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Applications of Relating Semantics.

From non-classical logics to philosophy of science

Abstract. Here, we discuss logical, philosophical and technical problems
associated to relating logic and relating semantics. To do so, we proceed
in three steps. The first step is devoted to providing an introduction to
both relating logic and relating semantics. We discuss this problem on the
example of different languages. Second, we address some of the main re-
search directions and their philosophical applications to non-classical logics,
particularly to connexive logics. Third, we discuss some technical problems
related to relating semantics, and its application to philosophy of science,
language and pragmatics.
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1. Introduction: relating semantics and relating logic

In the paper [Jarmużek and Paoli, 2021] the term Relating Logic (hence-
forth, RL) is defined as a term describing logic of relating connectives 
similarly as Modal Logic is a logic of modal operators.1

In turn, the basic idea behind a relating connectives is that the logical
value of a given complex proposition is the result of two things:

(i) the logical values of the main components of this complex propo-
sition; supplemented with

(ii) a valuation of the relation between these components.

1 However, it is worth noting tha this definition was already considered in [Jar-
mużek, 2021; Jarmużek and Klonowski, 2021, submitted].
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The element (ii) is a formal representation of an intensional relation
that emerges from the connection of several simpler propositions into
one more complex proposition.

Speaking formally, let ϕ1, . . . , ϕn be propositions with some fixed
logical values and let c be an n-ary relating connective. Then the logical
value of complex sentence c(ϕ1, . . . , ϕn) depends not only on the logical
values of ϕ1, . . . , ϕn, but additionally on the value of the connection
between ϕ1, . . . , ϕn.

So, it depends on an additional valuation of pairs (n-tuples) that is
the part of the overall process of evaluation of the logical values of com-
plex propositions built with relating connectives. This way we can form
logical systems to deal with reasoning about non-logical relationships.2

On the other hand, we can look at when the semantics for a given
language is called relating semantics. A semantics for the language
is a relating semantics [see Jarmużek and Paoli, 2021] iff at least for
one connective ci the valuation of all complex propositions of the form
ci(ϕ1, . . . , ϕj), where j is the arity of ci, in a world w requires not only
valuations of pairs (ϕ1, w), . . . , (ϕj, w) in some set of logical values, but
also a valuation of j-tuples ((ϕ1, . . . , ϕj), w) in some domain for values
for connections [see Jarmużek, 2021; Jarmużek and Klonowski, 2021].
A valuation of j-tuples ((ϕ1, . . . , ϕj), w) can in a formal semantics rep-
resent various logical or non-logical relationships between ϕ1, . . . , ϕj in
a world w, for example:

• content relationships, for example, the relatedness relation,

• analytical relationships,

• causalities,

• temporal orderings,

• preference orderings,

• logical consequences of some logic,

among many others.
A function with a co-domain containing values for connections is used

to evaluate either a relationship between ϕ1, . . . , ϕj or a relationship
between some objects to which we refer by means of ϕ1, . . . , ϕj  for
example, events, facts or states of affairs  in the relating semantics.

2 Some interesting cases are described, for example, in [Jarmużek and Paoli,
2021; Jarmużek and Klonowski, 2021; Paoli, 2007; Ledda et al., 2019], mainly in the
implicational fragment of the defined language.
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To move to a more operational level, let us define a quite rich relating
language. This is a language of Classical Mono-Relating Logics (shortly
CMRL).3 Let the language consist of countably many propositional vari-
ables Var, classical connectives: ¬, ∧, ∨, →, ↔, relating counterparts of
binary classical connectives (standard binary relating connectives): ∧w,
∨w, →w, ↔w and parentheses ), (.4

The set of all formulas is defined in the standard way and denoted
by For

w. By For we denote the set of formulas of Classical Propositional
Logic (so built only with Var, ¬, ∧, ∨, →, ↔, and the brackets). This set
is usually set to define various non-classical logics. Obviously we have:
For ⊂ For

w. By CPL we denote the set of all tautologies of Classical
Propositional Logic included in For.

We assume also the set of substitution functions. By substitution we
mean any function s : For

w −→ For
w preserving structure of propositions,

so for any ϕ, ψ ∈ For
w:

• s(¬ϕ) = ¬s(ϕ)

• s(ϕ ∗ ψ) = s(ϕ) ∗ s(ψ), where ∗ is a binary connective.

