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Relating Semantics for Epistemic Logic

Abstract. The aim of this paper is to explore the advantages deriving from
the application of relating semantics in epistemic logic. As a first step, I will
discuss two versions of relating semantics and how they can be differently
exploited for studying modal and epistemic operators. Next, I consider
several standard frameworks which are suitable for modeling knowledge
and related notions, in both their implicit and their explicit form, and
present a simple strategy by virtue of which they can be associated with
intuitive systems of relating logic. As a final step, I will focus on the logic
of knowledge based on justification logic and show how relating semantics
helps us to provide an elegant solution to some problems related to the
standard interpretation of the explicit epistemic operators.
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1. Introduction

This paper is explorative in nature and aims at presenting the advantages
deriving from applying relating semantics to epistemic logic in general
and to explicit epistemic logic in particular. It is structured as follows.
In this introduction relating semantics is put into the context of logical
semantics. Section 2 is dedicated to an overview of relating semantics:
I distinguish uniform and general relating semantics and derive some
simple results about them. Section 3 presents different kinds of semantics
for epistemic logic and a general strategy by virtue of which they can be
associated with intuitive systems of relating logic. Finally, section 4 is
dedicated to the analysis of some aspects of explicit epistemic logic in a
relating setting.
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1.1. Aspects of propositions

The idea underlying relating semantics is that the truth value of a com-
plex proposition depends not only on its components and the way of
composition, but also on the semantic connections between the com-
ponents, where the semantic connections are based on specific aspects
characterizing the propositions expressed by those components [8, 9, 27].
In a very general sense, a logical framework is characterized by the way
in which we select the aspects of a proposition that are crucial for iden-
tifying its content.1 So, in a classical setting, we assume that the only
aspects of a proposition which matter to logic are
1. its form;
2. its extension, i.e. its truth value.

Similarly, in a modal setting, we assume that the only aspects of a
proposition which matter to logic are
1. its form;
2. its intension, i.e. the set of worlds at which it is true.

The benefit of working under such assumptions is that they allow
us to focus on specific classes of operators, the extensional ones in the
first case and the intensional ones in the second one, and to develop
the corresponding logics. Accordingly, in an extensional framework, we
define the truth conditions of a complex proposition in terms of the
truth values of its components and, in an intensional framework, we
define the truth conditions of a complex proposition in terms of the
possible worlds where its components are true. These frameworks, while
fruitful in orienting the logical analysis of a vast number of operators,
also limit the scope of our study to extensional and intensional contexts,
thus preventing us to capture other interesting traits of propositions,
specifically the hyperintensional ones.

1.2. Aspect based relations

In a general setting, we make the assumption that the aspects of a propo-
sition which matter to logic are
1. its form
2. its X , where X is some specific property.

1 This characterization of a logical framework is exploited in its full generality in
[9] and constitutes a key insight in relating semantics.
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Since the selection of X is not predetermined, we are in a position to
consider any aspect for defining the truth of a proposition. This is one
of the starting points of relating semantics: once property X is selected,
the truth conditions of a complex proposition are defined in terms of its
form and the relations occurring between its components with respect
to X . Indeed, in a relating setting, the aspects of a proposition which
matter to logic are at least
1. its form
2. a selected set of relations between its components.

Hence, in relating semantics the truth conditions of complex propo-
sitions involve a crucial reference to those aspects the relations between
the component of a proposition are based on.

2. Relating semantics

The key idea in relating semantics is that the semantic value of a complex
proposition is given by a valuation of propositional variables together
with a valuation of the relation between the main components of that
proposition. This relation is able to encode both intensional and hyper-
intensional elements.2

2.1. Introducing relating semantics

A propositional language is a triple L = (VarL, CL, ar) where VarL is a
set of propositional variables and (CL, ar), the type of L, is such that CL

is a set of logical constants and ar : CL → N is a function assigning an
arity to each constant. The notion of a formula of L is defined according
to the following grammar:

φ := p | c(φ1, ..., φar(c)), where p ∈ VarL, c ∈ CL.

In interpreting L, we typically work with a set TV of truth values
such that 1 ∈ TV . A model for L is a tuple M = (V, f) constituted by
a function V : VarL → TV , that assigns a truth value to each variable,
and a function f , that assigns a truth function fc to each c ∈ CL in such
a way that the following condition holds

If c ∈ CL, then fc : TV ar(c) → TV .

2 See [16] for an extended introduction to the ideas underlying this kind of se-
mantics.
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The notion of truth in a model is then defined so that

M |= p iff V (p) = 1, where p ∈ VarL;
M |= c(φ1, ..., φar(c)) iff fc([φ1]M , ..., [φar(c)]M) = 1.

Here [φi]M is the semantic value of formula φi in M , in this case a
truth value in TV .

A relating semantics is obtained by enriching the notion of a model.
If M is a model for L, MR is the extension of M obtained by introducing
a set R of relations, in principle one for each c ∈ CL. In this kind of
framework the semantic value of a complex formula is determined by its
value in TV and the relations in R. Hence, the notion of truth in a
model is defined so that

M |= p iff V (p) = 1, where p ∈ VarL;
M |= c(φ1, ..., φar(c)) iff fc([φ1]M , ..., [φar(c)]M) = 1
and Rc(φ1, ..., φar(c)), where Rc is the relation corresponding to c.

This definition captures the idea that the semantic value of a complex
proposition depends both on the truth values of its components and on
a semantic relation between them.

Example 1. Let L be the language of classical propositional logic. As-
suming that the implication is introduced by definition, we have CL =
{¬,∧,∨} with ar(¬) = 1, ar(∧) = ar(∨) = 2. A model of L is a tuple
M = (V, f) where f is defined as follows

f¬ : {0, 1} → {0, 1} is such that f¬(x) = 1 − x;
f∧ : {0, 1}2 → {0, 1} is such that f∧(x1, x2) = min(x1, x2);
f∨ : {0, 1}2 → {0, 1} is such that f∨(x1, x2) = max(x1, x2).

The truth of a complex proposition is determined in terms of the
semantic values of its components. E.g.

M |= φ1 ∧ φ2 iff min([φ1]M , [φ2]M) = 1.

The corresponding condition in relating semantics is

M |= φ1 ∧ φ2 iff min([φ1]M , [φ2]M) = 1 and R∧(φ1, φ2).

