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Abstract. In order to define some interesting consequence relations, certain
generalizations have been proposed in a many-valued semantic setting that
have been useful for defining what have been called pure, mixed and order-

theoretic consequence relations. But these generalizations are insufficient
to capture some other interesting relations, like other intersective mixed
relations (a relation that cannot be defined as a mixed relation, but only as
the intersection of two mixed relations) or relations with a conjunctive (or,
better, “universal”) interpretation for multiple conclusions. We propose a
broader framework to define these cases, and many others, and to set a
common background that allows for a direct compared analysis. At the end
of the work, we illustrate some of these comparisons.
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1. Introduction

A logic can be defined as a set of valid argument schemes over a given
language, which in turn can be captured by a definition of logical con-
sequence, a relation between propositions that serve as premises and
propositions that serve as conclusions. Logical consequence has been
widely understood as preserving some property from the premises to the
conclusions, usually truth as in classical logic. To get a preservation re-
lation, the definition of a logical consequence must have some structural
constraints, such as reflexivity, transitivity or monotonicity.

However, reasons for relaxing each of these constraints have been
raised, not just for getting different preservation relations, but for getting
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non-preservation relations as well; logical consequences that lack some
of these constraints are called substructural logics. The aim of this work
is to offer a general framework for a class of logics that includes sub-
structural logics, allowing a common background for their relations and
their interpretations. We will focus on a semantic setting, based on many-
valued logics, where the notions of satisfaction and counterexamples play
an important role. Within this setting, an extensive group of consequence
relations have been studied, primarily mixed consequence relations.

Mixed consequence relations hold between premises that satisfy a
standard for premises and conclusions that satisfy a standard for con-
clusions. A preservation relation could be viewed as imposing the same
standard for premises and for conclusions; as in the case of a truth-
preserving relation, it holds whenever the premises are (all) true, the
conclusion will be also true, i.e. whenever the premises satisfy the being-

true-standard, the conclusion will satisfy the being-true-standard. But
these standards can differ, dropping the preservation-feature, as in the
case of a relation that holds whenever the premises are (all) not false,
the conclusion will be true, i.e. whenever the premises satisfy the being-

not-false-standard, the conclusion will satisfy the being-true-standard.
Both above relations are the same relation when talking about a two-

valued logic, but are not when talking about other many-valued logics.
In this latter case, some of reflexivity, transitivity and monotonicity do
not obtain, so these mixed relations correspond to substructural logics.
There are, however, some other related logics that cannot be defined with
mixed consequence relations, but can be defined as their intersection [3,
p. 2199].

Emmanuel Chemla, Paul Égré and Benjamin Spector [3] have claimed
that a subclass of mixed consequence relations and their intersections
forms a “natural” class of consequence relations. This subclass is defined
by some “respectable” properties (with a similar role to the one played
by reflexivity, transitivity and monotonicity in Tarski’s program [24]),
proposed to identify within the three-valued logics some specific logical
systems. These systems are, in turn, already “identified or introduced
on various independent grounds, usually with different motivations in
mind” [3, p. 2194]. Despite their success, these properties define a narrow
class, leaving aside other consequence relations that are interesting on
their own.

One case is caused by a restrictive criterion for premises and con-
clusions standards, based on some order between the elements of the
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standards [3, pp. 2197–2198]. Relaxing this constraint allows, in a
three-valued setting, for a standard like being-determinate (as opposed
to being-indeterminate, a standard that indeterminate sentences would
satisfy).1 According to Chemla et al. [3, n. 3], Sharvit [22] explores a con-
sequence relation where the premises and conclusions standards are the
being-determinate-standard, and its intersections with some other mixed
relations. These consequence relations and their intersections with “re-
spectable” relations are not “respectable” relations themselves, but can
be interpreted in a useful way, along with other relations they leave out
of consideration.

Another case concerns inferences with multiple conclusions, and the
interpretation for this multiplicity. The usual way of interpreting a mixed
consequence relation claims that it holds if whenever every premise sat-
isfy the premises standard, then some of the conclusions will satisfy
the conclusions standard. But this is not the only way of interpreting
inferences in a multiple-conclusion system, because a relation could ask
for every conclusion to satisfy the conclusions standard. Despite it not
being the usual way it is understood, it has been explored by Cintula
and Paoli [5]. If this change becomes available, the considered mixed
relations would have some “new” counterparts. If the two groups of
mixed relations were allowed to interact, being intersected for instance,
some other relations would be obtained.

Though we will not determine whether all of these relations are in-
teresting on their own, we will offer a broader representation of notions
of entailment that serves as a common ground for their analysis (and
the analysis of their interactions). To do so, we will recover in Section 2
the “natural” entailment notions proposed by Chemla et al. [3] and, like
them, analyse a three-valued case. We will not limit ourselves to the
consequence relations they propose, but will also mention the examples
above to compare them with.

In Section 3, we will motivate an interpretation for consequence re-
lations, not based on what standard every or some propositions satisfy,
but based on when the premises and the conclusions satisfy some con-
straints, i.e. based on what counts as a counterexample for a statement

1 This presupposes a value interpreted as being-false, a value interpreted as being-

true, and a value interpreted as being-indeterminate. The third one could be inter-
preted in a distinct way, but what matters in the example is the exclusion of the
third value over the other two values (determined values, persisting in the initial
interpretation).
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with respect to a consequence relation and when an inference could have
a counterexample. Though it is not a new interpretation for consequence
relations, it will allow us to introduce a semantic notion for relating sets
of propositions with sets of semantic values. This notion will be the basis
for the broader entailment notion, and we will introduce some operations
over consequence relations.

Section 4 will show how to reformulate the previous generalizations
as cases of the general one, through some translation results. In this
section we will also show some results about the relation between the
examples analysed in Section 2.

2. Consequence relation generalizations

Throughout this work, we will follow Chemla et al. and will consider
a many-valued setting. We will focus on the relations between sets of
premises and conclusions when they take certain combinations of seman-
tic (truth) values, independently of the language involved.

We will leave aside their methodological proposal, regarding other
aspects, allowing multiple conclusions (a set of conclusions instead of a
single conclusion) and not giving special attention to a possible order of
the semantic values. Though still valid, their results hold for a framework
with single conclusions and some constraints on the order of the semantic
values. The shift to a multiple conclusion framework and no constraints
on the order is motivated by its generality.

