpha-
pyrone which suppressed perithecial production and ascospore discharge and 
completely impeded germination of conidia of F. graminearum [292]. A case 
exemplifying nutrient competition, T. gamsii, when co-cultured with F. 
graminearum, was observed to increase the expression of a ferric reductase, a key 
player in iron acquisition  [293]. T. gamsii are also reported to reduce DON 
production in F. graminearum and F. culmorum  [290]. Finally, Trichoderma spp. 
are reported to induce systemic and local resistance in plants as well as promote 
plant growth [294,295, 375]. Importantly, Trichoderma spp. possess the ability to 
grow and multiply as saprophytes and endophytes [289] which enhances their 
competitive edge in various ecological niches. In fact,  T. gamsii can be used 
effectively to outcompete F. graminearum when grown on cereal residues 
[296,297]. Another highly valuable aspect of several Trichoderma strains 
concerning disease control is their potential for utilization in combination with other 
fungal and bacterial isolates, and this was demonstrated successfully in several 
studies [298–300, 375].  

Similarly to Trichoderma spp., several strains of Clonostachys rosea are known to 
degrade Fusarium mycotoxins, as well as minimise the effect of FHB in wheat [301–
303]. As Paper III in current work exclusively focuses on the biocontrol effect of 
C. rosea to reduce FHB in oat, a separate chapter further below is dedicated to this 
versatile fungus.  

Another mycoparasite that has shown good BCA potential in controlling FHB, is 
Sphaerodes mycoparasitica [304]. Not only it is reported as specific mycoparasite 
of multiple Fusarium spp., but numerous studies showed its ability to downregulate 
expression of  TRI (trichothecene) and AUS (aurofusarin) genes in Fusarium spp. 
as well as degrade mycotoxins DON, 3ADON, 15ADON and ZEN  [304]. 

In addition to filamentous mycoparasites, yeast BCAs of the genera Cryptococcus, 
Kluyveromyces and Saccharomyces have exhibited antagonistic activities against 
Fusarium spp., which are associated mainly with an arsenal of various antifungal 
metabolites which target the pathogen [284,305].  

Despite significant progress in the development of BCAs, the number of 
commercial products for suppression of FHB is limited. There are two bacterial 
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BCA products against Fusarium fungi available on the market:  Cerall® based on 
Pseudomonas chlororaphis and Mycostop®  based  on Streptomyces griseoviridis. 
Both have been available for many years. Other products include Polyversum® 
based on the oomycete Pythium oligandrum, and a formulation of T. asperellum 
named Xedavir®. Additionally, patents for a few BCAs have been registered, 
including TrigoCor strain of Bacillus amyloliquefaciens and ACM941 strain of C. 
rosea  [38,284].   

It is important to point out that BCAs are subject to specific regulations depending 
on their application. For instance, an organism can be marketed and sold as a 
biofertilizer or biostimulant when its BCA ability is not specified. However, all 
products using microorganisms with claimed BCA activity undergo an extensive 
registration process, which hinders the smooth development of such products [306].  

Lately, the trend of harnessing endophytic microorganisms as a source of novel 
BCAs has been growing. Potential of employment of endophytes as BCAs in 
controlling FHB in cereals are reviewed in separate chapter, together with summary 
of the paper IV focusing on isolation of fungal endophytes antagonistic to F. 
graminearum from oat.    
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Clonostachys rosea as BCA against 
FHB in cereals  

Clonostachys rosea, an ecological generalist, can colonize both phyllosphere and 
rhizosphere of plants, and exhibits mycoparasitism of multiple host species. This 
traits are significant in the context of BCAs, as it allows them to adapt and survive 
in various ecological niches and environments thereby enhancing its efficacy in 
controlling plant diseases  [307].  

Numerous strains of C. rosea have been isolated from of various sources, such as 
soil, fungi, living plants and plant debris, as well as nematodes and insects [307]. 
Currently, genome sequence data exists for 56 strains of C. rosea [291,308].  

