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Deontic Properties of Actions and States

Abstract. This paper studies some normative relations that hold between
actions, their preconditions and their effects, with particular attention to
connecting what are often called ‘ought to be’ norms with ‘ought to do’
norms. We use a formal model based on a form of transition system called
a ‘coloured labelled transition system’ (coloured LTS) introduced in a series
of papers by Sergot and Craven. Those works have variously presented a
formalism (an ‘action language’) nC+ for defining and computing with a
(coloured) LTS, and another, separate formalism, a modal language inter-
preted on a (coloured) LTS used to express its properties. We consolidate
these two strands. Instead of specifying the obligatory and prohibited states
and transitions as part of the construction of a coloured LTS as in nC+,
we represent norms in the modal language and use those to construct a
coloured LTS from a given regular (uncoloured) one. We also show how
connections between norms on states and norms on transitions previously
treated as fixed constraints of a coloured LTS can instead be defined within
the modal language used for representing norms.

Keywords: deontic logic; ought to do; ought to be; nC+; deontic action
logic; transition system; conditional norms

1. Introduction

Normative regulations consist of norms having different perspectives on
agents’ behaviour. Some norms refer explicitly to actions, and the names
of desired, undesired or permitted actions appear in them. Other norms
refer to states of affairs resulting from agents’ activities. In this case
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it is the states of affairs that are the subjects of norms rather than the
specific actions that bring them about.

For example, in academic life we know that for the positive assess-
ment of a researcher a certain number of papers should be published
within the period under assessment (so there might be a norm that X
papers should have been published in prestigious journals in the previ-
ous Y years) or that (in Poland) an assistant professor nine years after
appointment should have the ‘habilitation’ degree or that (in the UK)
the primary supervisor of a doctoral student must be the holder of a per-
manent academic position. Those are norms on states; the specific acts
required to achieve them are not prescribed. On the other hand, univer-
sities also establish norms on actions, regulating how agents should act,
e.g., that teachers must not disclose a student’s personal file to any third
party, that professors must conduct a review of their research assistants
annually on the anniversary of the appointment, or that students are
not permitted to use printers in staff offices. And of course then there
are (norms on acts) no smoking, no copying, no fighting, no opening
of fire doors except in an emergency, . . . , as well as (norms on states)
no food in laboratories, no mobile telephones in examination rooms, no
more than four persons in a lift, and so on.

Traditionally this difference is presented as the distinction between
ought to do and ought to be norms. In many normative systems, perhaps
even all, both kinds of norms are present at the same time. Even in
criminal law, which is often said to be concerned exclusively with acts,
it is generally recognised that this is an over-simplification: it may be
prohibited to be in possession of a certain drug, or to be carrying a
weapon in public, or to be on certain kinds of private property without
authorisation. It is difficult to insist that these are examples of ought to
do norms, and natural to see them as instances of ought to be. A formal
account of normative systems requires that both kinds of norms can be
adequately expressed.

To study the normative relations between actions and states we use
a formal model in the form of a labelled transition system (LTS). This
structure makes it possible to consider properties of both states of affairs
and transitions between them, and the representation of actions and
action types.

More precisely, we shall base our work on the ‘coloured transition
systems’ and the nC+ formalism presented in a series of papers by Sergot
and Craven [3, 9, 10, 11, 12]. Coloured transition systems partition the
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states and transitions of an LTS into those that are acceptable/permitted
(‘green’) and those that are not (‘red’). nC+ is a formalism for defining
and computing with a coloured LTS. It is itself an extension of the action
language C+ [4]  a formalism for specifying and reasoning about the
effects of actions and the persistence of facts over time.

The problem of relations between norms on states and norms on
actions was recently discussed by some of us in [7]. The coloured LTS
framework enables us to express the ideas of connecting norms on states
with norms on actions more easily than in the approach presented there.

nC+ is a mature formalism with quite extensive theory exploring its
expressive power and formal properties, computer implementations, and
experience with applications to examples. Agency was introduced in
[3, 10]. Examples showing how it may be applied to scenarios typical for
AI research are available [10, 11].

The emphasis in those previous works varies. In some [3, 9, 12] the
focus is on presenting nC+ as a formalism (an ‘action language’) for
defining and computing with a (coloured) LTS. The language used to
express properties of a (coloured) LTS was secondary, and was essen-
tially the query language used with the CCalc implementation of C+. In
other works [10, 11], the action language nC+ does not appear; exam-
ples are represented as a (coloured) LTS without discussion of how it is
constructed. Instead, a two-sorted multi-modal language is introduced
in order to express properties of a coloured LTS. There are thus two
separate and quite different formalisms: nC+ which is used to define
a coloured LTS, and an (unnamed) modal language interpreted on a
coloured LTS used to express its properties. In this paper we want to
consolidate these two strands. In nC+ one writes rules to specify which
states and transitions are to be green/red as part of the definition of
a coloured LTS. Here, we will instead represent norms in the modal
language and then show how they can be used to construct a coloured
LTS from a given regular (uncoloured) one.

In coloured LTS the main connection between norms on states and
norms on actions is a well-formedness constraint incorporated as a fixed
feature of every coloured LTS. That constraint  the ‘green-green-green’
constraint  requires that ‘a green (permitted, acceptable, legal) tran-
sition starting from a green (permitted, acceptable, legal) state must
always lead to a green (acceptable, legal, permitted) state’. A coloured
LTS that fails to satisfy this constraint is not well defined. The second
contribution of the paper is to treat this constraint differently. Instead
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of requiring it to be a fixed feature of every coloured LTS it is defined
within the modal language used for representing norms. It thereby be-
comes optional (though generally desirable). Other possible variations
can be treated similarly.

Previous works on nC+ and coloured LTS have dealt with the multi-
agent case, agent-specific norms and the incorporation of a logic of
agency. Those topics are peripheral to the main concerns of this paper
and will be omitted.

The paper is organised as follows. Section 2 presents LTS and the
modal language used for expressing their properties, Section 3 presents
coloured LTS, Section 4 shows how unconditional norms of prohibition
and obligation, both on actions and states of affairs, are defined, and
Section 5 discusses the representation of conditional norms. Section 6
summarises and adds some technical detail.

2. Preliminaries: Transition systems

A labelled transition system (LTS) is a structure of the form

〈S,A,R, prev, post, label〉

where S is a (non-empty) set of states, A is a (non-empty) set of action
types, also called ‘labels’, and R is a (non-empty) set of transitions. prev

and post are functions from R to S: prev(τ) denotes the initial state of a
transition τ , and post(τ) its resulting (or end) state. label is a function
from R to A: label(τ) denotes the action type (or event type depending
on context) performed in transition τ .

For the common special case of a LTS in which the transitions are
triples R ⊆ S × A × S, prev((s, ε, s′)) = s, post((s, ε, s′)) = s′, and
label((s, ε, s′)) = ε. All the examples in this paper are of this special
form.

The account can be generalised to deal with the multi-agent case [see,
e.g., 3, 10]. label is replaced by a function strand : Ag × R → A where
Ag is a (finite) set of agent names and strand(x, τ) picks out the action
type performed by agent x in transition τ . We will not deal with the
multi-agent case in this paper; the methods work in the same way.

A transition system may be indeterministic. There may be several
different transitions from the same initial state and with the same label
but with different resulting states. There may also be several different
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transitions with the same initial and final states but with different labels,
representing different ways of reaching the same result. A transition in
LTS is more than just an ordered pair connecting two states.