Let’s begin with the semantic values, which usually refer to alethic
notions such as truth and falsity, but also indeterminacy, nonsense and
others.2 We could think of a three-valued semantic where the values
1, 1

2 and 0 are treated as representing truth, indeterminacy and falsity,
respectively. Another example of multi-valued semantics is an infinite-
valued semantics, where every real number, for example, in the [0, 1]
interval represents a degree of truth, between a full degree of truth and
its complete opposite, i.e. a full degree of falsity. For a set of semantic
values SV, each semantic value is associated with an intended interpre-
tation. Our present work is focused only on the finite sets of values, but
conceivably it could be extended to infinite sets.

2 Typically, these last notions are characterized in (at least) three-valued seman-
tics. For an interpretation for the third value as indeterminate, see, e.g., [13]. For a
reading of non-classical values as nonsensical, see, among others, [2, 11, 23].
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To define propositions, Chemla et al. propose the notion of an index
set, that can be viewed as valuations, though valuations are linked to
specific languages. We will adopt the notion of valuation, as it is usually
understood. For any language L, its well formed formulae conform a set
FORL. A valuation v is a function from FORL to SV .

In addition, they are interested in sets with more semantic structure,
where the semantic values are a partially ordered set; moreover, there are
always a greatest element and a least element. In the above examples,
1 is the greatest element and 0 is the least element. This structure is
relevant for their results, but we will see that it plays no role in our
broader framework.

Finally, given a language L, a consequence relation X is a subset
of P (FORL) × P (FORL). For a set of propositions (or formulas) Γ as
premises and a set of propositions (or formulas) ∆ as conclusions, we
write Γ |=X ∆ to state that the set ∆ is a consequence of the set Γ .
For reasons of convenience, we will not consider cases where Γ or ∆

are empty sets; this would lead us to present unnecessarily complicated
technicalities.3 In order to reduce the notation for sets that does not
include the empty set, take P ∗(X) as P (X) − ∅.

The addition of constraints would limit what counts as a consequence
relation. There are many ways of doing so. Chemla et al. chose the
most standard (semantic) way, which is to impose a relation between
the semantic values that the premises and conclusions take. Actually,
they present three ways of adding constraints in this sense. Two of them
make use of the designated value notion. The designated values are a
subset of the semantic values, and they are usually thought as the range
of values that tell us that a sentence is assertible. This, again, can be
thought as having more structure in the set of semantic values; the values
are ordered, so it is usually demanded that if a value is designated, every

3 Notice that following this path we have some loss: given a language and a
consequence relation, for some formulae it is possible to show they can be derived
as conclusions no matter what set of premises is considered, even an empty set of
premises. We could express a similar fact stating that these formulae can be derived
from an arbitrary set of premises, without mentioning the empty set. This equivalence
will be relative to some specific logic, which should be monotonic, or at least monotonic
regarding premises of inferences with an empty set of premises. Nevertheless, we are
relying for the equivalence on the intuitive idea that a sentence is valid if and only if
it follows from everything  to emulate sentential validities  and that a sentence is
antivalid if and only if everything follows from it  to represent sentential antivalities.
(For more about antivalidities, see [1, 21].)
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higher value is also designated.4 Chemla et al. exclude the empty set of
values and the whole set of semantic values as designated values.

The designated values, under this interpretation, can be used for
defining relations that preserve the assertion conditions from premises
to conclusions, or for defining relations that make explicit independent
conditions for the assertion of premises and conclusions. The former
relations are called pure consequence relations and the latter, mixed con-

sequence relations; the pure relations are a special case of the mixed
relations. The set of designated values can be thought of as a standard
the propositions satisfy (be they premises or conclusions). When talking
about any subset of the semantic values, we will use the word “standard”
instead of “designated values” for its neutrality regarding the order of
the values.

Definition 2.1. Let S ⊆ SV. X is a pure consequence relation:
Γ |=X ∆ iff for every valuation v, if every premise γ ∈ Γ, v(γ) ∈ S, then
for some conclusion δ ∈ ∆, v(δ) ∈ S.5

Definition 2.2. Let Sa ⊆ SV and Sb ⊆ SV. X is a mixed consequence
relation:
Γ |=X ∆ iff for every valuation v, if every premise γ ∈ Γ, v(γ) ∈ Sa, then
for some conclusion δ ∈ ∆, v(δ) ∈ Sb.

In the third way Chemla et al. add constraints to the definition
of consequence relation. The interpretation of the values does not rest
on the notion of designated values, but on the order between them.
There is also the goal of preserving some characteristic: “the conclusion
should not meet a worse standard than whatever standard is set for the
premises” [3, p. 2193], where “worse” must be understood in relation to
the order between values. These consequence relations are called order-

theoretic consequence relations.

4 In particular, this is how Chemla et al. understood the idea of designated
value. But this is not mandatory; as we will soon see, [22] uses a logic based on a
consequence relation that they called dd. And in [16], several logics are introduced,
some of which are such that the set of designated values does not form a filter or an
upset.

5 We use subindexes in Γ |=X ∆ where X is the label of a consequence relation.
We make extensive use of this symbolism in the rest of the article.
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Definition 2.3. X is an order-theoretic consequence relation:
Γ |=X ∆ iff for every valuation v, there is a premise γ ∈ Γ and a
conclusion δ ∈ ∆, such that v(γ) ≤ v(δ).

The first two generalizations for defining consequence relations are
easy to compare, given pure consequence relations are the special case
of mixed consequence relations where Sa is equal to Sb. The third one
was shown to be equivalent to the intersection of every pure consequence
relation which standard is a set of designated values [3]. When we con-
sider the mixed relations where the standards are taken to be a set
of designated values and the order-theoretic relations, we obtain what
Chemla et al. have called “respectable” relations. They can be shown to
be related, but always taking one detour or another. This also happens
with some other relations, as we will show below.