Mycoparasitism by C. rosea was demonstrated against multiple plant pathogens, 
including F. oxysporum [291] and F. graminearum [303]. During interactions with 
F. graminearum, C. rosea responds by expressing an array of genes actively 
involved in mycoparasitism and competition. Several studies highlight expression 
of multiple polyketide synthase genes in response to F. graminearum [308–310]. 
These genes are involved in synthesis of polyketides Clonorosein A and B, secreted 
by C. rosea and are shown to inhibit germ tube formation in F. graminearum [309]. 
High tolerance of C. rosea towards mycotoxins produced by F. graminearum could 
be due to the active efflux via numerous  membrane transporters [291,310]. In 
addition, direct enzymatic detoxification of DON and ZEA by C. rosea has been 
reported [302,308,311]. High number of genes of cell wall-degrading enzymes, such 
as proteases, glucanases and chitinases [307,312] explains C. rosea’s ability to 
degrade the cell walls of many plant pathogens including Fusarium spp. Recent 
study by Piombo 2023 [313] found that effectors comprised 35–37% of the C. rosea 
secretome, and genes for several effectors were induced during the C. rosea 
response to F. graminearum. Furthermore, the active sRNA interference 
mechanisms observed in the mycoparasitism of C. rosea contribute to the effective 
suppression of F. graminearum [314]. 

The ability of C. rosea to exist as an endophyte in plants is significant for biocontrol, 
as it allows the BCA to be systemically present within a plant before the arrival of 
the pathogen. Hydrophobin and chitin-scavenging LysM protein genes found in C. 
rosea play roles during root colonization and plant-fungus interactions [315]. To 
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support its saprophytic lifestyle, C. rosea possesses high number of genes encoding 
carbohydrate-active enzymes [291].  

C. rosea is known to induce resistance responses in plants. For instance, the 
colonization of wheat seedlings by C. rosea triggers the expression of PR genes, 
which encode pathogenesis-related (PR) proteins in both wheat [316] and tomato 
[317]. C. rosea has been found to activate various transcription factors (TFs) 
involved in defence responses in plants, such as WRKY family TFs [318] in plants.  

In addition to all above mentioned mechanisms of biocontrol, C. rosea can 
contribute to increased plant growth response [319]. A plant that exhibits robust 
growth and vitality is likely to possess greater resilience against pathogen attacks.  

C. rosea spores germinate relatively rapidly (up to 6 h) even at colder temperatures 
and dried spores can be stored during several months or even several years with 
preserved biocontrol efficacy [307, 320]. Another feature of C. rosea, adding to its 
flexibility as BCA in integrated pest management context, is its relative tolerance 
towards fungicides [307]. Several strains of C. rosea are used as commercial 
products worldwide, including available in Europe, strain J1446 (in products 
LALSTOP G46 WG®, Prestop® and Gliomix®).  

Regarding C. rosea’s specific use for FHB control in cereals, various strains have 
been shown to be effective in reducing this disease. In different experiments, when 
C. rosea was either directly sprayed to wheat heads or  applied to the overwintering 
maize stalk pieces before the  season of wheat cultivation, it considerably reduced 
both incidences of FHB and mycotoxin accumulation. [301,321,324]. C. rosea has 
been shown to inhibit the development of perithecia and ascospore formation of F. 
graminearum on maize stalks [323]. Interestingly, treatment of Fusarium infected 
maize roots with C. rosea increased the conversion of DON into DON-3G  [322]. 

Until now, no reports have been published regarding the use of BCAs to combat 
FHB in oats. Since oats are commonly grown in the same regions as wheat, often in 
succession after wheat cultivation, it is practical to consider that BCAs proven to be 
effective in wheat could also be applicable to oat production.  

Paper III in current work examines the ability of C. rosea IK726 to reduce FHB 
and mycotoxin accumulation in oat. This strain of C. rosea was previously isolated 
from barley roots and reported to act as a strong BCA of several plant pathogens 
[291,307]. IK726 demonstrated effective control of Fusarium seedling blight in 
wheat and barley, as well as a reduction of FHB symptoms and DON content in 
wheat, observed in both greenhouse tests and field trials [307].  