Language. Given a labelled transition system, it is usual to define a
language of propositional atoms or ‘state variables’ in order to express
properties of states. We employ a two-sorted language. We have a set PS

of propositional atoms for expressing properties of states, and a disjoint
set PR of propositional atoms for expressing properties of transitions.
Models are structures

M = 〈S,A,R, prev, post, label, hS, hR〉

where hS : PS → 2S and hR : PR → 2R are the valuation functions for PS

in states S and PR in transitions R, respectively. In this paper, unless
stated otherwise, the atoms PR are used to represent properties of the
action(s) performed in a transition.

Formulas are state formulas and transition formulas. State formulas
are:

F ::= any atom p of PS | ¬F | F ∧ F | ✷F | ✷−→ϕ

where ϕ is any transition formula. Transition formulas are

ϕ ::= any atom α of PR | ¬ϕ | ϕ ∧ ϕ | 0:F | 1:F | ⊡ϕ

where F is any state formula. We have the usual truth-functional ab-
breviations. ✸ is the dual of ✷ and ✸−→ is the dual of ✷−→.

Semantics. Truth-functional connectives have the usual interpretations
for both state and transition formulas. The satisfaction definitions for
the other operators are as follows.

State formulas:

M, s |= ✷F iff M, s′ |= F for every s′ ∈ S

M, s |= ✷−→ϕ iff M, τ |= ϕ for every τ ∈ R such that prev(τ) = s

✷ is the S5 universal necessity for states. ✷−→ϕ is true at a state s

when every transition from state s satisfies ϕ. ✸−→ϕ says that there is
a transition of type ϕ from the current state.
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Transition formulas:

M, τ |= 0:F iff M, prev(τ) |= F

M, τ |= 1:F iff M, post(τ) |= F

M, τ |= ⊡ϕ iff M, τ ′ |= ϕ for every τ ′ such that prev(τ) = prev(τ ′)

A transition is of type 0:F when its initial state satisfies the state formula
F , and of type 1:F when its resulting state satisfies F . It is of type ⊡ϕ

when all transitions from the same initial state are of type ϕ. (The ⊡

modality is not used in this paper. It is an essential component when
the language is extended with agency operators as in [10, 11]. It is left
here for compatibility with these other papers.)

As usual, we say a state formula F is valid in a model M, written
M |= F , when M, s |= F for every state s in S, and a transition formula
ϕ is valid in a model M, written M |= ϕ, when M, τ |= ϕ for every
transition τ in R. A formula is valid if it is valid in every model (written
|= F and |= ϕ, respectively). We will write ϕ ≡ ψ when ϕ ↔ ψ is valid,
and ϕ ≡M ψ when ϕ ↔ ψ is valid in a model M, and likewise for state
formulas.

We use the following notation for ‘truth sets’:

‖F‖
M =def {s ∈ S | M, s |= F}; ‖ϕ‖

M =def {τ ∈ R | M, τ |= ϕ}.

Remarks. The operators 0: and 1: are not normal in the usual sense
because formulas F and 0:F (and 1:F ) are of different sorts. However,
they behave like normal operators in the sense that, for all n ≥ 0, if
F1 ∧ · · · ∧ Fn → F is valid then so are 0:F1 ∧ · · · ∧ 0:Fn → 0:F and
1:F1 ∧ · · · ∧ 1:Fn → 1:F .

Since prev and post are (total) functions on R, we have

0:F ≡ ¬0:¬F and 1:F ≡ ¬1:¬F

(and 0: and 1: distribute over all truth-functional connectives).
The state formula ✸−→ϕ says that there is a transition of type ϕ from

the current state, or in the terminology of transition systems, that ϕ is
‘executable’. ✸−→1:F expresses that there is a transition from the current
state to a state where F is true. ✷−→(ϕ → 1:F ) says that all transitions
of type ϕ from the current state result in a state where F is true.

✷−→ is normal in the sense that, for all n ≥ 0, if ϕ1 ∧ · · · ∧ ϕn → ϕ is
valid then so is ✷−→ϕ1 ∧ · · · ∧ ✷−→ϕn → ✷−→ϕ.
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The relationship between state formulas and transition formulas is
easily established. The following are valid. The first is a transition
formula. The second is a state formula.

⊡ϕ ↔ 0:✷−→ϕ

F → ✷
−→

0:F (1)

Completeness is easy to show, e.g., via canonical models.
If we further assume that the LTS is serial, i.e., that for every s in

S there is τ in R such that prev(τ) = s, then ✸−→⊤ is valid and axiom
schema (1) is strengthened to ✷−→0:F ↔ F . Without seriality we have
only the weaker ✸−→⊤ → (✷−→0:F → F ), which is already implied by
schema (1).

Generally speaking, properties of labelled transition systems can be
expressed either as transition formulas or as state formulas. For this pa-
per state formulas are more convenient. Clearly M |= ϕ (a transition for-
mula) iff M |= ✷−→ϕ (a state formula). And M |= F (a state formula) im-
plies M |= 0:F ∧ 1:F (a transition formula); the implication is an equiv-
alence if the LTS is serial (i.e., when M |= ✸−→⊤). This relationship can
be expressed using the universal modality ✷ for states, as the validity of:

✷F → ✷
−→

(0:F ∧ 1:F ) (2)

For future reference in the discussion of conditional norms (Section 5),
note that the following property is derivable from axiom schema (1):

(F → ✷−→ϕ) ≡ ✷−→(0:F → ϕ) (3)

Proof. Right-to-left: |= ✷−→(0:F → ϕ) → (✷−→0:F → ✷−→ϕ). And |=
F → ✷−→0:F (axiom (1)). Hence |= ✷−→(0:F → ϕ) → (F → ✷−→ϕ).

Left-to-right (contrapositive): |= ¬✷−→(0:F → ϕ) → ✸−→(0:F ∧ ¬ϕ)
and |= ✸−→(0:F ∧ ¬ϕ) → (✸−→0:F ∧ ✸−→¬ϕ). |= ✸−→0:F → F (axiom (1),
dual). Hence |= (✸−→0:F ∧ ✸−→¬ϕ) → (F ∧ ¬✷−→ϕ). And (F ∧ ¬✷−→ϕ) ≡

¬(F → ✷−→ϕ). ⊣

3. Coloured transition systems

A coloured transition system is a labelled transition system in which the
states S and transitions R are both classified into two (possibly empty)
categories:
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• Sg ⊆ S is the set of ‘permitted’ (‘acceptable’, ‘legal’) states  we call
Sg the ‘green’ states; Sred = S r Sg are the ‘red states’.

• Rg ⊆ R is the set of ‘permitted’ (‘acceptable’, ‘ ‘legal’) transitions 
we call Rg the ‘green’ transitions; Rred = RrRg are the ‘red transi-
tions’.
Semantical devices which partition states (and here, transitions) into

two categories are common in the field of deontic logic [see, e.g., 1, 5].
[12] presents a refinement in which the states of a transition systems

are ordered depending on how well each complies with a set of explicitly
stated norms. We will stick to a simple binary classification in this paper.

We would get more precision by colouring paths/runs of the transition
system (i.e., sequences of transitions) instead of just single transitions.
One could then extend the logics presented in this paper with features
from a temporal logic such as CTL. We will not do that here.

Instead of introducing a special category of coloured transition sys-
tems with extra components Sg and Rg as in [3, 12], we now prefer to
introduce colourings for states and transitions by means of suitably cho-
sen propositional atoms. In particular, let the state atom reds represent
that a state is red, and the transition atom redt that a transition is red.
Let greens and greent be abbreviations for ¬reds and ¬redt , respectively.
A coloured LTS is then a structure of the form

M = 〈T , hn
S, h

n
R〉

where T = 〈S,A,R, prev, post, label, hS, hR〉 is a labelled transition sys-
tem and where hn

S and hn
R are the valuation functions for the distin-

guished atoms reds and greens in states S and redt and greent in tran-
sitions R, respectively. hn

S(reds) = ‖reds‖
M denotes the ‘red states’ of

M and ‖greens‖
M = Sr‖reds‖

M its ‘green states’; hn
R(redt) = ‖redt‖

M

denotes the ‘red transitions’ and ‖greent‖
M = R r ‖redt‖

M the ‘green
transitions’. We say that M is a colouring of the LTS T . We sometimes
write M = 〈T , Sred, Rred〉 where Sred = hn

S(reds) and Rred = hn
R(redt).

