Stencel-Gabriel K, Czuba Z, Gabriel I, Majda A. Urinary leukotriene E4 at 12 months and influencing factors. Journal of Education, Health and Sport. 2016;6(1):197-206. eISSN 2391-8306. DOI <u>http://dx.doi.org/10.5281/zenodo.45337</u> <u>http://ojs.ukw.edu.pl/index.php/johs/article/view/45337</u> <u>https://pbn.nauka.gov.pl/works/709857</u>

The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 755 (23,12,2015). 755 Journal of Education, Health and Sport eISSN 2391-8306 7 © The Author (s) 2016; This article is published with open access at Licensee Open Journal Systems of Kazimierz Wielki University in Bydgoszcz, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. This is an open access at licle licensed under the terms of the Creative Commons Attribution Non commercial use, distribution and meynoduction in any medium, http://creativecommons.org/licenses/by-nc/4.00/ which permits unrestricted, non commercial use, distribution and meynoduction in any medium, provided the work is properly cited. This is an open access article licensed under the terms of the Creative Commons Attribution Non Commercial use, distribution and reproduction in any medium, provided the work is properly cited. This is an open access article licensed under the terms of the Creative Commons Attribution in any medium, provided the work is properly cited. The authors declare that there is no conflict of interests regarding the publication of this paper. Received: 15.12.2015. Revised 12.01.2016. Accepted: 25.01.2016.

Urinary leukotriene E4 at 12 months and influencing factors

Stencel-Gabriel K (1), Czuba Z (2), Gabriel I (3), Majda A (1)

 Departament of Pediatrics, Bytom, Medical University of Silesia
 Departament of Microbiology and Immunology, Zabrze, Medical University of Silesia

3. Department of Gynecology, Obstetrics and Oncological Gynecology, Bytom, Medical University of Silesia

Corresponding author: Krystyna Stencel-Gabriel ul. Batorego 15 41-902 Bytom

Keywords: leukotriene E4, infants, allergy, urine.

Summary

Objective

 LTE_4 is the end point of cysLTs pathway and its only stable product. Its role was discussed in asthma and AEDS.

We aimed to investigate the impact of genetic and environmental factors (sex, maternal positive family atopy history, breastfeeding, passive smoking and pet exposure).

60~newborns (including 30 boys) were enrolled in the study. Each child was examined at 12 months and urine samples for urinary LTE_4 measurement were collected. All samples were processed using ACE^{TM} Enzyme Immunoassay Kit (Cayman Chemical, Ann Arbor, MI, USA).

The mean level of urinary LTE₄ at 12 months was 186,99 pg/ml (median: 159,0; CI 95%: 157,79- 221,59). The Shapiro- Wilk test showed that the distribution of the levels of urinary LTE₄ were abnormal. 12- month- old girls had higher urinary LTE₄ levels than boys (mean: 270,50 vs. 193,55), but maternal positive atopy history, pet exposure, tobacco smoking or length of breastfeeding had no impact on urinary LTE₄ excretion. Conclusions

In conclusion, most of genetic or environmental factors do not change levels of urinary LTE_4 in infants.

CysLTs are potent mediators of airway narrowing, edema, smooth muscle proliferation, and increased mucus production during asthmatic attack. LTE_4 is a potent bronchoconstrictor in human [3] and asthmatic airways might be selectively hyperresponsive to LTE_4 in contrast to other cysLTs [11].

CysLTs also are involved in the inflammation of the skin in AEDS, possibly through chemotaxis of inflammatory cells, vasodilatation and oedema [16]. Urinary LTE₄ is significantly elevated in children with AD [5]. It was also shown that urinary LTE₄ concentration was correlated with SCORAD.

LTE₄ is an effect of leukotriene C4 convertion through sequential enzymatic removal of glutamic acid and then glycine. So far, LTE₄ has received little attention because it binds poorly to the classical type 1 and 2 cysLT receptors and is much less active on normal airways than LTC4 or LTD4. Recent studies have begun to uncover receptors selective for LTE4: PRY_{12} , an adenosine diphosphate receptor, and CysLT_ER.