As an example, let’s consider a three-valued setting where the set of
semantic values SV is {0, 1

2 , 1}. Under some interpretations, this values
are interpreted as truth, indeterminacy and falsity, and there is an in-
tended alethic order: 0 < 1

2 < 1. Given this order, there are only two
possible sets of designated values: {1} and {1

2 , 1}. Below we give the
complete list of standards (subsets of the semantic values) with a name,
linked to a standards interpretation (we consider only the non-empty
subsets of SV):

(falsity) F = {0}
(indeterminacy) I = {1

2 }
(truth) T = {1}

(non-truth) NT = {0, 1
2 }

(non-indeterminacy) NI = {0, 1}
(non-falsity) NF = {1

2 , 1}
(domain of values) SV = {0, 1

2 , 1}

The names follow the intended interpretation, though there are many
other notations for these sets of values. [18] work on a three-valued
setting where the 1 is interpreted as being strictly true and 1

2 as being

tolerantly true (but not strictly true). From this, the set {1} is inter-
preted for the notion of strict truth and the set {1

2 , 1} for the notion of
tolerant truth, noted as S and T , respectively. Another relevant subset
is {0, 1}, called d for definedness. We will just retain the names of the
consequence relations induced by this notation, but will use the above
names for the sets, i.e. the standards.
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If we look at sets of designated values, we obtain two pure conse-
quence relations: one that preserves the truth of the premises, and one
that preserves their non-falsity. The former is called the ss-relation and
the latter the tt-relation, and are defined as below:

Definition 2.4.

Γ |=ss ∆ iff ∀v : if ∀γ ∈ Γ (v(γ) ∈ {1}), then ∃δ ∈ ∆(v(δ) ∈ {1})

Definition 2.5.

Γ |=tt ∆ iff ∀v : if ∀γ ∈ Γ (v(γ) ∈ {1
2 , 1}), then ∃δ ∈ ∆(v(δ) ∈ {1

2 , 1})

If we put no restrictions on the sets, we obtain five more relations.
Among them, we will just use explicitly the dd-relation.

Definition 2.6.

Γ |=dd ∆ iff ∀v : if ∀γ ∈ Γ (v(γ) ∈ {0, 1}), then ∃δ ∈ ∆(v(δ) ∈ {0, 1})

Regarding the mixed consequence relations, ss and tt are two of
them (when given the same standard for premises as for conclusions),6

but there are other two linked to sets of designated values: the rela-
tions st and ts (which are instances of what is called p-consequence by
Frankowski [9], and q-consequence by Malinowski [14], respectively).

Definition 2.7.

Γ |=st ∆ iff ∀v : if ∀γ ∈ Γ (v(γ) ∈ {1}), then ∃δ ∈ ∆(v(δ) ∈ {1
2 , 1})

Definition 2.8.

Γ |=ts ∆ iff ∀v : if ∀γ ∈ Γ (v(γ) ∈ {1
2 , 1}), then ∃δ ∈ ∆(v(δ) ∈ {1})

Again, if we put no constraints on the standards, we obtain other
forty-four consequence relations, some of them marginally studied. But
there is only one order-theoretic consequence relation, defined as in Def-
inition 2.3, sometimes called the ≤-relation; ≤ is equivalent to the in-
tersection of ss and tt, and cannot be defined as a mixed consequence

6 If we were to consider some specific languages, we could relate ss and tt to
the known systems K3 and LP, as presented by Stephen Kleene [12] and by Graham
Priest [17]. LP is the logic that results from taking tt and a standard language with
Strong Kleene valuations, and K3 is the logic that results from taking ss and the same
language.
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relation, as many other relations that can only be obtained as the inter-
section of two other relations.

The relations ss, tt, st, ts and ≤ are useful for many topics, such as
semantic paradoxes and the representation of the phenomenon of vague-
ness.7 These are paradigmatic cases of the area related to mixed con-
sequence relations. But the area faces other and more anomalous cases.
Take for instance the case of Sharvit [22] that explores the intersection
of dd and other relations (such as st); from the moment we restrict
ourselves to work only with sets of designated values, it seems we lose
some interesting relations.

Notwithstanding, even if we put no constraints on the above gen-
eralizations, they all read multiple conclusions in a specific way, but
there are other ways of reading this multiplicity (though less canonical).
They all interpret the entailment notions as stating that when all the
premises have some property, then some of the conclusions satisfy a given
condition, though not necessarily all conclusions do. These entailment
notions read the multiplicity of premises in a universal way (they all
share a property) and the multiplicity of conclusions in an existential
way (one of them has a given property). They can be read under a dif-
ferent interpretation. Cintula and Paoli [5] present a universal reading
both for premises and for conclusions. Something similar can be done
with premises: they can be read in an existential way.8

The links between the above consequence relations are interesting on
their own, but the comparisons are not made against a single common

7 There are many places where these applications can be found. For example,
an extensive presentation of LP and its application to semantic paradoxes, see [17].
Non-transitive approaches to logical consequence were discussed, previously, in many
works, but the particular application of ST to this field is original of Cobreros, Egré,
Ripley and van Rooij in [6]. In [7] they also propose it as a suitable solution to the
problem of vagueness. Recently, Rohan French in [10] discussed it in connection with
the paradoxes of self-reference. (As with LP and K3, ST and TS are the resulting
logics of taking a standard language with Strong Kleene valuations and, for ST, the
relation st and, for TS, the relation ts.)

8 We prefer to call it an “existential” reading, because the disjunctive interpre-
tation is attached to the notion of designated value, so if we read the conclusions as
disjuncts, whenever one conclusion has a designated value, the disjunction will also
have a designated value; but what about not-designated standards? If the standard
(for conclusions) is {0}, the disjunction of the conclusions could miss, in a particular
valuation, the falsity of one false conclusion in the presence of one true conclusion.
The same happens, mutatis mutandis, with the “universal” reading as preferable over
a conjunctive interpretation.
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background. Often there are some interesting features and we ignore
the rest of them. For example, if we focus on the combinations of stan-
dards for mixed relations, we will probably have no interest in more than
one multiple conclusions interpretation; or if we focus on the multiple
conclusions interpretations, we will probably restrict ourselves to a lim-
ited group of mixed relations. We lack a common background. In the
following section we provide a broader framework to make up for this
absence.

3. Mapping matrices and consequence relations

In this many-valued logic framework we can, in principle, establish if an
inference is valid or not by listing every possible case for this inference,
and checking if there is any counterexample for the inferences validity.
This can be done because the definition of a consequence distinguishes
between allowed (permitted) cases and not-allowed (prohibited) cases.9

Take for instance the consequence relation for classical logic. An
inference is valid if and only if every case where the premises are all true,
is also a case where some conclusion is also true. Or, in other words, an
inference is valid, unless the premises are all true and the conclusions are
all false. Leaving aside whether we are in a two- or three-valued setting,
this consists in a condition for an inference being invalid, as opposed to
being valid, by making explicit prohibited cases.