In our three separate greenhouse trials C. rosea reduced the biomass of F. 
graminearum by 79% and the amount of DON (sum of DON, 3-ADON and DON-
3G) by 78%,  in average) (Figure 17). 
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Figure 17. F. graminearum biomass and mycotoxin levels in three independent experiments. (A) F. 
graminearum DNA,  (B) sum of DON, 3-ADON, and DON-3G. (Khairullina et al., 2023 [367]) 

Remarkably, C. rosea dramatically enhanced conjugation of DON applied to oat 
spikelets into DON-3G (Figure 18). Moreover, the accumulation of transcripts of 
two DON-detoxifying UGT genes (AsUGT1 and AsUGT2) significantly increased 
upon C. rosea-treatment (Figure 19). As C. rosea alone (without DON) did not 
directly activate expression of UGTs, this enhancement probably occurs due to C. 
rosea-mediated activation  of certain transcription factors, couple with the 
transcription of UGT genes.    

 
Figure 18. DON and DON-3G in C. rosea-treated and mock treated oat spikelets. Spikelets were 
treated either with C. rosea followed by DON (C. rosea + DON), water+DON, C. rosea+water or water 
+ water. Error bars represent standard error of the mean. Within each part of the figure, means marked 
with different letters are significantly different (p < 0.05). (Khairullina et al 2023 [367])  
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Figure 19. Relative expression of DON-induced (A) AsUGT1 and (B) AsUGT2 transcripts in C. rosea-
treated and mock-treated oat spikelets. Error bars represent standard error of the mean. Bars marked 
with same letter are not significantly different (p ≤ 0.05). Khairullina et al 2023 

Furthermore, the expression of four PR proteins and the WRKY-23-like 
transcription factor was significantly upregulated in oat spikelets in response to C. 
rosea treatment (Figure 20). The selected proteins PR1, PR3, PR4, and PR5  have 
well-established roles in increasing the F. graminearum resistance in cereals [325–
328]. Recently, WRKY23 was found to be involved in defence responses against 
FHB in barley [247]. 

 
Figure 20. Relative expression of genes of four PR-proteins (A) and two WRKY transcription factors 
(B) in C. rosea-treated and water-treated oat spikelets 3 days after the inoculation. Error bars represent 
stand-ard error of the mean. Bars marked with same letter are not significantly different (p ≤ 0.05 
(Khairullina et al 2023) 

In conclusion, C. rosea IK726 has good potential for utilization in combatting FHB 
in oats. It exhibits strong efficiency in inhibiting F. graminearum infection and 
facilitates the rapid detoxification of DON mycotoxin. The capacity of this strain to 
reduce FHB in oat in field conditions remains to be investigated.  
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Endophytes in FHB disease control  

The plant hosts a diverse microbial community known as the phytobiome [329]. 
Chemical and physical exchanges contribute to the phytobiome's complex network, 
largely controlled by the plant itself but also influenced by environmental factors. 
Endophytic communities, particularly serve as a valuable reservoir of beneficial 
isolates for potential use as BCAs [39,330].   

Endophytes, according to their recent definition, are microorganisms that colonize 
the internal tissues of plants without causing disease symptoms or harm to their 
host[39,40]. The close association and coevolution of endophytes with plants have 
led to their significant contribution to various plant benefits, such as growth 
enhancement and improved nutrient acquisition, as well as increased tolerance to 
abiotic and biotic stresses [40,331–333]. Endophytes encompass a broad spectrum 
of microorganisms, such as archaea, bacteria, and various fungi [39,332,334]. 
Despite this abundance and diversity, their roles in plant defence remain remarkably 
understudied. 

Importantly, several microorganisms among already established effective BCAs 
display endophytic lifestyle. A few examples are bacteria B. subtilis [332], root-
colonizing fungus Serendipita indica [335,336] and several Trichoderma fungi 
[336]. Since endophytes colonizing internal plant tissues are better protected from 
the external environment, they hold the potential to be more dependable BCAs, 
offering improved consistency in their  effectiveness [39,40]. 

A microorganism might be endophytic in certain conditions and saprotrophic, 
epiphytic or pathogenic in others. For example, strains of F. graminearum were 
found as symptomless endophytes in grasses, upon isolation and inoculation of 
wheat behaved as pathogens  [98]. As a means of distinguishing between latent 
pathogens, beneficial symbionts, and neutral microorganisms within plants, the 
concept of "mutualism-parasitism continuum" is employed [38].  

