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Abstract. In view of the limitations of classical, free, and modal logics to
deal with fictional names, we develop in this paper a four-valued logical
framework that we see as a promising strategy for modeling contexts of
reasoning in which those names occur. Specifically, we propose to evaluate
statements in terms of factual and fictional truth values in such a way that,
say, declaring ‘Socrates is a man’ to be true does not come down to the same
thing as declaring ‘Sherlock Holmes is a man’ to be so. As a result, our
framework is capable of representing reasoning involving fictional characters
that avoids evaluating statements according to the same semantic standards.
The framework encompasses two logics that differ according to alternative
ways one may interpret the relationships among the factual and fictional
truth values.

Keywords: philosophy of fiction; fictional names; logic of fiction; four-valued
logics

1. Introduction

Proper names that purport to refer to fictional characters (henceforth,
fictional names) pose some difficulties when it comes to presenting a
logical theory that countenances them. In this paper we discuss what
some of those difficulties are and develop a four-valued logical framework
that we see as a promising strategy for representing contexts of reason-
ing in which fictional names occur. Specifically, we propose to evaluate
statements in terms of factual and fictional truth values in such a way
that, say, declaring ‘Socrates is a man’ to be true does not come down
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to the same thing as declaring ‘Sherlock Holmes is a man’ to be so  for
while the former is true according to the way the real world is, the latter
is true only in virtue of what take place in certain piece of fiction. As
a result, our framework is capable of representing contexts of reasoning
that involve statements in which both fictional and non-fictional names
occur while avoiding that those statements be evaluated according to
the same semantic standards.

The paper is structured as follows: in Section 2 we outline some lin-
guistic intuitions that motivate our proposal and which highlight some
limitations we have identified in the classical, free, and modal logic ap-
proaches to modeling reasoning in contexts in which fictional names oc-
cur. Those intuitions guide our subsequent choices concerning the formal
language and the two formal semantics to be presented in Sections 3
and 4. In Section 5 we present one system of natural deduction rules
for each of the semantics in Section 4, and prove a few results about
them. In Section 6 we then prove that both systems are sound and com-
plete. Finally, in Section 7, we indicate how the two systems presented
in the paper could be modified to deal with inconsistent and incomplete
fictional scenarios, along with other possibles lines of further research.

Before getting started, though, it is worth making two caveats about
the methodology and scope of our proposal. The first one is that we
take here a moderate pluralist stance on logic. We do not claim that our
approach is the only way of formally modeling the rules people follow
when reasoning about fiction. We are prepared to admit that in different
contexts we can and do use quite different rules (and therefore different
logics) to reason about fiction. That being said, we do not wish to deny
that the classical, the free, or the modal logic approches provide us with
useful models for representing reasoning in which fictional names occur.
Nonetheless, each of those approaches does have its limits, and what we
want to do in this paper is to explore what we take to be a promising
and interesting alternative that is capable of overcoming or avoiding at
least some of them.1

The second caveat is that this is a work on logic rather than on
metaphysics. Our interest is to offer one way of formally representing
the rules people seem to follow when they reason about fiction in at least

1 Indeed, we acknowledge that our approach also has its own stock of limitations,
which are pointed out in Section 7 and in a few footnotes. We expect to be able to
deal with them in future works, by further developing the framework presented here.
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some circumstances. Thus, in spite of the importance of those questions,
we are not concerned with whether fictional objects exist, and if they do,
what their nature is. Nonetheless, we are also well aware there is no way
of conducting investigations on the logic and the semantics of fictional
discourse that is completely neutral with respect to metaphysical issues.
After all, we are here aiming towards what Kripke [14] calls an applied

semantics, as opposed to a pure semantics. And, for this reason, our
proposal is not free of metaphysical commitments. This is a fair concern,
and one we fully acknowledge. Hence, although we will inevitably make
some metaphysical assumptions in this paper, we will not take a definite
stance about them, since they are only the by-products of our semantical
and logical choices.

2. Objections to the classical, free, and modal logic approaches

If we take fictional names to be formally represented by singular terms,
it’s natural to consider them to be terms with no reference (i.e., as empty

terms). In classical logic, this approach leads immediately to some very
undesirable results, though. For consider the sentences:

Sherlock Holmes is a detective (1)

Sherlock Holmes is a superhero (2)

If we let the individual constant s be a formal name of Sherlock Holmes,
and the predicate letters D and H be the formal rendering of respectively
‘is a detective’ and ‘is a superhero’, then (1) and (2) will be formalized as
Ds and Hs. From either sentence we are authorized to infer ∃x(x = s),
which in classical logic is the standard formalization of:

Sherlock Holmes exists (3)

(3) seems false, though, at least in some contexts in which the word
‘exists’ is used. Furthermore, many people that accept that Sherlock
Holmes does not exist would be inclined to admit that (1) is a true
sentence  in some sense of ‘truth’  while (2) is false. Hence, in classical
logic from a sentence that many consider to be true we may infer a
sentence that many consider to be false.

This result is a consequence of the fact that in classical logic every
term refers to some individual in the domain of quantification and that
the existential quantifier ∃ is understood as carrying ontological com-
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mitment by the vast majority of classical logicians. Now, logicians have
come up with different strategies that were intended to accommodate
non-referring names within the classical framework. One such strategy
is to represent empty names as singular terms but assign them a bogus
referent in the domain of quantification. In the case of fictional names,
for instance, a certain first-order language may include singular terms
for both ‘Sherlock Holmes’ and ‘Odysseus’, but require them to refer
to a certain arbitrary object, say, the empty set. Accordingly, every
singular term will then refer to some object or other in the domain of
the quantifiers.2 It is quite clear, however, that the theory does not
provide a satisfactory solution to the problem above, for not only would
the formal rendering of (1) and (2) fail to express (1)’s and (2)’s intended
meaning, but also make both false, given that the empty set is certainly
not a detective. Moreover, any existential sentence, such as (3), will
come out true, contrary to our intuitions.

Taking fictional names to be represented by singular terms is not
the only option available to the classical logician, though. According
to Russell, ‘Sherlock Holmes’, along with the vast majority of proper
names that occur in natural language, is not a genuine name, but rather
certain definite description in disguise. And given Russell’s general view
that definite descriptions are expressions to be paraphrased away in ev-
ery sentential context in which they occur, (1), (2) and (3) should be
analyzed as:

There is exactly one x such that x is . . . and x is a detective (1r)

There is exactly one x such that x is . . . and x is a superhero (2r)

There is exactly one x such that x is . . . (3r)

Here, ‘. . . ’ abbreviates all (or at least the most salient) characteristics of
Sherlock Holmes as described in Conan Doyle’s novels. Since there exists
no (single) individual which satisfies all those characteristics, (1r), (2r)
and (3r) are false, and so are (1), (2) and (3). In addition to yielding in-
tuitively wrong results (e.g. in the case of (1)), this descriptivist account
also faces similar difficulties whenever mixed statements are concerned 
i.e., statements that are about both real and fictional individuals. For

2 Logicians have made use of this strategy for different purposes, such as, for
example, defining the abstraction operator {x : α(x)} as a total functor in set theories
based on ZF [see 25, §2.5].
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example, the sentence:

Conan Doyle created Sherlock Holmes (4)

is to be paraphrased as:

There is exactly one x such that . . . and x was created by Conan Doyle

(4r)
And since (4r) is false, so is (4), which, again, also defies our semantic
intuitions.

Sainsbury [22, ch. 6] argues for the adoption of a negative free logic.
Positive and negative free logics are commonly based on a bivalent se-
mantics. That is, analogously to classical logic, any formula is assigned
exactly one of two truth values. However, they differ from classical
logic in the way they handle sentences in which empty terms occur (i.e.,
terms that either have no referent at all or refer to an object outside the
domain of quantification). In negative free logics, all atomic sentences
with empty terms are invariably false, while in positive free logics, some
of those sentences may be true.3

According to Sainsbury, negative free logic offers a much more natural
account of sentences in which fictional names occur than classical logic
does, for in a negative free logic (2) is false in all models in which s is an
empty term. The downside of this approach, however, is that (1) is also
false in those models, offending the semantic intuition of many people,
who tend to admit (2) as being true compared to (1). It seems, as has
been suggested by Orlando [20], that any view that entails that (1) is
false is as unsatisfactory as any view that entails that (2) is true.

Perhaps, the adoption of a positive free logic would be a more promis-
ing choice, for unlike negative free logics, they do not rule out true atomic
sentences in which empty terms occur. Accordingly, there are models in
which (the formal counterpart of) (1) is true, even though both (2) and
(3) are false. These models are such that: the interpretation of s belongs
to the extension of D; it does not belong to the extension of H; neither
does it belong to the domain over which the quantifiers range. As a
result, we can construct a model in which Ds is true, while Hs and
∃x(x = s) are both false, as expected.