In previous works, a coloured transition system was further required
to satisfy a kind of well-formedness principle: a green (permitted, ac-
ceptable, legal) transition in a green (permitted, acceptable, legal) state
must always lead to a green (acceptable, legal, permitted) state. This is
referred to as the green-green-green constraint, or ggg for short. (A simi-
lar constraint for a different formal framework is found in [2].) A coloured
LTS which fails to satisfy this constraint is not well defined.
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The ggg constraint can be expressed as validity in the coloured LTS
of the state formula

greens → ✷−→(greent → 1:greens)

equivalently
greens → ✷−→(1:reds → redt)

or, equivalently again, of the transition formula

(0:greens ∧ 1:reds) → redt

In the multi-agent case [3, 10, 11] it is often necessary to distin-
guish between impersonal (‘system’) norms/colourings and agent-specific
norms/colourings. A transition may be unacceptable (illegal, ‘red’) as
regards one particular agent x but not as regards another agent y. In
addition to the impersonal/‘system’ colourings redt and greent , we then
have transition atoms redt(x) and greent(x) for every individual agent x.
And similarly for states. A state in which an agent x has an unpaid debt
may be regarded as bad as regards x, represented reds(x), but not bad as
regards a different agent y. We will not deal with the multi-agent case
in this paper. Relationships between impersonal/‘system’ and agent-
specific norms are discussed in the works cited above. The specification
of agent-specific colourings/norms works in exactly the same way as for
the colourings/norms treated in this paper.

Defined deontic operators. Let state formulas FsF and OsF represent
that a state of affairs where F holds is forbidden/obligatory respectively.

The satisfaction conditions are:

M, s |= F
sF iff ‖F‖M ⊆ ‖reds‖M

M, s |= O
sF iff ‖greens‖

M
⊆ ‖F‖

M

We define:

F
sF =def ✷(F → reds)

O
sF =def ✷(greens → F )

Naturally: OsF ≡ Fs¬F . And OsF ≡ (¬F → reds). A state of affairs
where F holds is permitted when it is not forbidden, i.e., when ✸(F ∧
greens) holds.

Note that these satisfaction conditions are independent of the state
s. These notions of obligation and prohibition are global properties of a
model.
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The obligatory/forbidden transitions from a state are defined in
terms of redt and greent . Let O−→ϕ and F−→ϕ represent that a transition
of type ϕ is obligatory/forbidden respectively in the current state. O−→ϕ

and F−→ϕ are state formulas.
Let exe(s) denote the set of transitions that have s as their initial

state:
exe(s) =def {τ ∈ R | prev(τ) = s}

The satisfaction conditions are, in terms of ‖greent‖
M and ‖redt‖

M:

M, s |= O−→ϕ iff exe(s) ∩ ‖greent‖
M

⊆ ‖ϕ‖
M

M, s |= F−→ϕ iff exe(s) ∩ ‖ϕ‖M ⊆ ‖redt‖
M

And so we define state formulas:

O−→ϕ =def ✷−→(greent → ϕ)

F−→ϕ =def ✷−→(ϕ → redt)

The satisfaction conditions for these expressions are not independent of
the state.

Again: O−→ϕ ≡ F−→¬ϕ. And O−→ϕ ≡ ✷−→(¬ϕ → redt). Permission is the
dual of obligation. A transition of type ϕ is permitted at state s when
¬ O−→¬ϕ is true at s, i.e., when ✸−→(ϕ ∧ greent) is true at s.

These definitions are essentially instances of the familiar Anderson-
Kanger reduction in deontic logic. (See e.g., [1, 5] for a survey and
discussion of relationships to Standard Deontic Logic (SDL).) The slight
difference here is that we are employing a two-sorted language. That
affects O−→ and F−→ in particular.

Both prohibition operators enjoy the following properties. These
expressions are valid:

F−→(ϕ ∨ ψ) ↔ ( F−→ϕ ∧ F−→ψ)

F−→(ϕ ∧ ¬ϕ)

F
s(F ∨ G) ↔ (FsF ∧ F

sG)

F
s(G ∧ ¬G)

The prohibition operators are cumulative  if two actions (states)
are forbidden, then their alternative (being a more general description) is
also forbidden  and homogeneous  any realisation of a forbidden action
(or any instance of a forbidden state) is forbidden.
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In terms of the obligation operators:

O
−→

(ϕ ∧ ψ) ↔ ( O
−→
ϕ ∧ O

−→
ψ)

O−→(ϕ ∨ ¬ϕ) (4)

O
s(F ∧ G) ↔ (OsF ∧ O

sG)

O
s(G ∨ ¬G) (5)

Note that F−→(ϕ∧¬ϕ) is equivalent to O−→(ϕ∨¬ϕ) and to O−→⊤. F
s(G∧

¬G) is equivalent to O
s⊤. These are properties of every normal modal

operator. They should not be confused with the property associated
with obligation in SDL, which would correspond to the validity of ¬ O−→⊥
and ¬Os⊥. ¬ O−→⊥ is valid in models which have a seriality property, viz.
that from every state there is at least one green transition, i.e., in models
where ✸−→greent is valid. ¬O

s⊥ is valid when there is at least one green
state, i.e., in models where ✸greens is valid. The following properties
are valid:

( O−→ϕ ∧ O−→¬ϕ) ↔ ✷−→redt

(OsF ∧ O
s¬F ) ↔ ✷reds

Properties (4) and (5) are consequences of the more general validities:
✷−→ϕ → O−→ϕ

✷ϕ → O
sϕ

4. Unconditional norms on actions and states

4.1. Example

Let us start with an example taken from [7].

Example 1. An agent signs a contract to carry out construction works. In
the contract there is a description of the desired product, i.e., a state of
affairs which is to be attained. At the same time the work activities are
regulated, among other things, by safety standards which limit possible
actions leading to the desired effects to those which are safe. For instance
during the construction works: it is obligatory to use designated passages
when moving from one place to another, it is forbidden to throw objects,
etc. ⊣

The example can be modelled as an LTS T1 as depicted in Figure 1.
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s1

¬deadline_passed

¬accident

¬work_done

s2

deadline_passed

¬accident

¬work_done

s3

deadline_passed

¬accident

work_done

s4

deadline_passed

accident

¬work_done

ε2, safe_action

ε1, unsafe_action

ε1, unsafe_action

ε2, safe_action

ε1, unsafe_action

Figure 1. An LTS representation T1 of Example 1

There are four states in the LTS: s1, s2, s3 and s4. Each is uniquely
described by the combination of three propositions:

• ‖¬deadline_passed‖
T1 = {s1}

• ‖deadline_passed‖T1 = {s2, s3, s4}
• ‖accident‖

T1 = {s4}
• ‖work_done‖

T1 = {s3}

The figure shows the transitions from state s1. There are five possible
transitions of two types:

• ‖safe_action‖
T1 = {(s1, ε2, s2), (s1, ε2, s3)}

• ‖unsafe_action‖T1 = {(s1, ε1, s2), (s1, ε1, s3), (s1, ε1, s4)}

Not shown in the figure are possible transitions between states s2, s3 and
s4. This is to avoid cluttering the diagram. (There are no transitions
from s2, s3 and s4 to s1 as once the deadline is reached that cannot be
undone.) For simplicity we have ignored actions that are not relevant to
the contract, and we have assumed that the performance of a (relevant)
action in state s1 leads to a state where the deadline has been reached.
Obviously that could be adjusted, for instance by adding reflexive tran-
sitions (s1, ε1, s1) and (s1, ε2, s1) and introducing more states to allow
for the work to be completed or an accident to have happened before
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the deadline is reached. The simple version of the example is sufficient
for present purposes.