The past three decades have been characterized by an increase in the prevalence of allergic diseases, particularly in childhood [18]. While the increase of asthma in developed countries seems to stabilise, at the same time we observe the rapid increase in atopic eczema prevalence [1]. The burst of allergies in the western countries, including Poland, is suggested to be provoked to due to both genetic and environmental factors including sex, positive maternal and family atopy history, cigarette smoking, pets, social and economic status.

As far as we known, there are no previous studies aiming to investigate the correlation between the levels of urinary LTE_4 and sex, cigarette smoking, breastfeeding, pets and positive maternal history of allergy among the Polish infants. Therefore, the aim of our study was to demonstrate the influence of selected factors (sex, cigarette smoking, breastfeeding, pets and positive maternal history of allergy) on the levels of urinary LTE_4 in 12- months-old children.

Methods

Subjects

60 newborns born vaginally at term were enrolled in the study after the parental informed consent was obtained. The exclusion criteria were: newborns born from multiple pregnancies or complicated pregnancies (maternal chronic disease, PIH, GDM, GBS), newborns with congenital defects or intrauterine infection.

At the time of delivery all parents completed a standardized questionnaire, including information on pregnancy, birth, sex, birth weight, social, economical and maternal factors, family atopy history, passive smoking. These children have been followed at the age of 3, 6, 12 months. At every follow- up, detailed questionnaires were completed with the parents for each child regarding breastfeeding, passive smoking, infections and allergic symptoms.

Family allergy score (FAS) system was used for assessment of family allergy history [10].

The study was approved by the local research ethics committee.

Collection and storage of samples

At the age of 12 months, each child was examined by the same physician to exclude infection or present allergic symptoms before the urine was obtained in the laboratory. The samples were immediately centrifuged to remove cellular debris at 10,00x g for 10 min, the supernatant was then removed, coded and stored in aliquots of 5 ml at -70° C until analysis. LTE₄ measurement

LTE₄ in urine was measured using ACE^{TM} Enzyme Immunoassay Kit (Cayman Chemical, Ann Arbor, MI, USA). All measurements were done in duplicate and the mean value was calculated. This assay is based on the competition between LTE4 and an LTE4-acetylcholinesterase conjugate (LTE4 tracer) for a limited amount of LTE4 antiserum. Because the concentration of LTE4 tracer is held constant while the concentration of LTE4 varies, the amount of LTE4 tracer that is able to bind to the LTE4 antiserum will be inversely proportional to the concentration of LTE4 in the well. The U- LTE4 concentration is expressed as picograms per milligram and the detection limit in the assay was < 8 pg/ml. Statistical analysis

Data were analyzed using MedCalc 9.6 (MedCalc, Mariakerke, Belgium). Data were expressed as mean \pm SD. Urinary LTE4 concentration was log-transformed (log-LTE4) before analysis because its distribution was not normal. Logistic regression analysis was used to assess the influence of analyzed factors on urinary LTE₄ at 12 months. P< 0,05 was considered to be statistically significant.

Results

Sixty newborns (30 boys) were recruited with a mean level of urinary LTE₄ at 12 months of 186,99 pg/ml (median: 159,0; CI 95%: 157,79- 221,59). The Shapiro- Wilk test showed that the distribution of the levels of urinary LTE₄ were abnormal.

Table I presents the mean levels of urinary LTE₄ detected depending on sex, positive maternal atopy history, passive smoking, breastfeeding and pets. The levels of urinary LTE₄ differ between boys (1) and girls (2) at the of 12 months (p<0,05).(Table I), (Fig. 1). Table I. The mean levels of urinary LTE₄ depending on genetic and environmental factors (sex, positive maternal atopy history, passive smoking, breastfeeding and pets); pg/ml.

