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Introduction

Intuition is attributed to various properties. It is rather widely accepted 
as a kind of cognition and an essential element of the cognitive process. 
All attempts to replace it with formalization or rationalization ended 
with the discovery of the next, ”layers” of intuition, its functions and 
meanings. The formalization itself turned out to be strongly associated 
with intuition, and, even in rational thinking and cognition, intuition 
was found as it is necessary component. It is assumed, as opposed to 
discursive cognition, that it is direct, which means that it is not using in-
ferences, proofs, symbols and language. This cognition uses images, it is 
sensible and holistic. Often, its action is not fully conscious and seems 
to be a part of the subconscious. It often appears as a component of cre-
ativity in the form of inspirations, revelations, and sudden discoveries. 
Sometimes it leads infallibly to the goal, but often also deceives; intu-
ition is attributed to both, feelings and reason. It is spread somewhere 
between the mystical (extrasensory), abstract and concrete, sensual and 
individual states. 

Ruch FilozoFiczny
LXXV 2019  4

http://dx.doi.org/10.12775/RF.2019.043


160 Wiesław Wójcik

Despite its ambiguous status, intuition also appears in cognition and 
mathematical creativity. It seems that its elimination from mathematics 
(and such attempts were made) is not possible, and striving towards its 
complete removal has led to adverse effects, e.g. blocking further devel-
opment of science. On the other hand, in the situation of building new 
mathematical concepts and theory, relying on it sometimes led to mis-
takes, generated contradictions, paradoxes and antinomies. Therefore, 
the analysis of presence and significance of intuitive cognition in math-
ematics is necessary and, as I will show, also allows for a better under-
standing of the phenomenon of intuition as such. 

Intuition occurs in mathematics in four areas: discovery, under-
standing (concepts, proofs), justification (specificity of mathematical 
proofs), and acceptance or rejection (substantive, but also didactic con-
text, as well as, more broadly – sociocultural).1 I will focus on contexts 
of understanding and justification, where the occurrence of mathemati-
cal intuition is less obvious and also indicates the specifics of mathemat-
ics. Especially significant for these studies is the turn of the nineteenth 
and twentieth century’s, when new mathematical theories were emerg-
ing. In the paper, I do not study the dispute between formalism and 
intuitionism that took place at that time, nor do I analyze the directions 
in the then philosophy of mathematics (formalism, intuitionism or con-
structivism). To a large extent, they were inspired by transformations 
in mathematics and were an attempt to understand the situation. The pa-
per attempts to show the place where these transformations took place, 
how creators had struggled with their previous habits and intuitions, 
and how new mathematical intuitions were shaped. The approach to 
the problem implemented in the article is similar to the one presented 
by Jerzy Pogonowski2 in a series of articles on mathematical intuition. 
It is about exploring mathematical intuition in action, showing how 
it changed during the development of mathematics when new theories 
and objects appeared.

The paper is de facto devoted to the work of Polish mathematicians 
from the beginning of the twentieth century and their reflection on the 
presence of intuition in mathematics. Their example clearly shows the 
phenomenon of transformations made then, and the struggles of old and 
new intuitions in mathematics. I would like to further analyze the views 
on the mathematical intuition which are significant to the origin of the 

1 Cf. Mieczysław Omyła, “Intuicja w naukach formalnych”, Edukacja Filozoficzna 
50 (2010): 139–155.

2 Cf. Jerzy Pogonowski, Intuicja matematyczna w działaniu, http://logic.amu.edu.
pl/images/5/54/Mo70jp.pdf, access: 11.10.2019; idem, “Kilka uwag o intuicji mate-
matycznej”, Filozofia Nauki XX, 2/78 (2012): 107–113; idem, “Mathematical intuition – 
a few remarks”, Investigationes Linguisticae XXIV (2011): 1–24.

http://logic.amu.edu.pl/images/5/54/Mo70jp.pdf
http://logic.amu.edu.pl/images/5/54/Mo70jp.pdf
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Polish school of mathematics and to give it a proper character. They were 
put forward by four Polish mathematicians: Jan Śleszyński3 (1854–1931), 
Jan Łukasiewicz4 (1872–1956), Zygmunt Janiszewski5 (1888–1920) and 
Hugo Steinhaus6 (1887–1972). On their examples, I will show how math-
ematical creativity (and intuitive and formal cognition in it) intertwines 
with reflection on mathematics.

Polish mathematicians and logicians mentioned above referred to 
several traditions and research programs in their studies. One of most 
important is the idea of   Bernard Riemann and the German school in Göt-
tingen (R. Dedekind, F. Klein, D. Hilbert) that followed him, or the re-
search of the French school with H. Poincaré and H. Lebesgue at the 
forefront. They also referred to the research programs and concepts of G. 
W. Leibniz, G. Frege and the study in the field of algebraization of logic 
by Peirce, Schröder and Couturat as well as the concepts of Russell and 
Whitehead. 

The result of these analysis will also be a description and a fragmen-
tary understanding of the breakthrough that took place in mathemat-
ics at the turn of the nineteenth century. Furthermore, the analysis will 
also allow understanding the difficulties that arise when acquiring new 
mathematical concepts and arguments (the specifics of intuition and 
mathematical creativity). The research, by pointing to the universal na-
ture of mathematical intuition and showing the relations between differ-
ent types of intuition, will also allow deepening the study on the very 
phenomenon of intuition in cognition.

3 He was a Polish mathematician, logician, philosopher and one of the pioneers 
of mathematical logic in Russia and Poland. He showed the continuity of develop-
ment of logic, starting from classical logic to mathematical logic. He also developed 
a monograph, especially important for showing the relationship between the formal 
structure of proof and the use of intuition in it (Teoria dowodu, 1925–1927).

4 He used logical analysis in researching the foundations of empirical sciences 
and mathematics (he analyzed the law of noncontradiction, the law of excluded mid-
dle, the law of causality, the idea of   probability, and others). This research led him to 
the creation of a logical theory of probability, three-valued logic, many-valued and 
modal logics. He also conducted metatheoretical studies on logic, and more broadly – 
on axiomatic-deductive systems.

5 He was not only a prominent mathematician and co-creator of Warsaw School 
of Mathematics, but also a philosopher of science, studying the foundations of mathe-
matics and designing its development.