Despite some advantages of adopting a positive free logic over a neg-
ative one [see, e.g., 2], this strategy suffers from what we see as some
serious expressive limitations. First, in a positive free logic one is unable

3 See [4, 16, 18] for comprehensive overviews of free logics.
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to express general statements about fictional objects, such as:

Sherlock Holmes arrested some criminals (5)

In the context of classical logic, where the quantifiers range over abso-
lutely all individuals, (5) could be expressed by:

∃x(Asx ∧ Cx) (5f1)

(where A is the formal counterpart of the predicate ‘x arrests y’, and C of
the predicate ‘x is a criminal’). However, since in positive free logics the
quantifiers are only supposed to range over non-fictional objects, (5f1)
does not retain (5)’s intended interpretation, for what (5f1) actually
expresses in such a logic is that Sherlock Holmes arrested at least one
real criminal, which is clearly untrue.4

The second problem of adopting positive free logics for modeling rea-
soning about fiction is that although they allow for true atomic sentences
about fictional objects, they do not recognize any differences between
truth assignments to sentences in which fictional names occur and to sen-
tences in which they do not occur. Consider, for example, the sentence:

Dave Toschi is a detective (6)

and compare it with (1) above. It is clear that whenever one declares (1)
and (6) to be true, the relevant senses of ‘true’ in each case are signifi-
cantly different. For while (1) is true only according to what is told in the
stories of Conan Doyle, (6) is true in virtue of the fact that Dave Toschi,
the main investigator in the Zodiac Killer case, is a real-world detective.
In a positive free logic, however, the truth of (1) and (6), when translated
into the formal language, would come down to exactly the same thing,
viz., the satisfaction of certain predicates by certain individuals. As far
as we can tell, neither the semantics nor the syntax of a positive free logic
have the necessary resources for appropriately expressing this difference.

One way out would be to take into account the semantic notion of a
possible world. Thus, in the actual world (6) is true while (1) is false.

4 One might retort that the introduction of substitutional quantifiers Π and Σ,
in addition to the usual objectual ones (viz., ∀ and ∃), could overcome this difficulty.
For, unlike ∀ and ∃, Π and Σ could be taken as ranging over absolutely all individuals.
However, this move would only work if every individual had a corresponding name
in the formal language, which is at odds with the fact that several novels contain
characters that do not have names.
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But there is a possible world where (1) is true which, of course, is not
the actual one.

The semantics of a quantified modal logic may be formulated using
constant or variables domains. Now, the proposal of applying constant
domain semantics to fictional names is subject to the following criticism:
if Sherlock Holmes exists in a possible world, he exists in the actual
world; and if Dave Toschi exists in the actual world, he exists in any
other possible world. Hence, all individuals that exist in some world
necessarily exist, which is not intuitive at all.

Much more promising is the modal logic with variable domains.
Thus, in Conan Doyle’s fictional stories, the individual Sherlock Holmes
exists, but not in our actual world. Davi Toschi, in turn, exists in our
actual world but does not exist in the world created by Conan Doyle.
Every fiction here is seen as a possible world, and every possible world
has its domain of objects existing in that possible world.

Modal logic with variable domains delivers a useful and interesting
framework for dealing with fictional entities, but it also has its limits.
Note that in modal logic every individual is a possibly existing individual.
This doesn’t seem to be a problem in the case of Sherlock Holmes. From
(1), we would infer something much weaker than (3). We would simply
infer that it is possible that Sherlock Holmes exists. The main problem
is that in some fictional texts contradictions appear, so that there are
individuals who are logically impossible, for example in [7, 21].

It is true that this criticism can be avoided through a semantics of
impossible worlds, as advocated in [3], for instance. The impossible
worlds would be those in which contradictions occur and, therefore, the
individuals that exist in that world would not be possible in our world,
which we could assume as a consistent world.

Anyway, we would like to add a second criticism here to modal logic
with variable domains that somehow also affects approaches with impos-
sible worlds too. Note the following sentence:

Superman is a superhero (7)

Basically, the same people who are willing to admit (1) as being true
would admit (7) as being true as well. On the other hand, compare the
following sentences:

It’s possible that Sherlock Holmes exists (8)

It’s possible that Superman exists (9)
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Most people would be inclined to reckon (8) as true while very few would
have the same attitude towards (9). This is because there are several
different notions of ‘possible’ in natural language. Due to Superman’s
supernatural properties, he doesn’t seem to be a possible individual, at
least physically or biologically so. Sherlock Holmes, on the other hand,
has no supernatural properties, making it much easier for us to admit
that he is a possible individual.

One could, of course, reply that the semantics of possible worlds is
rich enough to express different nuances of the notion of ‘possible’ ac-
cording to the relations of accessibility between possible worlds: logical
possibility, physical possibility, metaphysical possibility, etc. This can be
seen in the huge number of distinct modal systems existing in the litera-
ture, many of them seeking to capture different nuances of the meaning
of ‘necessary’ and ‘possible’ in natural language. Our argument does not
depend, however, on the distinct meanings of ‘possible’ in natural lan-
guage. Rather, it runs as follows: if some people can admit (1), (7) and
(8) as being true while (9) as being false, this seems to indicate that the
possibility or not of the existence of fictional terms in some usages seems
irrelevant to admit the truth or falsity of sentences in which fictional
terms occur. And this is reason enough to admit that whereas modal
logic with variable domains offers a rich and expressive formal semantics
for dealing with fictional terms, it also has its limits.

3. Two four-valued approaches

The foregoing discussion brings us to the following intuition: although
it seems that some sentences about fictional beings and events, such as
(1), are true, the sense of ‘is true’ at stake in these cases is significantly
different from the sense in which sentences about real beings and events
are so.

The most intuitive notion of truth is, of course, somehow dependent
on how the world really is, and if non-fictional names are the only names
that occur in a sentence, then the sentence as a whole should be con-
sidered as either true or false according to the facts that obtain in the
world. On the other hand, a quite different notion of truth seems to
be presupposed whenever fictional statements are concerned, since their
truth depends for the main part on what is told by or depicted in one
or another fictional media. Accordingly, we propose that the notion of
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truth (falsity) be split into two: factually true (false) and fictionally true

(false). Given an atomic sentence Pt, where P is a predicate and t a
term, we may then say that Pt is factually true (false) if the referent
of t does factually exist and is such that it belongs (does not belong)
to the extension P ; and that Pt is fictionally true (fictionally false) if t
does not refer to anything that factually exists and is such that t belongs
(does not belong) to the extension of P . By evaluating sentences in this
way, we are capable of counting (1) and (6) among the truths, while
still acknowledging the difference between the senses of ‘is true’ at stake
in each case: while (1) is fictionally (though not factually) true, (6) is
factually (though not fictionally) true. Likewise, the sentence:

Sherlock Holmes is not a detective (10)

which is the negation of (1), is fictionally (though not factually) false,
but the negation of (6):

Dave Toschi is not a detective (11)

is factually (though not fictionally) false.

Notice that to say that (1) is not factually true does not entail that
it is factually false (in addition to being fictionally true) and that to say
that (10) is not factually false, does not entail that it is factually true (in
addition to being fictionally false). Hence, the values factually true and
factually false are not mutually exhaustive, as neither are fictionally true

and fictionally false. This means that some sentences may be understood
as lacking a truth value whenever we restrict our attention to their factual
or fictional values. For example, (1) lacks a factual truth value, while
(6) lacks a fictional truth value.5

Evaluating sentences according to whether they have a factual or a
fictional truth value introduces some new challenges when it comes to
determining the truth conditions of complex sentences. To understand

5 Nonetheless, the systems to be presented in the next sections allow neither for
truth values gaps nor for truth value gluts (in the sense that sentences must receive
at least one of the four values, and that each value excludes all the others). We are
aware that this aspect represents a limitation of our proposal. After all, not only does
the sentence ‘Sherlock Holmes owned six pipes throughout his life’ lack a factual truth
value, but it also lacks a fictional value. In future works, we intend to overcome this
limitation by modifying the systems to make room for gaps and gluts (see Section 7
for further comments on this point).
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how these challenges emerge, consider the sentence:

Sherlock Holmes is a philosopher and Socrates is a detective (12)

(12) is false since both conjuncts are false. But is it factually or only
fictionally false? As we shall now see, either answer can be considered
correct depending on how one chooses to interpret the behavior of the
logical connectives and quantifiers concerning the interaction of factual
and fictional truth values. Since we have as yet found no definite reason
for adopting one interpretation over the other, we shall not take a stance
about this question in this paper, but merely indicate how those two
options can be implemented in the corresponding formal semantics.

According to the first interpretation, (12) is factually false, given that
at least one of its conjuncts, viz., ‘Socrates is a detective’, is factually
false. The reason is that, on this interpretation, truth values are ordered
as follows:

factually false < fictionally false < fictionally true < factually true

And since we take conjunctions to have the least value among the values
of their conjuncts, this means that because ‘Socrates is a detective’ is
factually false, so is (12). Likewise, the disjunction:

Sherlock Holmes is a detective or Socrates is a philosopher (13)

is factually true because at least one of its disjuncts, viz., ‘Socrates is
a philosopher’, is also factually true (no matter the value of the other
disjunct). According to the second interpretation, on the contrary, (12)
is rather only fictionally false, given that at least one of its conjuncts,
viz., ‘Sherlock Holmes is a philosopher’, is fictionally false. Thus, on this
interpretation, truth values are ordered as follows:

fictionally false < factually false < factually true < fictionally true

And, as the reader might expect, (13) will then be fictionally true, given
that ‘Sherlock Holmes is a detective’ is so.