The set of all substitutions will be denoted by Su. A subset X of For
w

is closed under substitutions iff s(X) ⊆ X , for any s ∈ Su.
We assume in addition that R = {R : R ⊆ For

w × For
w}. So R is the

class of all binary relations defined on For
w. Let R ⊆ For

w × For
w. By

∼R we understand the complement of R, so ∼R = {〈ϕ, ψ〉 : ϕ, ψ ∈ For
w

and 〈ϕ, ψ〉 /∈ R}. Now we can introduce the notion of model of CMRL.
A model of CMRL is an ordered pair 〈v,R〉 such that:

• v ∈ {1, 0}Var is a valuation of propositional variables

• R ⊆ For
w × For

w is a binary relation.

A valuation v (a relation R) of model M is denoted by vM (resp. RM).
A class of all models over Q ⊆ R is the class of all models over R, for
every R ∈ Q. Such a class of models is denoted by MQ. The class of

3 The language was extensively examined in [Klonowski, 2019; Jarmużek and
Klonowski, submitted]. Here we discuss some of the notions and issues presented
there.

4 Somebody may want to add a relating negation which requires going beyond
the mono-relating approach. On the basis of CMRLs, we can simulate it by defining:
ϕ →

w

⊥, where ⊥ is the falsity constant [see more proposals in Jarmużek, 2021]. In
this context, there is also an interesting discussion about the incorporation of relation
R into the object language [see Estrada-González et al., 2021].
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all models is denoted by MR. We define now the truth (and falsity) of
formula in a model.

Let M ∈ MR and ϕ ∈ For
w. Formula ϕ is true in M (in symb.:

M |= ϕ; and M 6|= ϕ, if false) iff for every ψ, χ ∈ For
w:

• for propositional variables and formulas built by classical connectives:

vM(ϕ) = 1, if ϕ ∈ Var

M 6|= ψ, if ϕ = ¬ψ

M |= ψ and M |= χ, if ϕ = ψ ∧ χ

M |= ψ or M |= χ, if ϕ = ψ ∨ χ

M 6|= ψ or M |= χ, if ϕ = ψ → χ

M |= ψ iff M |= χ, if ϕ = ψ ↔ χ

• for formulas built by relating connectives:

[M |= ψ and M |= χ] and RM(ψ, χ), if ϕ = ψ ∧w χ

[M |= ψ or M |= χ] and RM(ψ, χ), if ϕ = ψ ∨w χ

[M 6|= ψ or M |= χ] and RM(ψ, χ), if ϕ = ψ →w χ

[M |= ψ iff M |= χ] and RM(ψ, χ), if ϕ = ψ ↔w χ.

Otherwise, ϕ is false in M. Moreover, for any Σ ⊆ For
w, we will write

M |= Σ instead of ∀ϕ∈ΣM |= ϕ and state that Σ is true in model M.

In the case of classical connectives, we have the classical extensional
interpretation. In the case of relating connectives apart from extensional
conditions, we have also the requirement of being related by both sen-
tences.

We can also define a notion of truth with respect to a relation without
a valuation, so in respect to all possible valuations of variables. Let
R ∈ R and ϕ ∈ For. Formula ϕ is true with respect to R (in symb.:
R |= ϕ; and R 6|= ϕ, if otherwise) iff ∀v∈{1,0}Var 〈v,R〉 |= ϕ. Otherwise ϕ
is false with respect to R. Let Σ ⊆ For

w, we will write R |= Σ instead of
∀ϕ∈ΣR |= ϕ and state that Σ is true in relation R.

The definitions of truth in a model and the truth in a relation allow to
define two different notions of semantic consequence relations over classes
of semantic structures and result in two different ways of determining the
notion of a valid formula. First one is the semantic consequence relation
over models. Let M ⊆ MR and Σ ∪ {ϕ} ⊆ For

w. Then:
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• ϕ is a semantic consequence of Σ over M (in symb.: Σ |=M ϕ) iff
∀M∈M(M |= Σ ⇒ M |= ϕ)

• ϕ is valid in M (in symb.: |=M ϕ) iff ∅ |=M ϕ.