In respect to their symbiotic relationship with plants, endophytes exhibit different 
biological behaviours. The majority of endophytes reported as potential BCAs 
exhibit facultative symbiotic relationships with their host plants, i.e., they can be 
associated with different host plants, include a stage within insects, abide within the 
rhizosphere or live as saprophytes [332]. Fungus Serendipita indica, is an example 
a truly facultative endophyte, as it can colonize roots of a wide range of monocot 
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and dicot plants and by doing so promotes plant growth, induces resistance against 
phytopathogens and protects its host from abiotic stresses  [332].  

Regarding plant colonization mode, endophytes can occupy their host systemically 
(entire plant) or locally (certain tissues or sites) [331]. Prevailing number of reported 
microorganisms documented for their beneficial properties are non-systemic and are 
often located either in roots or phyllosphere of the plants [332]. For example, many 
endophytic species in the genus of Trichoderma exhibit their broad anti-pathogen 
properties by colonizing roots of various plants [336], while mutualistic Epichloë 
fungi abide exclusively in the aboveground parts of grasses [337].    

Plants response to colonization by endophytes and reaction to infection by 
pathogens, seems to be very similar, especially during the initial stages of the 
interaction [40,331]. Endophytes, like pathogens, could use effectors to suppress 
their detection by the host, which is exemplified by Serendipita indica colonization 
of the roots [338]. Moreover, endophytes are known to modulate levels of plant 
hormones, such as abscisic acid (ABA), auxins,  gibberellins, jasmonates (JA), 
salicylic acid (SA) among others, which could help to tune plant’s initial defence 
reaction towards symbiotic mode [40,331].  

In the context of their application as BCAs, endophytes display the same 
mechanisms as general BCAs in promoting plant resistance against pathogens. 
However, since endophytes reside within the plant and do not have direct contact 
with the pathogens, mechanisms such as direct parasitism and nutrient competition 
are expected to be less effective. Instead, antibiosis and host-induced resistance are 
particularly viable mechanisms for an endophytic BCA [331,332].  

Isolation and selection of endophytes for biocontrol  
When searching for specific endophytic BCA, adopting an ecological approach was 
found to be efficient, as it focuses on isolating of microorganisms from plants that 
thrive under high disease pressure. The idea is to identify healthy plants in these 
habitats, as they may possess a biocontrol microorganism in their microbiome that 
contributes to their improved performance. Endophytes obtained from the target 
environment are more likely to be well-adapted to the specific conditions of that 
environment [40,339]. 

An entirely novel, culture-independent approach is used by (Deroo et al., 2022) 
[340]where they first extracted whole bacterial communities from wheat spikes and 
tested them against FHB. After identifying the most effective community, the 
individual members were isolated and tested in vitro and in planta assays.  

Another aspect of isolation of endophytes is using crop wild relatives as sources for 
better adapted microorganisms. Wild species are known to harbour greater diversity 
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of plant-associated microbes compared to cultivated varieties [334,341]. A long 
history of crop breeding may have unintentionally resulted in the loss of crops' 
ability to attract and host many beneficial microorganisms. Introducing endophytes 
from wild species to their cultivated relatives, could augment their defence against 
pathogens [334,339]. 

When endophytes are isolated from plant surface-sterilized tissues, a particular 
concern is that the growth requirements of certain microorganisms may vary 
significantly. Additionally, some strains may face inhibition due to antimicrobial 
compounds released by the host tissues upon wounding, or they might be 
outcompeted by faster-growing species [40]. These issues can be addressed, at least 
partially, by adjusting the nutritional contents of the media and/or incorporating 
compounds that favour the growth of specific microorganisms over others, such as 
antibiotics [40]. 

Once endophytes are isolated in pure culture, their identification can be achieved by 
the assessment of morphological features and sequencing various DNA loci. For 
bacterial identification, regions encoding 16S rRNA are commonly used, while for 
fungal identification, sequencing ITS (internal transcribed spacer), large ribosomal 
subunit rDNA, and, additionally, genes like beta-tubulin and translation elongation 
factor is routinely performed [342–344]. Upon identification, any known or 
potential plant and animal pathogens are excluded from further assessment. 