As a matter of fact, not only are there two possible interpretations
for evaluating complex formulas, but a similar divide also shows up even
at the atomic level. Take, for instance, Sainsbury’s example in [22, ch. 6]:

Tony Blair admires Coriolanus (14)

and suppose that (14) is true. Since Coriolanus is one of Shakespeare’s
characters, should (14) be factually or fictionally true? One might main-
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tain that (14) is factually true because it talks about a real person and
expresses a fact in the real world. But (14) might also be taken to be
only fictionally true, since ‘Coriolanus’ is a fictional name, and so there
is nothing in the real world itself that could be the fact of Coriolanus be-
ing admired by Tony Blair.6 As before, we shall not take a stance about
which of these two ways of interpreting (14) is indeed correct, but, as in
the case of complex formulas, merely describe how these alternative in-
terpretations may be implemented in an appropriate formal semantics.7

Allowing sentences to be either factually true (false) or fictionally true
(false) seems to call for some way of expressing this difference within the
object language itself. In other words, we need some formal analogue
of the natural language phrases ‘it is factually true that’, ‘it factually
holds that’ etc. To accomplish this, we shall make use of a new primitive
unary sentential operator ! such that whenever ! is prefixed to a formula
α, it expresses that ‘it is a matter of fact, rather than of fiction, whether
α’, while ¬!α expresses that ‘it is a matter of fiction, rather than of
fact, whether α’.8 As result, we will be able to express the following four

6 A third position is to maintain that it is not possible to decide whether (14)
is factually or fictionally true. However, even in a non-deterministic approach we
must follow, for technical reasons, the principle expressed in [1] that non-determinism
takes place only concerning non-atomic formulas. We will return to this point in the
Section 7.

7 Lehman’s [15] strict Fregean logic is intended to be a logical rendering of Frege’s
views on the semantics of fictional names in [8] as those views are accounted for by
the orthodox interpretation of Frege’s work on the philosophy of language. According
to this interpretation, though fictional names, such as ‘Odysseus’, have a sense, they
do not have a corresponding referent; and to the extent that sentences refer to a truth
value (either the True or the False) only if all terms occurring in it are non-empty,
any sentence in which fictional names occur will lack truth value.

Nonetheless, some scholars have also advocated other, less orthodox, interpreta-
tions of Frege’s views about the semantics of fictional names. By drawing on [9, p. 130],
for example, Evans [6, pp. 291–321] maintains that according to Frege fictional names
have both fictional senses and fictional references. If Evans’ interpretation is correct,
then sentences in which at least one such name occurs should refer to a fictional truth
value. This is precisely what takes place in the second interpretation of (13) above,
in which it is enough for a fictional name to occur in an atomic sentence for it to have
a fictional truth value. Thus, if Lehman is indeed entitled to call his logic a strict

Fregean logic, we also have good reasons to believe that the logic L1 below is a broad

Fregean logic  since it is a formal counterpart of a less unorthodox interpretation of
Frege’s views about fictional names.

8 We chose of the symbol ! as a loose reference to the expression E!, which is
sometimes used as the existence predicate of some free logics. Though the logics to be
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scenarios

• α is factually true: α ∧ !α
• α is fictionally true: α ∧ ¬!α
• α is factually false: ¬α ∧ !α
• α is fictionally false: ¬α ∧ ¬!α

Now, consider the following sentence:

It is factually the case that Sherlock Holmes is a detective (15)

which can be formalized as:

Ds ∧ !Ds (15f)

Everyone will agree that (15) (and so (15f)) is false. But should it be
factually or only fictionally so? We consider it quite reasonable to admit
that whenever assertions to the effect that something is factually true
or false are concerned, we are interested in what takes place in the real
world, rather than what is told in some fictional story. Hence, ! will
be interpreted here in such a way that !α can never receive a fictional
value: if α is either factually true or false, then !α is factually true;
and if α is fictionally true or false, then !α is factually false. Notice
that according to this interpretation, any iteration of ! (!!α, !!!α, . . . ) will
always be factually true, no matter the truth value of α.9

Let us consider now how to express existential claims such as (3). We
have already seen that classical logicians face the dilemma of either tak-
ing sentences such as (1) as true, which appears to entail (3) to be false,
or else embrace the consequence that both (1) and (2) are equally true.
But either option leads to very counter-intuitive results. Free logicians
are no better off, for not only do they face some of the problems classical
logicians do (such as taking (1) to be false if the free logic in question is
negative) but also seem utterly unable to express certain general state-
ments about fictional characters (e.g., (5)). Our proposal is vulnerable

presented here also have a primitive existence predicate in their logical vocabularies,
we shall adopt the symbol E instead of E! (which is also common in free logics).

9 ! bears some important resemblances to da Costa’s [5] consistency operator ◦,
which identifies, within the object language, those formulas that have “a classical
behavior” (viz., that obey the principle of explosion: α, ¬α ⊢ β). Similarly to ◦, !
indicates in the object language whether a certain formula α has a factual truth value.
Thus, we may say that as α◦ expresses that α has classical behavior, !α expresses α
has a “factual behavior”.
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to none of the above problems, though. For consider (3) again. Is it fac-
tually false or fictionally true? Well, the answer depends on whether we
take (3) to express a fact about the real world, or merely describe what
takes place in Conan Doyle’s novels. For if we are entitled to claim that
(1) is fictionally true because Sherlock Holmes is a detective according
to Doyle’s stories, there is no reason why (3) cannot be also fictionally
true, given that he also exists according to those very same stories. In
order words, (3) may be formalized in either of the following two ways:

∃x(x = s) ∧ !(∃x(x = s)) (3f1)

∃x(x = s) ∧ ¬!(∃x(x = s)) (3f2)

depending on whether (3) is taken to express that Sherlock Holmes fac-
tually exists or exists only according to a certain piece of fiction. But, on
this interpretation, the inference from (1) to (3), when rendered in either
of the logics to be presented in Section 4, turns out not to be valid. For
even though ∃x(x = s) does hold in both logics, in order to obtain (3f1)
or (3f2) we still need an additional premise, viz., either !(∃x(x = s)) or
¬!(∃x(x = s)), neither of which is itself valid.10

That fictionally true existential claims may be expressed in terms of
the existential quantifier means, contra Quine, that ∃ is not an onto-
logically committing expression  in the sense that if ∃xα is true, then
there factually exists an individual that satisfies α. Hence, even though
∃xα does entail real existence if ∃xα is factually true, ∃ can no longer
be taken as a univocal way of expressing ontological commitments. To
fill in this gap, and also for technical reasons which will become clear
below, we shall further enrich the formal language with a new unary
predicate E, the existence predicate. For every term t, E is meant to
indicate whether t denotes a real object, as opposed to a mere fictional
one. Thus, unlike ∃x(x = t), Et expresses that t factually exists, and
so is ontologically committing. The relations among !, ∃, and E can be

10 If s denotes a fictional individual, (3f1) is factually false in either of the formal
semantics presented in Section 4. However, (3f2) will be assigned different values.
In L1 (3f2) is fictionally true, given that ∃x(x = s) is so (no matter the fact the
¬!(∃x(x = s)) is factually true), while in L2 it will be factually true, given that
!(∃x(x = s)) is also factually true. Since (3f2) is intuitively fictionally true, this
result might favor the adoption of L1 over L2. However, we do not think this to be a
knock-down reason for rejecting L2 altogether, since we acknowledge that there might
be other ways of expressing existential claims in which the second (non-ontologically
committing) sense of (3) turns out to be fictionally rather than factually true in L2.
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summarized in the following two equivalences which hold in both logics
to be presented below:

Et is factually true iff !(∃x(x = t)) is factually true

¬Et is factually false iff ¬!(∃x(x = t)) is factually false

Finally, it is worth mentioning that by having both ! and E at our
disposal, we are capable of formally expressing the two possible interpre-
tations of (13) mentioned above. In the first interpretation, which main-
tains that (13) is factually true because it talks about at least one real
object (viz., Tony Blair), every n-ary predicate P is such that !Pt1 . . . tn

and Et1 ∨ · · · ∨ Etn are equivalent; while in the second interpretation,
according to which (13) is merely fictionally true because ‘Coriolanus’ is
a fictional name, the corresponding equivalence holds between !Pt1 . . . tn

and Et1 ∧ · · · ∧ Etn. As we shall see briefly, while the first equivalence is
a primitive rule of the logic L2 to be presented in Section 5, the second
equivalence is a primitive rule of the logic L1 instead.11

In the next sections, we will develop two four-valued logical frame-
works that are based on the conceptual discussion carried out in this
section.

4. Syntax and formal semantics

The logical vocabulary of the two logics to be presented in this and in the
next section is composed of the sentential connectives ¬, ∧, and !, a denu-
merable set V = {vn : n ∈ N} of individual variables, the universal quan-
tifier ∀, the predicates = and E, and parentheses. We shall specify the
non-logical vocabulary of any first-order language by means of its first-

order signature, i.e., a triple 〈C, F , P〉 such that the elements of C, F , and
P are respectively the individual constants, function symbols, and pred-

11 The reader might wonder why we don’t allow predicates to be divided between
factual and fictional, just as terms are. The reason is that we can easily express the
distinction as follows:

Px is a factual predicate iff ∀x!Px is factually true,
Px is a fictional predicate iff ∀x!Px is not factually true.

This may be an interesting to the realism/antirealism dilemma of fictional properties
posed by Sawyer in [24].

Obviously, our language cannot determine whether fictional properties exist, for
to do so we would need a second-order language and, in that case, we would have to
abandon our completeness result.
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icates letters of S.12 The existence and identity predicates, E and =, are
assumed to be among the predicate letters of any first-order signature.