We are now in a position to introduce different connectives based on
the interpretation of R∧. For instance, interpreting R∧ as the universal
relation enables us to recover the extensional conjunction, representing
the fact that φ1 and φ2, while interpreting R∧ as the relation obtaining
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between φ1 and φ2 when the proposition expressed by φ1 describes a
state of affairs that precedes the state of affairs described by the propo-
sition expressed by φ2 enables us to introduce a diachronic conjunction
representing the fact that φ1 and then φ2.3

In a more general setting, given a logical constant c with arity n, the
truth condition for a formula like c(φ1, ..., φn) is defined in terms of a set
p of parameters. Let TC(c,p) be such condition. Then

M,p |= c(φ1, ..., φn) iff TC(c,p)

and the corresponding truth condition in the relating setting is

MR,p |= c(φ1, ..., φn) iff TC (c,p) and Rc(φ1, ..., φn)

where it is assumed that the default option for Rc is the universal relation
on the set of formulas of L.

Example 2. Let L be the language of classical propositional modal logic,
so that CL = {¬,∧,∨,�} and ar(�) = 1. A model for L is a triple
(W,R, V ) such that W 6= ∅, R ⊆ W × W , V : VarL → ℘(W ). The
semantic value of a proposition is the set of worlds in W in which that
proposition is true. The function assigned to � is

f� : ℘(W ) → ℘(W ), such that

f�(X) = {w ∈ W : ∀x ∈ W (R(w, x) ⇒ x ∈ X)}.

Again, the semantic value [φ]M of a complex proposition can be de-
termined in terms of the semantic values of its components. E.g.

M,w |= �φ iff w ∈ f�([φ]M) iff ∀x ∈ W (R(w, x) ⇒ x ∈ [φ]M).

In this case, TC(c,p) is w ∈ f�([φ]M), and the only parameter is w.
The corresponding condition in relating semantics is

M,w |= �φ iff w ∈ f�([φ]M) and R�(φ),

where R� is the relation corresponding to �.

In this framework, the possibility is open to incorporate condition
TC(c,p) into the relating relation. If TC (c,p) is incorporated into the
relation, we say that the corresponding relating semantics is deflating,
otherwise we say that it is inflating. The main concern here is in inflating
relating semantics, since deflating relating semantics turns out to be too
general for yielding interesting results.

3 See [16], where a number of possible interpretations are proposed.
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2.2. Basic facts in relating semantics

I say that a system of relating semantics is uniform when a unique re-
lation R is involved in the truth conditions of all the logical operators,4

whereas a general system allows for associating different relations with
different operators. The logic induced by a uniform system of relating
semantics is said to be uniform as well. Finally, the notion of logical
consequence is defined in the usual manner: w.r.t. R and a class R of
relations

(i) X R φ iff ∀M,p(MR,p |= X ⇒ MR,p |= φ);
(ii) X R φ iff ∀R ∈ R,M,p(MR,p |= X ⇒ MR,p |= φ).

Let us now prove some elementary, though general, results on uniform
and deflating semantics.5

Theorem 2.1. Suppose R is a class of relations on L defined by a con-

ditional like ∀x1, ..., xn(R(x1, ..., xn) ⇒ C), where C is any condition.

Then the uniform relating logic determined by R is empty.

The idea is to select a suitable R.

Proof. Let c be any n-ary constant. Define R so that R is empty.
Since MR,p |= c(φ1, ..., φn) iff TC(c,p) and R(φ1, ..., φn), MR,p 6|=
c(φ1, ..., φn). Therefore, for any formula c(φ1, ..., φn) there is a model
in which that formula is not true. ⊣

As a corollary, we get that the logic determined by the class of all
relations on L in a uniform relating semantics is empty. This fact shows
that interesting systems of relating logic are either not uniform, like the
epistemic systems discussed below, or such that the relations they involve
are not defined by a conditional like ∀x1, ..., xn(R(x1, ..., xn) ⇒ C), e.g.
systems where the relations are reflexive.6

4 A uniform relating semantics coincides with a mono-relational semantics for a
language with only relating connectives. See [16] for further information on various
versions of relational semantics.

5 A more comprehensive and detailed overview of the semantics of relating logic
is proposed in [18, sec. 2].

6 The systems of relatedness logic introduced in [8] are not touched by Theorem 1:
first, those systems are not uniform, since they include classical operators which are
such that no relation occurs in their truth conditions; second the relations involved
in the truth conditions of the implication are typically reflexive.
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A first theorem concerning the deflating version of relating semantics
is the following.

Theorem 2.2. Suppose c is an n-ary constant whose semantic definition
is known. Then, a relating semantics for c can be introduced with respect

to which the logic of c is sound and complete.

Proof. Let c be such an operator and M,p |= c(φ1, . . . , φn) iff TC (c,p)
be the correlated truth condition. Define R so that

R(φ1, . . . , φn) iff TC(c,p).

Then, the conclusion follows, since:

MR,p |= c(φ1, . . . , φn) iff R(φ1, . . . , φn). ⊣

This theorem shows that, in general, introducing a relating semantics
whose relating relation incorporates the known truth conditions of an op-
erator is always possible, even though it is not particularly enlightening.
In spite of that, this implies that any logic concerning operators that
satisfy the condition posed by the theorem can be viewed as a specific
relating logic.

I conjecture that a similar theorem holds when the operator is defined
in terms of logical axioms.

Conjecture. Suppose c is an n-ary constant whose axiomatic definition
is known. Then, a relating semantics for c can be introduced with respect

to which the logic of c is sound and complete.

This conjecture is more interesting than the previous theorem.

Proof idea. Let c be such an operator and define its truth conditions
so that MR,p |= c(φ1, ..., φn) iff R(φ1, ..., φn). If an appropriate transla-
tion of the axioms on c in terms of R is available, introduce a condition
on the models for each axiom that connects c to a classical connective.
The conclusion follows. ⊣

Let us exemplify this theorem, and the way the translation could go,
by taking the case of a non-monotonic conditional, →֒, captured by the
following axioms in a modal framework where → is the usual implication:

1. Reflexivity: φ →֒ φ;
2. Inclusion: (φ →֒ ψ) → (φ → ψ);
3. Cut: (φ →֒ α) ∧ (φ ∧ α →֒ ψ) → (φ →֒ ψ).
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First, set M,w |= φ →֒ ψ iff Rw(φ, ψ), where the models are assumed
to satisfy the conditions:

1. Rw(φ, φ);
2. if Rw(φ, ψ) and M,w |= φ, then M,w |= ψ;
3. if Rw(φ, α) and Rw(φ ∧ α, ψ),then Rw(φ, ψ).

Next, define a canonical model where Rw(φ, ψ) iff φ →֒ ψ ∈ w. The cor-
respondence between axioms and semantic conditions ensures that the
axiomatization is sound and that the canonical model is a model for the
logic we are considering. In addition, the canonical definition of Rw en-
sures that a truth lemma is provable, so that the system is also complete.