4.2. Introducing norms

So far there are no normative atoms in the picture. How can they be
introduced? Ultimately we want to be able to answer the question: ‘what
should an agent do in a specific state of affairs?’.

Norms codify the relation between the descriptive (non-normative)
features of possible states and actions on the one hand and the norma-
tive evaluation of those states and actions on the other hand. In order
to model norms adequately, we need a way of colouring a given (non-
normative) LTS. This colouring moreover should be based on general
descriptive terms rather than having to specify individual transitions
and states explicitly one by one.

In this first example the norms that regulate states and transitions
are context independent, that is, the normative status of every transition
depends only on the type of action of which it is an instance. The
situation in which that action is carried out and its results are not taken
into account. That is not true in general.

For the example we want to define a colouring M1 of the states and
transitions in the LTS T1. First it is natural to say that all actions
that are unsafe are forbidden, i.e., that transitions of this type are never
acceptable.
• ‖unsafe_action‖

M1 ⊆ ‖redt‖
M1

That can be expressed by requiring the validity in M1 of the transi-
tion formula:

unsafe_action → redt

or equivalently the validity in M1 of the state formula:

✷−→(unsafe_action → redt)

Similarly we can say that any state in which a deadline has been
reached without the work having been done, or any state in which an
accident has happened, is unacceptable (red). That is validity in M1 of
the state formulas:

deadline_passed ∧ ¬work_done → reds (6)

accident → reds (7)
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s1 greens

¬deadline_passed

¬accident

¬work_done

s2 reds

deadline_passed

¬accident

¬work_done

s3 greens

deadline_passed

¬accident

work_done

s4 reds

deadline_passed

accident

¬work_done

ε2, safe_action

greent

ε1, unsafe_action

redt

ε1, unsafe_action

redt

ε2, safe_action

greent

ε1, unsafe_action

redt

Figure 2. The coloured model M1 of Example 1

If being unsafe is the only reason for an action to be forbidden we
can strengthen the inclusion to the following equalities:
• ‖redt‖

M1 = ‖unsafe_action‖M1

• ‖greent‖
M1 = ‖safe_action‖

M1

For states similarly, if (6) and (7) are the only reasons for a state
to be considered unacceptable (red), then s2 and s4 are red, whereas s1

and s3 are green:
• ‖reds‖

M1 =
= ‖(deadline_passed ∧ ¬work_done) ∨ accident_happened‖M1 =
= {s2, s4}

• ‖greens‖
M1 = {s1, s3}

The model M1 with its normative layer is presented in Figure 2.
So here one can see, for instance:

• M, s1 |= ✷−→(greent → safe_action), i.e., M, s1 |= O−→safe_action

as well as, for example
• M, s1 |= ¬accident ∧ Os¬accident
• M, s4 |= accident ∧ Os¬accident
• M, s2 |= deadline_passed ∧ ¬work_done ∧ Os(deadline_passed →

work_done)
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In the last example, the (global) obligation holds because

(deadline_passed ∧ ¬work_done → reds) ≡

(greens → (deadline_passed ∧ ¬work_done)).

Of course there are many other equivalent ways of writing the same
thing.

4.3. Generalisation

Given an (uncoloured) LTS T and a set Γ of transition and state formu-
las representing norms, we wish to construct a colouring M of T that
satisfies Γ. We will call Γ the set of explicit norms.

The normative value (‘colouring’) of transitions can be specified by
formulas of the following form:

ϕ → redt (8)

expressing that if a transition satisfies ϕ then that transition is red. Intu-
itively ϕ is meant here to be a rationale for the transition to be red. The
question arises what should be the structure of ϕ in these expressions.
In principle we could allow ϕ to be any well formed transition formula,
including formulas containing normative atoms redt and greent , such as,
for example:

(0:✷−→(ψ → redt) ∧ ϕ) → redt

That is equivalent to

0:✷−→(ψ → redt) → (ϕ → redt)

and so can be read as saying that a transition of type ϕ is red if all
transitions of type ψ from the same initial state are red: roughly, ϕ is
forbidden whenever ψ is forbidden.

However, in this paper we will restrict the form of ϕ in expression
(8) in explicit norms to be transition formulas not containing the nor-
mative atoms redt and greent . (We allow the occurrence of operators
0: and 1: for reasons explained below. In that case ϕ must not contain
the normative atoms reds and greens either.) We stress that these are
restrictions on the form of expressions used as explicit norms, not on
state and transition formulas that can be used to express properties of
a coloured LTS.
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In order to construct the colouring M of an LTS T we require that
the transition formula (8) is valid in M. That is equivalent to requiring
that the state formula

✷−→(ϕ → redt)

is valid (true in all states) in M. And that validity requirement is most
conveniently expressed by means of the state formula:

✷✷−→(ϕ → redt) (9)

The operator ✷ reflects the idea that explicit norms are always general,
i.e., hold in all states. It allows us to talk about (transition) norms being
in effect at a particular state in a model, and from the technical point of
view, it allows us to define a notion of local consequence between explicit
norms and implied obligations and prohibitions. (See Section 6.)

In terms of the defined deontic operators F−→ϕ =def ✷−→(ϕ → redt) and
O−→ϕ =def ✷−→(greent → ϕ) expression (9) may be written as

✷ F−→ϕ or ✷ O−→¬ϕ

In Section 5 we will generalise the form of these expressions to represent
conditional norms.

Similarly, explicit state norms (‘ought to be’) for colouring states
have the general form:

✷(G → reds) (10)

where G is a state formula not containing normative atoms reds and
greens. G may contain the operator ✷

−→
(in which case it must not contain

the atoms redt and greent).
In terms of the defined deontic operators Fs and Os expression (10)

can be written in the forms:

F
sG or O

s¬G

Note that since the ✷ modality is of type S5, FsG and Os¬G are already
equivalent to ✷F

sG and ✷O
s¬G, respectively.

In the example, the explicit norms Γ1 used to specify the colouring
M1 of the LTS T1 can be written in the form:
• ✷ F

−→
unsafe_action

• Fs(deadline_passed ∧ ¬work_done)
• Fsaccident
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The colouring M1 defined by these norms is the most permissive
Γ1-colouring of T1, that is (see Section 6): M1 = 〈T1, Sred, Rred〉 is the
(unique) colouring of T in which all formulas of Γ1 are valid and which
minimises Sred = hn

S(reds) and Rred = hn
R(redt).

In this example we have
• M1, s1 |= O−→safe_action
Instead of naming the state s1 explicitly we can also specify the state, or
states, of interest by means of a general description1. Thus for example
we have the following validity in M1:
• M1 |= ¬work_done ∧ ¬deadline_passed → O−→safe_action

We also have (since ✷ is the universal modality for states):
• M1 |= ✷(¬work_done ∧ ¬deadline_passed → O−→safe_action)
As explained in Section 6 we can (if we wish) interpret that as a condi-
tional norm implied by the explicit norms Γ1 given the LTS T1.