Given a first-order signature S, the sets Term(S) and Form(S) of
respectively the terms and formulas of S are inductively defined in the
usual manner, except that the definition of Form(S) also has the fol-
lowing additional clause: if α ∈ Form(S), then !α ∈ Form(S).13 We
take the connectives ∨, →, and ↔, and the existential quantifiers, ∃,
to be defined as usual: A ∨ B := ¬(¬A ∧ ¬B), α → β := ¬α ∨ β,
α ↔ β := (α → β) ∧ (β → α), ∃xA := ¬∀x¬A.

As for the formal semantics, an interpretation of a first-order lan-
guage is a structure in the usual model-theoretic sense, but with two
(disjoint) domains rather than a single domain. The two domains are
supposed to represent respectively the set of all real and the set of all
fictional individuals.14

Definition 4.1. Given a first-order signature S, a structure for S is
a triple A = 〈A, A∅,a 〉 such that: (i) A and A∅ are respectively the
set of real and the set of fictional individuals of A, A ∩ A∅ = ∅, and
|A| = A ∪ A∅ 6= ∅ (|A| is the domain of A); (ii) a is a function (the
interpretation function) satisfying the following conditions:

• For each individual constant c of S, a(c) = a, for some a ∈ |A|;
• For each n-ary function f of S, a(f) is a function g : |A|n → |A|;
• For each n-ary predicate P of S, a(P ) ⊆ |A|n.
• a(E) = A and a(=) = {〈a, a〉 : a ∈ |A|}

From now on, we shall write fA and PA instead of respectively a(f)
and a(P ). If A is an S-structure, then an assignment in A is a function

12 Each function symbol and predicate letter of S is assumed to have a corre-
sponding finite arity.

13 Henceforth, we shall use x, y, z as variables ranging over V, lower-case Greek
letters, α, β, γ,. . . , as variables ranging over Form(S), and upper-case letters, Γ , ∆,
Σ,. . . , as variables ranging over sets of formulas. In order to improve readability, we
adopt the usual conventions concerning the omission of parentheses. The notions of a
free and a bound occurrence of a variable in a formula, as well as the notions of a term

free for a variable in a formula, closed term, and closed formula (or sentence) are as
in classical logic. The set of closed formulas and closed terms over S will be denoted
by Sent(S) and CTerm(S), respectively. Finally, we will write α[x/t] to denote the
formula obtained by replacing every free occurrence of x in α by the term t.

14 This assumption is far from consensual. Many may assume, for example, that
the real New York City is the same as the fictitious New York City in the Spide-rman
stories. We will continue with this controversy in Section 7.
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s : V −→ |A|. For each assignment s ∈ |A|V , and term t, the denotation

of t in s (denoted by s(t)) is defined as usual: (i) if t is a variable x, then
s(t) = s(x); (ii) if t is an individual constant c, then s(t) = cA; and (iii)
if t has the form ft1 . . . tn, then s(t) = fA(s(t1), . . . , s(tn)). If a ∈ |A|,
we shall denote by sa

x
the assignment that is just like s except that it

assigns the individual a to the variable x.15

Given an S-structure A, each formula will have one (and only one) of
the following four values in a structure A (with respect to an assignment
s): T (for factually true), t (for fictionally true), f (for fictionally false),
and F (for factually false). There will be, however, two alternative ways
of assigning those values. Each of these ways corresponds to one of
the alternative interpretations of mixed sentences discussed in the last
section. This divide will be present in all semantic clauses, and so, for
each logical symbol, we shall present the relevant semantic clauses at
once, identifying them with the numerals ‘1’ and ‘2’.

Let P be a predicate letter distinct from E and let i range over
{1, . . . , n}. Then:

(P1)

• (Pt1 . . . tn)A[s] = T iff 〈s(t1), . . . , s(tn)〉 ∈ PA and s(ti) ∈ A, for
every i;

• (Pt1 . . . tn)A[s] = t iff 〈s(t1), . . . , s(tn)〉 ∈ PA and s(ti) ∈ A∅, for
some i;

• (Pt1 . . . tn)A[s] = f iff 〈s(t1), . . . , s(tn)〉 /∈ PA and s(ti) ∈ A∅, for
some i;

• (Pt1 . . . tn)A[s] = F iff 〈s(t1), . . . , s(tn)〉 /∈ PA and s(ti) ∈ A, for
every i.

(P2)

• (Pt1 . . . tn)A[s] = T iff 〈s(t1), . . . , s(tn)〉 ∈ PA and s(ti) ∈ A, for
some i;

• (Pt1 . . . tn)A[s] = t iff 〈s(t1), . . . , s(tn)〉 ∈ PA and s(ti) ∈ A∅, for
every i;

• (Pt1 . . . tn)A[s] = f iff 〈s(t1), . . . , s(tn)〉 /∈ PA and s(ti) ∈ A∅, for
every i;

• (Pt1 . . . tn)A[s] = F iff 〈s(t1), . . . , s(tn)〉 /∈ PA and s(ti) ∈ A, for
some i.

15 Of course, whenever s(x) = a, then s and sa

x
will not differ at all.
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According to (P1), an atomic formula α is either fictionally true or fic-
tionally false if and only if some of the terms occurring in α are fictional 
or, equivalently, α is factually true or factually false if and only if all the
terms occurring in α are non-fictional. On this interpretation, mixed
formulas are therefore always fictionally evaluated. Conversely, (P2) en-
tails that α is either factually true or factually false if and only if some
of the terms that occur in α are non-fictional, which corresponds to the
idea that mixed atomic formulas should always be evaluated in terms of
the factual truth values, T and F .

Unlike the other predicates, the existence predicate E will be assigned
a special role in the formal semantics, for, as we have seen, it is meant to
allow us to distinguish terms according to whether they denote real or
fictional entities. Since claims to the effect that a certain term is either
fictional or non-fictional are factual, Et should never receive either the
value t or f . As a result, we end up with the following semantic clauses
for atomic formulas formed by E:

• (Et)A[s] = T iff t ∈ A; and
• (Et)A[s] = F iff t ∈ A∅.

As with the predicate symbols, we also have two ways of interpret-
ing the sentential connectives. The relevant semantic clauses may be
summarized in the following tables:

α ¬α

T F

t f

f t

F T

!α

T T

t F

f F

F T

∧1 T t f F

T T t f F

t t t f F

f f f f F

F F F F F

∧2 T t f F

T T T f F

t T t f F

f f f f f

F F F f F

Remark 4.1. Notice that, as in Gödel’s G4 and Łukasiewicz’s Ł4, con-
junction behaves as the minimum operator in the truth value orders of
both L1 and L2. Negation behaves as in Łukasiewicz’s systems. Specifi-
cally, if x and y are truth values, then x∧y = min{x, y} and ¬x = 1−x.

The disjunction and implication operators of L1 and L2 are classically
defined  i.e., x ∨ y = max{x, y}, as in G4, and x → y = max{1 − x, y}.
Thus, the implication operators of L1 and L2 differ from those of G4
and Ł4.

It is worth emphasizing, however, that L1 and L2 have two designated
truth values, which is in stark contrast with the systems in Gödel’s and
Łukasiewicz’s hierarchies [see 10].
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Finally, taking a to range over |A| = A ∪ A∅, we have the following
clauses for ∀, which correspond to the two interpretations of ∧ presented
above:

(Q1)

• (∀xα)A[s] = T iff (α)A[sa

x
] = T , for every a;

• (∀xα)A[s] = t iff (α)A[sa

x
] ∈ {T, t}, for every a, and (α)A[sa

x
] = t, for

some a;
• (∀xα)A[s] = f iff (α)A[sa

x
] 6= F , for every a, and (α)A[sa

x
] = f , for

some a;
• (∀xα)A[s] = F iff (α)A[sa

x
] = F , for some a;

(Q2)

• (∀xα)A[s] = t iff (α)A[sa

x
] = t, for every a;

• (∀xα)A[s] = T iff (α)A[sa

x
] ∈ {T, t}, for every a, and (α)A[sa

x
] = T ,

for some a;
• (∀xα)A[s] = F iff (α)A[sa

x
] 6= f , for every a, and (α)A[sa

x
] = F , for

some a;
• (∀xα)A[s] = f iff (α)A[sa

x
] = f , for some a;

From the semantic clauses above and the definition of ∃ in terms of ¬ and
∀, it is straightforward to obtain corresponding clauses for the existential
quantifier. In the case of L1, for example, we have:

• (∃xα)A[s] = T iff (α)A[sa

x
] = T , for some a;

• (∃xα)A[s] = t iff (α)A[sa

x
] 6= T , for every a, and (α)A[sa

x
] = t, for

some a;
• (∃xα)A[s] = f iff (α)A[sa

x
] ∈ {F, f}, for every a, and (α)A[sa

x
] = f ,

for some a;
• (∃xα)A[s] = F iff (α)A[sa

x
] = F , for every a.