After the identification of  the microorganisms, the next step involves designing 
assays for biological control. While high-throughput in vitro screenings, known as 
confrontation assays, are commonly used, recent research indicates that well-
designed biocontrol assays conducted in planta are much more to be preferred 
[40,345,346]. Efficacy of an in vitro assay disease often does not correlate with the 
results obtained from in planta assay [347,348]. Most importantly, the mechanism 
of induced resistance cannot be discerned in the absence of the plant.  

Conditions during the screenings of endophytes should ideally replicate the actual 
conditions where the potential BCAs will be employed [40,349]. Initially, in planta 
screenings are conducted under controlled conditions to determine the optimal 
timing and application amounts of the BCA. Subsequently, field trials are carried 
out at different locations with larger plots, as BCAs often display varying efficiency 
depending on environmental conditions [40,349]. For trials targeting biocontrol 
against FHB, artificial irrigation is typically applied to maintain a high level of 
pathogen infection. 

An essential aspect of developing an endophytic BCA is identifying the most 
dependable delivery systems for introducing the microorganism to the plant. These 
systems might involve seed coating, spray-inoculation of the crop or crop residues 
from the previous harvest, or even employing insects to deliver BCA spores to the 
plant's flowers [40,349]. Selecting microorganisms which can be stored for 
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prolonged periods and developing formulations that extend shelf-life of the BCAs 
greatly enhances the practicality and convenience of their industrial application. 

Endophytes with antagonistic effect against FHB  
Several studies have focused on isolating endophytes exhibiting biocontrol activity 
against FHB in cereals, with the most recent findings presented in Table 4. 
However, only a limited number of the listed microorganisms have been subjected 
to evaluation through field trials. Furthermore, the possible mechanisms of action 
have been explored for only a few endophytic BCA candidates. For instance, 
Penicillium olsonii ML37, during its colonization of wheat spikes, was found to 
trigger the expression of various WRKY transcription factors, PR proteins, and 
other defence metabolites within the first 24 hours after pathogen inoculation [350].  
Another fungal endophyte, Sarocladium zeae, initially isolated from maize, not only 
demonstrated systemic colonization in wheat but also exhibited vertical 
transmission to the progeny. The mechanism underlying its capacity to reduce the 
spread of FHB and the accumulation of DON appears to be related to S. zeae's ability 
to influence the host plant's hormonal defence responses and induce the expression 
of defence signalling pathways [351]. The anti-FHB activity of two bacterial 
endophytes, belonging to Streptomyces and Bacillus, is inferred to be a combination 
of plant growth promotion, synthesis of auxin (indole acetic acid, IAA), and  
induced  resistance [352,353].  A  remarkable  antagonistic  mechanism  against  F. 
graminearum is observed for an Enterobacter sp., [354] which forms biofilm-
mediated microcolonies, building a root-hair endophyte stack (RHESt). This 
multilayered RHESt acts as a physical barrier for F. graminearum hyphae, leading 
to subsequent trapping and killing of the pathogen. 

It is unsurprising that the majority of the endophytes listed in Table 4 are intended 
for the protection of wheat crops. Studies on the microbiome of oats have been 
largely ignored. Paper IV in current work describes isolation and identification of 
fungal strains, associated with green oat spikelets and exhibiting biocontrol activity 
against F. graminearum infection in oat. 

In total, 88 fungal strains were isolated from oat spikelets collected at early anthesis, 
milk, and dough stages of grain development. The isolates underwent 
morphological examination and identification by sequencing of several gene loci, 
including ITS, actin, and TEF-1α. To evaluate their potential as BCAs, 10 selected 
isolates were subjected to two separate greenhouse trials using both spray 
inoculation and point inoculation of oat spikelets. 
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Table 4. Fungal and bacterial endophytes with antagonistic effect against FHB and mycotoxin 
accumulation:   

Microorganisms  Isolation source Assay type References 
Fungal endophytes 

Fungi of genera Phoma, 
Alternaria, Fusarium 

Wheat leaves, steams 
and roots 

Confrontation assay, 
Seedling assay 
(wheat) 

Gdanetz and 
Trail, 2017 [355] 

Phoma glomerata, 
Aureobasidium proteae, 
Sarocladium kiliense 

Wheat aerial parts and 
roots 

Confrontation assay, 
wheat detached 
spikelet  assay 

Comby et al. 
2017 
[348] 