It is worth noting that in the definition of the semantic consequence
relation over models the set of models M does not have to be determined
by any class of relations Q ⊆ R in a sense that the class of models is
{〈v,R〉 : v ∈ {1, 0}Var & R ∈ Q}. Such class of models can determine
interesting relating logics [see, e.g., Jarmużek and Klonowski, submitted].
The inverse property holds: every class of relations determines uniquely a
class of models. In [Jarmużek and Klonowski, 2021, submitted] there was
also proposed the semantic consequence relation over relations defined
as follows. Let Q ⊆ R and Σ ∪ {ϕ} ⊆ For

w. Then:

• ϕ is a semantic consequence of Σ over Q (in symb.: Σ |=Q ϕ) iff
∀R∈Q(R |= Σ ⇒ R |= ϕ)

• ϕ is valid in Q (in symb.: |=Q ϕ) iff ∅ |=Q ϕ.

In [Klonowski, 2019; Jarmużek and Klonowski, 2021] three kinds of
properties determining subsets of the set of all relations R were defined.
Namely, horizontal relations, vertical relations and relations diagonal.
The latter are intersections of the previous two. The potentially deter-
mine different logical systems.

Many other interesting results are given in these works. We will list
some of them. As we mentioned, for example, the fact that models define
more logics than sets of relations is proved. An interesting division was
also introduced there:

(a) logics, i.e., systems closed under functions from the set Su,
(b) quasi-logics, i.e., systems not closed under all functions from the set

Su, but under some special subsets of Su.

For example, the set of all anti-symmetric relations determine the system
of logic which is not closed under all functions from the set Su, however
closed under all injective substitutions. Below, we have an axiom that
uniquely determines the anti-symmetric class of relations. The axiom
assumes non-injective substitutions:

¬(ϕ →w ψ ∨ ϕ ∨w ψ) ∨ ¬(ψ →w ϕ ∨ ψ ∨w ϕ), where ϕ 6= ψ.
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Note, however, that the property of antisymmetry requires two relations
to be expressed: relation R and the relation of identity =. Thus, any
logic defined by the above axiom is not mono-relating.

Further results concern the definability of relating connectives. The
paper shows that the relating disjunction is the only relating connective
that is undefinable. The definitions of other relating connectives are also
indicated.

The most important result of this work is however to show that finite
sets of conditions imposed on relations define logic that can be axioma-
tized, because in the language of CMRL it is possible to define relations
independently of valuations. At the end of the work, the lattice order of
axiomatized logics is described, defining the joint and meet operations
that make it up.

To be honest, we do not have to consider the entire CMRL language.
We get very interesting results when we consider only CPL language,
but interpretating at least one connective c as a relating connective cw.

So let us say we are working with the set For  it is CPL language,
but some of the connectives can be interpreted as relating connectives.
Therefore, they require interpretation of the connection of arguments. It
is worth noting that when the relation R is universal, it can be omitted
in the conditions of truth of a given connective. As a consequence,
even CPL can be treated as a relating logic determined by the universal
relation [see, e.g., Jarmużek and Klonowski, submitted].

When we consider some logic L defined in the set For, we usually call
it subclassical when L\CPL = ∅. On the other hand, when L\CPL 6= ∅,
logic is called anti-classical (or more often contra-classical). That is, it
contains at least one formula that is contingent or counter-tautology.

The use of relating semantics seems to be a good step in defining
systems of logic with the property L \ CPL 6= ∅. In the next section we
present a case of the accepted starting points of application of relating
semantics to non-classical logics.

2. Application of relating semantics to intensional phenomena

The main aim of the 1st Workshop On Relating Logic (1st WRL) was
to create an international community of logicians, that explores the po-
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tential of RL and relating semantics.5 In the scope of the workshop,
the idea of defining non-classical logics (including counter-classical) via
relating-semantics was also included. During the workshop various cases
of using semantics to analyze and define intensional phenomena logic
was often analyzed. We will discuss some of them.

Let us introduce some basic knowledge on connexive logics. Connex-
ive logic is based on the theses set forth by Aristotle and Boethius, which
only use negation and implication connectives. What is more, these the-
ses are inconsistent to the classical logic. Therefore, in connexive logic
we must interpret at least one of these connectives in a non-classical
manner.