Notice that the characterization of a first-order structure in Defini-
tion 4.1 bears some resemblance to the corresponding definition in some
positive free logics, in which interpretations also have two domains, Di

and Do, called respectively inner and outer domains. Di is usually
taken to represent there the set of individuals that exist, while Do is a
superset of Di that also includes the “individuals” to which empty terms
(e.g., ‘Pegasus’) refer. Thus, the domains A and A∅ in Definition 4.1
correspond respectively to Di and Do/Di. There is, however, a crucial
difference between our approach and the one based on dual domain free
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logics, for while the quantifiers ∀ and ∃ range over only the individuals
in Di, the quantifiers above range over the entire domain A ∪ A∅ of A.
This decision corresponds to the view, discussed in Section 3, that ∀ (and
thus ∃) is an ontologically neutral expression, something which most (if
not all) free logicians would certainly reject.16

We shall call the logics generated by the two interpretations above
L1 and L2, respectively. Given Γ ∪ {α} ⊆ Form(S), α is a semantic

consequence of Γ in L1 (L2) iff for every S-structure A and assignment
s in A if βA[s] ∈ {T, t}, for every β ∈ Γ , then αA[s] ∈ {T, t}. Whenever
α is a semantic consequence of Γ in this sense, this will be expressed by
Γ �L1 α (Γ �L2 α).

Enough for the semantics of L1 and L2. In the next section, we will
present their proof-theoretic counterparts, providing each logic with a
corresponding sound and complete natural deduction system.

5. Two natural deduction systems

The systems DL1 and DL2 below correspond respectively to the logics L1

and L2 and result from adding the following rules governing the behavior
of ! to an appropriate set of natural deduction rules for classical first-
order logic (e.g., the ones presented in [26]):

System DL1

!E
!Et

!Pt1 . . . tn

!E1
Et1 ∧ · · · ∧ Etn

!!I
!!α

!α
!¬

!¬α

!α !β
! ∧ I1.1

!(α ∧ β)
¬α !α

! ∧ I1.2
!(α ∧ β)

¬β !β
! ∧ I1.3

!(α ∧ β)

!(α ∧ β) ¬!α
! ∧ E1.1

¬β ∧ !β

!(α ∧ β) ¬!β
! ∧ E1.2

¬α ∧ !α

∀x!α
!∀I1.1

!∀xα

∃x(¬α ∧ !α)
!∀I1.2

!∀xα

!∀xα ∃x¬!α
!∀E1

∃x(¬α∧!α)

16 However, since the formal language we are working with also includes the
existence predicate E among its logical primitives, by restricting ∀ and ∃ to E, it is
possible to define a new pair of quantifiers ∀E and ∃E that behave as in dual domain
free logics.
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In E1, P must be distinct from E.17

System DL2

!E
!Et

!Pt1 . . . tn

!E2
Et1 ∨ · · · ∨ Etn

!!I
!!α

!α
!¬

!¬α

!α !β
! ∧ I2.1

!(α ∧ β)

β !α
! ∧ I2.2

!(α ∧ β)

α !β
! ∧ I2.3

!(α ∧ β)

!(α ∧ β) ¬!α
! ∧ E2.1

α ∧ !β

!(α ∧ β) ¬!β
! ∧ E2.2

β ∧ !α

∀x!α
!∀I2.1

!∀xα

∃x!α ∀x(α ∨ !α)
!∀I2.2

!∀xα

!∀xα ∃x¬!α
!∀E2

∃x!α ∧ ∀x(α ∨ !α)

As in DL1, P must be distinct from E in rule !E2.

Henceforth, we shall use the symbol L to refer to either L1 or L2, and write
L1, L2, and L instead of respectively DL1, DL2, and DL (which, as in the case of
L, also refers indistinctively to either DL1 or DL2). The reader should encounter
no difficulties to determine whether it is the logic or the corresponding deductive
system that is being talked about in each context. As usual, the notion of a
derivation in L can be inductively defined in terms of trees by adapting the
definition in [26, p. 34]. We shall use the notation Γ ⊢L α to express that
there is a derivation Θ in L such that α is the bottommost formula in Θ (its
conclusion) and all of Θ’s (undischarged) hypotheses belong to Γ .

Here is a couple interesting facts that hold for L1 and L2:

Proposition 5.1. Let S be a first-order signature and Γ ∪ {α, β} ⊆ Form(S).
Then the following facts hold for L1 and L2:

1. For every α ∈ Form(S), ∀xEx ⊢L !α.
2. For every α ∈ Form(S) such that E does occur in α, ∀x¬Ex ⊢L ¬!α.
3. Let CL denote the classical subsystem of L. If neither E nor ! occur in

Γ ∪ {α} and Γ ⊢CL α, then:

a. Γ, ∀xEx ⊢L α ∧ !α; and
b. Γ, ∀x¬Ex ⊢L α ∧ ¬!α.

17 If E were allowed to be replaced by P in rule !E1, then no term t could be
such that ¬Et held (on pain of triviality). For since ⊢DL1

∀x!Ex (by applying ∀I to
!Ex, which is an instance of !E), !E1 would then allow proving ∀xEx.
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Proof. Ad 1. It follows by induction on the complexity of α from the fact that
∀xEx ⊢L!Pt1 . . . tn, for every term t, and the following !-propagation properties,
which are immediate consequences of rules !E, !E1 (!E2), !¬, and some of the
!-introduction rules of L1 and L2:

⊢L !Et !α ⊢L !¬α !α, !β ⊢L !(α ∧ β) ∀x!α ⊢L !∀xα

Ad 2. Likewise, it can be proven by induction on the complexity of α and:

∀x¬Ex ⊢L ¬!Pt1 . . . tn ¬!α ⊢L ¬!¬α ¬!α, ¬!β ⊢L ¬!(α ∧ β)

∀x¬!α ⊢L ¬!∀xα

which can be proven by rules !E, !E1 (!E2), !E¬, and the !-elimination rules of
L1 and L2.

As the reader might have noticed, both L1 and L2 are very close to classical
logic. In fact, not only do they extend classical logic, but do so in a conservative
manner:

Proposition 5.2. L1 and L2 are conservative extensions of classical logic, i.e.:

Γ ⊢CL α iff Γ ⊢L α

for every Γ ∪ {α} such that neither E nor ! occur in Γ ∪ {α}.

Proof. The left-to-right direction follows immediately from the fact L contains
every rule of classical first-order logic. As for the right-to-left direction, we shall
make use of the completeness of L, which will be proved in the next section (see
Theorem 6.1): suppose that Γ 0CL α. By the completeness of classical logic,
there is a classical structure A = 〈A, a〉 and an assignment s in A such that
A, s � β, for every β ∈ Γ and A, s 2 α. Let AL = 〈A, A∅, a〉 be the L-structure
that is just like A except that A∅ = ∅. It follows by induction on the complexity
of γ that γAL [s] = T iff A, s � γ, and γAL[s] = F iff A, s 2 γ, for every γ in
which neither E nor ! occurs. Therefore, βAL [s] = T , for every β ∈ Γ , and
αAL [s] = F . By the completeness of L, we may conclude that Γ 0L α.

Given the semantic conditions of !, it should be clear that usual the for-
mulation of the replacement theorem, i.e., α ↔ β �L γ ↔ γ[β‖α], does not
hold in general, as !α ↔ !β will receive the value F when αA[s] = T (= t)
and βA[s] = t (= T ) or αA[s] = F (= f) or βA[s] = f (= F ) (and in both
cases (α ↔ β)A[s] ∈ {T, t}). However, the very presence of ! allows us to define
a stronger equivalence relation that, unlike →, permits replacing equivalents
formulas for one another in every sentential context:

α ≡! β := (α ↔ β) ∧ (!α ↔ !β)

By induction on the complexity of γ we obtain:
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Proposition 5.3. Let γ[β‖α] denote a formula that results from replacing zero
or more occurrences of α in γ by β. If none of the variables free α or β is also
free in γ, then α ≡! β ⊢L γ ≡! γ[β‖α].

Remark 5.1. It is worth noticing at this point that L1 and L2 are not the only
logics that comprise our framework. For instance, in addition to the truth value
orders of L1 and L2, there at least two alternatives, namely:

factually false < fictionally false < factually true < fictionally true

fictionally false < factually false < fictionally true < factually true

Had we also taken these two orders into account, we would end up with not
two, but at least four distinct logics  and the number would have increased
significantly were we to formulate two logics for each order according to the
whether the atomic formulas are interpreted according to (P1) or (P2).18

Investigating each logic in our framework would certainly be both instruc-
tive and interesting, but due to the lack of space we have decided to focus on
just two.19

Nonetheless, in view of the results in this paper, we believe that the task
of explicitly formulating other logics in our framework by adapting what has
been done for L1 and L2 would pose no serious difficulties. So, if one comes up
with specific reasons that favor, say, combining (P2) with L1’s semantic clauses
for ∧ and ∀, then the task of formulating the corresponding deductive system
will be almost straightforward.

6. Soundness and completeness

Let us take up now the task of proving the soundness and the completeness of
the two systems above. Since several of the auxiliary results we shall make use
of carry over from classical logic to L1 and L2 (with some small adjustments),
we shall not present their proofs in full detail here. In most cases, those results
will be merely enunciated for the sake of reference within other proofs.

The proofs of the soundness of L1 and L2 with respect to the corresponding
semantics follow the standard procedure of showing that all rules preserve the
designated values (viz., T and t). As with classical logic, showing this to be
case for the quantifier rules requires the following lemma.

18 Notice, for instance, that nothing prevents one from interpreting atomic for-
mulas according to (P2) while interpreting ∧ and ∀ as in L1.