We can list the permitted and prohibited cases for the previous exam-
ple. The consequence definition tells us that if every premise is true, then
some conclusion is true. So, the cases where every premise is true and
every conclusion is true, are permitted cases, but also the cases where
every premise is true, some conclusion is true and some conclusion is
false. Not so the cases where every premise is true and every conclusion
is false. Every other case is a case where the antecedent of the definition
is not satisfied (those cases where the premises are not all true), and it
is a, trivially, permitted case.

Each consequence relation mentioned in the previous sections gets
this permitted-prohibited distinction. The pure and mixed consequence

9 Another way of saying this is that some valuations are permitted while others
are prohibited. Though we might have made that choice, we prefer not to, as it is not
that the valuations that correspond to prohibited cases are not genuine valuations or
anything like that.
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relations get it by selecting a characteristic for the set of premises and
a characteristic for the set of conclusions. Every case in which the set
of premises lacks the premise-characteristic, is a permitted case. Every
case in which this set has the premise-characteristic, should be con-
fronted with the conclusion-characteristic: if the set of conclusions has
the conclusion-characteristic, it is a permitted case, but if not it is a
prohibited case.

The order-theoretic relations get the distinction by characterizing
the set of premises and the set of conclusions, and giving a comparison
criterion between the characterizations. Every case in which the char-
acterization of the set of premises and the characterization of the set of
conclusions satisfy the comparison criterion is a permitted case. Every
other case is a prohibited case.

The characterization of the sets (i.e. having some defined property)
allows us to tell if, for an inference, every case is permitted or not.
This is so because the definition of a consequence relation links every
combination of characterizations either with a permitted case or with a
prohibited case. A consequence relation can be seen as a constraint on
the possible combinations of characterizations; it sets what is permitted
and what is prohibited.

In order to give a general strategy, we propose to characterize the sets
of premises and conclusions as a mapping between sets of propositions
and sets of values. A set of propositions can be valued in different ways,
depending on the set of semantic values considered. Each subset of
the semantic values is linked to a different characterization of a set of
propositions. The mapping can be seen as a triadic relation, such that a
valuation maps a set of propositions over a set of values, whenever (i) for
each value of the subset, some proposition takes this value, and (ii) every
proposition takes a value of the subset. The mapped set of propositions
could be either a set of premises or a set of conclusions, and the subset of
values could be any standard. The following definition introduces some
notation that eases the presentation of the following:

Definition 3.1. A valuation v maps a set of propositions Σ over a
standard S, i.e. map(v, Σ, S), if and only if both:

(i) ∀s ∈ S (∃σ ∈ Σ (v(σ) = s)),
(ii) ∀σ ∈ Σ (∃s ∈ S (v(σ) = s))

This is equivalent to saying that map(v, Σ, S) holds if and only if
v[Σ] = S, a shorthand for {v(σ) | σ ∈ Σ} = S.
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Notice that, given a valuation, a non-empty set of propositions Σ is
always mapped with only one standard S:

Fact 3.1. Given a valuation v, a non-empty set of propositions Σ and

the set of semantic values SV , there is only one Si ⊆ SV such that

map(v, Σ, Si).

Fact 3.1 is the result of taking any valuation function and noticing
that, because it is a function, it meets the uniqueness property (that is,
for a given input, there is only one defined output).

Thus, in the previous three-valued setting, we can formulate seven
non-empty standards. Given Fact 3.1, a valuation maps an inference
Γ |= ∆ to a pair of standards 〈Sa,Sb〉. One valuation of the propositions
of the inference can fall in any of the 49 combinations of mappings for
the pair 〈Sa,Sb〉.

Having developed the notion of a mapping, we would now like to
represent the mapping constraints of a consequence relation (the pairs
of standards for which a valuation is permitted to map an inference) and
the “valuation” mappings for an inference (the set of mappings for every
possible valuation of the propositions involved in an inference). We de-
fine below the notion of a mapping matrix which allows us to enumerate
sets of pairs of permitted combinations of mappings (for consequence
relations) and mappings linked to sets of valuations (for inferences).10

Definition 3.2. Let SV be a set of semantic values. Then M ⊆ P ∗SV ×
P ∗SV is a mapping matrix. M is represented as a matrix of dimensions
|P ∗SV| × |P ∗SV|, such that for every mij of the matrix, mij = 1 if and
only if 〈i, j〉 ∈ M (otherwise, mij = 0).

A mapping matrix is then a relation between standards, such that
its matricial representation links rows with premises-mappings and links
columns with conclusions-mappings.

If a consequence relation allows every combination of mappings, we
could represent this trivial relation with a matrix, as follows:11

10 We work with the usual mathematical notion for a matrix : “a matrix is defined
as any rectangular array of elements from a field” [8, p. 193]. In our case, the elements
of a matrix are from a Boolean algebra, defined over the set {0, 1}.

11 The order is arbitrary, but we choose the following convention: first, top to
bottom and left to right, the mapping for standards with one element, then for stan-
dards with two elements, and finally the only standard with the three elements of the
set of semantic values.
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F 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1
T 1 1 1 1 1 1 1

M1 = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 1 1 1 1 1 1 1
SV 1 1 1 1 1 1 1

As said above, a ‘1’ represents that the combination of row (premises-
mapping) and column (conclusions-mapping) is permitted. But we know
that not all the combinations of mapping must be allowed, since some
valuations serve as counterexamples for invalid inferences. We could
represent a consequence relation that allows no combination (there would
be no valid inferences for this relation) with the following matrix, where
a ‘0’ represents that the combination of row and column is prohibited:
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F 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0

M0 = NT 0 0 0 0 0 0 0
NI 0 0 0 0 0 0 0
NF 0 0 0 0 0 0 0
SV 0 0 0 0 0 0 0

One more concrete example will shed more light on the matter. Con-
sider the ts-relation, as analysed before. Then, the permitted and pro-
hibited combinations of mappings are represented as follows:
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F 1 1 1 1 1 1 1
I 0 0 1 0 1 1 1
T 0 0 1 0 1 1 1

Mts = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 0 0 1 0 1 1 1
SV 1 1 1 1 1 1 1
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The relevant combinations are those that map (all) the premises to a
subset of the non-false standard. So, if one of these combinations maps
the conclusions to a set that shares a value with the true standard, then
it is a permitted case, else it is a prohibited one. For every other case,
it is a permitted case.

