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Abstract. This paper reflects on the limits of logical form set by a novel
criterion of logicality proposed in (Bonnay and Speitel, 2021). The interest
stems from the fact that the delineation of logical terms according to the
criterion exceeds the boundaries of standard first-order logic. Among ‘novel’
logical terms is the quantifier “there are infinitely many”. Since the struc-
ture of the natural numbers is categorically characterisable in a language
including this quantifier we ask: does this imply that arithmetical forms
have been reduced to logical forms? And, in general, what other conditions
need to be satisfied for a form to qualify as “fully logical”? We survey
answers to these questions.
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1. Introduction

The notion of logical consequence relies on the idea of logical form.
Sentences and arguments possess such forms and it is they that are
responsible for the particular type of necessary truth-transmission that
grounds logical truth and consequence. The logical form of an argument
or sentence is determined by a special class of expressions, the logical
constants of the relevant language. What is a logical constant, however,
and thus which forms are logical, has proven difficult to satisfactorily
answer.

Bonnay and Speitel (2021) outlined an account according to which
a constant should count as part of the logical lexicon if it possesses
a denotation of a certain kind and its inferential behaviour fixes this
denotation in the right way. The resulting criterion rendered several
novel constants logical and thus expanded the collection of logical forms
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grounding claims of ‘logically following from’. This paper reflects on
the expanded boundaries of logic that resulted from applications of the
criterion. In particular, it focuses on the impact the quantifier “there are
infinitely many” has on the difference between logical and arithmetical
forms.

The structure of the paper is as follows: Section 2 introduces the idea
of logical form in more detail and, very cursorily, situates the criterion
proposed in (Bonnay and Speitel, 2021) in the general theoretical land-
scape. Section 3 reflects on the idea that logicality must be closed under
definability and investigates the underlying notion of definability at work
in such a claim. Section 4 then considers the relationship between in-
tuitively mathematical notions that have been moved closer to logical
notions by the criterion and the accompanying demand of closure under
definability. Finally, Section 5 concludes with a short set of observations.

2. Logical Form(s)

The notion of logical form is essential for an account of logical validity:
an argument is logically valid iff all arguments of the same logical form
are truth-preserving. A sentence is logically valid (i.e., logically true) iff
every sentence of the same logical form is true. Sentences and arguments
are logically true/valid in virtue of their form alone, independent of any
‘material content’, i.e., independently of what they might be about.

Logic’s formality, its reliance on truth and truth-transmission in
virtue of form alone, is meant to account for its great generality and
topic-neutrality: since logic ‘does not care’ what its statements are
about, since it does not distinguish between different topics and fields of
inquiry, it is topic-neutral. Since its pronouncements apply to all domains
and fields of knowledge equally, its truths possess a high, discipline-
transcendent degree of generality.

The generality and topic-neutrality of logical statements finds expres-
sion in the fact that the non-logical vocabulary occurs non-essentially
in the statements of a logical language. The truth of a particular logical
truth, such as, for example, p ∨ ¬p, is independent of the occurrence of
any particular p semantic ascent is needed to express the logical law
in full generality as ϕ ∨ ¬ϕ, where ϕ ranges over all object-language
sentences.
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This non-essentiality of the non-logical expressions can be captured
in a variety of ways  either by treating expressions of this type as fully
schematic, i.e., replaceable by any other expression of the same gram-
matical category, or through permitting any re-interpretation consistent
with their type in the evaluation of a statement’s status. Regardless,
though, what determines the form of a statement are those expressions
that occur non-schematically, whose meanings are held fixed in the eval-
uation of the truth or falsity of the statements in which they occur.

To capture the notion of logical consequence, of necessary truth-
preservation in virtue of form alone, the choice of which expressions are
to be held fixed cannot be arbitrary:

Underlying our whole construction is the division of all terms of the
language discussed into logical and extra-logical. This division is cer-
tainly not quite arbitrary. If, for example, we were to include among
the extra-logical signs the implication sign, or the universal quantifier,
then our definition of the concept of logical consequence would lead to
results which obviously contradict ordinary usage.