4.4. Ought to do and ought to be: the ggg constraint

There is an intuition concerning the normative properties of actions and
states that actions leading to bad (forbidden, illegal, undesirable, etc.)
states are themselves bad. It is found in several works in deontic logic,
most notably in Meyer’s ‘Dynamic deontic logic’ [8]. There, an action is
prohibited precisely when it leads to a prohibited state. It has been ob-
served by several authors however, including [2, 14] as well as the present
authors, that relationship is extremely problematic without qualification.
It means that any action from a prohibited state which fails to restore
that state to a non-prohibited state must itself be prohibited. So for
example in a state in which there is an overdue debt (a prohibited state)
the actions of paying one’s taxes, or giving flowers to a neighbour, or
even partially repaying the debt, are all prohibited because they all lead
to a state in which a debt remains overdue (a prohibited state). That is
simply not tenable.

A similar intuition underpins the ggg constraint referred to earlier
but there it appears in a restricted form: the transfer from bad results
to a bad transition only applies when an initial state is not already bad.
There are two ways of looking at this. One way is as a kind of well-
formedness principle: a green (permitted, acceptable, legal) transition

1 This is how properties of a coloured LTS are investigated in the iCCalc imple-
mentation of the nC+ language. The task of the system is to confirm validity or to
find all counterexamples. See [10] for a detailed worked example.
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in a green (permitted, acceptable, legal) state must always lead to a
green (acceptable, legal, permitted) state (as also suggested by [2]). The
other way to see it is as a restricted form of the Meyer constraint: a
transition leading to a red state is red but only if the initial state is not
also red.

In previous works the ggg constraint has been treated as a fixed
feature of a coloured LTS. A coloured LTS which failed to satisfy the
ggg constraint was not well defined. Here we treat it as an optional
constraint, and we obtain it by defining a new transition atom red†

t
.

By transposition it follows from the ggg constraint that a transition
starting from a green state and terminating in a red state must be red.
Accordingly we define:

red†
t

=def redt ∨ (0:greens ∧ 1:reds) (11)

green†
t

=def ¬red†
t

or in full:
green†

t
=def greent ∧ (0:reds ∨ 1:greens) (12)

The definitions of the corresponding prohibition and obligation op-
erators are as follows:

F
†

−→ϕ =def ✷−→(ϕ → red†
t
)

O
†

−→ϕ =def ✷−→(green†
t

→ ϕ)

F
†

−→ is also cumulative and homogeneous. The following are valid:

F
†

−→(ϕ ∨ ψ) ↔ (F†

−→ϕ ∧ F
†

−→ψ)

F
†

−→(ϕ ∧ ¬ϕ)

F
†

−→(ϕ ∨ ¬ϕ) ↔ ✷−→red†
t

In terms of O†

−→:

O
†

−→(ϕ ∧ ψ) ↔ (O†

−→ϕ ∧ O
†

−→ψ)

O
†

−→(ϕ ∨ ¬ϕ)

O
†

−→(ϕ ∧ ¬ϕ) ↔ ✷−→red†
t

And indeed, the properties of O†

−→ and F†

−→ must be the same as those
of O−→ and F−→ since their definitions have exactly the same form and differ
only in the propositional atoms in terms of which they are defined.
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s1 greens

¬deadline_passed

¬accident

¬work_done

s2 reds

deadline_passed

¬accident

¬work_done

s3 greens

deadline_passed

¬accident

work_done

s4 reds

deadline_passed

accident

¬work_done

ε2, safe_action

greent , red
†
t

ε1, unsafe_action

redt , red
†
t

ε1, unsafe_action

redt , red
†
t

ε2, safe_action

greent , green
†
t

ε1, unsafe_action

redt , red
†
t

Figure 3. The solid (non-dashed) line shows the only green†
t

transition for Example 1

Obviously, from the definition, ‖redt‖
M

⊆ ‖red†
t
‖

M (so redt → red†
t

is valid) and hence:
|= O−→ϕ → O

†

−→ϕ

Figure 3 shows the red†
t

and green†
t

colouring for the example.
We have, for instance:

• M1, s1 |= F†

−→1:(deadline_passed ∧ ¬work_done)
• M1, s1 |= F†

−→(safe_action ∧ 1:(deadline_passed ∧ ¬work_done))
• M1, s1 |= O†

−→(safe_action ∧ 1:(deadline_passed → work_done))
(The second is implied by the first. The third is equivalent to the second.)

In this particular example, the state s1 of interest is green and so the
ggg colouring is the same as would be obtained using Meyer’s unrestricted
version. That will not always be so, as later examples will show.

If we did want to formulate a Meyer-like constraint we could do so
by defining another pair of normative transition atoms in similar style:

red⋆
t

=def redt ∨ 1:reds

green⋆
t

=def greent ∧ 1:greens

Evidently green⋆
t

≡ ¬red⋆
t
.



602 P. Kulicki, R. Trypuz, R. Craven, M. Sergot

As a final illustration: it may be felt that the ggg constraint is too
weak because it has nothing to say about transitions from a red initial
state. One might take the view that if there is a choice between a
transition leading to a red state and a transition from the same state
leading to a green state, then the transition leading to the green state
should be preferred.

Let us make that explicit. Let us strengthen (actually, complement)
the ggg constraint, as follows. If there is a transition τ from a red state
to a red state, and there exists an alternative transition τ ′ from that
same initial red state to a green state, and that alternative τ ′ is green
(not already red), then τ is red. Let us call it the ggg‡ constraint. It can
be obtained by defining another pair of normative transition atoms:

red‡
t

=def redt ∨ ( 0:reds ∧ 1:reds ∧ 0:✸−→(1:greens ∧ greent) )

green‡
t

=def ¬red‡
t

Note that this new ggg‡ constraint does not conflict with the ggg
constraint at all. ggg‡ is applicable when the initial state is red. ggg is
applicable when the initial state is green. So we can see the combination
of ggg‡ and ggg as a corrected form of the Meyer-like constraint. The
ggg‡ constraint deals with recovery from red states. The original ggg
constraint deals only with transitions from green states.

There are some obvious relationships between these various forms of
red and the corresponding deontic operators. For example, a transition
cannot be both red†

t
and red‡

t
, unless it is already redt . In other words:

|= red†
t

∧ red‡
t

→ redt

It is our view that the ggg constraint expresses a fundamental well-
formedness principle that is not readily challenged. Although we have
left it optional, in that red†

t
is defined separately from redt , we expect

that it will be red†
t

and green†
t

transitions that will be of primary interest.
In contrast, the complementary ggg‡ constraint can be challenged and
might not be appropriate in all circumstances, particularly in the multi-
agent context (which we are not discussing in this paper).

One might prefer therefore to leave the ggg‡ constraint optional, and
to define another separate form of obligation that combines the effects
of ggg and ggg‡, as

✷−→((green†
t

∧ green‡
t
) → ϕ)
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We have not given a symbol to this form of obligation in this paper
in order to avoid a proliferation of notations and we do not record its
properties. They are very readily reconstructed: again, we have a form
of obligation whose definition has exactly the same form as others and
which differs only in the propositional atom used to define it.

4.5. Complete obligations

We now want to introduce a form of obligation that determines at each
state the complete set of all acceptable transitions from that state. This
form of obligation will not be used in the formulation of explicit norms
but rather provides a means of guiding actions given a set of explicit
norms already specified. This form of obligation is a local one: we are
looking for a set of transitions from which an agent can choose at a given
state.

We define:
Oblϕ =def ✷−→(ϕ ↔ greent)

where ϕ is a non-normative transition formula, i.e., a transition formula
without normative atoms redt and greent (and reds and greens).

The corresponding satisfaction conditions are:

M, s |= Oblϕ iff exe(s) ∩ ‖ϕ‖
M = exe(s) ∩ ‖greent‖

M

exe(s) is the set of possible transitions from state s. We can say then
that the content of exe(s)∩‖greens‖

M is the complement in exe(s) of the
most general (in the sense of their extensions) transition type prohibited
in s. So then ϕ in Oblϕ denotes the most specific transition type that is
obligatory in s.