There is an idea behind connexive logic that proposition ϕ has noth-
ing in common with proposition ¬ϕ in terms of the content. Similarly, if
ϕ has a common content with ψ, it cannot have any common content with
¬ψ, and vice versa, if ϕ has a common content with ¬ψ, it cannot have
any common content with ψ. A necessary condition for occurrence or
truthness of implication is a common content of premiss and conclusion
(the implication antecedent and consequent, respectively). Such intu-
itions form the motivation for connexive logics. The roots of connexive
logic date back to the ancient times.

In the formal language which features at least two connectives, unary:
¬, referred to as negation, and binary: →, referred to as implication, the
concept of connexiviy is expressed by the requirement of occurrence of
the following theses in a logic:

(A1) ¬(ϕ → ¬ϕ)

(A2) ¬(¬ϕ → ϕ)

(B1) (ϕ → ψ) → ¬(ϕ → ¬ψ)

(B2) (ϕ → ¬ψ) → ¬(ϕ → ψ).

Formulas (A1) and (A2) are referred to as Aristotle’s Theses, while (B1)
and (B2) as Boethius’ Theses. Since none of formulas (A1), (A2), (B1)
and (B2) is a thesis of the classical logic, and at the same time the
classical logic is Post-complete, then having attached any of those to
the classical logic, we would produce an inconsistent logic. Thus, if we

5 The 1st Workshop on Relating Logic took place in September 25–26,
2020, see: https://www.filozofia.umk.pl/en/department-of-logic/call-for-

workshop-on-relating-logic/12. More on the workshop, see [Jarmużek and Paoli,
2021].

https://www.filozofia.umk.pl/en/department-of-logic/call-for-workshop-on-relating-logic/12
https://www.filozofia.umk.pl/en/department-of-logic/call-for-workshop-on-relating-logic/12
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comprehend the negation and implication in a classical manner, we will
produce an inconsistent logic. As a consequence, in any connexive logic
the implication or the negation is non-classical. On the other hand if we
do not assume the classical logic as a background formulas (A1), (A2),
(B1) and (B2) can be independent, which was shown in [Jarmużek and
Malinowski, 2019a].

The denomination of connexive logic is to promise some special con-
nection, relation between the formulas or premisses and conclusions.
There are strong indications that by dint of application of relating se-
mantics can accurately and directly express the relations between the
propositions that lie in the heart of connexive logic. These relations
do not have to follow from a common lingual form, but  as mentioned
before  from a content similarity that is not always expressible in a
logical form. So it can be for instance so that propositions ϕ and ψ
are related in terms of content, even if they do not include a single
common propositional letter. The relating semantics make this relation
expressible.

In order to establish which of models are appropriate to define con-
nexive logics the following conditions were specified:

• R is (a1) iff for all ϕ ∈ For, ∼R(ϕ,¬ϕ)

• R is (a2) iff for all ϕ ∈ For, ∼R(¬ϕ, ϕ)

• R is (b1) iff for all ϕ, ψ ∈ For:
– if R(ϕ, ψ), then ∼R(ϕ,¬ψ)

– R(ϕ → ψ,¬(ϕ → ¬ψ))

• R is (b2) iff for all ϕ, ψ ∈ For:
– if R(ϕ, ψ), then ∼R(ϕ,¬ψ)

– R(ϕ → ¬ψ,¬(ϕ → ψ)).

On a model level, the relevant conditions from that definition exclude
the connection of specific propositions. For instance, if relation R has a
property (a1), then for none proposition ϕ it is so that it is connected
with its negation, i.e. proposition ¬A. The same applies to the other
conditions. In accordance with their notation, on the semantic level
they conform to the theses of Aristotle and Boethius.

From the definition, it almost directly follows that conditions (a1),
(a2), (b1), (b2) imposed on models from some class are sufficient for
occurrence of the respective theses: (A1), (A2), (B1), (B2). For any
binary relation R on For we obtain:
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(1) R is (a1) ⇒ R |= ¬(ϕ → ¬ϕ)

(2) R is (a2) ⇒ R |= ¬(¬ϕ → ϕ)

(3) R is (b1) ⇒ R |= (ϕ → ψ) → ¬(ϕ → ¬ψ)

(4) R is (b2) ⇒ R |= (ϕ → ¬ψ) → ¬(ϕ → ψ).