	Number	Mean level of	р
		urinary LTE ₄	
Sex	60	186,99	0,03
Boys	30	193,55	
Girls	30	270,50	
Maternal atopy	60	186,99	0,39
history			
Yes	18	208,94	
No	42	178,30	
Passive smoking	60	186,99	0,19
Yes	23	196,51	
No	38	254,22	
Breastfeeding*	60	186,99	0,12
Yes	23	168,85	
No	37	220,76	
Pets	60	186,99	0,76
Yes	13	196,21	
No	47	184,51	

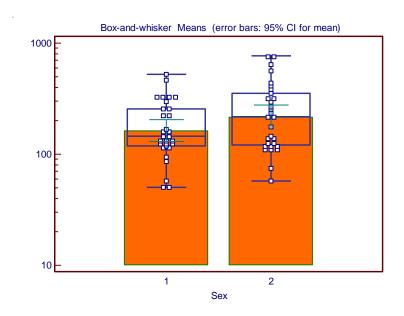


Fig. 1. Levels of urinary LTE₄ at 12-months old infants (1 boys, 2 girls); p<0,05; pg/ml.

Discussion

In this study, we demonstrated that levels of urinary LTE_4 were higher in 12-months old girls than boys. We did not observe any difference in urinary LTE_4 levels depending on cigarette smoking, the length of breastfeeding or presence of pet at home.

It is surprising that exposure to cigarette smoking have not influenced urinary LTE₄ excretion. Previous reports showed that, beside of RSV, secondhand cigarette smoking increases urinary LTE₄ both in healthy infants and infants with RSV- bronchiolitis [8]. The study by Kott et al. noted the increase of urinary LTE₄ only in children exposed to cigarette smoke without parental positive history of asthma. Additionally, their observation is limited to high exposure to cigarette smoke. This may explain the difference in our study. Firstly, we had not divided the exposed group of infants into further subgroups according to the amount of cigarettes smoked a day by parents. Secondly, we had not divided children according to both passive smoking and parental atopy family history. Our assumption that only high exposure of tobacco smoke can produce subsequent elevation of urinary LTE₄ in infants might be sustained by earlier studies [4, 13]. Piedimonte et al. observed higher levels of urinary LTE₄ in children with bronchiolitis and with an atopic/asthmatic family background which is inconsistent with our observation that family atopy history did not influence leukotriene synthesis. In our opinion, bronchiolitis itself was triggering mast cells and eosinophils to produce leukotriens. Atopic background was only additional minor factor that came into importance only because of airways irritation with RSV.

Although beneficial effect of breastfeeding was widely reported [6,17], we have not observed any effect of breastfeeding longer than 3 months on urinary LTE₄ levels at 12months old children. It is hard to debate whether our results are acceptable because there are no previous studies that might be compared to our results. Similarly, pet exposure have no impact on urinary LTE₄ excretion at 12 months. Recent study reported exposure to cat

202

allergens early in life increased the risk of late childhood asthma and bronchial hyperresponsiveness, but not the risk of allergic sensitization [2]. They did not observe, however, any impact of early exposure to dog allergens. As we mentioned above, this might be due to lack of subgroup selection eg. infants exposed to cat or dog or guinea pig. It seems that this problem should be further investigated in larger population study because previous studies have shown that the urinary LTE₄ concentration is useful in demonstrating cysLTs release in vivo during allergen challenge [9,15]. Additionally, LTE₄ is a potent bronchoconstrictor in human [3] and it was shown that asthmatic airways might be selectively hyperresponsive to LTE₄ in contrast to other cysLTs [11]. It might be reasonable to enlarge the studied group with selection of infants with wheezing or recurrent bronchitis and to investigate pet exposure in this selected group.

We demonstrated a significant dependence of urinary LTE_4 on sex. Girls had higher mean levels of urinary LTE_4 than boys. The trend to higher levels of urinary LTE_4 in girls was previously observed by Rabinovitch et al [14]. On the other hand, other studies performed at the older age group had showed no association between sex and urinary LTE_4 [7,12].

The ability to predict the risk for having allergic disease in later childhood is enormously helpful in terms of offering an accurate prognosis to parents and identifying children for investigation of prevention strategies. Thus, it was proven that urinary LTE_4 is helpful as pediatric biomarker in asthma or atopic eczema. It seems it is especially important in selecting high- risk infant girls but further studied should be performed.