6 He was active in the field of pure mathematics, but also in its applications and 
popularization. An important area of   Steinhaus’s activity was to show the universal 
nature of mathematics. It was showing its presence in the world and in other sciences 
and also expressing mathematical truths other than formal methods (visualized ma-
thematics, pictorial mathematics).
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Mathematical Intuition vs. Logic and Hidden Harmony

In the mid-nineteenth century, an indication of a breakthrough in math-
ematical and physical sciences can be observed. The entry of science into 
new areas, despite many successes and hopes, also gave birth to a whole 
lot of new problems and difficulties. They grew gradually and reached 
a critical condition in the mid-nineteenth century. It turned out that intu-
ition formed on the basis of previous theories and experience is insuffi-
cient and leads to many paradoxes. This forced a reflection on science, its 
foundations, and especially on the concepts and methods that, despite 
intuitive obviousness, generated difficulties. Examples of such are the 
concept of number (extended to irrational and complex numbers), con-
tinuity, limit, function, infinite series, derivatives, integrals. They were 
used universally, but yet they lacked the accuracy needed in mathemat-
ics. It was necessary to rethink and to define the concepts of size, space, 
curve, surface, as well as variability, function, identity, constructability, 
computability, continuity, limit and continuum. It turned out that work 
on new theories and definitions led to shaping new intuitions. This new 
situation in mathematics has brought about reflection on the very phe-
nomenon of mathematical intuition. A particular challenge was to exam-
ine the foundations of theories that seem to have been well-grounded 
for centuries: geometry (in the face of the appearance of Non-Euclidean 
geometries), arithmetic (construction of Non-Archimedean arithmetic) 
and algebra (the emergence of Galois theory and significant develop-
ment of algebraic methods). It is only then that concepts are born, be-
coming the foundation of mathematics and other sciences: the concept 
of a set (including the infinite set), group, manifold and invariant. 

Polish mathematicians and philosophers significantly contributed to 
this research. They were the creators or co-creators of new mathematical 
theories and, in many cases, they analyzed the foundations of mathemat-
ics and other sciences as well as their formalization (including axiomat-
ization and mathematization). It was a formal analysis (often a logical 
analysis), using the methods of new mathematical theories and analyti-
cal philosophy. Polish reflection referred to key discoveries in mathe-
matics and physics, but these discoveries did not make them absolute 
and saw the need for authentic philosophical reflection on the sciences 
(which was not so obvious in the era of scientism and positivism). Polish 
scholars referred to (newly emerged) theories: mathematical logic, set 
theory, topology, measure theory, functional analysis. They developed 
them, studied their foundations and the foundations of geometry, arith-
metic, logic, probability theory and mathematical analysis. With the help 
of logical analysis, they studied the concepts of causality, consistency, 
probability, truth, discourse, relations, and more. In this way, many new 
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ideas, concepts, and theories were created, including semantic theory 
of truth, many-valued and modal logics, theory of sets in collective sense 
and discursive logic. Continuity in the development of science was also 
noted and the relevance of achievements of previous eras to modern sci-
ence was pointed out.7

For many Polish mathematicians, the inspiration which led to reflec-
tion on mathematics was Henri Poincaré (1854–1912). According to Poin-
caré, the main goal of science is to explore the hidden beauty, harmony 
of the world, which is accompanied by recognizing and constructing 
the beauty of simple facts and mathematical formulas. It has its ground-
work in the instinctive desire for beauty which strengthens the selfless 
search for the truth. The usefulness of science appears as the natural fruit 
of this search.8 When carrying out mathematical proof, it is important 
to feel a general course of reasoning (not memory or proficiency in cal-
culations), and so intuition of order in which the elements of proof are 
arranged. This intuition allows us to discover those hidden harmonies 
and relationships that operate in the conscious work of a scholar, that 
are present in the formal structure of proof, but also in the work of the 
subconscious and material reality. When he drew closer to discoveries 
with the participation of the subconscious, Poincaré observed his cre-
ative process with great commitment. A good idea suddenly appeared 
in the mind as a glare. This shows the unity of the world in all its areas. 
This linking element is, in fact, mathematical intuition, which enables 
creativity and exploration of the world. From the fact that intuition is an 
essential element of the scholar’s work, Poincaré concluded that it is not 
possible to fully formalize mathematics (and even more so in other sci-
ences) and reduce it to formal logic.

The presence of mathematical intuition can be observed in three 
fields: building tools for exploring nature, stimulating philosophical 
thinking, and showing the beauty and unity of the edifice of knowledge. 
The precise, accurate, and sufficiently rich language of mathematics 
allows the natural sciences to grasp the diverse and complex relation-
ships discovered in nature. Enclosed in the framework of general for-
mulas, it becomes a harmonious arrangement of phenomena.9 Accord-
ing to Poincaré, mathematical analogy (the power of precise language, 

7 Important examples are the studies by Jan Śleszyński and Jan Łukasiewicz on 
the history of logic and observation that mathematical logic is the next stage in the 
development of logic. Classic logic can be expressed using the language of new logic.

8 Henri Poincaré, Nauka i metoda, transl. M. H. Horwitz (Warszawa: G. Centnersz-
wer i S-ka, 1911), 11.

9 Idem, “Sur les rapports de l’analyse pure et de la physique mathematique”, 
in: Verhandlungen des ersten internationalen Mathematiker – Kongresses (Leipzig, 1898);  
T. S. Dickstein, “Związki pomiędzy analizą i fizyką matematyczną”, Mathematical 
News 1 (1897): 184.
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simplicity and pure form) is used to show similarities, relationships be-
tween various fields of knowledge and between science and reality.10 It is 
the most important element of mathematical intuition, it indicates the 
incomprehensible (suprarational) relationship of reality and thought. 
It allows to look at mathematics as a work of art and, at the same time, 
discover and see profound harmony in reality.11

These threads are developed by Polish mathematicians. In the intro-
duction to the Guide,12 Janiszewski, trying to show the value and sense 
of abstractness, generality and accuracy of mathematical truths, notes 
that thanks to these features it is possible to build an internal, coherent 
world. It has value in itself and, at the same time, it is capable of build-
ing relations with the external world (however, possible applications are 
not the purpose of mathematical activity). Mathematical activity cannot 
be reduced to some game or amusement; it is much more than that. The 
truths discovered by mathematics extend our cognition and are connect-
ed with the rest of our knowledge and the world in a way which is hard 
to predict. The field of mathematics is constantly expanding and we can-
not trace its further paths. 