In the example we have:
• M1, s1 |= Obl safe_action

One can see immediately from the definitions that the following two
properties are valid:

Oblϕ → O−→ϕ

(Oblϕ ∧ O−→ψ) → ✷−→(ϕ → ψ)

The first is just |= ✷
−→

(greent ↔ ϕ) → ✷
−→

(greent → ϕ). The second is
because |= (Oblϕ ∧ O−→ψ) → (✷−→(ϕ → greent) ∧ ✷−→(greent → ψ)). The
two together express that Oblϕ represents the most specific obligation ϕ.
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Clearly Obl picks out a unique set of transitions at any state:

|= (Oblϕ ∧ Oblψ) → (ϕ ↔ ψ)

And unlike O−→:
6|= ✷−→ϕ → Oblϕ

The idea is that when Oblϕ holds and ϕ is an expression in disjunc-
tive normal form  ϕ = ϕ1 ∨ . . .∨ϕn where each disjunct is a (consistent)
conjunction of literals of the form α or ¬α where α is an atom of PR

or of the form 0:p or 0:¬p or 1:p or 1:¬p where p is an atom of PS 
then every disjunct ϕi of ϕ is a description of a package of actions that
must/must not be performed in the current state. Atoms of PR not
appearing in ϕi are optional. Performance of any disjunct satisfies the
obligation. If there is more than one disjunct in ϕ then the obligation is
to perform one of them.

Suppose for example that there is a single explicit norm O−→¬(drink ∧

drive) . Then the following holds:

Obl (¬drink ∨ ¬drive) (13)

The disjunct ¬drink represents the package of actions not drinking, and
(optionally) either driving or not driving; ¬drive represents the package
of actions not driving, and (optionally) either drinking or not drinking.
Expression (13) can also be written equivalently in the form

Obl ((drink ∧ ¬drive) ∨ (drive ∧ ¬drink) ∨ (¬drink ∧ ¬drive))

In this form the disjuncts are mutually exclusive. The obligation is to
perform exactly one of them.

Obl can be combined with the ggg constraint in order to obtain the
corresponding form of most specific ‘complete obligation’2:

Obl
†ϕ =def ✷−→(ϕ ↔ green†

t
)

It has the following satisfaction condition (cf. the definition (12) of
green†

t
):

M, s |= Obl
†ϕ iff exe(s) ∩ ‖ϕ‖

M = exe(s) ∩ ‖greent‖
M

∩

{τ ∈ R | prev(τ) ∈ ‖reds‖M or post(τ) ∈ ‖greens‖M}

The relationships between Obl
† and O†

−→ are just as for Obl and O−→: the
definitions have exactly the same form but with green†

t
for greent .

2 The construction is similar to the account in [6, 13].
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In our example we have:
• M1, s1 |= Obl

†(safe_action ∧ 1:(deadline_passed ∧ work_done ∧
¬accident))

Since safe_action → 1:(deadline_passed ∧ ¬accident) is valid in the
LTS T1, and therefore also in M1, we also have:
• M1, s1 |= Obl

†(safe_action ∧ 1:work_done)
Again, instead of having to name a state of interest (here s1) explic-

itly we can also specify it descriptively. In the model M1:
• M1 |= ✷(¬work_done ∧ ¬deadline_passed → Obl

†(safe_action ∧
1:work_done))
Of course we also have all obligations implied by the most specific

‘complete’ one, and therefore among other things:
• M1 |= ✷(¬work_done ∧ ¬deadline_passed → O†

−→(safe_action ∧

1:work_done))
• M1 |= ✷(¬work_done ∧ ¬deadline_passed → O†

−→safe_action)
• M1 |= ✷(¬work_done ∧ ¬deadline_passed → O†

−→1:work_done)
and indeed, trivially,

M1 |= ✷(¬work_done ∧ ¬deadline_passed → O
†

−→⊤).

4.6. Relationships between the deontic operators

Some of the following properties were noted earlier. They are repeated
here for ease of reference. The properties of the individual deontic oper-
ators are the same for each variant since their definitions have the same
form and differ only in the normative propositional atom in terms of
which they are defined.

O−→ϕ → O
†

−→ϕ (14)

O
sF ∧ greens → O

†

−→1:F (15)

Oblϕ → O−→ϕ (16)

(Oblϕ ∧ O−→ψ) → ✷−→(ϕ → ψ) (17)

Obl
†ϕ → O

†

−→ϕ (18)

(Obl
†ϕ ∧ O

†

−→ψ) → ✷−→(ϕ → ψ) (19)

(Obl
†ϕ ∧ O−→ψ) → ✷−→(ϕ → ψ) (20)

(Obl
†ϕ ∧ Oblψ) → ✷−→(ϕ → ψ) (21)
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Note that 6|= Obl
†ϕ → O−→ϕ. It is easy to construct a counterexample:

a greens state with a single greent transition leading to a reds state can
have ✷−→(ϕ ↔ green†

t
) ∧ ✸−→(greent ∧ ¬ϕ) true.

Properties (14) and (15) are from the ggg constraint. (14) was noted
earlier and is valid because |= green†

t
→ greent . Property (15) is shown

below. Formulas (16) and (17) say that Obl is the most specific O−→, and
(18) and (19) that Obl

† is the most specific O
†

−→. Property (20) is from
|= green†

t
→ greent . (21) follows from (20) and (16).

To see that property (15) is valid: note first that (greens → O
†

−→1:F ) ≡

O
†

−→(0:greens → 1:F ) follows from property (3) (see also the discussion
of conditional norms in Section 5 below). So it is enough to show the
validity of

O
sF → O

†

−→(0:greens → 1:F )

that is, ✷(greens → F ) → ✷−→(green†
t

→ (0:greens → 1:F ), which is
equivalent to

✷(greens → F ) → ✷−→(green†
t

∧ 0:greens → 1:F )

Now, from the definition:

(green†
t

∧ 0:greens) ≡ (green†
t

∧ 0:greens ∧ 1:greens)

and hence
|= ✷−→(green†

t
∧ 0:greens → 1:greens)

It just remains to show:

✷(greens → F ) → ✷−→(1:greens → 1:F )

That follows from the general property (2) which was noted earlier.

5. Conditional norms

5.1. Example

In Section 4 we discussed how unconditional norms can be represented
in the coloured LTS framework. In this section we focus on situations
where the colouring of transitions is context dependent and uncondi-
tional norms are not adequate.
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s5

overdue_debt(20K)
cash(10K)
¬has_car

s6

overdue_debt(20K)
cash(0K)
has_car

s7

overdue_debt(10K)
cash(0K)
¬has_car

ε3

buys_car

¬pays_debt

ε4

pays_debt

¬buys_car

Figure 4. The initial model T2 of Example 2.

Example 2. Consider the situation (state s5) of a person having an over-
due debt of £20,000 and £10,000 to spend. She can buy a car (action
ε3) or pay off half of her debt (action ε4). As a consequence, in state s6

she has a car and an overdue debt of £20,000 and in state s7 she has no
car but an overdue debt of £10,000. (See Figure 4.) ⊣

In this example there is a social (and also to some extent legal) rule
that debts should be paid off on time. Thus, any state in which there
are any (significant) overdue debts is red. So we have the following pair
of explicit norms (two, because in our simplified representation of the
example there are two possible values 10K and 20K of an overdue debt):

F
soverdue_debt(20K) (22)

F
soverdue_debt(10K)

With just these explicit norms the most permissive colouring of the
LTS has:
• ‖overdue_debt(20K) ∨ overdue_debt(10K)‖ = ‖reds‖ = {s5, s6, s7}
• ‖redt‖ = {}
• ‖greent‖ = {(s5, ε4, s7), (s5, ε3, s6)} = ‖pays_debt ∨ buys_car‖.