A theorem with implications the other way around is not true which is
easy to demonstrate by providing relevant countermodels for each case.

Still, the authors would also like to get converse implications. This
would enable a transition from the syntactic formulation of connexive
logic, i.e., adoption of formulas (A1), (A2), (B1), (B2) as axioms, to the
relevant classes of models within the set of all models. There are prob-
ably various ways to receive a converse theorem. The authors offered,
however, a rather intuitive way, which is probably also minimalistic.
They adopted one more property of the relating relation: closure under
negation. Let R ⊆ For

2.

(c1) R is closed under negation iff for all ϕ, ψ ∈ For, R(ϕ, ψ) ⇒
R(¬ϕ,¬ψ).

The closure under negation is a minimal condition which preserves
the connection of two propositions and their negations in terms of con-
tent. For, in accordance with (c1) it is so that if two propositions ϕ
and ψ are connected: R(ϕ, ψ), then their negations are also connected
R(¬ϕ,¬ψ) which seems reasonable. We can also consider a stronger con-
dition, reinforcing (c1) to an equivalence. But condition (c1) is sufficient
to get a single equivalence among conditions (a1), (a2), (b1), (b2) with
the theses of Aristotle and Boethius that are relevant. The examination
of the reinforced (c1) as well as the other conditions producing a similar
effect as (c1) were left for further studies.

Condition (c1) features an interesting property. When imposed on
models it will produce new theses. If R is closed under negation then
R |= ¬(((ϕ → ψ) ∧ ¬ψ) ∧ ¬(¬ϕ → ¬ψ)). But the converse implication
does not hold. However, also the adoption of conditions (a1), (a2), (b1),
(b2) to the relating relation R does not warrant that the below formula
occurs as a tautology: R |= ¬(((ϕ → ψ) ∧ ¬ψ) ∧ ¬(¬ϕ → ¬ψ)).

Putting the former propositions we get two conclusions. Firstly, an
addition of condition (c1) to define the class of the relating models brings
new laws that are not generated by conditions (a1), (a2), (b1), (b2).
Secondly, condition (c1) does not follow from those conditions. The
adoption of the condition of closure under negation produces a theorem
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on the correspondence for the Aristotle’s and Boethius’ theses. If a
binary relation R on For satisfy (c1), then:

• R is (a1) ⇐⇒ R |= ¬(ϕ → ¬ϕ)

• R is (a2) ⇐⇒ R |= ¬(¬ϕ → ϕ)

• R is (b1) ⇐⇒ R |= (ϕ → ψ) → ¬(ϕ → ¬ψ)

• R is (b2) ⇐⇒ R |= (ϕ → ¬ψ) → ¬(ϕ → ψ).

In the paper [Jarmużek and Malinowski, 2019a] thirty-two logics by
determining respective classes of relations R were constructed. In two of
them Aristotelian and Boethian laws hold and at the same time negation,
conjunction and disjunction preserve Boolean meaning. That is why for
such logics the name Boolean connexive logics was proposed.

In the presented paper connexive logic was understood in a very
general way, just as any set of sentences closed under substitution and
modus ponens containing Aristotle’s and Boethian laws. This way struc-
tural properties of a broad spectrum of sentential connexive logics was
possible to investigate.

Let us stress again that relating semantics in a general way was pro-
posed in the paper [Jarmużek and Kaczkowski, 2014].6 Its main notion 
a relating relation  can be equipped with a large quantity of philosoph-
ical and not only philosophical motivations and interpretations. Two
formulas can be related by R in many ways. For example they could
be related analytically, causally, thematically, temporally, etc. In the
presented paper relating semantics is directly applied to connexive im-
plication. As a consequence, in this approach connexive implication is
true iff its antecedent is false or its consequent is true and simultane-
ously both are connected in some way. In the semantics this connection
is expressed by the relating relation.