19 Our specific choice was inspired by Ivlev [11] and Kearns’ [13] approaches to
four-valued modal logic, in which the values are ordered as follows:

impossible < contingently false < contingently true < necessarily true
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Lemma 6.1. Let A be an S-structure and s an assignment in A. Let t belong to
Term(S), and define s′ to be the assignment s(s(t)/x) (that is, the assignment
that is just like s except that it assigns s(t) to the variable x). If t is free for x
in α ∈ Form(S), then αA[s′] = (α[t/x])A[s].

The proofs of the completeness of L1 and L2 are also quite similar to the
proof of the completeness of classical logic, and so we shall focus on those
parts where the main differences occur. The following two definitions might be
familiar to the reader:

Definition 6.1. Let S be a first-order signature and ∆ ⊆ Form(S). ∆ is a
maximally nontrivial theory of L if: (i) ∆ is nontrivial, i.e., ∆ 0L α, for some
α ∈ Form(S); and (ii) for every α ∈ Form(S), if α /∈ ∆, then ∆∪{α} is trivial.

Definition 6.2. Let S = 〈C, F , P〉 be a first-order signature and suppose that
∆ ⊆ Form(S). Then, ∆ is called a Henkin set if for every formula α and
variable x, ∆ ⊢L ∀xα iff ∆ ⊢L α[c/x], for every c ∈ C.

Notice that every maximally non-trivial theory ∆ is indeed a theory in the
sense that if ∆ ⊢L α, then α ∈ ∆. Notice further that ∆ is also a prime set,
for either α ∈ ∆ or β ∈ ∆ whenever α ∨ β ∈ ∆ (and, in particular, α ∈ ∆ or
¬α ∈ ∆, for every α). Because ∆ is non-trivial, ¬α ∈ ∆ iff α /∈ ∆. Moreover,
if ∆ is a Henkin set, it satisfies the following property, which guarantees the
existence of a witness c for every existential formula that belongs to ∆: ∃xα ∈ ∆
iff α[c/x] ∈ ∆, for some constant c. Below we shall make use of these properties
without explicitly mentioning them.

The following result ensures that every non-trivial set can be extended to
a maximally non-trivial Henkin theory. Because its proof has no significant
differences from the proof of the corresponding classical result, we shall not
bother presenting it here:

Proposition 6.1. Let S = 〈C, F , P〉 be a first-order signature and suppose
that α ∈ Form(S). Let Γ ⊆ Form(S) be nontrivial. Then, there is a first-order
signature S+ = 〈C+, F , P〉 and a set ∆ ⊆ Form(S+) such that C ⊆ C+, Γ ⊆ ∆,
and ∆ is a maximally nontrivial Henkin theory.

We shall now proceed to the last step of the proof of the completeness of
L1 and L2, which consists in showing that every maximally non-trivial Henkin
theory has a canonical model. Before we do so, however, it is worth noticing
that whenever ∆ is a maximally non-trivial Henkin theory, we can define an
equivalence relation ∼ between terms in the following way:

t ∼ u iff ∆ ⊢L t = u

That ∼ is an equivalence relation follows immediately from the natural deduc-
tion rule for =. Those very same rules also ensure that: if t1 ∼ t′

1, . . . , tn ∼ t′
n
,
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then ft1 . . . tn = ft′
1 . . . t′

n
∈ ∆, for every function letter f ; and if t1 ∼

t′
1, . . . , tn ∼ t′

n
, then Pt1 . . . tn ∈ ∆ iff Pt′

1 . . . t′
n

∈ ∆, for every predicate
letter P .

Definition 6.3. Let S = 〈C, F , P〉 be a first-order signature, and suppose
that ∆ ⊆ Form(S) is a maximally nontrivial Henkin theory. For each term
t ∈ Term(S), let [t] be the equivalence class {u ∈ Term(S) : t ∼ u}. Then, the
canonical structure A = 〈A, A∅,a 〉 of ∆ is defined by:

• A = {[t] : Et ∈ ∆} and A∅ = {[t] : Et /∈ ∆};
• For each c ∈ C, cA = [c];
• For each f ∈ Fn, fA([t1], . . . , [tn]) = [ft1 . . . tn];
• For each P ∈ Pn, PA = {〈[t1], . . . , [tn]〉 : Pt1 . . . tn ∈ ∆}.

Given a maximally nontrivial Henkin theory ∆ and its canonical structure
A, we shall call the assignment s such that s(x) = [x], for every variable x,
the canonical assignment of A. It is straightforward to prove by induction
on the complexity of t that s(t) = [t], for every t ∈ Term(S). Notice that
since ∆ is consistent, it follows that [t] ∈ A iff [t] /∈ A∅, for every term t.
This is an immediate consequence of Definition 6.3 above, which guarantees
that A ∩ A∅ = ∅. Notice further that since Et ∈ ∆ or Et /∈ ∆, for every t,
A ∪ A∅ = {[t] : t ∈ Term(S)} = |A|. Moreover, due to the way ∼ was defined,
〈[t], [u]〉 ∈ =A [s] iff t = u ∈ ∆ iff [t] = [u]. Hence:

=A [s] = {〈[t], [t]〉 : t ∈ Term(S)}

Finally, the properties of ∼ mentioned above guarantee that the definitions of
PA and fA do not depend on the representatives [t1], . . . , [tn]. As a result, if
∆ is a maximally nontrivial Henkin theory, its canonical structure A satisfies
the conditions of Definition 4.1.

Next, we establish the very last result before we can conclude the proof of
the completeness of L1 and L2. Before proceeding to that task, though, it is
worth mentioning a couple of results concerning alphabetic variants that we will
be implicitly used throughout the proof. These two facts assert respectively the
semantic and proof-theoretic equivalence of formulas that differ only in some
of their bound variables (e.g., ∀x(Px ∧ ∃zQzx) and ∀y(Py ∧ ∃wQwy)):

• If β is an alphabetic variant of α, then αA[s] = βA[s]; and
• If β is an alphabetic variant of α, then α ⊢L β and β ⊢L α.

Proposition 6.2. Let S be a first-order signature and suppose that ∆ ⊆
Form(S) is a maximally nontrivial Henkin theory. Let A be the canonical
structure of ∆, and s its canonical assignment. Then the following facts hold
for every α ∈ Form(S):

1. αA[s] = T iff α, !α ∈ ∆;
2. αA[s] = t iff α, ¬!α ∈ ∆;
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3. αA[s] = f iff ¬α, ¬!α ∈ ∆;
4. αA[s] = F iff ¬α, !α ∈ ∆.

Proof. The result follows by induction on the length of α, but the proof varies
at certain points according to whether L = L1 or L = L2. However, we shall
only present here the proof for L = L1, which can be easily adapted to L2.

Let α be Pt1 . . . tn, where P is distinct from E. Ad 1. αA[s] = T iff
〈[t1], . . . , [tn]〉 ∈ PA and [ti] ∈ A, for every 1 ¬ i ¬ n, iff Pt1 . . . tn ∈ ∆ and
Eti ∈ ∆, for every 1 ¬ i ¬ n, iff Pt1 . . . tn ∈ ∆ and Et1 ∧ · · · ∧ Etn ∈ ∆ iff
Pt1 . . . tn ∈ ∆ and !Pt1 . . . tn ∈ ∆. Where the last step is justified by rule !E1.

Ad 2. αA[s] = t iff 〈[t1], . . . , [tn]〉 ∈ PA and [ti] /∈ EA, for some 1 ¬ i ¬ n,
iff Pt1 . . . tn ∈ ∆ and ¬Eti ∈ ∆, for some 1 ¬ i ¬ n, iff Pt1 . . . tn ∈ ∆ and
¬!Pt1 . . . tn ∈ ∆. Where the last step is justified by rule !E1.

Ad 3. αA[s] = f iff 〈[t1], . . . , [tn]〉 /∈ PA and [ti] /∈ EA, for some 1 ¬ i ¬ n,
iff ¬Pt1 . . . tn ∈ ∆ and ¬Eti ∈ ∆, for some 1 ¬ i ¬ n, iff ¬Pt1 . . . tn ∈ ∆ and
¬!Pt1 . . . tn ∈ ∆. Where the last step is justified by rule !E1.

Ad 4. αA[s] = F iff 〈[t1], . . . , [tn]〉 /∈ PA and [ti] ∈ EA, for every 1 ¬ i ¬ n,
iff ¬Pt1 . . . tn ∈ ∆ and Eti ∈ ∆, for every 1 ¬ i ¬ n, iff ¬Pt1 . . . tn ∈ ∆ and
Et1 ∧ · · · ∧ Etn ∈ ∆ iff ¬Pt1 . . . tn ∈ ∆ and !Pt1 . . . tn ∈ ∆. Where the last step
is justified by rule !E1.

Let α be Et. Ad 1. αA[s] = T iff [t] ∈ A iff Et ∈ ∆ iff Et, !Et ∈ ∆. Where
the last step is justified by rule !E1.

Ad 2. αA[s] = F iff [t] ∈ A∅ iff Et /∈ ∆ iff ¬Et ∈ ∆ iff ¬Et, !Et ∈ ∆. Where
the last step is justified by rule !E.

Let α be ¬β. Ad 1. αA[s] = T iff βA[s] = F iff ¬β, !β ∈ ∆ (by IH) iff
¬β, !¬β, i.e., α, !α ∈ ∆. Where the last step is justified by rule !¬.