All three states (in the small fragment of the example we are consid-
ering) are coloured red because globally it is unacceptable (forbidden) to
have an overdue debt. Both transitions are coloured green because so far
we have not said otherwise: in principle there is nothing wrong in buying
a car. However, we might reasonably take the view that in s5, the agent,
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although unable to pay off the debt completely, should nevertheless pay
off what part of it she can instead of spending the available money on
(unnecessary) goods. The ggg constraint does not colour such transitions
red†

t
since all states are reds.

5.2. Conditional transition norms

It is not action types such as buying a car or paying a debt that are
coloured red/green in this framework but transitions, which are action
types in context. Conditional norms allow transitions to be identified by
reference to the features of their initial (and in principle final) states.

The general form of a conditional explicit norm is:

✷(F → ✷−→(ϕ → redt)) (23)

where F is a state formula and ϕ is a transition formula, neither of which
contain the normative atoms reds, greens and redt , greent.

In terms of the defined deontic operators F−→ and O−→ expression (23)
may be written in the forms

✷(F → F−→ϕ)

✷(F → O−→¬ϕ)

Expressions ✷ F−→ϕ and ✷ O−→¬ϕ used earlier for unconditional explicit
norms are equivalent to

✷(⊤ → F−→ϕ)

✷(⊤ → O−→¬ϕ)

indicating that, as expected, unconditional norms are a special case.
In our example we can formulate the following norm: “in a situation

where an agent has an overdue debt and money to spend, she should not
avoid paying off her debt (as much as she is able)”. Thus, for X ranging
over 10K and 20K:

✷(overdue_debt(X) ∧ ¬cash(0K) → F−→¬pays_debt) (24)

The norm (with X = 20K) is in force in state s5 since its precondi-
tions are true there.
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s5

overdue_debt(20K)
cash(10K)
¬has_car

reds

s6

overdue_debt(20K)
cash(0K)
has_car

reds

s7

overdue_debt(10K)
cash(0K)
¬has_car

reds

ε3

buys_car

¬pays_debt

redt

ε4

pays_debt

¬buys_car

greent

Figure 5. The coloured model M2 of Example 2

Let M2 be the most permissive colouring of T2 with explicit norms
(22) and (24). Then:

M2, s5 |= F−→¬pays_debt, i.e. M2, s5 |= ✷−→(¬pays_debt → redt)

When M2 is the most permissive colouring:

‖redt‖
M2 = {(s5, ε3, s6)}

The coloured model M2 is shown in Figure 5.
Notice that in M2 at the state s5 we have:

M2, s5 |= ✷−→(buys_car → redt)

And indeed we have a (pair of) implied norms. The following are valid
in M2 for X = 10K and X = 20K:

✷(overdue_debt(X) ∧ ¬cash(0K) → F−→buys_car)

The ggg constraint has no effect because every state in this simple
version of the example is red. The example illustrates however why
the stronger version, where a transition is coloured red if it leads to a
red state, is unacceptable in general. In this example, a transition in
which the agent pays off part of her debt instead of buying a car would
be forbidden, coloured red because in the resulting state there is still an
outstanding overdue debt. The ggg constraint in contrast does not apply
when the initial state is red, precisely to avoid this kind of conclusion.
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Finally, recall that the following is a general property (3) of every
(coloured and uncoloured) LTS:

(F → ✷−→ϕ) ≡ ✷−→(0:F → ϕ)

The general form (23) of a conditional norm can thus be written equiv-
alently as:

✷✷−→(0:F ∧ ϕ → redt)

which is a special case of an unconditional norm (9). That again empha-
sises that what is coloured red/green are not action types but transitions.

In terms of the defined obligation operator O−→ we have:

✷(F → O−→ϕ) ≡ ✷ O−→(0:F → ϕ)

and more generally

✷(F ∧ G → O−→ϕ) ≡ ✷(F → O−→(0:G → ϕ))

Although these alternative forms are perhaps less natural than (23),
for the sake of flexibility we see no reason to disallow them as a form
of explicit norm. The expression ϕ moreover are allowed to contain
the 1: operator. For example, suppose that in Example 1, we wanted to
say (hypothetically, for the sake of an example) that an unsafe_action is
forbidden (unacceptable, red) if it leads to an accident but not necessarily
otherwise. That would be expressed by the explicit norm:

✷✷−→(unsafe_action ∧ 1:accident → redt), i.e.

✷ F−→(unsafe_action ∧ 1:accident)

Whether it is reasonable to formulate norms such as this, where what
is forbidden depends not only on what is true in the current state but
also on the eventual future outcome, is another matter. Questions such
as these are discussed elsewhere [3, 11] under the heading of ‘absence of
moral luck’. That is another kind of rationality principle that we might
require of a well-formed and effective set of norms.

To take one last example, the transition norm

O−→¬1:(window_open ∧ heat_on)

requires that, whatever action is taken in the current state, it must
not result in a state where the window is open (window_open) and the
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heating is on (heat_on). The state norm

O
s¬(window_open ∧ heat_on)

is slightly weaker. With the ggg constraint, it has the same effect as the
transition norm when the current state is green, but it does not prescribe
what should be done in a red state where the window is already open
and the heating is on.

5.3. Conditional state obligations

In this framework, state norms/colourings are global properties of a
model. If F is obligatory at a state s in a model M then F is obligatory
at every state in M. An expression such as ‘if F then it ought to be G’
is not expressed by the formula

✷(F → O
sG)

equivalently ✷(F → ✷(¬G → reds)), but by the formula

O
s(F → G)

equivalently ✷((F ∧ ¬G) → reds) or ✷(F → (¬G → reds)). ✷(F →
OsG) would say something different: that if F is true at any state in a
model M then OsG is true at every state in M. That is not a form of
conditional obligation as the term is ordinarily understood.

As defined in this framework, the state obligation operator Os does
not satisfy what is often called ‘factual detachment’ in deontic logic:

6|= F ∧ O
s(F → G) → O

sG

It has the property called ‘deontic detachment’:

|= O
sF ∧ O

s(F → G) → O
sG

(It also satisfies what is sometimes called ‘strong factual detachment’:

|= ✷F ∧ O
s(F → G) → O

sG

but when ✷ is merely the universal modality for states, as here, this is
of little significance.)
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For comparison, the transition obligation O−→ satisfies deontic detach-
ment:

|= O−→ϕ ∧ O−→(ϕ → ψ) → O−→ψ

but there is also a form of factual detachment, in that:

|= F ∧ ✷(F → O−→ϕ) → O−→ϕ

6. Norms and most permissive models

Let us summarize. We are given an LTS

T = 〈S,A,R, prev, post, label, hS, hR〉.

How T is defined and constructed does not matter for the purposes of
this paper. We assume it is given. T is not coloured. It provides an
interpretation of all non-normative propositional atoms. Let us call this
language L. Let Ln be the language L extended with propositional
atoms reds and redt (and greens and greent), any defined atoms such as
red†

t
and green†

t
, and the defined operators Os and Fs , O−→ and F−→, O†

−→,
Obl and Obl

† , and so on.
Now we have a set Γ of expression of Ln representing explicit norms.

Essentially these Γ are conditional expressions (rules) defining reds and
redt . They will be used to construct a coloured model M = 〈T , hn

S, h
n
R〉

of the LTS T on which we can evaluate formulas of Ln. With certain
(natural) restrictions on the form of Γ we can ensure that this colouring
M of T is well-defined and unique.