Taking stock, Theorem 2.2 and the previous conjecture are interest-
ing is so much as they allow us to appreciate the generality of a relating
framework, even if the resulting semantics is in a sense parasitic either
on an existing semantic specification or on an existing axiomatic speci-
fication of the logic, and so provides us with little insight on the sense
and properties of the operators we are interested in.

3. Epistemic systems

The main point of this paper is the application of relating semantics
to epistemic logic. So, in this section I will survey some well-know ap-
proaches to epistemic logic and then sketch some connections between
these approaches and relating semantics.

The set Fm(L) of formulas of the basic epistemic language L is de-
fined according to the following grammar, where Var is a set of propo-
sitional variables and K the epistemic operator representing knowledge:

φ := p | ⊤ | ¬φ | φ ∧ ψ | φ ∨ ψ | Kφ

while → and ↔ are defined as usual. I work in a framework where
epistemic models are based on a set W 6= ∅ of possible worlds and a
valuation function V : Var → ℘(W ) assigning sets of worlds to proposi-
tional variables. The truth of a non-modal formula is defined as follows.

1. M,w |= p iff w ∈ V (p);
2. M,w |= ⊤;
3. M,w |= ¬φ iff M,w 6|= φ;
4. M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ;
5. M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ.



Relating semantics for epistemic logic 689

I also assume a functional version of possible worlds semantics, which
exploits the correspondence between relations on a set and functions into
its power set. Accordingly, models are introduced as tuples involving a
function R : W → ℘(W ), while the corresponding relation can be de-
fined in such a way that R(w, v) iff v ∈ R(w), where R(w) is the set of
worlds that are accessible from w. The notions of logical consequence
and validity are defined as usual.

3.1. Epistemic semantics

The semantic frameworks for epistemic logic which I am going to focus
on are: relational semantics; perspectival semantics; neighborhood se-
mantics; and liberal semantics. These frameworks help us to capture
different intuitions on knowledge, and therefore to introduce different
principles characterizing K. I will assume a fair amount of familiarity
with such frameworks and present them from the more specific to the
more general, highlighting the basic logical traits of the notion of knowl-
edge they represent.7 M is the notion of logical consequence defined
with respect to the class of models introduced from time to time.

3.1.1. Relational semantics

A model is a tuple M = (W,R, V ), with R : W → ℘(W ) such that
w ∈ R(w) for every w ∈ W . The definition of truth is such that

M,w |= Kφ iff R(w) ⊆ [φ]M , where [φ]M = {w : M,w |= φ}.

Intuitively, every world w ∈ W is associated with a set R(w) of
possible worlds, which are the ones that are not excluded by what the
agent knows at w, and a proposition is known to be true just in case it
is true at all these worlds.8 It is well-known that in this setting we have
full logical omniscience:

M K⊤;
if M φ, then M Kφ;
if M φ → ψ, then M Kφ → Kψ;
if M φ ↔ ψ, then M Kφ ↔ Kψ;
M K(φ → ψ) → (Kφ → Kψ).

7 A classical introduction covering most of the systems we are about to present is
given in [10]. For a general introduction to the modal logics underlying the epistemic
systems we are going to consider see [5, 7].

8 See [24, 25] for an overview of this approach.
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Therefore, the notion of knowledge we are working with is a notion of
either implicit or ideal knowledge.

3.1.2. Perspectival semantics

A model is a tuple M = (W,P, V ), with P : W → ℘℘(W ) such that
P(w) 6= ∅ and w ∈

⋂
P(w) for every w ∈ W . The definition of truth is

such that

M,w |= Kφ iff X ⊆ [φ]M for some X ∈ P(w).

Intuitively, every world w ∈ W is associated with a set P(w) of sets
of possible worlds. P(w) represents the strong body of evidence available
to the agent, and a proposition is known to be true just in case there is
some evidence supporting it.9 In this setting we have a form of limited

logical omniscience:

M K⊤;
if M φ, then M Kφ;
if M φ → ψ, then M Kφ → Kψ;
if M φ ↔ ψ, then M Kφ ↔ Kψ.

In addition, a relational model can be identified with a perspectival
model where, for every w ∈ W , P(w) is closed under taking intersections.
In this case R(w) =

⋂
P(w).

3.1.3. Neighborhood semantics

A model is a tuple M = (W,N , V ), with N : W → ℘℘(W ) such that
N (w) 6= ∅ and w ∈

⋂
N (w) for every w ∈ W . The definition of truth is

such that

M,w |= Kφ iff [φ]M ∈ N (w).

Intuitively, every world w ∈ W is associated with a set N (w) of sets
of possible worlds. N (w) represents the propositions the agent knows,
so that a proposition is known to be true just in case it is one of the
members of N (w).10 In this setting we have a more interesting form of
limited logical omniscience:

if M φ ↔ ψ, then M Kφ ↔ Kψ.

9 See [4, 26] for developments of this interesting new approach.
10 See [10, 21] for an introduction to this approach.



Relating semantics for epistemic logic 691

In addition, a perspectival model can be identified with a neighbor-
hood model where, for every w ∈ W , N (w) is upward closed, while a
relational model can be identified with a neighborhood model where, for
every w ∈ W , N (w) is a filter. In this case R(w) =

⋂
N (w).

Neighborhood models provide the most general intensional represen-

tation of knowledge. Indeed, it is only assumed that the agent knows the
propositions that are logically equivalent to the propositions he knows.

3.1.4. Liberal semantics

A model is a tuple M = (W, T , V ), with T : W → ℘(Fm(L)). The
definition of truth is such that

M,w |= Kφ iff M,w |= φ and φ ∈ T (w).