(Tarski, 1983, 419)

Rather, it must be such that the truths rendered logical according
to the relevant choice of constants are purely formal, general, topic neu-
tral. The idea that a choice of logical constants, determining a notion
of logical form, must be consonant with the resulting relation of logical
consequence being formal, general, topic-neutral, etc., has given rise to
a search for criteria of logicality, both proof- and model-theoretic, delin-
eating a class of expressions ensuring these properties of the relation of
consequence they ground (see MacFarlane, 2015, for overview).

Among criteria attempting to delineate the class of logical expressions
of a language a certain type of approach has reached almost canonical
status: invariance criteria (see Tarski, 1986; Sher, 1991; Feferman, 1999;
Bonnay, 2008; Griffiths and Paseau, 2022). Common to these accounts
is the idea that what makes logical truths and consequences formal, and
therefore accounts for their generality and topic-neutrality, is that the
logical constants do not distinguish the identity of objects. In the context
of a Tarskian model-theoretic apparatus this idea can be implemented
by means of an invariance-constraint, ensuring the insensitivity of the
model-theoretic objects serving as denotations for the logical symbols to
the identity of individuals (see MacFarlane, 2000, for an investigation of
the notion of formality in logic).
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Let M be a domain and π : M → M a function from M to M . π is
a permutation if π is one-to-one and onto. An object o from the type-
hierarchy over M such as, for example, the universal quantifier-on-M ,
i.e., ∀M = {M}, is permutation-invariant if π[o] = o, i.e., if the action
of π on M leaves o undisturbed. Tarski’s Thesis is the claim that a
notion is logical iff it is permutation-invariant.1

Tarski’s Thesis remains highly local, assessing the logicality of a
notion on the basis of its behaviour over each domain separately. This
has made it vulnerable to complaints that it allows non-logical elements
to re-enter the picture due to lack of cross-domain comparisons (see, e.g.,
McGee, 1996). Based on considerations independent of those in (Tarski,
1986) and incorporating elements from the mathematical treatment of
logical notions (see Mostowski, 1957; Lindström, 1966), Sher advanced2

what has become known as the Tarski-Sher Thesis, the claim that
a constant is logical iff it denotes a bijection-invariant object.3 This
criterion adopts a more global perspective on logical notions, thereby
circumventing many of the shortcomings affecting Tarski’s Thesis.4

Despite evading many of the objections that plagued Tarski’s The-

sis due to its highly local character, the Tarski-Sher Thesis has not
been immune to criticism. A complaint that has frequently been di-
rected against it concerns its encompassing nature: by rendering many
more notions logical than traditionally counted as logical it overgener-
ates, “assimilat[ing] logic to mathematics, more specifically to set theory”
(Feferman, 1999, 37) (see, esp., Feferman, 1999; Bonnay, 2008). Logic,
the criticism continues, thereby oversteps its bounds and loses one of its
essential characteristics, its topic-neutrality, as it now includes mathe-
matical and, more specifically, numerical content.

I won’t assess the force and motivation of this objection here.5 What
I want to point out are two possible ways to address the perceived
shortcoming of bijection-invariance in an invariance-framework. The first
consists in modifying the invariance relation to reduce the number of no-

1 The view originates in (Tarski, 1986), though the picture is much more com-
plicated than suggested here.

2 Starting with (Sher, 1991) and developed further in subsequent works. See
(Sher, 2022) for a recent account.

3 A bijection β : M → N is a one-to-one and onto function between M and N .
4 I am oversimplifying both the motivations and the precise details of the Tarski-

Sher Thesis here, see (Sher, 1991, 2016) for detailed treatments.
5 But see (Sher, 2016; Griffiths and Paseau, 2022) for responses.
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tions rendered logical and to thereby minimize reliance on ‘problematic’
mathematical content.6 Another consists in supplementing invariance-
constraints with further conditions. These can either pertain to further
demands on the structure of the model-theoretic denotations themselves7

or to demands on the way logical symbols come to denote logical deno-
tations.

An approach of the latter kind was advanced in (Bonnay and Speitel,
2021), inspired by ideas from (Feferman, 2015; Bonnay and Westerståhl,
2016). There, the idea was that a logical constant was such that (i)
it possesses a logical, i.e., bijection-invariant, interpretation; and (ii)
among all acceptable denotations the inferential features of the constant
under consideration determined a unique one.