In the next paper [Jarmużek and Malinowski, 2019b] investigations
initiated in the former paper are continued with generalizing the results
to the area of modal logics. In a natural way by modal Boolean connexive

logics is meant a logic formulated in the sentential language with im-
plication, classical negation, classical disjunction, classical conjunction,

6 But the first systems of relating logic was propose in [Epstein, 1979, 1990]; for
the historical issues, see [Klonowski, 2021b]. The article argues that, apart from the
person of R. Epstein, also D. Walton [1979a,b] is an indispensable researcher for the
development of relating semantics. More on various variants of this kind of implication
can be found in [Paoli et al., 2021; Ledda et al., 2019; Paoli, 2007, 1993].
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necessity and possibility operators satisfying Aristotle’s and Boethian
laws. So Boolean connexive logics are examined in the language with
modal operators: �, ♦ are investigated. In such logics negation, con-
junction and disjunction behave in a classical, Boolean way, again. Only
implication is non-classical.

These logics are constructed by mixing relating semantics with pos-
sible worlds. This way we obtain connexive counterparts of basic normal
modal logics. However, most of their traditional axioms formulated in
terms of modalities and implication do not hold anymore without addi-
tional constraints, since our implication is weaker than material impli-
cation.

Expressing this in a short way: modal Boolean connexive logic is a
Boolean connexive logic defined in a modal language. The semantics
considered there is a kind of combination of possible worlds semantics
and relating semantics. As a consequence we have two types of binary
relations: a relating relation between formulas determining a meaning
of implication and an accessibility relation on possible worlds defining
modal operators. There appears that both kinds of relations influence
each other and limit to some extent traditional modal laws. A motivation
for considering this particular combination of two semantics is natural.
Since we considered in connexive logics without possible worlds, here we
extend our ideas to possible worlds framework.

Any models that mix relations with possible worlds can be named
modalized models [see Jarmużek and Malinowski, 2019b; Jarmużek and
Klonowski, 2020; Jarmużek and Paoli, 2021]). During the 1st WRL, the
following problems were identified as some of the most important for the
understanding of RL:

1. problem α: axiomatization of logics defined by relating semantics (by
given classes of valuations/relations);

2. problem β: relating semantics for logics defined as some set of for-
mulas closed under some rules of inference;

3. problem γ: defining philosophical logics by relating semantics (re-
duction of various logical connectives to relating connectives);

4. problem δ: relationships between relating semantics and other kinds
of formal semantics (problem of reduction);

5. problem η: combining relating semantics with other kinds of formal
semantics.
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One of them, the problem η, was combining relating semantics with
other kinds of formal semantics. So, the examination of modalized mod-
els is a special instance of the problem η.

By using these modalized models a number of connexive counter-
parts of basic normal modal logics was defined. However, most of their
traditional axioms formulated in terms of modalities and implication do
not hold anymore, since the relating implication is weaker than material
implication. To make them valid some additional constraints on relating
semantics must be imposed, like in particular, that modal operators have
no influence on being related. Most of the basic systems of Boolean and
Modal Boolean connexive logics were axiomatized in [Klonowski, 2021a].

The articles selected for the second volume contain partial solutions
to some of the problems listed above.

In the article “Relating semantics as compatibility semantics” (by
Luis Estrada-González) a technical problem is addressed. The ques-
tion the author is interested in there is whether the relating semantics
for connexive logics currently available provide a good account of what
connexivity is, or at least as good as some of the proposals already in cir-
culation. He argues that relating semantics for Boolean connexive logics,
in its current state, does not give a satisfactory account of connexivity,
as it is merely designed to validate the connexive schemas. Nonetheless,
following the initial ideas of Jarmużek and Malinowski, he suggests that
such semantics can be understood as a version of the Incompatibility
Approach, and that the relating semantics can be naturally enriched so
as to make it virtually indistinguishable from the Incompatibility Ap-
proach. Said boldly, his claim is that, if relating semantics for Boolean
connexive logics is going to be more than a means to validate the connex-
ive schemas, and if the relating relation to model connexive logics is to
be understood as connectedness, as Jarmużek and Malinowski want, the
relating relation must have more properties than those currently allowed.
Further arguments for those additional properties come from considering
highly desirable properties of a conditional.

The subject of relating semantics for connexive logics is also devel-
oped in the paper “Relating semantics for hyper-connexive and totally
connexive logics” (by Ricardo Arturo Nicolás-Francisco and Jacek Mali-
nowski).