Intuitively, every world w ∈ W is associated with a set T (w) of for-
mulas. T (w) represents the propositions the agent is justified to assume,
so that a proposition is known to be true just in case it is true and is
one of the propositions expressed by a formula in T (w).11 In this setting
we have no form of logical omniscience, but this comes at a cost, since
we also have no hint on the logical principles characterizing K. Liberal
semantics is extremely general: a neighborhood model can be identified
with a liberal model where T (w) is closed under logical equivalence for
every w ∈ W . In this case N (w) = {[φ]M : φ ∈ T (w)}.

Liberal models provide the most general hyperintensional represen-

tation of knowledge. Indeed, we are free to represent properties of K
simply by introducing constraints on formulas in T (w).

3.1.5. Hybrid liberal semantics

A final framework for representing knowledge is given by a semantics that
combines elements from intensional systems and liberal systems [see 10,
ch. 9]. In a hybrid liberal semantics a model is a tuple M = (W,R,A, V ),
where R : W → ℘(W ) is such that w ∈ R(w) for every w ∈ W and
A : W → ℘(Fm(L)) is a function that associate a set A(w) of formulas
to each w ∈ W . A(w) represents the propositions the agent is aware of.
Truth is defined so that:

M,w |= Aφ iff φ ∈ A(w);
M,w |= Kφ iff R(w) ⊆ [φ]M and φ ∈ A(w).

11 See [10, 14] for an introduction to this approach.
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In this setting, a formula like Kφ states that φ is explicitly known,
since φ is not only true at every world which is consistent with the
agent’s knowledge, but it is also a formula the agent is explicitly aware
of. So, explicit knowledge is defined in terms of implicit knowledge and
awareness.12 The relationship between the logic of K induced by the
basic system of hybrid liberal semantics and the logic induced by a basic
system of liberal semantics is the following:

1. every hybrid liberal model can be transformed into a liberal model
satisfying the same formulas by defining T so that T (w) = {φ :
R(w) ⊆ [φ]M} ∩ A(w);

2. every liberal model can be transformed into a hybrid liberal model
satisfying the same formulas by defining R so that R(w) = {w} for
every w ∈ W and A so that A = T .

The relationship between hybrid liberal semantics and liberal seman-
tics in general is an open problem.

In conclusion, before moving on to relating semantics for epistemic
logic, it is worth noting that liberal and neighborhood semantics are
more likely viewed as ways of representing knowledge rather than ways

of understanding knowledge. In fact, in such settings, knowledge has no
specific characteristic: if we want to represent a property of knowledge
we have to impose it explicitly on N or T . This gives us a lot of freedom
in terms of representation, but it gives us no idea about a principled way
to identify a correct logic of knowledge. As we will see, this aspect is in
part shared by the relating semantics we are going to consider.

3.2. Relating Epistemic logic

Let us now see whether the previous systems can be subsumed under
relating semantics and whether this subsumption allows us to better
understand the logic of knowledge.13 I introduce the following relating
models, where the relevant relation connects a formula with the agent’s
knowledge base at a world, i.e. the set of propositions which constitute

12 The epistemic logic proposed in [10, ch. 9] includes an operator representing
implicit knowledge, so that the definition of explicit knowledge in terms of implicit
knowledge and awareness can be introduced in the language.

13 For a first integration of relating relations into possible worlds semantics see
[17, 19].
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the agent’s knowledge at w. Accordingly, Rw(φ) states that φ is related,
in a sense to be specified, with the agent’s knowledge base.

Definition 3.1. A model for L is a tuple (W,R, V ) where

R ⊆ W × Fm(L).

The definition of truth is such that

M,w |= Kφ iff M,w |= φ and Rw(φ).

This definition is general enough to provide us with a comprehensive
scheme to be further specialized with respect to the kind of semantics
we want to capture. The idea behind such definition is straightforward:
the agent knows that φ just in case φ is true and is related, in a sense to
be specified, to her knowledge base.

Conditions on R capturing Relational Logic:

if [φ]M = W , then Rw(φ);
if Rw(φ) and Rw(φ → ψ), then Rw(ψ).

Axiomatization:

axioms and rules for propositional logic;
if φ is derivable, then Kφ is derivable;
K(φ → ψ) → (Kφ → Kψ);
Kφ → φ.

These conditions assume that every validity is related to the knowl-
edge base of the agent and that the consequent of any implication that
is related to that knowledge base is also related to the knowledge base,
provided its antecedent is so related. They can be exploited to formalize
an idea of knowledge according to which the agent knows that φ just in
case φ follows form his knowledge base. The relation involved is that
of consequence: Rw(φ) states that φ follows from what the agent knows
at w. Hence, the notion of knowledge here involved is the notion of
implicit knowledge: the agent knows all the logical truths and all the
known consequences of what he knows. Furthermore, since [φ]M ⊆ [ψ]M

implies Rw(φ → ψ), by the conditions on R, the agent also knows all the
logical consequences of what he knows.

Conditions on R capturing Perspectival Logic:

if [φ]M = W , then Rw(φ);
if Rw(φ) and [φ]M ⊆ [ψ]M , then Rw(ψ).
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Axiomatization:

axioms and rules for propositional logic;
if φ is derivable, then Kφ is derivable;
if φ → ψ is derivable, then Kφ → Kψ is derivable;
Kφ → φ.

These conditions assume that every validity is related to the knowl-
edge base of the agent and that the every proposition which follows
from a proposition related to that knowledge base is also related to the
knowledge base. They can be exploited to formalize an idea of knowledge
according to which the agent knows that φ just in case φ follows from
an element of the knowledge base. The relation involved is that of a
sort of point-wise consequence: if φ is related to the knowledge base and
ψ is implied by φ, then ψ is also related to the base, but the agent is
not allowed to aggregate bits of the knowledge base to derive further
consequences. To be sure, it is possible for the agent not to know that
ψ even if ψ is implied by known propositions. Hence, the notion of
knowledge here involved is a limited version of implicit knowledge: the
agent knows all the logical truths and all the point-wise consequences of
what he knows. Still, it is not necessary for the agent to know all the
known consequences of what she knows, due to the fact that different
truths can be known from different perspectives.

Conditions on R capturing Neighborhood Logic:

if Rw(φ) and [φ]M = [ψ]M , then Rw(ψ).

Axiomatization:

axioms and rules for propositional logic;
if φ ↔ ψ is derivable, then Kφ ↔ Kψ is derivable;
Kφ → φ.