Only the intuition of mathematical beauty learned through the ex-
perience of tracking and proving mathematical truths and also a certain 
innate predisposition allows capturing the consistent edifice of math-
ematics. It is a kind of art – bold, pure and sublime, which exceeds the 
boundaries of imagination, and yet (maybe due to this) refers to reality. 
It is difficult to describe and express what this intuition and beauty is to 
someone who has not experienced it himself.13

Similarly, Steinhaus, referring to the beauty of mathematics, notes 
that several elements are needed in order to see it. First of all, the con-
dition of its perception is to capture the historical continuity and or-
der of discoveries. Individual discoveries entail others, the conceptual 
framework is therefore expanding and we are dealing with the trans-
mission of basic meanings and content. Thus, mathematical intuition 
is being shaped. This allows him to see the harmony of issues, ques-
tions and solutions. He notes that accuracy is needed to solve various 
issues, but it is not an end in itself. Mathematics solves problems, it is 
sensitive to reality and thus cannot be completely specified or formal-
ized. It cannot be reduced to a formal game of symbols. “But everyone 
knows that the scientific value of even the most beautiful chess endgame 

10 Ibidem, 186.
11 Idem, Wartość nauki, transl. L. Silberstein (Warszawa: G. Centnerszwer i S-ka, 

1908), 94.
12 Zygmunt Janiszewski, “Wstęp ogólny”, in: Poradnik dla samouków (Warszawa: 

A. Heflich, St. Michalski, 1915), 3–27.
13 Cf. ibidem, 11–16.
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is nothing compared to the humblest theorem of elementary geometry, 
and this is because the game called geometry is a confrontation of a man 
with the world around him and every victory in this game has lasting 
significance for the human race”.14 Consequently, there is a relationship 
between mathematics and the external world, and it is being revealed 
just when mathematics is developing. Further analogies are being built 
between rational constructions and reality, which enable us to see ratio-
nality and harmony in history and in the world. Mathematical intuition, 
which was shaped through centuries, allows making non-trivial gen-
eralizations. This intuition comes from human nature and transcends 
it somehow, but does not break connection with it. It makes mathemati-
cal proofs understandable, important and beautiful. In a purely formal 
way and based on total accuracy (according to established algorithms), 
a machine could generate any number of meaningless “theorems”. Then, 
however, man, beauty and true creativity would disappear from the area 
of   mathematics.15 

Also Śleszyński analyzes mathematics (and logic) and describes its 
structure, in which both intuition and logic play an important role. Ac-
cording to him, every science using the deductive method has two parts: 
static and dynamic. In the static part, we are only looking for a logi-
cal relationship, which is captured by the system of sentences related to 
each other by proofs. The search for this relation is, as Śleszyński noted, 
the most important problem of science. It is also the main didactic and 
moral goal of every human being. Through analyzing Aristotle’s log-
ic, he points to the syllogism discovered by the Greek philosopher as 
a necessary relation between postulates (premises) and the conclusion. 
“A wonderful relation, however, is not based on any violation, criminal 
law, or any seriousness; it is in us! You need to nourish and strengthen 
the sense of this relation, you need to develop gentleness and sensitivity 
to it”.16 Shaping this sensitivity (moral, intellectual and didactic) builds 
a scientific intuition which allows us to recognize facts and relationships 
that are scientifically and cognitively valuable. 

In the dynamic part, science is creativeness and a dynamically de-
veloping system of hypotheses, intuitions and philosophical as well as 
psychological and other issues. For this reason, no science (even math-
ematics) can be reduced to purely formal logic. Only “technical logistici-
zation” is possible, and thus, the use of established logical relations for 

14 Hugo Steinhaus, “O ścisłości matematycznej”, in: Między duchem a materią po-
średniczy matematyka (Warszawa–Wrocław: PWN, 2000), 55.

15 Ibidem, 57–58.
16 Jan Śleszyński, Teoria dowodu, vol. 1, ed. S. K. Zaremba (Kraków: Nakładem 

Kółka Matematyczno-Fizycznego U.U.J., 1925), 9. 
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the analysis of proof, presentation of complete proof, and their logical 
abbreviations (for didactic purposes and simplification of the message).

The definitions and theorems (not to mention proof) are intricate, 
and for those who start their adventure with mathematics, they seem 
artificial and unnecessary. Historical perspective allows showing ques-
tions and problems that led people to these formulations. You can see the 
path of the greatest artists struggling with their own intuition, misun-
derstanding, and gradual achievement of later precision.17

In this shaping of the right intuitions that allow us to show the con-
tent and deductive power of proof and the correct shortening of proof, 
logical laws are important (these are also research methods). One 
of them is the law of transposition, giving the opportunity to replace 
proof by contradiction (reductio ad absurdum) with strictly deductive rea-
soning. Proof by contradiction often significantly simplifies reasoning, 
but it puts the listener in front of the experience of paradox and mystery 
(we received a contradiction but the mechanism of argumentation itself 
is covered). 

For Śleszyński, the modus ponens law – law – qpqp  ))((  – is crucial. This law shows that in some cases it is possible 

to reject logical links in mathematical  

 – is cru-
cial. This law shows that in some cases it is possible to reject logical 
links in mathematical proofs (not to use them as premises), but they can 
used only as methods of inference. Therefore, the proof is shortened, but 
logical laws are constantly used “in the background” – they become the 
methodological skeleton of proof and the force shaping mathematical in-
tuition. Śleszyński examines the correctness of mathematical proofs with 
this method. Proofs used in mathematics are usually incomplete, i.e. the 
ones in which not all of the links of proof are explicitly listed. The proof 
has “gaps” which are usually shortcuts that are easy to complete. How-
ever, such complementations are not always possible. Often, attempts to 
logically complement some mathematical proofs ended in failure, while 
those proofs that were believed to be incorrect could easily be present-
ed in the form of complete proofs. Therefore, a logical analysis of proof 
should separate individual links of proof, determine methods of proof 
(which may differ from the currently “binding”) and see in them the ap-
propriate logical laws. These logical laws can, in turn, be included in the 
proof as premises for reasoning, and then the correctness (or their false-
ness) of the proofs can be shown.

17 Idem, “Rozwój pojęć nieskończonościowych”, in: Poradnik dla samouków (War-
szawa: A. Heflich, St. Michalski, 1923), 54–55.



167The Problem of Intuition in Mathematics

Building New Mathematical Intuitions. The Universal 
Nature of Mathematical Intuition

New constructions, objects, and mathematical theories emerging at the 
turn of the twentieth century, often went beyond the intuitions formed 
earlier in the development of mathematics. 

It is enough to just mention the Cantorian set (uncountable and dense 
in itself, but nowhere dense), the continuous function which is nowhere 
differentiable (i.e. not having a tangent at any point), the curve filling 
the square, the curve on a plane being the edge of more than two areas, 
the indecomposable continuums (i.e. those that cannot be divided into 
the sum of two proper, non-empty subcontinues), the sets whose proper 
part is equipotent to the whole.