Simplicillium lamellicola Wheat roots  In planta  (inoculation 
of wheat heads) 
Field trials 

Abaya et al. 2021 
[356] 
 

Sarocladium zeae Maize roots, aerial 
tissues, and seeds 

in planta assay  
(wheat) inoculation of 
steams and spikes 

Kemp et al. 2020 
[351] 
 

Alternaria destruens,  
Fusarium commune,  
Fusarium oxysporum. 

wheat In planta (wheat) Noel et al. 2022 
[357] 
  

Sarocladium strictum 
Anthracocystis 
floculossa  
Penicillium olsonii  

Wheat leaves and 
spikelets 

Detached wheat 
spikelet assay 
In planta (inoculation 
of wheat heads) 

Rojas et al. 2020, 
2022 [330,350] 

Metarhizium anisopliae 
 

entomopathogenic 
fungus, able to colonize 
roots 

Coating of wheat 
seeds for in planta 
assay  

Hao et al. 2021 
[358] 
 

Pseudozyma sp,  
Papiliotrema flavescens 

Leaf, flower, anther 
and/or stem samples of 
cereals and weed plants 

In planta (inoculation 
of wheat heads) 

Shude et al. 2022 
[359] 

Bacterial endophytes 
Bacillus subtilis  Roots of Salicornia 

brachiata 
Coating of durum 
wheat seeds for  in 
planta  assay   

Brahim et al. 
2022 [353] 
 

Bacillus 
amyloliquefaciens  

Wheat stems, leaves, 
panicles, and roots of 
wheat 

Detached wheat 
heads   

 Zhang et al. 
2019 [360] 
 

Streptomyces sp.  Wheat roots In planta assay, 
inoculation of heads, 
Seed treatment (spring 
wheat and durum 
wheat) 
Field trials 

Colombo et al. 
2019, 
Mattei et al. 2022 
[352,361] 
 

Enterobacter sp. (M6) Roots of finger millet 
(Eleusine coracana) 

In planta, wheat and 
maize 

Mousa et al. 2016 
[354] 

Pseudomonas piscium Wheat head  Confrontation assay, 
in planta assay 
(inoculation of wheat 
heads)  

Chen et al. 2018 
[362] 

Pantoea ananatis,  
Erwinia persicina  

Whole bacterial 
communities from wheat 
heads  

In planta (wheat 
heads) 

Deroo et al. 2022 
[340] 
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Figure 21. Comparison of mock treatments (water) and  treatments with P.flocculosa 34-4,  
P.flocculosa 41-2 and  C.rosea IK726 (used as a control). Percentage of FDK in spray (A) and point 
inoculated (B) samples. Amount of F.graminearum in spray (C) and point (D) inoculated samples. Sum 
DON (DON+3ADON+DON-3G) in in spray (E) and point (F) inoculated samples. Paper IV 

Among the tested isolates, a strain 34.4, identified as Pseudozyma flocculosa, 
demonstrated effectiveness when point inoculated or sprayed three days before F. 
graminearum treatment. P. flocculosa 34.4 significantly reduced the number of 
damaged kernels, F. graminearum DNA load, and DON content in mature oat 
kernels (Figure 21). 
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P. flocculosa a basidiomycetous yeast, not pathogenic to plants or animals [363]. 
Several previous studies have shown its strong biocontrol ability against powdery 
mildew pathogens in various plants, including cereals [363–367]. Recently, two P. 
flocculosa strains isolated from green wheat spikes, demonstrated good biocontrol 
action against F. graminearum in wheat plants [330].  

 
Figure 22. Expression of genes of four PR-proteins in P.f locculosa-treated oat spikelets with 
subsequent challenge with F. graminearum  after 48h (A) and 72h (B).  Designations of treatments: 
water = mock treatment with water; Pf = P. flocculosa 34.4 control, Fg = F. graminearum control; Pf+Fg 
=  P. flocculosa 34.4 subsequently challenged with F. graminearum. Error bars represent standard 
deviation. Bars marked with same letter are not significantly different (p ≤ 0.05).Paper IV 