In this case every proposition which is intensionally equivalent to
a proposition related to the agent’s knowledge base is also related to
that knowledge base. The relation involved is simply the relation of
intensional equivalence: we abstract from the way in which a proposition
represents a set of possible worlds and assume that every proposition
representing a certain set of possible worlds is related to the knowledge
base provided that one of such propositions is so related. The notion
of knowledge here involved is a basic version of implicit knowledge: the
agent knows all the propositions that are logically equivalent to what
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he knows. In this case, nothing is assumed about knowledge of either
logical truths or logical consequences of what is known. The idea is just
that the content of knowledge is independent of the way of presentation.

Conditions on R capturing Liberal Logic:

no condition.

Axiomatization:

axioms and rules for propositional logic;
Kφ → φ.

The notion of knowledge here involved is the liberal one: no as-
sumption is at work. When considered from the point of view of relating
semantics, it is plain that a liberal logic is able to represent both rational
and irrational epistemic agents. Indeed, since no condition on the propo-
sitions that are related to the knowledge base is assumed, there is no con-
straint on what the agent is supposed to know given his knowledge base.

Soundness and completeness. With respect to the previous systems,
soundness is straightforward, while completeness is proved as follows.
Let M is the canonical model defined so that Rw(φ) iff Kφ ∈ w.

Lemma 3.1 (Truth Lemma). M,w |= φ iff φ ∈ w.

Proof. M,w |= Kφ iff M,w |= φ and Rw(φ), by the definition of truth,
iff φ ∈ w and Kφ ∈ w, by the induction hypothesis and the definition of
Rw, iff Kφ ∈ w, since Kφ → φ ∈ w. ⊣

Lemma 3.2 (Canonicity Lemma). M is a model of L.

Proof. Straightforward, since there is no condition on M . ⊣

Finally, the proof that the conditions on R are satisfied in the canon-
ical models for relational, perspectival, neighborhood, and liberal logic
follows from the definition of R and the axioms on K that characterize
the corresponding logics.

3.3. Discussion

Is there any advantage in adopting a relating semantics in studying the
logical structure of knowledge? As far as I can see, there are two possible
benefits in introducing this kind of semantics.
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First, in a sense, the connection between algebraic and possible world
semantics becomes more transparent. In fact, viewing Rw(φ) as the
semantic content of Kφ, the conditions on the algebraic operations that
correspond to the intensional operators can be obtained immediately by
substituting algebraic operations for operations and relations on suitable
sets. In more detail, we get the following correspondences.

Basic normal modal systems:

if a = 1, then �a = 1 if [φ]M = W , then Rw(φ)
if �a ∧ �(a → b) ≤ �b if Rw(φ) and Rw(φ → ψ), then Rw(ψ).

Basic monotonic modal systems:

if a = 1, then �a = 1 if [φ]M = W , then Rw(φ)
if �a and a ≤ b, then �b if Rw(φ) and [φ]M ⊆ [ψ]M , then Rw(ψ).

Basic classical modal systems:

if �a and a = b, then �b if Rw(φ) and [φ]M = [ψ]M , then Rw(ψ).

Similarly, the connection between axioms on K and conditions on the
accessibility relation R in relational semantics becomes more transpar-
ent. Let us see why. As said before Rw(φ) states that φ is related with
the agent’s knowledge base and that the precise sense of this relation
is to be further specified. A natural suggestion is that Rw(φ) holds
when φ follows from that knowledge base. This interpretation allows us
to better understand the accessibility relation R involved in relational
epistemic models. Indeed, we are typically invited to think of R as a
possibility relation: it defines what worlds an agent considers possible
in any particular world w ∈ W , where a world is possible in w provided
that it is consistent with the agent’s knowledge base. Interestingly, we
are now in a position to make this intuition precise. Since Rw(φ) holds
when φ follows from the agent’s knowledge base, we can assume that v
is considered possible in w just in case no sentence which follows from
the agent’s knowledge base is false at v. Therefore, we can assume this

Equivalence Thesis: v ∈ R(w) iff ∀φ (Rw(φ) ⇒ M, v |= φ).

On top of that, we are in a position to derive the most used conditions
on R directly from the corresponding axioms about K.

Example 3. Suppose we trust the KK-thesis and, accordingly, we char-
acterize K in terms of

Axiom 4: Kφ → KKφ.
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The condition on R matching this axiom in relating semantics is:

R4: for all w and φ, if Rw(φ), then Rw(Kφ).

The corresponding condition in standard relational epistemic models can
be derived as follows. If v ∈ R(w) and Rw(φ), then Rw(Kφ), by R4. So,
M, v |= Kφ, by the equivalence thesis, and therefore Rv(φ). Hence, if
v ∈ R(w) and Rw(φ), then Rv(φ), which implies that all the worlds
that are considered possible in v are also considered possible in w. In
conclusion, if v ∈ R(w), then R(v) ⊆ R(w), which amounts to the fact
that R is transitive.

A similar reasoning allows us to derive that R is to be

1. reflexive, since our models are suitable;
2. symmetric, in case ¬φ → K¬Kφ is assumed;
3. Euclidean, in case ¬Kφ → K¬Kφ is assumed;
4. convergent, in case ¬K¬Kφ → K¬K¬φ is assumed.

The second benefit stems form the fact that in devising a relating
epistemic logic we are forced to identify and justify the assumptions we
use to characterize the notion of knowledge. Thus, while in standard
epistemic semantics we start figuring out a set of appropriate conditions
on the accessibility relation and then we try to understand and justify
the properties induced by such conditions on K, in relating epistemic
semantics we are forced to start with conditions on K, and so to support
these conditions based on an explicit epistemological theory. I think
this is an advantage relative to standard epistemic semantics, since it
seems to me that our judgments concerning how K behaves are more
secure than our judgments concerning how epistemically possible worlds
are related. To be sure, I tend to be of the opinion that, for instance,
it is not because we include the actual world in the set of worlds that
are epistemically accessible that we assume that knowledge implies truth,
but it is because we assume that knowledge implies truth that we include
the actual world in the set of worlds that are epistemically accessible.
Similarly, I think that it is not because we assume that the accessibility
relation is transitive that we trust in the KK-thesis, if we trust in it,
but it is because we trust in the KK-thesis that we assume that the
accessibility relation is transitive.