Janiszewski notes that these facts are not paradoxical – they only go 
beyond the imagination and common intuition. If we look into their logi-
cal and mathematical structure, we will see that the constructions which 
are carried out are correct, but they require the development of new 
mathematical imagination and intuition. 

An important field of research at the Warsaw school of mathematics 
was geometric topology, including constructions and the study of inde-
composable continuum. Janiszewski undertook study in this field start-
ed off by a Dutch mathematician, Brouwer, who in 1909 constructed the 
first indecomposable continuum.18 He, in fact, constructed sets whose 
properties contradicted theorems proved by Schoenflies (works from 
1903 to 1906 on topology of plane and, which are an attempt to charac-
terize plane curves, e.g. as the boundaries of areas). The new construc-
tions (indecomposable continuum) undermined what seemed obvious 
to Schoenflies, i.e. that each closed curve can be split into two arches 
and that each closed curve on the plane is the boundary of two areas. 
The intuition, which is formed on the common experience, is not able to 
imagine an indecomposable continuum. Such indecomposability seems 
to contradict the essence of the continuum. Brouwer sought to give the 
set-theoretical (which is the most general and based on set theory) de-
scription of the “curve”. Due to such descriptions, we can avoid contra-
dictions and errors that resulted from the use of previously developed 
geometric intuitions. Only sufficiently general and “meta-geometric” 
descriptions will give the opportunity to free yourself from these intu-
itions and build a new way of thinking (including a new intuition).

What was this change in mentality based on? In the ancient paradox-
es about size (including the continuum as something that can be divided 

18 He did this in the work “Zur Analysis Situs”, which appeared in Mathematische 
Annalen in 1910 (422–434).
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indefinitely and where parts touch each other), a dilemma associated 
with the structural elements of continuum arose. It is built either of in-
divisible (discrete) points or of smaller continua. In both cases we have 
a contradiction: in the first case, we would receive continuous quantity 
from the discrete elements, and in the second, we would never get to the 
components of the construction (reconstruction) due to the endless divi-
sion of the continuum.

This original intuition was overcome by the notion of the distribu-
tive set (developed in Cantor’s set theory). The set combines into the 
one whole any “indivisible” elements and can simultaneously assume 
very diverse properties. As it turned out, defining the continuum as 
a set (of points) which fulfills two properties (connectedness and com-
pactness) defined in the language of the new theory removed the previ-
ous paradox. 

Janiszewski defined next geometric objects according to this method. 
He started this assignment in his doctoral dissertation Sur les continus 
irréductibles entre deux points (1911, Paris, supervised by Lebesgue). He 
gives strict definitions of the interval, curve, surface (and other geomet-
ric concepts) by set-theoretical and topological methods and then gen-
eralizes them. He introduces the concept of the “arc” (as a topological 
generalization of the interval, it is a homeomorphic image of an inter-
val) and the concept of “continuum of condensation” (a nowhere dense 
continuum having more than one point) and constructs an indecompos-
able continuum (continuum that cannot be decomposed into two proper 
subcontinua). The arc is the simplest multipoint continuum and can be 
characterized as follows: it is a continuum which is locally connected19 
and irreducible between two points.20 Janiszewski also noted that the 
arc can be defined as an irreducible continuum between two points that 
does not contain a subcontinuum of condensation.21

At the Mathematicians Congress in Cambridge (1912) he presented 
(looking for a precise definition of curve) a sketch of the construction 
of an extremely paradoxical curve that does not contain arches (the 
lecture Über die Begriffe ‘Linie’ und ‘Flache’). It was “paradoxical| from 
the point of view of the mathematical intuition of that time because the 
concepts of the curve and the arc seem inseparably connected with one 
another. In his habilitation thesis, On the cutting of the plane by continu-
um (Lviv, 1913), he explores the topology of the plane and indicates its 

19 Any space is locally connected if in each point of this space exists any unre-
stricted small and connected neighborhood.

20 Any continuum is irreducible between two points if it is the smallest continu-
um including this points.

21 Zygmunt Janiszewski, Sur les continus irreductibles entre deux points. These (Pa-
ris: Gauthier–Villars, 1911), 53.
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key property (the so called Janiszewski’s property, which allows for the 
internal, topological characteristics of the two-dimensional sphere). By 
introducing the generalized (topological) concept of the curve and the 
sphere and their topological characteristics, he again manages to avoid 
a sense of paradox.

Therefore, the general scheme of obtaining and defining new math-
ematical objects, that allow overcoming “false” intuitions and building 
new ones, is as follows:

1.  We assume some mathematical theory as the basis for construc-
tion and definition (in this case, it is set theory).

2.   We generalize a given object (e.g. a geometric object) within the 
considered theory (in this case, we have topology). 

3.   We are looking for the minimum amount of properties needed 
to define a given object in such a way to preserve “good” intu-
itions and overcome “improper” ones.

4.  In these studies, we use tools of mathematical logic (logical anal-
ysis).

The subject of study of the new geometry (topology) understood 
in this way is no longer space (visible, physical, as a “place”), but a mani-
fold of points (understood as a distributive set). The notion of manifold 
(Mannigfaltigkeit), introduced by Bernard Riemann in the 1850s, can be 
understood very generally. Let us see how Riemann’s mathematical intu-
ition “works” while getting the mathematical concept of manifold. Kant 
in the Critique of Pure Reason notices that the manifold of images creates 
a synthetic unity based on the a priori ability of the intellect to connect 
and reduce the manifold of images to the unity of apperception. This 
power of synthetic unity is the highest in all human cognition.22 Follow-
ing this lead, Riemann considers any arrangement of elements having 
the simplest possible geometric structure to be the manifold. He noticed 
that in this original intuition these elements could also be any arbitrary 
elements taken in an abstract way, for example, a set of colours and a set 
of all positions of spatial objects of sensual perception. the manifold was 
also a set of functions defined in a given domain or a set of all possible 
figures of a given closed area of   space.23

As Janiszewski notes, the manifold is what “can be captured by 
thought, which is the basis of logical, deductive theory. This can only 
be a set of axioms; axioms just define the manifold, create the subject 

22 Immanuel Kant, Critique of pure reason, transl. P. Guyer, A. W. Wood (Cam- 
bridge: Cambridge University Press, 1998), 204–214. 