A denotation was deemed acceptable if it was (a) type-appropriate,
(b) logical, i.e., bijection-invariant, and (c) consistent with the inferential
features of the constant under consideration. The inferential features of a
constant were taken to be captured by means of a consequence relation ⊢
which encodes the relevant inferential facts of a constant c. A denotation
C was then consistent with the inferential features of c iff interpreting
c by C made ⊢ sound w.r.t. the model-theoretic consequence relation
yielded by C. In reference to (Carnap, 1943) a notion satisfying the
criterion was termed Carnap-categorical.

Quantifiers rendered logical by the criterion include the usual univer-
sal and existential quantifiers of first-order logic,8 but also the non-first-
order definable quantifiers “there are (in)finitely many” (QM

0 = {A ⊆ M

| ℵ0 ≤ |A|} and QM
fin = {A ⊆ M | |A| < ℵ0}).9 On the other hand, the

quantifier “there are uncountably many” (QM
1 = {A ⊆ M | ℵ1 ≤ |A|})

was excluded from the class of logical notions (see Bonnay and Speitel,
2021, for details).

3. Logical Constants and Closure under Definability

It is a commonplace to assume that the class of logical notions is closed
under definability. For how, it is asked, could non-logical elements enter

6 See, e.g., (Feferman, 1999; Bonnay, 2008) for approaches of this type.
7 Such as, e.g., Feferman’s (2010) absoluteness-constraint.
8 Based on a result by Bonnay and Westerståhl (2016).
9 The Carnap-categoricity of the quantifier “there are infinitely many” was first

observed by D. Westerståhl and is stated and generalized in (Speitel, 2020).
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when combining logical notions by means of logical constructions?

Operators which are definable in a purely logical manner are logical.
We just do not see how a non-logical element could creep in the logical
elements of the definition and make the defined operator non logical.

(Bonnay, 2008, p. 50)

Relatedly, McGee (1996) takes the fact that permutation-invariant
operations are definable in terms of the simple operations of a highly
infinitary language, all of which are ‘intuitively’ logical, to count in favour
of considering the former notions logical themselves.10 Feferman (1999),
on the other hand, motivated by extrinsic reasons concerning the limits
of logic, ultimately sees need to restrict the permissible types of definition
that generate novel logical operations from old.

The contrast between McGee’s permissible and Feferman’s restrictive
take on which definitions are ‘logicality-preserving’ points to a potential
issue in understanding the claim that logicality is closed under defin-
ability. For one can agree on the claim while still reaching different
judgements about the extent of the class of logical notions not just be-
cause of a different starting point but also because one may disagree on
what counts as an admissible definition in the first place.

Bonnay (2008), for example, adopts a notion of explicit definability as
an appropriate standard for preserving logicality. A notion C is explicitly
definable in terms of notions K1, . . . ,Kn if there exists a sentence ϕC (of
appropriate type) of a language L whose logical symbols are interpreted
by K1, . . . ,Kn, s.t. for all M, M |= ϕC iff M ∈ C. The quantifier ∃≥3 =
{〈M,PM〉 | PM ⊆ M and 3 ≤ |PM|}, for example, can be explicitly
defined in FOL by the sentence ∃x∃y∃z(Px ∧ Py ∧ Pz ∧ x 6= y ∧ x 6= z

∧ y 6= z). If there is a formula ϕ of L, s.t. Mod(ϕ) = {M | M |= ϕ} = C
we say that C is an elementary class (is EC ) in L.

It is worth examining in more detail why definability is usually taken
to preserve logicality. The basic intuition underlying the pronounce-
ment that logicality is closed under definability appears to be that, in
an important sense, one is not adding anything one did not already have
before. Maybe more things are made explicit, given a concrete symbol to
play the role that was previously played by a more complex expression,
but this sort of move seems to be more or less notational. Definability,
on this understanding, thus merely brings things out, makes things ex-

10 See (Kennedy and Väänänen, 2021) for refinements of this result and (Bonnay
and Engström, 2018) for a more systematic investigation.
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plicit, that were already there, but does not introduce anything new or
unexpected in the process. It allows us to abbreviate and make concrete
things that were implicitly sanctioned but for which we were lacking
distinguished symbols.