Explicit norms Γ are state formulas of L. They are of two kinds:

State norms:

✷(F → reds), O
sF, F

sF (25)

Transition norms:

✷(F → ✷−→(ϕ → redt)), ✷(F → O−→ϕ), ✷(F → F−→ϕ) (26)

F and ϕ are state and transition formulas of L, respectively (and hence
do not contain any of the normative propositional atoms in Ln). In a
transition norm, if F ≡ ⊤ it may be omitted. (The resulting expression
is then an unconditional norm.)
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F and ϕ are state and transition formulas of L, respectively (and
hence do not contain any of the normative propositional atoms in Ln).
In a transition norm, if F ≡ ⊤ it may be omitted. (The resulting
expression is then an unconditional norm.)

We expect that usually F and ϕ will be truth-functional formulas of
propositional atoms only. However, for flexibility, we allow the operators
✷ and ✷−→ and 0: and 1: to appear in F and ϕ.

A colouring M = 〈T , hn
S, h

n
R〉 of T satisfies the explicit norms Γ when

every expression in Γ is valid in M. We write M |= Γ.
Since satisfaction of a set of explicit norms is defined in terms of

validity, we could have allowed explicit norms to be written without
the universal state modality ✷ . We have retained it to emphasise that
explicit norms are global properties of a model.

Most permissive models. A model M = 〈T , hn
S, h

n
R〉 is more permis-

sive than a model M′ = 〈T , hn
S

′, hn
R

′〉 when hn
S(reds) ⊆ hn

S
′(reds) and

hn
R(redt) ⊆ hn

R
′(redt).

M = 〈T , hn
S, h

n
R〉 is the most permissive Γ-colouring of T when (i)

M satisfies Γ and (ii) for any colouring M′ = 〈T , hn
S

′, hn
R

′〉 of T which
satisfies Γ, hn

S(reds) ⊆ hn
S

′(reds) and hn
R(redt) ⊆ hn

R
′(redt). We write

MT ,Γ for the most permissive Γ colouring of T . It is the colouring of
T that satisfies Γ and (uniquely) minimises Sred = hn

S(reds) and Rred =
hn

R(redt).
MT ,Γ is well-defined and unique. One can see this by encoding

the LTS T together with the explicit norms Γ as a logic program: T
can be encoded as a (not necessarily finite) set of atoms, one atom
for each state and one atom for each transition in T , and the explicit
norms Γ as rules defining reds and redt in terms of these atoms. That
logic program is definite and so has a least (unique minimal) model,
which encodes MT ,Γ. (These are properties of a definite logic pro-
gram found in any standard text on logic programming.) Moreover,
if colourings 〈T , hn

S, h
n
R〉 and 〈T , hn

S
′, hn

R
′〉 satisfy Γ then the colouring

〈T , hn
S(reds) ∩ hn

S
′(reds), hn

R(redt) ∩ hn
R

′(redt)〉 satisfies Γ.
Since the definition (11) of the ggg atom red†

t
can also be encoded

as definite rules, the most permissive colouring MT ,Γ = 〈T , hn
S, h

n
R〉 also

minimises hn
R(red†

t
).

Many variations are possible. In particular, one could dispense with
the distinction between redt and red†

t
, as in nC+ [3, 12]. The definition
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(11) then takes the form of a constraint (the ggg constraint), and is
satisfied by MT ,Γ.

We stress again that the restrictions imposed on the form of explicit
norms only apply when those expressions are used as explicit norms.
There are no restrictions on formulas of Ln to be evaluated on MT ,Γ.
Properties of MT ,Γ can be investigated without having to name states
and transitions explicitly. We can describe states and transitions of
interest by means of a state formula F or transition formula ϕ expressing
the relevant properties, and then determine whether MT ,Γ |= F → G or
MT ,Γ |= 0:F → ψ or MT ,Γ |= ϕ → ψ where formulas G or ψ express
whatever it is we wish to know. When

MT ,Γ |= ✷(F → O−→ϕ)

we can say that ✷(F → O−→ϕ) is a norm implied by Γ on LTS T , and
similarly for the other forms (25) and (26).

For the multi-agent case, the language Ln is readily extended to deal
with agent-specific norms as in [3, 10]. The atoms reds and redt then
represent impersonal (or ‘system’) norms, and atoms reds(x), redt(x) and
red†

t
(x) for each agent x what is unacceptable (red) from the point of

view of agent x, with the corresponding defined operators relativised to
agents. The methods for each agent-specific colouring work in exactly
the same way as those presented in this paper. The language Ln can
also be extended by agency (‘sees to it that’, ‘brings it about that’)
operators [10, 11]. That allows one to express, for example, whether a
specific agent x was responsible for a given transition being redt or for
the recovery from a reds state to a greens state. Examples are provided
in the works cited above. The colouring methods are not affected by
that extension.

Extensions. The framework itself can be extended in several ways. First,
we can generalise the form of explicit norms. One easy way is to allow
permissions (rules defining greens and greent) to act as exceptions to
general rules defining reds and redt . nC+ has some support for mecha-
nisms of this kind. With reasonable restrictions, we can still guarantee
that the most permissive colouring is unique. More generally, we are
currently looking at allowing defeasible explicit norms together with a
priority ordering between them to resolve conflicts. In that case the most
permissive colourings are not necessarily unique, just as in general there
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are multiple answer sets for a logic program or multiple extensions in
default logic. More generally still, we might look at moving away from
most permissive colourings, where states and transitions are always green
by default unless coloured red by the explicit norms, to a more flexible
framework which treats red and green more symmetrically. (The last
question is perhaps of more theoretical than practical value.)

In general then: given an uncoloured LTS T we can define a de-
ducibility relation ⊢T as follows. A formula ϕ of Ln is valid in T , |=T ϕ,
if ϕ is valid in all models that are possible colourings of T of some spec-
ified kind (for instance, but not necessarily, the most permissive ones).
In other words, the uncoloured LTS T can be seen as defining a class
of coloured models, namely, all models that are possible colourings (of
a specified kind) of T . Deducibility is then defined as usual: Γ ⊢T ϕ if
|=T (ϕ1 ∧ . . .∧ϕn) → ϕ for some {ϕ1, . . . , ϕn} ⊆ Γ. The most permissive
colourings for the restricted forms of explicit norms Γ presented in this
paper are a very special case. This second account is much more general
however since in principle it can work on any set of expressions Γ of Ln,
not only those which represent norms.

7. Conclusions

There are two main contributions in this paper. Unlike in nC+, where
nC+ rules are written to specify which states and transitions are green/
red as part of defining a coloured LTS, we instead employ the modal lan-
guage used for expressing properties of an LTS (coloured or uncoloured)
to represent a set of explicit norms, and then we use those norms to
colour a regular (uncoloured) LTS. This is an advantage because it works
with any transition system, not just those constructed using nC+. It al-
lows us to talk separately about the space of all possible non-normative
behaviours  states, actions and their effects as represented by an un-
coloured LTS  and norms regulating those behaviours, represented as a
colouring of that LTS. Given an uncoloured transition system describing
the possible non-normative behaviours, we have a notion of consequence
between a set of explicit norms as established by some regulating author-
ity and the obligations and permissions implied by those norms given
that range of possible behaviours.

The second contribution is the treatment of connections between
norms on states (‘ought to be’) and norms on transitions (‘ought to
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do’). Instead of treating well-formedness constraints such as the ‘green-
green-green’ constraint and its variants as fixed features of a coloured
LTS we can instead define them within the modal language used for rep-
resenting norms. That has the advantage of making their effects explicit
and making it easy to add further optional forms in similar style.

We are currently investigating ways of extending and generalising the
framework, in particular to allow defeasible conditional explicit norms
with a priority structure to express which norms are intended to be
exceptions to which.
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