These matrices are representations of the consequence relations. Ac-
tually, a more precise description is to say that these matrices are rep-
resentations of just the permitted groups of valuations or mappings for
any pair of sets of propositions, for a given consequence relation.12

The matrix M1 represents a consequence relation13 for which an in-
ference 〈Γ, ∆〉 is valid if and only if, for every valuation v, there is a
pair of standards 〈Sa, Sb〉 ∈ P ∗SV × P ∗SV, such that map(v, Γ, Sa) and
map(v, ∆, Sb). These will hold for every valuation v, given that v will
always map a set of propositions to a subset of SV (see Fact 3.1), so it
will also do it for the set of premises and the set of conclusions. Therefore
every inference will be valid according to this consequence relation.

Something quite different happens with the matrix M0, according
to which an inference 〈Γ, ∆〉 is valid if and only if, for every valuation
v, there is no pair of standards 〈Sa, Sb〉 ∈ P ∗SV × P ∗SV , such that
map(v, Γ, Sa) and map(v, ∆, Sb). To put it in similar words to before,
an inference 〈Γ, ∆〉 is valid if and only if, for every valuation v, there
is a pair of standards 〈Sa, Sb〉 ∈ ∅ × ∅,14 such that map(v, Γ, Sa) and
map(v, ∆, Sb). In this case, no valuation satisfies this clause, given that
Fact 3.1 enters in direct contradiction with it. In consequence, there are
no valid inferences for the consequence relation encoded by M0.

For both M1 and M0 we have said that every valuation maps an
inference to a pair of standards that belongs to some specific set of pairs
(in the case of M1 this set is P ∗SV × P ∗SV, and in the case of M0

it is ∅ × ∅). These pairs are encoded by the matrix, representing the
permitted cases for an inference.

12 We could have given a representation for the prohibited mappings; this would
exchange every ‘1’ for a ‘0’ and vice versa. It would not make any difference doing so,
but instead of giving the notions we present in the following, it would give us their
dual notions.

13 It does for a three-valued setting. For a two-valued setting the matrix cor-

responding to a similar constraint for inferences, i.e. no constrains, is M1 =
[ 1 1 1

1 1 1

1 1 1

]

because there are three non-empty standards that can interact with each other.
14 Remember that we are working with non-empty standards Sa and Sb.
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Thus, the matrix Mts will also encode the pairs of standards 〈Sa, Sb〉
(one for premises, one for conclusions) that are allowed, but with a dif-
ferent set of pairs of standards. This is done by having a ‘1’ in the
corresponding rows and columns that would encode the permitted cases
and a ‘0’ in the corresponding rows and columns that would encode the
prohibited cases. Every row in the matrix corresponds to a non-empty
standard, as each column also does. So, for Mts, the set of pairs of
standards should have every 〈Sa, Sb〉 ∈ P ∗SV × P ∗SV such that, either
Sa 6⊆ {1

2 , 1} (i.e. NF) or if Sa ⊆ {1
2 , 1}, then ∅ 6= (Sb ∩ {1}) (i.e. Sb

shares at least one element with T).
The mapping matrices are useful for characterizing a consequence

relation, through the notion of satisfaction: for a given consequence
relation X , a valuation v satisfies an inference Γ |=X ∆ if and only if
exists a pair 〈Sa,Sb〉 such that map(v, Γ, Sa), map(v, ∆, Sb), and 〈Sa,Sb〉
∈ MX .

Before we give a condition for an inference to be valid according to
a consequence relation, we introduce the notion of a valuation matrix.
It will allows us to determine if every valuation satisfies a consequence
relation definition.

Definition 3.3. Let V be the set of valuations over a set of propositions.
MV (Γ, ∆) is the valuation matrix for the pair of sets of propositions
〈Γ, ∆〉 if and only if MV (Γ, ∆) is a mapping matrix and for every 〈Sa,Sb〉
in P ∗SV × P ∗SV and every v ∈ V , there is a v such that map(v, Γ, Sa)
and map(v, ∆, Sb) if and only if 〈Sa,Sb〉 is in MV (Γ, ∆).

Consider, for instance, the inference going from the set Γ = {p, q} to
set ∆ = {p}. The valuation matrix MV (Γ, ∆) is the following:

F I T NT NI NF SV
















































F 1 0 0 0 0 0 0
I 0 1 0 0 0 0 0
T 0 0 1 0 0 0 0

MV (Γ, ∆) = NT 1 1 0 0 0 0 0
NI 1 0 1 0 0 0 0
NF 0 1 1 0 0 0 0
SV 0 0 0 0 0 0 0

Notice that the columns corresponding to the standards with two or more
values have only ‘0’s; this is due to ∆ having just one proposition, and
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therefore being impossible for it to be mapped to those standards. The
same happens to the row associated to the standard with every value.
Being p in both Γ and ∆, if a valuation assigns a specific value to every
premise, it also assigns it to the conclusion. And so on for each of the
nine possible valuations for the propositions in Γ and ∆.

Now that we know, given the set of valuations V , how to represent
what standards are mapped to a given inference (a pair 〈Γ, ∆〉), it would
be useful to know if V respects the permitted cases determined by a
consequence relation X . For doing so, we can compare the corresponding
matrices, checking if the mappings represented in MV (Γ, ∆) meet the
mappings allowed by MX .

Definition 3.4. Let MV (Γ, ∆) be the valuation matrix of the inference
from Γ to ∆, and let MX be the mapping matrix for the consequence
relation X . An inference Γ |=X ∆ is valid if and only if, for every 〈Sa,Sb〉
in P ∗SV × P ∗SV, if 〈Sa,Sb〉 is in MV (Γ, ∆), then it is in MX .

This definition for logical validity is broader than those presented
before.15 We will analyse some applications of it in the next section.
But we want to formulate first some operations between matrices that
will help us in the analysis. The first one concerns the preceding defini-
tion; we propose an order for the matrices, for a twofold purpose: (i) to
compare a valuation matrix for an inference and a consequence relation
matrix, so we can know if the former valuations are represented also by
the latter matrices; and (ii) to compare the permitted mappings of a
consequence relation with the permitted mappings of another.