As highlighted before, the aforementioned aspects can be regarded as
an advantage only from the point of view of those who want to represent

knowledge, not from the point of view of those who exploit semantic
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considerations in order to understand knowledge. In fact, the main dis-
advantage of this framework seems to be related to the limits in the
explicative power of the resulting semantic system: we are able to ex-
tract from it only what we already put into it in terms of properties of R,
so that it will be hardly the case that we discover something unexpected
on knowledge based on such a system.

4. Explicit epistemic logic

Let us now move to the relational interpretation of explicit epistemic
semantics. First of all, explicit epistemic logics are a class of logics
aimed at modeling knowledge and other epistemic operators in light of
the explicit sources supporting the epistemic states. Thus, formulas
like Kφ, stating that the agent knows φ, are replaced by formulas like
t : φ, stating that the agent knows φ on the basis of t, where t is a
suitable source of knowledge. In this context sources of knowledge can be
analyzed both from an externalist and from an internalist perspective:14

from an externalist point of view, t : φ is interpreted as stating that t
is sufficient for φ to be justified; from an internalist point of view, t : φ
is interpreted as stating that t is available to the agent as a justification
of φ, in case we assume that t is a potential justification, or that t is
accepted by the agent as a justification of φ, in case we assume that t is
an actual justification. Since justifications are key elements, the language
L of such epistemic logics contains terms explicitly referring to them:

t := c | x | t · s | t+ s, where c ∈ C(L), x ∈ V (L);

φ := p | ⊤ | ¬φ | φ ∧ ψ | φ ∨ ψ | t : φ, where t ∈ Tm(L).

Here, C(L) and V (L) are sets of constants and variables for vari-
ous epistemic sources and Tm(L) is the set of terms for justifications.
Finally, Fm(L) is the set of formulas of L. A term can stand for a jus-
tification that results from composing other justifications. In particular,
t ·s results from t and s is such a way that it justifies all the propositions
which follow by modus ponens from implications justified by t with an
antecedent justified by s, while t + s results from t and s is such a way
that it justifies all the propositions which are justified by either t or s.

14 See [12, chs. 5–6] and [22, ch. 5] for a basic introduction to such topics.
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Definition 4.1. A model for L is a tuple M = (W,R, E , V ) where

1. R : W → ℘(W ), is such that w ∈ R(w) for each w ∈ W ;
2. E : W × Tm(L) → ℘(Fm(L)).

The definition of truth is such that

M,w |= t : φ iff R(w) ⊆ [φ]M and φ ∈ E(w, t).

Intuitively, every pair constituted by a world w ∈ W and a term t ∈
Tm(L) is associated with a set E(w, t) of formulas representing the
propositions the agent knows at w based on t. Thus, the basic idea
is that φ is known by virtue of t provided it is one of the formulas that
are justified by t at w.15

Problems and desiderata. Logics of this kind are extremely interesting
due to their expressive power, but are subject to some significant prob-
lems. On the one hand, it is difficult to capture the distinction between
actual and potential justifications, i.e., justifications that are available
to the agent because the agent possesses them and justifications that
are available to the agent just because they exist and the agent is in a
position to possess them.16 On the other hand, in a general setting, the
distinction between operations · and + is not transparent.17 As to the
desiderata, given our intuitive judgments about the structure of justifi-
cation, we would like to be able to say that operation + is idempotent,
commutative and associative, but these properties are not satisfied if
their satisfaction is not explicitly imposed. As we will see shortly, the de-
velopment of a relating semantics for this kind of systems provides a nice
solution to these problems and a costless satisfaction of the desiderata.

4.1. Axiomatization

Let EK be the basic logic of explicit knowledge we want to discuss. This
logic is axiomatically defined as follows:

1. axioms and rules for propositional logic;
2. t : (φ → ψ) → (s : φ → t · s : ψ);

15 See [1, 2, 3, 11] for an introduction to the logic of justification, which is one of
the principal systems of explicit epistemic logic, and its possible worlds semantics.

16 See [13] for a throughout discussion.
17 This distinction is perfectly fine in a specific setting like the one provided by the

original logic of proofs, since in that setting · and + receive an intuitive interpretation
in terms of different constructions of complex proofs.
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3. t : φ ∨ s : φ → t+ s : φ;
4. t : φ → φ:
5. c1 : ... : cn : φ, for c1, ..., cn ∈ C(L), provided φ is an axiom from 1–4.

The sole rule is modus ponens. Schemas 2, 3, and 4 are introduced
to capture the intended interpretation of · and + and to restrict the class
of justifications in such a way that all the justifications we consider are
justifications supporting knowledge, i.e., are sufficient for the justified
proposition to be true. The final schema ensures that all axioms are
justified.18 The corresponding conditions on E are the following:

if φ → ψ ∈ E(w, t) and φ ∈ E(w, s), then ψ ∈ E(w, t · s)
(matching axiom 2);

E(w, t) ∪ E(w, s) ⊆ E(w, t+ s)
(matching axiom 3);

if φ is an axiom, then c1 : . . . : cn : φ ∈ E(w, c)
(matching axiom 5).

It is then not difficult to see that the system is sound.

4.2. Completeness

The canonical model is defined so that

W is the set of EK-complete sets of formulas;
R is such that v ∈ R(w) iff {ψ : ∃t(t : ψ ∈ w)} ⊆ v;
E is such that φ ∈ E(w, t) iff t : φ ∈ w;
V is such that v ∈ V (p) iff p ∈ v.

Completeness is then proved based on the following lemmas.

Lemma 4.1 (Truth Lemma). M,w |= t : φ iff R(w) ⊆ [φ]M and

φ ∈ E(w, t) iff φ ∈ E(w, t) iff t : φ ∈ w.

Lemma 4.2 (Canonicity Lemma). M is a model of L.

Conditions on E follow from axioms 2, 3, 5 [see 1, 11].