23 Roberto Torretti, Philosophy of Geometry from Riemann to Poincaré (Dordrecht– 
–Boston–Lancaster: Reidel Publishing Company, 1978), 85.
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of mathematical research”.24 In this way, the concepts of geometry lose 
their original imaginative content, and their logical content is extracted 
and preserved. 

If, on the one hand, we apply a critical study of the foundations with 
the help of logical tools, and on the other, build maximum general theo-
ries (such as set theory, group theory, topology) and develop the axi-
omatic method, we can see new relations between theories, we can also 
transfer entire theories from one domain to another (which takes place 
e.g. between topology, set theory and group theory). It also allows us 
to take an in depth look into the essence of a theory by investigating (in 
axioms) those properties on which this theory is based, introduce new 
concepts (they are sought to satisfy certain conditions for e.g. Lebesgue’s 
integral), and abstract ones, from all individual properties that make up 
a given theory and examine only a logical form. In this way, we receive 
a program of searching for common or analogous structures of various 
fields of science and for building the unity of science based on math-
ematical methods.

Due to a significant development of mathematics at the beginning 
of the twentieth century, to bring new mathematical theories and new 
content to students, key changes in its teaching were made. In 1905, at 
the Congress in Merano, the so-called Merano Program was created 
in which the role of mathematics in explaining the nature and build-
ing culture was included in education. It was about a broader use of the 
principle of visibility, referring to the child’s natural intuition, develop-
ing spatial imagination and functional thinking as well as developing 
the ability to see mathematical structures in nature and to show relations 
between different disciplines of science.25

A little further goes the proposal that Hugo Steinhaus gave in the 
early 1920s.26 He called his educational program “The Archimedes 
Project”.27 This project is concerned with teaching mathematics so that 
it becomes present in real problems, so that mathematical knowledge 
passed on in the teaching process has a real and substantial impact. In 
order to make education sensible, the knowledge that is being passed on 
must find applications in various areas of life. Mathematicians must ap-
pear in the society in various areas of life and the economy (a mathemati-

24 Zygmunt Janiszewski, “Podstawy geometrii”, in: Poradnik dla samouków, vol. 1 
(Warszawa: A. Heflich, St Michalski, 1915), 407.

25 Cf. Alicja Molęda, Zenon Piesyk, “Przegląd zmian programów nauczania ma-
tematyki w szkole podstawowej w latach 1963–1990 w Polsce”, Acta Universitatis Lo-
dziensis. Folia Mathematica, 6 (1993): 25–56.

26 Cf. Hugo Steinhaus, Czem jest a czem nie jest matematyka (Lwów: Księgarnia  
H. Altenberga, 1923). 

27 Idem, Między duchem a materią pośredniczy matematyka (Warszawa–Wrocław: 
PWN, 2000), 250. 
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cian does not have to be only a teacher or a scholar) where strategic plan-
ning and optimization are needed (thus, practically everywhere). This 
must bring clear social and economic benefits.

Mathematics shapes intellectual sensitivity and intuition, that allows 
us to see hidden beauty, order and harmony and bring them into ex-
istence. Mathematics that is alive is a free activity of the mind, it is an 
unrestricted external reality (a conscious world, an authority), and its 
strength depends on the imagination, ingenuity, and giving into the rig-
ors of strict and consistent thinking (deduction).

Mathematical thinking is more than symbolic, it works through 
various means of expression. To show its universal character, Steinhaus 
writes books on math containing pictorials (not only for children).28 
Mathematics works in every world, pictorial too, so that it can also be 
seen. In teaching mathematics, one must show the way from mathemat-
ics to reality (in its various forms). This path is the essence of the mathe-
matical method which allows finding deep analogies between seemingly 
quite separate situations and fields.

The Place of Mathematical Intuition in Building Scientific 
Syntheses and Studying the Foundations

In Polish scientific (mathematical, philosophical and logical) schools, 
the openness of logical and mathematical procedures was strongly em-
phasized. Mathematical and logical theories are constantly evolving and 
cannot be reduced to rigid and established procedures. An indispensable 
feature of science, and this applies especially to exact sciences, is free cre-
ativity. Science cannot be simply reduced to searching for the truth or 
thirst for knowledge; nor is it only based on building general scientific 
laws or for practical applications. It does not just obtain justification. It is 
not for proofing methods, creating a grid of exact and adequate concepts 
for verifying reality, verifiable hypotheses, or even showing precise and 
logical reasoning. Łukasiewicz notes that “the goal of the science is to 
build syntheses that meet the universal intellectual needs”.29 Moreover, 
logic and mathematics must be constantly confronted with reality and 
experience. They cannot replace this reality; therefore, mechanisms for 
building a continuous and creative relationship between them must be 
assembled. For this, the scholar’s intuition is necessary which, on the one 
hand, does not allow the separation of science from reality and pushing 

28 Idem, Kalejdoskop matematyczny (Lwów: Książnica Atlas, 1938); there were seve-
ral Polish editions of the work and many in foreign languages.

29 Jan Łukasiewicz, “O twórczości w nauce”, in: Z zagadnień logiki i filozofii (War-
szawa: PWN, 1961), 74. 
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it into the rut of nominalism, and on the other, shows the strength of its 
autonomy. 

Logic together with mathematics could be compared to an intricate net-
work, which we cast to the immeasurable phenomena, in order to catch 
pearls of scientific synthesis from it. (...) These syntheses include true 
claims about facts; they mainly arouse intellectual needs. These are re-
construction elements. But creative claims also belong to syntheses; they 
meet intellectual needs. These are structural elements. Both elements 
unite together thanks to the relation of logical entailments.30 

Here, we have an interesting combination of two elements neces-
sary for scientific activity: searching for logical relations of consequence 
and building a reference both to reality as a source and to scientific con-
structions. In both cases, mathematical intuition works enabling, on the 
one hand, the concretization of the results of theory, and the appropriate 
process of abstraction, generalization and universalization on the other 
(finding the “final” foundations of science and its synthesis). 

A good example is Łukasiewicz’s work on logical theory of prob-
ability and on multivalent and modal logics.31 On the one hand, the 
theories obtained are the result of a logical analysis of basic philosophi-
cal concepts and principles such as the principle of contradiction, the 
principle of the excluded middle, the principle of divalence, as well as 
the concepts of possibility, free creativity and necessity; and on the oth-
er hand, the belief that these logic laws are not final and can be modi-
fied or removed from the logic system. This belief, which was the result 
of historical research, philosophical and logical experience together with 
creative intuition based on it, accompanied Łukasiewicz in discovering 
further theories and ideas. In the case of the principle of bivalence (each 
sentence is either true or false), he writes: “This principle, precisely be-
cause it underlies logic, cannot be proved. You can only believe in it, and 
whoever seems obvious will believe it. Personally, it doesn’t seem obvi-
ous. Therefore, I am not allowed to accept this principle and accept that, 
apart from truth and falsity, there are other logical values.”32 This is how 
multi-valued logic is born, based on rationally justified intuition (belief).