15 An anonymous referee asks if this should not be a result that must be proven,
i.e. that this way of defining validity is equivalent to the conditions for an inference to
be valid in a given consequence relation X. But this is not a result of the equivalence
of two validity definitions. We are giving a way to define for any consequence relation
X its corresponding validity conditions, by stating the relation that should obtain
between the mapping matrix of X (that is MX) and the valuation matrix of any
inference 〈Γ, ∆〉 (that is MV (Γ, ∆)). In this definition, we assume that X could
be represented with a mapping matrix, and then we can define its conditions for
an inference being valid in X. But we are not saying that this is another way of
defining validity for X. Nevertheless, for each consequence relation represented by
a mapping matrix, we should be able to prove the equivalence of the corresponding
instance of this definition and the validity conditions for an inference to be valid for
this consequence relation.
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Definition 3.5. Mx ≤ My if and only if, for every 〈Sa,Sb〉 in P ∗SV ×
P ∗SV, if 〈Sa,Sb〉 is in Mx, then it is in My, which is equivalent to say
that Mx ⊆ My.

Hence, we can derive from Definition 3.4 the following:

Fact 3.2. Let MV (Γ, ∆) be the valuation matrix of the inference from

Γ to ∆, and let MX be the consequence relation X matrix. An inference

Γ |=X ∆ is valid if and only if MV (Γ, ∆) ≤ MX .

The proof follows directly from Definition 3.4 and Definition 3.5.
Summing up, we begin by assuming a set of semantic values that

gives us a set of standards, each standard being a subset. Then, we
take a matrix to be the representation of the relation that tells which
combinations of mappings are allowed by a consequence relation: a map-
ping for premises relates to a mapping for conclusions if and only if it
is permitted by the consequence relation. This gives us a binary repre-
sentation in the form of a matrix. We can then build binary matrices
that turn out to be Boolean matrices [8], so we can not only compare
matrices, but also operate over them in a very familiar way:16 we can
obtain the conjunction and the disjunction of two matrices, and we can
also obtain the negation of a matrix.17

Definition 3.6 (Matrices conjunction). Mx ∧ My = Mx ∩ My

Definition 3.7 (Matrices disjunction). Mx ∨ My = Mx ∪ My

Definition 3.8 (Matrices negation). ¬M = (P ∗SV × P ∗SV) − M

Given the order ≤ between matrices and the previous operations, we
can state what follows:

Fact 3.3. For any matrix M , M0 ≤ M ≤ M1.

Fact 3.4. Let MV (Γ, ∆) be the valuation matrix of the inference from

Γ to ∆, and let MX be the consequence relation X matrix. An inference

Γ |=X ∆ is valid if and only if MV (Γ, ∆) ∨ MX = MX .

16 As an anonymous referee points out, the following operations and properties
are derived from the fact that we are working with a Boolean algebra. However, we
want to make them explicit, for clarity of the arguments.

17 Sometimes the conjunction is called the “product” or “intersection”, the dis-
junction, “sum” or “union”, and the negation, “complement”.
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Fact 3.5. Let MV (Γ, ∆) be the valuation matrix of the inference from

Γ to ∆, and let MX be the consequence relation X matrix. An inference

Γ |=X ∆ is valid if and only if MV (Γ, ∆) ∧ MX = MV (Γ, ∆).

We present the proof for Fact 3.4. The proof for Fact 3.5 is very
similar to it.

Proof. By Fact 3.2, saying an inference Γ |=X ∆ is valid is equivalent
to say that MV (Γ, ∆) ≤ MX , and then to MV (Γ, ∆) ⊆ MX (by Defini-
tion 3.5), which holds if and only if MV (Γ, ∆) ∪ MX = MX , which in
turn is equivalent to MV (Γ, ∆) ∨ MX = MX (by Definition 3.7). ⊣

The re-interpretation of consequence relations, in terms of explicit
constraints of permitted/prohibited mappings over premises and conclu-
sions, gives us the possibility of analysing them under a new perspective.
In the next section we will present some of the already analysed conse-
quence relations as well as new ones. We will then exploit the mappings,
in order to offer interpretations, not just for individual propositions, but
for sets of propositions.

4. Common background: case analysis with mapping matrices

Some generalizations for consequence relations are easily translatable
into the matrices that represent the permitted and prohibited mappings.
It will be useful to analyse first some elemental relations for the charac-
terizations of sets of propositions.

If we continue with the three-valued setting, a case where a valuation
va that makes true every proposition in a set Σa, can be stated as map(va,
Σa, {1}), and a case where a vb that makes false every proposition in a
set Σb, can be stated as map(vb, Σb, {0}). These are simple cases where
a standard has only one value and the valuation maps every proposition
to that value. Let’s consider now more complex cases.

First, take a case where a valuation vc makes non-true every propo-
sition in Σc. This means that vc makes false every proposition, or that
it makes them indeterminate, or that it makes some propositions false
and every other indeterminate. In “mapping” terms, map(vc, Σc, {0})
or map(vc, Σc, {1

2 }) or map(vc, Σc, {0, 1
2 }). Any of the standards {0},

{1
2 } or {0, 1

2 } has a non-true value, and a valuation that maps a set to
one of them will be making non-true every proposition of the set. So, the
“characterization” of the set of propositions in this case (i.e. the valuation
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vc) corresponds to a set of mappings in disjunction. Notice that only
one of the standards maps to a given valuation (as stated in Fact 3.1).

Next, take a case where a valuation vd makes true some proposition
of Σd. This means that vd makes true every proposition, or that it makes
true some of them and makes false every other proposition, or that it
makes true some of them and makes the others indeterminate, or that it
makes true some of them, makes false some others and makes indeter-
minate the rest. Every possibility corresponds to a single mapping, but
the characterization corresponds to their disjunction.

Finally, something similar would happen to a valuation ve that ma-
kes, for instance, non-true to some proposition of Σe. It will only ensure
a value of non-true standard for a proposition, but not for all of them.

In a way, the characterizations with one single value are just special
cases of the ones with many values. They can be separated into those
that impose a characterization on every proposition, and those that on
just some of them. The first kind will map the propositions to standards
that have no values outside the indicated standard. The second kind
will map the propositions to every standard that has at least one value
of the indicated standard. This is captured by the following facts given
a valuation v, a set Σ of propositions and a standard S:

Fact 4.1. ∀σ ∈ Σ, v(σ) ∈ S if and only if there is a Si ⊆ S such that

map(v, Σ, Si).

Fact 4.2. ∃σ ∈ Σ, v(σ) ∈ S if and only if there is a Si ∩ S 6= ∅ such

that map(v, Σ, Si).