P. flocculosa’s biocontrol mode of action against  powdery mildews  has been 
studied  in detail. P flocculosa was reported to induce PR proteins in barley [367]. 
In tripartite interaction of barley, its pathogen Blumeria hordei and P. flocculosa, 
the effector of the latter was found to interact with barley PR1 protein and chitinase 
as well as with an effector protein from B.hordei [369]. The haustoria of  B. hordei  
seems to be the main point where this interaction occurs. Previously it has also been  
shown that P.flocculosa draws essential microelements from powdery mildew 
without penetrating the pathogens hyphae [366,367].  
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In our further experiments, P. flocculosa 34.4 inoculated into oat spikelets resulted 
in accumulation of transcripts of genes encoding PR-proteins PR1, PR3, PR4, and 
PR5, associated with enhance resistance against FHB in cereals [368] (Figure 22). 
The results suggest that P. flocculosa's biocontrol effect against F. graminearum 
could be attributed to its capacity to induce resistance in oat spikelets. 
Hypothetically, P. flocculosa could also weaken F. graminearum via drawing 
nutrients from the pathogen during the initial stages of infection. 

In our greenhouse experiments, the biocontrol efficiency of P. flocculosa was lower 
compared to the efficacy of the strong biocontrol agent C. rosea. However, P. 
flocculosa’s BCA efficiency in field conditions could be different. P. flocculosa 
seems to frequently inhabit cereal heads, thus it is well-adapted both to  the hosts 
and to other common microorganisms inhabiting these hosts. Its’ growth  shown to 
be mostly epiphytic  [364,367], suggesting that it can withstand harsh environmental 
conditions. The capability of P. flocculosa to control not only powdery mildew 
pathogens but potentially also such pathogen like F. graminearum, certainly makes 
this BCA worth to explore further. Studies of its interaction with Fusarium 
pathogens and other BCAs, as well as  field FHB biocontrol trials could help to 
elucidate its true potential.  
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Conclusions and future prospects 

Effective control of FHB in oats is important for ensuring the safety and quality of 
oats used for both animal feed and human consumption. FHB is a complex disease, 
influenced by various factors such as environmental conditions, the amount and 
composition of causal agents, cultivar resistance, and soil and plant microbiota. 
Integrated pest management (IPM), incorporating diverse control methods, aligns 
with these parameters [33,112]. This study explores multiple facets of  management 
of FHB  in oats, relevant to the establishment of a thorough IPM strategy. 

Accurately identifying FHB symptoms is crucial for breeding disease-resistant oats 
and assessing the effectiveness of chemical or biological control methods for 
controlling FHB. However, FHB symptoms in oats are often not  apparent, leading 
to possible errors and  biases in scoring the disease. In Paper I, we present an 
affordable and rapid method for assessing FHB symptoms in oats by de-hulling 
mature seeds upon harvest. Paper demonstrates that symptoms of blackening and 
discoloration of the kernels correlate with high amounts of Fusarium DNA and 
mycotoxins accumulated in the affected kernel. Thus, these symptoms could be used 
as indicators by breeders, farmers, and researchers for fast quantification of FHB in 
oats.  

To improve genetic resistance against pathogens, it is crucial to identify plant 
resistance genes and study their functions. In the present work, paper II describes 
identification and characterization of two oat UGT genes, involved in detoxification 
of several trichothecenes including DON, most prevalent mycotoxin contaminating 
oat. In other cereals, the increased glycosylation of DON has been directly linked to 
resistance to F.graminearum infection. Both  identified UGT genes aid in effective 
mycotoxin detoxification and thus potentially could be used for developing genetic  
markers for FHB resistance in oat lines and cultivars.  

The use of fungicides not only poses health risks to animals and contributes to 
environmental pollution but also increases the risk of pathogen resistance. 
Moreover, fungicides have shown limited effectiveness against FHB in oats, making 
biological control an attractive sustainable alternative. Recently, there has been 
growing interest in harnessing endophytic microorganisms as effective BCAs. 

In wheat, both conventional BCAs and endophyte-based BCAs have been found to 
effectively reduce FHB symptoms and mycotoxin accumulation. However, research 
on BCAs and endophytes against FHB in oats has been scarce. In Paper III, we 
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investigated the biocontrol potential of the fungal BCA Clonostachys rosea against 
FHB in oats. Our results showed that treating oat spikelets with C. rosea 
significantly reduced Fusarium DNA and DON accumulation, enhanced DON 
detoxification, while upregulating several markers of induced resistance. We 
propose that C. rosea IK726 holds strong potential as a BCA against FHB in oats. 