It is useful to contrast the notion of explicit definability with the
notion of implicit definability. The crucial difference between the two
consists of the fact that the sentence(s) of an implicit definition draw
from a symbol set that already includes a symbol for what is being de-
fined. One is therefore not saying that the new, defined notion behaves
like a particular sentence from the ‘old’ alphabet,  the new notion is not
systematically eliminable,  but, rather, that the use of a symbol for the
implicitly defined notion fully fixes what this symbol is supposed to mean
in the context of the old vocabulary. That, in other words, the old vo-
cabulary was already sufficient to ‘pin down’ a further notion even if this
notion is not equivalent to anything expressible solely in terms of the old
vocabulary alone. Nothing more is needed to ‘single out’ the novel notion
than the interaction of a novel symbol with the notions of the old vo-
cabulary. We are thus not introducing anything new ‘from the outside’,
but merely using resources already available and accepted to constrain a
novel meaning through the way the vocabulary interacts and ‘carves up’
logical space. If the notions of the old vocabulary are logical, it is hard to
see how they could carve out content in this way that is not also logical.

We say that a notion11 C is implicitly defined over a language Lc that
includes an uninterpreted symbol c of a type appropriate to C, if there
is a sentence ϕ of Lc, possibly including the symbol c, s.t. for all models
M, if 〈M, CM〉 |= ϕ and 〈M, C∗

M〉 |= ϕ, then C = C∗.12 In other words,
relative to ϕ there is only one possible interpretation of c.

An important category of implicitly defined notions is comprised of
the basic logical notions, i.e., those taken as given in a language L. Since
they are the ones doing the (explicit) defining, they cannot themselves
be explicitly defined in terms of something more basic and so their in-
terpretation will have to be fixed by their use, or so the story goes.13

There are several issues connected with the idea that the use of a sym-

11 We use ‘notion’ here in a slightly informal sense, indicating a model-theoretic
object that captures, expresses or represents a particular concept. E.g., the object
{〈M, A〉 | A ⊆ M and ℵ0 ≤ |A|} expresses or captures the concept of ‘infinitely many’.

12 Note that since C is to serve as a logical notion it must be defined for all models
M. We denote by CM the interpretation of c in M.

13 See (Murzi and Steinberger, 2017) for an overview of positions of this type.



502 Sebastian G. W. Speitel

bol for the logical notions is sufficient to implicitly define them which we
do not wish to downplay, but which we will nevertheless ignore in the
following.14 For our purposes here it is important to note that the so-
called implicit definitions of the logical constants are different from the
characterization of implicit definability we provided above in that what
is usually taken to do the implicit defining in this case are rules of infer-
ence.15 Conjunction, for example, is often taken to be implicitly defined
by the following rules of inference or, equivalently, by the consequence
relation presented by them: (i) ϕ, ψ |= ϕ ∧ ψ; (ii) ϕ ∧ ψ |= ϕ; and (iii)
ϕ ∧ ψ |= ψ. On this picture, the operation of conjunction, the semantic
value of ‘∧’, is the unique object that makes the inferences (i)–(iii) valid.
Similarly for the usual other constants.16

Implicit definability, then, is not specifically tied to single sentences.
Neither is the justification for the fact that explicit definition in terms
of logical notions does not introduce any non-logical content, for that
matter. For if a single sentence explicitly defining a novel logical notion
does not introduce any non-logical content in doing so, it is difficult
to see how a collection of such sentences could. If to explicitly define
something amounts to merely introducing a symbol for something that
was, in some shape, already present in the language in terms of which
the ‘novel’ notion is defined, then the above characterisation should be
extended to encompass, in the very least, notions definable not just by
single sentences, but also by entire theories.17 Concretely, this means
that a notion should also qualify as explicitly definable if it is an EC∆-
class, i.e., if it is of the form Mod(∆) = {M | M |= δ for all δ ∈ ∆} for
a (possibly infinite) set of sentences ∆.

The quantifier “there are infinitely many”, Q0 = {M = 〈M,A〉 |
A ⊆ M and ℵ0 ≤ |A|} is an EC∆ class: let ∆ = {∃≥nxPx | n ∈ N},

14 The most prominent of which, in the current context, is the above mentioned
Carnap Categoricity Problem, the underdetermination of the semantic values of the
usual logical constants by their usual rules, see (Carnap, 1943).