At some point in the development of mathematics, when new, “non-
qualitative” theories arose, its ability to look at all knowledge appeared. 
The process of mathematization of logic, probability calculus, statistics, 
economics and many other areas of knowledge, had begun. I think the 

30 Ibidem, 73–75.
31 Cf. Jan Łukasiewicz, Elementy logiki matematycznej (Warszawa: Komisja Wy-

dawnicza Koła Matematyczno-Fizycznego Słuchaczów Uniwersytetu Warszawskie-
go, 1929); idem, “O logice trójwartościowej”, Ruch Filozoficzny 5 (1920): 170–171.

32 Idem, “O determinizmie”, in: Z zagadnień logiki i filozofii, 125.
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first scientist who took it upon himself to build such a general synthesis 
was Gottfried Leibniz followed by Bernard Bolzano. 

Of course, the search for syntheses is closely related to the study 
of the foundations where the concepts and methods necessary to carry 
out such syntheses are prepared. Works at the foundations of mathemat-
ics also reveal the “channels” that connect mathematics with philosophi-
cal issues and reality. To a large extent, the success of the Polish school 
of mathematics was related to the research of the foundations of mathe-
matics conducted there. Anyway, it was a part of (starting from the mid-
nineteenth century) a tendency which occurred at that time (reference to 
the ideas and studies of Gottfried Leibniz).

Formal definitions and proofs are not enough in order to study the 
foundations (in many cases they are also impossible). It is necessary 
to be open to intuitive thinking that goes beyond current schemes and 
shows new methods of doing mathematics. Often, however, old intu-
itions hinder the construction of new theories. That is why it is impor-
tant to analyze (logically) the foundations, since it shows the mistakes 
of old thinking and pointing out new forms of argumentation and shap-
ing new mathematical intuitions. Here, we have an example of interest-
ing intertwining and a mutual modification of both, logical and intuitive 
reasoning.

It is important to note that in the structure of mathematics there are 
concepts that we can never fully formalize (although they take various 
formal realizations) and are the absolute foundation of mathematics. 
Some of them are concepts of the number, harmony, similarity, symme-
try, relation, dependence (including functional dependency), structure, 
symbol, variable, continuity, limit and infinity. From these concepts, 
mathematics (but also philosophy) derives a wealth of meanings and 
references, and they are present in both the creative process (discovering 
new facts, theories, methods of proof) but also in the structure of math-
ematics itself. They are understood very intuitively, although definitions 
of some of their mathematical concretions appear. For instance, the con-
cept of harmony acquired a mathematical form as musical harmony or 
the ratio between numbers (generating new mathematical entities), and 
the concept of infinity became an infinite series or ordinal numbers.

As we have shown, Janiszewski sought to provide basic definitions 
(based on set theory and topology) of various geometric objects. All these 
objects were captured as continua, but in individual cases specifying 
properties had to be provided. As we noted above, Janiszewski showed 
that the arc can be defined as an irreducible continuum between two 
points that does not contain a subcontinuum of condensation. Primarily 
formed intuition suggested that there are no continua other than arcs 
that have the property of irreducibility. However, Janiszewski shows the 
existence of such continua. It is important here to properly “generate” 
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subcontinues of condensation. The most typical example is the topolo-
gist’s sine curve. It is a set of points of a plane that are a graph of the 
function 
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) together with the limit interval (of density) [-1;1] which lies on the y axis. It turns 

out that the sine wave is irreducible between the point (1; 0) and each point of the interval of 

condensation. He also constructs a continuum in which each part contains continua of 

condensation. This continuum is obtained as the limit effect of condensation of singularities 

on the interval. It is a curve without arcs (so, it is an example of an indecomposable 

continuum). This construction also allowed seeing the key property characterizing the 

indecomposable continua: if C is an indecomposable continuum, then there are three points 

which belong to C, such that C is unreliable between each pair of these points.33 The property 

of unreliability, so characteristic of the interval (arc), turned out to be a property 

characterizing such “paradoxical” sets as indecomposable continua. Hidden harmony was 

discovered and preserved in all continua. 

In turn, in order to mathematize the theory of probability, Steinhaus analyzes the game 

of heads and tails and presents the interpretation of infinite sequences of coin tosses as zero-

one sequences. These sequences can be treated as real numbers from the interval [0,1] in the 

binary notation and then the Lebesgue measure on the interval [0,1] can be used to measure 

respective measurable subsets of this interval. Steinhaus interpreted these subsets as random 

events and measures of these sets as their probability.34 In addition, a new concept was 

                                                           
33 Zygmunt Janiszewski, Kazimierz Kuratowski, “Sur les continus indécomposables”, Fundamenta 
Mathematicae 1 (1920): 215. 
34 Cf. Kazimierz Urbanik, “Idee H. Steinhausa w teorii prawdopodobieństwa”, Wiadomości Matematyczne 17 
(1973): 39–50. 
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preted these subsets as random events and measures of these sets as their 
probability.34 In addition, a new concept was introduced – “stochastical-
ly independent functions” – as an important research tool.35 When build-
ing the theory of coin tossing, two assumptions turn out to be important 
in an intuitive manner: the “rightness” of the coin (the probability of the 
outcome of heads and tails is the same and it is 1/2) and “independence” 
of next throws from each other (if events A and B are independent, then 
the probability P of their total occurrence is equal to the product of the 

probabilities of respective events – 

introduced – “stochastically independent functions” – as an important research tool.35 When 

building the theory of coin tossing, two assumptions turn out to be important in an intuitive 

manner: the “rightness” of the coin (the probability of the outcome of heads and tails is the 

same and it is 1/2) and “independence” of next throws from each other (if events A and B are 

independent, then the probability P of their total occurrence is equal to the product of the 

probabilities of respective events – . If we apply these rules to a 

sequence of n independent tosses with a right coin (O – head, R – tails), we will obtain that 

the probability of this sequence of events is equal to the product of the probabilities of 

particular tosses: . This is a simply arithmetical law.36 What is more 

interesting, E. Borel proved that almost each number t from the interval [0;1] (i.e. each 

number t except a certain set that has Lebesgue measure zero) has asymptotically the same 

amount of ones and zeros in its binary representation. This Borel’s arithmetic theorem has its 

probabilistic counterpart in the considered situation: when throwing a “right” coin endlessly 