For proving Facts 4.1 and 4.2, we can define the following set A :=
{v(σ) | σ ∈ Σ}. For it holds that for every proposition in the set, its
valuation is in A, and that for every value in A, there is a proposition
valued in that way:

∀σ ∈ Σ(v(σ) ∈ A) and ∀s ∈ A (∃σ ∈ Σ(v(σ) = s))

This in turn shows that A is mapped to Σ by v (because, given the left
side of the conjunction, for every proposition in Σ, there is an element
from A that is equal to the valuation of the proposition).

In order to prove Fact 4.1, notice that A ⊆ S if and only if ∀σ ∈
Σ(v(σ) ∈ S), and to prove Fact 4.2, notice that ∅ 6= (A ∩ S) if and only
if ∃σ ∈ Σ(v(σ) ∈ S).

The pure and mixed consequence relations, as said before, are defined
by selecting a characteristic for the set of premises –every premise has
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a value of the premises-standard  and a characteristic for the set of
conclusions  some conclusion has a value of the conclusions-standard.
This is captured as a conditional clause for every valuation, which we
can show as a direct consequence of Facts 4.1 and 4.2:

Fact 4.3. Given a valuation v, two sets Γ and ∆ of propositions and

two standards S1 and S2, the following conditions are equavalent:

• if ∀γ ∈ Γ (v(γ) ∈ S1), then ∃δ ∈ ∆(v(δ) ∈ S2),
• if ∃Sa ⊆ S1(map(v, Γ, Sa)), then ∃Sb ∩ S2 6= ∅(map(v, ∆, Sb)).

This result allows us to “translate” the standard clauses for pure and
mixed consequence relations into mapping clauses. Fact 4.4 expresses
these conditions more concisely:

Fact 4.4. Given a valuation v, two sets of propositions Γ and ∆, and

two standards S1 and S2, if ∀γ ∈ Γ (v(γ) ∈ S1), then ∃δ ∈ ∆(v(δ) ∈ S2),
if and only if, ∃〈Sa, Sb〉, such that if Sa ⊆ S1 and map(v, Γ, Sa), then

(Sb ∩ S2) 6= ∅ and map(v, ∆, Sb).

The “respectable” mixed consequence relations presented in Section 2
can be presented as matrices, directly from the “translation” results:

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1
T 0 0 1 0 1 1 1

Mss = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 1 1 1 1 1 1 1
SV 1 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 0 1 1 1 1 1 1
T 0 1 1 1 1 1 1

Mtt = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 0 1 1 1 1 1 1
SV 1 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1
T 0 1 1 1 1 1 1

Mst = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 1 1 1 1 1 1 1
SV 1 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 0 0 1 0 1 1 1
T 0 0 1 0 1 1 1

Mts = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 0 0 1 0 1 1 1
SV 1 1 1 1 1 1 1
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The order-theoretic relation is equivalent to the intersection of the
pure relations ss and tt. The permitted mapping combinations for this
relation, ss∩ts, are those that are permitted by both ss and tt. The rela-
tion ss∩ts could be defined, then, as the conjunction of the ss-conditions
and the tt-conditions for a mapping to be allowed, which can be done
with previously-defined conjunction for matrices (Definition 3.6).

Mss∩ts =

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 0 1 1 1 1 1 1
T 0 0 1 0 1 1 1

NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 0 1 1 1 1 1 1
SV 1 1 1 1 1 1 1

= Mss ∧ Mtt

If we compare the matrices, Mss∩ts has a distinctive feature: it re-
stricts differently the mappings for premises, because it does not attend
to a particular standard for premises, but it looks at the relationship
between the characterization for both premises and conclusions. For
instance, as in ss and tt, ss ∩ ts will allow any valuation that makes false
one or more premises. For non-false premises, if any of them receives
the value 1

2 , it will allow any valuation unless it makes it false every
conclusion. And if every premise is true, it will allow just valuations
that make true one or more conclusions.

Following this translation procedure, we can also give the matrices
for any mixed consequence relation and for any intersection of them.
Take for example, relations built from the standard d, linked to the
being-determinate characterization.

F I T NT NI NF SV
















































F 1 0 1 1 1 1 1
I 1 1 1 1 1 1 1
T 1 0 1 1 1 1 1

Mdd = NT 1 1 1 1 1 1 1
NI 1 0 1 1 1 1 1
NF 1 1 1 1 1 1 1
SV 1 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 0 1 1 1 1 1
I 1 1 1 1 1 1 1
T 0 0 1 1 1 1 1

Mdd∩st = NT 1 1 1 1 1 1 1
NI 1 0 1 1 1 1 1
NF 1 1 1 1 1 1 1
SV 1 1 1 1 1 1 1
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At this point, an interesting question arises, regarding the order of
these relations and others: which relationships are more restrictive and
which more permissive? The more permissive relations are those that
allow more standards combinations as permitted cases. So, the order
between two arbitrary relations is the inclusion-order between the corre-
sponding mapping constraints. We know the order for the “respectable”
relations, and we can easily show, as an example, the order involving the
relation dd (just looking at their matrices, representing the standards
combinations that belong to each mapping constraint):

st

ss tt

ts

ss ∩ ts

dd

dd ∩ st

dd ∩ ss dd ∩ ts

dd ∩ ts

dd ∩ ss ∩ ts

We can easily see that dd produces a contralogic with respect to those
that each of the “respectable” relations also produces: there are some
inferences from Γ1 to ∆1 such that Γ1 |=st ∆1 but Γ1 6|=dd ∆1 and there
are some inferences from Γ2 to ∆2 such that Γ2 |=dd ∆2 but Γ2 6|=st ∆2

(there are inferences that a logic based on one relation makes valid while
the other logic, based on the other relation, does not, and vice versa).
Moreover, the intersection of dd and any of those relations is a sublogic of
dd; its intersections even reflect the order of the “respectable” relations.