15 The idea that rules of inference are implicit definitions has a long history,
starting with a remark by Gentzen (1935).

16 The story is not as simple for the other constants due to a pervasive under-
determination problem discovered by Carnap (1943) and referred to above. However,
modifications to the notion of inference can be made so as to reduce this type of
underdetermination. See, e.g., (Carnap, 1943) and (Rumfitt, 2000). We will ignore
difficulties arising from this issue in the following.

17 Further generalizations that we will not discuss here are possible.
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where each ∃≥nxPx designates the first-order expressible sentence saying
“there are at least n-many x, s.t. Px”. Then Q0 = Mod(∆). Hence, if the
above observations are correct, and if the notions of FOL are accepted
as logical, no non-logical content is introduced in defining the quantifier
Q0.18 Furthermore, it can be shown that Q0 is implicitly defined by the
following two patterns of inference:19

(a) ∆ |= Q0xPx

(b) Q0xPx |= ϕ for all ϕ ∈ ∆

This quantifier is therefore, in the terminology of Bonnay and Speitel
(2021), Carnap-categorical.20 The above is, in fact, an instance of a
much broader phenomenon: any notion that is EC∆ can be implicitly
defined analogously to Q0.21

Hence, a conception of logicality building on the notion of Carnap-
categoricity allows one to make explicit what was already implicit. It
renders notions logical in virtue of being (generalized) definable in terms
of logical notions, based on the plausible idea that no non-logical content
can be introduced this way.

4. Arithmetical Forms

Accepting a principle of closure under definability for logical notions
motivates the admission of Q0, and the forms it gives rise to, as logical.
Of course, this also means that everything that is definable in terms of
this ‘novel’ notion ought to qualify as logical as well. This is what we
turn to now.

It is well-known that the natural number structure, N, is categorically
characterizable in the language of FOL + {Q0}, whereas every theory of

18 As an anonymous reviewer points out, Q0 can be seen as expressing a property
that several first-order schemas, namely those that are made true only on infinite
domains, have in common.

19 The satisfaction clause for a (type 〈1〉) generalized quantifier Q is as follows:
〈M, P M〉 |= QxPx iff 〈M, P M〉 ∈ Q. See, e.g., (Westerståhl, 2019) for details.

20 Cf. note 9: this fact was first observed by Dag Westerståhl and is stated and
generalized in (Speitel, 2020).

21 See (Speitel, 2020) for proof and details. In fact, Carnap-categoricity is pre-
served beyond EC∆-definability and is closed under further operations that take us
out of the class of EC∆-definable notions; see (Speitel, 2020) for details.
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arithmetic in FOL alone admits non-standard models.22 That is, the
theory of Peano-arithmetic (PA) plus the sentence

(*) ∀x¬Q0y(y < x)

expressing that every element has only finitely many predecessors suffices
to uniquely determine the (isomorphism-type of the) intended structure
N. Since this structure is uniquely determinable in this way one might
wonder whether arithmetical forms have, therefore, been rendered log-
ical. Whether, after all, the logicist project of reducing arithmetic to
logic has, in an extended sense, been successful.

Such an assessment of the situation is of course premature since the
arithmetical forms in question contain, in addition to logical notions,
also arithmetic-specific vocabulary which does not by itself qualify as
logical. Thus, the possibility of categorically characterizing N appears
to be perfectly consistent with the claim that not all arithmetical forms
are reducible to logical forms.

But the worry associated with the above observation can be formu-
lated in a more subtle way. We consider the language L(Q1, . . . , Qn) of
FOL extended with additional quantifier symbols Q1, . . . , Qn and inter-
pretations Q1, . . . ,Qn. Let Q∗ be a new quantifier of type 〈k1, . . . , kn〉.
The quantifier Q∗ is (explicitly) L(Q1, . . . , Qn)-definable if there exists
an L(Q1, . . . , Qn)-sentence ϕ(R1, . . . , Rn) whose only non-logical sym-
bols are relation-symbols R1, . . . , Rn (with Ri of adicity ki), s.t. for all
models M = 〈M,RM

1 , . . . , RM
n 〉:

M ∈ Q∗ iff M |= ϕ(R1, . . . , Rn)

Or, equivalenty, if Q∗ = Mod(ϕ(R1, . . . , Rn)). One can now show
that explicit definability over L(Q1, . . . , Qn) ensures implicit definability
in L(Q1, . . . , Qn, Q

∗) (and thus that Carnap-categoricity is preserved
under explicit definability). To this end, let |=Q1,...,Qn

be the model-
theoretic consequence relation of L(Q1, . . . , Qn), where Qi is interpreted
by Qi, and let |=Q1,...,Qn,Q∗ likewise be the model-theoretic consequence
relation of L(Q1, . . . , Qn, Q

∗) (with Q∗ interpreted by Q∗). Then:23

22 See any introduction to model theory.
23 See (Speitel, 2020) for details and proof. It is important to note that (model-

theoretic) consequence relations as used here are thought of in the tradition of model-

theoretic or abstract logics. That means that the consequence relations are best seen
as functions from vocabularies to sets of tuples of sets of sentences and sentences,
subject to certain conditions, and it makes model-theoretic consequence relations, in
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Proposition. Let Q∗ be L(Q1, . . . , Qn)-definable. It follows that Q∗ is
implicitly defined relative to |=Q1,...,Qn,Q∗ .

This proposition is neither surprising nor particularly revealing but
it allows for a neat application in the present context. Consider the type
〈2〉-quantifier QN = {〈M,RM〉 | 〈M,RM〉 ∼= 〈ω,<〉}, i.e., the quantifier
encoding the predicate “is isomorphic to the (ordering of the) natural
numbers”. Now, 〈ω,<〉 is categorically described by the following set of
sentences:

(i) “R is a linear order”, i.e., R is irreflexive, transitive, and connected.
(ii) ∃x∀y¬Ryx – “R has a left-minimal element”.
(iii) ∀x∃yRxy – “R is right-unbounded”.
(iv) ∀x¬Q0yRyx – “every element has finitely many R-predecessors”.

Let ϕ(R) be the conjunction of (i)–(iv). Then ϕ(R) L(Q0)-defines QN,
i.e., QN = Mod(ϕ(R)).

As argued above, Q0 should be considered logical by the principle of
closure under definability. In terms of Q0 we can then explicitly define
QN. By the above Proposition, moreover, QN is implicitly defined
relative to |=Q0,QN

. Thus, there appear to be reasons to consider the
predicate “is isomorphic to the (ordering of the) natural numbers” a
logical predicate. What should be made of this?

A first reaction, just as above, could be to insist that QN cannot
be considered fully logical on the basis of its explicit definition. This
is so, it might further be claimed, because the notion used in explicitly
defining QN, the notion given by ϕ(R), is not itself a logical notion – the
constraints imposed by ϕ(R) on the structure of R exceed the limits of
logic. Thus, QN has not been defined solely in terms of logical notions,
undermining its claim to logicality.

Its implicit definability, however, is more difficult to dismiss. Since
we are concerned with implicit definability relative to a consequence
relation, rather than by means of a specific sentence/set of sentences,
implicit definitions in our sense are able to abstract away from specific
vocabularies and (explicit) definability facts. Reliance on a potentially
non-logical notion ensuring explicit definability thus becomes less sub-
stantial, or at least less transparent.

an important sense, language-independent. See (Ebbinghaus, 2017, Definition 1.1.1)
for the general idea.
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Nonetheless, it might be said that in the application of the proposi-
tion to the case of QN we still, clandestinely, relied on the availability of
a linear order to establish the implicit definability of QN. Thus, there
still seems to be some dependency on a non-logical notion potentially
affecting its logical status. The question then becomes whether this
dependency is of the right kind to establish the non-logicality of QN. I
don’t think that it is; at least, not straightforwardly so.

Implicit definability relative to a consequence relation entails a cer-
tain language transcendence: no matter the particular vocabulary, theo-
ries and sentences considered, the relevant notion must remain consistent
with the patterns licensed by the consequence relation (over that vocabu-
lary). It is, ultimately, the explicit definability that grounds the implicit
definability of QN, but it is QN’s implicit definability that might be taken
to ground its logicality. Thus, in the justification of QN’s logicality there
appears to be no overt reliance on any putatively non-logical concept,
but only on an entire consequence relation independently of any specific
vocabulary.