What is already known on this topic is a little information about levels of urinary LTE4 in children, especially in infants. Additionally, it should be mentioned that most of the previous studies reported levels of urinary LTE4 in children with asthma exacerbation or AEDS.

What this study adds is that levels of urinary LTE4 are different between boys and girls in Polish population. It is noteworthy, that these children were followed for the first year of their life and were not recruited as sick children.

References

- Asher MI, Montefort S, Bjorksten B et al. 2006. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood. ISAAC Phases One and Three repeat multicountry cross- sectional surveys. Lancet 368: 733-743.
- Bertelsen RJ, Lodrup Carlsen KC, Carlsen KH et al. 2010. Childhood asthma and early life exposure to indoor allergens, endotoxin and beta(1,3)- glucans. Clin Exp Allergy 40: 307-16.
- 3. Davidson AB, Lee TH, Scanlon PD et al. 1987. Bronchoconstrictor effects of leukotriene E4 in normal and asthmatic subjects. Am Rev Respir Dis 135: 333-7.
- 4. Fauler J, Frolich JC. 1997. Cigarette smoking stimulates cysteinyl leukotriene production in man. Eur J Clin Invest 27: 43-7.
- 5. Hon KLE, Leung TF, Ma KC et al. 2004. Urinary leukotriene E4 correlates with severity of atopic dermatitis in children. Clin Exp Dermatol 29: 277-281.
- James DC, Lessen R. 2009. American Dietetic Association. Position of American Dietetic Association: promoting and supporting breastfeeding. J Am Diet Assoc 1926-42.
- Kaminsky DA, Jones K, Schoene RB, Voelkel NF. 1996. Urinary leukotriene E4 levels in high-altitude pulmonary edema. A possible role of inflammation. Chest 110: 939-45.

- Kott KS, Salt BH, McDonald RJ et al. 2008. Effect of secondhand cigarette smoke, RSV bronchiolitis and parental asthma on urinary cysteinyl LTE4. Pediatr Pulmonol 43: 760-6.
- Kumlin M, Dahlen B, Bjorck T et al. 1992. Urinary excretion of leukotriene E4 and 11- dehydro- thromboxane B2 in response to bronchial provocations with allergen, aspirin, leukotriene D4, and histamine in asthmatics. Am Rev Respir Dis 146: 96- 103.
- 10. Liao SY, Liao TN, Chiang BL et al. 1996. Decreased production of IFN gamma and increased production of IL-6 by cord blood mononuclear cells of newborns with a high risk of allergy. Clin Exp Allergy 26: 397-405.
- 11. O' Hickey SP, Arm JP, Rees PJ et al. 1998. The relative responsiveness to inhaled leukotriene E4, methacholine and histamine in normal and asthmatic subjects. Eur Respir J 1: 913-7.
- 12. Oosaki R, Mizushima Y, Mita H et al. 1997. Urinary leukotriene E4 and 11dehydrothromboxane B2 in patients with aspirin- sensitive asthma. Allergy 52: 470-3.
- Piedimonte G, Renzetti G, Auais A et al. 2005. Leukotriene synthesis during respiratory syncytial virus bronchiolitis: influence of age and atopy. Pediatr Pulmonol 40: 285- 91.
- Rabinovitch N, Strand M, Stuhlman K, Gelfand EW. 2008. Exposure to tobacco smoke increases leukotriene E4- related albuterol usage and response to montelukast. J Allergy Clin Immunol 121: 1365- 71.
- 15. Sladek K, Dworski R, Fitzgerald GA et al. 1990. Allergen- stimulated release of thromboxane A2 nad leukotriene E4 in humans. Effect of indomethacin. Am Rev Respir Dis 141: 1441- 5.
- Wedi B, Kapp A. 2001. Pathophysiological role of leukotriens in dermatological diseases. BioDrugs 15: 729-743.

- 17. Verhasselt V. 2010. Neonatal tolerance under breastfeeding influence: the presence of allergen and transforming growth factor- beta in breast milk protects the progeny from allergic asthma. J Pediatr 156: S16-20.
- von Hertzen L, Haathela T. 2005. Signs of reversing trends in prevalence of asthma.
 Allergy 60: 283- 292.