(and if moreover) the throws are independent, then with 1 probability the frequency of heads 

(or tails) in the limit is equal to . It turned out that the same rule applies in both arithmetic 

and probability theory. In this way, we ha 

                                                           
35 These functions (the phenomenon of stochastic independence itself) became the subject of the research 
program of Steinhaus and his student, Marek Kac. The theory that was being built was meant to be the basis of 
probability theory and also a tool to show the unity of mathematics (by finding equivalents of this independence 
in other theories). In the years 1936–1940, a series of six works written jointly by Steinhaus and Kac appeared in 
“Studia Mathematica”, that was devoted to stochastic independence. 
36 Marek Kac, Statistical Independence in Probability, Analysis and Number Theory, vol. 12 (New Jersey: The 
Mathematical Association of America, 1959), 21–34. 
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33 Zygmunt Janiszewski, Kazimierz Kuratowski, “Sur les continus indécomposa-
bles”, Fundamenta Mathematicae 1 (1920): 215.

34 Cf. Kazimierz Urbanik, “Idee H. Steinhausa w teorii prawdopodobieństwa”, 
Wiadomości Matematyczne 17 (1973): 39–50.

35 These functions (the phenomenon of stochastic independence itself) became 
the subject of the research program of Steinhaus and his student, Marek Kac. The 
theory that was being built was meant to be the basis of probability theory and also 
a tool to show the unity of mathematics (by finding equivalents of this independen-
ce in other theories). In the years 1936–1940, a series of six works written jointly by 
Steinhaus and Kac appeared in Studia Mathematica, that was devoted to stochastic 
independence.
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It turned out that the same rule applies in both arithmetic and probabil-
ity theory. In this way, we have reached some hidden harmony underly-
ing in foundations of mathematics.37

From research into the foundations of mathematics, fractal geometry 
was also born (the search for internal symmetry was also a philosophi-
cal and mathematical inspiration), created in modern times by Benoit 
Mandelbrot (1924–2010), a Jewish mathematician from Warsaw. This 
theory allows us to describe and study objects with irregular shapes and 
structures that are not available for classical geometry. He applied his 
theory to study complex physical, biological, and social phenomena, for 
example to describe the structure of clouds or mountain ridges and to 
analyze the financial market.38 It indicates the occurrence of processes or 
self-similar structures, showing the hidden order in seemingly chaotic 
and random phenomena.39

Also, many curves and other sets constructed by mathematicians at 
the turn of the twentieth century (sometimes referred to as “pathologi-
cal” constructions or counterintuitive) were described as fractals (Can-
tor’s set, Sierpinski’s curves and others). The Warsaw topological school 
specialized in this type of construction. When shaping the abstract con-
cept of continuum, appropriate constructions (e.g. Knaster-Kuratowski 

36 Marek Kac, “Statistical Independence”, in: Probability, Analysis and Number The-
ory, vol. 12 (New Jersey: The Mathematical Association of America, 1959), 21–34.

37 Ibidem, 15–18.
38 In the 1960s, Mandelbrot analyzed the stock market and tried to build mathe-

matical models describing economic processes (including predicting price changes). 
He noticed then that these processes depart from classical theories (for example, they 
are not compatible with the distributions described by the Gaussian curve). However, 
they are subject to a fractal description.

39 The crowning achievement of this research was the book The Fractal Geometry 
of Nature published in 1982. It was a kind of a manifesto of “new mathematics” and 
aroused the interest of representatives of many scientific disciplines. Artificial land-
scapes, animated films and computer games were created using fractal formulas.
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fan, Warsaw circle, concentrated sine wave, pseudo-arc) were useful, in-
dicating the essential features of compactness and coherence necessary 
to define the continuum.

The Problem of Mathematical Intuition  
and the Nature of Mathematics

I think we can now summarize our analysis. From the activities and 
views of the mathematicians discussed, a certain insight into the nature 
of mathematics follows. These mathematicians emphasized that math-
ematical objects are in some sense present in reality, they are also entities 
abstracted from reality as well as having the attribute of primality and 
autonomy. It is due to mathematical objects recognized by our mind that 
we can, without contradictions, think about reality and look at it ratio-
nally.40

Mathematics, like other sciences, is not free from intuitive reason-
ing, which seems to be burdened with uncertainty. In a specific way, 
however, it combines intuitive and formal elements in its structure. For-
mal elements, including logical analysis of the foundations, modify and 
overcome “wrong” intuitions and extend mathematical intuition. The 
very structure of mathematics (in a classic approach) is based largely 
on the intuitively arranged system of axioms and postulates (primitive 
facts). The foundation of this structure is a system of primitive notions 
and methods of proofs that are accepted and understood by definition. 
From these primitive facts, which combine the adopted primitive no-
tions, we can deduce further facts (theorems) using axiomatic-deductive 
methods. Here, there are several key difficulties with which mathemat-
ics in the late nineteenth and early twentieth century was faced in a spe-
cial way (attempts to formalize and axiomatize mathematics itself, as 
well as other areas of knowledge). Attempts to completely eliminate 
intuition using the formalization process have proved impossible. The 
assumption that mathematics is only a game of general concepts and 
symbols has been rejected because of the occurrence of “indelible” intu-
ition in the foundations of mathematics. This determination alone, of the 
extent of validity of a given mathematical theory, requires the use of ad-
ditional (non-formal) tools, including intuition. Moreover, we need to 
have some interpretative tool and then we need to know how to relate 

40 The last period of the development in mathematics has shown in full light the 
original meaning of the word “mathematics”. It derives from the word “máthēma” 
corresponding to all subjects of study. Mathematics was originally equated with the 
whole authentic knowledge. This is how the Pythagoreans, the ones who introduce 
the name in the first place, saw it. 
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mathematical theorems to reality. As we have observed, Janiszewski 
noticed the huge role of axiomatization in specifying the foundations, 
developing mathematics, showing analogies between various theories, 
eliminating wrong intuitions and explaining apparent paradoxes, and 
in building new methods and “purified” intuitions.