In the same way that we can vary the standards for premises or for
conclusions, we have mentioned an alternative for the disjunctive/exis-
tential reading of the conclusions. Instead of interpreting an inference as
stating that whenever the premises satisfy a given standard for premises,
some conclusions will satisfy the standard for conclusions, we could read
it as stating that every conclusion will satisfy the standard for conclu-
sions. The clause for this reading will have a universal quantifier on each
side of the conditional definition, and could be more restrictive than the
“existential” reading. The matrix representation for the “respectable”
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mixed consequence relations, under the “universal” reading, would be
the following:

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1
T 0 0 1 0 0 0 0

Mss∀ = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 1 1 1 1 1 1 1
SV 1 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 0 1 1 0 0 1 0
T 0 1 1 0 0 1 0

Mtt∀ = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 0 1 1 0 0 1 0
SV 1 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1
T 0 1 1 0 0 1 0

Mst∀ = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 1 1 1 1 1 1 1
SV 1 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 0 0 1 0 0 0 0
T 0 0 1 0 0 0 0

Mts∀ = NT 1 1 1 1 1 1 1
NI 1 1 1 1 1 1 1
NF 0 0 1 0 0 0 0
SV 1 1 1 1 1 1 1

These consequence relations are ordered in the same way as their “ex-
istential” counterparts and every “universal” interpretation is included
in the corresponding “existential” interpretations. The most restrictive
consequence relation is ts∀ and the most permissive is st:

st

ss tt

ts

ss ∩ ts

st∀

ss∀ tt∀

ts∀

ss∀ ∩ ts∀

Notice that these consequence relations are not comparable to those pre-
sented before, related to the consequence relation dd. We could obtain
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the “universal” reading for those, and it would complete the picture:
every “universal” interpretation would be below its “existential” inter-
pretation, and every consequence relation intersecting with dd (or dd∀)
would be above the intersection.

Finally, there is another interesting example, concerning the inter-
pretations of multiple propositions, specially regarding an “existential”
interpretation, not for conclusions, but for premises. Imagine we are
interested in a set of propositions and the conclusions we can draw
whenever at least one premise is true. We can think of this consequence
relation as resisting any falsehood, as long as some premise is true. Or we
can imagine a consequence relation that tells us what we can draw from
a set of propositions that contains at least one false premise. Let’s call
the former ∃xy and the latter ∃fx (where x could be s or t, depending
on whether it is a standard for being-strictly-true or for being-tolerantly-

true); below we show the matrices for the first class of relationships:

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1
T 0 0 1 0 1 1 1

M∃ss = NT 1 1 1 1 1 1 1
NI 0 0 1 0 1 1 1
NF 0 0 1 0 1 1 1
SV 0 0 1 0 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 0 1 1 1 1 1 1
T 0 1 1 1 1 1 1

M∃tt = NT 0 1 1 1 1 1 1
NI 0 1 1 1 1 1 1
NF 0 1 1 1 1 1 1
SV 0 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1
T 0 1 1 1 1 1 1

M∃st = NT 1 1 1 1 1 1 1
NI 0 1 1 1 1 1 1
NF 0 1 1 1 1 1 1
SV 0 1 1 1 1 1 1

F I T NT NI NF SV
















































F 1 1 1 1 1 1 1
I 0 0 1 0 1 1 1
T 0 0 1 0 1 1 1

M∃ts = NT 0 0 1 0 1 1 1
NI 0 0 1 0 1 1 1
NF 0 0 1 0 1 1 1
SV 0 0 1 0 1 1 1

As before, we can tell the order between these consequence relations
and those with a “universal” interpretation for premises, by looking at
the matrices: the “existential” interpretations are below the “universal”
interpretation.
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We will stop here because the number of consequence relations is
immense though not all of them are of interest. There are, in a three-
valued setting, 7 different non-empty standards, giving 49 different com-
binations of mappings for premises and conclusions. Each combination
could be permitted or not. Therefore, there are 249 different sets of
permitted mappings (around 0.56 × 1015), hence 249 matrices defining
them (including M0 and M1), linked to a consequence relation.18

If we are permissive with the standards and their combinations for
mixed relations, we can obtain 49 relations,19 but we can give them differ-
ent interpretations for their multiplicity of premises and conclusions: we
can have an “existential” interpretation and a “universal” interpretation
for any set of propositions. We can then obtain nearby 200 consequence
relations. And we have not even considered their intersections yet!

This procedure works for translating the satisfaction conditions of
a consequence relation to a matrix. But we can define a consequence
relation by giving its corresponding matrix, which is equivalent to “list”
in a disjunction the permitted mappings, i.e. the satisfaction conditions
for an inference. There are 49 different matrices in which there exists
only one element of the matrix equal to ‘1’ (only one combination of
mappings is permitted), but successive unions of these matrices give us
every possible matrix (apart from M0).

Before ending, we will like to address one of the criticisms that an
anonymous referee has made to us. She says that our way of repre-
senting consequence relations scales badly as the number of truth-values
increases, and that drawing matrices and comparing them can become
a work that is difficult and error-prone. We recognize that she is right
about the increasing difficulty as more truth-values became part of the
picture. Nevertheless, on the one hand, our main interest is not com-

putational. Our focus is not on how this way to represent logics 
which we consider even more general than most of the semantic ways
to define a consequence relation  can be run in a program, but to even
define a schema as general as possible in order not only to represent
mixed consequence relations, but also non-mixed consequence relations,
as some intersective-mixed, order-theoretic and even multi-conclusion

18 If we were not allowed to have multiple conclusions, our matrices would have
just three columns, and we would be able to define 221 relations (around 2.1 × 106).
In this case, many of the above consequence relations would collapse into the same
relation: we just have to consider the corresponding columns.

19 See [15] for an analysis of these relations.
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consequence relations with a universal reading for conclusions, just to
mention that ones that we have explicitly talked about in this article.
It is in this philosophical sense, that we find our approach superior to
the others that we have discussed. And on the other hand, Ariel Roffé
and Joaquín Toranzo Calderón have developed a software package [20]
that determines whether a given inference is valid or not, whether a
formula or inference is satisfied by a given valuation, and, for example,
which valuations satisfy a given formula or inference, in any logic that
is specified through a language and with a consequence relation defined
through a matrix.

5. Conclusions

To sum up, we have presented a new and broader generalization for con-
sequence relations that serves as a common ground for the analysis of
a plethora of logics, including those with every mixed consequence rela-
tion and every intersective mixed consequence relation  thus being even
more general than the analysis provided by [3]. This includes the “re-
spectable” consequence relations, but also some other “non-respectable”
relations such as dd and its intersections (as explored by [22]).

Moreover, we have shown how this approach deals with the usual
existential reading for multiple conclusions, but also with the universal
reading, as in [5]. It even allows the existential reading for multiple
premises, and its combination with both existential and universal read-
ings for multiple conclusions. This can be extended to the previous
relations and their interactions.

Finally, every consequence relation presented in this work can be
obtained as the result of some basic Boolean operations between the
consequence relation matrices. With the “simplest” matrices relations 
i.e. those with just one standards combination  , we can build up many
others with successive unions.
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