Furthermore, Paper IV focused on exploring the possibility of utilizing oats' own 
endophytes. We isolated fungal endophytes from oat spikelets and examined their 
effects on reducing FHB pathogen load and mycotoxin content in mature oat grain. 
Among the candidates, Pseudozyma flocculosa showed promising results, 
significantly reducing FHB symptoms, F. graminearum biomass, and DON in 
mature oat spikelets. P. flocculosa treatment was found to induce expression of PR 
proteins, involved in FHB resistance.  

Together, Papers III and IV highlight the potential of fungal BCAs as effective 
means to combat FHB in oats, offering promising alternatives to traditional 
fungicides and contributing to sustainable disease management practices. 

Considering the continuous threat of FHB in oat cultivation, innovative and 
effective control strategies become imperative. The future of FHB research is 
expected to be shaped by advancements in agricultural methods, breeding 
techniques, biological control, and genetic engineering, all fuelled by a deeper 
understanding of the disease's molecular mechanisms. The following short outline 
presents the potential avenues for exploration. 

The recent availability of the oat genome has opened up significant possibilities for 
identifying disease-resistance genes in oat breeding [61]. Additionally, the 
forthcoming oat pangenome (https://wheat.pw.usda.gov/GG3/PanOat), capturing 
the greater genetic diversity within the oat species, promises to reveal novel 
resistance alleles. Leveraging metabolomics and transcriptomics methods can 
uncover key defence compounds and gene expression patterns during disease 
progression, aiding in the discovery of novel resistant genes in oats [221,228]. 
Through marker-assisted selection and genomic selection based on these resources, 
the development of disease-resistant oat varieties can be accelerated. 

Deciphering molecular crosstalk between pathogenic Fusarium species and plants 
could help to discover susceptibility genes, which could be targeted to improve 
durability of FHB resistance. Host-, spray- or virus-induced gene silencing holds 
promise in silencing genes involved in the virulence processes of Fusarium fungi, 
hindering infection [221].  

Agroecological strategies such as crop rotation and mixed cultivation should be 
further developed and adapted for commercial farming conditions to reduce 
inoculum build-up by integrating different plant species in the same field. 
Automated disease symptom diagnostics using sensors, image analysis, and 
machine learning can greatly benefit FHB trials in both greenhouses and the field, 
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enabling rapid and accurate identification of disease symptoms and facilitating 
breeding decisions for disease-resistant lines [113,166].  

Deeper insights into the interactions between Fusarium species involved in FHB 
and the environment can shed light on shifts in various Fusarium species and expose 
interconnected disease dynamics. Continuous monitoring of Fusarium species and 
mycotoxins is crucial, as shifts in causal agents may alter disease severity, resistance 
effectiveness, and mycotoxin profiles.  

BCAs employed for controlling FHB can be enhanced by combining different 
species of microorganisms or integrating with synthetic fungicides. Considering the 
combined modes of action and quality of interaction of BCAs is crucial, as 
synergistic or antagonistic effects impact disease control. Customizing commercial 
BCAs based on geographic and environmental conditions could provide tailored 
solutions [38,370, 375]. Use of BCAs that are directed towards different stages of 
the FHB disease cycle, such as reducing Fusarium inoculum in the soil and crop 
residues, could be widely utilized [371]. 

Understanding the interaction between Fusarium species and the plant microbiome 
is crucial for FHB management, and microbiome manipulation holds alluring 
potential [370,372]. Metabarcoding approaches are used exceedingly to study the 
co-occurrence patterns of various microorganisms in plants and are of a great help 
in searching for most efficient Fusarium suppressive microorganisms and microbial 
communities [371]. Synthetic microbial communities, designed to mimic the natural 
microbiome, offer a promising strategy against biotic stress [373]. However, further 
work is needed to ensure that the synthetic consortia can be integrated into the 
natural microbiome equilibrium. Furthermore, plant breeding to produce plants 
better adapted to attract and host most beneficial microbiome communities is 
another important way to improve disease resistance  [374]. 
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