Ad 2. αA[s] = t iff βA[s] = f iff ¬β, ¬!β ∈ ∆ (by IH) iff ¬β, ¬!¬β ∈ ∆, i.e.,
α, ¬!α ∈ ∆. Where the last step is justified by rule !¬.

Ad 3. αA[s] = f iff βA[s] = t iff β, ¬!β ∈ ∆ (by IH) iff ¬¬β, ¬!¬β ∈ ∆, i.e.,
¬α, ¬!α ∈ ∆. Where the last step is justified by rule !¬.

Ad 4. αA[s] = F iff βA[s] = T iff β, !β ∈ ∆ (by IH) iff ¬¬β, !¬β ∈ ∆, i.e.,
¬α, !α ∈ ∆. Where the last step is justified by rule !¬.

Let α be !β. Ad 1. αA[s] = T iff βA[s] = T or βA[s] = F iff β, !β ∈ ∆
or ¬β, !β ∈ ∆ (by IH) iff !β, !!β ∈ ∆, i.e., α, !α ∈ ∆. Where the last step is
justified by rule !!I.

Ad 2. αA[s] = F iff βA[s] = t or βA[s] = f iff β, ¬!β ∈ ∆ or ¬β, ¬!β ∈ ∆
(by IH) iff ¬!β, !!β ∈ ∆. Where the last step is justified by rule !!I.

Let α be β ∧ γ. Ad 1. αA[s] = T iff βA[s] = T and γA[s] = T iff β, !β ∈ ∆
and γ, !γ ∈ ∆ (by IH) iff β ∧ γ, !(β ∧ γ) ∈ ∆, i.e., α, !α ∈ ∆. Where the left-
to-right direction of the last step is justified by rule !∧I1.1, and its right-to-left
direction by rules !∧E1.1 and !∧E1.2.

Ad 2. αA[s] = t iff βA[s], γA[s] ∈ {T, t} and either βA[s] = t or γA[s] = t iff
β, γ ∈ ∆ and either ¬!β ∈ ∆ or ¬!γ ∈ ∆ (by IH) iff β ∧ γ, ¬!(β ∧ γ) ∈ ∆, i.e.,



604 Newton Peron and Henrique Antunes

α ∈ ∆, ¬!α ∈ ∆. Where the left-to-right direction of the last step is justified
by rules !∧E1.1 and !∧E1.2, and its right-to-left direction by rule !∧I1.1.

Ad 3. αA[s] = f iff βA[s], γA[s] /∈ {F} and either βA[s] = f or γA[s] = f iff
(¬β /∈ ∆ or !β /∈ ∆), (¬γ /∈ ∆ or !γ /∈ ∆), and either ¬β ∈ ∆ or ¬γ ∈ ∆ (by IH)
iff ¬(β ∧γ), ¬!(β ∧γ), i.e., ¬α, ¬!α ∈ ∆. Where the left-to-right direction of the
last step is justified by rules !∧E1.1 and !∧E1.2, and its right-to-left direction
by rules !∧I1.2, and !∧I1.3.

Ad 4. αA[s] = F iff βA[s] = F or γA[s] = F iff ¬β, !β ∈ ∆ or ¬γ, !γ ∈ ∆ iff
¬(β ∧ γ), !(β ∧ γ) ∈ ∆, i.e., ¬α, !α ∈ ∆. Where the left-to-right direction of the
last step is justified by rules !∧I1.2 and !∧I1.3, and its right-to-left direction by
rules !∧E1.1 and !∧E1.2.

Let α be ∀xβ. Ad 1. “⇒” If αA[s] = T , then βA[s
[t]
x ] = T , for every t ∈

Term(S). In particular, βA[s
[c]
x ] = T , for every c ∈ mathcalC. By Lemma 6.1,

(β[c/x])A[s] = T , for every c. Hence, β[c/x], !β[c/x] ∈ ∆, for every c (by IH).
Since ∆ is a Henkin set, it follows that ∀xβ, ∀x!β ∈ ∆. By rule !∀I1.1, we
then have ∀xβ, !∀xβ ∈ ∆. “(⇐” If ∀xβ, !∀xβ ∈ ∆, then ∀xβ, ∀x!β ∈ ∆ (by
rule !∀E1). Let t ∈ Term(S) and let β∗ be an alphabetic variant of β such
that t is free for x in β∗. Thus, β∗[t/x], !β∗[t/x] ∈ ∆. By IH, it follows that

(β∗[t/x])A[s] = T , and so β∗A[s
[t]
x ] = T (by Lemma 6.1). Hence, βA[s

[t]
x ] = T ,

and since t was arbitrary, βA[s
[t]
x ] = T , for every t; that is, (∀xβ)A[s] = T .

Ad 2. “⇒” If αA[s] = t, then βA[s
[t]
x ] ∈ {T, t}, for every t ∈ Term(S), and

βA[s
[t′]
x ] = t, for some t′ ∈ Term(S). In particular, βA[s

[c]
x ] ∈ {T, t}, for every

c ∈ C. By Lemma 6.1, it follows that (β[c/x])A[s] ∈ {T, t}, for every c, and
(β∗[t′/x])A[s] = t, where β∗ is an alphabetic variant of β such that t′ is free for
x in β∗. By IH, β[c/x] ∈ ∆, for every c, and β∗[t′/x], ¬!β∗[t′/x] ∈ ∆. Since ∆ is
a Henkin set, it follows that ∀xβ ∈ ∆. And since ¬!β∗[t′/x] ∈ ∆, ∃x¬!β∗ ∈ ∆,
and so ∃x¬!β ∈ ∆. Therefore, ∀xβ, ∃x¬!β ∈ ∆. By rule !∀E1, ¬!∀xβ ∈ ∆
(for otherwise ∃x¬α ∈ ∆), and so ∀xβ, ¬!∀xβ ∈ ∆. “⇐” If ∀xβ, ¬!∀xβ ∈ ∆,
then ¬∀x!β ∈ ∆ (by rule !∀I1.1). Thus, ∃x¬!β ∈ ∆. Let c ∈ C be such that
¬!β[c/x] ∈ ∆ (since ∆ is a Henkin set). Since β[c/x] ∈ ∆, it follows by IH

that (β[c/x])A[s] = t, and so βA[s
[c]
x ] = t (by Lemma 6.1). Now, recall that

∀xβ ∈ ∆ and let t ∈ Term(S). Let β∗ be an alphabetic variant of β such
that t is free for x in β∗. Hence, β∗[t/x] ∈ ∆, and so (β∗[t/x])A[s] ∈ {T, t}.

By Lemma 6.1, β∗A[s
[t]
x ] ∈ {T, t}, and therefore βA[s

[t]
x ] ∈ {T, t}. Since t was

arbitrary, βA[s
[t]
x ] ∈ {T, t}, for every t. Therefore, (∀xβ)A[s] = t.

Ad 3. “⇒” If αA[s] = f , then βA[s
[t]
x ] 6= F , for every t ∈ Term(S),

and βA[s
[t′]
x ] = f , for some t′ ∈ Term(S). In particular, βA[s

[c]
x ] 6= F , for

every c ∈ C. By Lemma 6.1, it follows that (β[c/x])A[s] 6= F , for every c,
and (β∗[t′/x])A[s] = f , where β∗ is an alphabetic variant of β such that t′

is free for x in β∗. By IH, ¬β[c/x] /∈ ∆ or !β[c/x] /∈ ∆, for every c, and so
β[c/x] ∈ ∆ or ¬!β[c/x] ∈ ∆, for every c. Therefore, β[c/x] ∨ ¬!β[c/x] ∈ ∆, for
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every c, and since ∆ is a Henkin set, ∀x(β ∨ ¬!β) ∈ ∆. Now, it follows from
(β∗[t′/x])A = f that ¬β∗[t′/x], ¬!β∗[t′/x] ∈ ∆ (also by IH). Thus, ∃x¬β∗ ∈ ∆,
and so ∃x¬β ∈ ∆. By rule !∀E1, we then have ¬∀xβ, ¬!∀xβ ∈ ∆. “⇐” If
¬∀xβ, ¬!∀xβ ∈ ∆, then ∀x(β∨¬!β) ∈ ∆ (by rule !∀I1.2). Let c ∈ C be such that
¬β[c/x] ∈ ∆ (since ∃x¬β ∈ ∆ and ∆ is a Henkin set). Since ∀x(β∨¬!β) ∈ ∆, it

follows that ¬β[c/x], ¬!β[c/x] ∈ ∆. By IH, (β[c/x])A[s] = f , and so βA[s
[c]
x ] = f

(by Lemma 6.1). Now, let t ∈ Term(S) and let β∗ be an alphabetic variant
of β such that t is free for x in β∗. Since ∀x(β∗ ∨ ¬!β∗) ∈ ∆, it follows that
β∗[t/x]∨!β∗[t/x] ∈ ∆. Therefore, β∗[t/x] ∈ ∆ or ¬!β∗[t/x] ∈ ∆. By IH,

(β∗[t/x])A[s] 6= F , and so β∗A[s
[t]
x ] 6= F (by Lemma 6.1). Thus, βA[s

[t]
x ] 6= F ,

and since t was arbitrary, βA[s
[t]
x ] 6= F , for every t. Therefore, (∀xβ)A[s] = f .