18 Here we work with an elementary system in which all the validities are justified
by all the constants in C(L); more general systems can be constructed by introducing
a constant specification. See [3, ch. 2] for further details.
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4.3. Interpretation in relating semantics

Systems of explicit epistemic logic can be interpreted from the point of
view of relating semantics without difficulty. Such an interpretation also
allows us to simplify the systems by avoiding the introduction of terms.
Let us start by discussing the second point. We saw that a formula like
t : φ is interpreted as stating that t is a justification of φ. We also saw
that the relation of being a justification is intended in different ways
from different perspectives: so, from an externalist point of view, t : φ
is interpreted as stating that t is sufficient for φ to be justified, whereas,
from an internalist point of view, t : φ is interpreted as stating that t
is a reason, either available or potentially accessible, which provides a
sufficient justification of φ. In both cases, t can be viewed as a condition
that is sufficient for φ to be justified: a certain fact, for the externalist, or
the fact that a certain reason is available to the agent, for the internalist.
Therefore, we are allowed to read t : φ as stating that the fact described
by t provides a reason for φ.19 This leads us to the assumption that a
term like t refers to a fact, and therefore that t can be interpreted as
expressing a proposition, thus abolishing the distinction between terms
and formulas.20

Since we are using constants as terms referring to justifications for
logical axioms, all the constants can be interpreted as representing a
unique fact, that is the fact that justifies logical validities, which we
identify with the logical truth ⊤.21 As a first result, the set Fm(L) of
formulas of the language L of explicit logic can be defined according to
this grammar:

φ := p | ⊤ | ¬φ | φ ∧ ψ | φ ∨ ψ | τ : φ.

19 The idea that reasons are fact-like entities is discussed in [6, 15, 23].
20 Alternatively, we could maintain the view that a term like t refers to a bit of

evidence, and focus on the internalist idea that a bit of evidence becomes a justification
of a proposition only when it is acknowledged as such by the agent. In this case, a
formula like t : φ should be interpreted as stating that the fact that t is possessed
by the agent constitutes a justification of φ. In turn this idea could be formalized by
means of a formula like τt : φ, where τt refers to the fact that the agent possesses t.
In what follows, for the sake of simplicity, I will stick to the view that terms refers to
facts, but all I say can be translated without difficulty into the view just sketched.

21 This is the simplest assumption we can make in reference to the facts justifying
logical principles. It goes without saying that more fine-grained solutions can be
adopted in representing reasons for logical validities, but since we are not focusing on
this issue, the solution proposed here is sufficient for the present purposes.
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Here, τ is simply a formula and τ : φ is to be read as stating that the
fact described by τ is a justification of φ. This change in the language
induces a change in the definition of a model. We saw that the main
element of a model for a system of explicit epistemic logic is E , i.e., the
function which assigns to any pair constituted by a world w ∈ W and a
term t ∈ Tm(L) the set of formulas representing the propositions that are
justified by t at w. In the present framework, such function is smoothly
replaced by a relation between formulas parameterized by worlds. Hence,
a model is a tuple M = (W,R,R, V ), with R : W → ℘(Fm(L)×Fm(L)),
and Rw(φ, τ) is assumed to hold precisely when the fact described by τ
counts as a justification of φ at w.

The definition of truth is such that

M,w |= τ : φ iff R(w) ⊆ [φ]M and Rw(φ, τ).

Thus, we assume that φ is known by virtue of τ provided it is one
of the formulas that are justified by the fact described by τ at w. Here,
the parameterization with respect to worlds captures the idea that a fact
that counts as a justification of φ at w may not count as a justification
of φ in a different context: e.g., the fact that the agent thinks he sees
a cat on a tree may not count as a justification of the proposition that
there is a cat on a tree in a context where the agent is in the dark. In
view of the changes highlighted before, we modify the axiomatic system
as follows.

1. axioms and rules for propositional logic;
2. τ : (φ → ψ) → (σ : φ → τ ∧ σ : ψ);
3. τ : φ ∨ σ : φ → (τ ∧ σ) : φ;
4. τ : φ → φ;
5. ⊤ : φ, provided φ is an axiom from 1–4.

The corresponding conditions on Rw are:

if Rw(φ → ψ, τ) and Rw(φ, σ), then Rw(ψ, τ ∧ σ)
(matching axiom 2);

if Rw(φ, τ) or Rw(φ, σ), then Rw(φ, τ ∧ σ)
(matching axiom 3);

if φ is an axiom, then Rw(φ,⊤)
(matching axiom 5).
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It is not difficult to see that the system is sound and complete with
respect to its intended semantics. In fact, proving soundness is straight-
forward, while the proof of completeness is based on the construction of
the following canonical model:

W is the set of EK-complete sets of formulas;
R is such that v ∈ R(w) iff {ψ : ∃τ(τ : ψ ∈ w)} ⊆ v;
R is such that Rw(φ, τ) iff τ : φ ∈ w;
V is such that v ∈ V (p) iff p ∈ v.

Completeness is then proved as usual.

Lemma 4.3 (Truth Lemma). M,w |= τ : φ iff R(w) ⊆ [φ]M and Rw(φ, τ)
iff Rw(φ, τ) iff τ : φ ∈ w.

Lemma 4.4 (Canonicity Lemma). M is a model of L.

Conditions on R follow from axioms 2, 3, 5.

Problems and desiderata. The distinction between potential and actual
justification is now definable, provided we work in an enriched modal
framework where an operator is available representing the fact that the
agent has an access to justifications, that is the fact that he possess a
justification of φ. Let E be such an operator.22 A proposition like E(τ)
states that the agent has access to the fact that τ , while a proposition
like ♦E(τ) states that she has a potential access to the fact that τ .
The notions of potential and actual justification can be now defined and
contrasted. In more detail, we are able to distinguish several important
conditions.

(i) τ : φ (τ is an objective justification of φ; this notion is neutral
with respect to the accessibility of τ and can be adopted to describe an
externalist perspective on justification);

(ii) E(τ) ∧ τ : φ (τ is an actual justification of φ; this notion encodes
the fact that the agent possesses a justification and can be adopted to
describe an internalist perspective on justification);

(iii) ♦E(τ) ∧ τ : φ (τ is a potential justification of φ; this notion
encodes the fact that the agent is in a position to possess a justifica-
tion and can be adopted to describe a wider internalist perspective on
justification);

22 The logic of E can be formulated in terms of a simple liberal semantics.
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(iv) E(τ) : φ (E(τ) is an actual justification of φ; this notion encodes
a more specific internalist intuition, according to which it is precisely
the fact that the agent has an access to τ that constitutes a justification
of φ).