It was noticed that intuition also lies in the axiomatic-deductive 
method itself. To control it and not generate paradoxes, we need to 
intertwine it with a logical analysis and formalization. The proof (and 
thus, the path from assumptions to the thesis) consists of a certain finite 
number of steps, whilst each individual step must be obvious. How does 
it happen that densification (reducing the “distance” between elements 
of proof) leads to obviousness? The “appropriately small” step of proof 
becomes intuitively obvious to the one who is carrying out the proof. The 
correct proof (without gaps) is one in which all steps have become intui-
tively obvious. However, often what is obvious to an experienced math-
ematician is not so to someone who is just starting his adventure with 
mathematics. Therefore, intuition has to be learned somehow – through 
exercises, repetition of reasoning, experience, observation of the creative 
work of others, etc. It is as though, there was something more primitive 
than intuition or as if it was a combination of various phenomena and ex-
periences. In mathematics, accuracy of reasoning and logical analysis are 
combined in a specific way with shaping new intuitions and overcom-
ing the old (logic is inseparably intertwined with intuition). Śleszyński’s 
analysis have a special significance for obtaining these conclusions, as 
well as those by Steinhaus and Łukasiewicz.

However, these are not all areas in which we can talk about math-
ematical intuition. The last period of the history of mathematics was 
a synthesis of earlier periods, and it showed their importance and pres-
ence in mathematics. In the process of its development, mathematics ex-
panded the domain of its research; new mathematical disciplines and 
methods appeared. First (in Babylonian and Egyptian times), it was 
specific (concrete) mathematics, then it reached the level of abstract-
ness (from the Greeks), then, the level of generality (with the creation 
of the positional notation and algebra), and in modern times – the level 
of universality. Modern times brought about its further development – 
it became “absolute” knowledge, primary to other sciences, and both, 
their indisputable foundation and synthesis. Each of these development 
stages involve a different kind of intuition – concretization, abstraction, 
generalization and universalization (including optimization, minimiza-
tion of assumptions and axioms). These types of intuition were present 
in mathematics, to a certain extent, from the very beginning. However, 
only the last stage of development made them occur in mathematics.

Each of these stages of development showed a new kind of math-
ematical intuition and led to some partial “definition” of mathematics. 
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And so, the stage of specific (concrete) mathematics is understanding 
mathematics as a tool that allows us to recognize harmony and order 
in reality and put them into appropriate structures (it is immersing 
mathematics in reality and recognizing the mathematics of the world). 
The Pythagoreans completed this definition by showing the possibility 
of immersing reality in mathematics (thus, we obtain the isomorphism 
from the world into mathematics). Due to this process of immersion 
in mathematics, reality becomes intelligible and mathematical. In the 
case of abstract mathematics, it turns out that it can be understood as 
knowledge that can be developed in isolation from reality. And again, 
general mathematics allows compression of knowledge in concise, for-
mal symbols, formulas and algorithms. Universal mathematics provides 
methods of reasoning and taking mathematical proofs which are widely 
used in various sciences and theories. And finally, “absolute” mathemat-
ics is an unconditional beginning, the foundation of all true knowledge, 
and its synthesis.

Based on the above observations, mathematics can be described as:
1.  knowledge that allows us to understand reality;
2.  autonomous knowledge with respect to sensual reality, but which 

stays in contact with it during development;
3. an effective tool for modeling the reality;
4. universal science;
5.  science that explores objects that are the primary object of think-

ing and that allow building syntheses. Before man began to count 
objects, he had to know the idea of   number; before he constructed 
or used a circle, he had to “see” the idea of   circularity, etc. Math-
ematics is therefore a collection of primitive objects of thinking.

As we can see, discovering the nature of mathematics, and, in it, 
mathematical intuition, is largely intuitive. It requires looking at the cre-
ative work of specific mathematicians and tracking the history of math-
ematics, when new concepts and mathematical theories were born.

A huge area where the work of mathematical intuition can be ob-
served is the foundations of mathematics. Within it, basic structures 
are studied, which give the possibility of defining or understanding 
other mathematical objects, and it also checks the scope of applicabil-
ity of the mathematical method (measuring, computability). Moreover, 
the correctness of reasoning as well as accepting such and no other as-
sumptions, “obvious” axioms and methods of proof (axiomatization 
of theory) is examined. In such studies, we do not carry out proof, we 
instead must refer to the intuition of specific mathematicians, the intu-
ition developed over the centuries in individual and common creative 
experience, passed on to future generations. Although, at some stage, 
new mathematical theories may be generated (and it sometimes occurs). 
This was the case in antiquity, when research on incommensurability 



179The Problem of Intuition in Mathematics

quantities and measurement issues led to the creation of Eudoksos’s the-
ory of relations, and the search for methods for counting great amounts 
of objects or methods of solving equations gave momentum to the devel-
opment of algebra. It was similar in modern times. In the nineteenth and 
twentieth century, many new theories appeared as a result of work on 
the foundations of mathematics: mathematical logic, set theory, topol-
ogy, universal algebra, computability theory, metamathematics, theory 
of category and functors, theory of forcing.

Yet another area where the phenomenon of mathematical intuition 
can be observed is the aforementioned passing of knowledge – the math-
ematical education, during which “proper” mathematical intuitions are 
shaped among students. However, one cannot generally oppose the new 
intuitions to the older one. Old intuitions have been “overcome” in new 
research methods and theories, but going down to the foundations 
of mathematics and seeking validation of new methods of proof we find 
it again (this is the case with the intuition associated with the previously 
mentioned concepts of harmony, similarity, symmetry, continuity, in-
finity). In order to understand mathematical intuition, we must observe 
how it works in various areas and aspects as well as in various theories 
and periods of history.
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Summary
In the article, I examine the presence and importance of intuitive cognition 
in mathematics. I show the occurrence of mathematical intuition in four contexts: 
discovery, understanding, justification, and acceptance or rejection. I will deal 
with examples from the history of mathematics, when new mathematical theo-
ries were being created (the end of the nineteenth and the beginning of the twen-
tieth century will be particularly important, including the period of establishing 
the Polish mathematical school). I will also refer to the research (mainly) of Pol-
ish philosophers and mathematicians in this field. The goal of the article is also 
an attempt to understand the breakthrough that took place in mathematics at 
the turn of the nineteenth century. The analysis also shows, by highlighting the 
specifics of intuition and mathematical creativity, the difficulties that arise when 
acquiring new concepts and mathematical arguments. Research goes in the di-
rection of deepening research on the very phenomenon of intuition in cognition, 
by pointing to the universal nature of mathematical intuition.

Keywords: mathematical intuition, studying of the foundations of mathematics, 
universality of mathematics, Polish School of Mathematics, mathematics of the 
turn of the 19th and 20th centuries, mathematics paradoxes
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