Ad 4. “⇒” If αA[s] = F , then βA[s
[t]
x ] = F , for some t ∈ Term(S). Let β∗

be an alphabetic variant of β such that t is free for x in β∗. By Lemma 6.1,
(β∗[t/x])A[s] = F . By IH, it then follows that ¬β∗[t/x], !β∗[t/x] ∈ ∆. Thus,
∃x(¬β∗ ∧ !β∗) ∈ ∆, and so ∃x(¬β ∧ !β) ∈ ∆. By rule !∀I1.2, we have !∀xβ ∈ ∆.
Therefore, ¬∀xβ, !∀xβ ∈ ∆. “⇐” If ¬∀xβ, !∀xβ ∈ ∆, then ∃x(¬β ∧ !β) ∈ ∆ (by
assuming ¬∃x(¬β ∧ !β) ∈ ∆ and applying rule !∀E1). Since ∆ is a Henkin set,
there is c ∈ C such that ¬β[c/x] ∧ !β[c/x] ∈ ∆. By IH, (β[c/x])A[s] = F , and

so L βA[s
[c]
x ] = F (by Lemma 6.1). Therefore, (∀xβ)A[s] = F .

We now have everything we need in order to prove the completeness of L1

and L2:

Theorem 6.1. Let S = 〈C, F , P〉 be a first-order signature and Γ ∪ {α} be a
subset of Form(S). If Γ �L α, then Γ ⊢L α.

Proof. Suppose that Γ 0L α. Hence, Γ ∪ {¬α} is nontrivial. By Proposi-
tion 6.1, there is a first-order signature S+ = 〈C+, F , P〉 such that for some
∆ ⊆ Form(S+) we have C ⊆ C+, Γ ∪ {¬α} ⊆ ∆, and ∆ is a maximally non-
trivial Henkin theory. By Proposition 6.2, there is an S+-structure A and an
assignment s such that βA[s] = T or βA[s] = t, for every β ∈ ∆. In particular,
¬αA[s] = T or ¬αA[s] = t. Thus, A, s �L β, for every β ∈ ∆, and A, s 2L α.
Consider now the S-reduct B of A. Clearly, B, s �L β, for every β ∈ Γ , while
B, s 2L α. That is, Γ 2L α.

7. Final remarks

In this paper we have proposed a semantic framework in which fictional state-
ments are evaluated as either factually true (false) or fictionally true (false). The
proposal was meant to explicitly address the intuition that declaring ‘Socrates is
a man’ to be true does not come down to the same thing as declaring ‘Sherlock
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Holmes is a man’ to be so. It also acknowledges the fact that we may and some-
times do reason about both real and fictional individuals in the same context,
and so we presented two alternative ways to interpret mixed statements. As for
the technical implementation of these ideas, we developed two different logics,
L1 and L2, that expand classical logic by including two new logical symbols,
the operator ! and existence predicate E. The logics were provided with natural
deduction systems which were then proved to be sound and complete.

Though we have presented two alternative logics, the problem of choosing
between them cannot be easily solved. For consider the following sentence:

Dom Quixote admires Carlos Magnus (16)

(14) is intuitively factually true because it is a sentence in which the subject
of the action is a real individual while the object is a fictional one. Sentence
(16), on the other hand, appears to be fictionally true because the subject of the
action is fictional whereas its object is real. But our approach either forces both
(14) and (16) to have factual values or both sentences to have fictional values.20

One way to produce a single more expressive logic would be by adopting
a non-deterministic semantics, which have been extensively studied by, for ex-
ample, [1]. In the case of complex formulas, the technique is as follows: if we
don’t know, for instance, whether (14) is fictionally true or factually true, we
wouldn’t need to assign it a single truth value; instead, (14) would get assigned
a set of truth values whose elements are T and t.

But this approach faces at least two challenges. The first one is that it ends
up expressing more differences in truth values than it would be desirable. For
consider:

∃y(Asy ∧ Cy) (5f2)

Both (5f1) and (5f2) could eventually receive different truth values in a non-
deterministic semantics. Of course, this drawback could be technically avoided
by adding an axiom that forces formulas like (5f1) and (5f2) to be logically
equivalent, which is, however, clearly ad hoc.

The second challenge is this: let b, c, d, and m be constants that stand for
Tony Blair, Coriolanus, Dom Quixote and Carlos Magnus, respectively; and let
A be the formal rendering of ‘x admires y’. In a fictional interpretation of (14)
and (16) we would then have:

Abc ∧ ¬!Abc (14f)

Adm ∧ ¬!Adm (16f)

Non-deterministic semantics allow assigning sets of truth values only to complex
formulas. Thus, the non-deterministic aspect of (14f) and (16f) would be due
to ∧ and !, rather than to the predicate A or the individual constants. However,
we take it to be clear that the difference in the truth values of (14) and (16)

20 Again, we would like to thank the anonymous referee for this observation.
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depends on whether the subject or the object of the binary relation ‘x admires y’
is a fictional character. But this is not possible in a non-deterministic semantics.

Another way to account for the difference in the truth values of (14f) and
(16f) within the same logic would be to incorporate two versions of the ! op-
erator. But again, if c and d have fictional references while b and m refer to
real objects, we wouldn’t be able to say that Abc is factually true and Adm

is fictionally true. This means that in some usages collapsing occurrences of
the ! operator might not be desirable. If we accept the ad hoc solutions of
adopting non-deterministic semantics to force sentences like (5f1) and (5f2) to
be logically equivalent, we could build a whole hierarchy of systems that aim
to control the interactions of the ! operator similarly to what happens with the
control of occurrences of modal operators in relational semantics. This looks
like a promising line of future research.21

Now, consider:

Ana Karenina wore yellow stockings at her first meeting with Vronsky (17)

Tolstoy’s novel Ana Karenina says nothing about the color of Ana Karenina’s
underwear at her first date with Vronsky, and there seems to be nothing beyond
what is told in the novel itself that would help us decide the matter. Thus, it is
unrealistic to require (17) to be either fictionally true or fictionally false, even
though (17) turns out to be neither factually true nor factually false. Hence,
our framework is not entirely satisfactory in that it does not allow for fictional
truth value gaps.

Not only are most fictional stories incomplete, but some few pieces of fiction
are inconsistent as well, describing some of their characters or the events that
take place in their stories in contradictory ways (see, for instance, the stories
in [7, 21]). Hence, if we are willing to allow for fictional truth value gaps, there
seems to be no reason not to do the same concerning fictional truth value gluts

as well. Extending both L1 and L2 to allow for inconsistent and incomplete
fictional scenarios is one of the main issues we intend to address in future work.

Now, one might quite naturally ask whether a similar extension would also
be required concerning the factual truth values, that is, whether there are (or
may be) factual sentences that are neither factually true nor factually false or
both. We shall not take a stance on this issue here, but merely point out that if
the answer to this question were in the negative, that is, if the real world, unlike
some of the “worlds” depicted in fiction, were assumed to be both consistent

21 This situation also indicates a further possible implementation of the frame-
work presented here, namely, to adopt different semantic clauses for different predicate
letters depending on which natural language properties and relations they are sup-
posed to express. On this proposal, for instance, At1t2 would be factually true if
〈s(t1), s(t2)〉 ∈ AA and s(t1) ∈ A; and it would be fictionally true 〈s(t1), s(t2)〉 ∈ AA

and s(t1) ∈ A∅.
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and complete, then the operator ! would have a rather interesting behavior. For
it would allow us to restore some inferences that are usually invalid in contexts
in which there are truth value gaps and gluts. Specifically, if truth value gaps
were not allowed concerning the factual truth values, then we should expect
the following inference schema to be valid:

!α
α ∨ ¬α

And if factual truth value gluts were not allowed, we should expect:

!α α ¬α
β

to be valid as well. The resulting logic(s) would then belong to the family of
systems known as logics of formal inconsistency and undeterminedness in the
sense of [17], where the operator ! would simultaneously be a consistency and
a determinedness connective.22

A third point tacitly assumed here is that a given object cannot be both fic-
tional and real, which translates into our logical framework as the requirement
that A ∩ A∅ = ∅. We acknowledge this assumption is somewhat controversial.
For it seems reasonable to assume, by reading Conan Doyle’s novel, that London
as depicted in his stories is the same as the real London. You could say that
it’s not the same London as it is today, but at least it’s the same London as
when the novels were published. Note, however, that the sentence:

The building at 221B Baker St. London in 1887 exists (18)

is factually false, since that address only came to exist in London in 1930. We
take this to be a compelling reason for not identifying the real and the fictional
Londons. Moreover, if both cities were the same, what would be the truth value
of (18)?

One possible response is to assign a pair of distinct truth values to each
sentence. That is, every formula α would get assigned a pair 〈V1, V2〉 such V1

and V2 are either T or F and represent respectively α’s factual and fictional
truth values. On this proposal, (18) would then receive the value 〈F, T 〉 on
its intended interpretation.23 This semantics could even be modified to ac-
commodate truth value gaps and gluts in the way suggested above, yielding
four new pairs of values: 〈T, N〉, 〈F, N〉, 〈T, B〉, 〈F, B〉, where N and B stand
respectively for neither true nor false and both true and false.

All the above suggestions are certainly worth pursuing to extend the initial
framework presented in this paper.

22 In other words, ! would be a classicality operator in the sense of [19, 23].
23 Another way of implementing the same idea is to multiply the number of truth

values by four. We would then have the values TT, Tt, Tf , TF, . . . , and (18) would
receive the value Ft.
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