In this paper the authors present an interesting characterization of
hyper-connexivity by means of relating semantics for Boolean connexive
logics. They also show that the minimal Boolean connexive logic is
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Abelardian, strongly consistent, Kapsner strong and antiparadox. But
they give an example showing that minimal connexive logic is not simpli-
ficative. This shows that minimal Boolean connexive logics is not totally
connexive.

The paper “Axiomatization of BLRI determined by limited positive
relational properties” (by Jarmużek and Klonowski) is the study of a
generalised method for obtaining a complete axiomatic system for any
relating logic expressed in a language with Boolean connectives and re-
lating implication, defined by the so-called limited positive relational
properties.

Conditions of this kind take the form of a general conditional sentence
with an antecedent in the form of conjunctions of relational expressions,
i.e., expressions built with a binary predicate and variables over formu-
las, and a consequent in the form of a relational expression. Multiple
examples of such properties can be found in [Epstein, 1990; Jarmużek
and Klonowski, 2021; Jarmużek and Malinowski, 2019a], where it has
been show how relating semantics, with the appropriate conditions for
the considered type, can allow for analysing implication that takes into
account content-relationships of the expressions, causal implication and
connexive implication.

The method of obtaining axiomatic systems for logics of a given type
is called the α algorithm, since the analysis allows for any logic of a
given type to determine step-by-step the axiomatic system adequate for
it. The proof of completeness of axiomatic systems obtained by applying
the α algorithm that is presented constitutes a modification of Henkin-
style completeness proofs for zero-order logics. Such proofs for various
types of relating logics were presented in [Epstein, 1979, 1990; Klonow-
ski, 2019].7 However, all those cases used the fact of expressivity of
the relating relation in the language of the analysed logic. The proof
in the paper “Axiomatization of BLRI determined by limited positive
relational properties” does not use expressivity of the relating relation.
By means of an appropriate transformation, it is shown how to transform
the relational conditions that determine a given logic into axioms. In
addition to axioms, in some cases it must additionally be considered
a rule that allows to transform axioms in a way that corresponds to
deducing relational conditions from the given initial conditions.

7 Constructive proofs were analysed in [Paoli, 1996; Klonowski, 2018].
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Another possibility of applying relating semantics can be found in a
debate from epistemology regarding the content of scientific understand-
ing. The paper by Maria Martinez-Ordaz (“Scientific understanding
meets relating logic”) uses the philosophical grounds of relating seman-
tics for explaining the primacy of the logical component of scientific
understanding.

The question that the paper tackles is that of the difference between
understanding and merely knowing in scientific contexts; and the answer
points to a special kind of logical constraint. First, scientific under-
standing has been largely characterized as consisting of knowledge about
relations of dependence. So, if one understands something, one can make
all kinds of correct inferences about it. Second, the content of under-
standing is traditionally regarded to be factive, meaning that legitimate

cases of understanding can only include true propositions that are known
to be so.

The combination of these two assumptions gives the impression of
understanding surpassing the limits of knowledge by possessing an im-
portantly logical component  more than by being constrained by the
truth value of its content. Unfortunately, for a long time, the logical
side of understanding has been neglected by epistemologists of science.

The paper argues that the role that truth might play for this matter
is actually less important and, especially, less decisive than the one of
logic. Furthermore, it contends that the analysis of the basics of relating
semantics can shed light on the logical constraints of scientific under-
standing in a significant way. In order to support such a claim, the
author proceeds in four steps: first, she introduces the debate about the
role that truth plays for the legitimacy of understanding.

Second, she explains that the debates on the truth value of the con-
tent of understanding neglect the crucial component of the phenomenon:
its logical character; the key element to move forward the study of un-
derstanding would be an analysis of its logical constraints, which she
contends to be content-related.

Third, the author introduces the philosophical basics of relating se-
mantics. This section includes a brief recap of the motivations behind
Epstein’s programme and the later integrative views on Torunian Pro-
gramme.

Fourth, the author tackles two main issues, first, how relating seman-
tics can shed light, in a novel and unique way, on the study of scientific
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understanding; and second, the philosophical value of such an application
for the relating semantics project.
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