We might be accused of hiding certain commitments of the conse-
quence relation in implicitly defining QN here, but note that while ex-
plicit definability is sufficient for implicit definability, the reverse need
not necessarily hold. Basing logicality-assessments on implicit definabil-
ity facts is thus, in general, a weaker requirement. What ultimately does
the work in allowing us to show the implicit definability of QN relative
to |=Q0,QN

is its explicit definability by ϕ(R). But all its implicit defin-
ability relative to |=Q0,QN

allows us to infer is that there is some pattern
of inference which constrains possible meanings for QN tightly enough
to uniquely determine QN. Without the additional assumption that the
mere possibility of being determined in virtue of a non-logical feature
(such as that of a (particular) linear order) results in undermining the
logical status of an implicitly defined notion, disqualifying QN as non-
logical on this basis appears unmotivated.

The upshot of the previous discussion is this: if the principle of clo-
sure under definability for logical notions extends to implicit definability
relative to a consequence relation, analogous to how the implicit defin-
ability of the standard logical constants is often conceived, QN should
be deemed logical. However, this leaves room for views on which QN is
less logical than, say, Q0 and ∃.

This is the case because the implicit definability of QN requires the
presence of Q0 in the language. Without Q0 it would be impossible



Logical constants and arithmetical forms 507

to characterize the kind of order ultimately responsible for fixing the
semantic value of QN. Thus, QN depends on Q0  it cannot be implicitly
defined relative to a consequence relation over the language L(QN) alone.
∃, on the other hand, is more logical than both QN and Q0 since it is
implicitly definable over a consequence relation involving neither of the
other notions (see Bonnay and Westerståhl, 2016), whereas Q0 (and
thus also QN) requires ∃ for a statement of the patterns of inference
rendering it implicitly definable. Notions can thus be compared w.r.t.
their logicality, depending on whether they require one another for their
implicit definability.

The picture that emerges is this: if implicit definability is a mark of
the logical, gradations in terms of logicality are possible.24 A logical form
is, on this view, more basic than another if the non-schematic notions it
involves require ‘fewer’ other non-schematic logical notions to establish
their implicit definability in the extended sense outlined above.

5. Concluding Remarks

I will conclude with a brief summary and some observations on the pre-
ceding. The paper began by outlining a basic principle of logicality,
a criterion delineating a class of expressions as logical and as thereby
grounding the logical forms that determine the extent of the notion of
logical consequence. This was the criterion formulated and defended in
(Bonnay and Speitel, 2021) which rendered several notions not tradition-
ally counted as belonging to the logical lexicon logical. I then considered
the idea that the class of logical notions must be closed under definabil-
ity and argued that the notion of definability featuring in this principle
ought to be generalized based on the motivations underlying it. This,
ultimately, led us to assess a particular candidate, QN, for logicality.

Here, we were presented with three options:

(a) Accept that QN is logical on the basis of falling within the purview
of the closure under definability constraint and therewith that a certain
type of arithmetical content is logical.

(b) Reject that QN is logical. This could be done on a variety of
grounds: on the one hand, the basic principle of logicality operative
might be further strengthened through additional requirements, such

24 Cf. also (Sagi, 2018) for a graded notion of logicality.
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as one that disallows non-compact inference patterns in the legitimate
determination of a logical denotation. On the other hand, it might be
argued that the principle of closure under definability should only be
accepted in a much more restricted form. Implicit definability relative
to a consequence relation is, on this view, not good enough since it might
obscure the real reason or basis that grounds the apparent logicality of
a notion (e.g., its definability by means of a non-logical notion) and
might thereby permit non-logical elements to enter into the (allegedly)
definitional process.

(c) Lastly, one could take a more differentiated view and adopt a
graded conception of logicality, according to which logical notions can be
more or less logical when compared with others. A notion would qualify
as less logical than another if it depended on that other notion for its
implicit definability. The existential quantifier, on this view, would be
more logical than Q0, as the latter requires a consequence relation over a
language possessing existential quantification for its implicit definability,
and similarly for the pair Q0, QN.

I hope to take up a more careful assessment of these three options in
future work.
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