The distinction between · and + is eliminated: both operations are
rendered in terms of a conjunction. This is desirable at the level of ab-
straction we are considering here. Furthermore, assuming that reasons
are not affected by the way their are presented, at least at a proposi-
tional level, the fact that operation + is idempotent, commutative and
associative is derivable. Indeed, the assumption that reasons are not
affected by the way their are presented is captured by a rule like:

Equivalence: if ⊢ τ ↔ σ, then ⊢ τ : φ ↔ σ : φ.

whose semantic counterpart is a condition ensuring that Rw(φ, τ) is
closed under substitution of equivalents in the second argument.

This rule, together with the standard properties of conjunction, suf-
fices for obtaining the features ascribed to +.

Furthermore, having construed epistemic reasons as facts allows us
to examine some intuitive developments of the basic system proposed
above. As a first idea, we can consider particular classes of reasons, e.g.
the class of reasons that satisfy monotonicity. I have in mind cases where
a proposition about a physical system is justified based on a mathemat-
ical model of that system. In these cases, if two models mτ and mσ are
such that mτ is more accurate than mσ, then mτ enables us to justify
more propositions than mσ, provided that mτ is compatible with mσ.
So, if τ is the proposition stating that mτ is at our disposal and σ is the
proposition stating that mσ is at our disposal, we get that τ → σ and
that all propositions justified based on mσ are also justified based on
mτ . Such a class is defined without difficulty by a rule like: if ⊢ τ → σ,
then ⊢ σ : φ → τ : φ, which generalizes Equivalence.

4.4. Developments

Before closing this section, let me hint a second interesting development
of justification logic within relating semantics. As in the standard set-
ting, C(L) and V (L) are sets of constants and variables for epistemic
sources, Fm(L) is the set of formulas of L, and the set Tm(L) of terms
is obtained by combining constants and variables by means of · and +.
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But this time, terms are thought of as referring to justifications involving
both propositions and conditions. A basic epistemic formula of the form
t : (α, φ) is now construed as stating that t justifies φ provided that α is
the case. Hence, α describes a condition that must be satisfied in order
for t to justify φ. For instance, if t is a bit of evidence for φ obtained by
visual perception, α can refer to the condition that the relevant visual
system is working correctly or, if t is a bit of evidence for φ obtained by
constructing a proof of φ, α can refer to the condition that the proof is
actually constructed in a correct way.

Definition 4.2. A model for L is a tuple M = (W,R,R, V ), where

1. R : W → ℘(W ), is such that w ∈ R(w) for each w ∈ W ;
2. R : W × Tm(L) → ℘(Fm(L) × Fm(L)).

The definition of truth is such that

M,w |= t : (α, φ) iff R(w) ∩ [α]M ⊆ [φ]M and R
t

w
(α, φ).

Intuitively, every pair constituted by a world w ∈ W and a term
t ∈ Tm(L) is associated with a relation R

t

w
such that R

t

w
(α, φ) holds just

in case α stands for the condition to be satisfied and φ stands for the
proposition the agent knows at w based on t under the assumption that
such condition is indeed satisfied. The logic of this kind of knowledge,
call it CEK, for conditional explicit knowledge, can be axiomatically
defined as follows:

1. axioms and rules for propositional logic;
2. t : (α, φ → ψ) → (s : (β, φ) → t · s : (α ∧ β, ψ));
3. t : (α, φ) ∨ s : (β, φ) → t+ s : (α ∨ β, φ);
4. t : (α, φ) ∧ α → φ;
5. c : (⊤, φ), for c ∈ C(L), provided φ is an axiom from 1–4.

The sole rule is modus ponens. The corresponding conditions on E
are the following:

if R
t

w
(α, φ → ψ) and R

s

w
(β, φ), then R

t·s

w
(α ∧ β, ψ)

(matching axiom 2);

if R
t

w
(α, φ) or R

s

w
(β, φ), then R

t+s

w
(α ∨ β, φ)

(matching axiom 3);

if φ is an axiom, then R
c

w
(⊤, φ)

(matching axiom 5).
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It is not difficult to see that the system is sound. As to completeness,
consider the following canonical model:

W is the set of CEK-complete sets of formulas;
R is such that v ∈ R(w) iff {α → φ : t : (α, φ) ∈ w} ⊆ v;
R is such thatRt

w
(α, φ) iff t : (α, φ) ∈ w;

V is such that v ∈ V (p) iff p ∈ v.

The Truth Lemma is proved as follows.

Lemma 4.5. Truth lemma.

M,w |= t : (α, φ) iff

R(w) ∩ [α]M ⊆ [φ]M and R
t

w
(α, φ) iff R

t

w
(α, φ) iff t : (α, φ) ∈ w.

As to the last equivalence, note that

if t : (α, φ) ∈ w, then R(w) ∩ [α]M ⊆ [φ]M .

Indeed, suppose t : (α, φ) ∈ w and v ∈ R(w) ∩ [α]M . Then, by the
induction hypothesis, α ∈ v and, by the definition of R, α → φ ∈ v.
Therefore, φ ∈ v, and we get the conclusion.

Lemma 4.6 (Canonicity lemma). M is a model of L.

Conditions on R follow from axioms 2, 3, 5.
The opportunity of applying the present framework to problems in

epistemology seems to be promising. In particular, we can use a formula
like t : (α, φ) to model the idea that a justification of φ is required
to satisfy a certain set of standards, as in the tradition of epistemic
contextualism, or the idea that the application of a given procedure
yields a justification of φ only if that procedure is correctly carried out.
This line of research is left for further work.

5. Conclusion

We saw that relating semantics provides us with an intuitive framework
for studying epistemic logic in general and explicit epistemic logic in
particular. The relations used in the representation of knowledge are
extremely flexible and enable us to deal with epistemic operators from
both an intensional and a hyperintensional point of view. Furthermore,
the semantics gives us a lot of suggestions both on how to solve some
problems related to explicit epistemic logic and on how to further develop
systems in the light of new ideas.
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In summary, relating semantics is an intriguing tool. On the one
hand, the main advantage in using such framework is constituted by
the fact that the properties of the epistemic operators, as identified in
different epistemological theories, can be incorporated in a semantics in
a very natural way, thus allowing us to derive the logic of those operators
without difficulty. On the other hand, the main challenge to be addressed
concerns how to exploit this framework so as to get not only a precise
characterization of the operators we want to analyze, but also a basis
for understanding why such operators are to be characterized in the way
they are.
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